Sample records for predicting flow induced

  1. Bellows flow-induced vibrations

    NASA Technical Reports Server (NTRS)

    Tygielski, P. J.; Smyly, H. M.; Gerlach, C. R.

    1983-01-01

    The bellows flow excitation mechanism and results of comprehensive test program are summarized. The analytical model for predicting bellows flow induced stress is refined. The model includes the effects of an upstream elbow, arbitrary geometry, and multiple piles. A refined computer code for predicting flow induced stress is described which allows life prediction if a material S-N diagram is available.

  2. Cold Flow Plume Entrainment Test Final Report NTF Test Number 2456

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph H.; McDaniels, David; Mishtawy, Jason; Ramachandran, Narayanan; Hammad, Khaled J.

    2005-01-01

    As part of the Space Shuttle Return to Flight (RTF) program, Marshall Space Flight Center (MSFC) performed computational fluid dynamics (CFD) analysis to define the velocity flowfields around the Shuttle stack at liftoff. These CFD predicted velocity flowfields were used in debris transport analysis (DTA). High speed flows such as plumes induce or 'entrain' mass from the surrounding environment. Previous work had shown that CFD analysis over-predicts plume induced flows. Therefore, the DTA would tend to 1) predict more debris impacts, and 2) the debris velocity (and kinetic energy) of those impacts would be too high. At a November, 2004 peer-review it was recommended that the Liftoff DTA team quantify the uncertainty in the DTA caused by the CFD's over prediction of plume induced flow. To do so, the Liftoff DTA team needed benchmark quality data for plume induced flow to quantify the CFD accuracy and its effect on the DTA. MSFC's Nozzle Test Facility (NTF) conducted the "Nozzle Induced Flows test, P#2456" to obtain experimental data for plume induced flows for nozzle flow exhausting into q quiescent freestream. Planning for the test began in December, 2004 and the experimental data was obtained in February and March of 2005. The funding for this test was provided by MSFC's Space Shuttle Propulsion Systems Integration and Engineering office.

  3. Prediction of space shuttle fluctuating pressure environments, including rocket plume effects

    NASA Technical Reports Server (NTRS)

    Plotkin, K. J.; Robertson, J. E.

    1973-01-01

    Preliminary estimates of space shuttle fluctuating pressure environments have been made based on prediction techniques developed by Wyle Laboratories. Particular emphasis has been given to the transonic speed regime during launch of a parallel-burn space shuttle configuration. A baseline configuration consisting of a lightweight orbiter and monolithic SRB, together with a typical flight trajectory, have been used as models for the predictions. Critical fluctuating pressure environments are predicted at transonic Mach numbers. Comparisons between predicted environments and wind tunnel test results, in general, showed good agreement. Predicted one-third octave band spectra for the above environments were generally one of three types: (1) attached turbulent boundary layer spectra (typically high frequencies); (2) homogeneous separated flow and shock-free interference flow spectra (typically intermediate frequencies); and (3) shock-oscillation and shock-induced interference flow spectra (typically low frequencies). Predictions of plume induced separated flow environments were made. Only the SRB plumes are important, with fluctuating levels comparable to compression-corner induced separated flow shock oscillation.

  4. Simulations of a Liquid Hydrogen Inducer at Low-Flow Off-Design Flow Conditions

    NASA Technical Reports Server (NTRS)

    Hosangadi, A.; Ahuja, V.; Ungewitter, R. J.

    2005-01-01

    The ability to accurately model details of inlet back flow for inducers operating a t low-flow, off-design conditions is evaluated. A sub-scale version of a three-bladed liquid hydrogen inducer tested in water with detailed velocity and pressure measurements is used as a numerical test bed. Under low-flow, off-design conditions the length of the separation zone as well as the swirl velocity magnitude was under predicted with a standard k-E model. When the turbulent viscosity coefficient was reduced good comparison was obtained a t all the flow conditions examined with both the magnitude and shape of the profile matching well with the experimental data taken half a diameter upstream of the leading edge. The velocity profiles and incidence angles a t the leading edge itself were less sensitive to the back flow length predictions indicating that single-phase performance predictions may be well predicted even if the details of flow separation modeled are incorrect. However, for cavitating flow situations the prediction of the correct swirl in the back flow and the pressure depression in the core becomes critical since it leads to vapor formation. The simulations have been performed using the CRUNCH CFD(Registered Trademark) code that has a generalized multi-element unstructured framework and a n advanced multi-phase formulation for cryogenic fluids. The framework has been validated rigorously for predictions of temperature and pressure depression in cryogenic fluid cavities and has also been shown to predict the cavitation breakdown point for inducers a t design conditions.

  5. Experimental and predicted cavitation performance of an 80.6 deg helical inducer in high temperature water

    NASA Technical Reports Server (NTRS)

    Kovich, G.

    1972-01-01

    The cavitating performance of a stainless steel 80.6 degree flat-plate helical inducer was investigated in water over a range of liquid temperatures and flow coefficients. A semi-empirical prediction method was used to compare predicted values of required net positive suction head in water with experimental values obtained in water. Good agreement was obtained between predicted and experimental data in water. The required net positive suction head in water decreased with increasing temperature and increased with flow coefficient, similar to that observed for a like inducer in liquid hydrogen.

  6. Analytical and experimental study of mean flow and turbulence characteristics inside the passages of an axial flow inducer

    NASA Technical Reports Server (NTRS)

    Gorton, C. A.; Lakshminarayana, B.

    1980-01-01

    The inviscid and viscid effects existing within the passages of a three bladed axial flow inducer operating at a flow coefficient of 0.065 are investigated. The blade static pressure and blade limiting streamline angle distributions were determined and the three components of mean velocity, turbulence intensities, and turbulence stresses were measured at locations inside the inducer blade passage utilizing a rotating three sensor hotwire probe. Applicable equations were derived for the hotwire data reduction analysis and solved numerically to obtain the appropriate flow parameters. The three dimensional inviscid flow in the inducer was predicted by numerically solving the exact equations of motion, and the three dimensional viscid flow was predicted by incorporating the dominant viscous terms into the exact equations. The analytical results are compared with the experimental measurements and design values where appropriate. Radial velocities are found to be of the same order as axial velocities within the inducer passage, confirming the highly three dimensional characteristic of inducer flow. Total relative velocity distribution indicate a substantial velocity deficiency near the tip at mid-passage which expands significantly as the flow proceeds toward the inducer trailing edge. High turbulence intensities and turbulence stresses are concentrated within this core region. Considerable wake diffusion occurs immediately downstream of the inducer trailing edge to decay this loss core. Evidence of boundary layer interactions, blade blockage effects, radially inward flows, annulus wall effects, and backflows are all found to exist within the long, narrow passages of the inducer.

  7. Study of cavitating inducer instabilities

    NASA Technical Reports Server (NTRS)

    Young, W. E.; Murphy, R.; Reddecliff, J. M.

    1972-01-01

    An analytic and experimental investigation into the causes and mechanisms of cavitating inducer instabilities was conducted. Hydrofoil cascade tests were performed, during which cavity sizes were measured. The measured data were used, along with inducer data and potential flow predictions, to refine an analysis for the prediction of inducer blade suction surface cavitation cavity volume. Cavity volume predictions were incorporated into a linearized system model, and instability predictions for an inducer water test loop were generated. Inducer tests were conducted and instability predictions correlated favorably with measured instability data.

  8. Analytical and experimental study of mean flow and turbulence characteristics inside the passages of an axial flow inducer

    NASA Technical Reports Server (NTRS)

    Gorton, C. A.; Lakshminarayana, B.

    1974-01-01

    The effort conducted to gather additional understanding of the complex inviscid and viscid effects existing within the passages of a three-bladed axial flow inducer operating at a flow coefficient of 0.065 is summarized. The experimental investigations included determination of the blade static pressure and blade limiting streamline angle distributions, and measurement of the three components of mean velocity, turbulence intensities and turbulence stresses at locations inside the inducer blade passage utilizing a rotating three-sensor hotwire probe. Applicable equations were derived for the hotwire data reduction analysis and solved numerically to obtain the appropriate flow parameters. Analytical investigations were conducted to predict the three-dimensional inviscid flow in the inducer by numerically solving the exact equations of motion, and to approximately predict the three-dimensional viscid flow by incorporating the dominant viscous terms into the exact equations. The analytical results are compared with the experimental measurements and design values where appropriate.

  9. Prediction of flow-induced failures of braided flexible hoses and bellows

    NASA Technical Reports Server (NTRS)

    Sack, L. E.; Nelson, R. L.; Mason, D. R.; Cooper, R. A.

    1972-01-01

    Analytical techniques were developed to evaluate braided hoses and bellows for possibility of flow induced resonance. These techniques determine likelihood of high cycle fatigue failure when such resonance exists.

  10. Visualization study of flow in axial flow inducer.

    NASA Technical Reports Server (NTRS)

    Lakshminarayana, B.

    1972-01-01

    A visualization study of the flow through a three ft dia model of a four bladed inducer, which is operated in air at a flow coefficient of 0.065, is reported in this paper. The flow near the blade surfaces, inside the rotating passages, downstream and upstream of the inducer is visualized by means of smoke, tufts, ammonia filament, and lampblack techniques. Flow is found to be highly three dimensional, with appreciable radial velocity throughout the entire passage. The secondary flows observed near the hub and annulus walls agree with qualitative predictions obtained from the inviscid secondary flow theory.

  11. Investigation of boundary layer and turbulence characteristics inside the passages of an axial flow inducer

    NASA Technical Reports Server (NTRS)

    Anand, A.; Gorton, C.; Lakshminarayana, B.; Yamaoka, H.

    1973-01-01

    A study of the boundary layer and turbulence characteristics inside the passages of an axial flow inducer is reported. The first part deals with the analytical and experimental investigation of the boundary layer characteristics in a four bladed flat plate inducer passage operated with no throttle. An approximate analysis for the prediction of radial and chordwise velocity profiles across the passage is carried out. The momentum integral technique is used to predict the gross properties of the boundary layer. Equations are given for the exact analysis of the turbulent boundary layer characteristics using the turbulent field method. Detailed measurement of boundary layer profiles, limiting streamline angle and skin friction stress on the rotating blade is also reported. Part two of this report deals with the prediction of the flow as well as blade static pressure measurements in a three bladed inducer with cambered blades operated at a flow coefficient of 0.065. In addition, the mean velocity and turbulence measurements carried out inside the passage using a rotating triaxial probe is reported.

  12. Prediction of fluctuating pressure environments associated with plume-induced separated flow fields

    NASA Technical Reports Server (NTRS)

    Plotkin, K. J.

    1973-01-01

    The separated flow environment induced by underexpanded rocket plumes during boost phase of rocket vehicles has been investigated. A simple semi-empirical model for predicting the extent of separation was developed. This model offers considerable computational economy as compared to other schemes reported in the literature, and has been shown to be in good agreement with limited flight data. The unsteady pressure field in plume-induced separated regions was investigated. It was found that fluctuations differed from those for a rigid flare only at low frequencies. The major difference between plume-induced separation and flare-induced separation was shown to be an increase in shock oscillation distance for the plume case. The prediction schemes were applied to PRR shuttle launch configuration. It was found that fluctuating pressures from plume-induced separation are not as severe as for other fluctuating environments at the critical flight condition of maximum dynamic pressure.

  13. Coupling of rainfall-induced landslide triggering model with predictions of debris flow runout distances

    NASA Astrophysics Data System (ADS)

    Lehmann, Peter; von Ruette, Jonas; Fan, Linfeng; Or, Dani

    2014-05-01

    Rapid debris flows initiated by rainfall induced shallow landslides present a highly destructive natural hazard in steep terrain. The impact and run-out paths of debris flows depend on the volume, composition and initiation zone of released material and are requirements to make accurate debris flow predictions and hazard maps. For that purpose we couple the mechanistic 'Catchment-scale Hydro-mechanical Landslide Triggering (CHLT)' model to compute timing, location, and landslide volume with simple approaches to estimate debris flow runout distances. The runout models were tested using two landslide inventories obtained in the Swiss Alps following prolonged rainfall events. The predicted runout distances were in good agreement with observations, confirming the utility of such simple models for landscape scale estimates. In a next step debris flow paths were computed for landslides predicted with the CHLT model for a certain range of soil properties to explore its effect on runout distances. This combined approach offers a more complete spatial picture of shallow landslide and subsequent debris flow hazards. The additional information provided by CHLT model concerning location, shape, soil type and water content of the released mass may also be incorporated into more advanced models of runout to improve predictability and impact of such abruptly-released mass.

  14. Field Effect Flow Control in a Polymer T-Intersection Microfluidic Network

    NASA Technical Reports Server (NTRS)

    Sniadecki, Nathan J.; Chang, Richard; Beamesderfer, Mike; Lee, Cheng S.; DeVoe, Don L.

    2003-01-01

    We present a study of induced pressure pumping in a polymer microchannel due to differential electroosmotic flow @OF) rates via field-effect flow control (FEFC). The experimental results demonstrate that the induced pressure pumping is dependent on the distance of the FEFC gate from the cathodic gate. A proposed flow model based on a linearly-decaying zeta potential profile is found to successfully predict experimental trends.

  15. Investigation of the free flow electrophoretic process. Volume 2: Technical analysis

    NASA Technical Reports Server (NTRS)

    Weiss, R. A.; Lanham, J. W.; Richman, D. W.; Walker, C. D.

    1979-01-01

    The effect of gravity on the free flow electrophoretic process was investigated. The demonstrated effects were then compared with predictions made by mathematical models. Results show that the carrier buffer flow was affected by gravity induced thermal convection and that the movement of the separating particle streams was affected by gravity induced buoyant forces. It was determined that if gravity induced buoyant forces were included in the mathematical models, then effective predictions of electrophoresis chamber separation performance were possible. The results of tests performed using various methods of electrophoresis using supportive media show that the mobility and the ability to separate were essentially independent of concentration, providing promise of being able to perform electrophoresis with higher inlet concentrations in space.

  16. Thermally induced oscillations in fluid flow

    NASA Technical Reports Server (NTRS)

    Zuber, N.

    1970-01-01

    Theoretical investigation distinguishes the various mechanisms responsible for oscillations of pressure, temperature, and flow velocity, derives a quantitative description of the most troublesome mechanisms, and develops a capability to predict the occurrence of unstable flow.

  17. Asymmetrical reverse vortex flow due to induced-charge electro-osmosis around carbon stacking structures.

    PubMed

    Sugioka, Hideyuki

    2011-05-01

    Broken symmetry of vortices due to induced-charge electro-osmosis (ICEO) around stacking structures is important for the generation of a large net flow in a microchannel. Following theoretical predictions in our previous study, we herein report experimental observations of asymmetrical reverse vortex flows around stacking structures of carbon posts with a large height (~110 μm) in water, prepared by the pyrolysis of a photoresist film in a reducing gas. Further, by the use of a coupled calculation method that considers boundary effects precisely, the experimental results, except for the problem of anomalous flow reversal, are successfully explained. That is, unlike previous predictions, the precise calculations here show that stacking structures accelerate a reverse flow rather than suppressing it for a microfluidic channel because of the deformation of electric fields near the stacking portions; these structures can also generate a large net flow theoretically in the direction opposite that of a previous prediction for a standard vortex flow. Furthermore, by solving the one-dimensional Poisson-Nernst-Plank (PNP) equations in the presence of ac electric fields, we find that the anomalous flow reversal occurs by the phase retardation between the induced diffuse charge and the tangential electric field. In addition, we successfully explain the nonlinearity of the flow velocity on the applied voltage by the PNP analysis. In the future, we expect to improve the pumping performance significantly by using stacking structures of conductive posts along with a low-cost process. © 2011 American Physical Society

  18. Predicting bifurcation angle effect on blood flow in the microvasculature.

    PubMed

    Yang, Jiho; Pak, Y Eugene; Lee, Tae-Rin

    2016-11-01

    Since blood viscosity is a basic parameter for understanding hemodynamics in human physiology, great amount of research has been done in order to accurately predict this highly non-Newtonian flow property. However, previous works lacked in consideration of hemodynamic changes induced by heterogeneous vessel networks. In this paper, the effect of bifurcation on hemodynamics in a microvasculature is quantitatively predicted. The flow resistance in a single bifurcation microvessel was calculated by combining a new simple mathematical model with 3-dimensional flow simulation for varying bifurcation angles under physiological flow conditions. Interestingly, the results indicate that flow resistance induced by vessel bifurcation holds a constant value of approximately 0.44 over the whole single bifurcation model below diameter of 60μm regardless of geometric parameters including bifurcation angle. Flow solutions computed from this new model showed substantial decrement in flow velocity relative to other mathematical models, which do not include vessel bifurcation effects, while pressure remained the same. Furthermore, when applying the bifurcation angle effect to the entire microvascular network, the simulation results gave better agreements with recent in vivo experimental measurements. This finding suggests a new paradigm in microvascular blood flow properties, that vessel bifurcation itself, regardless of its angle, holds considerable influence on blood viscosity, and this phenomenon will help to develop new predictive tools in microvascular research. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Simulations of Flow Through the SSME LH2 Feed Line and LPFP Inducer

    NASA Technical Reports Server (NTRS)

    Dorney, Daniel J.; Rothermel, Jeffry

    2003-01-01

    During a post-flight inspection of the liquid hydrogen feed lines leading the Space Shuttle main engines cracks were discover in slots on a flow liner just upstream of the low pressure fuel pump inducer. Numerical simulations have been performed for the feed line, the flow liner (including the slots and backing cavity) and the inducer. The predicted results have been compared with experimental data taken during hot-fire tests at NASA Stennis Space Center.

  20. Fluid mechanics of dynamic stall. II - Prediction of full scale characteristics

    NASA Technical Reports Server (NTRS)

    Ericsson, L. E.; Reding, J. P.

    1988-01-01

    Analytical extrapolations are made from experimental subscale dynamics to predict full scale characteristics of dynamic stall. The method proceeds by establishing analytic relationships between dynamic and static aerodynamic characteristics induced by viscous flow effects. The method is then validated by predicting dynamic test results on the basis of corresponding static test data obtained at the same subscale flow conditions, and the effect of Reynolds number on the static aerodynamic characteristics are determined from subscale to full scale flow conditions.

  1. Performance predictions for an SSME configuration with an enlarged throat

    NASA Technical Reports Server (NTRS)

    Nickerson, G. R.; Dang, L. D.

    1985-01-01

    The Two Dimensional Kinetics (TDK) computer program that was recently developed for NASA was used to predict the performance of a Large Throat Configuration of the Space Shuttle Main Engine (SSME). Calculations indicate that the current design SSME contains a shock wave that is induced by the nozzle wall shape. In the Large Throat design an even stronger shock wave is predicted. Because of the presence of this shock wave, earlier performance predictions that have neglected shock wave effects have been questioned. The JANNAF thrust chamber performance prediction procedures given in a reference were applied. The analysis includes the effects of two dimensional reacting flow with a shock wave. The effects of the boundary layer with a regenatively cooled wall are also included. A Purdue computer program was used to compute axially symmetric supersonic nozzle flows with an induced shock, but is restricted to flows with a constant ratio of specific heats. Thus, the TDK program was also run with ths assumption and the results of the two programs were compared.

  2. A prescribed wake rotor inflow and flow field prediction analysis, user's manual and technical approach

    NASA Technical Reports Server (NTRS)

    Egolf, T. A.; Landgrebe, A. J.

    1982-01-01

    A user's manual is provided which includes the technical approach for the Prescribed Wake Rotor Inflow and Flow Field Prediction Analysis. The analysis is used to provide the rotor wake induced velocities at the rotor blades for use in blade airloads and response analyses and to provide induced velocities at arbitrary field points such as at a tail surface. This analysis calculates the distribution of rotor wake induced velocities based on a prescribed wake model. Section operating conditions are prescribed from blade motion and controls determined by a separate blade response analysis. The analysis represents each blade by a segmented lifting line, and the rotor wake by discrete segmented trailing vortex filaments. Blade loading and circulation distributions are calculated based on blade element strip theory including the local induced velocity predicted by the numerical integration of the Biot-Savart Law applied to the vortex wake model.

  3. Predictive model for convective flows induced by surface reactivity contrast

    NASA Astrophysics Data System (ADS)

    Davidson, Scott M.; Lammertink, Rob G. H.; Mani, Ali

    2018-05-01

    Concentration gradients in a fluid adjacent to a reactive surface due to contrast in surface reactivity generate convective flows. These flows result from contributions by electro- and diffusio-osmotic phenomena. In this study, we have analyzed reactive patterns that release and consume protons, analogous to bimetallic catalytic conversion of peroxide. Similar systems have typically been studied using either scaling analysis to predict trends or costly numerical simulation. Here, we present a simple analytical model, bridging the gap in quantitative understanding between scaling relations and simulations, to predict the induced potentials and consequent velocities in such systems without the use of any fitting parameters. Our model is tested against direct numerical solutions to the coupled Poisson, Nernst-Planck, and Stokes equations. Predicted slip velocities from the model and simulations agree to within a factor of ≈2 over a multiple order-of-magnitude change in the input parameters. Our analysis can be used to predict enhancement of mass transport and the resulting impact on overall catalytic conversion, and is also applicable to predicting the speed of catalytic nanomotors.

  4. Water Flow Performance of a Superscale Model of the Fastrac Liquid Oxygen Pump

    NASA Technical Reports Server (NTRS)

    Skelley, Stephen; Zoladz, Thomas

    2001-01-01

    As part of the National Aeronautics and Space Administration's ongoing effort to lower the cost of access to space, the Marshall Space Flight Center has developed a rocket engine with 60,000 pounds of thrust for use on the Reusable Launch Vehicle technology demonstrator slated for launch in 2000. This gas generator cycle engine, known as the Fastrac engine, uses liquid oxygen and RP-1 for propellants and includes single stage liquid oxygen and RP-1 pumps and a single stage supersonic turbine on a common shaft. The turbopump design effort included the first use and application of new suction capability prediction codes and three-dimensional blade generation codes in an attempt to reduce the turbomachinery design and certification costs typically associated with rocket engine development. To verify the pump's predicted cavitation performance, a water flow test of a superscale model of the Fastrac liquid oxygen pump was conducted to experimentally evaluate the liquid oxygen pump's performance at and around the design point. The water flow test article replicated the flow path of the Fastrac liquid oxygen pump in a 1.582x scale model, including scaled seal clearances for correct leakage flow at a model operating speed of 5000 revolutions per minute. Flow entered the 3-blade axial-flow inducer, transitioned to a shrouded, 6- blade radial impeller, and discharged into a vaneless radial diffuser and collection volute. The test article included approximately 50 total and static pressure measurement locations as well as flush-mounted, high frequency pressure transducers for complete mapping of the pressure environment. The primary objectives of the water flow test were to measure the steady-state and dynamic pressure environment of the liquid oxygen pump versus flow coefficient, suction specific speed, and back face leakage flow rate. Initial results showed acceptable correlation between the predicted and experimentally measured pump head rise at low suction specific speeds. Likewise, only small circumferential variations in steady-state were observed from 80% to 120% of the design flow coefficient, matching the computational predictions and confirming that the integrated design approach has minimized any exit volute-induced distortions. The test article exhibited suction performance trends typically observed in inducer designs with virtually constant head rise with decreasing inlet pressure until complete pump head breakdown. Unfortunately, the net positive suction head at 3% head fall-off occurred far below that predicted at all tested flow coefficients, resulting in a negative net positive suction head margin at the design point in water. Additional testing to map the unsteady pressure environment was conducted and cavitation-induced flow disturbances at the inducer inlet were observed. Two distinct disturbances were identified, one rotating and one stationary relative to the fixed frame of reference, while the transition from one regime to the next produced significant effects on the steady state pump performance. The impact of the unsteady phenomena and the corresponding energy losses on the unexpectedly poor pump performance is also discussed.

  5. Towards predictive models for transitionally rough surfaces

    NASA Astrophysics Data System (ADS)

    Abderrahaman-Elena, Nabil; Garcia-Mayoral, Ricardo

    2017-11-01

    We analyze and model the previously presented decomposition for flow variables in DNS of turbulence over transitionally rough surfaces. The flow is decomposed into two contributions: one produced by the overlying turbulence, which has no footprint of the surface texture, and one induced by the roughness, which is essentially the time-averaged flow around the surface obstacles, but modulated in amplitude by the first component. The roughness-induced component closely resembles the laminar steady flow around the roughness elements at the same non-dimensional roughness size. For small - yet transitionally rough - textures, the roughness-free component is essentially the same as over a smooth wall. Based on these findings, we propose predictive models for the onset of the transitionally rough regime. Project supported by the Engineering and Physical Sciences Research Council (EPSRC).

  6. Numerical Modelling and Prediction of Erosion Induced by Hydrodynamic Cavitation

    NASA Astrophysics Data System (ADS)

    Peters, A.; Lantermann, U.; el Moctar, O.

    2015-12-01

    The present work aims to predict cavitation erosion using a numerical flow solver together with a new developed erosion model. The erosion model is based on the hypothesis that collapses of single cavitation bubbles near solid boundaries form high velocity microjets, which cause sonic impacts with high pressure amplitudes damaging the surface. The erosion model uses information from a numerical Euler-Euler flow simulation to predict erosion sensitive areas and assess the erosion aggressiveness of the flow. The obtained numerical results were compared to experimental results from tests of an axisymmetric nozzle.

  7. Flow induced migration in polymer melts – Theory and simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorgan, John Robert, E-mail: jdorgan@mines.edu; Rorrer, Nicholas Andrew, E-mail: nrorrer@mines.edu

    2015-04-28

    Flow induced migration, whereby polymer melts are fractionated by molecular weight across a flow field, represents a significant complication in the processing of polymer melts. Despite its long history, such phenomena remain relatively poorly understood. Here a simple analytical theory is presented which predicts the phenomena based on well-established principles of non-equilibrium thermodynamics. It is unambiguously shown that for purely viscous materials, a gradient in shear rate is needed to drive migration; for purely viscometric flows no migration is expected. Molecular scale simulations of flow migration effects in dense polymer melts are also presented. In shear flow the melts exhibitmore » similar behavior as the quiescent case; a constant shear rate across the gap does not induce chain length based migration. In comparison, parabolic flow causes profound migration for both unentangled and entangled melts. These findings are consistent with the analytical theory. The picture that emerges is consistent with flow induced migration mechanisms predominating over competing chain degradation mechanisms.« less

  8. Quantification of electrical field-induced flow reversal in a microchannel.

    PubMed

    Pirat, C; Naso, A; van der Wouden, E J; Gardeniers, J G E; Lohse, D; van den Berg, A

    2008-06-01

    We characterize the electroosmotic flow in a microchannel with field effect flow control. High resolution measurements of the flow velocity, performed by micro particle image velocimetry, evidence the flow reversal induced by a local modification of the surface charge due to the presence of the gate. The shape of the microchannel cross-section is accurately extracted from these measurements. Experimental velocity profiles show a quantitative agreement with numerical results accounting for this exact shape. Analytical predictions assuming a rectangular cross-section are found to give a reasonable estimate of the velocity far enough from the walls.

  9. Linking rainfall-induced landslides with debris flows runout patterns towards catchment scale hazard assessment

    NASA Astrophysics Data System (ADS)

    Fan, Linfeng; Lehmann, Peter; McArdell, Brian; Or, Dani

    2017-03-01

    Debris flows and landslides induced by heavy rainfall represent an ubiquitous and destructive natural hazard in steep mountainous regions. For debris flows initiated by shallow landslides, the prediction of the resulting pathways and associated hazard is often hindered by uncertainty in determining initiation locations, volumes and mechanical state of the mobilized debris (and by model parameterization). We propose a framework for linking a simplified physically-based debris flow runout model with a novel Landslide Hydro-mechanical Triggering (LHT) model to obtain a coupled landslide-debris flow susceptibility and hazard assessment. We first compared the simplified debris flow model of Perla (1980) with a state-of-the art continuum-based model (RAMMS) and with an empirical model of Rickenmann (1999) at the catchment scale. The results indicate that predicted runout distances by the Perla model are in reasonable agreement with inventory measurements and with the other models. Predictions of localized shallow landslides by LHT model provides information on water content of released mass. To incorporate effects of water content and flow viscosity as provided by LHT on debris flow runout, we adapted the Perla model. The proposed integral link between landslide triggering susceptibility quantified by LHT and subsequent debris flow runout hazard calculation using the adapted Perla model provides a spatially and temporally resolved framework for real-time hazard assessment at the catchment scale or along critical infrastructure (roads, railroad lines).

  10. Highly elastic polymer solutions under shear: Polymer migration, viscoelastic instabilities, and anomalous rheology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, M.J.; Muller, S.J.

    1996-12-31

    The use of highly elastic polymer solutions has been remarkably successful in elucidating the behavior of polymeric materials under flowing conditions. Here, we present the results of an extensive experimental study into the shear behavior of an athermal, dilute, binary polymer solution that is believed to be free of many of these effects. Under extended shearing, we observe the migration of polymer species: after shearing for several hundred hours, concentrations that are more than double the initial uniform value can be achieved. Although the solutions are well-described by dumbbell models in shear flows on short-time scales, theoretical predictions substantially underestimatemore » the rate of migration. Flow visualization and rheometric experiments suggest that the origin of this discrepancy could be the anomalous long-time rheology of these solutions. While these fluids display the well-known elastic instability in cone and plate flow above a critical Deborah number, extended shearing reveals that the toroidal secondary flow is eventually replaced by a purely azimuthal shearing flow. In addition, when sheared below the critical condition for the instability, the solutions exhibit a slow but reversible decay in normal stresses. The shear-induced migration of polymer species has been predicted by numerous theoretical studies. However, observations on the highly elastic polymer solutions that are most likely to show polymer migration, are complicated by a number of different physical processes that occur as a result of shearing. These phenomena, which include shear-induced phase separation, elastically-induced hydrodynamic instabilities, mixed solvent effects, shear-induced aggregation, and anomalous transient shear and normal stress behavior are often observed at times earlier than and at shear rates less than those where migration is predicted to occur; hence, the experimental detection of polymer migration has been thwarted by these other physical processes.« less

  11. Assessment of Geometry and In-Flow Effects on Contra-Rotating Open Rotor Broadband Noise Predictions

    NASA Technical Reports Server (NTRS)

    Zawodny, Nikolas S.; Nark, Douglas M.; Boyd, D. Douglas, Jr.

    2015-01-01

    Application of previously formulated semi-analytical models for the prediction of broadband noise due to turbulent rotor wake interactions and rotor blade trailing edges is performed on the historical baseline F31/A31 contra-rotating open rotor configuration. Simplified two-dimensional blade element analysis is performed on cambered NACA 4-digit airfoil profiles, which are meant to serve as substitutes for the actual rotor blade sectional geometries. Rotor in-flow effects such as induced axial and tangential velocities are incorporated into the noise prediction models based on supporting computational fluid dynamics (CFD) results and simplified in-flow velocity models. Emphasis is placed on the development of simplified rotor in-flow models for the purpose of performing accurate noise predictions independent of CFD information. The broadband predictions are found to compare favorably with experimental acoustic results.

  12. Multi-scale modeling of tsunami flows and tsunami-induced forces

    NASA Astrophysics Data System (ADS)

    Qin, X.; Motley, M. R.; LeVeque, R. J.; Gonzalez, F. I.

    2016-12-01

    The modeling of tsunami flows and tsunami-induced forces in coastal communities with the incorporation of the constructed environment is challenging for many numerical modelers because of the scale and complexity of the physical problem. A two-dimensional (2D) depth-averaged model can be efficient for modeling of waves offshore but may not be accurate enough to predict the complex flow with transient variance in vertical direction around constructed environments on land. On the other hand, using a more complex three-dimensional model is much more computational expensive and can become impractical due to the size of the problem and the meshing requirements near the built environment. In this study, a 2D depth-integrated model and a 3D Reynolds Averaged Navier-Stokes (RANS) model are built to model a 1:50 model-scale, idealized community, representative of Seaside, OR, USA, for which existing experimental data is available for comparison. Numerical results from the two numerical models are compared with each other as well as experimental measurement. Both models predict the flow parameters (water level, velocity, and momentum flux in the vicinity of the buildings) accurately, in general, except for time period near the initial impact, where the depth-averaged models can fail to capture the complexities in the flow. Forces predicted using direct integration of predicted pressure on structural surfaces from the 3D model and using momentum flux from the 2D model with constructed environment are compared, which indicates that force prediction from the 2D model is not always reliable in such a complicated case. Force predictions from integration of the pressure are also compared with forces predicted from bare earth momentum flux calculations to reveal the importance of incorporating the constructed environment in force prediction models.

  13. Transformation-Induced, Geometrically Necessary, Dislocation-Based Flow Curve Modeling of Dual-Phase Steels: Effect of Grain Size

    NASA Astrophysics Data System (ADS)

    Ramazani, Ali; Mukherjee, Krishnendu; Prahl, Ulrich; Bleck, Wolfgang

    2012-10-01

    The flow behavior of dual-phase (DP) steels is modeled on the finite-element method (FEM) framework on the microscale, considering the effect of the microstructure through the representative volume element (RVE) approach. Two-dimensional RVEs were created from microstructures of experimentally obtained DP steels with various ferrite grain sizes. The flow behavior of single phases was modeled through the dislocation-based work-hardening approach. The volume change during austenite-to-martensite transformation was modeled, and the resultant prestrained areas in the ferrite were considered to be the storage place of transformation-induced, geometrically necessary dislocations (GNDs). The flow curves of DP steels with varying ferrite grain sizes, but constant martensite fractions, were obtained from the literature. The flow curves of simulations that take into account the GND are in better agreement with those of experimental flow curves compared with those of predictions without consideration of the GND. The experimental results obeyed the Hall-Petch relationship between yield stress and flow stress and the simulations predicted this as well.

  14. Tomography-based mantle flow beneath Mongolia-Baikal area

    NASA Astrophysics Data System (ADS)

    Zhu, Tao

    2014-12-01

    Recent progress in seismic tomography of Asia allows us to explore and understand more clearly the mantle flow below the Mongolia-Baikal area. We present a tomography-based model of mantle convection that provides a good match to the residual topography. The model provides predictions on the present-day mantle flow and flow-induced asthenospheric deformation which give us new insights on the mantle dynamics in the Mongolia-Baikal area. The predicted mantle flow takes on a very similar pattern at the depths shallower or deeper than 400 km and almost opposite flow directions between the upper (shallower than 400 km) and lower (deeper than 400 km) parts. The flow pattern could be divided into the 'simple' eastern region and the 'complex' western region in the Mongolia. The upwelling originating from about 350 km depth beneath Baikal rift zone is an important possible drive force to the rifting. The seismic anisotropy cannot be simply related with asthenospheric flow and flow-induced deformation in the entire Mongolia-Baikal area, but they could be considered as an important contributor to the seismic anisotropy in the eastern region of Mongolia and around and in Sayan-Baikal orogenic belt.

  15. Computation of Transverse Injection Into Supersonic Crossflow With Various Injector Orifice Geometries

    NASA Technical Reports Server (NTRS)

    Foster, Lancert; Engblom, William A.

    2003-01-01

    Computational results are presented for the performance and flow behavior of various injector geometries employed in transverse injection into a non-reacting Mach 1.2 flow. 3-D Reynolds-Averaged Navier Stokes (RANS) results are obtained for the various injector geometries using the Wind code with the Mentor s Shear Stress Transport turbulence model in both single and multi-species modes. Computed results for the injector mixing, penetration, and induced wall forces are presented. In the case of rectangular injectors, those longer in the direction of the freestream flow are predicted to generate the most mixing and penetration of the injector flow into the primary stream. These injectors are also predicted to provide the largest discharge coefficients and induced wall forces. Minor performance differences are indicated among diamond, circle, and square orifices. Grid sensitivity study results are presented which indicate consistent qualitative trends in the injector performance comparisons with increasing grid fineness.

  16. Viscosity induced non-uniform flow in laminar flow heat exchangers

    NASA Astrophysics Data System (ADS)

    Putnam, G. R.; Rohsenow, W. M.

    1985-05-01

    Laminar flow heat exchangers which cool oil in noninterconnected parallel passages can experience nonuniform flows and a reduction in the effective heat exchanger coefficient in a range of Reynolds number which varies with tube length and diameter, tube wall temperature and fluid inlet temperature. The method of predicting the reduction in effective heat transfer coefficient and the range of Reynolds number over which these instabilities exist is presented for a particular oil, Mobil aviation oil 120. Included, also, is the prediction of the effect of radial viscosity variation on the constant property magnitudes of friction and heat transfer coefficient.

  17. Analytical and experimental study of flow phenomena in noncavitating rocket pump inducers

    NASA Technical Reports Server (NTRS)

    Lakshminarayana, B.

    1981-01-01

    The flow processes in rocket pump inducers are summarized. The experimental investigations were carried out with air as the test medium. The major characteristics features of the rocket pump inducers are low flow coefficient (0.05 to 0.2) large stagger angle (70 deg to 85 deg) and high solidity blades of little or no camber. The investigations are concerned with the effect of viscosity not the effects of cavitation. Flow visualization, conventional and hot wire probe measurement inside and at the exit of the blade passage, were the analytical methods used. The experiment was carried out using four three and two bladed inducers with cambered blades. Both the passage and the exit flow were measured. The basic research and boundary layer investigation was carried out using a helical flat plate (of some dimensions as the inducer blades tested), and flat plate helical inducer (four bladed). Detailed mean and turbulence flow field inside the passage as well as the exit of the rotor were derived from these measurement. The boundary layer, endwall, and other passage data reveal extremely complex nature of the flow, with major effects of viscosity present across the entire passage. Several analyses were carried out to predict the flow field in inducers. These included an approximate analysis, the shear pumping analysis, and a numerical solution of exact viscous equations with approximate modeling for the viscous terms.

  18. Observations on instabilities of cavitating inducers

    NASA Technical Reports Server (NTRS)

    Braisted, D.; Brennen, C.

    1978-01-01

    Experimental observations of instability of cavitating inducers were made for two different inducers operating at different flow coefficients. In general, instability occurred just before head breakdown. Auto-oscillation and rotating cavitation were observed. Analysis of small-amplitude behavior of the inducer and hydraulic system is carried out, and analytical predictions of stability limits were compared with experiment.

  19. Water Flow Performance of a Superscale Model of the Fastrac Liquid Oxygen Pump

    NASA Technical Reports Server (NTRS)

    Skelley, Stephen; Zoladz, Thomas

    1999-01-01

    As part of the National Aeronautics and Space Administration's ongoing effort to lower the cost of access to space, the Marshall Space Flight Center has developed a rocket engine with 60,000 pounds of thrust for use on the Reusable Launch Vehicle technology demonstrator slated for launch in 2000. This gas generator cycle engine, known as the Fastrac engine, uses liquid oxygen and RP-1 for propellants and includes single stage liquid oxygen and RP-1 pumps and a single stage supersonic turbine on a common shaft. The turbopump design effort included the first use and application of new suction capability prediction codes and three-dimensional blade generation codes in an attempt to reduce the turbomachinery design and certification costs typically associated with rocket engine development. To verify the pump's predicted cavitation performance, a water flow test of a superscale model of the Fastrac liquid oxygen pump was conducted to experimentally evaluate the liquid oxygen pump's performance at and around the design point. The water flow test article replicated the flow path of the Fastrac liquid oxygen pump in a 1.582x scale model, including scaled seal clearances for correct leakage flow at a model operating speed of 5000 revolutions per minute. Flow entered the 3-blade axial-flow inducer, transitioned to a shrouded, 6-blade radial impeller, and discharged into a vaneless radial diffuser and collection volute. The test article included approximately 50 total and static pressure measurement locations as well as flush-mounted, high frequency pressure transducers for complete mapping of the pressure environment. The primary objectives of the water flow test were to measure the steady-state and dynamic pressure environment of the liquid oxygen pump versus flow coefficient, suction specific speed, and back face leakage flow rate. Results showed excellent correlation between the predicted and experimentally measured pump head rise at low suction specific speeds. Likewise, only small circumferential variations in steady-state impeller exit and radial diffuser pressure distributions were observed from 80% to 120% of the design flow coefficient, matching the computational predictions and confirming that the integrated design approach has minimized any exit volute-induced distortions. The test article exhibited suction performance trends typically observed in inducer designs with virtually constant head rise with decreasing inlet pressure until complete pump head breakdown. Unfortunately, the net positive suction head at 3% head fall-off occurred far below that predicted at all tested flow coefficients, resulting in a negative net positive suction head margin at the design point in water. Additional testing to map the unsteady pressure environment was conducted and interesting rotating phenomena at the inducer inlet were observed. These rotating phenomena's cell numbers, direction, and speed were correlated with pump operating parameters. The impact of the unsteady phenomena and their corresponding energy losses on the unexpectedly poor pump performance is also discussed.

  20. Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Ye

    Rayleigh–Taylor (RT) and Richtmyer–Meshkov (RM) instabilities play an important role in a wide range of engineering, geophysical, and astrophysical flows. They represent a triggering event that, in many cases, leads to large-scale turbulent mixing. Much effort has been expended over the past 140 years, beginning with the seminal work of Lord Rayleigh, to predict the evolution of the instabilities and of the instability-induced mixing layers. Furthermore, the objective of Part I of this review is to provide the basic properties of the flow, turbulence, and mixing induced by RT, RM, and Kelvin–Helmholtz (KH) instabilities. Historical efforts to study these instabilitiesmore » are briefly reviewed, and the significance of these instabilities is discussed for a variety of flows, particularly for astrophysical flows and for the case of inertial confinement fusion.« less

  1. Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I

    DOE PAGES

    Zhou, Ye

    2017-09-06

    Rayleigh–Taylor (RT) and Richtmyer–Meshkov (RM) instabilities play an important role in a wide range of engineering, geophysical, and astrophysical flows. They represent a triggering event that, in many cases, leads to large-scale turbulent mixing. Much effort has been expended over the past 140 years, beginning with the seminal work of Lord Rayleigh, to predict the evolution of the instabilities and of the instability-induced mixing layers. Furthermore, the objective of Part I of this review is to provide the basic properties of the flow, turbulence, and mixing induced by RT, RM, and Kelvin–Helmholtz (KH) instabilities. Historical efforts to study these instabilitiesmore » are briefly reviewed, and the significance of these instabilities is discussed for a variety of flows, particularly for astrophysical flows and for the case of inertial confinement fusion.« less

  2. Detailed predictions of climate induced changes in the thermal and flow regimes in mountain streams of the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Santiago, José M.; Muñoz-Mas, Rafael; García de Jalón, Diego; Solana, Joaquín; Alonso, Carlos; Martínez-Capel, Francisco; Ribalaygua, Jaime; Pórtoles, Javier; Monjo, Robert

    2016-04-01

    Streamflow and temperature regimes are well-known to influence on the availability of suitable physical habitat for instream biological communities. General Circulation Models (GCMs) have predicted significant changes in timing and geographic distribution of precipitation and atmospheric temperature for the ongoing century. However, differences in these predictions may arise when focusing on different spatial and temporal scales. Therefore, to perform substantiated mitigation and management actions detailed scales are necessary to adequately forecast the consequent thermal and flow regimes. Regional predictions are relatively abundant but detailed ones, both spatially and temporally, are still scarce. The present study aimed at predicting the effects of climate change on the thermal and flow regime in the Iberian Peninsula, refining the resolution of previous studies. For this purpose, the study encompassed 28 sites at eight different mountain rivers and streams in the central part of the Iberian Peninsula (Spain). The daily flow was modelled using different daily, monthly and quarterly lags of the historical precipitation and temperature time series. These precipitation-runoff models were developed by means of M5 model trees. On the other hand water temperature was modelled at similar time scale by means of nonlinear regression from dedicated site-specific data. The developed models were used to simulate the temperature and flow regime under two Representative Concentration Pathway (RCPs) climate change scenarios (RCP 4.5 and RCP 8.5) until the end of the present century by considering nine different GCMs, which were pertinently downscaled. The precipitation-runoff models achieved high accuracy (NSE>0.7), especially in regards of the low flows of the historical series. Results concomitantly forecasted flow reductions between 7 and 17 % (RCP4.5) and between 8 and 49% (RCP8.5) of the annual average in the most cases, being variable the magnitude and timing at each site. The largest predicted changes will occur in summer and the complete depletion of some river segments was forecasted. Winter was the only season predicted flows to remain mostly unaffected by climate change. Mean annual stream temperature was predicted to experience heavy increases, especially during the second half of the century, varying from 0.3 to 1.6°C (RCP4.5), and 0.8 to 4.0°C (RCP8.5). Annual maximum and minimum average temperature increases were predicted to be between 0.1 and 1.5°C (RCP4.5) and between 0.2 and 3.0°C (RCP8.5), and between 0.4 and 1.8°C (RCP4.5) and between 1.1 and 4.5°C (RCP8.5), respectively. The most important increases were predicted to occur in summer while winter will experience the lesser ones. Geology attributable differences on thermal regime were observed between rivers. These results suggested the exacerbation of the principal characteristics of the Mediterranean climate-induced flow regimes with increased summer water temperatures and reduced low flows. Consequently, the synergistic effects of these climate induced changes may significantly impacts instream communities. Predictions of this study will be useful for designing habitat managing strategies for climate change adaptation at the local level. The revealed particularities reinforce the convenience of refining local predictions to design effective management policies.

  3. Application of Biot-Savart Solver to Predict Axis Switching Phenomena in Finite-Span Vortices Expelled from a Synthetic Jet

    NASA Astrophysics Data System (ADS)

    Straccia, Joseph; Farnsworth, John

    2016-11-01

    The Biot-Savart law is a simple yet powerful inviscid and incompressible relationship between the velocity induced at a point and the circulation, orientation and distance of separation of a vortex line. The authors have developed an algorithm for obtaining numerical solutions of the Biot-Savart relationship to predict the self-induced velocity on a vortex line of arbitrary shape. In this work the Biot-Savart solver was used to predict the self-induced propagation of non-circular, finite-span vortex rings expelled from synthetic jets with rectangular orifices of varying aspect ratios. The solver's prediction of the time varying shape of the vortex ring and frequency of axis switching was then compared with Particle Image Velocimetry (PIV) data from a synthetic jet expelled into a quiescent flow i.e. zero cross flow condition. Conclusions about the effectiveness and limitations of this simple, inviscid relationship are drawn from this experimental data. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE 1144083.

  4. Lee-side flow over delta wings at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Miller, D. S.; Wood, R. M.

    1985-01-01

    An experimental investigation of the lee-side flow on sharp leading-edge delta wings at supersonic speeds has been conducted. Pressure data were obtained at Mach numbers from 1.5 to 2.8, and three types of flow-visualization data (oil-flow, tuft, and vapor-screen) were obtained at Mach numbers from 1.7 to 2.8 for wing leading-edge sweep angles from 52.5 deg to 75 deg. From the flow-visualization data, the lee-side flows were classified into seven distinct types and a chart was developed that defines the flow mechanism as a function of the conditions normal to the wing leading edge, specifically, angle of attack and Mach number. Pressure data obtained experimentally and by a semiempirical prediction method were employed to investigate the effects of angle of attack, leading-edge sweep, and Mach number on vortex strength and vortex position. In general, the predicted and measured values of vortex-induced normal force and vortex position obtained from experimental data have the same trends with angle of attack, Mach number, and leading-edge sweep; however, the vortex-induced normal force is underpredicted by 15 to 30 percent, and the vortex spanwise location is overpredicted by approximately 15 percent.

  5. Capillary hydrodynamics and transport processes during phase change in microscale systems

    NASA Astrophysics Data System (ADS)

    Kuznetsov, V. V.

    2017-09-01

    The characteristics of two-phase gas-liquid flow and heat transfer during flow boiling and condensing in micro-scale heat exchangers are discussed in this paper. The results of numerical simulation of the evaporating liquid film flowing downward in rectangular minichannel of the two-phase compact heat exchanger are presented and the peculiarities of microscale heat transport in annular flow with phase changes are discussed. Presented model accounts the capillarity induced transverse flow of liquid and predicts the microscale heat transport processes when the nucleate boiling becomes suppressed. The simultaneous influence of the forced convection, nucleate boiling and liquid film evaporation during flow boiling in plate-fin heat exchangers is considered. The equation for prediction of the flow boiling heat transfer at low flux conditions is presented and verified using experimental data.

  6. Vortex-induced suspension of sediment in the surf zone

    NASA Astrophysics Data System (ADS)

    Otsuka, Junichi; Saruwatari, Ayumi; Watanabe, Yasunori

    2017-12-01

    A major mechanism of sediment suspension by organized vortices produced under violent breaking waves in the surf zone was identified through physical and computational experiments. Counter-rotating flows within obliquely descending eddies produced between adjacent primary roller vortices induce transverse convergent near-bed flows, driving bed load transport to form regular patterns of transverse depositions. The deposited sediment is then rapidly ejected by upward carrier flows induced between the vortices. This mechanism of vortex-induced suspension is supported by experimental evidence that coherent sediment clouds are ejected where the obliquely descending eddies reach the sea bed after the breaking wave front has passed. In addition to the effects of settling and turbulent diffusion caused by breaking waves, the effect of the vortex-induced flows was incorporated into a suspension model on the basis of vorticity dynamics and parametric characteristics of transverse flows in breaking waves. The model proposed here reasonably predicts an exponential attenuation of the measured sediment concentration due to violent plunging waves and significantly improves the underprediction of the concentration produced by previous models.

  7. A conservative fully implicit algorithm for predicting slug flows

    NASA Astrophysics Data System (ADS)

    Krasnopolsky, Boris I.; Lukyanov, Alexander A.

    2018-02-01

    An accurate and predictive modelling of slug flows is required by many industries (e.g., oil and gas, nuclear engineering, chemical engineering) to prevent undesired events potentially leading to serious environmental accidents. For example, the hydrodynamic and terrain-induced slugging leads to unwanted unsteady flow conditions. This demands the development of fast and robust numerical techniques for predicting slug flows. The presented in this paper study proposes a multi-fluid model and its implementation method accounting for phase appearance and disappearance. The numerical modelling of phase appearance and disappearance presents a complex numerical challenge for all multi-component and multi-fluid models. Numerical challenges arise from the singular systems of equations when some phases are absent and from the solution discontinuity when some phases appear or disappear. This paper provides a flexible and robust solution to these issues. A fully implicit formulation described in this work enables to efficiently solve governing fluid flow equations. The proposed numerical method provides a modelling capability of phase appearance and disappearance processes, which is based on switching procedure between various sets of governing equations. These sets of equations are constructed using information about the number of phases present in the computational domain. The proposed scheme does not require an explicit truncation of solutions leading to a conservative scheme for mass and linear momentum. A transient two-fluid model is used to verify and validate the proposed algorithm for conditions of hydrodynamic and terrain-induced slug flow regimes. The developed modelling capabilities allow to predict all the major features of the experimental data, and are in a good quantitative agreement with them.

  8. Intraocular Pressure, Blood Pressure, and Retinal Blood Flow Autoregulation: A Mathematical Model to Clarify Their Relationship and Clinical Relevance

    PubMed Central

    Guidoboni, Giovanna; Harris, Alon; Cassani, Simone; Arciero, Julia; Siesky, Brent; Amireskandari, Annahita; Tobe, Leslie; Egan, Patrick; Januleviciene, Ingrida; Park, Joshua

    2014-01-01

    Purpose. This study investigates the relationship between intraocular pressure (IOP) and retinal hemodynamics and predicts how arterial blood pressure (BP) and blood flow autoregulation (AR) influence this relationship. Methods. A mathematical model is developed to simulate blood flow in the central retinal vessels and retinal microvasculature as current flowing through a network of resistances and capacitances. Variable resistances describe active and passive diameter changes due to AR and IOP. The model is validated by using clinically measured values of retinal blood flow and velocity. The model simulations for six theoretical patients with high, normal, and low BP (HBP-, NBP-, LBP-) and functional or absent AR (-wAR, -woAR) are compared with clinical data. Results. The model predicts that NBPwAR and HBPwAR patients can regulate retinal blood flow (RBF) as IOP varies between 15 and 23 mm Hg and between 23 and 29 mm Hg, respectively, whereas LBPwAR patients do not adequately regulate blood flow if IOP is 15 mm Hg or higher. Hemodynamic alterations would be noticeable only if IOP changes occur outside of the regulating range, which, most importantly, depend on BP. The model predictions are consistent with clinical data for IOP reduction via surgery and medications and for cases of induced IOP elevation. Conclusions. The theoretical model results suggest that the ability of IOP to induce noticeable changes in retinal hemodynamics depends on the levels of BP and AR of the individual. These predictions might help to explain the inconsistencies found in the clinical literature concerning the relationship between IOP and retinal hemodynamics. PMID:24876284

  9. Intraocular pressure, blood pressure, and retinal blood flow autoregulation: a mathematical model to clarify their relationship and clinical relevance.

    PubMed

    Guidoboni, Giovanna; Harris, Alon; Cassani, Simone; Arciero, Julia; Siesky, Brent; Amireskandari, Annahita; Tobe, Leslie; Egan, Patrick; Januleviciene, Ingrida; Park, Joshua

    2014-05-29

    This study investigates the relationship between intraocular pressure (IOP) and retinal hemodynamics and predicts how arterial blood pressure (BP) and blood flow autoregulation (AR) influence this relationship. A mathematical model is developed to simulate blood flow in the central retinal vessels and retinal microvasculature as current flowing through a network of resistances and capacitances. Variable resistances describe active and passive diameter changes due to AR and IOP. The model is validated by using clinically measured values of retinal blood flow and velocity. The model simulations for six theoretical patients with high, normal, and low BP (HBP-, NBP-, LBP-) and functional or absent AR (-wAR, -woAR) are compared with clinical data. The model predicts that NBPwAR and HBPwAR patients can regulate retinal blood flow (RBF) as IOP varies between 15 and 23 mm Hg and between 23 and 29 mm Hg, respectively, whereas LBPwAR patients do not adequately regulate blood flow if IOP is 15 mm Hg or higher. Hemodynamic alterations would be noticeable only if IOP changes occur outside of the regulating range, which, most importantly, depend on BP. The model predictions are consistent with clinical data for IOP reduction via surgery and medications and for cases of induced IOP elevation. The theoretical model results suggest that the ability of IOP to induce noticeable changes in retinal hemodynamics depends on the levels of BP and AR of the individual. These predictions might help to explain the inconsistencies found in the clinical literature concerning the relationship between IOP and retinal hemodynamics. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  10. Thermal induced flow oscillations in heat exchangers for supercritical fluids

    NASA Technical Reports Server (NTRS)

    Friedly, J. C.; Manganaro, J. L.; Krueger, P. G.

    1972-01-01

    Analytical model has been developed to predict possible unstable behavior in supercritical heat exchangers. From complete model, greatly simplified stability criterion is derived. As result of this criterion, stability of heat exchanger system can be predicted in advance.

  11. Immersed Boundary Models for Quantifying Flow-Induced Mechanical Stimuli on Stem Cells Seeded on 3D Scaffolds in Perfusion Bioreactors.

    PubMed

    Guyot, Yann; Smeets, Bart; Odenthal, Tim; Subramani, Ramesh; Luyten, Frank P; Ramon, Herman; Papantoniou, Ioannis; Geris, Liesbet

    2016-09-01

    Perfusion bioreactors regulate flow conditions in order to provide cells with oxygen, nutrients and flow-associated mechanical stimuli. Locally, these flow conditions can vary depending on the scaffold geometry, cellular confluency and amount of extra cellular matrix deposition. In this study, a novel application of the immersed boundary method was introduced in order to represent a detailed deformable cell attached to a 3D scaffold inside a perfusion bioreactor and exposed to microscopic flow. The immersed boundary model permits the prediction of mechanical effects of the local flow conditions on the cell. Incorporating stiffness values measured with atomic force microscopy and micro-flow boundary conditions obtained from computational fluid dynamics simulations on the entire scaffold, we compared cell deformation, cortical tension, normal and shear pressure between different cell shapes and locations. We observed a large effect of the precise cell location on the local shear stress and we predicted flow-induced cortical tensions in the order of 5 pN/μm, at the lower end of the range reported in literature. The proposed method provides an interesting tool to study perfusion bioreactors processes down to the level of the individual cell's micro-environment, which can further aid in the achievement of robust bioprocess control for regenerative medicine applications.

  12. A comparison of arcjet plume properties to model predictions

    NASA Technical Reports Server (NTRS)

    Cappelli, M. A.; Liebeskind, J. G.; Hanson, R. K.; Butler, G. W.; King, D. Q.

    1993-01-01

    This paper describes an experimental study of the plasma plume properties of a 1 kW class hydrogen arcjet thruster and the comparison of measured temperature and velocity field to model predictions. The experiments are based on laser-induced fluorescence excitation of the Balmer-alpha transition. The model is based on a single-fluid magnetohydrodynamic description of the flow originally developed to predict arcjet thruster performance. Excellent agreement between model predictions and experimental velocity is found, despite the complex nature of the flow. Measured and predicted exit plane temperatures are in disagreement by as much as 2000K over a range of operating conditions. The possible sources for this discrepancy are discussed.

  13. Simulations of Instabilities in Complex Valve and Feed Systems

    NASA Technical Reports Server (NTRS)

    Ahuja, Vineet; Hosangadi, Ashvin; Shipman, Jeremy; Cavallo, Peter A.

    2006-01-01

    CFD analyses are playing an increasingly important role in identifying and characterizing flow induced instabilities in rocket engine test facilities and flight systems. In this paper, we analyze instability mechanisms that range from turbulent pressure fluctuations due to vortex shedding in structurally complex valve systems to flow resonance in plug cavities to large scale pressure fluctuations due to collapse of cavitation induced vapor clouds. Furthermore, we discuss simulations of transient behavior related to valve motion that can serve as guidelines for valve scheduling. Such predictions of valve response to varying flow conditions is of crucial importance to engine operation and testing.

  14. Predicting boundary shear stress and sediment transport over bed forms

    USGS Publications Warehouse

    McLean, S.R.; Wolfe, S.R.; Nelson, J.M.

    1999-01-01

    To estimate bed-load sediment transport rates in flows over bed forms such as ripples and dunes, spatially averaged velocity profiles are frequently used to predict mean boundary shear stress. However, such averaging obscures the complex, nonlinear interaction of wake decay, boundary-layer development, and topographically induced acceleration downstream of flow separation and often leads to inaccurate estimates of boundary stress, particularly skin friction, which is critically important in predicting bed-load transport rates. This paper presents an alternative methodology for predicting skin friction over 2D bed forms. The approach is based on combining the equations describing the mechanics of the internal boundary layer with semiempirical structure functions to predict the velocity at the crest of a bedform, where the flow is most similar to a uniform boundary layer. Significantly, the methodology is directed toward making specific predictions only at the bed-form crest, and as a result it avoids the difficulty and questionable validity of spatial averaging. The model provides an accurate estimate of the skin friction at the crest where transport rates are highest. Simple geometric constraints can be used to derive the mean transport rates as long as bed load is dominant.To estimate bed-load sediment transport rates in flows over bed forms such as ripples and dunes, spatially averaged velocity profiles are frequently used to predict mean boundary shear stress. However, such averaging obscures the complex, nonlinear interaction of wake decay, boundary-layer development, and topographically induced acceleration downstream of flow separation and often leads to inaccurate estimates of boundary stress, particularly skin friction, which is critically important in predicting bed-load transport rates. This paper presents an alternative methodology for predicting skin friction over 2D bed forms. The approach is based on combining the equations describing the mechanics of the internal boundary layer with semiempirical structure functions to predict the velocity at the crest of a bedform, where the flow is most similar to a uniform boundary layer. Significantly, the methodology is directed toward making specific predictions only at the bed-form crest, and as a result it avoids the difficulty and questionable validity of spatial averaging. The model provides an accurate estimate of the skin friction at the crest where transport rates are highest. Simple geometric constraints can be used to derive the mean transport rates as long as bed load is dominant.

  15. Large-eddy simulation, fuel rod vibration and grid-to-rod fretting in pressurized water reactors

    DOE PAGES

    Christon, Mark A.; Lu, Roger; Bakosi, Jozsef; ...

    2016-10-01

    Grid-to-rod fretting (GTRF) in pressurized water reactors is a flow-induced vibration phenomenon that results in wear and fretting of the cladding material on fuel rods. GTRF is responsible for over 70% of the fuel failures in pressurized water reactors in the United States. Predicting the GTRF wear and concomitant interval between failures is important because of the large costs associated with reactor shutdown and replacement of fuel rod assemblies. The GTRF-induced wear process involves turbulent flow, mechanical vibration, tribology, and time-varying irradiated material properties in complex fuel assembly geometries. This paper presents a new approach for predicting GTRF induced fuelmore » rod wear that uses high-resolution implicit large-eddy simulation to drive nonlinear transient dynamics computations. The GTRF fluid–structure problem is separated into the simulation of the turbulent flow field in the complex-geometry fuel-rod bundles using implicit large-eddy simulation, the calculation of statistics of the resulting fluctuating structural forces, and the nonlinear transient dynamics analysis of the fuel rod. Ultimately, the methods developed here, can be used, in conjunction with operational management, to improve reactor core designs in which fuel rod failures are minimized or potentially eliminated. Furthermore, robustness of the behavior of both the structural forces computed from the turbulent flow simulations and the results from the transient dynamics analyses highlight the progress made towards achieving a predictive simulation capability for the GTRF problem.« less

  16. Large-eddy simulation, fuel rod vibration and grid-to-rod fretting in pressurized water reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christon, Mark A.; Lu, Roger; Bakosi, Jozsef

    Grid-to-rod fretting (GTRF) in pressurized water reactors is a flow-induced vibration phenomenon that results in wear and fretting of the cladding material on fuel rods. GTRF is responsible for over 70% of the fuel failures in pressurized water reactors in the United States. Predicting the GTRF wear and concomitant interval between failures is important because of the large costs associated with reactor shutdown and replacement of fuel rod assemblies. The GTRF-induced wear process involves turbulent flow, mechanical vibration, tribology, and time-varying irradiated material properties in complex fuel assembly geometries. This paper presents a new approach for predicting GTRF induced fuelmore » rod wear that uses high-resolution implicit large-eddy simulation to drive nonlinear transient dynamics computations. The GTRF fluid–structure problem is separated into the simulation of the turbulent flow field in the complex-geometry fuel-rod bundles using implicit large-eddy simulation, the calculation of statistics of the resulting fluctuating structural forces, and the nonlinear transient dynamics analysis of the fuel rod. Ultimately, the methods developed here, can be used, in conjunction with operational management, to improve reactor core designs in which fuel rod failures are minimized or potentially eliminated. Furthermore, robustness of the behavior of both the structural forces computed from the turbulent flow simulations and the results from the transient dynamics analyses highlight the progress made towards achieving a predictive simulation capability for the GTRF problem.« less

  17. Notes on the Prediction of Shock-induced Boundary-layer Separation

    NASA Technical Reports Server (NTRS)

    Lange, Roy H.

    1953-01-01

    The present status of available information relative to the prediction of shock-induced boundary-layer separation is discussed. Experimental results showing the effects of Reynolds number and Mach number on the separation of both laminar and turbulent boundary layer are given and compared with available methods for predicting separation. The flow phenomena associated with separation caused by forward-facing steps, wedges, and incident shock waves are discussed. Applications of the flat-plate data to problems of separation on spoilers, diffusers, and scoop inlets are indicated for turbulent boundary layers.

  18. Tropical-Cyclone Flow Asymmetries Induced by a Uniform Flow Revisited

    DTIC Science & Technology

    2011-11-01

    environment and they are deep, extending into the upper troposphere (not shown here). By 24 hours, convective cells are distributed over all four...GA. 2000 Evaluation of numerical predictions of boundary layer structure during the lake Michigan ozone study. J. Appl. Met., 39, 337-351. Shapiro LJ

  19. Supersonic/Hypersonic Laminar Heating Correlations for Rectangular and Impact-Induced Open and Closed Cavities

    NASA Technical Reports Server (NTRS)

    Everhart, Joel L.

    2008-01-01

    Impact and debris damage to the Space Shuttle Orbiter Thermal Protection System tiles is a random phenomenon, occurring at random locations on the vehicle surface, resulting in random geometrical shapes that are exposed to a definable range of surface flow conditions. In response to the 2003 Final Report of the Columbia Accident Investigation Board, wind tunnel aeroheating experiments approximating a wide range of possible damage scenarios covering both open and closed cavity flow conditions were systematically tested in hypersonic ground based facilities. These data were analyzed and engineering assessment tools for damage-induced fully-laminar heating were developed and exercised on orbit. These tools provide bounding approximations for the damaged-surface heating environment. This paper presents a further analysis of the baseline, zero-pressure-gradient, idealized, rectangular-geometry cavity heating data, yielding new laminar correlations for the floor-averaged heating, peak cavity endwall heating, and the downstream decay rate. Correlation parameters are derived in terms of cavity geometry and local flow conditions. Prediction Limit Uncertainty values are provided at the 95%, 99% and 99.9% levels of significance. Non-baseline conditions, including non-rectangular geometries and flows with known pressure gradients, are used to assess the range of applicability of the new correlations. All data variations fall within the 99% Prediction Limit Uncertainty bounds. Importantly, both open-flow and closed-flow cavity heating are combined into a single-curve parameterization of the heating predictions, and provide a concise mathematical model of the laminar cavity heating flow field with known uncertainty.

  20. Flow-Field Measurement of Device-Induced Embedded Streamwise Vortex on a Flat Plate

    NASA Technical Reports Server (NTRS)

    Yao, Chung-Sheng; Lin, John C.; Allan, Brian G.

    2002-01-01

    Detailed flow-field measurements were performed downstream of a single vortex generator (VG) using an advanced Stereo Digital Particle Image Velocimetry system. Thc passive flow-control devices examined consisted of a low-profile VG with a device height, h, approximately equal to 20 percent of the boundary-layer thickness, sigma, and a conventional VG with h is approximately sigma. Flow-field data were taken at twelve cross-flow planes downstream of the VG to document and quantify the evolution of embedded streamwise vortex. The effects of device angle of attack on vortex development downstream were compared between the low-profile VG and the conventional VG. Key parameters including vorticity, circulation, trajectory, and half-life radius - describing concentration, strength, path, and size, respectively--of the device-induced streamwise vortex were extracted from the flow-field data. The magnitude of maximum vorticity increases as angle of attack increases for the low-profile VG, but the trend is reversed for the conventional VG, probably due to flow stalling around the larger device at higher angles of attack. Peak vorticity and circulation for the low-profile VG decays exponentially and inversely proportional to the distance downstream from the device. The device-height normalized vortex trajectories for the low-profile VG, especially in the lateral direction, follow the general trends of the conventional VG. The experimental database was used to validate the predictive capability of computational fluid dynamics (CFD). CFD accurately predicts the vortex circulation and path; however, improvements are needed for predicting the vorticity strength and vortex size.

  1. Theoretical and Experimental Investigation of the Subsonic-Flow Fields Beneath Swept and Unswept Wings with Tables or Vortex-induced Velocities

    NASA Technical Reports Server (NTRS)

    Alford, William J , Jr

    1957-01-01

    The flow-field characteristics beneath swept and unswept wings as determined by potential-flow theory are compared with the experimentally determined flow fields beneath swept and unswept wing-fuselage combinations. The potential-flow theory utilized considered both spanwise and chordwise distributions of vorticity as well as the wing-thickness effects. The perturbation velocities induced by a unit horseshoe vortex are included in tabular form. The theoretical predictions of the flow-field characteristics were qualitatively correct in all cases considered, although there were indications that the magnitudes of the downwash angles tended to be overpredicted as the tip of the swept wing was approached and that the sidewash angles ahead of the unswept wing were underpredicted. The calculated effects of compressibility indicated that significant increases in the chordwise variation of flow angles and dynamic-pressure ratios should be expected in going from low to high subsonic speeds.

  2. Ductile crustal flow in Europe's lithosphere

    NASA Astrophysics Data System (ADS)

    Tesauro, Magdala; Burov, Evgene B.; Kaban, Mikhail K.; Cloetingh, Sierd A. P. L.

    2011-12-01

    Potential gravity theory (PGT) predicts the presence of significant gravity-induced horizontal stresses in the lithosphere associated with lateral variations in plate thickness and composition. New high resolution crustal thickness and density data provided by the EuCRUST-07 model are used to compute the associated lateral pressure gradients (LPG), which can drive horizontal ductile flow in the crust. Incorporation of these data in channel flow models allows us to use potential gravity theory to assess horizontal mass transfer and stress transmission within the European crust. We explore implications of the channel flow concept for a possible range of crustal strength, using end-member 'hard' and 'soft' crustal rheologies to estimate strain rates at the bottom of the ductile crustal layers. The models show that the effects of channel flow superimposed on the direct effects of plate tectonic forces might result in additional significant horizontal and vertical movements associated with zones of compression or extension. To investigate relationships between crustal and mantle lithospheric movements, we compare these results with the observed directions of mantle lithospheric anisotropy and GPS velocity vectors. We identify areas whose evolution could have been significantly affected by gravity-driven ductile crustal flow. Large values of the LPG are predicted perpendicular to the axes of European mountain belts, such as the Alps, Pyrenees-Cantabrian Mountains, Dinarides-Hellenic arc and Carpathians. In general, the crustal flow is directed away from orogens towards adjacent weaker areas. Gravitational forces directed from areas of high gravitational potential energy to subsiding basin areas can strongly reduce lithospheric extension in the latter, leading to a gradual late stage inversion of the entire system. Predicted pressure and strain rate gradients suggest that gravity driven flow may play an essential role in European intraplate tectonics. In particular, in a number of regions the predicted strain rates are comparable to tectonically induced strain rates. These results are also important for quantifying the thickness of the low viscosity zones in the lowermost part of the crustal layers.

  3. Improving a prediction system for oil spills in the Yellow Sea: effect of tides on subtidal flow.

    PubMed

    Kim, Chang-Sin; Cho, Yang-Ki; Choi, Byoung-Ju; Jung, Kyung Tae; You, Sung Hyup

    2013-03-15

    A multi-nested prediction system for the Yellow Sea using drifter trajectory simulations was developed to predict the movements of an oil spill after the MV Hebei Spirit accident. The speeds of the oil spill trajectories predicted by the model without tidal forcing were substantially faster than the observations; however, predictions taking into account the tides, including both tidal cycle and subtidal periods, were satisfactorily improved. Subtidal flow in the simulation without tides was stronger than in that with tides because of reduced frictional effects. Friction induced by tidal stress decelerated the southward subtidal flows driven by northwesterly winter winds along the Korean coast of the Yellow Sea. These results strongly suggest that in order to produce accurate predictions of oil spill trajectories, simulations must include tidal effects, such as variations within a tidal cycle and advections over longer time scales in tide-dominated areas. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. The attenuation of sound by turbulence in internal flows.

    PubMed

    Weng, Chenyang; Boij, Susann; Hanifi, Ardeshir

    2013-06-01

    The attenuation of sound waves due to interaction with low Mach number turbulent boundary layers in internal flows (channel or pipe flow) is examined. Dynamic equations for the turbulent Reynolds stress on the sound wave are derived, and the analytical solution to the equation provides a frequency dependent eddy viscosity model. This model is used to predict the attenuation of sound propagating in fully developed turbulent pipe flow. The predictions are shown to compare well with the experimental data. The proposed dynamic equation shows that the turbulence behaves like a viscoelastic fluid in the interaction process, and that the ratio of turbulent relaxation time near the wall and the sound wave period is the parameter that controls the characteristics of the attenuation induced by the turbulent flow.

  5. Measurement and prediction of model-rotor flow fields

    NASA Technical Reports Server (NTRS)

    Owen, F. K.; Tauber, M. E.

    1985-01-01

    This paper shows that a laser velocimeter can be used to measure accurately the three-component velocities induced by a model rotor at transonic tip speeds. The measurements, which were made at Mach numbers from 0.85 to 0.95 and at zero advance ratio, yielded high-resolution, orthogonal velocity values. The measured velocities were used to check the ability of the ROT22 full-potential rotor code to predict accurately the transonic flow field in the crucial region around and beyond the tip of a high-speed rotor blade. The good agreement between the calculated and measured velocities established the code's ability to predict the off-blade flow field at transonic tip speeds. This supplements previous comparisons in which surface pressures were shown to be well predicted on two different tips at advance ratios to 0.45, especially at the critical 90 deg azimuthal blade position. These results demonstrate that the ROT22 code can be used with confidence to predict the important tip-region flow field, including the occurrence, strength, and location of shock waves causing high drag and noise.

  6. Developing and utilizing an Euler computational method for predicting the airframe/propulsion effects for an aft-mounted turboprop transport. Volume 1: Theory document

    NASA Technical Reports Server (NTRS)

    Chen, H. C.; Yu, N. Y.

    1991-01-01

    An Euler flow solver was developed for predicting the airframe/propulsion integration effects for an aft-mounted turboprop transport. This solver employs a highly efficient multigrid scheme, with a successive mesh-refinement procedure to accelerate the convergence of the solution. A new dissipation model was also implemented to render solutions that are grid insensitive. The propeller power effects are simulated by the actuator disk concept. An embedded flow solution method was developed for predicting the detailed flow characteristics in the local vicinity of an aft-mounted propfan engine in the presence of a flow field induced by a complete aircraft. Results from test case analysis are presented. A user's guide for execution of computer programs, including format of various input files, sample job decks, and sample input files, is provided in an accompanying volume.

  7. Two improvements on numerical simulation of 2-DOF vortex-induced vibration with low mass ratio

    NASA Astrophysics Data System (ADS)

    Kang, Zhuang; Ni, Wen-chi; Zhang, Xu; Sun, Li-ping

    2017-12-01

    Till now, there have been lots of researches on numerical simulation of vortex-induced vibration. Acceptable results have been obtained for fixed cylinders with low Reynolds number. However, for responses of 2-DOF vortex-induced vibration with low mass ratio, the accuracy is not satisfactory, especially for the maximum amplitudes. In Jauvtis and Williamson's work, the maximum amplitude of the cylinder with low mass ratio m*=2.6 can reach as large as 1.5 D to be called as the "super-upper branch", but from current literatures, few simulation results can achieve such value, even fail to capture the upper branch. Besides, it is found that the amplitude decays too fast in the lower branch with the RANS-based turbulence model. The reason is likely to be the defects of the turbulence model itself in the prediction of unsteady separated flows as well as the unreasonable setting of the numerical simulation parameters. Aiming at above issues, a modified turbulence model is proposed in this paper, and the effect of the acceleration of flow field on the response of vortex-induced vibration is studied based on OpenFOAM. By analyzing the responses of amplitude, phase and trajectory, frequency and vortex mode, it is proved that the vortex-induced vibration can be predicted accurately with the modified turbulence model under appropriate flow field acceleration.

  8. Water Flow Testing and Unsteady Pressure Analysis of a Two-Bladed Liquid Oxidizer Pump Inducer

    NASA Technical Reports Server (NTRS)

    Schwarz, Jordan B.; Mulder, Andrew; Zoladz, Thomas

    2011-01-01

    The unsteady fluid dynamic performance of a cavitating two-bladed oxidizer turbopump inducer was characterized through sub-scale water flow testing. While testing a novel inlet duct design that included a cavitation suppression groove, unusual high-frequency pressure oscillations were observed. With potential implications for inducer blade loads, these high-frequency components were analyzed extensively in order to understand their origins and impacts to blade loading. Water flow testing provides a technique to determine pump performance without the costs and hazards associated with handling cryogenic propellants. Water has a similar density and Reynolds number to liquid oxygen. In a 70%-scale water flow test, the inducer-only pump performance was evaluated. Over a range of flow rates, the pump inlet pressure was gradually reduced, causing the flow to cavitate near the pump inducer. A nominal, smooth inducer inlet was tested, followed by an inlet duct with a circumferential groove designed to suppress cavitation. A subsequent 52%-scale water flow test in another facility evaluated the combined inducer-impeller pump performance. With the nominal inlet design, the inducer showed traditional cavitation and surge characteristics. Significant bearing loads were created by large side loads on the inducer during synchronous cavitation. The grooved inlet successfully mitigated these loads by greatly reducing synchronous cavitation, however high-frequency pressure oscillations were observed over a range of frequencies. Analytical signal processing techniques showed these oscillations to be created by a rotating, multi-celled train of pressure pulses, and subsequent CFD analysis suggested that such pulses could be created by the interaction of rotating inducer blades with fluid trapped in a cavitation suppression groove. Despite their relatively low amplitude, these high-frequency pressure oscillations posed a design concern due to their sensitivity to flow conditions and test scale. The amplitude and frequency of oscillations varied considerably over the pump s operating space, making it difficult to predict blade loads.

  9. Study of axial magnetic effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braguta, Victor; School of Biomedicine, Far Eastern Federal University, Ajax 10 Building 25, Russian island, Vladivostok, 690922; Chernodub, M. N.

    2016-01-22

    The Axial Magnetic Effect manifests itself as an equilibrium energy flow of massless fermions induced by the axial (chiral) magnetic field. Here we study the Axial Magnetic Effect in the quenched SU(2) lattice gauge theory with massless overlap fermions at finite temperature. We numerically observe that in the low-temperature hadron phase the effect is absent due to the quark confinement. In the high-temperature deconfinement phase the energy flow is an increasing function of the temperature which reaches the predicted asymptotic T{sup 2} behavior at high temperatures. We find, however, that energy flow is about one order of magnitude lower comparedmore » to a theoretical prediction.« less

  10. Advanced prediction technique for the low speed aerodynamics of V/STOL aircraft. Volume 2: User's manual

    NASA Technical Reports Server (NTRS)

    Beatty, T. D.; Worthey, M. K.

    1984-01-01

    A computerized prediction method known as the Vought V/STOL Aircraft Propulsive Effects computer program (VAPE) for propulsive induced forces and moments in transition and Short TakeOff and Landing (STOL) flight is improved and evaluated. The VAPE program is capable of evaluating: (1) effects of relative wind about an aircraft, (2) effects of propulsive lift jet entrainment, vorticity and flow blockage, (3) effects of engine inlet flow on the aircraft flow field, (4) engine inlet forces and moments including inlet separation, (5) ground effects in the STOL region of flight, and (6) viscous effects on lifting surfaces.

  11. Measurement and prediction of propeller flow field on the PTA aircraft at speeds of up to Mach 0.85. [Propfan Test Assessment

    NASA Technical Reports Server (NTRS)

    Aljabri, Abdullah S.

    1988-01-01

    High speed subsonic transports powered by advanced propellers provide significant fuel savings compared to turbofan powered transports. Unfortunately, however, propfans must operate in aircraft-induced nonuniform flow fields which can lead to high blade cyclic stresses, vibration and noise. To optimize the design and installation of these advanced propellers, therefore, detailed knowledge of the complex flow field is required. As part of the NASA Propfan Test Assessment (PTA) program, a 1/9 scale semispan model of the Gulfstream II propfan test-bed aircraft was tested in the NASA-Lewis 8 x 6 supersonic wind tunnel to obtain propeller flow field data. Detailed radial and azimuthal surveys were made to obtain the total pressure in the flow and the three components of velocity. Data was acquired for Mach numbers ranging from 0.6 to 0.85. Analytical predictions were also made using a subsonic panel method, QUADPAN. Comparison of wind-tunnel measurements and analytical predictions show good agreement throughout the Mach range.

  12. Low frequency vibration induced streaming in a Hele-Shaw cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costalonga, M., E-mail: maxime.costalonga@univ-paris-diderot.fr; Laboratoire Matière et Systèmes Complexes, UMR CNRS 7057, Université Paris Diderot, 10 rue Alice Domon et Léonie Duquet, 75205 Paris cedex 13; Brunet, P.

    When an acoustic wave propagates in a fluid, it can generate a second order flow whose characteristic time is much longer than the period of the wave. Within a range of frequency between ten and several hundred Hz, a relatively simple and versatile way to generate streaming flow is to put a vibrating object in the fluid. The flow develops vortices in the viscous boundary layer located in the vicinity of the source of vibrations, leading in turn to an outer irrotational streaming called Rayleigh streaming. Because the flow originates from non-linear time-irreversible terms of the Navier-Stokes equation, this phenomenonmore » can be used to generate efficient mixing at low Reynolds number, for instance in confined geometries. Here, we report on an experimental study of such streaming flow induced by a vibrating beam in a Hele-Shaw cell of 2 mm span using long exposure flow visualization and particle-image velocimetry measurements. Our study focuses especially on the effects of forcing frequency and amplitude on flow dynamics. It is shown that some features of this flow can be predicted by simple scaling arguments and that this vibration-induced streaming facilitates the generation of vortices.« less

  13. Linear bubble plume model for hypolimnetic oxygenation: Full-scale validation and sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Singleton, V. L.; Gantzer, P.; Little, J. C.

    2007-02-01

    An existing linear bubble plume model was improved, and data collected from a full-scale diffuser installed in Spring Hollow Reservoir, Virginia, were used to validate the model. The depth of maximum plume rise was simulated well for two of the three diffuser tests. Temperature predictions deviated from measured profiles near the maximum plume rise height, but predicted dissolved oxygen profiles compared very well with observations. A sensitivity analysis was performed. The gas flow rate had the greatest effect on predicted plume rise height and induced water flow rate, both of which were directly proportional to gas flow rate. Oxygen transfer within the hypolimnion was independent of all parameters except initial bubble radius and was inversely proportional for radii greater than approximately 1 mm. The results of this work suggest that plume dynamics and oxygen transfer can successfully be predicted for linear bubble plumes using the discrete-bubble approach.

  14. Numerical Simulation of Complex Turbomachinery Flows

    NASA Technical Reports Server (NTRS)

    Chernobrovkin, A. A.; Lakshiminarayana, B.

    1999-01-01

    An unsteady, multiblock, Reynolds Averaged Navier Stokes solver based on Runge-Kutta scheme and Pseudo-time step for turbo-machinery applications was developed. The code was validated and assessed against analytical and experimental data. It was used to study a variety of physical mechanisms of unsteady, three-dimensional, turbulent, transitional, and cooling flows in compressors and turbines. Flow over a cylinder has been used to study effects of numerical aspects on accuracy of prediction of wake decay and transition, and to modify K-epsilon models. The following simulations have been performed: (a) Unsteady flow in a compressor cascade: Three low Reynolds number turbulence models have been assessed and data compared with Euler/boundary layer predictions. Major flow features associated with wake induced transition were predicted and studied; (b) Nozzle wake-rotor interaction in a turbine: Results compared to LDV data in design and off-design conditions, and cause and effect of unsteady flow in turbine rotors were analyzed; (c) Flow in the low-pressure turbine: Assessed capability of the code to predict transitional, attached and separated flows at a wide range of low Reynolds numbers and inlet freestream turbulence intensity. Several turbulence and transition models have been employed and comparisons made to experiments; (d) leading edge film cooling at compound angle: Comparisons were made with experiments, and the flow physics of the associated vortical structures were studied; and (e) Tip leakage flow in a turbine. The physics of the secondary flow in a rotor was studied and sources of loss identified.

  15. Projected effects of Climate-change-induced flow alterations on stream macroinvertebrate abundances.

    PubMed

    Kakouei, Karan; Kiesel, Jens; Domisch, Sami; Irving, Katie S; Jähnig, Sonja C; Kail, Jochem

    2018-03-01

    Global change has the potential to affect river flow conditions which are fundamental determinants of physical habitats. Predictions of the effects of flow alterations on aquatic biota have mostly been assessed based on species ecological traits (e.g., current preferences), which are difficult to link to quantitative discharge data. Alternatively, we used empirically derived predictive relationships for species' response to flow to assess the effect of flow alterations due to climate change in two contrasting central European river catchments. Predictive relationships were set up for 294 individual species based on (1) abundance data from 223 sampling sites in the Kinzig lower-mountainous catchment and 67 sites in the Treene lowland catchment, and (2) flow conditions at these sites described by five flow metrics quantifying the duration, frequency, magnitude, timing and rate of flow events using present-day gauging data. Species' abundances were predicted for three periods: (1) baseline (1998-2017), (2) horizon 2050 (2046-2065) and (3) horizon 2090 (2080-2099) based on these empirical relationships and using high-resolution modeled discharge data for the present and future climate conditions. We compared the differences in predicted abundances among periods for individual species at each site, where the percent change served as a proxy to assess the potential species responses to flow alterations. Climate change was predicted to most strongly affect the low-flow conditions, leading to decreased abundances of species up to -42%. Finally combining the response of all species over all metrics indicated increasing overall species assemblage responses in 98% of the studied river reaches in both projected horizons and were significantly larger in the lower-mountainous Kinzig compared to the lowland Treene catchment. Such quantitative analyses of freshwater taxa responses to flow alterations provide valuable tools for predicting potential climate-change impacts on species abundances and can be applied to any stressor, species, or region.

  16. Large Eddy Simulation of turbulence induced secondary flows in stationary and rotating straight square ducts

    NASA Astrophysics Data System (ADS)

    Sudjai, W.; Juntasaro, V.; Juttijudata, V.

    2018-01-01

    The accuracy of predicting turbulence induced secondary flows is crucially important in many industrial applications such as turbine blade internal cooling passages in a gas turbine and fuel rod bundles in a nuclear reactor. A straight square duct is popularly used to reveal the characteristic of turbulence induced secondary flows which consists of two counter rotating vortices distributed in each corner of the duct. For a rotating duct, the flow can be divided into the pressure side and the suction side. The turbulence induced secondary flows are converted to the Coriolis force driven two large circulations with a pair of additional vortices on the pressure wall due to the rotational effect. In this paper, the Large Eddy Simulation (LES) of turbulence induced secondary flows in a straight square duct is performed using the ANSYS FLUENT CFD software. A dynamic kinetic energy subgrid-scale model is used to describe the three-dimensional incompressible turbulent flows in the stationary and the rotating straight square ducts. The Reynolds number based on the friction velocity and the hydraulic diameter is 300 with the various rotation numbers for the rotating cases. The flow is assumed fully developed by imposing the constant pressure gradient in the streamwise direction. For the rotating cases, the rotational axis is placed perpendicular to the streamwise direction. The simulation results on the secondary flows and the turbulent statistics are found to be in good agreement with the available Direct Numerical Simulation (DNS) data. Finally, the details of the Coriolis effects are discussed.

  17. Flow and contaminant transport in an airliner cabin induced by a moving body: Model experiments and CFD predictions

    NASA Astrophysics Data System (ADS)

    Poussou, Stephane B.; Mazumdar, Sagnik; Plesniak, Michael W.; Sojka, Paul E.; Chen, Qingyan

    2010-08-01

    The effects of a moving human body on flow and contaminant transport inside an aircraft cabin were investigated. Experiments were performed in a one-tenth scale, water-based model. The flow field and contaminant transport were measured using the Particle Image Velocimetry (PIV) and Planar Laser-Induced Fluorescence (PLIF) techniques, respectively. Measurements were obtained with (ventilation case) and without (baseline case) the cabin environmental control system (ECS). The PIV measurements show strong intermittency in the instantaneous near-wake flow. A symmetric downwash flow was observed along the vertical centerline of the moving body in the baseline case. The evolution of this flow pattern is profoundly perturbed by the flow from the ECS. Furthermore, a contaminant originating from the moving body is observed to convect to higher vertical locations in the presence of ventilation. These experimental data were used to validate a Computational Fluid Dynamic (CFD) model. The CFD model can effectively capture the characteristic flow features and contaminant transport observed in the small-scale model.

  18. Eddies in a bottleneck: an arbitrary Debye length theory for capillary electroosmosis.

    PubMed

    Park, Stella Y; Russo, Christopher J; Branton, Daniel; Stone, Howard A

    2006-05-15

    Using an applied electrical field to drive fluid flows becomes desirable as channels become smaller. Although most discussions of electroosmosis treat the case of thin Debye layers, here electroosmotic flow (EOF) through a constricted cylinder is presented for arbitrary Debye lengths (kappa(-1)) using a long wavelength perturbation of the cylinder radius. The analysis uses the approximation of small potentials. The varying diameter of the cylinder produces radially and axially varying effective electric fields, as well as an induced pressure gradient. We predict the existence of eddies for certain constricted geometries and propose the possibility of electrokinetic trapping in these regions. We also present a leading-order criterion which predicts central eddies in very narrow constrictions at the scale of the Debye length. Eddies can be found both in the center of the channel and along the perimeter, and the presence of the eddies is a consequence of the induced pressure gradient that accompanies electrically driven flow into a narrow constriction.

  19. Eddies in a Bottleneck: An Arbitrary Debye Length Theory for Capillary Electroosmosis

    PubMed Central

    Park, Stella Y.; Russo, Christopher J.; Branton, Daniel; Stone, Howard A.

    2011-01-01

    Using an applied electrical field to drive fluid flows becomes desirable as channels become smaller. Although most discussions of electroosmosis treat the case of thin Debye layers, here electroosmotic flow (EOF) through a constricted cylinder is presented for arbitrary Debye lengths (κ−1) using a long wavelength perturbation of the cylinder radius. The analysis uses the approximation of small potentials. The varying diameter of the cylinder produces radially and axially varying effective electric fields, as well as an induced pressure gradient. We predict the existence of eddies for certain constricted geometries and propose the possibility of electrokinetic trapping in these regions. We also present a leading-order criterion which predicts central eddies in very narrow constrictions at the scale of the Debye length. Eddies can be found both in the center of the channel and along the perimeter, and the presence of the eddies is a consequence of the induced pressure gradient that accompanies electrically driven flow into a narrow constriction. PMID:16376361

  20. Multiscale Particle-Based Modeling of Flowing Platelets in Blood Plasma Using Dissipative Particle Dynamics and Coarse Grained Molecular Dynamics

    PubMed Central

    Zhang, Peng; Gao, Chao; Zhang, Na; Slepian, Marvin J.; Deng, Yuefan; Bluestein, Danny

    2014-01-01

    We developed a multiscale particle-based model of platelets, to study the transport dynamics of shear stresses between the surrounding fluid and the platelet membrane. This model facilitates a more accurate prediction of the activation potential of platelets by viscous shear stresses - one of the major mechanisms leading to thrombus formation in cardiovascular diseases and in prosthetic cardiovascular devices. The interface of the model couples coarse-grained molecular dynamics (CGMD) with dissipative particle dynamics (DPD). The CGMD handles individual platelets while the DPD models the macroscopic transport of blood plasma in vessels. A hybrid force field is formulated for establishing a functional interface between the platelet membrane and the surrounding fluid, in which the microstructural changes of platelets may respond to the extracellular viscous shear stresses transferred to them. The interaction between the two systems preserves dynamic properties of the flowing platelets, such as the flipping motion. Using this multiscale particle-based approach, we have further studied the effects of the platelet elastic modulus by comparing the action of the flow-induced shear stresses on rigid and deformable platelet models. The results indicate that neglecting the platelet deformability may overestimate the stress on the platelet membrane, which in turn may lead to erroneous predictions of the platelet activation under viscous shear flow conditions. This particle-based fluid-structure interaction multiscale model offers for the first time a computationally feasible approach for simulating deformable platelets interacting with viscous blood flow, aimed at predicting flow induced platelet activation by using a highly resolved mapping of the stress distribution on the platelet membrane under dynamic flow conditions. PMID:25530818

  1. Unstart phenomena induced by flow choking in scramjet inlet-isolators

    NASA Astrophysics Data System (ADS)

    Im, Seong-kyun; Do, Hyungrok

    2018-02-01

    A review of recent research outcomes in downstream flow choking-driven unstart is presented. Unstart is a flow phenomenon at the inlet that severely reduces the air mass flow rate through the engine, causing a loss of thrust and considerable transient mechanical loading. Therefore, unstart in a scramjet engine crucially affects the design and the operation range of hypersonic vehicles. Downstream flow choking is known to be one of the major mechanisms inducing inlet unstart, as confirmed by recent scramjet-powered flight tests. The current paper examines recent research progress in identifying flow choking mechanisms that trigger unstart. Three different flow choking mechanisms are discussed: flow blockage, mass addition, and heat release from combustion reactions. Current research outcomes on the characteristic of unstarting flows, such as transient and quasi-steady motions, are reviewed for each flow choking mechanism. The characteristics of unstarted flows are described including Buzzing phenomena and oscillatory motions of unstarted shockwaves. Then, the state-of-the-art methods to predict, detect, and control unstart are presented. The review suggests that further investigations with high-enthalpy ground facilities will aid understanding of heat release-driven unstart.

  2. Flaw-induced plastic-flow dynamics in bulk metallic glasses under tension

    PubMed Central

    Chen, S. H.; Yue, T. M.; Tsui, C. P.; Chan, K. C.

    2016-01-01

    Inheriting amorphous atomic structures without crystalline lattices, bulk metallic glasses (BMGs) are known to have superior mechanical properties, such as high strength approaching the ideal value, but are susceptible to catastrophic failures. Understanding the plastic-flow dynamics of BMGs is important for achieving stable plastic flow in order to avoid catastrophic failures, especially under tension, where almost all BMGs demonstrate limited plastic flow with catastrophic failure. Previous findings have shown that the plastic flow of BMGs displays critical dynamics under compression tests, however, the plastic-flow dynamics under tension are still unknown. Here we report that power-law critical dynamics can also be achieved in the plastic flow of tensile BMGs by introducing flaws. Differing from the plastic flow under compression, the flaw-induced plastic flow under tension shows an upward trend in the amplitudes of the load drops with time, resulting in a stable plastic-flow stage with a power-law distribution of the load drop. We found that the flaw-induced plastic flow resulted from the stress gradients around the notch roots, and the stable plastic-flow stage increased with the increase of the stress concentration factor ahead of the notch root. The findings are potentially useful for predicting and avoiding the catastrophic failures in tensile BMGs by tailoring the complex stress fields in practical structural-applications. PMID:27779221

  3. Effect of thermal noise on vesicles and capsules in shear flow.

    PubMed

    Abreu, David; Seifert, Udo

    2012-07-01

    We add thermal noise consistently to reduced models of undeformable vesicles and capsules in shear flow and derive analytically the corresponding stochastic equations of motion. We calculate the steady-state probability distribution function and construct the corresponding phase diagrams for the different dynamical regimes. For fluid vesicles, we predict that at small shear rates thermal fluctuations induce a tumbling motion for any viscosity contrast. For elastic capsules, due to thermal mixing, an intermittent regime appears in regions where deterministic models predict only pure tank treading or tumbling.

  4. DSMC computations of hypersonic flow separation and re-attachment in the transition to continuum regime

    NASA Astrophysics Data System (ADS)

    Prakash, Ram; Gai, Sudhir L.; O'Byrne, Sean; Brown, Melrose

    2016-11-01

    The flow over a `tick' shaped configuration is performed using two Direct Simulation Monte Carlo codes: the DS2V code of Bird and the code from Sandia National Laboratory, called SPARTA. The configuration creates a flow field, where the flow is expanded initially but then is affected by the adverse pressure gradient induced by a compression surface. The flow field is challenging in the sense that the full flow domain is comprised of localized areas spanning continuum and transitional regimes. The present work focuses on the capability of SPARTA to model such flow conditions and also towards a comparative evaluation with results from DS2V. An extensive grid adaptation study is performed using both the codes on a model with a sharp leading edge and the converged results are then compared. The computational predictions are evaluated in terms of surface parameters such as heat flux, shear stress, pressure and velocity slip. SPARTA consistently predicts higher values for these surface properties. The skin friction predictions of both the codes don't give any indication of separation but the velocity slip plots indicate an incipient separation behavior at the corner. The differences in the results are attributed towards the flow resolution at the leading edge that dictates the downstream flow characteristics.

  5. Predictive model for local scour downstream of hydrokinetic turbines in erodible channels

    NASA Astrophysics Data System (ADS)

    Musa, Mirko; Heisel, Michael; Guala, Michele

    2018-02-01

    A modeling framework is derived to predict the scour induced by marine hydrokinetic turbines installed on fluvial or tidal erodible bed surfaces. Following recent advances in bridge scour formulation, the phenomenological theory of turbulence is applied to describe the flow structures that dictate the equilibrium scour depth condition at the turbine base. Using scaling arguments, we link the turbine operating conditions to the flow structures and scour depth through the drag force exerted by the device on the flow. The resulting theoretical model predicts scour depth using dimensionless parameters and considers two potential scenarios depending on the proximity of the turbine rotor to the erodible bed. The model is validated at the laboratory scale with experimental data comprising the two sediment mobility regimes (clear water and live bed), different turbine configurations, hydraulic settings, bed material compositions, and migrating bedform types. The present work provides future developers of flow energy conversion technologies with a physics-based predictive formula for local scour depth beneficial to feasibility studies and anchoring system design. A potential prototype-scale deployment in a large sandy river is also considered with our model to quantify how the expected scour depth varies as a function of the flow discharge and rotor diameter.

  6. A study of pump cavitation damage

    NASA Astrophysics Data System (ADS)

    Brophy, M. C.; Stinebring, D. R.; Billet, M. L.

    1983-11-01

    The cavitation assessment for the space shuttle main engine high pressure oxidizer turbopump is documented. A model of the flow through the pump was developed. Initially, a computational procedure was used to analyze the flow through the inlet casing including the prediction of wakes downstream of the casing vanes. From these flow calculations, cavitation patterns on the inducer blades were approximated and the damage rate estimated. The model correlates the heavy damage on the housing and over the inducer with unsteady blade surface cavitation. The unsteady blade surface cavitation is due to the large incidence changes caused by the wakes of the upstream vanes. Very high cavitation damage rates are associated with this type of cavitation. Design recommendations for reducing the unsteady cavitation include removing the set of vanes closest to the inducer and modifying the remaining vanes.

  7. Experimental and theoretical investigation of three-dimensional turbulent boundary layers and turbulence characteristics inside an axial flow inducer passage. Final Report. Ph.D. Thesis, Jun. 1971

    NASA Technical Reports Server (NTRS)

    Anand, A. K.; Lakshminarayana, B.

    1977-01-01

    Analytical and experimental investigations of the characteristics of three dimensional turbulent boundary layers in a rotating helical passage of an inducer rotor are reported. Expressions are developed for the velocity profiles in the inner layer, where the viscous effects dominate, in the outer layer, where the viscous effects are small, and in the interference layer, where the end walls influence the flow. The prediction of boundary layer growth is based on the momentum integral technique. The equations derived are general enough to be valid for all turbomachinery rotors with arbitrary pressure gradients. The experimental investigations are carried out in a flat plate inducer 3 feet in diameter. The mean velocity profiles, turbulence intensities and shear stresses, wall shear stress, and limiting streamline angles are measured at various radial and chordwise locations by using rotating probes. The measurements are in general agreement with the predictions. The radial flows are well represented by an expression which includes the effect of stagger angle and radial pressure gradient. The radial flows in the rotor channel are higher than those on a single blade. The collateral region exists only very near the blade surface. The radial component of turbulence intensity is higher than the streamwise component because of the effect of rotation.

  8. Theoretical prediction of fast 3D AC electro-osmotic pumps.

    PubMed

    Bazant, Martin Z; Ben, Yuxing

    2006-11-01

    AC electro-osmotic (ACEO) pumps in microfluidics currently involve planar electrode arrays, but recent work on the underlying phenomenon of induced-charge electro-osmosis (ICEO) suggests that three-dimensional (3D) geometries may be exploited to achieve faster flows. In this paper, we present some new design principles for periodic 3D ACEO pumps, such as the "fluid conveyor belt" of ICEO flow over a stepped electrode array. Numerical simulations of these designs (using the standard low-voltage model) predict flow rates almost twenty times faster than existing planar ACEO pumps, for the same applied voltage and minimum feature size. These pumps may enable new portable or implantable lab-on-a-chip devices, since rather fast (mm s(-1)), tuneable flows should be attainable with battery voltages (<10 V).

  9. Inducer analysis/pump model development

    NASA Astrophysics Data System (ADS)

    Cheng, Gary C.

    1994-03-01

    Current design of high performance turbopumps for rocket engines requires effective and robust analytical tools to provide design information in a productive manner. The main goal of this study was to develop a robust and effective computational fluid dynamics (CFD) pump model for general turbopump design and analysis applications. A finite difference Navier-Stokes flow solver, FDNS, which includes an extended k-epsilon turbulence model and appropriate moving zonal interface boundary conditions, was developed to analyze turbulent flows in turbomachinery devices. In the present study, three key components of the turbopump, the inducer, impeller, and diffuser, were investigated by the proposed pump model, and the numerical results were benchmarked by the experimental data provided by Rocketdyne. For the numerical calculation of inducer flows with tip clearance, the turbulence model and grid spacing are very important. Meanwhile, the development of the cross-stream secondary flow, generated by curved blade passage and the flow through tip leakage, has a strong effect on the inducer flow. Hence, the prediction of the inducer performance critically depends on whether the numerical scheme of the pump model can simulate the secondary flow pattern accurately or not. The impeller and diffuser, however, are dominated by pressure-driven flows such that the effects of turbulence model and grid spacing (except near leading and trailing edges of blades) are less sensitive. The present CFD pump model has been proved to be an efficient and robust analytical tool for pump design due to its very compact numerical structure (requiring small memory), fast turnaround computing time, and versatility for different geometries.

  10. Inducer analysis/pump model development

    NASA Technical Reports Server (NTRS)

    Cheng, Gary C.

    1994-01-01

    Current design of high performance turbopumps for rocket engines requires effective and robust analytical tools to provide design information in a productive manner. The main goal of this study was to develop a robust and effective computational fluid dynamics (CFD) pump model for general turbopump design and analysis applications. A finite difference Navier-Stokes flow solver, FDNS, which includes an extended k-epsilon turbulence model and appropriate moving zonal interface boundary conditions, was developed to analyze turbulent flows in turbomachinery devices. In the present study, three key components of the turbopump, the inducer, impeller, and diffuser, were investigated by the proposed pump model, and the numerical results were benchmarked by the experimental data provided by Rocketdyne. For the numerical calculation of inducer flows with tip clearance, the turbulence model and grid spacing are very important. Meanwhile, the development of the cross-stream secondary flow, generated by curved blade passage and the flow through tip leakage, has a strong effect on the inducer flow. Hence, the prediction of the inducer performance critically depends on whether the numerical scheme of the pump model can simulate the secondary flow pattern accurately or not. The impeller and diffuser, however, are dominated by pressure-driven flows such that the effects of turbulence model and grid spacing (except near leading and trailing edges of blades) are less sensitive. The present CFD pump model has been proved to be an efficient and robust analytical tool for pump design due to its very compact numerical structure (requiring small memory), fast turnaround computing time, and versatility for different geometries.

  11. Prediction and measurement of heat transfer rates for the shock-induced unsteady laminar boundary layer on a flat plate

    NASA Technical Reports Server (NTRS)

    Cook, W. J.

    1972-01-01

    The unsteady laminar boundary layer induced by the flow-initiating shock wave passing over a flat plate mounted in a shock tube was theoretically and experimentally studied in terms of heat transfer rates to the plate for shock speeds ranging from 1.695 to 7.34 km/sec. The theory presented by Cook and Chapman for the shock-induced unsteady boundary layer on a plate is reviewed with emphasis on unsteady heat transfer. A method of measuring time-dependent heat-transfer rates using thin-film heat-flux gages and an associated data reduction technique are outlined in detail. Particular consideration is given to heat-flux measurement in short-duration ionized shocktube flows. Experimental unsteady plate heat transfer rates obtained in both air and nitrogen using thin-film heat-flux gages generally agree well with theoretical predictions. The experimental results indicate that the theory continues to predict the unsteady boundary layer behavior after the shock wave leaves the trailing edge of the plate even though the theory is strictly applicable only for the time interval in which the shock remains on the plate.

  12. Debris flow hazards mitigation--Mechanics, prediction, and assessment

    USGS Publications Warehouse

    Chen, C.-L.; Major, J.J.

    2007-01-01

    These proceedings contain papers presented at the Fourth International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment held in Chengdu, China, September 10-13, 2007. The papers cover a wide range of topics on debris-flow science and engineering, including the factors triggering debris flows, geomorphic effects, mechanics of debris flows (e.g., rheology, fluvial mechanisms, erosion and deposition processes), numerical modeling, various debris-flow experiments, landslide-induced debris flows, assessment of debris-flow hazards and risk, field observations and measurements, monitoring and alert systems, structural and non-structural countermeasures against debris-flow hazards and case studies. The papers reflect the latest devel-opments and advances in debris-flow research. Several studies discuss the development and appli-cation of Geographic Information System (GIS) and Remote Sensing (RS) technologies in debris-flow hazard/risk assessment. Timely topics presented in a few papers also include the development of new or innovative techniques for debris-flow monitoring and alert systems, especially an infra-sound acoustic sensor for detecting debris flows. Many case studies illustrate a wide variety of debris-flow hazards and related phenomena as well as their hazardous effects on human activities and settlements.

  13. Fluid flow analysis behind heliostat using LES and RANS: A step towards optimized field design in desert regions

    NASA Astrophysics Data System (ADS)

    Boddupalli, Nibodh; Goenka, Vikash; Chandra, Laltu

    2017-06-01

    Heliostats are used for concentrating beam radiation onto a receiver. The flow induced dust deposition on these reflectors will lead to failure of the receiver. For this purpose, the wake behind a heliostat is analyzed at 25° of inclination and at a Reynolds number of 60000. In this paper the Reynolds Averaged Navier-Stokes (RANS) and the Large Eddy Simulation (LES) approaches are used for analyzing the air-flow behind a heliostat. LES and RANS are performed with a wall-resolved grid. For the purpose of validation, the horizontal velocity is measured in a wind-tunnel with a model heliostat using laser Doppler velocimetry technique. RANS and LES approaches are found to qualitatively predict the statistical quantities, like the mean horizontal-velocity in comparison to experiment. RANS under-predicts root-mean-square of the horizontal-velocity and even failed to capture the flow features behind heliostat. Thus, it is concluded that RANS will suffice with well-resolved grid for analyzing mean flow features. For analyzing wake and to understand the induced dust deposition LES is required. Further, the analysis reveals that the wake-affected region is up to three times the length of the heliostat's mirror. This can be recommended as the minimum distance between any two aligned heliostats in Jodhpur.

  14. Electrically induced microflows probed by fluorescence correlation spectroscopy.

    PubMed

    Ybert, C; Nadal, F; Salomé, R; Argoul, F; Bourdieu, L

    2005-03-01

    We report on the experimental characterisation of electrically induced flows at the micrometer scale through Fluorescence Correlation Spectroscopy (FCS) measurements. We stress the potential of FCS as a useful characterisation technique in microfluidics devices for transport properties cartography. The experimental results obtained in a model situation are in agreement with previous calculations (F. Nadal, F. Argoul, P. Kestener, B. Pouligny, C. Ybert, A. Ajdari, Eur. Phys. J. E 9, 387 (2002)) predicting the structure and electric-field dependency of the induced flow. Additionally, the present study evidences a complex behaviour of the probe nanobeads under electric field whose precise understanding might prove relevant for situations where nano-objects interact with an external electric field.

  15. A New Modular Approach for Tightly Coupled Fluid/Structure Analysis

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru

    2003-01-01

    Static aeroelastic computations are made using a C++ executive suitable for closely coupled fluid/structure interaction studies. The fluid flow is modeled using the Euler/Navier Stokes equations and the structure is modeled using finite elements. FORTRAN based fluids and structures codes are integrated under C++ environment. The flow and structural solvers are treated as separate object files. The data flow between fluids and structures is accomplished using I/O. Results are demonstrated for transonic flow over partially flexible surface that is important for aerospace vehicles. Use of this development to accurately predict flow induced structural failure will be demonstrated.

  16. Resonance and streaming of armored microbubbles

    NASA Astrophysics Data System (ADS)

    Spelman, Tamsin; Bertin, Nicolas; Stephen, Olivier; Marmottant, Philippe; Lauga, Eric

    2015-11-01

    A new experimental technique involves building a hollow capsule which partially encompasses a microbubble, creating an ``armored microbubble'' with long lifespan. Under acoustic actuation, such bubble produces net streaming flows. In order to theoretically model the induced flow, we first extend classical models of free bubbles to describe the streaming flow around a spherical body for any known axisymmetric shape oscillation. A potential flow model is then employed to determine the resonance modes of the armored microbubble. We finally use a more detailed viscous model to calculate the surface shape oscillations at the experimental driving frequency, and from this we predict the generated streaming flows.

  17. Induced groundwater flux by increases in the aquifer's total stress.

    PubMed

    Chang, Ching-Min; Yeh, Hund-Der

    2015-01-01

    Fluid-filled granular soils experience changes in total stress because of earth and oceanic tides, earthquakes, erosion, sedimentation, and changes in atmospheric pressure. The pore volume may deform in response to the changes in stress and this may lead to changes in pore fluid pressure. The transient fluid flow can therefore be induced by the gradient in excess pressure in a fluid-saturated porous medium. This work demonstrates the use of stochastic methodology in prediction of induced one-dimensional field-scale groundwater flow through a heterogeneous aquifer. A closed-form of mean groundwater flux is developed to quantify the induced field-scale mean behavior of groundwater flow and analyze the impacts of the spatial correlation length scale of log hydraulic conductivity and the pore compressibility. The findings provided here could be useful for the rational planning and management of groundwater resources in aquifers that contain lenses with large vertical aquifer matrix compressibility values. © 2014, National Ground Water Association.

  18. Fully coupled two-phase flow and poromechanics modeling of coalbed methane recovery: Impact of geomechanics on production rate

    DOE PAGES

    Ma, Tianran; Rutqvist, Jonny; Oldenburg, Curtis M.; ...

    2017-06-03

    This study presents the development and application of a fully coupled two-phase (methane and water) flow, transport, and poromechanics num erical model for the analysis of geomechanical impacts on coalbed methane (CBM) production. The model considers changes in two-phase fluid flow properties, i.e., coal porosity, permeability, water retention, and relative permeability curves through changes in cleat fractures induced by effective stress variations and desorption-induced shrinkage. The coupled simulator is first verified for poromechanics coupling, and simulation parameters of a CBM reservoir model are calibrated by history matching against one year of CBM production field data from Shanxi Province, China. Then,more » the verified simulator and the calibrated CBM reservoir model are used for predicting the impact of geomechanics on the production rate for twenty years of continuous CBM production. The simulation results show that desorption-induced shrinkage is the dominant process in increasing permeability in the near wellbore region. Away from the wellbore, desorption-induced shrinkage is weaker, and permeability is reduced by pressure depletion and increased effective stress. A sensitivity analysis shows that for coal with a higher sorption strain, a larger initial Young's modulus and a smaller Poisson's ratio promote the enhancement of permeability as well as an increased production rate. Moreover, the conceptual model of the cleat system, whether dominated by vertical cleats with permeability correlated to horizontal stress or with permeability correlated to mean stress, can have a significant impact on the predicted production rate. Overall, the study clearly demonstrates and confirms the critical importance of considering geomechanics for an accurate prediction of CBM production.« less

  19. Fully coupled two-phase flow and poromechanics modeling of coalbed methane recovery: Impact of geomechanics on production rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Tianran; Rutqvist, Jonny; Oldenburg, Curtis M.

    This study presents the development and application of a fully coupled two-phase (methane and water) flow, transport, and poromechanics num erical model for the analysis of geomechanical impacts on coalbed methane (CBM) production. The model considers changes in two-phase fluid flow properties, i.e., coal porosity, permeability, water retention, and relative permeability curves through changes in cleat fractures induced by effective stress variations and desorption-induced shrinkage. The coupled simulator is first verified for poromechanics coupling, and simulation parameters of a CBM reservoir model are calibrated by history matching against one year of CBM production field data from Shanxi Province, China. Then,more » the verified simulator and the calibrated CBM reservoir model are used for predicting the impact of geomechanics on the production rate for twenty years of continuous CBM production. The simulation results show that desorption-induced shrinkage is the dominant process in increasing permeability in the near wellbore region. Away from the wellbore, desorption-induced shrinkage is weaker, and permeability is reduced by pressure depletion and increased effective stress. A sensitivity analysis shows that for coal with a higher sorption strain, a larger initial Young's modulus and a smaller Poisson's ratio promote the enhancement of permeability as well as an increased production rate. Moreover, the conceptual model of the cleat system, whether dominated by vertical cleats with permeability correlated to horizontal stress or with permeability correlated to mean stress, can have a significant impact on the predicted production rate. Overall, the study clearly demonstrates and confirms the critical importance of considering geomechanics for an accurate prediction of CBM production.« less

  20. Large eddy simulation of fine water sprays: comparative analysis of two models and computer codes

    NASA Astrophysics Data System (ADS)

    Tsoy, A. S.; Snegirev, A. Yu.

    2015-09-01

    The model and the computer code FDS, albeit widely used in engineering practice to predict fire development, is not sufficiently validated for fire suppression by fine water sprays. In this work, the effect of numerical resolution of the large scale turbulent pulsations on the accuracy of predicted time-averaged spray parameters is evaluated. Comparison of the simulation results obtained with the two versions of the model and code, as well as that of the predicted and measured radial distributions of the liquid flow rate revealed the need to apply monotonic and yet sufficiently accurate discrete approximations of the convective terms. Failure to do so delays jet break-up, otherwise induced by large turbulent eddies, thereby excessively focuses the predicted flow around its axis. The effect of the pressure drop in the spray nozzle is also examined, and its increase has shown to cause only weak increase of the evaporated fraction and vapor concentration despite the significant increase of flow velocity.

  1. Evaluation of Interfacial Forces and Bubble-Induced Turbulence Using Direct Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Feng, Jinyong

    High fidelity prediction of multiphase flows is important in a wide range of engineering applications. While some multiphase flow scenarios can be successfully modeled, many questions remain unanswered regarding the interaction between the bubbles and the turbulence, and present significant challenges in the development of closure laws for the multiphase computational fluid dynamics (M-CFD) models. To address these challenges, we propose to evaluate the interfacial forces and bubble-induced turbulence in both laminar and turbulent flow field with direct numerical simulation (DNS) approach. Advanced finite-element based flow solver (PHASTA) with level-set interface tracking method is utilized for these studies. The proportional-integral-derivative (PID) controller is adopted to ensure the statistically steady state bubble position and perform the detailed study of the turbulent field around the bubble. Selected numerical capabilities and post-processing codes are developed to achieve the research goals. The interface tracking approach is verified and validated by comparing the interfacial forces with the experiment-based data and correlations. The sign change of transverse lift force is observed as the bubble becomes more deformable. A new correlation is proposed to predict the behavior of the drag coefficient over the wide range of conditions. The wall effect on the interfacial forces are also investigated. In homogeneous turbulent flow, the effect of bubble deformability, turbulent intensity and relative velocity on the bubble-induced turbulence are analyzed. The presented method and novel results will complement the experimental database, provide insight to the bubbleinduced turbulence mechanism and help the development of M-CFD closure models.

  2. An analysis of pump cavitation damage. [Space Shuttle main engine high pressure oxidizer turbopump

    NASA Technical Reports Server (NTRS)

    Brophy, M. C.; Stinebring, D. R.; Billet, M. L.

    1985-01-01

    The cavitation assessment for the space shuttle main engine high pressure oxidizer turbopump is documented. A model of the flow through the pump was developed. Initially, a computational procedure was used to analyze the flow through the inlet casing including the prediction of wakes downstream of the casing vanes. From these flow calculations, cavitation patterns on the inducer blades were approximated and the damage rate estimated. The model correlates the heavy damage on the housing and over the inducer with unsteady blade surface cavitation. The unsteady blade surface cavitation is due to the large incidence changes caused by the wakes of the upstream vanes. Very high cavitation damage rates are associated with this type of cavitation. Design recommendations for reducing the unsteady cavitation include removing the set of vanes closest to the inducer and modifying the remaining vanes.

  3. A study of pump cavitation damage. [space shuttle main engine high pressure oxidizer turbopump

    NASA Technical Reports Server (NTRS)

    Brophy, M. C.; Stinebring, D. R.; Billet, M. L.

    1983-01-01

    The cavitation assessment for the space shuttle main engine high pressure oxidizer turbopump is documented. A model of the flow through the pump was developed. Initially, a computational procedure was used to analyze the flow through the inlet casing including the prediction of wakes downstream of the casing vanes. From these flow calculations, cavitation patterns on the inducer blades were approximated and the damage rate estimated. The model correlates the heavy damage on the housing and over the inducer with unsteady blade surface cavitation. The unsteady blade surface cavitation is due to the large incidence changes caused by the wakes of the upstream vanes. Very high cavitation damage rates are associated with this type of cavitation. Design recommendations for reducing the unsteady cavitation include removing the set of vanes closest to the inducer and modifying the remaining vanes.

  4. Fluid-Dynamic Properties of Some Simple Sharp- and Blunt-Nosed Shapes at Mach Numbers from 16 to 24 in Helium Flow

    NASA Technical Reports Server (NTRS)

    Henderson, Arthur, Jr.; Johnston, Patrick J.

    1959-01-01

    The fluid-dynamic characteristics of flat plates, 5 deg and 10 deg wedges, and 5 deg and 10 deg cones have been investigated at Mach numbers from 16.3 to 23.9 in helium flow. The flat-plate results are for a leading-edge Reynolds number range of 584 to 19,500 and show that the induced pressure distribution is essentially linear with the hypersonic viscous interaction parameter bar X within the scope of this investigation. It is also shown that the rate at which the induced pressure varies with bar X is a linear function of the leading-edge Reynolds number. The wedge and cone results show that as the flow-deflection angle increases, the induced-pressure effects decrease and the measured pressures approach those predicted by inviscid shock theory.

  5. Thermal and hydrologic responses to climate change predict marked alterations in boreal stream invertebrate assemblages.

    PubMed

    Mustonen, Kaisa-Riikka; Mykrä, Heikki; Marttila, Hannu; Sarremejane, Romain; Veijalainen, Noora; Sippel, Kalle; Muotka, Timo; Hawkins, Charles P

    2018-06-01

    Air temperature at the northernmost latitudes is predicted to increase steeply and precipitation to become more variable by the end of the 21st century, resulting in altered thermal and hydrological regimes. We applied five climate scenarios to predict the future (2070-2100) benthic macroinvertebrate assemblages at 239 near-pristine sites across Finland (ca. 1200 km latitudinal span). We used a multitaxon distribution model with air temperature and modeled daily flow as predictors. As expected, projected air temperature increased the most in northernmost Finland. Predicted taxonomic richness also increased the most in northern Finland, congruent with the predicted northwards shift of many species' distributions. Compositional changes were predicted to be high even without changes in richness, suggesting that species replacement may be the main mechanism causing climate-induced changes in macroinvertebrate assemblages. Northern streams were predicted to lose much of the seasonality of their flow regimes, causing potentially marked changes in stream benthic assemblages. Sites with the highest loss of seasonality were predicted to support future assemblages that deviate most in compositional similarity from the present-day assemblages. Macroinvertebrate assemblages were also predicted to change more in headwaters than in larger streams, as headwaters were particularly sensitive to changes in flow patterns. Our results emphasize the importance of focusing protection and mitigation on headwater streams with high-flow seasonality because of their vulnerability to climate change. © 2018 John Wiley & Sons Ltd.

  6. Influence of Thermocapillary Flow on Capillary Stability: Long Float-Zones in Low Gravity

    NASA Technical Reports Server (NTRS)

    Chen, Yi-Ju; Steen, Paul H.

    1996-01-01

    A model problem is posed to study the influence of flow on the interfacial stability of a nearly cylindrical liquid bridge for lengths near its circumference (the Plateau-Rayleigh limit). The flow is generated by a shear stress imposed on the deformable interface. The symmetry of the imposed shear stress mimics the thermocapillary stress induced on a float-zone by a ring heater (i.e. a full zone). Principal assumptions are (1) zero gravity, (2) creeping flow, and (3) that the imposed coupling at the free surface between flow and temperature fields is the only such coupling. A numerical solution, complemented by a bifurcation analysis, shows that bridges substantially longer than the Plateau-Rayleigh limit are possible. An interaction of the first two capillary instabilities through the stress-induced flow is responsible. Time-periodic standing waves are also predicted in certain parameter ranges. Motivation comes from extra-long float-zones observed in MEPHISTO space lab experiments (June 1994).

  7. Theoretical and Experimental Investigation of the Subsonic-Flow Fields Beneath Swept and Unswept Wings with Tables of Vortex-Induced Velocities

    NASA Technical Reports Server (NTRS)

    Alford, William J., Jr.

    1956-01-01

    The flow-field characteristics beneath swept and unswept wings as determined by potential-flow theory are compared with the experimentally determined flow fields beneath swept and unswept wing-fuselage combinations. The potential-flow theory utilized considered both spanwise and chordwise distributions of vorticity as well as the wing-thickness effects. The perturbation velocities induced by a unit horseshoe vortex are included in tabular form. The results indicated that significant chordwise flow gradients existed beneath both swept and unswept wings at zero lift and throughout the lift range. The theoretical predictions of the flow-field characteristics were qualitatively correct in all cases considered, although there were indications that the magnitudes of the downwash angles tended to be overpredicted as the tip of the swept wing was approached and that the sidewash angles ahead of the unswept wing were underpredicted. The calculated effects of compressibility indicated that significant increases in the chordwise variation of flow angles and dynamic-pressure ratios should be expected in going from low to high subsonic speeds.

  8. Error-growth dynamics and predictability of surface thermally induced atmospheric flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, X.; Pielke, R.A.

    1993-09-01

    Using the CSU Regional Atmospheric Modeling System (RAMS) in its nonhydrostatic and compressible configuration, over 200 two-dimensional simulations with [Delta]x = 2 km and [Delta]x = 100 m are performed to study in detail the initial adjustment process and the error-growth dynamics of surface thermally induced circulation including the sensitivity to initial conditions, boundary conditions, and model parameters, and to study the predictability as a function of the size of surface heat patches under a calm mean wind. It is found that the error growth is not sensitive to the characterisitics of the initial perturbations. The numerical smoothing has amore » strong impact on the initial adjustment process and on the error-growth dynamics. The predictability and flow structures, it is found that the vertical velocity field is strongly affected by the mean wind, and the flow structures are quite sensitive to the initial soil water content. The transition from organized flow to the situation in which fluxes are dominated by noncoherent turbulent eddies under a calm mean wind is quantitatively evaluated and this transition is different for different variables. The relationship between the predictability of a realization and of an ensemble average is discussed. The predictability and the coherent circulations modulated by the surface inhomogeneities are also studied by computing the autocorrelations and the power spectra. The three-dimensional mesoscale and large-eddy simulations are performed to verify the above results. It is found that the two-dimensional mesoscale (or fine resolution) simulation yields very close or similar results regarding the predictability as those from the three-dimensional mesoscale (or large eddy) simulation. The horizontally averaged quantities based on two-dimensional fine-resolution simulations are insensitive to initial perturbations and agree with those based on three-dimensional large-eddy simulations. 87 refs., 25 figs.« less

  9. Image-based Modeling of Biofilm-induced Calcium Carbonate Precipitation

    NASA Astrophysics Data System (ADS)

    Connolly, J. M.; Rothman, A.; Jackson, B.; Klapper, I.; Cunningham, A. B.; Gerlach, R.

    2013-12-01

    Pore scale biological processes in the subsurface environment are important to understand in relation to many engineering applications including environmental contaminant remediation, geologic carbon sequestration, and petroleum production. Specifically, biofilm induced calcium carbonate precipitation has been identified as an attractive option to reduce permeability in a lasting way in the subsurface. This technology may be able to replace typical cement-based grouting in some circumstances; however, pore-scale processes must be better understood for it to be applied in a controlled manor. The work presented will focus on efforts to observe biofilm growth and ureolysis-induced mineral precipitation in micro-fabricated flow cells combined with finite element modelling as a tool to predict local chemical gradients of interest (see figure). We have been able to observe this phenomenon over time using a novel model organism that is able to hydrolyse urea and express a fluorescent protein allowing for non-invasive observation over time with confocal microscopy. The results of this study show the likely existence of a wide range of local saturation indices even in a small (1 cm length scale) experimental system. Interestingly, the locations of high predicted index do not correspond to the locations of higher precipitation density, highlighting the need for further understanding. Figure 1 - A micro-fabricated flow cell containing biofilm-induced calcium carbonate precipitation. (A) Experimental results: Active biofilm is in green and dark circles are calcium carbonate crystals. Note the channeling behavior in the top of the image, leaving a large hydraulically inactive area in the biofilm mass. (B) Finite element model: The prediction of relative saturation of calcium carbonate (as calcite). Fluid enters the system at a low saturation state (blue) but areas of high supersaturation (red) are predicted within the hydraulically inactive area in the biofilm. If only effluent saturation was measured, precipitation may not even be predicted but we see local, pore-scale behavior dictating system behavior in this case. The flow cell is 1 cm in length and the porous media elements are 100 μm.

  10. Neutron Resonance Spectrometry Shock Temperatures in Molybdenum

    NASA Astrophysics Data System (ADS)

    Swift, Damian; Seifter, Achim; Holtkamp, David; Yuan, Vincent; Clark, David; Buttler, William

    2007-06-01

    Neutron resonance spectrometry (NRS) has been used to measure the temperature in Mo during shock loading, giving temperatures higher than expected. The effect of plastic flow and non-ideal projectile behavior were assessed. Plastic flow was estimated to contribute a temperature rise of 55K compared with hydrodynamic flow, and 100-150K on release, consistent with pyrometry measurements. Simulations were performed of the HE flyer system used to induce the shock in the Mo sample. The simulations predicted that the flyer was slightly curved on impact. The resulting spatial variations in load, including radial components of velocity, were predicted to increase the apparent NRS temperature by 160K. These corrections are sufficient to reconcile the apparent temperatures deduced using NRS with the accepted properties of Mo.

  11. Formation of Kinneyia via shear-induced instabilities in microbial mats.

    PubMed

    Thomas, Katherine; Herminghaus, Stephan; Porada, Hubertus; Goehring, Lucas

    2013-01-01

    Kinneyia are a class of microbially mediated sedimentary fossils. Characterized by clearly defined ripple structures, Kinneyia are generally found in areas that were formally littoral habitats and covered by microbial mats. To date, there has been no conclusive explanation of the processes involved in the formation of these fossils. Microbial mats behave like viscoelastic fluids. We propose that the key mechanism involved in the formation of Kinneyia is a Kelvin-Helmholtz-type instability induced in a viscoelastic film under flowing water. A ripple corrugation is spontaneously induced in the film and grows in amplitude over time. Theoretical predictions show that the ripple instability has a wavelength proportional to the thickness of the film. Experiments carried out using viscoelastic films confirm this prediction. The ripple pattern that forms has a wavelength roughly three times the thickness of the film. This behaviour is independent of the viscosity of the film and the flow conditions. Laboratory-analogue Kinneyia were formed via the sedimentation of glass beads, which preferentially deposit in the troughs of the ripples. Well-ordered patterns form, with both honeycomb-like and parallel ridges being observed, depending on the flow speed. These patterns correspond well with those found in Kinneyia, with similar morphologies, wavelengths and amplitudes being observed.

  12. Formation of Kinneyia via shear-induced instabilities in microbial mats.

    PubMed

    Thomas, Katherine; Herminghaus, Stephan; Porada, Hubertus; Goehring, Lucas

    2013-12-13

    Kinneyia are a class of microbially mediated sedimentary fossils. Characterized by clearly defined ripple structures, Kinneyia are generally found in areas that were formally littoral habitats and covered by microbial mats. To date, there has been no conclusive explanation of the processes involved in the formation of these fossils. Microbial mats behave like viscoelastic fluids. We propose that the key mechanism involved in the formation of Kinneyia is a Kelvin-Helmholtz-type instability induced in a viscoelastic film under flowing water. A ripple corrugation is spontaneously induced in the film and grows in amplitude over time. Theoretical predictions show that the ripple instability has a wavelength proportional to the thickness of the film. Experiments carried out using viscoelastic films confirm this prediction. The ripple pattern that forms has a wavelength roughly three times the thickness of the film. This behaviour is independent of the viscosity of the film and the flow conditions. Laboratory-analogue Kinneyia were formed via the sedimentation of glass beads, which preferentially deposit in the troughs of the ripples. Well-ordered patterns form, with both honeycomb-like and parallel ridges being observed, depending on the flow speed. These patterns correspond well with those found in Kinneyia, with similar morphologies, wavelengths and amplitudes being observed.

  13. A Near-Wall Reynolds-Stress Closure without Wall Normals

    NASA Technical Reports Server (NTRS)

    Yuan, S. P.; So, R. M. C.

    1997-01-01

    With the aid of near-wall asymptotic analysis and results of direct numerical simulation, a new near-wall Reynolds stress model (NNWRS) is formulated based on the SSG high-Reynolds-stress model with wall-independent near-wall corrections. Only one damping function is used for flows with a wide range of Reynolds numbers to ensure that the near-wall modifications diminish away from the walls. The model is able to reproduce complicated flow phenomena induced by complex geometry, such as flow recirculation, reattachment and boundary-layer redevelopment in backward-facing step flow and secondary flow in three-dimensional square duct flow. In simple flows, including fully developed channel/pipe flow, Couette flow and boundary-layer flow, the wall effects are dominant, and the NNWRS model predicts less degree of turbulent anisotropy in the near-wall region compared with a wall-dependent near-wall Reynolds Stress model (NWRS) developed by So and colleagues. The comparison of the predictions given by the two models rectifies the misconception that the overshooting of skin friction coefficient in backward-facing step flow prevalent in those near-wall, models with wall normal is caused by he use of wall normal.

  14. Generation Mechanism and Prediction Model for Low Frequency Noise Induced by Energy Dissipating Submerged Jets during Flood Discharge from a High Dam

    PubMed Central

    Lian, Jijian; Zhang, Wenjiao; Guo, Qizhong; Liu, Fang

    2016-01-01

    As flood water is discharged from a high dam, low frequency (i.e., lower than 10 Hz) noise (LFN) associated with air pulsation is generated and propagated in the surrounding areas, causing environmental problems such as vibrations of windows and doors and discomfort of residents and construction workers. To study the generation mechanisms and key influencing factors of LFN induced by energy dissipation through submerged jets at a high dam, detailed prototype observations and analyses of LFN are conducted. The discharge flow field is simulated using a gas-liquid turbulent flow model, and the vorticity fluctuation characteristics are then analyzed. The mathematical model for the LFN intensity is developed based on vortex sound theory and a turbulent flow model, verified by prototype observations. The model results reveal that the vorticity fluctuation in strong shear layers around the high-velocity submerged jets is highly correlated with the on-site LFN, and the strong shear layers are the main regions of acoustic source for the LFN. In addition, the predicted and observed magnitudes of LFN intensity agree quite well. This is the first time that the LFN intensity has been shown to be able to be predicted quantitatively. PMID:27314374

  15. Permafrost thaw in a nested groundwater-flow system

    USGS Publications Warehouse

    McKenzie, Jeffery M.; Voss, Clifford I.

    2013-01-01

    Groundwater flow in cold regions containing permafrost accelerates climate-warming-driven thaw and changes thaw patterns. Simulation analyses of groundwater flow and heat transport with freeze/thaw in typical cold-regions terrain with nested flow indicate that early thaw rate is particularly enhanced by flow, the time when adverse environmental impacts of climate-warming-induced permafrost loss may be severest. For the slowest climate-warming rate predicted by the Intergovernmental Panel on Climate Change (IPCC), once significant groundwater flow begins, thick permafrost layers can vanish in several hundred years, but survive over 1,000 years where flow is minimal. Large-scale thaw depends mostly on the balance of heat advection and conduction in the supra-permafrost zone. Surface-water bodies underlain by open taliks allow slow sub-permafrost flow, with lesser influence on regional thaw. Advection dominance over conduction depends on permeability and topography. Groundwater flow around permafrost and flow through permafrost impact thaw differently; the latter enhances early thaw rate. Air-temperature seasonality also increases early thaw. Hydrogeologic heterogeneity and topography strongly affect thaw rates/patterns. Permafrost controls the groundwater/surface-water-geomorphology system; hence, prediction and mitigation of impacts of thaw on ecology, chemical exports and infrastructure require improved hydrogeology/permafrost characterization and understanding

  16. A Computational and Experimental Study of Nonlinear Aspects of Induced Drag

    NASA Technical Reports Server (NTRS)

    Smith, Stephen C.

    1996-01-01

    Despite the 80-year history of classical wing theory, considerable research has recently been directed toward planform and wake effects on induced drag. Nonlinear interactions between the trailing wake and the wing offer the possibility of reducing drag. The nonlinear effect of compressibility on induced drag characteristics may also influence wing design. This thesis deals with the prediction of these nonlinear aspects of induced drag and ways to exploit them. A potential benefit of only a few percent of the drag represents a large fuel savings for the world's commercial transport fleet. Computational methods must be applied carefully to obtain accurate induced drag predictions. Trefftz-plane drag integration is far more reliable than surface pressure integration, but is very sensitive to the accuracy of the force-free wake model. The practical use of Trefftz plane drag integration was extended to transonic flow with the Tranair full-potential code. The induced drag characteristics of a typical transport wing were studied with Tranair, a full-potential method, and A502, a high-order linear panel method to investigate changes in lift distribution and span efficiency due to compressibility. Modeling the force-free wake is a nonlinear problem, even when the flow governing equation is linear. A novel method was developed for computing the force-free wake shape. This hybrid wake-relaxation scheme couples the well-behaved nature of the discrete vortex wake with viscous-core modeling and the high-accuracy velocity prediction of the high-order panel method. The hybrid scheme produced converged wake shapes that allowed accurate Trefftz-plane integration. An unusual split-tip wing concept was studied for exploiting nonlinear wake interaction to reduced induced drag. This design exhibits significant nonlinear interactions between the wing and wake that produced a 12% reduction in induced drag compared to an equivalent elliptical wing at a lift coefficient of 0.7. The performance of the split-tip wing was also investigated by wing tunnel experiments. Induced drag was determined from force measurements by subtracting the estimated viscous drag, and from an analytical drag-decomposition method using a wake survey. The experimental results confirm the computational prediction.

  17. Effects of homogeneous condensation in compressible flows: Ludwieg-tube experiments and simulations

    NASA Astrophysics Data System (ADS)

    Luo, Xisheng; Lamanna, Grazia; Holten, A. P. C.; van Dongen, M. E. H.

    Effects of homogeneous nucleation and subsequent droplet growth in compressible flows in humid nitrogen are investigated numerically and experimentally. A Ludwieg tube is employed to produce expansion flows. Corresponding to different configurations, three types of experiment are carried out in such a tube. First, the phase transition in a strong unsteady expansion wave is investigated to demonstrate the mutual interaction between the unsteady flow and the condensation process and also the formation of condensation-induced shock waves. The role of condensation-induced shocks in the gradual transition from a frozen initial structure to an equilibrium structure is explained. Second, the condensing flow in a slender supersonic nozzle G2 is considered. Particular attention is given to condensation-induced oscillations and to the transition from symmetrical mode-1 oscillations to asymmetrical mode-2 oscillations in a starting nozzle flow, as first observed by Adam & Schnerr. The transition is also found numerically, but the amplitude, frequency and transition time are not yet well predicted. Third, a sharp-edged obstacle is placed in the tube to generate a starting vortex. Condensation in the vortex is found. Owing to the release of latent heat of condensation, an increase in the pressure and temperature in the vortex core is observed. Condensation-induced shock waves are found, for a sufficiently high initial saturation ratio, which interact with the starting vortex, resulting in a very complex flow. As time proceeds, a subsonic or transonic free jet is formed downstream of the sharp-edged obstacle, which becomes oscillatory for a relatively high main-flow velocity and for a sufficiently high humidity.

  18. Prediction for the Flow-induced Gravity Field of Saturn: Implications for Cassini’s Grand Finale

    NASA Astrophysics Data System (ADS)

    Galanti, Eli; Kaspi, Yohai

    2017-07-01

    The Cassini measurements of Saturn’s gravity field during its Grand Finale might shed light on a long-standing question regarding the flow on Saturn. While the cloud-level winds are well known, little is known about whether these winds are confined to the outer layers of the planet or penetrate deep into the interior. An additional complexity is added by the uncertainty in the exact rotation period of Saturn, a key factor in determining the cloud-level winds, with an effect on the north-south symmetric part of the winds. Using Saturn’s cloud-level winds we relate the flow to the gravity harmonics. We give a prediction for the odd harmonics {J}3,{J}5,{J}7,{and} {J}9 as a function of the flow depth, identifying three ranges of depths. Since the odd harmonics depend solely on the flow, and are not influenced by Saturn’s shape and static density distribution, any measured value of the odd harmonics by Cassini can be used to uniquely determine the depth of the flow. We also discuss the flow-induced even harmonics {{Δ }}{J}2,{{Δ }}{J}4,\\ldots ,{{Δ }}{J}12 that are affected by Saturn’s rotation period. While the high-degree even harmonics might also be used to determine the flow depth, the lower-degree even harmonics serve as uncertainties for analysis of the planet’s interior structure and composition. Thus, the gravity harmonics measured during the Cassini Grand Finale may be used to get a first-order estimate of the flow structure and to better constrain the planet’s density structure and composition.

  19. Effects of centrifugal acceleration on the flows and segregation in vertical Bridgman crystal growth with steady ampoule rotation

    NASA Astrophysics Data System (ADS)

    Lan, C. W.

    2001-07-01

    The effects of centrifugal acceleration on the flows and segregation in vertical Bridgman crystal growth with steady ampoule rotation are investigated through numerical simulation. The numerical model is based on the Boussinesq approximation in a rotating frame, and the fluid flow, heat and mass transfer, and the growth interface are solved simultaneously by a robust finite-volume/Newton method. The growth of gallium-doped germanium (GaGe) in the Grenoble furnace is adopted as an example. The calculated results at small Froude number (Fr<<1) are consistent with the previous prediction (Lan, J. Crystal growth 197 (1999) 983). However, at a high rotation speed or in reduced gravity, where the centrifugal acceleration becomes important (Fr˜1), the results are quite different due to the secondary flow induced. Since the direction of the induced flow is different from that of the buoyancy convection due to the concave interface, the flow damping is more effective than that due to the Coriolis force alone. More importantly, radial segregation can be reversed during the flow transition from one to the other.

  20. Effects of shear flow on phase nucleation and crystallization.

    PubMed

    Mura, Federica; Zaccone, Alessio

    2016-04-01

    Classical nucleation theory offers a good framework for understanding the common features of new phase formation processes in metastable homogeneous media at rest. However, nucleation processes in liquids are ubiquitously affected by hydrodynamic flow, and there is no satisfactory understanding of whether shear promotes or slows down the nucleation process. We developed a classical nucleation theory for sheared systems starting from the molecular level of the Becker-Doering master kinetic equation and we analytically derived a closed-form expression for the nucleation rate. The theory accounts for the effect of flow-mediated transport of molecules to the nucleus of the new phase, as well as for the mechanical deformation imparted to the nucleus by the flow field. The competition between flow-induced molecular transport, which accelerates nucleation, and flow-induced nucleus straining, which lowers the nucleation rate by increasing the nucleation energy barrier, gives rise to a marked nonmonotonic dependence of the nucleation rate on the shear rate. The theory predicts an optimal shear rate at which the nucleation rate is one order of magnitude larger than in the absence of flow.

  1. Removing volatile contaminants from the unsaturated zone by inducing advective air-phase transport

    USGS Publications Warehouse

    Baehr, A.L.; Hoag, G.E.; Marley, M.C.

    1989-01-01

    Organic liquids inadvertently spilled and then distributed in the unsaturated zone can pose a long-term threat to ground water. Many of these substances have significant volatility, and thereby establish a premise for contaminant removal from the unsaturated zone by inducing advective air-phase transport with wells screened in the unsaturated zone. In order to focus attention on the rates of mass transfer from liquid to vapour phases, sand columns were partially saturated with gasoline and vented under steady air-flow conditions. The ability of an equilibrium-based transport model to predict the hydrocarbon vapor flux from the columns implies an efficient rate of local phase transfer for reasonably high air-phase velocities. Thus the success of venting remediations will depend primarily on the ability to induce an air-flow field in a heterogeneous unsaturated zone that will intersect the distributed contaminant. To analyze this aspect of the technique, a mathematical model was developed to predict radially symmetric air flow induced by venting from a single well. This model allows for in-situ determinations of air-phase permeability, which is the fundamental design parameter, and for the analysis of the limitations of a single well design. A successful application of the technique at a site once contaminated by gasoline supports the optimism derived from the experimental and modeliing phases of this study, and illustrates the well construction and field methods used to document the volatile contaminant recovery. ?? 1989.

  2. Prediction of destabilizing blade tip forces for shrouded and unshrouded turbines

    NASA Technical Reports Server (NTRS)

    Qiu, Y. J.; Martinezsanchez, M.

    1985-01-01

    The effect of a nonuniform flow field on the Alford force calculation is investigated. The ideas used here are based on those developed by Horlock and Greitzer. It is shown that the nonuniformity of the flow field does contribute to the Alford force calculation. An attempt is also made to include the effect of whirl speed. The values predicted by the model are compared with those obtained experimentally by Urlicks and Wohlrab. The possibility of using existing turbine tip loss correlations to predict beta is also exploited. The nonuniform flow field induced by the tip clearnance variation tends to increase the resultant destabilizing force over and above what would be predicted on the basis of the local variation of efficiency. On the one hand, the pressure force due to the nonuniform inlet and exit pressure also plays a part even for unshrouded blades, and this counteracts the flow field effects, so that the simple Alford prediction remains a reasonable approximation. Once the efficiency variation with clearance is known, the presented model gives a slightly overpredicted, but reasonably accurate destabilizing force. In the absence of efficiency vs. clearance data, an empirical tip loss coefficient can be used to give a reasonable prediction of destabilizing force. To a first approximation, the whirl does have a damping effect, but only of small magnitude, and thus it can be ignored for some purposes.

  3. Superposition rheology.

    PubMed

    Dhont, J K; Wagner, N J

    2001-02-01

    The interpretation of superposition rheology data is still a matter of debate due to lack of understanding of viscoelastic superposition response on a microscopic level. So far, only phenomenological approaches have been described, which do not capture the shear induced microstructural deformation, which is responsible for the viscoelastic behavior to the superimposed flow. Experimentally there are indications that there is a fundamental difference between the viscoelastic response to an orthogonally and a parallel superimposed shear flow. We present theoretical predictions, based on microscopic considerations, for both orthogonal and parallel viscoelastic response functions for a colloidal system of attractive particles near their gas-liquid critical point. These predictions extend to values of the stationary shear rate where the system is nonlinearly perturbed, and are based on considerations on the colloidal particle level. The difference in response to orthogonal and parallel superimposed shear flow can be understood entirely in terms of microstructural distortion, where the anisotropy of the microstructure under shear flow conditions is essential. In accordance with experimental observations we find pronounced negative values for response functions in case of parallel superposition for an intermediate range of frequencies, provided that microstructure is nonlinearly perturbed by the stationary shear component. For the critical colloidal systems considered here, the Kramers-Kronig relations for the superimposed response functions are found to be valid. It is argued, however, that the Kramers-Kronig relations may be violated for systems where the stationary shear flow induces a considerable amount of new microstructure.

  4. Space-time correlations of fluctuating velocities in turbulent shear flows

    NASA Astrophysics Data System (ADS)

    Zhao, Xin; He, Guo-Wei

    2009-04-01

    Space-time correlations or Eulerian two-point two-time correlations of fluctuating velocities are analytically and numerically investigated in turbulent shear flows. An elliptic model for the space-time correlations in the inertial range is developed from the similarity assumptions on the isocorrelation contours: they share a uniform preference direction and a constant aspect ratio. The similarity assumptions are justified using the Kolmogorov similarity hypotheses and verified using the direct numerical simulation (DNS) of turbulent channel flows. The model relates the space-time correlations to the space correlations via the convection and sweeping characteristic velocities. The analytical expressions for the convection and sweeping velocities are derived from the Navier-Stokes equations for homogeneous turbulent shear flows, where the convection velocity is represented by the mean velocity and the sweeping velocity is the sum of the random sweeping velocity and the shear-induced velocity. This suggests that unlike Taylor’s model where the convection velocity is dominating and Kraichnan and Tennekes’ model where the random sweeping velocity is dominating, the decorrelation time scales of the space-time correlations in turbulent shear flows are determined by the convection velocity, the random sweeping velocity, and the shear-induced velocity. This model predicts a universal form of the space-time correlations with the two characteristic velocities. The DNS of turbulent channel flows supports the prediction: the correlation functions exhibit a fair good collapse, when plotted against the normalized space and time separations defined by the elliptic model.

  5. Experimental and Theoretical Study of a Rectangular Wing in a Vortical Wake at Low Speed

    NASA Technical Reports Server (NTRS)

    Smith, Willard G.; Lazzeroni, Frank A.

    1960-01-01

    A systematic study has been made, experimentally and theoretically, of the effects of a vortical wake on the aerodynamic characteristics of a rectangular wing at subsonic speed. The vortex generator and wing were mounted on a reflection plane to avoid body-wing interference. Vortex position, relative to the wing, was varied both in the spanwise direction and normal to the wing. Angle of attack of the wing was varied from -40 to +60. Both chordwise and spanwise pressure distributions were obtained with the wing in uniform and vortical flow fields. Stream surveys were made to determine the flow characteristics in the vortical wake. The vortex-induced lift was calculated by several theoretical methods including strip theory, reverse-flow theory, and reverse-flow theory including a finite vortex core. In addition, the Prandtl lifting-line theory and the Weissinger theory were used to calculate the spanwise distribution of vortex-induced loads. With reverse-flow theory, predictions of the interference lift were generally good, and with Weissinger's theory the agreement between the theoretical spanwise variation of induced load and the experimental variation was good. Results of the stream survey show that the vortex generated by a lifting surface of rectangular plan form tends to trail back streamwise from the tip and does not approach the theoretical location, or centroid of circulation, given by theory. This discrepancy introduced errors in the prediction of vortex interference, especially when the vortex core passed immediately outboard of the wing tip. The wake produced by the vortex generator in these tests was not fully rolled up into a circular vortex, and so lacked symmetry in the vertical direction of the transverse plane. It was found that the direction of circulation affected the induced loads on the wing either when the wing was at angle of attack or when the vortex was some distance away from the plane of the wing.

  6. A simple depth-averaged model for dry granular flow

    NASA Astrophysics Data System (ADS)

    Hung, Chi-Yao; Stark, Colin P.; Capart, Herve

    Granular flow over an erodible bed is an important phenomenon in both industrial and geophysical settings. Here we develop a depth-averaged theory for dry erosive flows using balance equations for mass, momentum and (crucially) kinetic energy. We assume a linearized GDR-Midi rheology for granular deformation and Coulomb friction along the sidewalls. The theory predicts the kinematic behavior of channelized flows under a variety of conditions, which we test in two sets of experiments: (1) a linear chute, where abrupt changes in tilt drive unsteady uniform flows; (2) a rotating drum, to explore steady non-uniform flow. The theoretical predictions match the experimental results well in all cases, without the need to tune parameters or invoke an ad hoc equation for entrainment at the base of the flow. Here we focus on the drum problem. A dimensionless rotation rate (related to Froude number) characterizes flow geometry and accounts not just for spin rate, drum radius and gravity, but also for grain size, wall friction and channel width. By incorporating Coriolis force the theory can treat behavior under centrifuge-induced enhanced gravity. We identify asymptotic flow regimes at low and high dimensionless rotation rates that exhibit distinct power-law scaling behaviors.

  7. Theoretical study of hull-rotor aerodynamic interference on semibuoyant vehicles

    NASA Technical Reports Server (NTRS)

    Spangler, S. B.; Smith, C. A.; Mendenhall, M. R.

    1977-01-01

    Theoretical methods are being developed to predict the mutual interference between rotor wakes and the hull for semibuoyant vehicles. The objective of the investigation is to predict the pressure distribution and overall loads on the hull in the presence of rotors whose locations, tilt angles, and disk loading are arbitrarily specified. The methods involve development of potential flow models for the hull alone in a nonuniform onset flow, a rotor wake which has the proper features to predict induced flow outside the wake, and a wake centerline specification technique which accounts for the reactions of the wake to a nonuniform crossflow. The flow models are used in sequence to solve for the mutual influence of the hull and rotor(s) on each other and the resulting loads. A flow separation model is included to estimate the influence of separation on hull loads at high sideslip angles. Only limited results have been obtained to date. These were obtained on a configuration which was tested in the Ames Research Center 7- by 10-Foot Low Speed Tunnel under Goodyear Aircraft Corporation sponsorship and indicate the nature of the interference pressure distribution on a configuration in hover.

  8. Theory to predict particle migration and margination in the pressure-driven channel flow of blood

    NASA Astrophysics Data System (ADS)

    Qi, Qin M.; Shaqfeh, Eric S. G.

    2017-09-01

    The inhomogeneous concentration distribution of erythrocytes and platelets in microchannel flows particularly in directions normal to the mean flow plays a significant role in hemostasis, drug delivery, and microfluidic applications. In this paper, we develop a coarse-grained theory to predict these distributions in pressure-driven channel flow at zero Reynolds number and compare them to experiments and simulations. We demonstrate that the balance between the deformability-induced lift force and the shear-induced diffusion created by hydrodynamic interactions in the suspension results in both a peak concentration of red blood cells at the channel center and a cell-free or Fahraeus-Lindqvist layer near the walls. On the other hand, the absence of a lift force and the strong red blood cell-platelet interactions result in an excess concentration of platelets in the cell-free layer. We demonstrate a strong role of hematocrit (i.e., erythrocyte volume fraction) in determining the cell-free layer thickness and the degree of platelet margination. We also demonstrate that the capillary number of the erythrocytes, based on the membrane shear modulus, plays a relatively insignificant role in the regimes that we have studied. Our theory serves as a good and simple alternative to large-scale computer simulations of the cross-stream transport processes in these mixtures.

  9. Large-Scale Experiments in Microbially Induced Calcite Precipitation (MICP): Reactive Transport Model Development and Prediction

    NASA Astrophysics Data System (ADS)

    Nassar, Mohamed K.; Gurung, Deviyani; Bastani, Mehrdad; Ginn, Timothy R.; Shafei, Babak; Gomez, Michael G.; Graddy, Charles M. R.; Nelson, Doug C.; DeJong, Jason T.

    2018-01-01

    Design of in situ microbially induced calcite precipitation (MICP) strategies relies on a predictive capability. To date much of the mathematical modeling of MICP has focused on small-scale experiments and/or one-dimensional flow in porous media, and successful parameterizations of models in these settings may not pertain to larger scales or to nonuniform, transient flows. Our objective in this article is to report on modeling to test our ability to predict behavior of MICP under controlled conditions in a meter-scale tank experiment with transient nonuniform transport in a natural soil, using independently determined parameters. Flow in the tank was controlled by three wells, via a complex cycle of injection/withdrawals followed by no-flow intervals. Different injection solution recipes were used in sequence for transport characterization, biostimulation, cementation, and groundwater rinse phases of the 17 day experiment. Reaction kinetics were calibrated using separate column experiments designed with a similar sequence of phases. This allowed for a parsimonious modeling approach with zero fitting parameters for the tank experiment. These experiments and data were simulated using PHT3-D, involving transient nonuniform flow, alternating low and high Damköhler reactive transport, and combined equilibrium and kinetically controlled biogeochemical reactions. The assumption that microbes mediating the reaction were exclusively sessile, and with constant activity, in conjunction with the foregoing treatment of the reaction network, provided for efficient and accurate modeling of the entire process leading to nonuniform calcite precipitation. This analysis suggests that under the biostimulation conditions applied here the assumption of steady state sessile biocatalyst suffices to describe the microbially mediated calcite precipitation.

  10. Centrifugal and Axial Pump Design and Off-Design Performance Prediction

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    1995-01-01

    A meanline pump-flow modeling method has been developed to provide a fast capability for modeling pumps of cryogenic rocket engines. Based on this method, a meanline pump-flow code PUMPA was written that can predict the performance of pumps at off-design operating conditions, given the loss of the diffusion system at the design point. The design-point rotor efficiency and slip factors are obtained from empirical correlations to rotor-specific speed and geometry. The pump code can model axial, inducer, mixed-flow, and centrifugal pumps and can model multistage pumps in series. The rapid input setup and computer run time for this meanline pump flow code make it an effective analysis and conceptual design tool. The map-generation capabilities of the code provide the information needed for interfacing with a rocket engine system modeling code. The off-design and multistage modeling capabilities of PUMPA permit the user to do parametric design space exploration of candidate pump configurations and to provide head-flow maps for engine system evaluation.

  11. Experimental characterisation and modelling of deformation- induced microstructure in an A6061 aluminium alloy

    NASA Astrophysics Data System (ADS)

    Kreyca, J. F.; Falahati, A.; Kozeschnik, E.

    2016-03-01

    For industry, the mechanical properties of a material in form of flow curves are essential input data for finite element simulations. Current practice is to obtain flow curves experimentally and to apply fitting procedures to obtain constitutive equations that describe the material response to external loading as a function of temperature and strain rate. Unfortunately, the experimental procedure for characterizing flow curves is complex and expensive, which is why the prediction of flow-curves by computer modelling becomes increasingly important. In the present work, we introduce a state parameter based model that is capable of predicting the flow curves of an A6061 aluminium alloy in different heat-treatment conditions. The model is implemented in the thermo-kinetic software package MatCalc and takes into account precipitation kinetics, subgrain formation, dynamic recovery by spontaneous annihilation and dislocation climb. To validate the simulation results, a series of compression tests is performed on the thermo-mechanical simulator Gleeble 1500.

  12. Migration arising from gradients in shear stress: Particle distributions in Poiseuille flow

    NASA Technical Reports Server (NTRS)

    Leighton, D. T., Jr.

    1988-01-01

    Experimental evidence for the existence of shear induced migration processes is reviewed and the mechanism by Leighton and Acrivos (1987b) is described in detail. The proposed mechanism is shown to lead to the existence of an additional shear induced migration in the presence of gradients in shear stress such as would be found in Poiseuille flow, and which may be used to predict the amplitude of the observed short-term viscosity increase. The concentration and velocity profiles which result from such a migration are discussed in detail and are compared to the experimental observations of Karnis, Goldsmith and Mason (1966).

  13. Unified nonlinear approach to both weak and strong-interaction problems. [heat transfer in hypersonic flow

    NASA Technical Reports Server (NTRS)

    Gupta, R. N.; Rodkiewicz, C. M.

    1975-01-01

    The numerical results are obtained for heat transfer, skin-friction, and viscous interaction induced pressure for a step-wise accelerated flat plate in hypersonic flow. In the unified approach here the results are presented for both weak and strong-interaction problems without employing any linearization scheme. With the help of the numerical method used in this work an accurate prediction of wall shear can be made for the problems with plate velocity changes of 1% or larger. The obtained results indicate that the transient contribution to the induced pressure for helium is greater than that for air.

  14. Analysis of Aerospike Plume Induced Base-Heating Environment

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    1998-01-01

    Computational analysis is conducted to study the effect of an aerospike engine plume on X-33 base-heating environment during ascent flight. To properly account for the effect of forebody and aftbody flowfield such as shocks and to allow for potential plume-induced flow-separation, thermo-flowfield of trajectory points is computed. The computational methodology is based on a three-dimensional finite-difference, viscous flow, chemically reacting, pressure-base computational fluid dynamics formulation, and a three-dimensional, finite-volume, spectral-line based weighted-sum-of-gray-gases radiation absorption model computational heat transfer formulation. The predicted convective and radiative base-heat fluxes are presented.

  15. The Mesoscale Predictability of Terrain Induced Flows

    DTIC Science & Technology

    2009-09-30

    simulations, we focus on assessing the predictability of winds, mountain waves and clear air turbulence ( CAT ) in the lee of the Sierra Nevada...complete description of the sensitivity of mountain waves, CAT and downslope to small variations in the initial conditions. WORK COMPLETED We...completed the analysis of the sensitivity of mountain waves, CAT and downslope winds to small perturbations in the upstream conditions. We also

  16. Cavitation erosion prediction based on analysis of flow dynamics and impact load spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihatsch, Michael S., E-mail: michael.mihatsch@aer.mw.tum.de; Schmidt, Steffen J.; Adams, Nikolaus A.

    2015-10-15

    Cavitation erosion is the consequence of repeated collapse-induced high pressure-loads on a material surface. The present paper assesses the prediction of impact load spectra of cavitating flows, i.e., the rate and intensity distribution of collapse events based on a detailed analysis of flow dynamics. Data are obtained from a numerical simulation which employs a density-based finite volume method, taking into account the compressibility of both phases, and resolves collapse-induced pressure waves. To determine the spectrum of collapse events in the fluid domain, we detect and quantify the collapse of isolated vapor structures. As reference configuration we consider the expansion ofmore » a liquid into a radially divergent gap which exhibits unsteady sheet and cloud cavitation. Analysis of simulation data shows that global cavitation dynamics and dominant flow events are well resolved, even though the spatial resolution is too coarse to resolve individual vapor bubbles. The inviscid flow model recovers increasingly fine-scale vapor structures and collapses with increasing resolution. We demonstrate that frequency and intensity of these collapse events scale with grid resolution. Scaling laws based on two reference lengths are introduced for this purpose. We show that upon applying these laws impact load spectra recorded on experimental and numerical pressure sensors agree with each other. Furthermore, correlation between experimental pitting rates and collapse-event rates is found. Locations of high maximum wall pressures and high densities of collapse events near walls obtained numerically agree well with areas of erosion damage in the experiment. The investigation shows that impact load spectra of cavitating flows can be inferred from flow data that captures the main vapor structures and wave dynamics without the need for resolving all flow scales.« less

  17. Insights into asthenospheric anisotropy and deformation in Mainland China

    NASA Astrophysics Data System (ADS)

    Zhu, Tao

    2018-03-01

    Seismic anisotropy can provide direct constraints on asthenospheric deformation which also can be induced by the inherent mantle flow within our planet. Mantle flow calculations thus have been an effective tool to probe asthenospheric anisotropy. To explore the source of seismic anisotropy, asthenospheric deformation and the effects of mantle flow on seismic anisotropy in Mainland China, mantle flow models driven by plate motion (plate-driven) and by a combination of plate motion and mantle density heterogeneity (plate-density-driven) are used to predict the fast polarization direction of shear wave splitting. Our results indicate that: (1) plate-driven or plate-density-driven mantle flow significantly affects the predicted fast polarization direction when compared with simple asthenospheric flow commonly used in interpreting the asthenospheric source of seismic anisotropy, and thus new insights are presented; (2) plate-driven flow controls the fast polarization direction while thermal mantle flow affects asthenospheric deformation rate and local deformation direction significantly; (3) asthenospheric flow is an assignable contributor to seismic anisotropy, and the asthenosphere is undergoing low, large or moderate shear deformation controlled by the strain model, the flow plane/flow direction model or both in most regions of central and eastern China; and (4) the asthenosphere is under more rapid extension deformation in eastern China than in western China.

  18. Investigation of the Flow Over Simple Bodies at Mach Numbers of the Order of 20

    NASA Technical Reports Server (NTRS)

    Henderson, Arthur, Jr.

    1960-01-01

    It is shown that adequate means are available for calculating inviscid direct and induced pressures on simple axisymmetric bodies at zero angle of attack. The extent to which viscous effects can alter these predictions is indicated. It is also shown that inviscid induced pressures can significantly affect the stability of blunt, two-dimensional flat wings at low angles of attack. However, at high angles of attack, the inviscid induced pressure effects are negligible.

  19. Elastohydrodynamic Lift at a Soft Wall

    NASA Astrophysics Data System (ADS)

    Davies, Heather S.; Débarre, Delphine; El Amri, Nouha; Verdier, Claude; Richter, Ralf P.; Bureau, Lionel

    2018-05-01

    We study experimentally the motion of nondeformable microbeads in a linear shear flow close to a wall bearing a thin and soft polymer layer. Combining microfluidics and 3D optical tracking, we demonstrate that the steady-state bead-to-surface distance increases with the flow strength. Moreover, such lift is shown to result from flow-induced deformations of the layer, in quantitative agreement with theoretical predictions from elastohydrodynamics. This study thus provides the first experimental evidence of "soft lubrication" at play at small scale, in a system relevant, for example, to the physics of blood microcirculation.

  20. NAS (Numerical Aerodynamic Simulation Program) technical summaries, March 1989 - February 1990

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Given here are selected scientific results from the Numerical Aerodynamic Simulation (NAS) Program's third year of operation. During this year, the scientific community was given access to a Cray-2 and a Cray Y-MP supercomputer. Topics covered include flow field analysis of fighter wing configurations, large-scale ocean modeling, the Space Shuttle flow field, advanced computational fluid dynamics (CFD) codes for rotary-wing airloads and performance prediction, turbulence modeling of separated flows, airloads and acoustics of rotorcraft, vortex-induced nonlinearities on submarines, and standing oblique detonation waves.

  1. Flow and Performance Calculations of Axial Compressor near Stall Margin

    NASA Astrophysics Data System (ADS)

    Hwang, Yoojun; Kang, Shin-Hyoung

    2010-06-01

    Three-dimensional flows through a Low Speed Research Axial Compressor were numerically conducted in order to estimate the performance through unsteady and steady-state simulations. The first stage with the inlet guide vane was investigated at the design point to confirm that the rotor blade induced periodicity exists. Special attention was paid to the flow near the stall condition to inspect the flow behavior in the vicinity of the stall margin. The performance predicted under the steady-state assumption is in good agreement with the measured data. However, the steady-state calculations induce more blockage through the blade passage. Flow separations on the blade surface and end-walls are reduced when unsteady simulation is conducted. The negative jet due to the wake of the rotor blade periodically distorts the boundary layer on the surface of the stator blade and improves the performance of the compressor in terms of the pressure rise. The advantage of the unsteadiness increases as the flow rate reduces. In addition, the rotor tip leakage flow is forced downstream by the unsteadiness. Consequently, the behavior contributes to extending the range of operation by preventing the leakage flow from proceeding upstream near the stall margin.

  2. Numerical Studies of a Supersonic Fluidic Diverter Actuator for Flow Control

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.; Kuczmarski, Maria A.; Culley, Dennis e.; Raghu, Surya

    2010-01-01

    The analysis of the internal flow structure and performance of a specific fluidic diverter actuator, previously studied by time-dependent numerical computations for subsonic flow, is extended to include operation with supersonic actuator exit velocities. The understanding will aid in the development of fluidic diverters with minimum pressure losses and advanced designs of flow control actuators. The self-induced oscillatory behavior of the flow is successfully predicted and the calculated oscillation frequencies with respect to flow rate have excellent agreement with our experimental measurements. The oscillation frequency increases with Mach number, but its dependence on flow rate changes from subsonic to transonic to supersonic regimes. The delay time for the initiation of oscillations depends on the flow rate and the acoustic speed in the gaseous medium for subsonic flow, but is unaffected by the flow rate for supersonic conditions

  3. Colloidal attraction induced by a temperature gradient.

    PubMed

    Di Leonardo, R; Ianni, F; Ruocco, G

    2009-04-21

    Colloidal crystals are of extreme importance for applied research and for fundamental studies in statistical mechanics. Long-range attractive interactions, such as capillary forces, can drive the spontaneous assembly of such mesoscopic ordered structures. However, long-range attractive forces are very rare in the colloidal realm. Here we report a novel strong, long-ranged attraction induced by a thermal gradient in the presence of a wall. By switching the thermal gradient on and off, we can rapidly and reversibly form stable hexagonal 2D crystals. We show that the observed attraction is hydrodynamic in nature and arises from thermally induced slip flow on particle surfaces. We used optical tweezers to measure the force law directly and compare it to an analytical prediction based on Stokes flow driven by Marangoni-like forces.

  4. Pelton turbine Needle erosion prediction based on 3D three- phase flow simulation

    NASA Astrophysics Data System (ADS)

    Chongji, Z.; Yexiang, X.; Wei, Z.; Yangyang, Y.; Lei, C.; Zhengwei, W.

    2014-03-01

    Pelton turbine, which applied to the high water head and small flow rate, is widely used in the mountainous area. During the operation period the sediment contained in the water does not only induce the abrasion of the buckets, but also leads to the erosion at the nozzle which may damage the needle structure. The nozzle and needle structure are mainly used to form high quality cylindrical jet and increase the efficiency of energy exchange in the runner to the most. Thus the needle erosion will lead to the deformation of jet, and then may cause the efficiency loss and cavitation. The favourable prediction of abrasion characteristic of needle can effectively guide the optimization design and maintenance of needle structure. This paper simulated the unsteady three-dimensional multi-phase flow in the nozzle and injected jet flow. As the jet containing water and sediment is injected into the free atmosphere air with high velocity, the VOF model was adopted to predict the water and air flow. The sediment is simplified into round solid particle and the discrete particle model (DPM) was employed to predict the needle abrasion characteristic. The sand particle tracks were analyzed to interpret the mechanism of sand erosion on the needle surface. And the numerical result of needle abrasion was obtained and compared with the abrasion field observation. The similarity of abrasion pattern between the numerical results and field observation illustrated the validity of the 3D multi-phase flow simulation method.

  5. Fracture sealing caused by mineral precipitation: The role of aperture and mineral heterogeneity on precipitation-induced permeability loss

    NASA Astrophysics Data System (ADS)

    Jones, T.; Detwiler, R. L.

    2017-12-01

    Fractures act as dominant pathways for fluid flow in low-permeability rocks. However, in many subsurface environments, fluid rock reactions can lead to mineral precipitation, which alters fracture surface geometry and reduces fracture permeability. In natural fractures, surface mineralogy and roughness are often heterogeneous, leading to variations in both velocity and reactive surface area. The combined effects of surface roughness and mineral heterogeneity can lead to large disparities in local precipitation rates that are difficult to predict due to the strong coupling between dissolved mineral transport and reactions at the fracture surface. Recent experimental observations suggest that mineral precipitation in a heterogeneous fracture may promote preferential flow and focus large dissolved ion concentrations into regions with limited reactive surface area. Here, we build on these observations using reactive transport simulations. Reactive transport is simulated with a quasi-steady-state 2D model that uses a depth-averaged mass-transfer relationship to describe dissolved mineral transport across the fracture aperture and local precipitation reactions. Mineral precipitation-induced changes to fracture surface geometry are accounted for using two different approaches: (1) by only allowing reactive minerals to grow vertically, and (2) by allowing three-dimensional mineral growth at reaction sites. Preliminary results from simulations using (1) suggest that precipitation-induced aperture reduction focuses flow into thin flow paths. This flow focusing causes a reduction in the fracture-scale precipitation rate, and precipitation ceases when the reaction zone extends the entire length of the fracture. This approach reproduces experimental observations at early time reasonably well, but as precipitation proceeds, reaction sites can grow laterally along the fracture surfaces, which is not predicted by (1). To account for three-dimensional mineral growth (2), we have incorporated a level-set-method based approach for tracking the mineral interfaces in three dimensions. This provides a mechanistic approach for simulating the dynamics of the formation, and eventual closing, of preferential flow paths by precipitation-induced aperture alteration, that do not occur using (1).

  6. An interaction algorithm for prediction of mean and fluctuating velocities in two-dimensional aerodynamic wake flows

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Orzechowski, J. A.

    1980-01-01

    A theoretical analysis is presented yielding sets of partial differential equations for determination of turbulent aerodynamic flowfields in the vicinity of an airfoil trailing edge. A four phase interaction algorithm is derived to complete the analysis. Following input, the first computational phase is an elementary viscous corrected two dimensional potential flow solution yielding an estimate of the inviscid-flow induced pressure distribution. Phase C involves solution of the turbulent two dimensional boundary layer equations over the trailing edge, with transition to a two dimensional parabolic Navier-Stokes equation system describing the near-wake merging of the upper and lower surface boundary layers. An iteration provides refinement of the potential flow induced pressure coupling to the viscous flow solutions. The final phase is a complete two dimensional Navier-Stokes analysis of the wake flow in the vicinity of a blunt-bases airfoil. A finite element numerical algorithm is presented which is applicable to solution of all partial differential equation sets of inviscid-viscous aerodynamic interaction algorithm. Numerical results are discussed.

  7. A numerical study of hypersonic stagnation heat transfer predictions at a coordinate singularity

    NASA Technical Reports Server (NTRS)

    Grasso, Francesco; Gnoffo, Peter A.

    1990-01-01

    The problem of grid induced errors associated with a coordinate singularity on heating predictions in the stagnation region of a three-dimensional body in hypersonic flow is examined. The test problem is for Mach 10 flow over an Aeroassist Flight Experiment configuration. This configuration is composed of an elliptic nose, a raked elliptic cone, and a circular shoulder. Irregularities in the heating predictions in the vicinity of the coordinate singularity, located at the axis of the elliptic nose near the stagnation point, are examined with respect to grid refinement and grid restructuring. The algorithm is derived using a finite-volume formulation. An upwind-biased total-variation diminishing scheme is employed for the inviscid flux contribution, and central differences are used for the viscous terms.

  8. Fracture Mechanics Analysis of LH2 Feed Line Flow Liners

    NASA Technical Reports Server (NTRS)

    James, Mark A.; Dawicke, David S.; Brzowski, Matthew B.; Raju, Ivatury S.; Elliott, Kenny B.; Harris, Charles E.

    2006-01-01

    Inspections of the Space Shuttle Main Engine revealed fatigue cracks growing from slots in the flow liner of the liquid hydrogen (LH2) feed lines. During flight, the flow liners experience complex loading induced by flow of LH2 and the resonance characteristics of the structure. The flow liners are made of Inconel 718 and had previously not been considered a fracture critical component. However, fatigue failure of a flow liner could have catastrophic effect on the Shuttle engines. A fracture mechanics study was performed to determine if a damage tolerance approach to life management was possible and to determine the sensitivity to the load spectra, material properties, and crack size. The load spectra were derived separately from ground tests and material properties were obtained from coupon tests. The stress-intensity factors for the fatigue cracks were determined from a shell-dynamics approach that simulated the dominant resonant frequencies. Life predictions were obtained using the NASGRO life prediction code. The results indicated that adequate life could not be demonstrated for initial crack lengths of the size that could be detected by traditional NDE techniques.

  9. Verification of spatial and temporal pressure distributions in segmented solid rocket motors

    NASA Technical Reports Server (NTRS)

    Salita, Mark

    1989-01-01

    A wide variety of analytical tools are in use today to predict the history and spatial distributions of pressure in the combustion chambers of solid rocket motors (SRMs). Experimental and analytical methods are presented here that allow the verification of many of these predictions. These methods are applied to the redesigned space shuttle booster (RSRM). Girth strain-gage data is compared to the predictions of various one-dimensional quasisteady analyses in order to verify the axial drop in motor static pressure during ignition transients as well as quasisteady motor operation. The results of previous modeling of radial flows in the bore, slots, and around grain overhangs are supported by approximate analytical and empirical techniques presented here. The predictions of circumferential flows induced by inhibitor asymmetries, nozzle vectoring, and propellant slump are compared to each other and to subscale cold air and water tunnel measurements to ascertain their validity.

  10. An attempt to understand flicker vertigo: changes in pupil size and choroidal blood flow under flickering conditions

    NASA Astrophysics Data System (ADS)

    Masi, Maria Gabriella; Peretto, Lorenzo; Rovati, Luigi; Ansari, Rafat R.

    2010-02-01

    Light flickering at a rate of 4- 20 cycles per second can produce unpleasant reactions such as nausea and vertigo. In this paper, the possibility of achieving an objective evaluation/prediction of the physiological effects induced by flicker is investigated using a new imaging method based on the pupil size determination. This method is also compared with the blood flow analysis in the choroid.

  11. Minnowbrook IV: 2003 Workshop on Transition and Unsteady Aspects of Turbomachinery Flows

    NASA Technical Reports Server (NTRS)

    LaGraff, John E. (Editor); Ashpis, David E.

    2004-01-01

    This Minnowbrook IV 2003 workshop on Transition and Unsteady Aspects of Turbomachinery Flows includes the following topics: 1) Current Issues in Unsteady Turbomachinery Flows; 2) Global Instability and Control of Low-Pressure Turbine Flows; 3) Influence of End Wall Leakage on Secondary Flow Development in Axial Turbines; 4) Active and Passive Flow Control on Low Pressure Turbine Airfoils; 5) Experimental and Numerical Investigation of Transitional Flows as Affected by Passing Wakes; 6) Effects of Freestream Turbulence on Turbine Blade Heat Transfer; 7) Bypass Transition Via Continuous Modes and Unsteady Effects on Film Cooling; 8) High Frequency Surface Heat Flux Imaging of Bypass Transition; 9) Skin Friction and Heat Flux Oscillations in Upstream Moving Wave Packets; 10) Transition Mechanisms and Use of Surface Roughness to Enhance the Benefits of Wake Passing in LP Turbines; 11) Transient Growth Approach to Roughness-Induced Transition; 12) Roughness- and Freestream-Turbulence-Induced Transient Growth as a Bypass Transition Mechanism; 13) Receptivity Calculations as a Means to Predicting Transition; 14) On Streamwise Vortices in a Curved Wall Jet and Their Effect on the Mean Flow; 15) Plasma Actuators for Separation Control of Low Pressure Turbine Blades; 16) Boundary-Layer Separation Control Under Low-Pressure-Turbine Conditions Using Glow-Discharge Plasma Actuators; 17) Control of Separation for Low Pressure Turbine Blades: Numerical Simulation; 18) Effects of Elevated Free-Stream Turbulence on Active Control of a Separation Bubble; 19) Wakes, Calming and Transition Under Strong Adverse Pressure Gradients; 20) Transitional Bubble in Periodic Flow Phase Shift; 21) Modelling Spots: The Calmed Region, Pressure Gradient Effects and Background; 22) Modeling of Unsteady Transitional Flow on Axial Compressor Blades; 23) Challenges in Predicting Component Efficiencies in Turbomachines With Low Reynolds Number Blading; 24) Observations on the Causal Relationship Between Blade Count and Developing Rotating Stall in a Four Stage Axial Compressor; 25) Experimental and Numerical Study of Non-Linear Interactions in Transonic Nozzle Flow; 26) Clocking Effects on a Modern Stage and One-Half Transonic Turbine; 27) DNS and LES of Transition on Turbine Blades; 28) The Use of Cellular Automata in Modeling the Transition; 29) Predicting Unsteady Buffet Onset Using RANS Solutions; 30) Transition Modelling With the SST Turbulence Model and an Intermittency Transport; and 31) Equation Workshop Summary Transcript

  12. Numerical investigation of the onset of centrifugal buoyancy in a rotating cavity

    NASA Astrophysics Data System (ADS)

    Pitz, Diogo B.; Marxen, Olaf; Chew, John

    2016-11-01

    Buoyancy-induced flows in a differentially heated rotating annulus present a multitude of dynamics when control parameters such as rotation rate, temperature difference and Prandtl number are varied. Whilst most of the work in this area has been motivated by applications involving geophysics, the problem of buoyancy-induced convection in rotating systems is also relevant in industrial applications such as the flow between rotating disks of turbomachinery internal air systems, in which buoyancy plays a major role and poses a challenge to accurately predict temperature distributions and heat transfer rates. In such applications the rotational speeds involved are very large, so that the centrifugal accelerations induced are much higher than gravity. In this work we perform direct numerical simulations and linear stability analysis of flow induced by centrifugal buoyancy in a sealed rotating annulus of finite gap with flat end-walls, using a canonical setup representative of an internal air system rotating cavity. The analysis focuses on the behaviour of small-amplitude disturbances added to the base flow, and how those affect the onset of Rossby waves and, ultimately, the transition to a fully turbulent state where convection columns no longer have a well-defined structure. Diogo B. Pitz acknowledges the financial support from the Capes foundation through the Science without Borders program.

  13. Efficient non-hydrostatic modelling of 3D wave-induced currents using a subgrid approach

    NASA Astrophysics Data System (ADS)

    Rijnsdorp, Dirk P.; Smit, Pieter B.; Zijlema, Marcel; Reniers, Ad J. H. M.

    2017-08-01

    Wave-induced currents are an ubiquitous feature in coastal waters that can spread material over the surf zone and the inner shelf. These currents are typically under resolved in non-hydrostatic wave-flow models due to computational constraints. Specifically, the low vertical resolutions adequate to describe the wave dynamics - and required to feasibly compute at the scales of a field site - are too coarse to account for the relevant details of the three-dimensional (3D) flow field. To describe the relevant dynamics of both wave and currents, while retaining a model framework that can be applied at field scales, we propose a two grid approach to solve the governing equations. With this approach, the vertical accelerations and non-hydrostatic pressures are resolved on a relatively coarse vertical grid (which is sufficient to accurately resolve the wave dynamics), whereas the horizontal velocities and turbulent stresses are resolved on a much finer subgrid (of which the resolution is dictated by the vertical scale of the mean flows). This approach ensures that the discrete pressure Poisson equation - the solution of which dominates the computational effort - is evaluated on the coarse grid scale, thereby greatly improving efficiency, while providing a fine vertical resolution to resolve the vertical variation of the mean flow. This work presents the general methodology, and discusses the numerical implementation in the SWASH wave-flow model. Model predictions are compared with observations of three flume experiments to demonstrate that the subgrid approach captures both the nearshore evolution of the waves, and the wave-induced flows like the undertow profile and longshore current. The accuracy of the subgrid predictions is comparable to fully resolved 3D simulations - but at much reduced computational costs. The findings of this work thereby demonstrate that the subgrid approach has the potential to make 3D non-hydrostatic simulations feasible at the scale of a realistic coastal region.

  14. Research on Aero-Thermodynamic Distortion Induced Structural Dynamic Response of Multistage Compressor Blading

    DTIC Science & Technology

    1992-03-01

    of realistic reduced frequency values for the ftost time. 14. SUIUECT TEIEMS IS. NUMBER OF PAGES Unsteady Aerodynamic, 143 Flow Induced Vibrations 16...Flat Plate APPENDIX X. Prediction of Turbulence Generated Random Vibrational 106 Response of Turbomachinery Blading 3 APPENDIX XI. Viscous Oscillating...failure is fatigue caused by vibrations at levels exceeding3 material endurance limits. These vibrations occur when a periodic forcing function, with

  15. Planar laser-induced fluorescence measurements of high-enthalpy free jet flow with nitric oxide

    NASA Technical Reports Server (NTRS)

    Palmer, Jennifer L.; Mcmillin, Brian K.; Hanson, Ronald K.

    1992-01-01

    Planar laser-induced fluorescence (PLIF) measurements of property fields in a high-enthalpy, supersonic, underexpanded free jet generated in a reflection-type shock tunnel are reported. PLIF images showing velocity and temperature sensitivity are presented. The inferred radial velocity and relative rotational temperature fields are found to be in agreement with those predicted by a numerical simulation of the flowfield using the method of characteristics.

  16. Comparison of Mars Science Laboratory Reaction Control System Jet Computations With Flow Visualization and Velocimetry

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Danehy, Paul M.; Johansen, Craig T.; Ashcraft, Scott W.; Novak, Luke A.

    2013-01-01

    Numerical predictions of the Mars Science Laboratory reaction control system jets interacting with a Mach 10 hypersonic flow are compared to experimental nitric oxide planar laser-induced fluorescence data. The steady Reynolds Averaged Navier Stokes equations using the Baldwin-Barth one-equation turbulence model were solved using the OVERFLOW code. The experimental fluorescence data used for comparison consists of qualitative two-dimensional visualization images, qualitative reconstructed three-dimensional flow structures, and quantitative two-dimensional distributions of streamwise velocity. Through modeling of the fluorescence signal equation, computational flow images were produced and directly compared to the qualitative fluorescence data.

  17. An integrated Navier-Stokes - full potential - free wake method for rotor flows

    NASA Astrophysics Data System (ADS)

    Berkman, Mert Enis

    1998-12-01

    The strong wake shed from rotary wings interacts with almost all components of the aircraft, and alters the flow field thus causing performance and noise problems. Understanding and modeling the behavior of this wake, and its effect on the aerodynamics and acoustics of helicopters have remained as challenges. This vortex wake and its effect should be accurately accounted for in any technique that aims to predict rotor flow field and performance. In this study, an advanced and efficient computational technique for predicting three-dimensional unsteady viscous flows over isolated helicopter rotors in hover and in forward flight is developed. In this hybrid technique, the advantages of various existing methods have been combined to accurately and efficiently study rotor flows with a single numerical method. The flow field is viewed in three parts: (i) an inner zone surrounding each blade where the wake and viscous effects are numerically captured, (ii) an outer zone away from the blades where wake is modeled, and (iii) a Lagrangean wake which induces wake effects in the outer zone. This technique was coded in a flow solver and compared with experimental data for hovering and advancing rotors including a two-bladed rotor, the UH-60A rotor and a tapered tip rotor. Detailed surface pressure, integrated thrust and torque, sectional thrust, and tip vortex position predictions compared favorably against experimental data. Results indicated that the hybrid solver provided accurate flow details and performance information typically in one-half to one-eighth cost of complete Navier-Stokes methods.

  18. Numerical Simulation of Multiphase Magnetohydrodynamic Flow and Deformation of Electrolyte-Metal Interface in Aluminum Electrolysis Cells

    NASA Astrophysics Data System (ADS)

    Hua, Jinsong; Rudshaug, Magne; Droste, Christian; Jorgensen, Robert; Giskeodegard, Nils-Haavard

    2018-06-01

    A computational fluid dynamics based multiphase magnetohydrodynamic (MHD) flow model for simulating the melt flow and bath-metal interface deformation in realistic aluminum reduction cells is presented. The model accounts for the complex physics of the MHD problem in aluminum reduction cells by coupling two immiscible fluids, electromagnetic field, Lorentz force, flow turbulence, and complex cell geometry with large length scale. Especially, the deformation of bath-metal interface is tracked directly in the simulation, and the condition of constant anode-cathode distance (ACD) is maintained by moving anode bottom dynamically with the deforming bath-metal interface. The metal pad deformation and melt flow predicted by the current model are compared to the predictions using a simplified model where the bath-metal interface is assumed flat. The effects of the induced electric current due to fluid flow and the magnetic field due to the interior cell current on the metal pad deformation and melt flow are investigated. The presented model extends the conventional simplified box model by including detailed cell geometry such as the ledge profile and all channels (side, central, and cross-channels). The simulations show the model sensitivity to different side ledge profiles and the cross-channel width by comparing the predicted melt flow and metal pad heaving. In addition, the model dependencies upon the reduction cell operation conditions such as ACD, current distribution on cathode surface and open/closed channel top, are discussed.

  19. Numerical and experimental study of expiratory flow in the case of major upper airway obstructions with fluid structure interaction

    NASA Astrophysics Data System (ADS)

    Chouly, F.; van Hirtum, A.; Lagrée, P.-Y.; Pelorson, X.; Payan, Y.

    2008-02-01

    This study deals with the numerical prediction and experimental description of the flow-induced deformation in a rapidly convergent divergent geometry which stands for a simplified tongue, in interaction with an expiratory airflow. An original in vitro experimental model is proposed, which allows measurement of the deformation of the artificial tongue, in condition of major initial airway obstruction. The experimental model accounts for asymmetries in geometry and tissue properties which are two major physiological upper airway characteristics. The numerical method for prediction of the fluid structure interaction is described. The theory of linear elasticity in small deformations has been chosen to compute the mechanical behaviour of the tongue. The main features of the flow are taken into account using a boundary layer theory. The overall numerical method entails finite element solving of the solid problem and finite differences solving of the fluid problem. First, the numerical method predicts the deformation of the tongue with an overall error of the order of 20%, which can be seen as a preliminary successful validation of the theory and simulations. Moreover, expiratory flow limitation is predicted in this configuration. As a result, both the physical and numerical models could be useful to understand this phenomenon reported in heavy snorers and apneic patients during sleep.

  20. A rational approach to the use of Prandtl's mixing length model in free turbulent shear flow calculations

    NASA Technical Reports Server (NTRS)

    Rudy, D. H.; Bushnell, D. M.

    1973-01-01

    Prandtl's basic mixing length model was used to compute 22 test cases on free turbulent shear flows. The calculations employed appropriate algebraic length scale equations and single values of mixing length constant for planar and axisymmetric flows, respectively. Good agreement with data was obtained except for flows, such as supersonic free shear layers, where large sustained sensitivity changes occur. The inability to predict the more gradual mixing in these flows is tentatively ascribed to the presence of a significant turbulence-induced transverse static pressure gradient which is neglected in conventional solution procedures. Some type of an equation for length scale development was found to be necessary for successful computation of highly nonsimilar flow regions such as jet or wake development from thick wall flows.

  1. Code System to Calculate Tornado-Induced Flow Material Transport.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ANDRAE, R. W.

    1999-11-18

    Version: 00 TORAC models tornado-induced flows, pressures, and material transport within structures. Its use is directed toward nuclear fuel cycle facilities and their primary release pathway, the ventilation system. However, it is applicable to other structures and can model other airflow pathways within a facility. In a nuclear facility, this network system could include process cells, canyons, laboratory offices, corridors, and offgas systems. TORAC predicts flow through a network system that also includes ventilation system components such as filters, dampers, ducts, and blowers. These ventilation system components are connected to the rooms and corridors of the facility to form amore » complete network for moving air through the structure and, perhaps, maintaining pressure levels in certain areas. The material transport capability in TORAC is very basic and includes convection, depletion, entrainment, and filtration of material.« less

  2. Study of Magnetic Damping Effect on Convection and Solidification Under G-Jitter Conditions

    NASA Technical Reports Server (NTRS)

    Li, Ben Q.; deGroh, H. C.

    2001-01-01

    As shown in space flight experiments, g-jitter is a critical issue affecting solidification processing of materials in microgravity. This study aims to provide, through extensive numerical simulations and ground based experiments, an assessment of the use of magnetic fields in combination with microgravity to reduce the g-jitter induced convective flows in space processing systems. Analytical solutions and 2-D and 3-D numerical models for g-jitter driven flows in simple solidification systems with and without the presence of an applied magnetic field have been developed and extensive analyses were carried out. A physical model was also constructed and PIV measurements compared reasonably well with predictions from numerical models. Some key points may be summarized as follows: (1) the amplitude of the oscillating velocity decreases at a rate inversely proportional to the g-jitter frequency and with an increase in the applied magnetic field; (2) the induced flow oscillates at approximately the same frequency as the affecting g-jitter, but out of a phase angle; (3) the phase angle is a complicated function of geometry, applied magnetic field, temperature gradient and frequency; (4) g-jitter driven flows exhibit a complex fluid flow pattern evolving in time; (5) the damping effect is more effective for low frequency flows; and (6) the applied magnetic field helps to reduce the variation of solutal distribution along the solid-liquid interface. Work in progress includes developing numerical models for solidification phenomena with the presence of both g-jitter and magnetic fields and developing a ground-based physical model to verify numerical predictions.

  3. Vortex flow aerodynamics

    NASA Technical Reports Server (NTRS)

    Smith, J. H. B.; Campbell, J. F.; Young, A. D. (Editor)

    1992-01-01

    The principal emphasis of the meeting was to be on the understanding and prediction of separation-induced vortex flows and their effects on vehicle performance, stability, control, and structural design loads. This report shows that a substantial amount of the papers covering this area were received from a wide range of countries, together with an attendance that was even more diverse. In itself, this testifies to the current interest in the subject and to the appropriateness of the Panel's choice of topic and approach. An attempt is made to summarize each paper delivered, and to relate the contributions made in the papers and in the discussions to some of the important aspects of vortex flow aerodynamics. This reveals significant progress and important clarifications, but also brings out remaining weaknesses in predictive capability and gaps in understanding. Where possible, conclusions are drawn and areas of continuing concern are identified.

  4. Chilldown study of the single stage inducer test rig

    NASA Technical Reports Server (NTRS)

    Kimura, L. A.

    1972-01-01

    Of the six chilldown tests, data from only one could be used for evaluation. During the rest of the chilldown tests, there was leakage hydrogen flow into the pump cavity prior to the initiation of the chilldown test. In all of the tests the hydrogen condition into the pump was probably 100% vapor. The data from this one test, therefore, can be used to compare only the single phase fluid correlation in the analytical pump chilldown model. In general, the actual pump chilled down much faster than predicted by the analytical pump model. There were insufficient data from the test to measure the pump flow rate and pump inlet fluid condition; therefore, these parameters were extrapolated based on related data which were available. However, even with the highest probable flow rate, the pump chilled faster than predicted.

  5. Mixing liquid-liquid stratified flows using transverse jets in cross flows

    NASA Astrophysics Data System (ADS)

    Wright, Stuart; Matar, Omar K.; Markides, Christos N.

    2017-11-01

    Low pipeline velocities in horizontal liquid-liquid flows lead to gravitationally-induced stratification. This results in flow situations that have no point where average properties can be measured. Inline mixing limits the stratification effect by forming unstable liquid-liquid dispersions. An experimental system is used to measure the mixing performance of various jet-in-cross-flow (JICF) configurations as examples of active inline mixers. The test section consists of a 8.5-m long ETFE pipe with a 50-mm diameter, which is refractive index-matched to both a 10 cSt silicone oil and a 51 wt% glycerol solution. This practice allows advanced laser-based optical techniques, namely PLIF and PIV/PTV, to be applied to these flows in order to measure the phase fractions and velocity fields, respectively. A volume of a fluid (VOF) CFD code is then used to simulate simple jet geometries and to demonstrate the breakup and dispersion capabilities of JICFs in stratified pipeline flows by predicting their mixing efficiency. These simulation results are contrasted with the experimental results to examine the effectiveness of these simulations in predicting the dispersion and breakup. Funding from Cameron/Schlumberger, and the TMF Consortium gratefully acknowledged.

  6. Recent results and persisting problems in modeling flow induced coalescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fortelný, I., E-mail: fortelny@imc.cas.cz, E-mail: juza@imc.cas.cz; Jza, J., E-mail: fortelny@imc.cas.cz, E-mail: juza@imc.cas.cz

    2014-05-15

    The contribution summarizes recent results of description of the flow induced coalescence in immiscible polymer blends and addresses problems that call for which solving. The theory of coalescence based on the switch between equations for matrix drainage between spherical or deformed droplets provides a good agreement with more complicated modeling and available experimental data for probability, P{sub c}, that the collision of droplets will be followed by their fusion. A new equation for description of the matrix drainage between deformed droplets, applicable to the whole range of viscosity ratios, p, of the droplets and matrixes, is proposed. The theory facilitatesmore » to consider the effect of the matrix elasticity on coalescence. P{sub c} decreases with the matrix relaxation time but this decrease is not pronounced for relaxation times typical of most commercial polymers. Modeling of the flow induced coalescence in concentrated systems is needed for prediction of the dependence of coalescence rate on volume fraction of droplets. The effect of the droplet anisometry on P{sub c} should be studied for better understanding the coalescence in flow field with high and moderate deformation rates. A reliable description of coalescence in mixing and processing devices requires proper modeling of complex flow fields.« less

  7. Developing Structure-Property Relationships in Branched Wormlike Micelles via Advanced Rheological and Neutron Scattering Techniques

    NASA Astrophysics Data System (ADS)

    Calabrese, Michelle A.

    Surfactant wormlike micelles (WLMs) are of particular scientific interest due to their ability to branch, break, and reform under shear, which can lead to shear banding flow instabilities. The tunable self-assembly of WLMs makes them ubiquitous in applications ranging from consumer products to energy recovery fluids. Altering the topology of WLMs by inducing branching provides a microstructural pathway to design and optimize the flow properties for such targeted applications. The goal of this thesis is to understand the role of micellar branching on the resulting equilibrium and non-equilibrium properties, while advancing instrumentation and analysis methods in rheology and neutron scattering. The degree of branching in the mixed cationic/anionic surfactant solutions is controlled by the addition of sodium tosylate. The equilibrium properties are characterized via small angle neutron scattering (SANS), linear viscoelastic rheology, neutron spin echo, and dynamic light scattering. Combining rheology with spatiotemporally-resolved SANS enables unambiguous identification of non-equilibrium rheological and scattering signatures of branching and shear banding. The nonlinear WLM response is characterized via flow-SANS under steady shear, shear startup, and large amplitude oscillatory shear. New methods of time-resolved data analysis are developed, which improve experimental resolution by several-fold. Shear-induced orientation is a complex function of branching level, radial position, and deformation type. The structural mechanisms behind shear band formation are elucidated for steady and dynamic flows, which depend on branching level. Shear banding disappears at high branching levels for all deformation types. These responses are used to validate constitutive modeling predictions of dynamic shear banding for the first time. Finally, quantitative metrics to predict shear banding from rheology or flow-induced orientation are developed. Together, advanced rheological and neutron techniques provide a platform for creating structure-property relationships that predict flow and structural phenomena in WLMs and other soft materials. These methods have enabled characteristic differences in linear versus branched WLMs to be determined. This research is part of a broader effort to characterize branching in polymers and self-assembled systems, and may aid in the formulation of WLMs for specific applications. Finally, this work provides a basis for testing and developing microstructure-based constitutive equations that incorporate micellar breakage and branching.

  8. Development and application of computational aerothermodynamics flowfield computer codes

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj

    1994-01-01

    Research was performed in the area of computational modeling and application of hypersonic, high-enthalpy, thermo-chemical nonequilibrium flow (Aerothermodynamics) problems. A number of computational fluid dynamic (CFD) codes were developed and applied to simulate high altitude rocket-plume, the Aeroassist Flight Experiment (AFE), hypersonic base flow for planetary probes, the single expansion ramp model (SERN) connected with the National Aerospace Plane, hypersonic drag devices, hypersonic ramp flows, ballistic range models, shock tunnel facility nozzles, transient and steady flows in the shock tunnel facility, arc-jet flows, thermochemical nonequilibrium flows around simple and complex bodies, axisymmetric ionized flows of interest to re-entry, unsteady shock induced combustion phenomena, high enthalpy pulsed facility simulations, and unsteady shock boundary layer interactions in shock tunnels. Computational modeling involved developing appropriate numerical schemes for the flows on interest and developing, applying, and validating appropriate thermochemical processes. As part of improving the accuracy of the numerical predictions, adaptive grid algorithms were explored, and a user-friendly, self-adaptive code (SAGE) was developed. Aerothermodynamic flows of interest included energy transfer due to strong radiation, and a significant level of effort was spent in developing computational codes for calculating radiation and radiation modeling. In addition, computational tools were developed and applied to predict the radiative heat flux and spectra that reach the model surface.

  9. UTILIZATION OF TREATABILITY AND PILOT TESTS TO PREDICT CAH BIOREMEDIATION (Battelle)

    EPA Science Inventory

    Multiple tools have been suggested to help in the design of enhanced anaerobic bioremediation systems for CAHs:
    Extensive high quality microcosm testing followed by small-scale, thoroughly observed, induced flow field pilot tests (i.e. RABITT Protocol, Morse 1998)
    More...

  10. Relaxation-type nonlocal inertial-number rheology for dry granular flows

    NASA Astrophysics Data System (ADS)

    Lee, Keng-lin; Yang, Fu-ling

    2017-12-01

    We propose a constitutive model to describe the nonlocality, hysteresis, and several flow features of dry granular materials. Taking the well-known inertial number I as a measure of sheared-induced local fluidization, we derive a relaxation model for I according to the evolution of microstructure during avalanche and dissipation processes. The model yields a nonmonotonic flow law for a homogeneous flow, accounting for hysteretic solid-fluid transition and intermittency in quasistatic flows. For an inhomogeneous flow, the model predicts a generalized Bagnold shear stress revealing the interplay of two microscopic nonlocal mechanisms: collisions among correlated structures and the diffusion of fluidization within the structures. In describing a uniform flow down an incline, the model reproduces the hysteretic starting and stopping heights and the Pouliquen flow rule for mean velocity. Moreover, a dimensionless parameter reflecting the nonlocal effect on the flow is discovered, which controls the transition between Bagnold and creeping flow dynamics.

  11. Simulation of aerodynamic noise and vibration noise in hard disk drives

    NASA Astrophysics Data System (ADS)

    Zhu, Lei; Shen, Sheng-Nan; Li, Hui; Zhang, Guo-Qing; Cui, Fu-Hao

    2018-05-01

    Internal flow field characteristics of HDDs are usually influenced by the arm swing during seek operations. This, in turn, can affect aerodynamic noise and airflow-induced noise. In this paper, the dynamic mesh method is used to calculate the flow-induced vibration (FIV) by transient structure analysis and the boundary element method (BEM) is utilized to predict the vibration noise. Two operational states are considered: the arm is fixed and swinging over the disk. Both aerodynamic noise and vibration noise inside drives increase rapidly with increase in disk rotation and arm swing velocities. The largest aerodynamic noise source is always located near the arm and swung with the arm.

  12. Theoretical predicting of permeability evolution in damaged rock under compressive stress

    NASA Astrophysics Data System (ADS)

    Vu, M. N.; Nguyen, S. T.; To, Q. D.; Dao, N. H.

    2017-05-01

    This paper outlines an analytical model of crack growth induced permeability changes. A theoretical solution of effective permeability of cracked porous media is derived. The fluid flow obeys Poisseuille's law along the crack and Darcy's law in the porous matrix. This solution exhibits a percolation threshold for any type of crack distribution apart from a parallel crack distribution. The physical behaviour of fluid flow through a cracked porous material is well reproduced by the proposed model. The presence of this effective permeability coupling to analytical expression of crack growth under compression enables the modelling of the permeability variation due to stress-induced cracking in a porous rock. This incorporation allows the prediction of the permeability change of a porous rock embedding an anisotropic crack distribution from any initial crack density, that is, lower, around or upper to percolation threshold. The interaction between cracks is not explicitly taken into account. The model is well applicable both to micro- and macrocracks.

  13. Analytic Methods for Predicting Significant Multi-Quanta Effects in Collisional Molecular Energy Transfer

    NASA Technical Reports Server (NTRS)

    Bieniek, Ronald J.

    1996-01-01

    Collision-induced transitions can significantly affect molecular vibrational-rotational populations and energy transfer in atmospheres and gaseous systems. This, in turn. can strongly influence convective heat transfer through dissociation and recombination of diatomics. and radiative heat transfer due to strong vibrational coupling. It is necessary to know state-to-state rates to predict engine performance and aerothermodynamic behavior of hypersonic flows, to analyze diagnostic radiative data obtained from experimental test facilities, and to design heat shields and other thermal protective systems. Furthermore, transfer rates between vibrational and translational modes can strongly influence energy flow in various 'disturbed' environments, particularly where the vibrational and translational temperatures are not equilibrated.

  14. The investigation of the lateral interaction effect's on traffic flow behavior under open boundaries

    NASA Astrophysics Data System (ADS)

    Bouadi, M.; Jetto, K.; Benyoussef, A.; El Kenz, A.

    2017-11-01

    In this paper, an open boundaries traffic flow system is studied by taking into account the lateral interaction with spatial defects. For a random defects distribution, if the vehicles velocities are weakly correlated, the traffic phases can be predicted by considering the corresponding inflow and outflow functions. Conversely, if the vehicles velocities are strongly correlated, a phase segregation appears inside the system's bulk which induces the maximum current appearance. Such velocity correlation depends mainly on the defects densities and the probabilities of lateral deceleration. However, for a compact defects distribution, the traffic phases are predictable by using the inflow in the system beginning, the inflow entering the defects zone and the outflow function.

  15. A closed-form analytical model for predicting 3D boundary layer displacement thickness for the validation of viscous flow solvers

    NASA Astrophysics Data System (ADS)

    Kumar, V. R. Sanal; Sankar, Vigneshwaran; Chandrasekaran, Nichith; Saravanan, Vignesh; Natarajan, Vishnu; Padmanabhan, Sathyan; Sukumaran, Ajith; Mani, Sivabalan; Rameshkumar, Tharikaa; Nagaraju Doddi, Hema Sai; Vysaprasad, Krithika; Sharan, Sharad; Murugesh, Pavithra; Shankar, S. Ganesh; Nejaamtheen, Mohammed Niyasdeen; Baskaran, Roshan Vignesh; Rahman Mohamed Rafic, Sulthan Ariff; Harisrinivasan, Ukeshkumar; Srinivasan, Vivek

    2018-02-01

    A closed-form analytical model is developed for estimating the 3D boundary-layer-displacement thickness of an internal flow system at the Sanal flow choking condition for adiabatic flows obeying the physics of compressible viscous fluids. At this unique condition the boundary-layer blockage induced fluid-throat choking and the adiabatic wall-friction persuaded flow choking occur at a single sonic-fluid-throat location. The beauty and novelty of this model is that without missing the flow physics we could predict the exact boundary-layer blockage of both 2D and 3D cases at the sonic-fluid-throat from the known values of the inlet Mach number, the adiabatic index of the gas and the inlet port diameter of the internal flow system. We found that the 3D blockage factor is 47.33 % lower than the 2D blockage factor with air as the working fluid. We concluded that the exact prediction of the boundary-layer-displacement thickness at the sonic-fluid-throat provides a means to correctly pinpoint the causes of errors of the viscous flow solvers. The methodology presented herein with state-of-the-art will play pivotal roles in future physical and biological sciences for a credible verification, calibration and validation of various viscous flow solvers for high-fidelity 2D/3D numerical simulations of real-world flows. Furthermore, our closed-form analytical model will be useful for the solid and hybrid rocket designers for the grain-port-geometry optimization of new generation single-stage-to-orbit dual-thrust-motors with the highest promising propellant loading density within the given envelope without manifestation of the Sanal flow choking leading to possible shock waves causing catastrophic failures.

  16. Getting coal to go with the flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumbaugh, G.D.

    1984-01-01

    There are three accepted methods of recovering storage piles. They are surface reclaiming, sub-grade hopper sections or bins, and flat surface storage with ground level ports. In general, the decision to use either approach is a matter of economics, reliability, labor intensity, and other related practical factors. The concept of induced vertical flow of bulk solids was initiated in 1962 with the birth of the bin activator. Its performance was at times questionable until the elusive cycle type operation was finally discovered. This solved the problems of coupling induced vertical flow units with feeders. Surprisingly, an operator in a cementmore » plant was the first to demonstrate this principle of operation in 1965, but it needed at least five more years for it to be fully understood. The storage pile discharger with its drawdown skirt and unique stroke action was developed out of sheer necessity in 1964. However, it was not until 1979 that the railcar discharger was introduced. Frankly, it took that long to recognize a railcar could be temporarily converted to a huge rectangular shaped activated binexclamation Significantly, all induced vertical flow units are designed and operated for the sole purpose of bulk solid storage withdrawal. They have no other function. For many reasons, the successful evolution of the concept of induced vertical flow of bulk solids has been one of more perspiration than of meditation. Armed with time proven application guidelines and cycle type operation to minimize the effects of feeder flow streams, bin activators, activated bins, storage pile dischargers, and railcar dischargers can be applied confidently and predictably.« less

  17. Attenuation of Outdoor Sound Propagation Levels by a Snow Cover

    DTIC Science & Technology

    1993-11-01

    20 kN s m-4. Calculations of ground motion induced by the atmospheric sound waves were made using a viscoelastic model of the ground and the... Models of ground impedance. Past predictions of the material : effective flow resistivity a, porosity Q, acoustic pulse waveforms (Don and Cramond 1987...fibrous absorbent materials . Applied particle motion induced by a point source above a Acoustics, 3: 105-116. poroelastic half-space. Journal of the

  18. Role of secondary flows on flow separation induced by shock/boundary layer interaction in supersonic inlets

    NASA Astrophysics Data System (ADS)

    Morajkar, Rohan

    Flow separation in the scramjet air intakes is one of the reasons of failure of these engines which rely on shock waves to achieve flow compression. The shock waves interact with the boundary layers (Shock/ Boundary Layer Interaction or SBLI) on the intake walls inducing adverse pressure gradients causing flow separation. In this experimental study we investigate the role of secondary flows associated with the corners of ducted flows and identify the mechanisms by which they affect flow separation induced by a shock wave interacting with the boundary layers developing along supersonic inlets. The coupling between flow three-dimensionality, shock waves and secondary flows is in fact a key aspect that limits the performance and control of supersonic inlets. The study is conducted at the University of Michigan Glass Supersonic Wind Tunnel (GSWT). This facility replicates some of the features of the three-dimensional (3D) flow-field in a low aspect ratio supersonic inlet. The study uses stereoscopic particle image velocimetry (SPIV) to measure the three-component (3C) velocity field on several orthogonal planes, and thus allows us to identify the length scales of separation, its locations and statistical properties. Furthermore, these measurements allow us to extract the 3D structure of the underlying vortical features, which are important in determining the overall structure of separated regions and their dynamics. The measurements and tools developed are used to study flow fields of three cases: (1) Moderately strong SBLI (Mach 2.75 with 6° deflection), (2) weak SBLI (Mach 2.75 with 4.6° deflection) and (3) secondary corner flows in empty channels. In the configuration of the initial work (moderately strong SBLI), the shock wave system interacts with the boundary layers on the sidewall and the floor of the duct (inlet), thus generating both a swept-shock and an incident-shock interactions. Furthermore, the swept-shock interaction taking place on the sidewalls interacts with the secondary flows in the corners of the tunnel, which are prone to separation. This interaction causes major flow separation on the sidewall as fluid is swept from the sidewall. Flow separation on the floor should be expected given the strength of the SBLI (moderately strong case), but it is instead not observed in the mean flow fields. Our hypothesis is that interacting secondary flows are one of the factors responsible for the sidewall separation and directing the incoming flow towards the center-plane to stabilize and energize the flow on the center of the duct, thus preventing or at least reducing, flow separation on the floor. The secondary flows in an empty tunnel are then investigated to study their evolution and effects on the primary flow field to identify potential separation sites. The results from the empty tunnel experiments are then used to predict locations of flow separations in the moderately strong and weak SBLIs. The predictions were found to be in agreement with the observations.

  19. Heat-transfer measurements of the 1983 Kilauea lava flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardee, H.C.

    1983-10-07

    Convective heat flow measurements of a basaltic lava flow were made during the 1983 eruption of Kilauea volcano in Hawaii. Eight field measurements of induced natural convection were made, giving heat flux values that ranged from 1.78 to 8.09 kilowatts per square meter at lava temperatures of 1088 and 1128 degrees Celsius, respectively. These field measurements of convective heat flux at subliquidus temperatures agree with previous laboratory measurements in furnace-melted samples of molten lava, and are useful for predicting heat transfer in magma bodies and for estimating heat extraction rates for magma energy.

  20. Heat transfer measurements of the 1983 kilauea lava flow.

    PubMed

    Hardee, H C

    1983-10-07

    Convective heat flow measurements of a basaltic lava flow were made during the 1983 eruption of Kilauea volcano in Hawaii. Eight field measurements of induced natural convection were made, giving heat flux values that ranged from 1.78 to 8.09 kilowatts per square meter at lava temperatures of 1088 and 1128 degrees Celsius, respectively. These field measurements of convective heat flux at subliquidus temperatures agree with previous laboratory measurements in furnace-melted samples of molten lava, and are useful for predicting heat transfer in magma bodies and for estimating heat extraction rates for magma energy.

  1. Unsteady aerodynamic flow field analysis of the space shuttle configuration. Part 3: Unsteady aerodynamics of bodies with concave nose geometries

    NASA Technical Reports Server (NTRS)

    Ericsson, L. E.; Reding, J. P.

    1976-01-01

    An analysis of the unsteady aerodynamics of bodies with concave nose geometries was performed. The results show that the experimentally observed pulsating flow on spiked bodies and in forward facing cavities can be described by the developed simple mathematical model of the phenomenon. Static experimental data is used as a basis for determination of the oscillatory frequency of spike-induced flow pulsations. The agreement between predicted and measured reduced frequencies is generally very good. The spiked-body mathematical model is extended to describe the pulsations observed in forward facing cavities and it is shown that not only the frequency but also the pressure time history can be described with the accuracy needed to predict the experimentally observed time average effects. This implies that it should be possible to determine analytically the impact of the flow pulsation on the structural integrity of the nozzles for the jettisoned empty SRM-shells.

  2. Using Magnetic Fields to Control Convection during Protein Crystallization: Analysis and Validation Studies

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Leslie, F. W.

    2004-01-01

    The effect of convection during the crystallization of proteins is not very well understood. In a gravitational field, convection is caused by crystal sedimentation and by solutal buoyancy induced flow and these can lead to crystal imperfections. While crystallization in microgravity can approach diffusion limited growth conditions (no convection), terrestrially strong magnetic fields can be used to control fluid flow and sedimentation effects. In this work, we develop the analysis for magnetic flow control and test the predictions using analog experiments. Specifically, experiments on solutal convection in a paramagnetic fluid were conducted in a strong magnetic field gradient using a dilute solution of Manganese Chloride. The observed flows indicate that the magnetic field can completely counter the settling effects of gravity locally and are consistent with the theoretical predictions presented. This phenomenon suggests that magnetic fields may be useful in mimicking the microgravity environment of space for some crystal growth ana biological applications where fluid convection is undesirable.

  3. An experimental and numerical investigation of shock-wave induced turbulent boundary-layer separation at hypersonic speeds

    NASA Technical Reports Server (NTRS)

    Marvin, J. G.; Horstman, C. C.; Rubesin, M. W.; Coakley, T. J.; Kussoy, M. I.

    1975-01-01

    An experiment designed to test and guide computations of the interaction of an impinging shock wave with a turbulent boundary layer is described. Detailed mean flow-field and surface data are presented for two shock strengths which resulted in attached and separated flows, respectively. Numerical computations, employing the complete time-averaged Navier-Stokes equations along with algebraic eddy-viscosity and turbulent Prandtl number models to describe shear stress and heat flux, are used to illustrate the dependence of the computations on the particulars of the turbulence models. Models appropriate for zero-pressure-gradient flows predicted the overall features of the flow fields, but were deficient in predicting many of the details of the interaction regions. Improvements to the turbulence model parameters were sought through a combination of detailed data analysis and computer simulations which tested the sensitivity of the solutions to model parameter changes. Computer simulations using these improvements are presented and discussed.

  4. Modelling morphology evolution during solidification of IPP in processing conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pantani, R., E-mail: rpantani@unisa.it, E-mail: fedesantis@unisa.it, E-mail: vsperanza@unisa.it, E-mail: gtitomanlio@unisa.it; De Santis, F., E-mail: rpantani@unisa.it, E-mail: fedesantis@unisa.it, E-mail: vsperanza@unisa.it, E-mail: gtitomanlio@unisa.it; Speranza, V., E-mail: rpantani@unisa.it, E-mail: fedesantis@unisa.it, E-mail: vsperanza@unisa.it, E-mail: gtitomanlio@unisa.it

    During polymer processing, crystallization takes place during or soon after flow. In most of cases, the flow field dramatically influences both the crystallization kinetics and the crystal morphology. On their turn, crystallinity and morphology affect product properties. Consequently, in the last decade, researchers tried to identify the main parameters determining crystallinity and morphology evolution during solidification In processing conditions. In this work, we present an approach to model flow-induced crystallization with the aim of predicting the morphology after processing. The approach is based on: interpretation of the FIC as the effect of molecular stretch on the thermodynamic crystallization temperature; modelingmore » the molecular stretch evolution by means of a model simple and easy to be implemented in polymer processing simulation codes; identification of the effect of flow on nucleation density and spherulites growth rate by means of simple experiments; determination of the condition under which fibers form instead of spherulites. Model predictions reproduce most of the features of final morphology observed in the samples after solidification.« less

  5. Assessment of internal mammary artery and saphenous vein graft patency and flow reserve using transthoracic Doppler echocardiography

    NASA Technical Reports Server (NTRS)

    Chirillo, F.; Bruni, A.; Balestra, G.; Cavallini, C.; Olivari, Z.; Thomas, J. D.; Stritoni, P.

    2001-01-01

    OBJECTIVE: To investigate transthoracic Doppler echocardiography in the identification of coronary artery bypass graft (CABG) flow for assessing graft patency. DESIGN: The initial study group comprised 45 consecutive patients with previous CABG undergoing elective cardiac catheterisation for recurrent ischaemia. The Doppler variables best correlated with angiographic graft patency were then tested prospectively in a further 84 patients (test group). SETTING: Three tertiary referral centres. INTERVENTIONS: Flow velocities in grafts were recorded at rest and during hyperaemia induced by dipyridamole (0.56 mg/kg/4 min), under the guidance of transthoracic colour Doppler flow mapping. Findings on transthoracic Doppler were compared with angiography. MAIN OUTCOME MEASURES: Feasibility of identifying open grafts by Doppler and diagnostic accuracy for Doppler detection of significant (>/= 70%) graft stenosis. RESULTS: In the test group the identification rate for mammary artery grafts was 100%, for saphenous vein grafts to left anterior descending coronary artery 91%, for vein grafts to right coronary artery 96%, and for vein grafts to circumflex artery 90%. Coronary flow reserve (the ratio between peak diastolic velocity under hyperaemia and at baseline) of < 1.9 (95% confidence interval 1.83 to 2.08) had 100% sensitivity, 98% specificity, 87.5% positive predictive value, and 100% negative predictive value for mammary artery graft stenosis. Coronary flow reserve of < 1.6 (95% CI 1.51 to 1.73) had 91% sensitivity, 87% specificity, 85.4% positive predictive value, and 92.3% negative predictive value for significant vein graft stenosis. CONCLUSIONS: Transthoracic Doppler can provide non-invasive assessment of CABG patency.

  6. Prediction of inspiratory flow shapes during sleep with a mathematic model of upper airway forces.

    PubMed

    Aittokallio, Tero; Gyllenberg, Mats; Saaresranta, Tarja; Polo, Olli

    2003-11-01

    To predict the airflow dynamics during sleep using a mathematic model that incorporates a number of static and dynamic upper airway forces, and to compare the numerical results to clinical flow data recorded from patients with sleep-disordered breathing on and off various treatment options. Upper airway performance was modeled in virtual subjects characterized by parameter settings that describe common combinations of risk factors predisposing to upper airway collapse during sleep. The treatments effect were induced by relevant changes of the initial parameter values. Computer simulations at our website (http://www.utu.fi/ml/sovmat/bio/). Risk factors considered in the simulation settings were sex, obesity, pharyngeal collapsibility, and decreased phasic activity of pharyngeal muscles. The effects of weight loss, pharyngeal surgery, nasal continuous positive airway pressure, and respiratory stimulation on the inspiratory flow characteristics were tested with the model. Numerical predictions were investigated by means of 3 measurable inspiratory airflow characteristics: initial slope, total volume, and flow shape. The model was able to reproduce the inspiratory flow shape characteristics that have previously been described in the literature. Simulation results also supported the observations that a multitude of factors underlie the pharyngeal collapse and, therefore, certain medical therapies that are effective in some conditions may prove ineffective in others. A mathematic model integrating the current knowledge of upper airway physiology is able to predict individual treatment responses. The model provides a framework for designing novel and potentially feasible treatment alternatives for sleep-disordered breathing.

  7. Flow control of an elongated jet in cross-flow: Film cooling effectiveness enhancement using surface dielectric barrier discharge plasma actuator

    NASA Astrophysics Data System (ADS)

    Audier, P.; Fénot, M.; Bénard, N.; Moreau, E.

    2016-02-01

    The case presented here deals with plasma flow control applied to a cross-flow configuration, more specifically to a film cooling system. The ability of a plasma dielectric barrier discharge actuator for film cooling effectiveness enhancement is investigated through an experimental set-up, including a film injection from an elongated slot into a thermally uniform cross-flow. Two-dimensional particle image velocimetry and infrared-thermography measurements are performed for three different blowing ratios of M = 0.4, 0.5, and 1. Results show that the effectiveness can be increased when the discharge is switched on, as predicted by the numerical results available in literature. Whatever the blowing ratio, the actuator induces a deflection of the jet flow towards the wall, increases its momentum, and delays its diffusion in the cross-flow.

  8. Minimal two-sphere model of the generation of fluid flow at low Reynolds numbers.

    PubMed

    Leoni, M; Bassetti, B; Kotar, J; Cicuta, P; Cosentino Lagomarsino, M

    2010-03-01

    Locomotion and generation of flow at low Reynolds number are subject to severe limitations due to the irrelevance of inertia: the "scallop theorem" requires that the system have at least two degrees of freedom, which move in non-reciprocal fashion, i.e. breaking time-reversal symmetry. We show here that a minimal model consisting of just two spheres driven by harmonic potentials is capable of generating flow. In this pump system the two degrees of freedom are the mean and relative positions of the two spheres. We have performed and compared analytical predictions, numerical simulation and experiments, showing that a time-reversible drive is sufficient to induce flow.

  9. Overview of SLS Aeroacoustic Environment Development

    NASA Technical Reports Server (NTRS)

    Steva, Thomas; Herron, Andrew

    2017-01-01

    The Space Launch System (SLS) ascent aeroacoustic environments provide the externally driven noise levels predicted for vehicle ascent during transonic and supersonic flight, and serve as an important input for component and secondary structure vibroacoustic design criteria. This aerodynamically induced noise is predominantly generated by unsteady flow within the local boundary layer due to free stream interaction with the outer mold line (OML). Additional sources are shear flow interactions, shocks, protuberance flows, and wake flows. This presentation provides an overview of the aeroacoustics discipline along with the SLS environment development process, including wind tunnel testing and general data reduction methods. The state of the discipline is also presented with a summary of aeroacoustic measurement and computational techniques currently on the horizon.

  10. Turbulence Modeling and Computation of Turbine Aerodynamics and Heat Transfer

    NASA Technical Reports Server (NTRS)

    Lakshminarayana, B.; Luo, J.

    1996-01-01

    The objective of the present research is to develop improved turbulence models for the computation of complex flows through turbomachinery passages, including the effects of streamline curvature, heat transfer and secondary flows. Advanced turbulence models are crucial for accurate prediction of rocket engine flows, due to existance of very large extra strain rates, such as strong streamline curvature. Numerical simulation of the turbulent flows in strongly curved ducts, including two 180-deg ducts, one 90-deg duct and a strongly concave curved turbulent boundary layer have been carried out with Reynolds stress models (RSM) and algebraic Reynolds stress models (ARSM). An improved near-wall pressure-strain correlation has been developed for capturing the anisotropy of turbulence in the concave region. A comparative study of two modes of transition in gas turbine, the by-pass transition and the separation-induced transition, has been carried out with several representative low-Reynolds number (LRN) k-epsilon models. Effects of blade surface pressure gradient, freestream turbulence and Reynolds number on the blade boundary layer development, and particularly the inception of transition are examined in detail. The present study indicates that the turbine blade transition, in the presence of high freestream turbulence, is predicted well with LRN k-epsilon models employed. The three-dimensional Navier-Stokes procedure developed by the present authors has been used to compute the three-dimensional viscous flow through the turbine nozzle passage of a single stage turbine. A low Reynolds number k-epsilon model and a zonal k-epsilon/ARSM (algebraic Reynolds stress model) are utilized for turbulence closure. An assessment of the performance of the turbulence models has been carried out. The two models are found to provide similar predictions for the mean flow parameters, although slight improvement in the prediction of some secondary flow quantities has been obtained by the ARSM model. It's found that the wake profiles inside the endwall boundary layers are predicted better than those near the mid-span.

  11. A Combined Experimental/Computational Study of Flow in Turbine Blade Cooling Passage

    NASA Technical Reports Server (NTRS)

    Tse, D. G. N.; Kreskovsky, J. P.; Shamroth, S. J.; Mcgrath, D. B.

    1994-01-01

    Laser velocimetry was utilized to map the velocity field in a serpentine turbine blade cooling passage at Reynolds and Rotation numbers of up to 25.000 and 0.48. These results were used to assess the combined influence of passage curvature and Coriolis force on the secondary velocity field generated. A Navier-Stokes code (NASTAR) was validated against incompressible test data and then used to simulate the effect of buoyancy. The measurements show a net convection from the low pressure surface to high pressure surface. The interaction of the secondary flows induced by the turns and rotation produces swirl at the turns, which persisted beyond 2 hydraulic diameters downstream of the turns. The incompressible flow field predictions agree well with the measured velocities. With radially outward flow, the buoyancy force causes a further increase in velocity on the high pressure surface and a reduction on the low pressure surface. The results were analyzed in relation to the heat transfer measurements of Wagner et al. (1991). Predicted heat transfer is enhanced on the high pressure surfaces and in turns. The incompressible flow simulation underpredicts heat transfer in these locations. Improvements observed in compressible flow simulation indicate that the buoyancy force may be important.

  12. Cerebrospinal fluid flow abnormalities in patients with neoplastic meningitis. An evaluation using /sup 111/In-DTPA ventriculography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grossman, S.A.; Trump, D.L.; Chen, D.C.

    1982-11-01

    Cerebrospinal fluid flow dynamics were evaluated by /sup 111/In-diethylenetriamine pentaacetic acid (/sup 111/In-DTPA) ventriculography in 27 patients with neoplastic meningitis. Nineteen patients (70 percent) had evidence of cerebrospinal fluid flow disturbances. These occurred as ventricular outlet obstructions, abnormalities of flow in the spinal canal, or flow distrubances over the cortical convexities. Tumor histology, physical examination, cerebrospinal fluid analysis, myelograms, and computerized axial tomographic scans were not sufficient to predict cerebrospinal fluid flow patterns. These data indicate that cerebrospinal fluid flow abnormalities are common in patients with neoplastic meningitis and that /sup 111/In-DTPA cerebrospinal fluid flow imaging is useful in characterizingmore » these abnormalities. This technique provides insight into the distribution of intraventricularly administered chemotherapy and may provide explanations for treatment failure and drug-induced neurotoxicity in patients with neoplastic meningitis.« less

  13. MULTI-LABORATORY STUDY OF FLOW-INDUCED HEMOLYSIS USING THE FDA BENCHMARK NOZZLE MODEL

    PubMed Central

    Herbertson, Luke H.; Olia, Salim E.; Daly, Amanda; Noatch, Christopher P.; Smith, William A.; Kameneva, Marina V.; Malinauskas, Richard A.

    2015-01-01

    Multilaboratory in vitro blood damage testing was performed on a simple nozzle model to determine how different flow parameters and blood properties affect device-induced hemolysis and to generate data for comparison with computational fluid dynamics-based predictions of blood damage as part of an FDA initiative for assessing medical device safety. Three independent laboratories evaluated hemolysis as a function of nozzle entrance geometry, flow rate, and blood properties. Bovine blood anticoagulated with acid citrate dextrose solution (2–80 h post-draw) was recirculated through nozzle-containing and paired nozzle-free control loops for 2 h. Controlled parameters included hematocrit (36 ± 1.5%), temperature (25°C), blood volume, flow rate, and pressure. Three nozzle test conditions were evaluated (n = 26–36 trials each): (i) sudden contraction at the entrance with a blood flow rate of 5 L/min, (ii) gradual cone at the entrance with a 6-L/min blood flow rate, and (iii) sudden-contraction inlet at 6 L/min. The blood damage caused only by the nozzle model was calculated by subtracting the hemolysis generated by the paired control loop test. Despite high intralaboratory variability, significant differences among the three test conditions were observed, with the sharp nozzle entrance causing the most hemolysis. Modified index of hemolysis (MIHnozzle) values were 0.292 ± 0.249, 0.021 ± 0.128, and 1.239 ± 0.667 for conditions i–iii, respectively. Porcine blood generated hemolysis results similar to those obtained with bovine blood. Although the interlaboratory hemolysis results are only applicable for the specific blood parameters and nozzle model used here, these empirical data may help to advance computational fluid dynamics models for predicting blood damage. PMID:25180887

  14. Unsteady aerodynamic analysis of space shuttle vehicles. Part 4: Effect of control deflections on orbiter unsteady aerodynamics

    NASA Technical Reports Server (NTRS)

    Reding, J. P.; Ericsson, L. E.

    1973-01-01

    The unsteady aerodynamics of the 040A orbiter have been explored experimentally. The results substantiate earlier predictions of the unsteady flow boundaries for a 60 deg swept delta wing at zero yaw and with no controls deflected. The test revealed a previously unknown region of discontinuous yaw characteristics at transonic speeds. Oilflow results indicate that this is the result of a coupling between wing and fuselage flows via the separated region forward of the deflected elevon. In fact, the large leeward elevon deflections are shown to produce a multitude of nonlinear stability effects which sometimes involve hysteresis. Predictions of the unsteady flow boundaries are made for the current orbiter. They should carry a good degree of confidence due to the present substantiation of previous predictions for the 040A. It is proposed that the present experiments be extended to the current configuration to define control-induced effects. Every effort should be made to account for Reynolds number, roughness, and possible hot-wall effects on any future experiments.

  15. Free flux flow in two single crystals of V3Si with slightly different pinning strengths

    NASA Astrophysics Data System (ADS)

    Gafarov, O.; Gapud, A. A.; Moraes, S.; Thompson, J. R.; Christen, D. K.; Reyes, A. P.

    2010-10-01

    Results of recent measurements on two very clean, single-crystal samples of the A15 superconductor V3Si are presented. Magnetization and transport data already confirmed the ``clean'' quality of both samples, as manifested by: (i) high residual resistivity ratio, (ii) very low critical current densities, and (iii) a ``peak'' effect in the field dependence of critical current. The (H,T) phase line for this peak effect is shifted in the slightly ``dirtier'' sample, which consequently also has higher critical current density Jc(H). High-current Lorentz forces are applied on mixed-state vortices in order to induce the highly ordered free flux flow (FFF) phase, using the same methods as in previous work. A traditional model by Bardeen and Stephen (BS) predicts a simple field dependence of flux flow resistivity ρf(H), presuming a field-independent flux core size. A model by Kogan and Zelezhina (KZ) takes core size into account, and predict a clear deviation from BS. In this study, ρf(H) is confirmed to be consistent with predictions of KZ, as will be discussed.

  16. A study of the prediction of cruise noise and laminar flow control noise criteria for subsonic air transports

    NASA Technical Reports Server (NTRS)

    Swift, G.; Mungur, P.

    1979-01-01

    General procedures for the prediction of component noise levels incident upon airframe surfaces during cruise are developed. Contributing noise sources are those associated with the propulsion system, the airframe and the laminar flow control (LFC) system. Transformation procedures from the best prediction base of each noise source to the transonic cruise condition are established. Two approaches to LFC/acoustic criteria are developed. The first is a semi-empirical extension of the X-21 LFC/acoustic criteria to include sensitivity to the spectrum and directionality of the sound field. In the second, the more fundamental problem of how sound excites boundary layer disturbances is analyzed by deriving and solving an inhomogeneous Orr-Sommerfeld equation in which the source terms are proportional to the production and dissipation of sound induced fluctuating vorticity. Numerical solutions are obtained and compared with corresponding measurements. Recommendations are made to improve and validate both the cruise noise prediction methods and the LFC/acoustic criteria.

  17. Development of Detonation Modeling Capabilities for Rocket Test Facilities: Hydrogen-Oxygen-Nitrogen Mixtures

    NASA Technical Reports Server (NTRS)

    Allgood, Daniel C.

    2016-01-01

    The objective of the presented work was to develop validated computational fluid dynamics (CFD) based methodologies for predicting propellant detonations and their associated blast environments. Applications of interest were scenarios relevant to rocket propulsion test and launch facilities. All model development was conducted within the framework of the Loci/CHEM CFD tool due to its reliability and robustness in predicting high-speed combusting flow-fields associated with rocket engines and plumes. During the course of the project, verification and validation studies were completed for hydrogen-fueled detonation phenomena such as shock-induced combustion, confined detonation waves, vapor cloud explosions, and deflagration-to-detonation transition (DDT) processes. The DDT validation cases included predicting flame acceleration mechanisms associated with turbulent flame-jets and flow-obstacles. Excellent comparison between test data and model predictions were observed. The proposed CFD methodology was then successfully applied to model a detonation event that occurred during liquid oxygen/gaseous hydrogen rocket diffuser testing at NASA Stennis Space Center.

  18. Carbon nanotube-based coatings to induce flow enhancement in hydrophilic nanopores

    NASA Astrophysics Data System (ADS)

    Wagemann, Enrique; Walther, J. H.; Zambrano, Harvey A.

    2016-11-01

    With the emergence of the field of nanofluidics, the transport of water in hydrophilic nanopores has attracted intensive research due to its many promising applications. Experiments and simulations have found that flow resistance in hydrophilic nanochannels is much higher than those in macrochannels. Indeed, this might be attributed to significant fluid adsorption on the channel walls and to the effect of the increased surface to volume ratio inherent to the nanoconfinement. Therefore, it is desirable to explore strategies for drag reduction in nanopores. Recently, studies have found that carbon nanotubes (CNTs) feature ultrafast water flow rates which result in flow enhancements of 1 to 5 orders of magnitude compared to Hagen-Poiseuille predictions. In the present study, CNT-based coatings are considered to induce water flow enhancement in silica nanopores with different radius. We conduct atomistic simulations of pressurized water flow inside tubular silica nanopores with and without inner coaxial carbon nanotubes. In particular, we compute water density and velocity profiles, flow enhancement and slip lengths to understand the drag reduction capabilities of single- and multi-walled carbon nanotubes implemented as coating material in silica nanopores. We wish to thank partial funding from CRHIAM and FONDECYT project 11130559, computational support from DTU and NLHPC (Chile).

  19. Simulation of Orientation in Injection Molding of High Aspect Ratio Particle Thermoplastic Composites

    NASA Astrophysics Data System (ADS)

    Vélez-García, Gregorio M.; Ortman, Kevin C.; Eberle, Aaron P. R.; Wapperom, Peter; Baird, Donald G.

    2008-07-01

    A 2D coupled Hele-Shaw flow approximation for predicting the flow-induced orientation of high aspect ratio particles in injection molded composite parts is presented. For a highly concentrated short glass fiber PBT suspension, the impact of inter-particle interactions and the orientation at the gate is investigated for a center-gated disk using material parameters determined from rheometry. Experimental orientation is determined from confocal laser micrographs using the methods of ellipses. The constitutive equations are discretized using discontinuous Galerkin Finite Elements. Model predictions are significantly improved by using a localized orientation measured experimentally at the gate region instead of random or averaged gapwise measured orientation assumed in previous studies. The predicted profile in different radial positions can be related to the layered structure along the gapwise direction. Model modifications including interactions have lower impact than the initial conditions.

  20. Time-dependent particle migration and margination in the pressure-driven channel flow of blood

    NASA Astrophysics Data System (ADS)

    Qi, Qin M.; Shaqfeh, Eric S. G.

    2018-03-01

    We present a theory to describe the time evolution of the red blood cell (RBC) and platelet concentration distributions in pressure-driven flow through a straight channel. This model is based on our previous theory for the steady-state distributions [Qi and Shaqfeh, Phys. Rev. Fluids 2, 093102 (2017), 10.1103/PhysRevFluids.2.093102] and captures the flow-induced nonuniformity of the concentrations of RBCs and platelets in the cross-flow direction. Starting with a uniform concentration, RBCs migrate away from the channel walls due to a shear-induced lift force and eventually reach steady state due to shear-induced diffusion, i.e., hydrodynamic "collisions" with other RBCs. On the other hand, platelets exit the cell-laden region due to RBC-platelet interactions and enter the cell-free layer, resulting in margination. To validate the theory, we also perform boundary integral simulations of blood flow in microchannels and directly compare various measureables between theory and simulation. The timescales associated with RBC migration and platelet margination are discussed in the context of the simulation and theory, and their importance in the function of microfluidic devices as well as the vascular network are elucidated. Due to the varying shear rate in pressure-driven flow and the wall-induced RBC lift, we report a separation of timescales for the transport in the near-wall region and in the bulk region. We also relate the transient problem to the axial variation of migration and margination, and we demonstrate how the relevant timescales can be used to predict corresponding entrance lengths. Our theory can serve as a fast and convenient alternative to large-scale simulations of these phenomena.

  1. Transient hazard model using radar data for predicting debris flows in Madison County, Virginia

    USGS Publications Warehouse

    Morrissey, M.M.; Wieczorek, G.F.; Morgan, B.A.

    2004-01-01

    During the rainstorm of June 27, 1995, roughly 330-750 mm of rain fell within a 16-hour period, initiating floods and over 600 debris flows in a small area (130 km2) of Madison County, VA. We developed a distributed version of Iverson's transient response model for regional slope stability analysis for the Madison County debris flows. This version of the model evaluates pore-pressure head response and factor of safety on a regional scale in areas prone to rainfall-induced shallow (<2-3 m) landslides. These calculations used soil properties of shear strength and hydraulic conductivity from laboratory measurements of soil samples collected from field sites where debris flows initiated. Rainfall data collected by radar every 6 minutes provided a basis for calculating the temporal variation of slope stability during the storm. The results demonstrate that the spatial and temporal variation of the factor of safety correlates with the movement of the storm cell. When the rainstorm was treated as two separate rainfall events and a larger hydraulic conductivity and friction angle than the laboratory values were used, the timing and location of landslides predicted by the model were in closer agreement with eyewitness observations of debris flows. Application of spatially variable initial pre-storm water table depth and soil properties may improve both the spatial and temporal prediction of instability.

  2. Exploring the mechanisms of rising bubbles in marine biofouling prevention

    NASA Astrophysics Data System (ADS)

    Menesses, Mark; Belden, Jesse; Dickenson, Natasha; Bird, James

    2015-11-01

    Fluid motion, such as flow past a ship, is known to inhibit the growth of marine biofouling. Bubbles rising along a submerged structure also exhibit this behavior, which is typically attributed to buoyancy induced flow. However, the bubble interface may also have a direct influence on inhibiting growth that is independent of the surrounding flow. Here we aim to decouple these two mechanisms through a combination of field and laboratory experiments. In this study, a wall jet and a stream of bubbles are used to create two flows near a submerged solid surface where biofouling occurs. The flow structure characteristics were recorded using PIV. This experimental analysis allows for us to compare the efficacy of each flow relative to its flow parameters. Exploration of the mechanisms at play in the prevention of biofouling by use of rising bubbles provides a foundation to predict and optimize this antifouling technique under various conditions.

  3. Comparative 1D and 3D numerical investigation of open-channel junction flows and energy losses

    NASA Astrophysics Data System (ADS)

    Luo, Hao; Fytanidis, Dimitrios K.; Schmidt, Arthur R.; García, Marcelo H.

    2018-07-01

    The complexity of open channel confluences stems from flow mixing, secondary circulation, post-confluence flow separation, contraction and backwater effects. These effects in turn result in a large number of parameters required to adequately quantify the junction induced hydraulic resistance and describe mean flow pattern and turbulent flow structures due to flow merging. The recent development in computing power advances the application of 3D Computational Fluid Dynamics (CFD) codes to visualize and understand the Confluence Hydrodynamic Zone (CHZ). Nevertheless, 1D approaches remain the mainstay in large drainage network or waterway system modeling considering computational efficiency and data availability. This paper presents (i) a modified 1D nonlinear dynamic model; (ii) a fully 3D non-hydrostatic, Reynolds-averaged Navier-Stokes Equations (RANS)-based, Computational Fluid Dynamics (CFD) model; (iii) an analysis of changing confluence hydrodynamics and 3D turbulent flow structure under various controls; (iv) a comparison of flow features (i.e. upstream water depths, energy losses and post-confluence contraction) predicted by 1D and 3D models; and (v) parameterization of 3D flow characteristics in 1D modeling through the computation of correction coefficients associated with contraction, energy and momentum. The present comprehensive 3D numerical investigation highlights the driving mechanisms for junction induced energy losses. Moreover, the comparative 1D and 3D study quantifies the deviation of 1D approximations and associated underlying assumptions from the 'true' resultant flow field. The study may also shed light on improving the accuracy of the 1D large network modeling through the parameterization of the complex 3D feature of the flow field and correction of interior boundary conditions at junctions of larger angles and/or with substantial lateral inflows. Moreover, the enclosed numerical investigations may enhance the understanding of the primary mechanisms contributing to hydraulic structure induced turbulent flow behavior and increased hydraulic resistance.

  4. Passive scalars chaotic dynamics induced by two vortices in a two-layer geophysical flow with shear and rotation

    NASA Astrophysics Data System (ADS)

    Ryzhov, Eugene

    2015-11-01

    Vortex motion in shear flows is of great interest from the point of view of nonlinear science, and also as an applied problem to predict the evolution of vortices in nature. Considering applications to the ocean and atmosphere, it is well-known that these media are significantly stratified. The simplest way to take stratification into account is to deal with a two-layer flow. In this case, vortices perturb the interface, and consequently, the perturbed interface transits the vortex influences from one layer to another. Our aim is to investigate the dynamics of two point vortices in an unbounded domain where a shear and rotation are imposed as the leading order influence from some generalized perturbation. The two vortices are arranged within the bottom layer, but an emphasis is on the upper-layer fluid particle motion. Point vortices induce singular velocity fields in the layer they belong to, however, in the other layers of a multi-layer flow, they induce regular velocity fields. The main feature is that singular velocity fields prohibit irregular dynamics in the vicinity of the singular points, but regular velocity fields, provided optimal conditions, permit irregular dynamics to extend almost in every point of the corresponding phase space.

  5. Shock wave lithotripsy (SWL) induces significant structural and functional changes in the kidney

    NASA Astrophysics Data System (ADS)

    Evan, Andrew P.; Willis, Lynn R.; Lingeman, James E.

    2003-10-01

    The foundation for understanding SWL-injury has been well-controlled renal structural and functional studies in pigs, a model that closely mimics the human kidney. A clinical dose (2000 shocks at 24 kV) of SWL administered by the Dornier HM3 induces a predictable, unique vascular injury at F2 that is associated with transient renal vasoconstriction, seen as a reduction in renal plasma flow, in both treated and untreated kidneys. Unilateral renal denervation studies links the fall in blood flow in untreated kidneys to autonomic nerve activity in the treated kidney. SWL-induced trauma is associated with an acute inflammatory process, termed Lithotripsy Nephritis and tubular damage at the site of damage that leads to a focal region of scar. Lesion size increases with shock number and kV level. In addition, risk factors like kidney size and pre-existing renal disease (e.g., pyelonephritis), can exaggerate the predicted level of renal impairment. Our new protection data show that lesion size can be greatly reduced by a pretreatment session with low kV and shock number. The mechanisms of soft tissue injury probably involves shear stress followed by acoustic cavitation. Because of the perceived enhanced level of bioeffects from 3rd generation lithotripters, these observations are more relevant than ever.

  6. Orbital Maneuvering Vehicle (OMV) plume and plume effects study

    NASA Technical Reports Server (NTRS)

    Smith, Sheldon D.

    1991-01-01

    The objective was to characterize the Orbital Maneuvering Vehicle (OMV) propulsion and attitude control system engine exhaust plumes and predict the resultant plume impingement pressure, heat loads, forces, and moments. Detailed description is provided of the OMV gaseous nitrogen (GN2) thruster exhaust plume flow field characteristics calculated with the RAMP2 snd SFPGEN computer codes. Brief descriptions are included of the two models, GN2 thruster characteristics and RAMP2 input data files. The RAMP2 flow field could be recalculated by other organizations using the information presented. The GN2 flow field can be readily used by other organizations who are interested in GN2 plume induced environments which require local flow field properties which can be supplied using the SFPGEN GN2 model.

  7. Development and application of a method for predicting rotor free wake positions and resulting rotor blade air loads. Volume 1: Model and results

    NASA Technical Reports Server (NTRS)

    Sadler, S. G.

    1971-01-01

    Rotor wake geometries are predicted by a process similar to the startup of a rotor in a free stream. An array of discrete trailing and shed vortices is generated with vortex strengths corresponding to stepwise radial and azimuthal blade circulations. The array of shed and trailing vortices is limited to an arbitrary number of azimuthal steps behind each blade. The remainder of the wake model of each blade is an arbitrary number of trailing vortices. Vortex element end points were allowed to be transported by the resultant velocity of the free stream and vortex-induced velocities. Wake geometry, wake flow, and wake-induced velocity influence coefficients are generated by this program for use in the blade loads portion of the calculations. Blade loads computations include the effects of nonuniform inflow due to a free wake, nonlinear airfoil characteristics, and response of flexible blades to the applied loads. Computed wake flows and blade loads are compared with experimentally measured data. Predicted blade loads, response and shears and moments are obtained for a model rotor system having two independent rotors. The effects of advance ratio, vertical separation of rotors, different blade radius ratios, and different azimuthal spacing of the blades of one rotor with respect to the other are investigated.

  8. Modelling Furrow Irrigation-Induced Erosion on a Sandy Loam Soil in Samaru, Northern Nigeria

    PubMed Central

    Dibal, Jibrin M.; Igbadun, H. E.; Ramalan, A. A.; Mudiare, O. J.

    2014-01-01

    Assessment of soil erosion and sediment yield in furrow irrigation is limited in Samaru-Zaria. Data was collected in 2009 and 2010 and was used to develop a dimensionless model for predicting furrow irrigation-induced erosion (FIIE) using the dimensional analyses approach considering stream size, furrow length, furrow width, soil infiltration rate, hydraulic shear stress, soil erodibility, and time flow of water in the furrows as the building components. One liter of water-sediment samples was collected from the furrows during irrigations from which sediment concentrations and soil erosion per furrow were calculated. Stream sizes Q (2.5, 1.5, and 0.5 l/s), furrow lengths X (90 and 45 m), and furrow widths W (0.75 and 0.9 m) constituted the experimental factors randomized in a split plot design with four replications. Water flow into and out of the furrows was measured using cutthroat flumes. The model produced reasonable predictions relative to field measurements with coefficient of determination R 2 in the neighborhood of 0.8, model prediction efficiency NSE (0.7000), high index of agreement (0.9408), and low coefficient of variability (0.4121). The model is most sensitive to water stream size. The variables in the model are easily measurable; this makes it better and easily adoptable. PMID:27471748

  9. [Incidence of exercise-induced bronchospasm (E.I.B.) and its correlation with clinical history in children with allergic asthma].

    PubMed

    Novembre, E; Dini, L; Veneruso, G; Lombardi, E; Bernardini, R; Vierucci, A

    1993-01-01

    In this study, 65 allergic asthmatic children were evaluated for the presence of exercise induced bronchospasm (E.I.B.). Pulmonary function (volume at 1 second of forced expiration--FEV1; maximal mid-expiratory flow--FEF 25-75; peak expiratory flow--PEF) was assessed before and serially for 20' following treadmill exercise. Only 18 children (27.6%) presented a fall in FEV1 > or = 20%. There was a relationship between severity of asthma and incidence of E.I.B., as children with episodic, frequent and chronic asthma presented respectively 13/55 (23.4%), 2/6 (33.3%) and 3/4 (75%) of positive responses. The presence of E.I.B. cannot be predicted by clinical history, as 15/36 (41.7%) of subjects with positive clinical history had E.I.B., against 3/29 (10.3%) of subjects with negative clinical history (p = n.s.). E.I.B. in asthmatic children is less frequent as reported, correlates with severity of asthma and cannot be accurately predicted from the history.

  10. Convective and interfacial instabilities during solidification of succinonitrile containing ethanol

    NASA Technical Reports Server (NTRS)

    Schaefer, R. J.; Coriell, S. R.

    1982-01-01

    Even though slow convective flow is difficult to detect in solidifying metals, it can readily be observed in transparent materials by observing the motion of small neutrally buoyant particles. Succinonitrile, which solidifies with an unfaceted solid/liquid interface and has well characterized physical properties, is considered an excellent material for such studies. For studies of solute-induced convection, ethanol is a useful addition to succinonitrile since it has a lower density and a somewhat similar molecular structure. Samples of high purity and ethanol-doped succinonitrile are unidirectionally solidified in a vertical temperature gradient. Latex mimcrospheres 2 microns in diameter are suspended in the liquid to reveal the convective flow. Convective and morphological stability is observed as a function of solute concentration and growth velocity. These measurements are compared with theoretical calculations that predict the transition from stability to instability as a function of solidification conditions. The predicted transitions occur at low concentrations and solidification velocities; for this reason, extreme care must be taken in order to eliminate the effects of impurities or thermally induced convection.

  11. Technical Evaluation Report, Part A - Vortex Flow and High Angle of Attack

    NASA Technical Reports Server (NTRS)

    Luckring, James M.

    2003-01-01

    A symposium entitled Vortex Flow and High Angle of Attack was held in Loen, Norway, from May 7 through May 11, 2001. The Applied Vehicle Technology (AVT) panel, under the auspices of the Research and Technology Organization (RTO), sponsored this symposium. Forty-eight papers, organized into nine sessions, addressed computational and experimental studies of vortex flows pertinent to both aircraft and maritime applications. The studies also ranged from fundamental fluids investigations to flight test results, and significant results were contributed from a broad range of countries. The principal emphasis of this symposium was on "the understanding and prediction of separation-induced vortex flows and their effects on military vehicle performance, stability, control, and structural design loads." It was further observed by the program committee that "separation- induced vortex flows are an important part of the design and off-design performance of conventional fighter aircraft and new conventional or unconventional manned or unmanned advanced vehicle designs (UAVs, manned aircraft, missiles, space planes, ground-based vehicles, and ships)." The nine sessions addressed the following topics: vortical flows on wings and bodies, experimental techniques for vortical flows, numerical simulations of vortical flows, vortex stability and breakdown, vortex flows in maritime applications, vortex interactions and control, vortex dynamics, flight testing, and vehicle design. The purpose of this paper is to provide brief reviews of these papers along with some synthesizing perspectives toward future vortex flow research opportunities. The paper includes the symposium program. (15 refs.)

  12. Numerical prediction of flow induced fibers orientation in injection molded polymer composites

    NASA Astrophysics Data System (ADS)

    Oumer, A. N.; Hamidi, N. M.; Mat Sahat, I.

    2015-12-01

    Since the filling stage of injection molding process has important effect on the determination of the orientation state of the fibers, accurate analysis of the flow field for the mold filling stage becomes a necessity. The aim of the paper is to characterize the flow induced orientation state of short fibers in injection molding cavities. A dog-bone shaped model is considered for the simulation and experiment. The numerical model for determination of the fibers orientation during mold-filling stage of injection molding process was solved using Computational Fluid Dynamics (CFD) software called MoldFlow. Both the simulation and experimental results showed that two different regions (or three layers of orientation structures) across the thickness of the specimen could be found: a shell region which is near to the mold cavity wall, and a core region at the middle of the cross section. The simulation results support the experimental observations that for thin plates the probability of fiber alignment to the flow direction near the mold cavity walls is high but low at the core region. It is apparent that the results of this study could assist in decisions regarding short fiber reinforced polymer composites.

  13. A chaotic micromixer using obstruction-pairs

    NASA Astrophysics Data System (ADS)

    Park, Jang Min; Duck Seo, Kyoung; Kwon, Tai Hun

    2010-01-01

    A micromixer is one of the most important components for a chemical and/or diagnostic analysis in microfluidic devices such as a micro-total-analysis-system and a lab-on-a-chip. In this paper, a novel chaotic micromixer is developed in a simple design by introducing obstruction-pairs on the bottom of a microchannel. An obstruction-pair, which is composed of two hexahedron blocks arranged in an asymmetric manner, can induce a rotational flow along the down-channel direction due to the anisotropy of flow resistance. By utilizing this characteristic of the obstruction-pair, four mixing units are designed in such a way that three obstruction-pairs induce three rotational flows which result in a down-welling and a hyperbolic point in the channel cross-section. There can be a variety of micromixer geometries by arranging the mixing units in various sequences along the microchannel, and their mixing performances will differ from each other due to different flow characteristics. In this regard, numerical investigations are carried out to predict and characterize the mixing performances of various micromixers. Also experimental verifications are carried out by a flow visualization technique using phenolphthalein and sodium hydroxide solutions in a polydimethylsiloxane-based micromixer.

  14. Rheologic effects of crystal preferred orientation in upper mantle flow near plate boundaries

    NASA Astrophysics Data System (ADS)

    Blackman, Donna; Castelnau, Olivier; Dawson, Paul; Boyce, Donald

    2016-04-01

    Observations of anisotropy provide insight into upper mantle processes. Flow-induced mineral alignment provides a link between mantle deformation patterns and seismic anisotropy. Our study focuses on the rheologic effects of crystal preferred orientation (CPO), which develops during mantle flow, in order to assess whether corresponding anisotropic viscosity could significantly impact the pattern of flow. We employ a coupled nonlinear numerical method to link CPO and the flow model via a local viscosity tensor field that quantifies the stress/strain-rate response of a textured mineral aggregate. For a given flow field, the CPO is computed along streamlines using a self-consistent texture model and is then used to update the viscosity tensor field. The new viscosity tensor field defines the local properties for the next flow computation. This iteration produces a coupled nonlinear model for which seismic signatures can be predicted. Results thus far confirm that CPO can impact flow pattern by altering rheology in directionally-dependent ways, particularly in regions of high flow gradient. Multiple iterations run for an initial, linear stress/strain-rate case (power law exponent n=1) converge to a flow field and CPO distribution that are modestly different from the reference, scalar viscosity case. Upwelling rates directly below the spreading axis are slightly reduced and flow is focused somewhat toward the axis. Predicted seismic anisotropy differences are modest. P-wave anisotropy is a few percent greater in the flow 'corner', near the spreading axis, below the lithosphere and extending 40-100 km off axis. Predicted S-wave splitting differences would be below seafloor measurement limits. Calculations with non-linear stress/strain-rate relation, which is more realistic for olivine, indicate that effects are stronger than for the linear case. For n=2-3, the distribution and strength of CPO for the first iteration are greater than for n=1, although the fast seismic axis directions are similar. The greatest difference in CPO for the nonlinear cases develop at the flow 'corner' at depths of 10-30 km and 20-100 km off-axis. J index values up to 10% greater than the linear case are predicted near the lithosphere base in that region. Viscosity tensor components are notably altered in the nonlinear cases. Iterations between the texture and flow calculations for the non-linear cases are underway this winter; results will be reported in the presentation.

  15. Application of Method of Variation to Analyze and Predict Human Induced Modifications of Water Resource Systems

    NASA Astrophysics Data System (ADS)

    Dessu, S. B.; Melesse, A. M.; Mahadev, B.; McClain, M.

    2010-12-01

    Water resource systems have often used gravitational surface and subsurface flows because of their practicality in hydrological modeling and prediction. Activities such as inter/intra-basin water transfer, the use of small pumps and the construction of micro-ponds challenge the tradition of natural rivers as water resource management unit. On the contrary, precipitation is barely affected by topography and plot harvesting in wet regions can be more manageable than diverting from rivers. Therefore, it is indicative to attend to systems where precipitation drives the dynamics while the internal mechanics constitutes spectrum of human activity and decision in a network of plots. The trade-in volume and path of harvested precipitation depends on water balance, energy balance and the kinematics of supply and demand. Method of variation can be used to understand and predict the implication of local excess precipitation harvest and exchange on the natural water system. A system model was developed using the variational form of Euler-Bernoulli’s equation for the Kenyan Mara River basin. Satellite derived digital elevation models, precipitation estimates, and surface properties such as fractional impervious surface area, are used to estimate the available water resource. Four management conditions are imposed in the model: gravitational flow, open water extraction and high water use investment at upstream and downstream respectively. According to the model, the first management maintains the basin status quo while the open source management could induce externality. The high water market at the upstream in the third management offers more than 50% of the basin-wide total revenue to the upper third section of the basin thus may promote more harvesting. The open source and upstream exploitation suggest potential drop of water availability to downstream. The model exposed the latent potential of economic gradient to reconfigure the flow network along the direction where the marginal benefit is maximized. Therefore, the variation model can help to predict the possible human induced modification of natural water system in order to gain the maximum productivity and benefit.

  16. Evolution of mixing width induced by general Rayleigh-Taylor instability.

    PubMed

    Zhang, You-Sheng; He, Zhi-Wei; Gao, Fu-Jie; Li, Xin-Liang; Tian, Bao-Lin

    2016-06-01

    Turbulent mixing induced by Rayleigh-Taylor (RT) instability occurs ubiquitously in many natural phenomena and engineering applications. As the simplest and primary descriptor of the mixing process, the evolution of mixing width of the mixing zone plays a notable role in the flows. The flows generally involve complex varying acceleration histories and widely varying density ratios, two dominant factors affecting the evolution of mixing width. However, no satisfactory theory for predicting the evolution has yet been established. Here a theory determining the evolution of mixing width in general RT flows is established to reproduce, first, all of the documented experiments conducted for diverse (i.e., constant, impulsive, oscillating, decreasing, increasing, and complex) acceleration histories and all density ratios. The theory is established in terms of the conservation principle, with special consideration given to the asymmetry of the volume-averaged density fields occurring in actual flows. The results reveal the sensitivity or insensitivity of the evolution of a mixing front of a neighboring light or heavy fluid to the degree of asymmetry and thus explain the distinct evolutions in two experiments with the same configurations.

  17. A combined PHREEQC-2/parallel fracture model for the simulation of laminar/non-laminar flow and contaminant transport with reactions

    NASA Astrophysics Data System (ADS)

    Masciopinto, Costantino; Volpe, Angela; Palmiotta, Domenico; Cherubini, Claudia

    2010-09-01

    A combination of a parallel fracture model with the PHREEQC-2 geochemical model was developed to simulate sequential flow and chemical transport with reactions in fractured media where both laminar and turbulent flows occur. The integration of non-laminar flow resistances in one model produced relevant effects on water flow velocities, thus improving model prediction capabilities on contaminant transport. The proposed conceptual model consists of 3D rock-blocks, separated by horizontal bedding plane fractures with variable apertures. Particle tracking solved the transport equations for conservative compounds and provided input for PHREEQC-2. For each cluster of contaminant pathways, PHREEQC-2 determined the concentration for mass-transfer, sorption/desorption, ion exchange, mineral dissolution/precipitation and biodegradation, under kinetically controlled reactive processes of equilibrated chemical species. Field tests have been performed for the code verification. As an example, the combined model has been applied to a contaminated fractured aquifer of southern Italy in order to simulate the phenol transport. The code correctly fitted the field available data and also predicted a possible rapid depletion of phenols as a result of an increased biodegradation rate induced by a simulated artificial injection of nitrates, upgradient to the sources.

  18. Calibration of a γ- Re θ transition model and its application in low-speed flows

    NASA Astrophysics Data System (ADS)

    Wang, YunTao; Zhang, YuLun; Meng, DeHong; Wang, GunXue; Li, Song

    2014-12-01

    The prediction of laminar-turbulent transition in boundary layer is very important for obtaining accurate aerodynamic characteristics with computational fluid dynamic (CFD) tools, because laminar-turbulent transition is directly related to complex flow phenomena in boundary layer and separated flow in space. Unfortunately, the transition effect isn't included in today's major CFD tools because of non-local calculations in transition modeling. In this paper, Menter's γ- Re θ transition model is calibrated and incorporated into a Reynolds-Averaged Navier-Stokes (RANS) code — Trisonic Platform (TRIP) developed in China Aerodynamic Research and Development Center (CARDC). Based on the experimental data of flat plate from the literature, the empirical correlations involved in the transition model are modified and calibrated numerically. Numerical simulation for low-speed flow of Trapezoidal Wing (Trap Wing) is performed and compared with the corresponding experimental data. It is indicated that the γ- Re θ transition model can accurately predict the location of separation-induced transition and natural transition in the flow region with moderate pressure gradient. The transition model effectively imporves the simulation accuracy of the boundary layer and aerodynamic characteristics.

  19. CFD Study of NACA 0018 Airfoil with Flow Control

    NASA Technical Reports Server (NTRS)

    Eggert, Christopher A.; Rumsey, Christopher L.

    2017-01-01

    The abilities of two different Reynolds-Averaged Navier-Stokes codes to predict the effects of an active flow control device are evaluated. The flow control device consists of a blowing slot located on the upper surface of an NACA 0018 airfoil, near the leading edge. A second blowing slot present on the airfoil near mid-chord is not evaluated here. Experimental results from a wind tunnel test show that a slot blowing with high momentum coefficient will increase the lift of the airfoil (compared to no blowing) and delay flow separation. A slot with low momentum coefficient will decrease the lift and induce separation even at low angles of attack. Two codes, CFL3D and FUN3D, are used in two-dimensional computations along with several different turbulence models. Two of these produced reasonable results for this flow, when run fully turbulent. A more advanced transition model failed to predict reasonable results, but warrants further study using different inputs. Including inviscid upper and lower tunnel walls in the simulations was found to be important in obtaining pressure distributions and lift coefficients that best matched experimental data. A limited number of three-dimensional computations were also performed.

  20. Analytical prediction of the unsteady lift on a rotor caused by downstream struts

    NASA Technical Reports Server (NTRS)

    Taylor, A. C., III; Ng, W. F.

    1987-01-01

    A two-dimensional, inviscid, incompressible procedure is presented for predicting the unsteady lift on turbomachinery blades caused by the upstream potential disturbance of downstream flow obstructions. Using the Douglas-Neumann singularity superposition potential flow computer program to model the downstream flow obstructions, classical equations of thin airfoil theory are then employed, to compute the unsteady lift on the upstream rotor blades. The method is applied to a particular geometry which consists of a rotor, a downstream stator, and downstream struts which support the engine casing. Very good agreement between the Douglas-Neumann program and experimental measurements was obtained for the downstream stator-strut flow field. The calculations for the unsteady lift due to the struts were in good agreement with the experiments in showing that the unsteady lift due to the struts decays exponentially with increased axial separation of the rotor and the struts. An application of the method showed that for a given axial spacing between the rotor and the strut, strut-induced unsteady lift is a very weak function of the axial or circumferential position of the stator.

  1. On the Opening of Thick Walled Elastic Tubes: A Fluid-Structure Model for Acid Reflux

    NASA Astrophysics Data System (ADS)

    Ghosh, Sudip; Kahrilas, Peter

    2005-11-01

    A coupled fluid-structure mathematical model was developed to quantify rapid opening of thick-walled elastic tubes, a phenomenon underlying biological flows such as gastroesophageal reflux disease (GERD). The wall was modeled using non-linear finite deformation theory to predict space-time radial distention of an axisymmetric tube with luminal fluid flow. Anisotropic azimuthal and longitudinal muscle-induced stresses were incorporated, and interstitial material properties were assumed isotropic and linearly elastic. Fluid flow was modeled using lubrication theory with inertial correction. Opening and flow were driven by a specified inflow pressure and zero pressure gradient was specified at outflow. No-slip and surface force balance were applied at the fluid-wall interface. Viscoelasticity was modeled with ad hoc damping and the evolution of the tube geometry was predicted at mid-layer. A potentially important discovery was made when applied to studies of initiation of opening with GERD: while material stiffness is of minor consequence, small changes in resting lumen distension (˜2 mm diameter) may be a sensitive distinguishing feature of the disease.

  2. Black Swans and the Effectiveness of Remediating Groundwater Contamination

    NASA Astrophysics Data System (ADS)

    Siegel, D. I.; Otz, M. H.; Otz, I.

    2013-12-01

    Black swans, outliers, dominate science far more than do predictable outcomes. Predictable success constitutes the Black Swan in groundwater remediation. Even the National Research Council concluded that remediating groundwater to drinking water standards has failed in typically complex hydrogeologic settings where heterogeneities and preferential flow paths deflect flow paths obliquely to hydraulic gradients. Natural systems, be they biological or physical, build upon a combination of large-scale regularity coupled to chaos at smaller scales. We show through a review of over 25 case studies that groundwater remediation efforts are best served by coupling parsimonious site characterization to natural and induced geochemical tracer tests to at least know where contamination advects with groundwater in the subsurface. In the majority of our case studies, actual flow paths diverge tens of degrees from anticipated flow paths because of unrecognized heterogeneities in the horizontal direction of transport, let alone the vertical direction. Consequently, regulatory agencies would better serve both the public and the environment by recognizing that long-term groundwater cleanup probably is futile in most hydrogeologic settings except to relaxed standards similar to brownfielding. A Black Swan

  3. Implementing an empirical scalar constitutive relation for ice with flow-induced polycrystalline anisotropy in large-scale ice sheet models

    NASA Astrophysics Data System (ADS)

    Graham, Felicity S.; Morlighem, Mathieu; Warner, Roland C.; Treverrow, Adam

    2018-03-01

    The microstructure of polycrystalline ice evolves under prolonged deformation, leading to anisotropic patterns of crystal orientations. The response of this material to applied stresses is not adequately described by the ice flow relation most commonly used in large-scale ice sheet models - the Glen flow relation. We present a preliminary assessment of the implementation in the Ice Sheet System Model (ISSM) of a computationally efficient, empirical, scalar, constitutive relation which addresses the influence of the dynamically steady-state flow-compatible induced anisotropic crystal orientation patterns that develop when ice is subjected to the same stress regime for a prolonged period - sometimes termed tertiary flow. We call this the ESTAR flow relation. The effect on ice flow dynamics is investigated by comparing idealised simulations using ESTAR and Glen flow relations, where we include in the latter an overall flow enhancement factor. For an idealised embayed ice shelf, the Glen flow relation overestimates velocities by up to 17 % when using an enhancement factor equivalent to the maximum value prescribed in the ESTAR relation. Importantly, no single Glen enhancement factor can accurately capture the spatial variations in flow across the ice shelf generated by the ESTAR flow relation. For flow line studies of idealised grounded flow over varying topography or variable basal friction - both scenarios dominated at depth by bed-parallel shear - the differences between simulated velocities using ESTAR and Glen flow relations depend on the value of the enhancement factor used to calibrate the Glen flow relation. These results demonstrate the importance of describing the deformation of anisotropic ice in a physically realistic manner, and have implications for simulations of ice sheet evolution used to reconstruct paleo-ice sheet extent and predict future ice sheet contributions to sea level.

  4. Statistical characteristics of falling-film flows: A synergistic approach at the crossroads of direct numerical simulations and experiments

    NASA Astrophysics Data System (ADS)

    Charogiannis, Alexandros; Denner, Fabian; van Wachem, Berend G. M.; Kalliadasis, Serafim; Markides, Christos N.

    2017-12-01

    We scrutinize the statistical characteristics of liquid films flowing over an inclined planar surface based on film height and velocity measurements that are recovered simultaneously by application of planar laser-induced fluorescence (PLIF) and particle tracking velocimetry (PTV), respectively. Our experiments are complemented by direct numerical simulations (DNSs) of liquid films simulated for different conditions so as to expand the parameter space of our investigation. Our statistical analysis builds upon a Reynolds-like decomposition of the time-varying flow rate that was presented in our previous research effort on falling films in [Charogiannis et al., Phys. Rev. Fluids 2, 014002 (2017), 10.1103/PhysRevFluids.2.014002], and which reveals that the dimensionless ratio of the unsteady term to the mean flow rate increases linearly with the product of the coefficients of variation of the film height and bulk velocity, as well as with the ratio of the Nusselt height to the mean film height, both at the same upstream PLIF/PTV measurement location. Based on relations that are derived to describe these results, a methodology for predicting the mass-transfer capability (through the mean and standard deviation of the bulk flow speed) of these flows is developed in terms of the mean and standard deviation of the film thickness and the mean flow rate, which are considerably easier to obtain experimentally than velocity profiles. The errors associated with these predictions are estimated at ≈1.5 % and 8% respectively in the experiments and at <1 % and <2 % respectively in the DNSs. Beyond the generation of these relations for the prediction of important film flow characteristics based on simple flow information, the data provided can be used to design improved heat- and mass-transfer equipment reactors or other process operation units which exploit film flows, but also to develop and validate multiphase flow models in other physical and technological settings.

  5. Laser induced heating of coated carbon steel sheets: Consideration of melting and Marangoni flow

    NASA Astrophysics Data System (ADS)

    Shuja, S. Z.; Yilbas, B. S.

    2013-04-01

    Laser induced melting of coated carbon steel workpiece is simulated. The coating materials include tungsten carbide, alumina, and boron are incorporated in the simulations. The coating thickness is kept constant at 7.5 μm in the analysis. The enthalpy porosity method is used to account for the phase change in the irradiated region. The study is extended to include the influence of laser intensity transverse mode pattern (β) on the resulting melting characteristics. It is found that peak temperature predicted at the surface is higher for alumina and boron coatings than that of tungsten carbide coating. The influence of the laser intensity transverse mode pattern on the melting characteristics is considerable. Surface temperature predicted agrees with the thermocouple data.

  6. Magnetic Fluctuation-Driven Intrinsic Flow in a Toroidal Plasma

    NASA Astrophysics Data System (ADS)

    Brower, D. L.; Ding, W. X.; Lin, L.; Almagri, A. F.; den Hartog, D. J.; Sarff, J. S.

    2012-10-01

    Magnetic fluctuations have been long observed in various magnetic confinement configurations. These perturbations may arise naturally from plasma instabilities such as tearing modes and energetic particle driven modes, but they can also be externally imposed by error fields or external magnetic coils. It is commonly observed that large MHD modes lead to plasma locking (no rotation) due to torque produced by eddy currents on the wall, and it is predicted that stochastic field induces flow damping where the radial electric field is reduced. Flow generation is of great importance to fusion plasma research, especially low-torque devices like ITER, as it can act to improve performance. Here we describe new measurements in the MST reversed field pinch (RFP) showing that the coherent interaction of magnetic and particle density fluctuations can produce a turbulent fluctuation-induced kinetic force, which acts to drive intrinsic plasma rotation. Key observations include; (1) the average kinetic force resulting from density fluctuations, ˜ 0.5 N/m^3, is comparable to the intrinsic flow acceleration, and (2) between sawtooth crashes, the spatial distribution of the kinetic force is directed to create a sheared parallel flow profile that is consistent with the measured flow profile in direction and amplitude, suggesting the kinetic force is responsible for intrinsic plasma rotation.

  7. Evaluation of a transient, simultaneous, arbitrary Lagrange-Euler based multi-physics method for simulating the mitral heart valve.

    PubMed

    Espino, Daniel M; Shepherd, Duncan E T; Hukins, David W L

    2014-01-01

    A transient multi-physics model of the mitral heart valve has been developed, which allows simultaneous calculation of fluid flow and structural deformation. A recently developed contact method has been applied to enable simulation of systole (the stage when blood pressure is elevated within the heart to pump blood to the body). The geometry was simplified to represent the mitral valve within the heart walls in two dimensions. Only the mitral valve undergoes deformation. A moving arbitrary Lagrange-Euler mesh is used to allow true fluid-structure interaction (FSI). The FSI model requires blood flow to induce valve closure by inducing strains in the region of 10-20%. Model predictions were found to be consistent with existing literature and will undergo further development.

  8. Predictive susceptibility analysis of typhoon induced landslides in Central Taiwan

    NASA Astrophysics Data System (ADS)

    Shou, Keh-Jian; Lin, Zora

    2017-04-01

    Climate change caused by global warming affects Taiwan significantly for the past decade. The increasing frequency of extreme rainfall events, in which concentrated and intensive rainfalls generally cause geohazards including landslides and debris flows. The extraordinary, such as 2004 Mindulle and 2009 Morakot, hit Taiwan and induced serious flooding and landslides. This study employs rainfall frequency analysis together with the atmospheric general circulation model (AGCM) downscaling estimation to understand the temporal rainfall trends, distributions, and intensities in the adopted Wu River watershed in Central Taiwan. To assess the spatial hazard of the landslides, landslide susceptibility analysis was also applied. Different types of rainfall factors were tested in the susceptibility models for a better accuracy. In addition, the routes of typhoons were also considered in the predictive analysis. The results of predictive analysis can be applied for risk prevention and management in the study area.

  9. Field-flow fractionation and hydrodynamic chromatography on a microfluidic chip.

    PubMed

    Shendruk, Tyler N; Tahvildari, Radin; Catafard, Nicolas M; Andrzejewski, Lukasz; Gigault, Christian; Todd, Andrew; Gagne-Dumais, Laurent; Slater, Gary W; Godin, Michel

    2013-06-18

    We present gravitational field-flow fractionation and hydrodynamic chromatography of colloids eluting through 18 μm microchannels. Using video microscopy and mesoscopic simulations, we investigate the average retention ratio of colloids with both a large specific weight and neutral buoyancy. We consider the entire range of colloid sizes, including particles that barely fit in the microchannel and nanoscopic particles. Ideal theory predicts four operational modes, from hydrodynamic chromatography to Faxén-mode field-flow fractionation. We experimentally demonstrate, for the first time, the existence of the Faxén-mode field-flow fractionation and the transition from hydrodynamic chromatography to normal-mode field-flow fractionation. Furthermore, video microscopy and simulations show that the retention ratios are largely reduced above the steric-inversion point, causing the variation of the retention ratio in the steric- and Faxén-mode regimes to be suppressed due to increased drag. We demonstrate that theory can accurately predict retention ratios if hydrodynamic interactions with the microchannel walls (wall drag) are added to the ideal theory. Rather than limiting the applicability, these effects allow the microfluidic channel size to be tuned to ensure high selectivity. Our findings indicate that particle velocimetry methods must account for the wall-induced lag when determining flow rates in highly confining systems.

  10. Zero-G Thermodynamic Venting System (TVS) Performance Prediction Program

    NASA Technical Reports Server (NTRS)

    Nguyen, Han

    1994-01-01

    This report documents the Zero-g Thermodynamic Venting System (TVS) performance prediction computer program. The zero-g TVS is a device that destratifies and rejects environmentally induced zero-g thermal gradients in the LH2 storage transfer system. A recirculation pump and spray injection manifold recirculates liquid throughout the length of the tank thereby destratifying both the ullage gas and liquid bulk. Heat rejection is accomplished by the opening of the TVS control valve which allows a small flow rate to expand to a low pressure thereby producing a low temperature heat sink which is used to absorb heat from the recirculating liquid flow. The program was written in FORTRAN 77 language on the HP-9000 and IBM PC computers. It can be run on various platforms with a FORTRAN compiler.

  11. Modelling multi-phase liquid-sediment scour and resuspension induced by rapid flows using Smoothed Particle Hydrodynamics (SPH) accelerated with a Graphics Processing Unit (GPU)

    NASA Astrophysics Data System (ADS)

    Fourtakas, G.; Rogers, B. D.

    2016-06-01

    A two-phase numerical model using Smoothed Particle Hydrodynamics (SPH) is applied to two-phase liquid-sediments flows. The absence of a mesh in SPH is ideal for interfacial and highly non-linear flows with changing fragmentation of the interface, mixing and resuspension. The rheology of sediment induced under rapid flows undergoes several states which are only partially described by previous research in SPH. This paper attempts to bridge the gap between the geotechnics, non-Newtonian and Newtonian flows by proposing a model that combines the yielding, shear and suspension layer which are needed to predict accurately the global erosion phenomena, from a hydrodynamics prospective. The numerical SPH scheme is based on the explicit treatment of both phases using Newtonian and the non-Newtonian Bingham-type Herschel-Bulkley-Papanastasiou constitutive model. This is supplemented by the Drucker-Prager yield criterion to predict the onset of yielding of the sediment surface and a concentration suspension model. The multi-phase model has been compared with experimental and 2-D reference numerical models for scour following a dry-bed dam break yielding satisfactory results and improvements over well-known SPH multi-phase models. With 3-D simulations requiring a large number of particles, the code is accelerated with a graphics processing unit (GPU) in the open-source DualSPHysics code. The implementation and optimisation of the code achieved a speed up of x58 over an optimised single thread serial code. A 3-D dam break over a non-cohesive erodible bed simulation with over 4 million particles yields close agreement with experimental scour and water surface profiles.

  12. PAN AIR modeling studies. [higher order panel method for aircraft design

    NASA Technical Reports Server (NTRS)

    Towne, M. C.; Strande, S. M.; Erickson, L. L.; Kroo, I. M.; Enomoto, F. Y.; Carmichael, R. L.; Mcpherson, K. F.

    1983-01-01

    PAN AIR is a computer program that predicts subsonic or supersonic linear potential flow about arbitrary configurations. The code's versatility and generality afford numerous possibilities for modeling flow problems. Although this generality provides great flexibility, it also means that studies are required to establish the dos and don'ts of modeling. The purpose of this paper is to describe and evaluate a variety of methods for modeling flows with PAN AIR. The areas discussed are effects of panel density, internal flow modeling, forebody modeling in subsonic flow, propeller slipstream modeling, effect of wake length, wing-tail-wake interaction, effect of trailing-edge paneling on the Kutta condition, well- and ill-posed boundary-value problems, and induced-drag calculations. These nine topics address problems that are of practical interest to the users of PAN AIR.

  13. Numerical Modeling of Interstitial Fluid Flow Coupled with Blood Flow through a Remodeled Solid Tumor Microvascular Network

    PubMed Central

    Soltani, M.; Chen, P.

    2013-01-01

    Modeling of interstitial fluid flow involves processes such as fluid diffusion, convective transport in extracellular matrix, and extravasation from blood vessels. To date, majority of microvascular flow modeling has been done at different levels and scales mostly on simple tumor shapes with their capillaries. However, with our proposed numerical model, more complex and realistic tumor shapes and capillary networks can be studied. Both blood flow through a capillary network, which is induced by a solid tumor, and fluid flow in tumor’s surrounding tissue are formulated. First, governing equations of angiogenesis are implemented to specify the different domains for the network and interstitium. Then, governing equations for flow modeling are introduced for different domains. The conservation laws for mass and momentum (including continuity equation, Darcy’s law for tissue, and simplified Navier–Stokes equation for blood flow through capillaries) are used for simulating interstitial and intravascular flows and Starling’s law is used for closing this system of equations and coupling the intravascular and extravascular flows. This is the first study of flow modeling in solid tumors to naturalistically couple intravascular and extravascular flow through a network. This network is generated by sprouting angiogenesis and consisting of one parent vessel connected to the network while taking into account the non-continuous behavior of blood, adaptability of capillary diameter to hemodynamics and metabolic stimuli, non-Newtonian blood flow, and phase separation of blood flow in capillary bifurcation. The incorporation of the outlined components beyond the previous models provides a more realistic prediction of interstitial fluid flow pattern in solid tumors and surrounding tissues. Results predict higher interstitial pressure, almost two times, for realistic model compared to the simplified model. PMID:23840579

  14. The stability of a flexible cantilever in viscous channel flow

    NASA Astrophysics Data System (ADS)

    Cisonni, Julien; Lucey, Anthony D.; Elliott, Novak S. J.; Heil, Matthias

    2017-05-01

    Most studies of the flow-induced flutter instability of a flexible cantilever have assumed inviscid flow because of the high flow speeds and the large scale of the structures encountered in the wide range of applications of this fluid-structure interaction (FSI) system. However, for instance, in the fields of energy harvesting and biomechanics, low flow speeds and small- and micro-scale systems can give relatively low Reynolds numbers so that fluid viscosity needs to be explicitly accounted for to provide reliable predictions of channel-immersed-cantilever stability. In this study, we employ a numerical model coupling the Navier-Stokes equations and a one-dimensional elastic beam model. We conduct a parametric investigation to determine the conditions leading to flutter instability of a slender flexible cantilever immersed in two-dimensional viscous channel flow for Reynolds numbers lower than 1000. The large set of numerical simulations carried out allows predictions of the influence of decreasing Reynolds numbers and of the cantilever confinement on the single-mode neutral stability of the FSI system and on the pre- and post-critical cantilever motion. This model's predictions are also compared to those of a FSI model containing a two-dimensional solid model in order to assess, primarily, the effect of the cantilever slenderness in the simulations. Results show that an increasing contribution of viscosity to the hydrodynamic forces significantly alters the instability boundaries. In general, a decrease in Reynolds number is predicted to produce a stabilisation of the FSI system, which is more pronounced for high fluid-to-solid mass ratios. For particular fluid-to-solid mass ratios, viscous effects can lower the critical velocity and lead to a change in the first unstable structural mode. However, at constant Reynolds number, the effects of viscosity on the system stability are diminished by the confinement of the cantilever, which strengthens the importance of flow inertia.

  15. Experimental investigation and CFD analysis on cross flow in the core of PMR200

    DOE PAGES

    Lee, Jeong -Hun; Yoon, Su -Jong; Cho, Hyoung -Kyu; ...

    2015-04-16

    The Prismatic Modular Reactor (PMR) is one of the major Very High Temperature Reactor (VHTR) concepts, which consists of hexagonal prismatic fuel blocks and reflector blocks made of nuclear gradegraphite. However, the shape of the graphite blocks could be easily changed by neutron damage duringthe reactor operation and the shape change can create gaps between the blocks inducing the bypass flow.In the VHTR core, two types of gaps, a vertical gap and a horizontal gap which are called bypass gap and cross gap, respectively, can be formed. The cross gap complicates the flow field in the reactor core by connectingmore » the coolant channel to the bypass gap and it could lead to a loss of effective coolant flow in the fuel blocks. Thus, a cross flow experimental facility was constructed to investigate the cross flow phenomena in the core of the VHTR and a series of experiments were carried out under varying flow rates and gap sizes. The results of the experiments were compared with CFD (Computational Fluid Dynamics) analysis results in order to verify its prediction capability for the cross flow phenomena. Fairly good agreement was seen between experimental results and CFD predictions and the local characteristics of the cross flow was discussed in detail. Based on the calculation results, pressure loss coefficient across the cross gap was evaluated, which is necessary for the thermo-fluid analysis of the VHTR core using a lumped parameter code.« less

  16. Modeling of gun barrel surface erosion: Historic perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buckingham, A.C.

    1996-08-01

    Results and interpretations of numerical simulations of some dominant processes influencing gun barrel propellant combustion and flow-induced erosion are presented. Results include modeled influences of erosion reduction techniques such as solid additives, vapor phase chemical modifications, and alteration of surface solid composition through use of thin coatings. Precedents and historical perspective are provided with predictions from traditional interior ballistics compared to computer simulations. Accelerating reactive combustion flow, multiphase and multicomponent transport, flow-to-surface thermal/momentum/phase change/gas-surface chemical exchanges, surface and micro-depth subsurface heating/stress/composition evolution and their roles in inducing surface cracking, spall, ablation, melting, and vaporization are considered. Recognition is given tomore » cyclic effects of previous firing history on material preconditioning. Current perspective and outlook for future are based on results of a US Army-LLNL erosion research program covering 7 y in late 1970s. This is supplemented by more recent research on hypervelocity electromagnetic projectile launchers.« less

  17. A comparative analysis of simulated and observed landslide locations triggered by Hurricane Camille in Nelson County, Virginia

    USGS Publications Warehouse

    Morrissey, M.M.; Wieczorek, G.F.; Morgan, B.A.

    2008-01-01

    In 1969, Nelson County, Virginia received up to 71 cm of rain within 12 h starting at 7 p.m. on August 19. The total rainfall from the storm exceeded the 1000-year return period in the region. Several thousands of landslides were induced by rainfall associated with Hurricane Camille causing fatalities and destroying infrastructure. We apply a distributed transient response model for regional slope stability analysis to shallow landslides. Initiation points of over 3000 debris flows and effects of flooding from this storm are applied to the model. Geotechnical data used in the calculations are published data from samples of colluvium. Results from these calculations are compared with field observations such as landslide trigger location and timing of debris flows to assess how well the model predicts the spatial and temporal distribution. of landslide initiation locations. The model predicts many of the initiation locations in areas where debris flows are observed. Copyright ?? 2007 John Wiley & Sons, Ltd.

  18. Large Eddy Simulation of High Reynolds Number Complex Flows

    NASA Astrophysics Data System (ADS)

    Verma, Aman

    Marine configurations are subject to a variety of complex hydrodynamic phenomena affecting the overall performance of the vessel. The turbulent flow affects the hydrodynamic drag, propulsor performance and structural integrity, control-surface effectiveness, and acoustic signature of the marine vessel. Due to advances in massively parallel computers and numerical techniques, an unsteady numerical simulation methodology such as Large Eddy Simulation (LES) is well suited to study such complex turbulent flows whose Reynolds numbers (Re) are typically on the order of 10. 6. LES also promises increasedaccuracy over RANS based methods in predicting unsteady phenomena such as cavitation and noise production. This dissertation develops the capability to enable LES of high Re flows in complex geometries (e.g. a marine vessel) on unstructured grids and provide physical insight into the turbulent flow. LES is performed to investigate the geometry induced separated flow past a marine propeller attached to a hull, in an off-design condition called crashback. LES shows good quantitative agreement with experiments and provides a physical mechanism to explain the increase in side-force on the propeller blades below an advance ratio of J=-0.7. Fundamental developments in the dynamic subgrid-scale model for LES are pursued to improve the LES predictions, especially for complex flows on unstructured grids. A dynamic procedure is proposed to estimate a Lagrangian time scale based on a surrogate correlation without any adjustable parameter. The proposed model is applied to turbulent channel, cylinder and marine propeller flows and predicts improved results over other model variants due to a physically consistent Lagrangian time scale. A wall model is proposed for application to LES of high Reynolds number wall-bounded flows. The wall model is formulated as the minimization of a generalized constraint in the dynamic model for LES and applied to LES of turbulent channel flow at various Reynolds numbers up to Reτ=10000 and coarse grid resolutions to obtain significant improvement.

  19. Comparison of free flux flow in two single crystals of V3Si with slightly different pinning strengths

    NASA Astrophysics Data System (ADS)

    Gafarov, Ozarfar; Gapud, Albert A.; Moraes, Sunhee; Thompson, James R.; Christen, David K.; Reyes, Arneil P.

    2011-03-01

    Results of recent measurements on two very clean, single-crystal samples of the A15 superconductor V3 Si are presented. Magnetization and transport data confirm the ``clean'' quality of both samples, as manifested by: (i) high residual resistivity ratio, (ii) low critical current densities, and (iii) a ``peak'' effect in the field dependence of critical current. The (H,T) phase line for this peak effect is shifted in the slightly ``dirtier'' sample, which also has higher critical current density Jc (H). High-current Lorentz forces are applied on mixed-state vortices in order to induce the highly ordered free flux flow (FFF) phase, using the same methods as in previous work. A traditional model by Bardeen and Stephen (BS) predicts a simple field dependence of flux flow resistivity ρf (H), presuming a field-independent flux core size. A model by Kogan and Zelezhina (KZ) takes core size into account, and predicts a deviation from BS. In this study, ρf (H) is confirmed to be consistent with predictions of KZ, as will be discussed. Funded by Research Corporation and the National Science Foundation.

  20. Free flux flow in two single crystals of V3Si with differing pinning strengths

    NASA Astrophysics Data System (ADS)

    Gafarov, O.; Gapud, A. A.; Moraes, S.; Thompson, J. R.; Christen, D. K.; Reyes, A. P.

    2011-10-01

    Results of measurements on two very clean, single-crystal samples of the A15 superconductor V3Si are presented. Magnetization and transport data have confirmed the ``clean'' quality of both samples, as manifested by: (i) high residual electrical resistivity ratio, (ii) very low critical current densities Jc, and (iii) a ``peak'' effect in the field dependence of critical current. The (H,T) phase line for this peak effect is shifted down for the slightly ``dirtier'' sample, which consequently also has higher critical current density Jc(H). Large Lorentz forces are applied on mixed-state vortices via large currents, in order to induce the highly ordered free flux flow (FFF) phase, using experimental methods developed previously. The traditional model by Bardeen and Stephen (BS) predicts a simple field dependence of flux flow resistivity ρf(H) ˜ H/Hc2, presuming a field-independent flux core size. A model by Kogan and Zelezhina (KZ) takes into account the effects of magnetic field on core size, and predict a clear deviation from the linear BS dependence. In this study, ρf(H) is confirmed to be consistent with predictions of KZ.

  1. CFD study of the flow pattern in an ultrasonic horn reactor: Introducing a realistic vibrating boundary condition.

    PubMed

    Rahimi, Masoud; Movahedirad, Salman; Shahhosseini, Shahrokh

    2017-03-01

    Recently, great attention has been paid to predict the acoustic streaming field distribution inside the sonoreactors, induced by high-power ultrasonic wave generator. The focus of this paper is to model an ultrasonic vibrating horn and study the induced flow pattern with a newly developed moving boundary condition. The numerical simulation utilizes the modified cavitation model along with the "mixture" model for turbulent flow (RNG, k-ε), and a moving boundary condition with an oscillating parabolic-logarithmic profile, applied to the horn tip. This moving-boundary provides the situation in which the center of the horn tip vibrates stronger than that of the peripheral regions. The velocity field obtained by computational fluid dynamic was in a reasonably good agreement with the PIV results. The moving boundary model is more accurate since it better approximates the movement of the horn tip in the ultrasonic assisted process. From an optimizing point of view, the model with the new moving boundary is more suitable than the conventional models for design purposes because the displacement magnitude of the horn tip is the only fitting parameter. After developing and validating the numerical model, the model was utilized to predict various quantities such as cavitation zone, pressure field and stream function that are not experimentally feasible to measure. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Oscillatory fluid flow induces the osteogenic lineage commitment of mesenchymal stem cells: The effect of shear stress magnitude, frequency, and duration.

    PubMed

    Stavenschi, Elena; Labour, Marie-Noelle; Hoey, David A

    2017-04-11

    A potent regulator of bone anabolism is physical loading. However, it is currently unclear whether physical stimuli such as fluid shear within the marrow cavity is sufficient to directly drive the osteogenic lineage commitment of resident mesenchymal stem cells (MSC). Therefore, the objective of the study is to employ a systematic analysis of oscillatory fluid flow (OFF) parameters predicted to occur in vivo on early MSC osteogenic responses and late stage lineage commitment. MSCs were exposed to OFF of 1Pa, 2Pa and 5Pa magnitudes at frequencies of 0.5Hz, 1Hz and 2Hz for 1h, 2h and 4h of stimulation. Our findings demonstrate that OFF elicits a positive osteogenic response in MSCs in a shear stress magnitude, frequency, and duration dependent manner that is gene specific. Based on the mRNA expression of osteogenic markers Cox2, Runx2 and Opn after short-term fluid flow stimulation, we identified that a regime of 2Pa shear magnitude and 2Hz frequency induces the most robust and reliable upregulation in osteogenic gene expression. Furthermore, long-term mechanical stimulation utilising this regime, elicits a significant increase in collagen and mineral deposition when compared to static control demonstrating that mechanical stimuli predicted within the marrow is sufficient to directly drive osteogenesis. Copyright © 2017. Published by Elsevier Ltd.

  3. Triple flames in microgravity flame spread

    NASA Technical Reports Server (NTRS)

    Wichman, Indrek S.

    1995-01-01

    The purpose of this project is to examine in detail the influence of the triple flame structure on the flame spread problem. It is with an eye to the practical implications that this fundamental research project must be carried out. The microgravity configuration is preferable because buoyancy-induced stratification and vorticity generation are suppressed. A more convincing case can be made for comparing our predictions, which are zero-g, and any projected experiments. Our research into the basic aspects will employ two models. In one, flows of fuel and oxidizer from the lower wall are not considered. In the other, a convective flow is allowed. The non-flow model allows us to develop combined analytical and numerical solution methods that may be used in the more complicated convective-flow model.

  4. Towards Bridging the Gaps in Holistic Transition Prediction via Numerical Simulations

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan M.; Li, Fei; Duan, Lian; Chang, Chau-Lyan; Carpenter, Mark H.; Streett, Craig L.; Malik, Mujeeb R.

    2013-01-01

    The economic and environmental benefits of laminar flow technology via reduced fuel burn of subsonic and supersonic aircraft cannot be realized without minimizing the uncertainty in drag prediction in general and transition prediction in particular. Transition research under NASA's Aeronautical Sciences Project seeks to develop a validated set of variable fidelity prediction tools with known strengths and limitations, so as to enable "sufficiently" accurate transition prediction and practical transition control for future vehicle concepts. This paper provides a summary of selected research activities targeting the current gaps in high-fidelity transition prediction, specifically those related to the receptivity and laminar breakdown phases of crossflow induced transition in a subsonic swept-wing boundary layer. The results of direct numerical simulations are used to obtain an enhanced understanding of the laminar breakdown region as well as to validate reduced order prediction methods.

  5. Predicting SKS-splitting from 35 Myr of subduction and mantle flow evolution in the western Mediterranean

    NASA Astrophysics Data System (ADS)

    Chertova, Maria; Spakman, Wim; Faccenda, Manuele

    2017-04-01

    We investigate the development of mantle anisotropy associated with the evolution of the Rif-Gibraltar-Betic (RGB) slab of the western Mediterranean and predict SKS-splitting directions for comparison with the recent observations compiled in Diaz and Gallart (2014). Our numerical model of slab evolution starts at 35 Ma and builds on our on recent work (Chertova et al., 2014) with the extension of imposing mantle flow velocities on the side boundaries of the model (Chertova et al., 2017). For the calculation of the evolution of finite strain deformation from the mantle flow field and for prediction of SKS-splitting directions we use the modified D-Rex program of Faccenda (2014). We test the predicted splitting observations against present-day shear wave splitting observations for subduction models with open boundary conditions (Chertova, 2014) and for models with various prescribed mantle flow conditions on the model side boundaries. The latter are predicted time-dependent (1 Myr time steps) velocity boundary conditions computed from back-advection of a temperature and density model of the present-day mantle scaled from a global seismic tomography model (Steinberger et al., 2015). These boundary conditions where used recently to demonstrate the relative insensitivity of RGB slab position and overall slab morphology for external mantle flow (Chertova et al., 2017). Using open boundaries only we obtain a poor to moderate fit between predicted and observed splitting directions after 35 Myr of slab and mantle flow evolution. In contrast, a good fit is obtained when imposing the computed mantle flow velocities on the western, southern, and northern boundaries during 35 Myr of model evolution. This successful model combines local slab-driven mantle flow with remotely forced mantle flow. We are in the process to repeat these calculations for shorter periods of mantle flow evolution to determine how much of past mantle flow is implicitly recorded in present-day observation of SKS splitting. In combination with our recent work on the influence of external mantle flow on RGB slab evolution (Chertova et al., 2017) we have also demonstrated that (1) the preferred slab evolution model of Chertova et al. (2014; their "Scenario 1" in which RGB subduction starts at the Baleares margin some 35 Myr ago and then rolls back southward to Africa and next to the W and finally to NW to create the future Rif-Gibraltar-Betics cordillera), is robust with respect to the impact of global mantle flow for the past 35 Myr and that (2) only the combination of global flow with local slab-induced flow leads to mantle anisotropy prediction that consistent with present-day observations of present-day SKS splitting. Steinberger, B., W.Spakman, P.Japsen and T.H.Torsvik (2015), The key role of global solid Earth processes in the late Cenozoic intensification of Greenland glaciation. Terra Nova, 27 Chertova, M.V., W.Spakman, T. Geenen, A.P. van den Berg, D.J.J. van Hinsbergen (2014), Underpinning tectonic reconstructions of the western Mediterranean region with dynamic slab evolution from 3-D numerical modeling. J. Geophys. Res. Solid Earth Chertova, M., W.Spakman and B.Steinberger (2017), Mantle flow influence on subduction evolution, submitted to J. Geophys. Res. Solid Earth Faccenda, M. (2014), Mid mantle seismic anisotropy around subduction zones, Physics of the Earth and Planetary Interiors Diaz, J., and J. Gallart (2014) Seismic anisotropy from the Variscan core of Iberia to the western African Craton: New constraints on upper mantle flow at regional scale. Earth and Planetary Science Letters

  6. Structural steady states and relaxation oscillations in a two-phase fluid under shear flow: Experiments and phenomenological model

    NASA Astrophysics Data System (ADS)

    Courbin, L.; Benayad, A.; Panizza, P.

    2006-01-01

    By means of several rheophysics techniques, we report on an extensive study of the couplings between flow and microstructures in a two-phase fluid made of lamellar (Lα) and sponge (L3) phases. Depending on the nature of the imposed dynamical parameter (stress or shear rate) and on the experimental conditions (brine salinity or temperature), we observe several different structural steady states consisting of either multilamellar droplets (with or without a long range order) or elongated (L3) phase domains. Two different astonishing phenomena, shear-induced phase inversion and relaxation oscillations, are observed. We show that (i) phase inversion is related to a shear-induced topological change between monodisperse multilamellar droplets and elongated structures and (ii) droplet size relaxation oscillations result from a shear-induced change of the surface tension between both coexisting (Lα) and (L3) phases. To explain these relaxation oscillations, we present a phenomenological model and compare its numerical predictions to our experimental results.

  7. Thermocapillary droplet actuation on structured solid surfaces

    NASA Astrophysics Data System (ADS)

    Karapetsas, George; Chamakos, Nikolaos T.; Papathanasiou, Athanasios G.

    2017-11-01

    The present work investigates, through 2D and 3D finite element simulations, the thermocapillary-driven flow inside a droplet which resides on a non-uniformly heated patterned surface. We employ a recently proposed sharp-interface scheme capable of efficiently modelling the flow over complicate surfaces and consider a wide range of substrate wettabilities, i.e. from hydrophilic to super-hydrophobic surfaces. Our simulations indicate that due to the presence of the solid structures and the induced effect of contact angle hysteresis, inherently predicted by our model, a critical thermal gradient arises beyond which droplet migration is possible, in line with previous experimental observations. The migration velocity as well as the direction of motion depends on the combined action of the net mechanical force along the contact line and the thermocapillary induced flow at the liquid-air interface. We also show that through a proper control and design of the substrate wettability, the contact angle hysteresis and the induced flow field it is possible to manipulate the droplet dynamics, e.g. controlling its motion along a predefined track or entrapping by a wetting defect a droplet based on its size as well as providing appropriate conditions for enhanced mixing inside the droplet. Funding from the European Research Council under the Europeans Community's Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement no. [240710] is acknowledged.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merzari, E.; Yuan, Haomin; Kraus, A.

    The NEAMS program aims to develop an integrated multi-physics simulation capability “pellet-to-plant” for the design and analysis of future generations of nuclear power plants. In particular, the Reactor Product Line code suite's multi-resolution hierarchy is being designed to ultimately span the full range of length and time scales present in relevant reactor design and safety analyses, as well as scale from desktop to petaflop computing platforms. Flow-induced vibration (FIV) is widespread problem in energy systems because they rely on fluid movement for energy conversion. Vibrating structures may be damaged as fatigue or wear occurs. Given the importance of reliable componentsmore » in the nuclear industry, flow-induced vibration has long been a major concern in safety and operation of nuclear reactors. In particular, nuclear fuel rods and steam generators have been known to suffer from flow-induced vibration and related failures. Advanced reactors, such as integral Pressurized Water Reactors (PWRs) considered for Small Modular Reactors (SMR), often rely on innovative component designs to meet cost and safety targets. One component that is the subject of advanced designs is the steam generator, some designs of which forego the usual shell-and-tube architecture in order to fit within the primary vessel. In addition to being more cost- and space-efficient, such steam generators need to be more reliable, since failure of the primary vessel represents a potential loss of coolant and a safety concern. A significant amount of data exists on flow-induced vibration in shell-and-tube heat exchangers, and heuristic methods are available to predict their occurrence based on a set of given assumptions. In contrast, advanced designs have far less data available. Advanced modeling and simulation based on coupled structural and fluid simulations have the potential to predict flow-induced vibration in a variety of designs, reducing the need for expensive experimental programs, especially at the design stage. Over the past five years, the Reactor Product Line has developed the integrated multi-physics code suite SHARP. The goal of developing such a tool is to perform multi-physics neutronics, thermal/fluid, and structural mechanics modeling of the components inside the full reactor core or portions of it with a user-specified fidelity. In particular SHARP contains high-fidelity single-physics codes Diablo for structural mechanics and Nek5000 for fluid mechanics calculations. Both codes are state-of-the-art, highly scalable tools that have been extensively validated. These tools form a strong basis on which to build a flow-induced vibration modeling capability. In this report we discuss one-way coupled calculations performed with Nek5000 and Diablo aimed at simulating available FIV experiments in helical steam generators in the turbulent buffeting regime. In this regime one-way coupling is judged sufficient because the pressure loads do not cause substantial displacements. It is also the most common source of vibration in helical steam generators at the low flows expected in integral PWRs. The legacy data is obtained from two datasets developed at Argonne and B&W.« less

  9. Computation of turbulent flows over backward and forward-facing steps using a near-wall Reynolds stress model

    NASA Technical Reports Server (NTRS)

    Ko, Sung HO

    1993-01-01

    Separation and reattachment of turbulent shear layers is observed in many important engineering applications, yet it is poorly understood. This has motivated many studies on understanding and predicting the processes of separation and reattachment of turbulent shear layers. Both of the situations in which separation is induced by adverse pressure gradient, or by discontinuities of geometry, have attracted attention of turbulence model developers. Formulation of turbulence closure models to describe the essential features of separated turbulent flows accurately is still a formidable task. Computations of separated flows associated with sharp-edged bluff bodies are described. For the past two decades, the backward-facing step flow, the simplest separated flow, has been a popular test case for turbulence models. Detailed studies on the performance of many turbulence models, including two equation turbulence models and Reynolds stress models, for flows over steps can be found in the papers by Thangam & Speziale and Lasher & Taulbee). These studies indicate that almost all the existing turbulence models fail to accurately predict many important features of back step flow such as reattachment length, recovery rate of the redeveloping boundary layers downstream of the reattachment point, streamlines near the reattachment point, and the skin friction coefficient. The main objectives are to calculate flows over backward and forward-facing steps using the NRSM and to make use of the newest DNS data for detailed comparison. This will give insights for possible improvements of the turbulence model.

  10. An Experimental and Computational Investigation of Oscillating Airfoil Unsteady Aerodynamics at Large Mean Incidence

    NASA Technical Reports Server (NTRS)

    Capece, Vincent R.; Platzer, Max F.

    2003-01-01

    A major challenge in the design and development of turbomachine airfoils for gas turbine engines is high cycle fatigue failures due to flutter and aerodynamically induced forced vibrations. In order to predict the aeroelastic response of gas turbine airfoils early in the design phase, accurate unsteady aerodynamic models are required. However, accurate predictions of flutter and forced vibration stress at all operating conditions have remained elusive. The overall objectives of this research program are to develop a transition model suitable for unsteady separated flow and quantify the effects of transition on airfoil steady and unsteady aerodynamics for attached and separated flow using this model. Furthermore, the capability of current state-of-the-art unsteady aerodynamic models to predict the oscillating airfoil response of compressor airfoils over a range of realistic reduced frequencies, Mach numbers, and loading levels will be evaluated through correlation with benchmark data. This comprehensive evaluation will assess the assumptions used in unsteady aerodynamic models. The results of this evaluation can be used to direct improvement of current models and the development of future models. The transition modeling effort will also make strides in improving predictions of steady flow performance of fan and compressor blades at off-design conditions. This report summarizes the progress and results obtained in the first year of this program. These include: installation and verification of the operation of the parallel version of TURBO; the grid generation and initiation of steady flow simulations of the NASA/Pratt&Whitney airfoil at a Mach number of 0.5 and chordal incidence angles of 0 and 10 deg.; and the investigation of the prediction of laminar separation bubbles on a NACA 0012 airfoil.

  11. A Unified Methodology for Aerospace Systems Integration Based on Entropy and the Second Law of Thermodynamics: Aerodynamics Assessment

    DTIC Science & Technology

    2004-08-01

    Based on Exergy Methods”, Journal of Aircraft Vol.40, No.1, January-February 2003. [2] Bejan, A., “Constructal Theory: Tree-Shaped Flows and Energy... Journal of Aircraft Vol. 36, No. 2, March- April 1999. [15] Bourdin, P., Numerical Prediction of Wing-Tip Effects On Lift-Induced Drag. International Council of the Aeronautical Sciences, 2002. ...methods were used to calculate the induced drag. The objective of this project is to relate work-potential losses ( exergy destruction) to the

  12. Effect of hypolimnetic oxygenation on oxygen depletion rates in two water-supply reservoirs.

    PubMed

    Gantzer, Paul A; Bryant, Lee D; Little, John C

    2009-04-01

    Oxygenation systems, such as bubble-plume diffusers, are used to improve water quality by replenishing dissolved oxygen (DO) in the hypolimnia of water-supply reservoirs. The diffusers induce circulation and mixing, which helps distribute DO throughout the hypolimnion. Mixing, however, has also been observed to increase hypolimnetic oxygen demand (HOD) during system operation, thus accelerating oxygen depletion. Two water-supply reservoirs (Spring Hollow Reservoir (SHR) and Carvins Cove Reservoir (CCR)) that employ linear bubble-plume diffusers were studied to quantify diffuser effects on HOD. A recently validated plume model was used to predict oxygen addition rates. The results were used together with observed oxygen accumulation rates to evaluate HOD over a wide range of applied gas flow rates. Plume-induced mixing correlated well with applied gas flow rate and was observed to increase HOD. Linear relationships between applied gas flow rate and HOD were found for both SHR and CCR. HOD was also observed to be independent of bulk hypolimnion oxygen concentration, indicating that HOD is controlled by induced mixing. Despite transient increases in HOD, oxygenation caused an overall decrease in background HOD, as well as a decrease in induced HOD during diffuser operation, over several years. This suggests that the residual or background oxygen demand decreases from one year to the next. Despite diffuser-induced increases in HOD, hypolimnetic oxygenation remains a viable method for replenishing DO in thermally-stratified water-supply reservoirs such as SHR and CCR.

  13. Relationship Between the Urine Flow Rate and Risk of Contrast-Induced Nephropathy After Emergent Percutaneous Coronary Intervention

    PubMed Central

    Liu, Yong; Lin, Lixia; Li, Yun; Li, Hualong; Wu, Deng-Xuan; Zhao, Jian-bin; Lian, Dan; Zhou, Yingling; Liu, Yuanhui; Ye, Piao; Ran, Peng; Duan, Chongyang; Chen, Shiqun; Chen, Pingyan; Xian, Ying; Chen, Jiyan; Tan, Ning

    2015-01-01

    Abstract A low urine flow rate is a marker of acute kidney injury. However, it is unclear whether a high urine flow rate is associated with a reduced risk of contrast-induced nephropathy (CIN) in high-risk patients. We conducted this study to evaluate the predictive value of the urine flow rate for the risk of CIN following emergent percutaneous coronary intervention (PCI). We prospectively examined 308 patients undergoing emergent PCI who provided consent. The predictive value of the 24-hour postprocedural urine flow rate, adjusted by weight (UR/W, mL/kg/h) and divided into quartiles, for the risk of CIN was assessed using multivariate logistic regression analysis. The cumulative incidence of CIN was 24.4%. In particular, CIN was observed in 29.5%, 19.5%, 16.7%, and 32.0% of cases in the UR/W quartile (Q)-1 (≤0.94 mL/kg/h), Q2 (0.94–1.30 mL/kg/h), Q3 (1.30–1.71 mL/kg/h), and Q4 (≥1.71 mL/kg/h), respectively. Moreover, in-hospital death was noted in 7.7%, 3.9%, 5.1%, and 5.3% of patients in Q1, Q2, Q3, and Q4, respectively. After adjusting for potential confounding predictors, multivariate analysis indicated that compared with the moderate urine flow rate quartiles (Q2 + Q3), a high urine flow rate (Q4) (odds ratio [OR], 2.69; 95% confidence interval [CI], 1.27–5.68; P = 0.010) and low urine flow rate (Q1) (OR, 2.23; 95% CI, 1.03–4.82; P = 0.041) were significantly associated with an increased risk of CIN. Moreover, a moderate urine flow rate (0.94–1.71 mL/kg/h) was significantly associated with a decreased risk of mortality. Our data suggest that higher and lower urine flow rates were significantly associated with an increased risk of CIN after emergent PCI, and a moderate urine flow rate (0.94–1.71 mL/kg/h) may be associated with a decreased risk of CIN with a good long-term prognosis after emergent PCI. PMID:26683946

  14. Relationship Between the Urine Flow Rate and Risk of Contrast-Induced Nephropathy After Emergent Percutaneous Coronary Intervention.

    PubMed

    Liu, Yong; Lin, Lixia; Li, Yun; Li, Hualong; Wu, Deng-Xuan; Zhao, Jian-bin; Lian, Dan; Zhou, Yingling; Liu, Yuanhui; Ye, Piao; Ran, Peng; Duan, Chongyang; Chen, Shiqun; Chen, Pingyan; Xian, Ying; Chen, Jiyan; Tan, Ning

    2015-12-01

    A low urine flow rate is a marker of acute kidney injury. However, it is unclear whether a high urine flow rate is associated with a reduced risk of contrast-induced nephropathy (CIN) in high-risk patients. We conducted this study to evaluate the predictive value of the urine flow rate for the risk of CIN following emergent percutaneous coronary intervention (PCI). We prospectively examined 308 patients undergoing emergent PCI who provided consent. The predictive value of the 24-hour postprocedural urine flow rate, adjusted by weight (UR/W, mL/kg/h) and divided into quartiles, for the risk of CIN was assessed using multivariate logistic regression analysis. The cumulative incidence of CIN was 24.4%. In particular, CIN was observed in 29.5%, 19.5%, 16.7%, and 32.0% of cases in the UR/W quartile (Q)-1 (≤0.94  mL/kg/h), Q2 (0.94-1.30  mL/kg/h), Q3 (1.30-1.71  mL/kg/h), and Q4 (≥1.71  mL/kg/h), respectively. Moreover, in-hospital death was noted in 7.7%, 3.9%, 5.1%, and 5.3% of patients in Q1, Q2, Q3, and Q4, respectively. After adjusting for potential confounding predictors, multivariate analysis indicated that compared with the moderate urine flow rate quartiles (Q2 + Q3), a high urine flow rate (Q4) (odds ratio [OR], 2.69; 95% confidence interval [CI], 1.27-5.68; P = 0.010) and low urine flow rate (Q1) (OR, 2.23; 95% CI, 1.03-4.82; P = 0.041) were significantly associated with an increased risk of CIN. Moreover, a moderate urine flow rate (0.94-1.71  mL/kg/h) was significantly associated with a decreased risk of mortality. Our data suggest that higher and lower urine flow rates were significantly associated with an increased risk of CIN after emergent PCI, and a moderate urine flow rate (0.94-1.71  mL/kg/h) may be associated with a decreased risk of CIN with a good long-term prognosis after emergent PCI.

  15. Computational Analysis of a Chevron Nozzle Uniquely Tailored for Propulsion Airframe Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Massey, Steven J.; Elmiligui, Alaa A.; Hunter, Craig A.; Thomas, Russell H.; Pao, S. Paul; Mengle, Vinod G.

    2006-01-01

    A computational flow field and predicted jet noise source analysis is presented for asymmetrical fan chevrons on a modern separate flow nozzle at take off conditions. The propulsion airframe aeroacoustic asymmetric fan nozzle is designed with an azimuthally varying chevron pattern with longer chevrons close to the pylon. A baseline round nozzle without chevrons and a reference nozzle with azimuthally uniform chevrons are also studied. The intent of the asymmetric fan chevron nozzle was to improve the noise reduction potential by creating a favorable propulsion airframe aeroacoustic interaction effect between the pylon and chevron nozzle. This favorable interaction and improved noise reduction was observed in model scale tests and flight test data and has been reported in other studies. The goal of this study was to identify the fundamental flow and noise source mechanisms. The flow simulation uses the asymptotically steady, compressible Reynolds averaged Navier-Stokes equations on a structured grid. Flow computations are performed using the parallel, multi-block, structured grid code PAB3D. Local noise sources were mapped and integrated computationally using the Jet3D code based upon the Lighthill Acoustic Analogy with anisotropic Reynolds stress modeling. In this study, trends of noise reduction were correctly predicted. Jet3D was also utilized to produce noise source maps that were then correlated to local flow features. The flow studies show that asymmetry of the longer fan chevrons near the pylon work to reduce the strength of the secondary flow induced by the pylon itself, such that the asymmetric merging of the fan and core shear layers is significantly delayed. The effect is to reduce the peak turbulence kinetic energy and shift it downstream, reducing overall noise production. This combined flow and noise prediction approach has yielded considerable understanding of the physics of a fan chevron nozzle designed to include propulsion airframe aeroacoustic interaction effects.

  16. Fluid Flow and Solidification Under Combined Action of Magnetic Fields and Microgravity

    NASA Technical Reports Server (NTRS)

    Li, B. Q.; Shu, Y.; Li, K.; deGroh, H. C.

    2002-01-01

    Mathematical models, both 2-D and 3-D, are developed to represent g-jitter induced fluid flows and their effects on solidification under combined action of magnetic fields and microgravity. The numerical model development is based on the finite element solution of governing equations describing the transient g-jitter driven fluid flows, heat transfer and solutal transport during crystal growth with and without an applied magnetic field in space vehicles. To validate the model predictions, a ground-based g-jitter simulator is developed using the oscillating wall temperatures where timely oscillating fluid flows are measured using a laser PIV system. The measurements are compared well with numerical results obtained from the numerical models. Results show that a combined action derived from magnetic damping and microgravity can be an effective means to control the melt flow and solutal transport in space single crystal growth systems.

  17. MR imaging of apparent 3He gas transport in narrow pipes and rodent airways

    NASA Astrophysics Data System (ADS)

    Minard, Kevin R.; Jacob, Richard E.; Laicher, Gernot; Einstein, Daniel R.; Kuprat, Andrew P.; Corley, Richard A.

    2008-10-01

    High sensitivity makes hyperpolarized 3He an attractive signal source for visualizing gas flow with magnetic resonance (MR) imaging. Its rapid Brownian motion, however, can blur observed flow lamina and alter measured diffusion rates when excited nuclei traverse shear-induced velocity gradients during data acquisition. Here, both effects are described analytically, and predicted values for measured transport during laminar flow through a straight, 3.2-mm diameter pipe are validated using two-dimensional (2D) constant-time images of different binary gas mixtures. Results show explicitly how measured transport in narrow conduits is characterized by apparent values that depend on underlying gas dynamics and imaging time. In ventilated rats, this is found to obscure acquired airflow images. Nevertheless, flow splitting at airway branches is still evident and use of 3D vector flow mapping is shown to reveal surprising detail that highlights the correlation between gas dynamics and lung structure.

  18. Limits of the potential flow approach to the single-mode Rayleigh-Taylor problem

    NASA Astrophysics Data System (ADS)

    Ramaprabhu, P.; Dimonte, Guy; Young, Yuan-Nan; Calder, A. C.; Fryxell, B.

    2006-12-01

    We report on the behavior of a single-wavelength Rayleigh-Taylor flow at late times. The calculations were performed in a long square duct (λ×λ×8λ) , using four different numerical simulations. In contradiction with potential flow theories that predict a constant terminal velocity, the single-wavelength Rayleigh-Taylor problem exhibits late-time acceleration. The onset of acceleration occurs as the bubble penetration depth exceeds the diameter of bubbles, and is observed for low and moderate density differences. Based on our simulations, we provide a phenomenological description of the observed acceleration, and ascribe this behavior to the formation of Kelvin-Helmholtz vortices on the bubble-spike interface that diminish the friction drag, while the associated induced flow propels the bubbles forward. For large density ratios, the formation of secondary instabilities is suppressed, and the bubbles remain terminal consistent with potential flow models.

  19. Experimental Investigation of Laser-sustained Plasma in Supersonic Argon Flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sperber, David; Eckel, Hans-Albert; Moessinger, Peter

    Laser-induced energy deposition is widely discussed as a flow control technique in supersonic transportation. In case of thermal laser-plasma upstream of a blunt body, a substantial adaptation of shock wave geometry and magnitude of wave drag is predicted. Related to the research on laser supported detonation, the paper describes the implementation of laser-sustained plasma in a supersonic Argon jet. The stable plasma state is generated by the intersection of a Q-switched Nd:YAG-laser and a continuous wave CO{sub 2}-laser beams, for ignition and maintenance of the plasma respectively. A miniature supersonic Ludwieg tube test facility generates a supersonic jet at velocitiesmore » of Mach 2.1. Modifications of the flow and plasma conditions are investigated and characterized by Schlieren flow visualisation, laser energy transmission and plasma radiation measurements. The results include the discussions of the flow field as well as the required laser and gas parameters.« less

  20. A Warning System for Rainfall-Induced Debris Flows: A Integrated Remote Sensing and Data Mining Approach

    NASA Astrophysics Data System (ADS)

    Elkadiri, R.; Sultan, M.; Nurmemet, I.; Al Harbi, H.; Youssef, A.; Elbayoumi, T.; Zabramwi, Y.; Alzahrani, S.; Bahamil, A.

    2014-12-01

    We developed methodologies that heavily rely on observations extracted from a wide-range of remote sensing data sets (TRMM, Landsat ETM, ENVISAT, ERS, SPOT, Orbview, GeoEye) to develop a warning system for rainfall-induced debris flows in the Jazan province in the Red Sea Hills. The developed warning system integrates static controlling factors and dynamic triggering factors. The algorithm couples a susceptibility map with a rainfall I-D curve, both are developed using readily available remote sensing datasets. The static susceptibility map was constructed as follows: (1) an inventory was compiled for debris flows identified from high spatial resolution datasets and field verified; (2) 10 topographical and land cover predisposing factors (i.e. slope angle, slope aspect, normalized difference vegetation index, topographical position index, stream power index, flow accumulation, distance to drainage line, soil weathering index, elevation and topographic wetness index) were generated; (3) an artificial neural network model (ANN) was constructed, optimized and validated; (4) a debris-flow susceptibility map was generated using the ANN model and refined (using differential backscatter coefficient radar images). The rainfall threshold curve was derived as follows: (1) a spatial database was generated to host temporal co-registered and radiometrically and atmospherically corrected Landsat images; (2) temporal change detection images were generated for pairs of successively acquired Landsat images and criteria were established to identify "the change" related to debris flows, (3) the duration and intensity of the precipitation event that caused each of the identified debris flow events was assumed to be that of the most intense event within the investigated period; and (4) the I-D curve was extracted using data (intensity and duration of precipitation) for the inventoried events. Our findings include: (1) the spatial controlling factors with the highest predictive power of debris-flow locations are: topographic position index, slope, NDVI and distance to drainage line; (2) the ANN model showed an excellent prediction performance (area under receiver operating characteristic [ROC] curve: 0.961); 3) the preliminary I-D curve is I=39.797×D-0.7355 (I: Intensity and D: duration).

  1. Experimental, Theoretical, and Computational Investigation of Separated Nozzle Flows

    NASA Technical Reports Server (NTRS)

    Hunter, Craig A.

    2004-01-01

    A detailed experimental, theoretical, and computational study of separated nozzle flows has been conducted. Experimental testing was performed at the NASA Langley 16-Foot Transonic Tunnel Complex. As part of a comprehensive static performance investigation, force, moment, and pressure measurements were made and schlieren flow visualization was obtained for a sub-scale, non-axisymmetric, two-dimensional, convergent- divergent nozzle. In addition, two-dimensional numerical simulations were run using the computational fluid dynamics code PAB3D with two-equation turbulence closure and algebraic Reynolds stress modeling. For reference, experimental and computational results were compared with theoretical predictions based on one-dimensional gas dynamics and an approximate integral momentum boundary layer method. Experimental results from this study indicate that off-design overexpanded nozzle flow was dominated by shock induced boundary layer separation, which was divided into two distinct flow regimes; three- dimensional separation with partial reattachment, and fully detached two-dimensional separation. The test nozzle was observed to go through a marked transition in passing from one regime to the other. In all cases, separation provided a significant increase in static thrust efficiency compared to the ideal prediction. Results indicate that with controlled separation, the entire overexpanded range of nozzle performance would be within 10% of the peak thrust efficiency. By offering savings in weight and complexity over a conventional mechanical exhaust system, this may allow a fixed geometry nozzle to cover an entire flight envelope. The computational simulation was in excellent agreement with experimental data over most of the test range, and did a good job of modeling internal flow and thrust performance. An exception occurred at low nozzle pressure ratios, where the two-dimensional computational model was inconsistent with the three-dimensional separation observed in the experiment. In general, the computation captured the physics of the shock boundary layer interaction and shock induced boundary layer separation in the nozzle, though there were some differences in shock structure compared to experiment. Though minor, these differences could be important for studies involving flow control or thrust vectoring of separated nozzles. Combined with other observations, this indicates that more detailed, three-dimensional computational modeling needs to be conducted to more realistically simulate shock-separated nozzle flows.

  2. A computational model for simulating solute transport and oxygen consumption along the nephrons

    PubMed Central

    Vallon, Volker; Edwards, Aurélie

    2016-01-01

    The goal of this study was to investigate water and solute transport, with a focus on sodium transport (TNa) and metabolism along individual nephron segments under differing physiological and pathophysiological conditions. To accomplish this goal, we developed a computational model of solute transport and oxygen consumption (QO2) along different nephron populations of a rat kidney. The model represents detailed epithelial and paracellular transport processes along both the superficial and juxtamedullary nephrons, with the loop of Henle of each model nephron extending to differing depths of the inner medulla. We used the model to assess how changes in TNa may alter QO2 in different nephron segments and how shifting the TNa sites alters overall kidney QO2. Under baseline conditions, the model predicted a whole kidney TNa/QO2, which denotes the number of moles of Na+ reabsorbed per moles of O2 consumed, of ∼15, with TNa efficiency predicted to be significantly greater in cortical nephron segments than in medullary segments. The TNa/QO2 ratio was generally similar among the superficial and juxtamedullary nephron segments, except for the proximal tubule, where TNa/QO2 was ∼20% higher in superficial nephrons, due to the larger luminal flow along the juxtamedullary proximal tubules and the resulting higher, flow-induced transcellular transport. Moreover, the model predicted that an increase in single-nephron glomerular filtration rate does not significantly affect TNa/QO2 in the proximal tubules but generally increases TNa/QO2 along downstream segments. The latter result can be attributed to the generally higher luminal [Na+], which raises paracellular TNa. Consequently, vulnerable medullary segments, such as the S3 segment and medullary thick ascending limb, may be relatively protected from flow-induced increases in QO2 under pathophysiological conditions. PMID:27707705

  3. Unsteady aerodynamic analysis of space shuttle vehicles. Part 2: Steady and unsteady aerodynamics of sharp-edged delta wings

    NASA Technical Reports Server (NTRS)

    Ericsson, L. E.; Reding, J. P.

    1973-01-01

    An analysis of the steady and unsteady aerodynamics of sharp-edged slender wings has been performed. The results show that slender wing theory can be modified to give the potential flow static and dynamic characteristics in incompressible flow. A semiempirical approximation is developed for the vortex-induced loads, and it is shown that the analytic approximation for sharp-edged slender wings gives good prediction of experimentally determined steady and unsteady aerodynamics at M = 0 and M = 1. The predictions are good not only for delta wings but also for so-called arrow and diamond wings. The results indicate that the effects of delta planform lifting surfaces can be included in a simple manner when determining elastic launch vehicle dynamic characteristics. For Part 1 see (N73-32763).

  4. How the IMF By induces a By component in the closed magnetosphere and how it leads to asymmetric currents and convection patterns in the two hemispheres

    NASA Astrophysics Data System (ADS)

    Tenfjord, P.; Østgaard, N.; Snekvik, K.; Laundal, K. M.; Reistad, J. P.; Haaland, S.; Milan, S. E.

    2015-11-01

    We used the Lyon-Fedder-Mobarry global magnetohydrodynamics model to study the effects of the interplanetary magnetic field (IMF) By component on the coupling between the solar wind and magnetosphere-ionosphere system. When the IMF reconnects with the terrestrial magnetic field with IMF By≠0, flux transport is asymmetrically distributed between the two hemispheres. We describe how By is induced in the closed magnetosphere on both the dayside and nightside and present the governing equations. The magnetosphere imposes asymmetric forces on the ionosphere, and the effects on the ionospheric flow are characterized by distorted convection cell patterns, often referred to as "banana" and "orange" cell patterns. The flux asymmetrically added to the lobes results in a nonuniform induced By in the closed magnetosphere. By including the dynamics of the system, we introduce a mechanism that predicts asymmetric Birkeland currents at conjugate foot points. Asymmetric Birkeland currents are created as a consequence of y directed tension contained in the return flow. Associated with these currents, we expect fast localized ionospheric azimuthal flows present in one hemisphere but not necessarily in the other. We also present current density measurements from Active Magnetosphere and Planetary Electrodynamics Response Experiment that are consistent with this picture. We argue that the induced By produces asymmetrical Birkeland currents as a consequence of asymmetric stress balance between the hemispheres. Such an asymmetry will also lead to asymmetrical foot points and asymmetries in the azimuthal flow in the ionosphere. These phenomena should therefore be treated in a unified way.

  5. Anisotropic dispersion and attenuation due to wave-induced fluid flow: Quasi-static finite element modeling in poroelastic solids

    NASA Astrophysics Data System (ADS)

    Wenzlau, F.; Altmann, J. B.; Müller, T. M.

    2010-07-01

    Heterogeneous porous media such as hydrocarbon reservoir rocks are effectively described as anisotropic viscoelastic solids. They show characteristic velocity dispersion and attenuation of seismic waves within a broad frequency band, and an explanation for this observation is the mechanism of wave-induced pore fluid flow. Various theoretical models quantify dispersion and attenuation of normal incident compressional waves in finely layered porous media. Similar models of shear wave attenuation are not known, nor do general theories exist to predict wave-induced fluid flow effects in media with a more complex distribution of medium heterogeneities. By using finite element simulations of poroelastic relaxation, the total frequency-dependent complex stiffness tensor can be computed for a porous medium with arbitrary internal heterogeneity. From the stiffness tensor, velocity dispersion and frequency-dependent attenuation are derived for compressional and shear waves as a function of the angle of incidence. We apply our approach to the case of layered media and to that of an ellipsoidal poroelastic inclusion. In the case of the ellipsoidal inclusion, compressional and shear wave modes show significant attenuation, and the characteristic frequency dependence of the effect is governed by the spatiotemporal scale of the pore fluid pressure relaxation. In our anisotropic examples, the angle dependence of the attenuation is stronger than that of the velocity dispersion. It becomes clear that the spatial attenuation patterns show specific characteristics of wave-induced fluid flow, implying that anisotropic attenuation measurements may contribute to the inversion of fluid transport properties in heterogeneous porous media.

  6. Vortex forcing model for turbulent flow over spanwise-heterogeneous topogrpahies: scaling arguments and similarity solution

    NASA Astrophysics Data System (ADS)

    Anderson, William; Yang, Jianzhi

    2017-11-01

    Spanwise surface heterogeneity beneath high-Reynolds number, fully-rough wall turbulence is known to induce mean secondary flows in the form of counter-rotating streamwise vortices. The secondary flows are a manifestation of Prandtl's secondary flow of the second kind - driven and sustained by spatial heterogeneity of components of the turbulent (Reynolds averaged) stress tensor. The spacing between adjacent surface heterogeneities serves as a control on the spatial extent of the counter-rotating cells, while their intensity is controlled by the spanwise gradient in imposed drag (where larger gradients associated with more dramatic transitions in roughness induce stronger cells). In this work, we have performed an order of magnitude analysis of the mean (Reynolds averaged) streamwise vorticity transport equation, revealing the scaling dependence of circulation upon spanwise spacing. The scaling arguments are supported by simulation data. Then, we demonstrate that mean streamwise velocity can be predicted a priori via a similarity solution to the mean streamwise vorticity transport equation. A vortex forcing term was used to represent the affects of spanwise topographic heterogeneity within the flow. Efficacy of the vortex forcing term was established with large-eddy simulation cases, wherein vortex forcing model parameters were altered to capture different values of spanwise spacing.

  7. Binary Oscillatory Crossflow Electrophoresis

    NASA Technical Reports Server (NTRS)

    Molloy, Richard F.; Gallagher, Christopher T.; Leighton, David T., Jr.

    1997-01-01

    Electrophoresis has long been recognized as an effective analytic technique for the separation of proteins and other charged species, however attempts at scaling up to accommodate commercial volumes have met with limited success. In this report we describe a novel electrophoretic separation technique - Binary Oscillatory Crossflow Electrophoresis (BOCE). Numerical simulations indicate that the technique has the potential for preparative scale throughputs with high resolution, while simultaneously avoiding many problems common to conventional electrophoresis. The technique utilizes the interaction of an oscillatory electric field and a transverse oscillatory shear flow to create an active binary filter for the separation of charged protein species. An oscillatory electric field is applied across the narrow gap of a rectangular channel inducing a periodic motion of charged protein species. The amplitude of this motion depends on the dimensionless electrophoretic mobility, alpha = E(sub o)mu/(omega)d, where E(sub o) is the amplitude of the electric field oscillations, mu is the dimensional mobility, omega is the angular frequency of oscillation and d is the channel gap width. An oscillatory shear flow is induced along the length of the channel resulting in the separation of species with different mobilities. We present a model that predicts the oscillatory behavior of charged species and allows estimation of both the magnitude of the induced convective velocity and the effective diffusivity as a function of a in infinitely long channels. Numerical results indicate that in addition to the mobility dependence, the steady state behavior of solute species may be strongly affected by oscillating fluid into and out of the active electric field region at the ends of the cell. The effect is most pronounced using time dependent shear flows of the same frequency (cos((omega)t)) flow mode) as the electric field oscillations. Under such conditions, experiments indicate that solute is drawn into the cell from reservoirs at both ends of the cell leading to a large mass build up. As a consequence, any initially induced mass flux will vanish after short times. This effect was not captured by the infinite channel model and hence numerical and experimental results deviated significantly. The revised model including finite cell lengths and reservoir volumes allowed quantitative predictions of the time history of the concentration profile throughout the system. This latter model accurately describes the fluxes observed for both oscillatory flow modes in experiments using single protein species. Based on the results obtained from research funded under NASA grant NAG-8-1080.S, we conclude that binary separations are not possible using purely oscillatory flow modes because of end effects associated with the cos((omega)t) mode. Our research shows, however, that a combination of cos(2(omega)t) and steady flow should lead to efficient separation free of end effects. This possibility is currently under investigation.

  8. The human coronary vasodilatory response to acute mental stress is mediated by neuronal nitric oxide synthase.

    PubMed

    Khan, Sitara G; Melikian, Narbeh; Shabeeh, Husain; Cabaco, Ana R; Martin, Katherine; Khan, Faisal; O'Gallagher, Kevin; Chowienczyk, Philip J; Shah, Ajay M

    2017-09-01

    Mental stress-induced ischemia approximately doubles the risk of cardiac events in patients with coronary artery disease, yet the mechanisms underlying changes in coronary blood flow in response to mental stress are poorly characterized. Neuronal nitric oxide synthase (nNOS) regulates basal coronary blood flow in healthy humans and mediates mental stress-induced vasodilation in the forearm. However, its possible role in mental stress-induced increases in coronary blood flow is unknown. We studied 11 patients (6 men and 5 women, mean age: 58 ± 14 yr) undergoing elective diagnostic cardiac catheterization and assessed the vasodilator response to mental stress elicited by the Stroop color-word test. Intracoronary substance P (20 pmol/min) and isosorbide dinitrate (1 mg) were used to assess endothelium-dependent and -independent vasodilation, respectively. Coronary blood flow was estimated using intracoronary Doppler recordings and quantitative coronary angiography to measure coronary artery diameter. Mental stress increased coronary flow by 34 ± 7.0% over the preceding baseline during saline infusion ( P < 0.01), and this was reduced to 26 ± 7.0% in the presence of the selective nNOS inhibitor S -methyl-l-thiocitrulline (0.625 µmol/min, P < 0.001). Mental stress increased coronary artery diameter by 6.9 ± 3.7% ( P = 0.02) and 0.5 ± 2.8% ( P = 0.51) in the presence of S -methyl-l-thiocitrulline. The response to substance P did not predict the response to mental stress ( r 2 = -0.22, P = 0.83). nNOS mediates the human coronary vasodilator response to mental stress, predominantly through actions at the level of coronary resistance vessels. NEW & NOTEWORTHY Acute mental stress induces vasodilation of the coronary microvasculature. Here, we show that this response involves neuronal nitric oxide synthase in the human coronary circulation.Listen to this article's corresponding podcast at http://ajpheart.podbean.com/e/nnos-and-coronary-flow-during-mental-stress/. Copyright © 2017 the American Physiological Society.

  9. The human coronary vasodilatory response to acute mental stress is mediated by neuronal nitric oxide synthase

    PubMed Central

    Khan, Sitara G.; Melikian, Narbeh; Shabeeh, Husain; Cabaco, Ana R.; Martin, Katherine; Khan, Faisal; O’Gallagher, Kevin; Chowienczyk, Philip J.

    2017-01-01

    Mental stress-induced ischemia approximately doubles the risk of cardiac events in patients with coronary artery disease, yet the mechanisms underlying changes in coronary blood flow in response to mental stress are poorly characterized. Neuronal nitric oxide synthase (nNOS) regulates basal coronary blood flow in healthy humans and mediates mental stress-induced vasodilation in the forearm. However, its possible role in mental stress-induced increases in coronary blood flow is unknown. We studied 11 patients (6 men and 5 women, mean age: 58 ± 14 yr) undergoing elective diagnostic cardiac catheterization and assessed the vasodilator response to mental stress elicited by the Stroop color-word test. Intracoronary substance P (20 pmol/min) and isosorbide dinitrate (1 mg) were used to assess endothelium-dependent and -independent vasodilation, respectively. Coronary blood flow was estimated using intracoronary Doppler recordings and quantitative coronary angiography to measure coronary artery diameter. Mental stress increased coronary flow by 34 ± 7.0% over the preceding baseline during saline infusion (P < 0.01), and this was reduced to 26 ± 7.0% in the presence of the selective nNOS inhibitor S-methyl-l-thiocitrulline (0.625 µmol/min, P < 0.001). Mental stress increased coronary artery diameter by 6.9 ± 3.7% (P = 0.02) and 0.5 ± 2.8% (P = 0.51) in the presence of S-methyl-l-thiocitrulline. The response to substance P did not predict the response to mental stress (r2 = −0.22, P = 0.83). nNOS mediates the human coronary vasodilator response to mental stress, predominantly through actions at the level of coronary resistance vessels. NEW & NOTEWORTHY Acute mental stress induces vasodilation of the coronary microvasculature. Here, we show that this response involves neuronal nitric oxide synthase in the human coronary circulation. Listen to this article’s corresponding podcast at http://ajpheart.podbean.com/e/nnos-and-coronary-flow-during-mental-stress/. PMID:28646032

  10. Three-dimensional trajectory analyses of two drop sizing instruments: PMS OAP and PMS FSSP

    NASA Technical Reports Server (NTRS)

    Norment, Hillyer G.

    1988-01-01

    Flow induced distortions of water drop fluxes and speeds seen by the instruments were predicted by use of three dimensional flow and trajectory calculation methods. Sensitivities were determined for the instruments, in isolation and mounted under the wing of an airplane, to: water drop diameter (2 to 1000 microns), angle of attack and free stream air speed. For the optical array probe in isolation and on the airplane at 0 deg angle of attack, flux distortions of practical consequence are not found. At 4 deg airplane angle of attack, partial flow stagnation under the uptilted wing causes significant decreases in both flux and speed for cloud size droplets. For the forward scattering spectrometer probe in isolation, only marginally significant sensitivities to free stream air speed are found, and no sensitivity is found to angle of attack. Both speed and flux of cloud size droplets are predicted to be undermeasured by from 12 to 24 percent depending on airplane angle of attack. For the wing-mounted instruments, effects of flow about the instruments themselves are found to be equal in importance to effects of flow about the airplane. Preferred orientation (canting) angles of distorted water drops are found to be functions of drop size, angle of attack and air speed.

  11. Towards Accurate Prediction of Turbulent, Three-Dimensional, Recirculating Flows with the NCC

    NASA Technical Reports Server (NTRS)

    Iannetti, A.; Tacina, R.; Jeng, S.-M.; Cai, J.

    2001-01-01

    The National Combustion Code (NCC) was used to calculate the steady state, nonreacting flow field of a prototype Lean Direct Injection (LDI) swirler. This configuration used nine groups of eight holes drilled at a thirty-five degree angle to induce swirl. These nine groups created swirl in the same direction, or a corotating pattern. The static pressure drop across the holes was fixed at approximately four percent. Computations were performed on one quarter of the geometry, because the geometry is considered rotationally periodic every ninety degrees. The final computational grid used was approximately 2.26 million tetrahedral cells, and a cubic nonlinear k - epsilon model was used to model turbulence. The NCC results were then compared to time averaged Laser Doppler Velocimetry (LDV) data. The LDV measurements were performed on the full geometry, but four ninths of the geometry was measured. One-, two-, and three-dimensional representations of both flow fields are presented. The NCC computations compare both qualitatively and quantitatively well to the LDV data, but differences exist downstream. The comparison is encouraging, and shows that NCC can be used for future injector design studies. To improve the flow prediction accuracy of turbulent, three-dimensional, recirculating flow fields with the NCC, recommendations are given.

  12. A theoretical model for the flow behavior of commercial dual-phase steels containing metastable retained austenite: Part I. derivation of flow curve equations

    NASA Astrophysics Data System (ADS)

    Goel, Naresh C.; Sangal, Sandeep; Tangri, Kris

    1985-11-01

    A semi-mechanistic model for predicting the flow behavior of a typical commercial dual-phase steel containing 20 vol pct of ‘as quenched’ martensite and varying amounts of retained austenite has been developed in this paper. Assuming that up to 20 vol pct of austenite with different degrees of mechanical stability can be retained as a result of certain thermomechanical treatments in a steel of appropriate low carbon low alloy chemistry, expressions for composite flow stress and strain have been derived. The model takes into account the work hardening of the individual microconstituents (viz., ferrite -@#@ α, retained austenite - γ r, and martensite -α') and the extra hardening of ferrite caused by accommodation dislocations surrounding the ‘as quenched’ as well as the strain-induced (γ r→ α') martensite. Load transfer between the phases has been accounted for using an intermediate law of mixtures which also considers the relative hardness of the soft and the hard phases. From the derived expressions, the flow behavior of dual phase steels can be predicted if the properties of the individual microconstituents are known. Versatility of the model for application to other commercial steels containing a metastable phase is discussed.

  13. Expanding and Contracting Coronal Loops as Evidence of Vortex Flows Induced by Solar Eruptions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudík, J.; Zuccarello, F. P.; Aulanier, G.

    Eruptive solar flares were predicted to generate large-scale vortex flows at both sides of the erupting magnetic flux rope. This process is analogous to a well-known hydrodynamic process creating vortex rings. The vortices lead to advection of closed coronal loops located at the peripheries of the flaring active region. Outward flows are expected in the upper part and returning flows in the lower part of the vortex. Here, we examine two eruptive solar flares, the X1.1-class flare SOL2012-03-05T03:20 and the C3.5-class SOL2013-06-19T07:29. In both flares, we find that the coronal loops observed by the Atmospheric Imaging Assembly in its 171more » Å, 193 Å, or 211 Å passbands show coexistence of expanding and contracting motions, in accordance with the model prediction. In the X-class flare, multiple expanding and contracting loops coexist for more than 35 minutes, while in the C-class flare, an expanding loop in 193 Å appears to be close by and cotemporal with an apparently imploding loop arcade seen in 171 Å. Later, the 193 Å loop also switches to contraction. These observations are naturally explained by vortex flows present in a model of eruptive solar flares.« less

  14. Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions.

    PubMed

    Bazant, Martin Z; Kilic, Mustafa Sabri; Storey, Brian D; Ajdari, Armand

    2009-11-30

    The venerable theory of electrokinetic phenomena rests on the hypothesis of a dilute solution of point-like ions in quasi-equilibrium with a weakly charged surface, whose potential relative to the bulk is of order the thermal voltage (kT/e approximately 25 mV at room temperature). In nonlinear electrokinetic phenomena, such as AC or induced-charge electro-osmosis (ACEO, ICEO) and induced-charge electrophoresis (ICEP), several V approximately 100 kT/e are applied to polarizable surfaces in microscopic geometries, and the resulting electric fields and induced surface charges are large enough to violate the assumptions of the classical theory. In this article, we review the experimental and theoretical literatures, highlight discrepancies between theory and experiment, introduce possible modifications of the theory, and analyze their consequences. We argue that, in response to a large applied voltage, the "compact layer" and "shear plane" effectively advance into the liquid, due to the crowding of counterions. Using simple continuum models, we predict two general trends at large voltages: (i) ionic crowding against a blocking surface expands the diffuse double layer and thus decreases its differential capacitance, and (ii) a charge-induced viscosity increase near the surface reduces the electro-osmotic mobility; each trend is enhanced by dielectric saturation. The first effect is able to predict high-frequency flow reversal in ACEO pumps, while the second may explain the decay of ICEO flow with increasing salt concentration. Through several colloidal examples, such as ICEP of an uncharged metal sphere in an asymmetric electrolyte, we show that nonlinear electrokinetic phenomena are generally ion-specific. Similar theoretical issues arise in nanofluidics (due to confinement) and ionic liquids (due to the lack of solvent), so the paper concludes with a general framework of modified electrokinetic equations for finite-sized ions.

  15. Loop Heat Pipe Temperature Oscillation Induced by Gravity Assist and Reservoir Heating

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Garrison, Matthew; Patel, Deepak; Robinson, Franklin; Ottenstein, Laura

    2015-01-01

    The Laser Thermal Control System (LCTS) for the Advanced Topographic Laser Altimeter System (ATLAS) to be installed on NASA's Ice, Cloud, and Land Elevation Satellite (ICESat-2) consists of a constant conductance heat pipe and a loop heat pipe (LHP) with an associated radiator. During the recent thermal vacuum testing of the LTCS where the LHP condenser/radiator was placed in a vertical position above the evaporator and reservoir, it was found that the LHP reservoir control heater power requirement was much higher than the analytical model had predicted. Even with the control heater turned on continuously at its full power, the reservoir could not be maintained at its desired set point temperature. An investigation of the LHP behaviors found that the root cause of the problem was fluid flow and reservoir temperature oscillations, which led to persistent alternate forward and reversed flow along the liquid line and an imbalance between the vapor mass flow rate in the vapor line and liquid mass flow rate in the liquid line. The flow and temperature oscillations were caused by an interaction between gravity and reservoir heating, and were exacerbated by the large thermal mass of the instrument simulator which modulated the net heat load to the evaporator, and the vertical radiator/condenser which induced a variable gravitational pressure head. Furthermore, causes and effects of the contributing factors to flow and temperature oscillations intermingled.

  16. Aircraft Drag Prediction and Reduction

    DTIC Science & Technology

    1985-07-01

    Figure 10 with their subsources. The major source groups are the airfiame noise sources, the propulsion system noise sources, and the lamirar-flow control ...the emerging areas of non -planar geometry and large-eddy alteration. Turbulent control techniques for air generally result in modest (but...17. 57. Ketchem, Jeffery J.; and Velkoff, Henry R.: An Experimental Investigation of the Effect of Electrically Induced Controlled Frequency

  17. Feasibility study of stain-free classification of cell apoptosis based on diffraction imaging flow cytometry and supervised machine learning techniques.

    PubMed

    Feng, Jingwen; Feng, Tong; Yang, Chengwen; Wang, Wei; Sa, Yu; Feng, Yuanming

    2018-06-01

    This study was to explore the feasibility of prediction and classification of cells in different stages of apoptosis with a stain-free method based on diffraction images and supervised machine learning. Apoptosis was induced in human chronic myelogenous leukemia K562 cells by cis-platinum (DDP). A newly developed technique of polarization diffraction imaging flow cytometry (p-DIFC) was performed to acquire diffraction images of the cells in three different statuses (viable, early apoptotic and late apoptotic/necrotic) after cell separation through fluorescence activated cell sorting with Annexin V-PE and SYTOX® Green double staining. The texture features of the diffraction images were extracted with in-house software based on the Gray-level co-occurrence matrix algorithm to generate datasets for cell classification with supervised machine learning method. Therefore, this new method has been verified in hydrogen peroxide induced apoptosis model of HL-60. Results show that accuracy of higher than 90% was achieved respectively in independent test datasets from each cell type based on logistic regression with ridge estimators, which indicated that p-DIFC system has a great potential in predicting and classifying cells in different stages of apoptosis.

  18. Potential radiological impact of tornadoes on the safety of Nuclear Fuel Services' West Valley Fuel Reprocessing Plant. Volume I. Tornado effects on head-end cell airflow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holloway, L.J.; Andrae, R.W.

    1981-09-01

    This report describes results of a parametric study of the impacts of a tornado-generated depressurization on airflow in the contaminated process cells within the presently inoperative Nuclear Fuel Services fuel reprocessing facility near West Valley, NY. The study involved the following tasks: (1) mathematical modeling of installed ventilation and abnormal exhaust pathways from the cells and prediction of tornado-induced airflows in these pathways; (2) mathematical modeling of individual cell flow characteristics and prediction of in-cell velocities induced by flows from step 1; and (3) evaluation of the results of steps 1 and 2 to determine whether any of the pathwaysmore » investigated have the potential for releasing quantities of radioactively contaminated air from the main process cells. The study has concluded that in the event of a tornado strike, certain pathways from the cells have the potential to release radioactive materials of the atmosphere. Determination of the quantities of radioactive material released from the cells through pathways identified in step 3 is presented in Part II of this report.« less

  19. Transonic Shock Oscillations and Wing Flutter Calculated with an Interactive Boundary Layer Coupling Method

    NASA Technical Reports Server (NTRS)

    Edwards, John W.

    1996-01-01

    A viscous-inviscid interactive coupling method is used for the computation of unsteady transonic flows involving separation and reattachment. A lag-entrainment integral boundary layer method is used with the transonic small disturbance potential equation in the CAP-TSDV (Computational Aeroelasticity Program - Transonic Small Disturbance) code. Efficient and robust computations of steady and unsteady separated flows, including steady separation bubbles and self-excited shock-induced oscillations are presented. The buffet onset boundary for the NACA 0012 airfoil is accurately predicted and shown computationally to be a Hopf bifurcation. Shock-induced oscillations are also presented for the 18 percent circular arc airfoil. The oscillation onset boundaries and frequencies are accurately predicted, as is the experimentally observed hysteresis of the oscillations with Mach number. This latter stability boundary is identified as a jump phenomenon. Transonic wing flutter boundaries are also shown for a thin swept wing and for a typical business jet wing, illustrating viscous effects on flutter and the effect of separation onset on the wing response at flutter. Calculations for both wings show limit cycle oscillations at transonic speeds in the vicinity of minimum flutter speed indices.

  20. Thermal buoyancy on Venus - Underthrusting vs subduction

    NASA Technical Reports Server (NTRS)

    Burt, Jeffrey D.; Head, James W.

    1992-01-01

    The thermal and buoyancy consequences of the subduction endmember are modeled in an attempt to evaluate the conditions distinguishing underthrusting and subduction. Thermal changes in slabs subducting into the Venusian mantle with a range of initial geotherms are used to predict density changes and, thus, slab buoyancy. Based on a model for subduction-induced mantle flow, it is then argued that the angle of the slab dip helps differentiate between underthrusting and subduction. Mantle flow applies torques to the slab which, in combination with torques due to slab buoyancy, act to change the angle of slab dip.

  1. Spontaneous Contractility-Mediated Cortical Flow Generates Cell Migration in Three-Dimensional Environments

    PubMed Central

    Hawkins, Rhoda J.; Poincloux, Renaud; Bénichou, Olivier; Piel, Matthieu; Chavrier, Philippe; Voituriez, Raphaël

    2011-01-01

    We present a model of cell motility generated by actomyosin contraction of the cell cortex. We identify, analytically, dynamical instabilities of the cortex and show that they yield steady-state cortical flows, which, in turn, can induce cell migration in three-dimensional environments. This mechanism relies on the regulation of contractility by myosin, whose transport is explicitly taken into account in the model. Theoretical predictions are compared to experimental data of tumor cells migrating in three-dimensional matrigel and suggest that this mechanism could be a general mode of cell migration in three-dimensional environments. PMID:21889440

  2. Effect of planform and body on supersonic aerodynamics of multibody configurations

    NASA Technical Reports Server (NTRS)

    Mcmillin, S. Naomi; Bauer, Steven X. S.; Howell, Dorothy T.

    1992-01-01

    An experimental and theoretical investigation of the effect of the wing planform and bodies on the supersonic aerodynamics of a low-fineness-ratio, multibody configuration has been conducted in the Langley Unitary Plan Wind Tunnel at Mach numbers of 1.60, 1.80, 2.00, and 2.16. Force and moment data, flow-visualization data, and surface-pressure data were obtained on eight low-fineness-ratio, twin-body configurations. These configurations varied in inboard wing planform shape, outboard wing planform shape, outboard wing planform size, and presence of the bodies. The force and moment data showed that increasing the ratio of outboard wing area to total wing area or increasing the leading-edge sweep of the inboard wing influenced the aerodynamic characteristics. The flow-visualization data showed a complex flow-field system of shocks, shock-induced separation, and body vortex systems occurring between the side bodies. This flow field was substantially affected by the inboard wing planform shape but minimally affected by the outboard wing planform shape. The flow-visualization and surface-pressure data showed that flow over the outboard wing developed as expected with changes in angle of attack and Mach number and was affected by the leading-edge sweep of the inboard wing and the presence of the bodies. Evaluation of the linear-theory prediction methods revealed their general inability to consistently predict the characteristics of these multibody configurations.

  3. Correlation between Hemodynamics and Treatment Outcome of Intracranial Aneurysms after Intervention with Flow Diverters

    NASA Astrophysics Data System (ADS)

    Paliwal, Nikhil; Damiano, Robert; Davies, Jason; Siddiqui, Adnan; Meng, Hui

    2015-11-01

    Endovascular intervention by Flow Diverter (FD) - a densely woven stent - occludes an aneurysm by inducing thrombosis in the aneurysm sac and reconstructing the vessel. Hemodynamics plays a vital role in the thrombotic occlusion of aneurysms and eventual treatment outcome. CFD analysis of pre- and post-treatment aneurysms not only provides insight of flow modifications by FD, but also allows investigation of interventional strategies and prediction of their outcome. In this study 80 patient-specific aneurysms treated with FDs were retrospectively studied to evaluate the effect of intervention. Out of these cases, 16 required retreatment and thus are considered as having unfavorable outcome. Clinical FD deployment in these cases was simulated using an efficient virtual stenting workflow. CFD analysis was carried out on both pre- and post-treatment cases, and changes in hemodynamic parameters were calculated. Support vector machine algorithm was used to correlate the hemodynamic changes with outcome. Results show that cases having higher flow reduction into the aneurysmal sac have a better likelihood of occlusion. This suggests that changes in hemodynamics can be potentially used to predict the outcome of different clinical intervention strategies in aneurysms. This work was supported by the National Institutes of Health (R01 NS091075).

  4. Avian community responses to variability in river hydrology.

    PubMed

    Royan, Alexander; Hannah, David M; Reynolds, S James; Noble, David G; Sadler, Jonathan P

    2013-01-01

    River flow is a major driver of morphological structure and community dynamics in riverine-floodplain ecosystems. Flow influences in-stream communities through changes in water velocity, depth, temperature, turbidity and nutrient fluxes, and perturbations in the organisation of lower trophic levels are cascaded through the food web, resulting in shifts in food availability for consumer species. River birds are sensitive to spatial and phenological mismatches with aquatic prey following flow disturbances; however, the role of flow as a determinant of riparian ecological structure remains poorly known. This knowledge is crucial to help to predict if, and how, riparian communities will be influenced by climate-induced changes in river flow characterised by more extreme high (i.e. flood) and/or low (i.e. drought) flow events. Here, we combine national-scale datasets of river bird surveys and river flow archives to understand how hydrological disturbance has affected the distribution of riparian species at higher trophic levels. Data were analysed for 71 river locations using a Generalized Additive Model framework and a model averaging procedure. Species had complex but biologically interpretable associations with hydrological indices, with species' responses consistent with their ecology, indicating that hydrological-disturbance has implications for higher trophic levels in riparian food webs. Our quantitative analysis of river flow-bird relationships demonstrates the potential vulnerability of riparian species to the impacts of changing flow variability and represents an important contribution in helping to understand how bird communities might respond to a climate change-induced increase in the intensity of floods and droughts. Moreover, the success in relating parameters of river flow variability to species' distributions highlights the need to include river flow data in climate change impact models of species' distributions.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loisel, V.; Abbas, M., E-mail: micheline.abbas@ensiacet.fr; Masbernat, O.

    Laminar pressure-driven suspension flows are studied in the situation of neutrally buoyant particles at finite Reynolds number. The numerical method is validated for homogeneous particle distribution (no lateral migration across the channel): the increase of particle slip velocities and particle stress with inertia and concentration is in agreement with former works in the literature. In the case of a two-phase channel flow with freely moving particles, migration towards the channel walls due to the Segré-Silberberg effect is observed, leading to the development of a non-uniform concentration profile in the wall-normal direction (the concentration peaks in the wall region and tendsmore » towards zero in the channel core). The particle accumulation in the region of highest shear favors the shear-induced particle interactions and agitation, the profile of which appears to be correlated to the concentration profile. A 1D model predicting particle agitation, based on the kinetic theory of granular flows in the quenched state regime when Stokes number St = O(1) and from numerical simulations when St < 1, fails to reproduce the agitation profile in the wall normal direction. Instead, the existence of secondary flows is clearly evidenced by long time simulations. These are composed of a succession of contra-rotating structures, correlated with the development of concentration waves in the transverse direction. The mechanism proposed to explain the onset of this transverse instability is based on the development of a lift force induced by spanwise gradient of the axial velocity fluctuations. The establishment of the concentration profile in the wall-normal direction therefore results from the combination of the mean flow Segré-Silberberg induced migration, which tends to stratify the suspension and secondary flows which tend to mix the particles over the channel cross section.« less

  6. Predicting performance of axial pump inducer of LOX booster turbo-pump of staged combustion cycle based rocket engine using CFD

    NASA Astrophysics Data System (ADS)

    Mishra, Arpit; Ghosh, Parthasarathi

    2015-12-01

    For low cost, high thrust, space missions with high specific impulse and high reliability, inert weight needs to be minimized and thereby increasing the delivered payload. Turbopump feed system for a liquid propellant rocket engine (LPRE) has the highest power to weight ratio. Turbopumps are primarily equipped with an axial flow inducer to achieve the high angular velocity and low suction pressure in combination with increased system reliability. Performance of the turbopump strongly depends on the performance of the inducer. Thus, for designing a LPRE turbopump, demands optimization of the inducer geometry based on the performance of different off-design operating regimes. In this paper, steady-state CFD analysis of the inducer of a liquid oxygen (LOX) axial pump used as a booster pump for an oxygen rich staged combustion cycle rocket engine has been presented using ANSYS® CFX. Attempts have been made to obtain the performance characteristic curves for the LOX pump inducer. The formalism has been used to predict the performance of the inducer for the throttling range varying from 80% to 113% of nominal thrust and for the different rotational velocities from 4500 to 7500 rpm. The results have been analysed to determine the region of cavitation inception for different inlet pressure.

  7. Influence of the elastic deformation of a foam on its mobility in channels of linearly varying width.

    PubMed

    Dollet, Benjamin; Jones, Siân A; Méheust, Yves; Cantat, Isabelle

    2014-08-01

    We study foam flow in an elementary model porous medium consisting of a convergent and a divergent channel positioned side by side and possessing a fixed joint porosity. Configurations of converging or diverging channels are ubiquitous at the pore scale in porous media, as all channels linking pores possess a converging and diverging part. The resulting flow kinematics imposes asymmetric bubble deformations in the two channels, which modulate foam-wall friction and strongly impact the flux distribution. We measure, as well as quantitatively predict, the ratio of the fluxes in the two channels as a function of the channel widths by modeling pressure drops of both viscous and capillary origins. This study reveals the crucial importance of boundary-induced bubble deformation on the mobility of a flowing foam, resulting in particular in flow irreversibility.

  8. Stochastic ice stream dynamics

    PubMed Central

    Bertagni, Matteo Bernard; Ridolfi, Luca

    2016-01-01

    Ice streams are narrow corridors of fast-flowing ice that constitute the arterial drainage network of ice sheets. Therefore, changes in ice stream flow are key to understanding paleoclimate, sea level changes, and rapid disintegration of ice sheets during deglaciation. The dynamics of ice flow are tightly coupled to the climate system through atmospheric temperature and snow recharge, which are known exhibit stochastic variability. Here we focus on the interplay between stochastic climate forcing and ice stream temporal dynamics. Our work demonstrates that realistic climate fluctuations are able to (i) induce the coexistence of dynamic behaviors that would be incompatible in a purely deterministic system and (ii) drive ice stream flow away from the regime expected in a steady climate. We conclude that environmental noise appears to be crucial to interpreting the past behavior of ice sheets, as well as to predicting their future evolution. PMID:27457960

  9. Microstructural Rearrangements and their Rheological Implications in a Model Thixotropic Elastoviscoplastic Fluid

    NASA Astrophysics Data System (ADS)

    Jamali, Safa; McKinley, Gareth H.; Armstrong, Robert C.

    2017-01-01

    We identify the sequence of microstructural changes that characterize the evolution of an attractive particulate gel under flow and discuss their implications on macroscopic rheology. Dissipative particle dynamics is used to monitor shear-driven evolution of a fabric tensor constructed from the ensemble spatial configuration of individual attractive constituents within the gel. By decomposing this tensor into isotropic and nonisotropic components we show that the average coordination number correlates directly with the flow curve of the shear stress versus shear rate, consistent with theoretical predictions for attractive systems. We show that the evolution in nonisotropic local particle rearrangements are primarily responsible for stress overshoots (strain-hardening) at the inception of steady shear flow and also lead, at larger times and longer scales, to microstructural localization phenomena such as shear banding flow-induced structure formation in the vorticity direction.

  10. Theoretical study of aerodynamic characteristics of wings having vortex flow

    NASA Technical Reports Server (NTRS)

    Reddy, C. S.

    1979-01-01

    The aerodynamic characteristics of slender wings having separation induced vortex flows are investigated by employing three different computer codes--free vortex sheet, quasi vortex lattice, and suction analogy methods. Their capabilities and limitations are examined, and modifications are discussed. Flat wings of different configurations: arrow, delta, and diamond shapes, as well as cambered delta wings, are studied. The effect of notch ratio on the load distributions and the longitudinal characteristics of a family of arrow and diamond wings is explored. The sectional lift coefficients and the accumulated span loadings are determined for an arrow wing and are seen to be unusual in comparison with the attached flow results. The theoretically predicted results are compared with the existing experimental values.

  11. Advances in the analysis and prediction of turbulent viscoelastic flows

    NASA Astrophysics Data System (ADS)

    Gatski, T. B.; Thais, L.; Mompean, G.

    2014-08-01

    It has been well-known for over six decades that the addition of minute amounts of long polymer chains to organic solvents, or water, can lead to significant turbulent drag reduction. This discovery has had many practical applications such as in pipeline fluid transport, oil well operations, vehicle design and submersible vehicle projectiles, and more recently arteriosclerosis treatment. However, it has only been the last twenty-five years that the full utilization of direct numerical simulation of such turbulent viscoelastic flows has been achieved. The unique characteristics of viscoelastic fluid flow are dictated by the nonlinear differential relationship between the flow strain rate field and the extra-stress induced by the additive polymer. A primary motivation for the analysis of these turbulent fluid flows is the understanding of the effect on the dynamic transfer of energy in the turbulent flow due to the presence of the extra-stress field induced by the presence of the viscoelastic polymer chain. Such analyses now utilize direct numerical simulation data of fully developed channel flow for the FENE-P (Finite Extendable Nonlinear Elastic - Peterlin) fluid model. Such multi-scale dynamics suggests an analysis of the transfer of energy between the various component motions that include the turbulent kinetic energy, and the mean polymeric and elastic potential energies. It is shown that the primary effect of the interaction between the turbulent and polymeric fields is to transfer energy from the turbulence to the polymer.

  12. Mixing and segregation of microspheres in microchannel flows of mono- and bidispersed suspensions

    NASA Astrophysics Data System (ADS)

    Gao, C.; Xu, B.; Gilchrist, J. F.

    2009-03-01

    We investigate the mixing and segregation of mono- and bidispersed microsphere suspensions in microchannel flows. These flows are common in biological microelectromechanical systems (BioMEMS) applications handling blood or suspensions of DNA. Suspension transport in pressure driven flows is significantly hindered by shear-induced migration, where particles migrate away from the walls and are focused in the center due to multibody hydrodynamic interactions. The microchannels used in this study have geometries that induce chaotic advection in Newtonian fluids. Our results show that mixing in straight, herringbone and staggered herringbone channels depends strongly on volume fraction. Due to this complex interplay of advection and shear-induced migration, a staggered herringbone channel that typically results in chaotic mixing is not always effective for dispersing particles. The maximum degree of segregation is observed in a straight channel once the maximum packing fraction is reached at channel center. We modify a one-dimensional suspension balance model [R. Miller and J. Morris, J. Non-Newtonian Fluid Mech. 135, 149 (2006)] to describe the behavior at the center of the straight channel. The degree of mixing is then calculated as a function of bulk volume fraction, predicting the volume fraction that results in the maximum degree of segregation. In bidispersed suspension flow, it is shown that mixing of the larger species is enhanced in straight and staggered herringbone channels while segregation is enhanced at moderate volume fractions in herringbone channels. This suggests mixing and separations can be tailored by adjusting both the suspension properties and the channel geometry.

  13. Theoretical Prediction of Microgravity Ignition Delay of Polymeric Fuels in Low Velocity Flows

    NASA Technical Reports Server (NTRS)

    Fernandez-Pello, A. C.; Torero, J. L.; Zhou, Y. Y.; Walther, D.; Ross, H. D.

    2001-01-01

    A new flammability apparatus and protocol, FIST (Forced Flow Ignition and Flame Spread Test), is under development. Based on the LIFT (Lateral Ignition and Flame Spread Test) protocol, FIST better reflects the environments expected in spacebased facilities. The final objective of the FIST research is to provide NASA with a test methodology that complements the existing protocol and provides a more comprehensive assessment of material flammability of practical materials for space applications. Theoretical modeling, an extensive normal gravity data bank and a few validation space experiments will support the testing methodology. The objective of the work presented here is to predict the ignition delay and critical heat flux for ignition of solid fuels in microgravity at airflow velocities below those induced in normal gravity. This is achieved through the application of a numerical model previously developed of piloted ignition of solid polymeric materials exposed to an external radiant heat flux. The model predictions will provide quantitative results about ignition of practical materials in the limiting conditions expected in space facilities. Experimental data of surface temperature histories and ignition delay obtained in the KC-135 aircraft are used to determine the critical pyrolysate mass flux for ignition and this value is subsequently used to predict the ignition delay and the critical heat flux for ignition of the material. Surface temperature and piloted ignition delay calculations for Polymethylmethacrylate (PMMA) and a Polypropylene/Fiberglass (PP/GL) composite were conducted under both reduced and normal gravity conditions. It was found that ignition delay times are significantly shorter at velocities below those induced by natural convection.

  14. Comparison of fluid dynamic numerical models for a clinical ventricular assist device and experimental validation

    PubMed Central

    Zhang, Jiafeng; Zhang, Pei; Fraser, Katharine H.; Griffith, Bartley P.; Wu, Zhongjun J.

    2012-01-01

    With the recent advances in computer technology, computational fluid dynamics (CFD) has become an important tool to design and improve blood contacting artificial organs, and to study the device-induced blood damage. Commercial CFD software packages are readily available, and multiple CFD models are provided by CFD software developers. However, the best approach of using CFD effectively to characterize fluid flow and to predict blood damage in these medical devices remains debatable. This study aimed to compare these CFD models and provide useful information on the accuracy of each model in modeling blood flow in circulatory assist devices. The laminar and five turbulence models (Spalart-Allmaras, k-ε (k-epsilon), k-ω (k-omega), SST (Menter’s Shear Stress Transport), and Reynolds Stress) were implemented to predict blood flow in a clinically used circulatory assist device, CentriMag® centrifugal blood pump (Thoratec, MA). In parallel, a transparent replica of the CentriMag® pump was constructed and selected views of the flow fields were measured with digital particle image velocimetry (DPIV). CFD results were compared with the DPIV experimental results. Compared with the experiment, all the selected CFD models predicted the flow pattern fairly well except the area of the outlet. However, quantitatively, the laminar model results were the most deviated from the experimental data. On the other hand, k-ε RNG models and Reynolds Stress model are the most accurate. In conclusion, for the circulatory assist devices, turbulence models provide more accurate results than laminar model. Among the selected turbulence models, k-ε and Reynolds Stress Method models are recommended. PMID:23441681

  15. Analysis of linear elasticity and non-linearity due to plasticity and material damage in woven and biaxial braided composites

    NASA Astrophysics Data System (ADS)

    Goyal, Deepak

    Textile composites have a wide variety of applications in the aerospace, sports, automobile, marine and medical industries. Due to the availability of a variety of textile architectures and numerous parameters associated with each, optimal design through extensive experimental testing is not practical. Predictive tools are needed to perform virtual experiments of various options. The focus of this research is to develop a better understanding of linear elastic response, plasticity and material damage induced nonlinear behavior and mechanics of load flow in textile composites. Textile composites exhibit multiple scales of complexity. The various textile behaviors are analyzed using a two-scale finite element modeling. A framework to allow use of a wide variety of damage initiation and growth models is proposed. Plasticity induced non-linear behavior of 2x2 braided composites is investigated using a modeling approach based on Hill's yield function for orthotropic materials. The mechanics of load flow in textile composites is demonstrated using special non-standard postprocessing techniques that not only highlight the important details, but also transform the extensive amount of output data into comprehensible modes of behavior. The investigations show that the damage models differ from each other in terms of amount of degradation as well as the properties to be degraded under a particular failure mode. When compared with experimental data, predictions of some models match well for glass/epoxy composite whereas other's match well for carbon/epoxy composites. However, all the models predicted very similar response when damage factors were made similar, which shows that the magnitude of damage factors are very important. Full 3D as well as equivalent tape laminate predictions lie within the range of the experimental data for a wide variety of braided composites with different material systems, which validated the plasticity analysis. Conclusions about the effect of fiber type on the degree of plasticity induced non-linearity in a +/-25° braid depend on the measure of non-linearity. Investigations about the mechanics of load flow in textile composites bring new insights about the textile behavior. For example, the reasons for existence of transverse shear stress under uni-axial loading and occurrence of stress concentrations at certain locations were explained.

  16. The Influence of Topography on the Emplacement Dynamics of Martian Lava flows

    NASA Astrophysics Data System (ADS)

    Tremblay, J.; Fitch, E. P.; Fagents, S. A.

    2017-12-01

    Lava flows on the Martian surface exhibit a diverse array of complex morphologies. Previous emplacement models, based on terrestrial flows, do not fully account for these observed complex morphologies. We assert that the topography encountered by the flow can exert substantial control over the thermal, rheological, and morphological evolution of the flow, and that these effects can be better incorporated into flow models to predict Martian flow morphologies. Our development of an updated model can be used to account for these topographical effects and better constrain flow parameters. The model predicts that a slope break or flow meander induces eddy currents within the flow, resulting in the disruption of the flow surface crust. The exposure of the flow core results in accelerated cooling of the flow and a resultant increase in viscosity, leading to slowing of the flow. A constant source lava flux and a stagnated flow channel would then result in observable morphological changes, such as overflowing of channel levees. We have identified five morphological types of Martian flows, representing a range of effusion rates, eruption durations and topographic settings, which are suitable for application of our model. To characterize flow morphology, we used imaging and topographic data sets to collect data on flow dimensions. For eight large (50 to hundreds of km long) channelized flows in the Tharsis region, we used the MOLA 128 ppd DEM and/or individual MOLA shot points to derive flow cross-sectional thickness profiles, from which we calculated the cross-sectional area of the flow margins adjacent to the main channel. We found that the largest flow margin cross sectional areas (excluding the channel) occur in association with a channel bend, typically near the bend apex. Analysis of high-resolution images indicates that these widened flow margins are the result of repeated overflows of the channel levees and emplacement of short flow lobes adjacent to the main flow. In the context of our model, the morphological changes associated with channel bends and slope breaks support our interpretation of lava crust disruption and enhanced flow cooling. We are currently working to obtain data for the additional three flow types and to further apply our lava emplacement model.

  17. Shear-induced crystallization of a dense rapid granular flow: hydrodynamics beyond the melting point.

    PubMed

    Khain, Evgeniy; Meerson, Baruch

    2006-06-01

    We investigate shear-induced crystallization in a very dense flow of monodisperse inelastic hard spheres. We consider a steady plane Couette flow under constant pressure and neglect gravity. We assume that the granular density is greater than the melting point of the equilibrium phase diagram of elastic hard spheres. We employ a Navier-Stokes hydrodynamics with constitutive relations all of which (except the shear viscosity) diverge at the crystal-packing density, while the shear viscosity diverges at a smaller density. The phase diagram of the steady flow is described by three parameters: an effective Mach number, a scaled energy loss parameter, and an integer number m: the number of half-oscillations in a mechanical analogy that appears in this problem. In a steady shear flow the viscous heating is balanced by energy dissipation via inelastic collisions. This balance can have different forms, producing either a uniform shear flow or a variety of more complicated, nonlinear density, velocity, and temperature profiles. In particular, the model predicts a variety of multilayer two-phase steady shear flows with sharp interphase boundaries. Such a flow may include a few zero-shear (solidlike) layers, each of which moving as a whole, separated by fluidlike regions. As we are dealing with a hard sphere model, the granulate is fluidized within the "solid" layers: the granular temperature is nonzero there, and there is energy flow through the boundaries of the solid layers. A linear stability analysis of the uniform steady shear flow is performed, and a plausible bifurcation diagram of the system, for a fixed m, is suggested. The problem of selection of m remains open.

  18. Methodological advances in predicting flow-induced dynamics of plants using mechanical-engineering theory.

    PubMed

    de Langre, Emmanuel

    2012-03-15

    The modeling of fluid-structure interactions, such as flow-induced vibrations, is a well-developed field of mechanical engineering. Many methods exist, and it seems natural to apply them to model the behavior of plants, and potentially other cantilever-like biological structures, under flow. Overcoming this disciplinary divide, and the application of such models to biological systems, will significantly advance our understanding of ecological patterns and processes and improve our predictive capabilities. Nonetheless, several methodological issues must first be addressed, which I describe here using two practical examples that have strong similarities: one from agricultural sciences and the other from nuclear engineering. Very similar issues arise in both: individual and collective behavior, small and large space and time scales, porous modeling, standard and extreme events, trade-off between the surface of exchange and individual or collective risk of damage, variability, hostile environments and, in some aspects, evolution. The conclusion is that, although similar issues do exist, which need to be exploited in some detail, there is a significant gap that requires new developments. It is obvious that living plants grow in and adapt to their environment, which certainly makes plant biomechanics fundamentally distinct from classical mechanical engineering. Moreover, the selection processes in biology and in human engineering are truly different, making the issue of safety different as well. A thorough understanding of these similarities and differences is needed to work efficiently in the application of a mechanistic approach to ecology.

  19. Fluid dynamics during Random Positioning Machine micro-gravity experiments

    NASA Astrophysics Data System (ADS)

    Leguy, Carole A. D.; Delfos, René; Pourquie, Mathieu J. B. M.; Poelma, Christian; Westerweel, Jerry; van Loon, Jack J. W. A.

    2017-06-01

    A Random Positioning Machine (RPM) is a device used to study the role of gravity on biological systems. This is accomplished through continuous reorientation of the sample such that the net influence of gravity is randomized over time. The aim of this study is to predict fluid flow behavior during such RPM simulated microgravity studies, which may explain differences found between RPM and space flight experiments. An analytical solution is given for a cylinder as a model for an experimental container. Then, a dual-axis rotating frame is used to mimic the motion characteristics of an RPM with sinusoidal rotation frequencies of 0.2 Hz and 0.1 Hz while Particle Image Velocimetry is used to measure the velocity field inside a flask. To reproduce the same experiment numerically, a Direct Numerical Simulation model is used. The analytical model predicts that an increase in the Womersley number leads to higher shear stresses at the cylinder wall and decrease in fluid angular velocity inside the cylinder. The experimental results show that periodic single-axis rotation induces a fluid motion parallel to the wall and that a complex flow is observed for two-axis rotation with a maximum wall shear stress of 8.0 mPa (80 mdyne /cm2). The experimental and numerical results show that oscillatory motion inside an RPM induces flow motion that can, depending on the experimental samples, reduce the quality of the simulated microgravity. Thus, it is crucial to determine the appropriate oscillatory frequency of the axes to design biological experiments.

  20. Numerical investigations on flow dynamics of prismatic granular materials using the discrete element method

    NASA Astrophysics Data System (ADS)

    Hancock, W.; Weatherley, D.; Wruck, B.; Chitombo, G. P.

    2012-04-01

    The flow dynamics of granular materials is of broad interest in both the geosciences (e.g. landslides, fault zone evolution, and brecchia pipe formation) and many engineering disciplines (e.g chemical engineering, food sciences, pharmaceuticals and materials science). At the interface between natural and human-induced granular media flow, current underground mass-mining methods are trending towards the induced failure and subsequent gravitational flow of large volumes of broken rock, a method known as cave mining. Cave mining relies upon the undercutting of a large ore body, inducement of fragmentation of the rock and subsequent extraction of ore from below, via hopper-like outlets. Design of such mines currently relies upon a simplified kinematic theory of granular flow in hoppers, known as the ellipsoid theory of mass movement. This theory assumes that the zone of moving material grows as an ellipsoid above the outlet of the silo. The boundary of the movement zone is a shear band and internal to the movement zone, the granular material is assumed to have a uniformly high bulk porosity compared with surrounding stagnant regions. There is however, increasing anecdotal evidence and field measurements suggesting this theory fails to capture the full complexity of granular material flow within cave mines. Given the practical challenges obstructing direct measurement of movement both in laboratory experiments and in-situ, the Discrete Element Method (DEM [1]) is a popular alternative to investigate granular media flow. Small-scale DEM studies (c.f. [3] and references therein) have confirmed that movement within DEM silo flow models matches that predicted by ellipsoid theory, at least for mono-disperse granular material freely outflowing at a constant rate. A major draw-back of these small-scale DEM studies is that the initial bulk porosity of the simulated granular material is significantly higher than that of broken, prismatic rock. In this investigation, more realistic granular material geometries are simulated using the ESyS-Particle [2] DEM simulation software on cluster supercomputers. Individual grains of the granular material are represented as convex polyhedra. Initially the polyhedra are packed in a low bulk porosity configuration prior to commencing silo flow simulations. The resultant flow dynamics are markedly different to that predicted by ellipsoid theory. Initially shearing occurs around the silo outlet however rapidly shear localization in a particular direction dominates other directions, causing preferential movement in that direction. Within the shear band itself, the granular material becomes hgihly dilated however elsewhere the bulk porosity remains low. The low porosity within these regions promotes entrainment whereby large volumes of granular material interlock and begin to rotate and translate as a single rigid body. In some cases, entrainment may result in complete overturning of a large volume of material. The consequences of preferential shear localization and in particular, entrainment, for granular media flow in cave mines and natural settings (such as brecchia pipes) is a topic of ongoing research to be presented at the meeting.

  1. Graviton fluctuations erase the cosmological constant

    NASA Astrophysics Data System (ADS)

    Wetterich, C.

    2017-10-01

    Graviton fluctuations induce strong non-perturbative infrared renormalization effects for the cosmological constant. The functional renormalization flow drives a positive cosmological constant towards zero, solving the cosmological constant problem without the need to tune parameters. We propose a simple computation of the graviton contribution to the flow of the effective potential for scalar fields. Within variable gravity, with effective Planck mass proportional to the scalar field, we find that the potential increases asymptotically at most quadratically with the scalar field. The solutions of the derived cosmological equations lead to an asymptotically vanishing cosmological "constant" in the infinite future, providing for dynamical dark energy in the present cosmological epoch. Beyond a solution of the cosmological constant problem, our simplified computation also entails a sizeable positive graviton-induced anomalous dimension for the quartic Higgs coupling in the ultraviolet regime, substantiating the successful prediction of the Higgs boson mass within the asymptotic safety scenario for quantum gravity.

  2. The mechanism of the polymer-induced drag reduction in blood.

    PubMed

    Pribush, Alexander; Hatzkelzon, Lev; Meyerstein, Dan; Meyerstein, Naomi

    2013-03-01

    Literature reports provide evidence that nanomolar concentrations of spaghetti-like, high molecular weight polymers decrease the hydrodynamic resistance of blood thereby improving impaired blood circulation. It has been suggested that the polymer-induced drag reduction is caused by the corralling of red blood cells (RBCs) among extended macromolecules aligned in the flow direction. This mechanism predicts that drag-reducing polymers must affect the conductivity of completely dispersed blood, time-dependent and steady state structural organization of aggregated RBCs at rest. However, experimental results obtained at the concentration of poly(ethylene oxide) (PEO, MW=4 × 10(6)) of 35 ppm show that neither the conductivity of completely dispersed blood, nor the kinetics of RBC aggregation occurring after the stoppage of flow, nor the structural organization of aggregated RBCs in the quiescent blood are affected by PEO. As these results are at odds with the "corralling" hypothesis, it is assumed that the effect of these polymers on the drag is associated with their interactions with local irregularities of disturbed laminar blood flow. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. An experimental/computational study of sharp fin induced shock wave/turbulent boundary layer interactions at Mach 5 - Experimental results

    NASA Technical Reports Server (NTRS)

    Rodi, Patrick E.; Dolling, David S.

    1992-01-01

    A combined experimental/computational study has been performed of sharp fin induced shock wave/turbulent boundary layer interactions at Mach 5. The current paper focuses on the experiments and analysis of the results. The experimental data include mean surface heat transfer, mean surface pressure distributions and surface flow visualization for fin angles of attack of 6, 8, 10, 12, 14 and 16-degrees at Mach 5 under a moderately cooled wall condition. Comparisons between the results and correlations developed earlier show that Scuderi's correlation for the upstream influence angle (recast in a conical form) is superior to other such correlations in predicting the current results, that normal Mach number based correlations for peak pressure heat transfer are adequate and that the initial heat transfer peak can be predicted using pressure-interaction theory.

  4. Computer prediction of three-dimensional potential flow fields in which aircraft propellers operate. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Jumper, S. J.

    1982-01-01

    A computer program was developed to calculate the three dimensional, steady, incompressible, inviscid, irrotational flow field at the propeller plane (propeller removed) located upstream of an arbitrary airframe geometry. The program uses a horseshoe vortex of known strength to model the wing. All other airframe surfaces are modeled by a network source panels of unknown strength which is exposed to a uniform free stream and the wing-induced velocity field. By satisfying boundary conditions on each panel (the Neumann problem), relaxed boundary conditions being used on certain panels to simulate inlet inflow, the source strengths are determined. From the known source and wing vortex strengths, the resulting velocity fields on the airframe surface and at the propeller plane are obtained. All program equations are derived in detail, and a brief description of the program structure is presented. A user's manual which fully documents the program is cited. Computer predictions of the flow on the surface of a sphere and at a propeller plane upstream of the sphere are compared with the exact mathematical solutions. Agreement is good, and correct program operation is verified.

  5. Predicting mineral precipitation in fractures: The influence of local heterogeneity on the feedback between precipitation and permeability

    NASA Astrophysics Data System (ADS)

    Jones, T.; Detwiler, R. L.

    2016-12-01

    Long-term subsurface energy production and contaminant storage strategies often rely on induced-mineralization to control the transport of dissolved ions. In low-permeability rocks, precipitation is most likely to occur in fractures that act as leakage pathways for fluids that are in chemical disequilibrium with the formation minerals. These fractures are commonly idealized as parallel-plate channels with uniform surface mineralogy, and as a result, our predictions often suggest that precipitation leads to fast permeability reduction. However, natural fractures contain both heterogeneous mineralogy and three-dimensional surface roughness, and our understanding of how precipitation affects local permeability in these environments is limited. To examine the impacts of local heterogeneity on the feedback between mineral precipitation and permeability, we performed two long-term experiments in transparent analog fractures: (i) uniform-aperture and (ii) variable-aperture. We controlled the initial heterogeneous surface mineralogy in both experiments by seeding the bottom borosilicate fracture surfaces with randomly distributed clusters of CaCO3 crystals. Continuous flow ISCO pumps injected a well-mixed CaCl2-NaHCO3 solution, log(ΩCaCO3) = 1.44, into the fracture at 0.5 ml/min and transmitted-light techniques provided high-resolution (83 x 83 µm), direct measurements of aperture and fluid transport across the fracture. In experiment (i), precipitation decreased local aperture at discrete CaCO3 reaction sites near the fracture inlet, but transport variations across the fracture remained relatively small due to the initial lack of aperture heterogeneity. In contrast, the feedback between precipitation and aperture in experiment (ii) focused flow into large-aperture, preferential flow paths that contained significantly less CaCO3 area than the fracture scale average. Precipitation-induced aperture reduction in (ii) reduced dissolved ion transport into small-aperture regions of the fracture that were abundant with CaCO3 and led to a 72% decrease in measured precipitation rate. These results suggest that incorporating the effects of local heterogeneity may dramatically improve our ability to predict precipitation-induced permeability alterations in fractured rocks.

  6. Dynamics of cavitating cascades. [transfer functions

    NASA Technical Reports Server (NTRS)

    Brennen, C. E.; Acosta, A. J.

    1980-01-01

    The unsteady dynamics of cavitating cascades and inducer pumps were studied with a view to understanding (and possibly predicting) the dynamic characteristics of these devices. The chronology of the research is summarized as well as the final conculsions for each task. The construction of a dynamic pump test facility and its use in making experimental measurements of the transfer function is described as well as tests conducted using a scale model of the low pressure liquid oxygen turbopump inducer in the shuttle main engine. Auto-oscillation and unsteady inlet flow characteristics are discussed in addition to blade cavity influence and bubbly cavitation.

  7. The Effects of Turbulence on Tthe Measurements of Five-Hole Probes

    NASA Astrophysics Data System (ADS)

    Diebold, Jeffrey Michael

    The primary goals of this research were to quantify the effects of turbulence on the measurements of five-hole pressure probes (5HP) and to develop a model capable of predicting the response of a 5HP to turbulence. The five-hole pressure probe is a commonly used device in experimental fluid dynamics and aerodynamics. By measuring the pressure at the five pressure ports located on the tip of the probe it is possible to determine the total pressure, static pressure and the three components of velocity at a point in the flow. Previous research has demonstrated that the measurements of simple pressure probes such as Pitot probes are significantly influenced by the presence of turbulence. Turbulent velocity fluctuations contaminate the measurement of pressure due to the nonlinear relationship between pressure and velocity as well as the angular response characteristics of the probe. Despite our understanding of the effects of turbulence on Pitot and static pressure probes, relatively little is known about the influence of turbulence on five-hole probes. This study attempts to fill this gap in our knowledge by using advanced experimental techniques to quantify these turbulence-induced errors and by developing a novel method of predicting the response of a five-hole probe to turbulence. A few studies have attempted to quantify turbulence-induced errors in five-hole probe measurements but they were limited by their inability to accurately measure the total and static pressure in the turbulent flow. The current research utilizes a fast-response five-hole probe (FR5HP) in order to accurately quantify the effects of turbulence on different standard five-hole probes (Std5HP). The FR5HP is capable of measuring the instantaneous flowfield and unlike the Std5HP the FR5HP measurements are not contaminated by the turbulent velocity fluctuations. Measurements with the FR5HP and two different Std5HPs were acquired in the highly turbulent wakes of 2D and 3D cylinders in order to quantify the turbulence-induced errors in Std5HP measurements. The primary contribution of this work is the development and validation of a simulation method to predict the measurements of a Std5HP in an arbitrary turbulent flow. This simulation utilizes a statistical approach to estimating the pressure at each port on the tip of the probe. The angular response of the probe is modeled using experimental calibration data for each five-hole probe. The simulation method is validated against the experimental measurements of the Std5HPs, and then used to study the how the characteristics of the turbulent flowfield influence the measurements of the Std5HPs. It is shown that total pressure measured by a Std5HP is increased by axial velocity fluctuations but decreased by the transverse fluctuations. The static pressure was shown to be very sensitive to the transverse fluctuations while the axial fluctuations had a negligible effect. As with Pitot probes, the turbulence-induced errors in the Std5HPs measurements were dependent on both the properties of the turbulent flow and the geometry of the probe tip. It is then demonstrated that this simulation method can be used to correct the measurements of a Std5HP in a turbulent flow if the characteristics of the turbulence are known. Finally, it is demonstrated that turbulence-induced errors in Std5HP measurements can have a substantial effect on the determination of the profile and vortex-induced drag from measurements in the wake of a 3D body. The results showed that while the calculation of both drag components was influenced by turbulence-induced errors the largest effect was on the determination of vortex-induced drag.

  8. Hydro-mechanical mechanism and thresholds of rainfall-induced unsaturated landslides

    NASA Astrophysics Data System (ADS)

    Yang, Zongji; Lei, Xiaoqin; Huang, Dong; Qiao, Jianping

    2017-04-01

    The devastating Ms 8 Wenchuan earthquake in 2008 created the greatest number of co-seismic mountain hazards ever recorded in China. However, the dynamics of rainfall induced mass remobilization and transport deposits after giant earthquake are not fully understood. Moreover, rainfall intensity and duration (I-D) methods are the predominant early warning indicators of rainfall-induced landslides in post-earthquake region, which are a convenient and straight-forward way to predict the hazards. However, the rainfall-based criteria and thresholds are generally empirical and based on statistical analysis,consequently, they ignore the failure mechanisms of the landslides. This study examines the mechanism and hydro-mechanical behavior and thresholds of these unsaturated deposits under the influence of rainfall. To accomplish this, in situ experiments were performed in an instrumented landslide deposit, The field experimental tests were conducted on a natural co-seismic fractured slope to 1) simulate rainfall-induced shallow failures in the depression channels of a debris flow catchment in an earthquake-affected region, 2)explore the mechanisms and transient processes associated with hydro-mechanical parameter variations in response to the infiltration of rainfall, and 3) identify the hydrologic parameter thresholds and critical criteria of gravitational erosion in areas prone to mass remobilization as a source of debris flows. These experiments provided instrumental evidence and directly proved that post-earthquake rainfall-induced mass remobilization occurred under unsaturated conditions in response to transient rainfall infiltration, and revealed the presence of transient processes and the dominance of preferential flow paths during rainfall infiltration. A hydro-mechanical method was adopted for the transient hydrologic process modelling and unsaturated slope stability analysis. and the slope failures during the experimental test were reproduced by the model, indicating that the decrease in matrix suction and increase in moisture content in response to rainfall infiltration contributed greatly to post-earthquake shallow mass movement. Thus, a threshold model for the initiation of mass remobilization is proposed based on correlations between slope stability and volumetric water content and matrix suction As a complement to rainfall-based early warning strategies, the water content and suction threshold models based on the water infiltration induced slope failure mechanism. the proposed method are expected to improve the accuracy of prediction and early warnings of post-earthquake mountain hazards

  9. Space Shuttle third flight /STS-3/ entry RCS analysis. [Reaction Control System

    NASA Technical Reports Server (NTRS)

    Scallion, W. I.; Compton, H. R.; Suit, W. T.; Powell, R. W.; Blackstock, T. A.; Bates, B. L.

    1983-01-01

    Flight data obtained from three Space Transportation System orbiter entries (STS-1, 2, and 3) are processed and analyzed to determine the roll interactions caused by the firing of the entry reaction control system (RCS). Comparisons between the flight-derived parameters and the predicted derivatives without interaction effects are made. The flight-derived RCS Plume flow-field interaction effects are independently deduced by direct integration of the incremental changes in the wing upper surface pressures induced by RCS side thruster firings. The separately obtained interaction effects are compared to the predicted values and the differences are discussed.

  10. Investigations of Fluid-Structure-Coupling and Turbulence Model Effects on the DLR Results of the Fifth AIAA CFD Drag Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Keye, Stefan; Togiti, Vamish; Eisfeld, Bernhard; Brodersen, Olaf P.; Rivers, Melissa B.

    2013-01-01

    The accurate calculation of aerodynamic forces and moments is of significant importance during the design phase of an aircraft. Reynolds-averaged Navier-Stokes (RANS) based Computational Fluid Dynamics (CFD) has been strongly developed over the last two decades regarding robustness, efficiency, and capabilities for aerodynamically complex configurations. Incremental aerodynamic coefficients of different designs can be calculated with an acceptable reliability at the cruise design point of transonic aircraft for non-separated flows. But regarding absolute values as well as increments at off-design significant challenges still exist to compute aerodynamic data and the underlying flow physics with the accuracy required. In addition to drag, pitching moments are difficult to predict because small deviations of the pressure distributions, e.g. due to neglecting wing bending and twisting caused by the aerodynamic loads can result in large discrepancies compared to experimental data. Flow separations that start to develop at off-design conditions, e.g. in corner-flows, at trailing edges, or shock induced, can have a strong impact on the predictions of aerodynamic coefficients too. Based on these challenges faced by the CFD community a working group of the AIAA Applied Aerodynamics Technical Committee initiated in 2001 the CFD Drag Prediction Workshop (DPW) series resulting in five international workshops. The results of the participants and the committee are summarized in more than 120 papers. The latest, fifth workshop took place in June 2012 in conjunction with the 30th AIAA Applied Aerodynamics Conference. The results in this paper will evaluate the influence of static aeroelastic wing deformations onto pressure distributions and overall aerodynamic coefficients based on the NASA finite element structural model and the common grids.

  11. On the multi-scale description of micro-structured fluids composed of aggregating rods

    NASA Astrophysics Data System (ADS)

    Perez, Marta; Scheuer, Adrien; Abisset-Chavanne, Emmanuelle; Ammar, Amine; Chinesta, Francisco; Keunings, Roland

    2018-05-01

    When addressing the flow of concentrated suspensions composed of rods, dense clusters are observed. Thus, the adequate modelling and simulation of such a flow requires addressing the kinematics of these dense clusters and their impact on the flow in which they are immersed. In a former work, we addressed a first modelling framework of these clusters, assumed so dense that they were considered rigid and their kinematics (flow-induced rotation) were totally defined by a symmetric tensor c with unit trace representing the cluster conformation. Then, the rigid nature of the clusters was relaxed, assuming them deformable, and a model giving the evolution of both the cluster shape and its microstructural orientation descriptor (the so-called shape and orientation tensors) was proposed. This paper compares the predictions coming from those models with finer-scale discrete simulations inspired from molecular dynamics modelling.

  12. Dynamics and Instabilities of Vortex Pairs

    NASA Astrophysics Data System (ADS)

    Leweke, Thomas; Le Dizès, Stéphane; Williamson, Charles H. K.

    2016-01-01

    This article reviews the characteristics and behavior of counter-rotating and corotating vortex pairs, which are seemingly simple flow configurations yet immensely rich in phenomena. Since the reviews in this journal by Widnall (1975) and Spalart (1998) , who studied the fundamental structure and dynamics of vortices and airplane trailing vortices, respectively, there have been many analytical, computational, and experimental studies of vortex pair flows. We discuss two-dimensional dynamics, including the merging of same-sign vortices and the interaction with the mutually induced strain, as well as three-dimensional displacement and core instabilities resulting from this interaction. Flows subject to combined instabilities are also considered, in particular the impingement of opposite-sign vortices on a ground plane. We emphasize the physical mechanisms responsible for the flow phenomena and clearly present the key results that are useful to the reader for predicting the dynamics and instabilities of parallel vortices.

  13. Numerical Studies of a Fluidic Diverter for Flow Control

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.; Kuczmarski, Maria A.; Culley, Dennis E.; Raghu, Surya

    2009-01-01

    The internal flow structure in a specific fluidic diverter is studied over a range from low subsonic to sonic inlet conditions by a time-dependent numerical analysis. The understanding will aid in the development of fluidic diverters with minimum pressure losses and advanced designs of flow control actuators. The velocity, temperature and pressure fields are calculated for subsonic conditions and the self-induced oscillatory behavior of the flow is successfully predicted. The results of our numerical studies have excellent agreement with our experimental measurements of oscillation frequencies. The acoustic speed in the gaseous medium is determined to be a key factor for up to sonic conditions in governing the mechanism of initiating the oscillations as well as determining its frequency. The feasibility of employing plasma actuation with a minimal perturbation level is demonstrated in steady-state calculations to also produce oscillation frequencies of our own choosing instead of being dependent on the fixed-geometry fluidic device.

  14. Composite Cure Process Modeling and Simulations using COMPRO(Registered Trademark) and Validation of Residual Strains using Fiber Optics Sensors

    NASA Technical Reports Server (NTRS)

    Sreekantamurthy, Thammaiah; Hudson, Tyler B.; Hou, Tan-Hung; Grimsley, Brian W.

    2016-01-01

    Composite cure process induced residual strains and warping deformations in composite components present significant challenges in the manufacturing of advanced composite structure. As a part of the Manufacturing Process and Simulation initiative of the NASA Advanced Composite Project (ACP), research is being conducted on the composite cure process by developing an understanding of the fundamental mechanisms by which the process induced factors influence the residual responses. In this regard, analytical studies have been conducted on the cure process modeling of composite structural parts with varied physical, thermal, and resin flow process characteristics. The cure process simulation results were analyzed to interpret the cure response predictions based on the underlying physics incorporated into the modeling tool. In the cure-kinetic analysis, the model predictions on the degree of cure, resin viscosity and modulus were interpreted with reference to the temperature distribution in the composite panel part and tool setup during autoclave or hot-press curing cycles. In the fiber-bed compaction simulation, the pore pressure and resin flow velocity in the porous media models, and the compaction strain responses under applied pressure were studied to interpret the fiber volume fraction distribution predictions. In the structural simulation, the effect of temperature on the resin and ply modulus, and thermal coefficient changes during curing on predicted mechanical strains and chemical cure shrinkage strains were studied to understand the residual strains and stress response predictions. In addition to computational analysis, experimental studies were conducted to measure strains during the curing of laminated panels by means of optical fiber Bragg grating sensors (FBGs) embedded in the resin impregnated panels. The residual strain measurements from laboratory tests were then compared with the analytical model predictions. The paper describes the cure process procedures and residual strain predications, and discusses pertinent experimental results from the validation studies.

  15. Projected climate-induced habitat loss for salmonids in the John Day River network, Oregon, U.S.A.

    USGS Publications Warehouse

    Ruesch, Aaron S.; Torgersen, Christian E.; Lawler, Joshua J.; Olden, Julian D.; Peterson, Erin E.; Volk, Carol J.; Lawrence, David J.

    2012-01-01

    Climate change will likely have profound effects on cold-water species of freshwater fishes. As temperatures rise, cold-water fish distributions may shift and contract in response. Predicting the effects of projected stream warming in stream networks is complicated by the generally poor correlation between water temperature and air temperature. Spatial dependencies in stream networks are complex because the geography of stream processes is governed by dimensions of flow direction and network structure. Therefore, forecasting climate-driven range shifts of stream biota has lagged behind similar terrestrial modeling efforts. We predicted climate-induced changes in summer thermal habitat for 3 cold-water fish species—juvenile Chinook salmon, rainbow trout, and bull trout (Oncorhynchus tshawytscha, O. mykiss, and Salvelinus confluentus, respectively)—in the John Day River basin, northwestern United States. We used a spatially explicit statistical model designed to predict water temperature in stream networks on the basis of flow and spatial connectivity. The spatial distribution of stream temperature extremes during summers from 1993 through 2009 was largely governed by solar radiation and interannual extremes of air temperature. For a moderate climate change scenario, estimated declines by 2100 in the volume of habitat for Chinook salmon, rainbow trout, and bull trout were 69–95%, 51–87%, and 86–100%, respectively. Although some restoration strategies may be able to offset these projected effects, such forecasts point to how and where restoration and management efforts might focus.

  16. Flow Redistribution Between Legs and Brain During STS 93 Re-Entry and Landing

    NASA Technical Reports Server (NTRS)

    Arbeille, P.; Meck, J.; Porcher, M.; Benavides, E.; Martin, D. S.; South, D. A.; Ribeiro, C.; Westover, A.

    2003-01-01

    The objective was to quantify bit by bit the arterial hemodynamic response to the successive acceleration induced fluid shifts during re-entry and landing. Method: The astronaut instrumented himself with a flat Doppler probe fixed on the skin, a blood pressure arm cuff, and 3 ECG electrodes. The ICMS (integrated cardiovascular monitoring system, 15x15x25 cu cm, battery powered) designed to monitor Blood pressure, ECG, cerebral and femoral flows was fixed below the astronaut sit in the middeck. Recordings started 5 minutes before de-orbiting (TIG) and stopped 5 min after wheels stop. Results. During re-entry blood pressure increased by 20% at TIG, and then by 25 to 30% during the highest Gz accelerations (approx 1 S g ) . The cerebral flow remained decreased by 10 to 15% below inflight value all during the Entry and landing phases. Conversely the femoral flow increased at TIG and entry ( + l0 to 20%), recovered at 0.lg, and then decreased in proportion with the Gz acceleration (-10% to -40% from 0.5g to 1.5g). The reduction in Femoral flow was associated with an opposite variation in lower limb vascular resistance. Consequently the cerebral flow/femoral flow ratio decreased at TIG and entry (-20%), and then increased according to the Gz acceleration level ( + l0 to +40% from 0.5 to 1.5g). Conclusion: During orthostatic tests (Stand LBNP tests) the cerebral to femoral flow ratio allowed to quantify the efficiency of the flow redistribution between these 2 areas and predicted orthostatic intolerance. In the present case the astronaut was found orthostatically tolerant at postflight tilt tests, but we suggest that during re-entry this parameter could predict the occurrence of syncope in severely disadapted astronauts.

  17. Low mass planet migration in magnetically torqued dead zones - II. Flow-locked and runaway migration, and a torque prescription

    NASA Astrophysics Data System (ADS)

    McNally, Colin P.; Nelson, Richard P.; Paardekooper, Sijme-Jan

    2018-04-01

    We examine the migration of low mass planets in laminar protoplanetary discs, threaded by large scale magnetic fields in the dead zone that drive radial gas flows. As shown in Paper I, a dynamical corotation torque arises due to the flow-induced asymmetric distortion of the corotation region and the evolving vortensity contrast between the librating horseshoe material and background disc flow. Using simulations of laminar torqued discs containing migrating planets, we demonstrate the existence of the four distinct migration regimes predicted in Paper I. In two regimes, the migration is approximately locked to the inward or outward radial gas flow, and in the other regimes the planet undergoes outward runaway migration that eventually settles to fast steady migration. In addition, we demonstrate torque and migration reversals induced by midplane magnetic stresses, with a bifurcation dependent on the disc surface density. We develop a model for fast migration, and show why the outward runaway saturates to a steady speed, and examine phenomenologically its termination due to changing local disc conditions. We also develop an analytical model for the corotation torque at late times that includes viscosity, for application to discs that sustain modest turbulence. Finally, we use the simulation results to develop torque prescriptions for inclusion in population synthesis models of planet formation.

  18. Low-mass planet migration in magnetically torqued dead zones - II. Flow-locked and runaway migration, and a torque prescription

    NASA Astrophysics Data System (ADS)

    McNally, Colin P.; Nelson, Richard P.; Paardekooper, Sijme-Jan

    2018-07-01

    We examine the migration of low-mass planets in laminar protoplanetary discs, threaded by large-scale magnetic fields in the dead zone that drive radial gas flows. As shown in Paper I, a dynamical corotation torque arises due to the flow-induced asymmetric distortion of the corotation region and the evolving vortensity contrast between the librating horseshoe material and background disc flow. Using simulations of laminar torqued discs containing migrating planets, we demonstrate the existence of the four distinct migration regimes predicted in Paper I. In two regimes, the migration is approximately locked to the inward or outward radial gas flow, and in the other regimes the planet undergoes outward runaway migration that eventually settles to fast steady migration. In addition, we demonstrate torque and migration reversals induced by mid-plane magnetic stresses, with a bifurcation dependent on the disc surface density. We develop a model for fast migration, and show why the outward runaway saturates to a steady speed, and examine phenomenologically its termination due to changing local disc conditions. We also develop an analytical model for the corotation torque at late times that includes viscosity, for application to discs that sustain modest turbulence. Finally, we use the simulation results to develop torque prescriptions for inclusion in population synthesis models of planet formation.

  19. Effect of surface radiation on natural convection in an asymmetrically heated channel-chimney system

    NASA Astrophysics Data System (ADS)

    Nasri, Zied; Derouich, Youssef; Laatar, Ali Hatem; Balti, Jalloul

    2018-05-01

    In this paper, a more realistic numerical approach that takes into account the effect of surface radiation on the laminar air flow induced by natural convection in a channel-chimney system asymmetrically heated at uniform heat flux is used. The aim is to enrich the results given in Nasri et al. (Int J Therm Sci 90:122-134, 2015) by varying all the geometric parameters of the system and by taking into account the effect of surface radiation on the flows. The numerical results are first validated against experimental and numerical data available in the literature. The computations have allowed the determination of optimal configurations that maximize the mass flow rate and the convective heat transfer and minimize the heated wall temperatures. The analysis of the temperature fields with the streamlines and the pressure fields has helped to explain the effects of surface radiation and of the different thermo-geometrical parameters on the system performances to improve the mass flow rate and the heat transfer with respect to the simple channel. It is shown that the thermal performance of the channel-chimney system in terms of lower heated wall temperatures is little affected by the surface radiation. At the end, simple correlation equations have been proposed for quickly and easily predict the optimal configurations as well as the corresponding enhancement rates of the induced mass flow rate and the convective heat transfer.

  20. Contribution of wave-induced liquefaction in triggering hyperpycnal flows in Yellow River Estuary

    NASA Astrophysics Data System (ADS)

    Liu, X.; Jia, Y.

    2017-12-01

    Hyperpycnal flows, driven mainly by the gravity of near-bed negatively buoyant layers, are one of the most important processes for moving marine sediment across the earth. The issue of hyperpycnal flows existing in marine environment has drawn increasing scholars' attention since that was observed in situ off the Yellow River estuary in the 1980s. Most researches maintain that hyperpycnal flows in the Yellow River estuary are caused by the high-concentration sediments discharged from the Yellow River into sea, however, other mechanisms have been discounted since the sediment input from the river has been significantly changed due to climate and anthropogenic change. Here we demonstrate that wave-seabed interactions can generate hyperpycnal flows, without river input, by sediment flux convergence above an originally consolidated seabed. Using physical model experiments and multi-sensor field measurements, we characterize the composition-dependent liquefaction properties of the sediment due to wave-induced pore water pressure accumulation. This allows quantification of attenuation of sediment threshold velocity and critical shear stress (predominant variables in transport mechanics) during the liquefaction under waves. Parameterising the wave-seabed interactions in a new concept model shows that high waves propagating over the seabed sediment can act as a scarifier plough remoulding the seabed sediment. This contributes to marine hyperpycnal flows as the sediment is quickly resuspended under accumulating attenuation in strength. Therefore, the development of more integrative numerical models could supply realistic predictions of marine record in response to rising magnitude and frequency of storms.

  1. Transonic Shock-Wave/Boundary-Layer Interactions on an Oscillating Airfoil

    NASA Technical Reports Server (NTRS)

    Davis, Sanford S.; Malcolm, Gerald N.

    1980-01-01

    Unsteady aerodynamic loads were measured on an oscillating NACA 64A010 airfoil In the NASA Ames 11 by 11 ft Transonic Wind Tunnel. Data are presented to show the effect of the unsteady shock-wave/boundary-layer interaction on the fundamental frequency lift, moment, and pressure distributions. The data show that weak shock waves induce an unsteady pressure distribution that can be predicted quite well, while stronger shock waves cause complex frequency-dependent distributions due to flow separation. An experimental test of the principles of linearity and superposition showed that they hold for weak shock waves while flows with stronger shock waves cannot be superimposed.

  2. Prediction of the backflow and recovery regions in the backward facing step at various Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Michelassi, V.; Durbin, P. A.; Mansour, N. N.

    1996-01-01

    A four-equation model of turbulence is applied to the numerical simulation of flows with massive separation induced by a sudden expansion. The model constants are a function of the flow parameters, and two different formulations for these functions are tested. The results are compared with experimental data for a high Reynolds-number case and with experimental and DNS data for a low Reynolds-number case. The computations prove that the recovery region downstream of the massive separation is properly modeled only for the high Re case. The problems in this case stem from the gradient diffusion hypothesis, which underestimates the turbulent diffusion.

  3. Cooperative breakups induced by drop-to-drop interactions in one-dimensional flows of drops against micro-obstacles.

    PubMed

    Schmit, Alexandre; Salkin, Louis; Courbin, Laurent; Panizza, Pascal

    2015-03-28

    Depending on the capillary number at play and the parameters of the flow geometry, a drop may or may not break when colliding with an obstacle in a microdevice. Modeling the flow of one-dimensional trains of monodisperse drops impacting a micro-obstacle, we show numerically that complex dynamics may arise through drop-to-drop hydrodynamic interactions: we observe sequences of breakup events in which the size of the daughter drops created upon breaking mother ones becomes a periodic function of time. We demonstrate the existence of numerous bifurcations between periodic breakup regimes and we establish diagrams mapping the possible breakup dynamics as a function of the governing (physicochemical, hydrodynamic, and geometric) parameters. Microfluidic experiments validate our model as they concur very well with predictions.

  4. Predicting airborne particle deposition by a modified Markov chain model for fast estimation of potential contaminant spread

    NASA Astrophysics Data System (ADS)

    Mei, Xiong; Gong, Guangcai

    2018-07-01

    As potential carriers of hazardous pollutants, airborne particles may deposit onto surfaces due to gravitational settling. A modified Markov chain model to predict gravity induced particle dispersion and deposition is proposed in the paper. The gravity force is considered as a dominant weighting factor to adjust the State Transfer Matrix, which represents the probabilities of the change of particle spatial distributions between consecutive time steps within an enclosure. The model performance has been further validated by particle deposition in a ventilation chamber and a horizontal turbulent duct flow in pre-existing literatures. Both the proportion of deposited particles and the dimensionless deposition velocity are adopted to characterize the validation results. Comparisons between our simulated results and the experimental data from literatures show reasonable accuracy. Moreover, it is also found that the dimensionless deposition velocity can be remarkably influenced by particle size and stream-wise velocity in a typical horizontal flow. This study indicates that the proposed model can predict the gravity-dominated airborne particle deposition with reasonable accuracy and acceptable computing time.

  5. The power induced effects module: A FORTRAN code which estimates lift increments due to power induced effects for V/STOL flight

    NASA Technical Reports Server (NTRS)

    Sandlin, Doral R.; Howard, Kipp E.

    1991-01-01

    A user friendly FORTRAN code that can be used for preliminary design of V/STOL aircraft is described. The program estimates lift increments, due to power induced effects, encountered by aircraft in V/STOL flight. These lift increments are calculated using empirical relations developed from wind tunnel tests and are due to suckdown, fountain, ground vortex, jet wake, and the reaction control system. The code can be used as a preliminary design tool along with NASA Ames' Aircraft Synthesis design code or as a stand-alone program for V/STOL aircraft designers. The Power Induced Effects (PIE) module was validated using experimental data and data computed from lift increment routines. Results are presented for many flat plate models along with the McDonnell Aircraft Company's MFVT (mixed flow vectored thrust) V/STOL preliminary design and a 15 percent scale model of the YAV-8B Harrier V/STOL aircraft. Trends and magnitudes of lift increments versus aircraft height above the ground were predicted well by the PIE module. The code also provided good predictions of the magnitudes of lift increments versus aircraft forward velocity. More experimental results are needed to determine how well the code predicts lift increments as they vary with jet deflection angle and angle of attack. The FORTRAN code is provided in the appendix.

  6. Did glacially induced TPW end the ice age? A reanalysis

    NASA Astrophysics Data System (ADS)

    Chan, Ngai-Ham; Mitrovica, Jerry X.; Daradich, Amy

    2015-09-01

    Previous studies of Earth rotation perturbations due to ice-age loading have predicted a slow secular drift of the rotation axis relative to the surface geography (i.e. true polar wander, TPW) of order of several degrees over the Plio-Pleistocene. It has been argued that this drift and the change in the geographic distribution of solar insolation that it implies may have been responsible for important transitions in ice-age climate, including the termination of ice-age cycles.We use a revised rotational stability theory that incorporates a more accurate treatment of the Earth's background ellipticity to reconsider this issue, and demonstrate that the net displacement of the pole predicted in earlier studies disappears. This more muted polar motion is due to two factors: first, the revised theory no longer predicts the permanent shift in the rotation axis, or the so-called `unidirectional TPW', that appears in the traditional stability theory; and, second, the increased background ellipticity incorporated in the revised predictions acts to reduce the normal mode amplitudes governing the motion of the pole. We conclude that ice-age-induced TPW was not responsible for the termination of the ice age. This does not preclude the possibility that TPW induced by mantle convective flow may have played a role in major Plio-Pleistocene climate transitions, including the onset of Northern Hemisphere glaciation.

  7. A numerical model investigation of the formation and persistence of an erosion hotspot

    USGS Publications Warehouse

    Hansen, Jeff E.; Elias, Edwin; List, Jeffrey H.; Barnard, Patrick L.

    2011-01-01

    A Delft3D-SWAN coupled flow and wave model was constructed for the San Francisco Bight with high-resolution at 7 km-long Ocean Beach, a high-energy beach located immediately south of the Golden Gate, the sole entrance to San Francisco Bay. The model was used to investigate tidal and wave-induced flows, basic forcing terms, and potential sediment transport in an area in the southern portion of Ocean Beach that has eroded significantly over the last several decades. The model predicted flow patterns that were favorable for sediment removal from the area and net erosion from the surf-zone. Analysis of the forcing terms driving surf-zone flows revealed that wave refraction over an exposed wastewater outfall pipe between the 12 and 15 m isobaths introduces a perturbation in the wave field that results in erosion-causing flows. Modeled erosion agreed well with five years of topographic survey data from the area.

  8. A continuum theory for two-phase flows of particulate solids: application to Poiseuille flows

    NASA Astrophysics Data System (ADS)

    Monsorno, Davide; Varsakelis, Christos; Papalexandris, Miltiadis V.

    2015-11-01

    In the first part of this talk, we present a novel two-phase continuum model for incompressible fluid-saturated granular flows. The model accounts for both compaction and shear-induced dilatancy and accommodates correlations for the granular rheology in a thermodynamically consistent way. In the second part of this talk, we exercise this two-phase model in the numerical simulation of a fully-developed Poiseuille flow of a dense suspension. The numerical predictions are shown to compare favorably against experimental measurements and confirm that the model can capture the important characteristics of the flow field, such as segregation and formation of plug zones. Finally, results from parametric studies with respect to the initial concentration, the magnitude of the external forcing and the width of the channel are presented and the role of these physical parameters is quantified. Financial Support has been provided by SEDITRANS, an Initial Training Network of the European Commission's 7th Framework Programme

  9. Experimental investigation of cavitation induced air release

    NASA Astrophysics Data System (ADS)

    Kowalski, Karoline; Pollak, Stefan; Hussong, Jeanette

    Variations in cross-sectional areas may lead to pressure drops below a critical value, such that cavitation and air release are provoked in hydraulic systems. Due to a relatively slow dissolution of gas bubbles, the performance of hydraulic systems will be affected on long time scales by the gas phase. Therefore predictions of air production rates are desirable to describe the system characteristics. Existing investigations on generic geometries such as micro-orifice flows show an outgassing process due to hydrodynamic cavitation which takes place on time scales far shorter than diffusion processes. The aim of the present investigation is to find a correlation between global, hydrodynamic flow characteristics and cavitation induced undissolved gas fractions generated behind generic flow constrictions such as an orifice or venturi tube. Experimental investigations are realised in a cavitation channel that enables an independent adjustment of the pressure level upstream and downstream of the orifice. Released air fractions are determined by means of shadowgraphy imaging. First results indicate that an increased cavitation activity leads to a rapid increase in undissolved gas volume only in the choking regime. The frequency distribution of generated gas bubble size seems to depend only indirectly on the cavitation intensity driven by an increase of downstream coalescence events due to a more densely populated bubbly flow.

  10. Mesh-type acoustic vector sensor

    NASA Astrophysics Data System (ADS)

    Zalalutdinov, M. K.; Photiadis, D. M.; Szymczak, W. G.; McMahon, J. W.; Bucaro, J. A.; Houston, B. H.

    2017-07-01

    Motivated by the predictions of a theoretical model developed to describe the acoustic flow force exerted on closely spaced nano-fibers in a viscous medium, we have demonstrated a novel concept for a particle velocity-based directional acoustic sensor. The central element of the concept exploits the acoustically induced normal displacement of a fine mesh as a measure of the collinear projection of the particle velocity in the sound wave. The key observations are (i) the acoustically induced flow force on an individual fiber within the mesh is nearly independent of the fiber diameter and (ii) the mesh-flow interaction can be well-described theoretically by a nearest neighbor coupling approximation. Scaling arguments based on these two observations indicate that the refinement of the mesh down to the nanoscale leads to significant improvements in performance. The combination of the two dimensional nature of the mesh together with the nanoscale dimensions provides a dramatic gain in the total length of fiber exposed to the flow, leading to a sensitivity enhancement by orders of magnitude. We describe the fabrication of a prototype mesh sensor equipped with optical readout. Preliminary measurements carried out over a considerable bandwidth together with the results of numerical simulations are in good agreement with the theory, thus providing a proof of concept.

  11. Key Technology of Real-Time Road Navigation Method Based on Intelligent Data Research

    PubMed Central

    Tang, Haijing; Liang, Yu; Huang, Zhongnan; Wang, Taoyi; He, Lin; Du, Yicong; Ding, Gangyi

    2016-01-01

    The effect of traffic flow prediction plays an important role in routing selection. Traditional traffic flow forecasting methods mainly include linear, nonlinear, neural network, and Time Series Analysis method. However, all of them have some shortcomings. This paper analyzes the existing algorithms on traffic flow prediction and characteristics of city traffic flow and proposes a road traffic flow prediction method based on transfer probability. This method first analyzes the transfer probability of upstream of the target road and then makes the prediction of the traffic flow at the next time by using the traffic flow equation. Newton Interior-Point Method is used to obtain the optimal value of parameters. Finally, it uses the proposed model to predict the traffic flow at the next time. By comparing the existing prediction methods, the proposed model has proven to have good performance. It can fast get the optimal value of parameters faster and has higher prediction accuracy, which can be used to make real-time traffic flow prediction. PMID:27872637

  12. Upper Mantle Texture Patterns In Eastern North America From Seismic Anisotropy And Global Mantle Flow Calculations

    NASA Astrophysics Data System (ADS)

    Levin, V. L.; Moucha, R.; Yuan, H.

    2013-12-01

    Global seismic models show gradual and systematic changes in upper mantle seismic properties beneath North America. Faster and thicker lithosphere of the interior thins eastward. Upper mantle rock fabric reflected in observations of seismic anisotropy also varies. Near the coast apparent fast directions of split shear waves are nearly east-west, with considerable scatter. Further inland they are more uniform and align SW-NE, close to the absolute plate motion direction of North America. Mantle convection simulations driven by density inferred from global joint seismic-geodynamic tomography models exhibit complex flow beneath the eastern edge of the North American continent due to the ongoing descent of the Farallon slab deep beneath it (figure 1). Flow predicted beneath the coast is nearly horizontal with a small, though dynamically important, vertical component, while west of the Appalachians it turns downward. Long records of teleseismic observations accumulated at permanent seismic stations HRV, PAL and SSPA (figure 2) are inverted for vertical distribution of anisotropic parameters. We find preference for more than one layer of anisotropy beneath all sites, with significantly different parameters that could reflect either lateral variations in the lithospheric thickness, variations in the asthenospheric flow field, or both. Since we find considerable consistency in directional patterns of P-to-S mode converted waves associated with the lower part of the lithosphere, variations of asthenospheric flow seem to be a more plausible explanation. We explore the links between predicted flow and inferences from seismic data with additional observations of anisotropy and calculations of flow-induced rock fabric.

  13. Flow structure generated by perpendicular blade-vortex interaction and implications for helicopter noise prediction. Volume 1: Measurements

    NASA Technical Reports Server (NTRS)

    Wittmer, Kenneth S.; Devenport, William J.

    1996-01-01

    The perpendicular interaction of a streamwise vortex with an infinite span helicopter blade was modeled experimentally in incompressible flow. Three-component velocity and turbulence measurements were made using a sub-miniature four sensor hot-wire probe. Vortex core parameters (radius, peak tangential velocity, circulation, and centerline axial velocity deficit) were determined as functions of blade-vortex separation, streamwise position, blade angle of attack, vortex strength, and vortex size. The downstream development of the flow shows that the interaction of the vortex with the blade wake is the primary cause of the changes in the core parameters. The blade sheds negative vorticity into its wake as a result of the induced angle of attack generated by the passing vortex. Instability in the vortex core due to its interaction with this negative vorticity region appears to be the catalyst for the magnification of the size and intensity of the turbulent flowfield downstream of the interaction. In general, the core radius increases while peak tangential velocity decreases with the effect being greater for smaller separations. These effects are largely independent of blade angle of attack; and if these parameters are normalized on their undisturbed values, then the effects of the vortex strength appear much weaker. Two theoretical models were developed to aid in extending the results to other flow conditions. An empirical model was developed for core parameter prediction which has some rudimentary physical basis, implying usefulness beyond a simple curve fit. An inviscid flow model was also created to estimate the vorticity shed by the interaction blade, and to predict the early stages of its incorporation into the interacting vortex.

  14. Dynamic Load Predictions for Launchers Using Extra-Large Eddy Simulations X-Les

    NASA Astrophysics Data System (ADS)

    Maseland, J. E. J.; Soemarwoto, B. I.; Kok, J. C.

    2005-02-01

    Flow-induced unsteady loads can have a strong impact on performance and flight characteristics of aerospace vehicles and therefore play a crucial role in their design and operation. Complementary to costly flight tests and delicate wind-tunnel experiments, unsteady loads can be calculated using time-accurate Computational Fluid Dynamics. A capability to accurately predict the dynamic loads on aerospace structures at flight Reynolds numbers can be of great value for the design and analysis of aerospace vehicles. Advanced space launchers are subject to dynamic loads in the base region during the ascent to space. In particular the engine and nozzle experience aerodynamic pressure fluctuations resulting from massive flow separations. Understanding these phenomena is essential for performance enhancements for future launchers which operate a larger nozzle. A new hybrid RANS-LES turbulence modelling approach termed eXtra-Large Eddy Simulations (X-LES) holds the promise to capture the flow structures associated with massive separations and enables the prediction of the broad-band spectrum of dynamic loads. This type of method has become a focal point, reducing the cost of full LES, driven by the demand for their applicability in an industrial environment. The industrial feasibility of X-LES simulations is demonstrated by computing the unsteady aerodynamic loads on the main-engine nozzle of a generic space launcher configuration. The potential to calculate the dynamic loads is qualitatively assessed for transonic flow conditions in a comparison to wind-tunnel experiments. In terms of turn-around-times, X-LES computations are already feasible within the time-frames of the development process to support the structural design. Key words: massive separated flows; buffet loads; nozzle vibrations; space launchers; time-accurate CFD; composite RANS-LES formulation.

  15. Potential Flow Model for Compressible Stratified Rayleigh-Taylor Instability

    NASA Astrophysics Data System (ADS)

    Rydquist, Grant; Reckinger, Scott; Owkes, Mark; Wieland, Scott

    2017-11-01

    The Rayleigh-Taylor Instability (RTI) is an instability that occurs when a heavy fluid lies on top of a lighter fluid in a gravitational field, or a gravity-like acceleration. It occurs in many fluid flows of a highly compressive nature. In this study potential flow analysis (PFA) is used to model the early stages of RTI growth for compressible fluids. In the localized region near the bubble tip, the effects of vorticity are negligible, so PFA is applicable, as opposed to later stages where the induced velocity due to vortices generated from the growth of the instability dominate the flow. The incompressible PFA is extended for compressibility effects by applying the growth rate and the associated perturbation spatial decay from compressible linear stability theory. The PFA model predicts theoretical values for a bubble terminal velocity for single-mode compressible RTI, dependent upon the Atwood (A) and Mach (M) numbers, which is a parameter that measures both the strength of the stratification and intrinsic compressibility. The theoretical bubble terminal velocities are compared against numerical simulations. The PFA model correctly predicts the M dependence at high A, but the model must be further extended to include additional physics to capture the behavior at low A. Undergraduate Scholars Program - Montana State University.

  16. Application of a Full Reynolds Stress Model to High Lift Flows

    NASA Technical Reports Server (NTRS)

    Lee-Rausch, E. M.; Rumsey, C. L.; Eisfeld, B.

    2016-01-01

    A recently developed second-moment Reynolds stress model was applied to two challenging high-lift flows: (1) transonic flow over the ONERA M6 wing, and (2) subsonic flow over the DLR-F11 wing-body configuration from the second AIAA High Lift Prediction Workshop. In this study, the Reynolds stress model results were contrasted with those obtained from one- and two{equation turbulence models, and were found to be competitive in terms of the prediction of shock location and separation. For an ONERA M6 case, results from multiple codes, grids, and models were compared, with the Reynolds stress model tending to yield a slightly smaller shock-induced separation bubble near the wing tip than the simpler models, but all models were fairly close to the limited experimental surface pressure data. For a series of high-lift DLR{F11 cases, the range of results was more limited, but there was indication that the Reynolds stress model yielded less-separated results than the one-equation model near maximum lift. These less-separated results were similar to results from the one-equation model with a quadratic constitutive relation. Additional computations need to be performed before a more definitive assessment of the Reynolds stress model can be made.

  17. A new blade element method for calculating the performance of high and intermediate solidity axial flow fans

    NASA Technical Reports Server (NTRS)

    Borst, H. V.

    1978-01-01

    A method is presented to design and predict the performance of axial flow rotors operating in a duct. The same method is suitable for the design of ducted fans and open propellers. The unified method is based on the blade element approach and the vortex theory for determining the three dimensional effects, so that two dimensional airfoil data can be used for determining the resultant force on each blade element. Resolution of this force in the thrust and torque planes and integration allows the total performance of the rotor, fan or propeller to be predicted. Three different methods of analysis, one based on a momentum flow theory; another on the vortex theory of propellers; and a third based on the theory of ducted fans, agree and reduce cascade airfoil data to single line as a function of the loading and induced angle of attack at values of constant inflow angle. The theory applies for any solidity from .01 to over 1 and any blade section camber. The effects of the duct and blade number can be determined so that the procedure applies over the entire range from two blade open propellers, to ducted helicopter tail rotors, to axial flow compressors with or without guide vanes, and to wind tunnel drive fans.

  18. A Review of Hemolysis Prediction Models for Computational Fluid Dynamics.

    PubMed

    Yu, Hai; Engel, Sebastian; Janiga, Gábor; Thévenin, Dominique

    2017-07-01

    Flow-induced hemolysis is a crucial issue for many biomedical applications; in particular, it is an essential issue for the development of blood-transporting devices such as left ventricular assist devices, and other types of blood pumps. In order to estimate red blood cell (RBC) damage in blood flows, many models have been proposed in the past. Most models have been validated by their respective authors. However, the accuracy and the validity range of these models remains unclear. In this work, the most established hemolysis models compatible with computational fluid dynamics of full-scale devices are described and assessed by comparing two selected reference experiments: a simple rheometric flow and a more complex hemodialytic flow through a needle. The quantitative comparisons show very large deviations concerning hemolysis predictions, depending on the model and model parameter. In light of the current results, two simple power-law models deliver the best compromise between computational efficiency and obtained accuracy. Finally, hemolysis has been computed in an axial blood pump. The reconstructed geometry of a HeartMate II shows that hemolysis occurs mainly at the tip and leading edge of the rotor blades, as well as at the leading edge of the diffusor vanes. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  19. An ab initio chemical reaction model for the direct simulation Monte Carlo study of non-equilibrium nitrogen flows.

    PubMed

    Mankodi, T K; Bhandarkar, U V; Puranik, B P

    2017-08-28

    A new ab initio based chemical model for a Direct Simulation Monte Carlo (DSMC) study suitable for simulating rarefied flows with a high degree of non-equilibrium is presented. To this end, Collision Induced Dissociation (CID) cross sections for N 2 +N 2 →N 2 +2N are calculated and published using a global complete active space self-consistent field-complete active space second order perturbation theory N 4 potential energy surface and quasi-classical trajectory algorithm for high energy collisions (up to 30 eV). CID cross sections are calculated for only a selected set of ro-vibrational combinations of the two nitrogen molecules, and a fitting scheme based on spectroscopic weights is presented to interpolate the CID cross section for all possible ro-vibrational combinations. The new chemical model is validated by calculating equilibrium reaction rate coefficients that can be compared well with existing shock tube and computational results. High-enthalpy hypersonic nitrogen flows around a cylinder in the transition flow regime are simulated using DSMC to compare the predictions of the current ab initio based chemical model with the prevailing phenomenological model (the total collision energy model). The differences in the predictions are discussed.

  20. Dynamic Leidenfrost temperature on micro-textured surfaces: Acoustic wave absorption into thin vapor layer

    NASA Astrophysics Data System (ADS)

    Jerng, Dong Wook; Kim, Dong Eok

    2018-01-01

    The dynamic Leidenfrost phenomenon is governed by three types of pressure potentials induced via vapor hydrodynamics, liquid dynamic pressure, and the water hammer effect resulting from the generation of acoustic waves at the liquid-vapor interface. The prediction of the Leidenfrost temperature for a dynamic droplet needs quantitative evaluation and definition for each of the pressure fields. In particular, the textures on a heated surface can significantly affect the vapor hydrodynamics and the water hammer pressure. We present a quantitative model for evaluating the water hammer pressure on micro-textured surfaces taking into account the absorption of acoustic waves into the thin vapor layer. The model demonstrates that the strength of the acoustic flow into the liquid droplet, which directly contributes to the water hammer pressure, depends on the magnitude of the acoustic resistance (impedance) in the droplet and the vapor region. In consequence, the micro-textures of the surface and the increased spacing between them reduce the water hammer coefficient ( kh ) defined as the ratio of the acoustic flow into the droplet to total generated flow. Aided by numerical calculations that solve the laminar Navier-Stokes equation for the vapor flow, we also predict the dynamic Leidenfrost temperature on a micro-textured surface with reliable accuracy consistent with the experimental data.

  1. FE analysis of creep and hygroexpansion response of a corrugated fiberboard to a moisture flow : a transient nonlinear analysis

    Treesearch

    Adeeb A. Rahman; Thomas J. Urbanik; Mustafa Mahamid

    2006-01-01

    This paper presents a model using finite element method to study the response of a typical commercial corrugated fiberboard due to an induced moisture function at one side of the fiberboard. The model predicts how the moisture diffusion will permeate through the fiberboard’s layers(medium and liners) providing information on moisture content at any given point...

  2. Electron heating by intense short-pulse lasers propagating through near-critical plasmas

    NASA Astrophysics Data System (ADS)

    Debayle, A.; Mollica, F.; Vauzour, B.; Wan, Y.; Flacco, A.; Malka, V.; Davoine, X.; Gremillet, L.

    2017-12-01

    We investigate the electron heating induced by a relativistic-intensity laser pulse propagating through a near-critical plasma. Using particle-in-cell simulations, we show that a specific interaction regime sets in when, due to the energy depletion caused by the plasma wakefield, the laser front profile has steepened to the point of having a length scale close to the laser wavelength. Wave breaking and phase mixing have then occurred, giving rise to a relativistically hot electron population following the laser pulse. This hot electron flow is dense enough to neutralize the cold bulk electrons during their backward acceleration by the wakefield. This neutralization mechanism delays, but does not prevent the breaking of the wakefield: the resulting phase mixing converts the large kinetic energy of the backward-flowing electrons into thermal energy greatly exceeding the conventional ponderomotive scaling at laser intensities > {10}21 {{{W}}{cm}}-2 and gas densities around 10% of the critical density. We develop a semi-numerical model, based on the Akhiezer-Polovin equations, which correctly reproduces the particle-in-cell-predicted electron thermal energies over a broad parameter range. Given this good agreement, we propose a criterion for full laser absorption that includes field-induced ionization. Finally, we show that our predictions still hold in a two-dimensional geometry using a realistic gas profile.

  3. Deep-water bedforms induced by refracting Internal Solitary Waves

    NASA Astrophysics Data System (ADS)

    Falcini, Federico; Droghei, Riccardo; Casalbore, Daniele; Martorelli, Eleonora; Mosetti, Renzo; Sannino, Gianmaria; Santoleri, Rosalia; Latino Chiocci, Francesco

    2017-04-01

    Subaqueous bedforms (or sand waves) are typically observed in those environments that are exposed to strong currents, characterized by a dominant unidirectional flow. However, sand-wave fields may be also observed in marine environments where no such current exists; the physical processes driving their formation are enigmatic or not well understood. We propose that internal solitary waves (ISWs), induced by tides, can produce an effective, unidirectional boundary flow filed that forms asymmetric sand waves. We test this idea by examining a sand-wave field off the Messina Strait, where we hypothesize that ISWs formed at the interface between intermediate and surface waters are refracted by topography. Hence, we argue that the deflected pattern (i.e., the depth-dependent orientation) of the sand-wave field is due to refraction of such ISWs. Combining field observations and numerical modelling, we show that ISWs can account for three key features: ISWs produce fluid velocities capable of mobilizing bottom sediments; the predicted refraction pattern resulting from the interaction of ISWs with bottom topography matches the observed deflection of the sand waves; and predicted migration rates of sand waves match empirical estimates. This work shows how ISWs may contribute to sculpting the structure of continental margins and it represents a promising link between the geological and oceanographic communities.

  4. Improving transferability strategies for debris flow susceptibility assessment: Application to the Saponara and Itala catchments (Messina, Italy)

    NASA Astrophysics Data System (ADS)

    Cama, M.; Lombardo, L.; Conoscenti, C.; Rotigliano, E.

    2017-07-01

    Debris flows can be described as rapid gravity-induced mass movements controlled by topography that are usually triggered as a consequence of storm rainfalls. One of the problems when dealing with debris flow recognition is that the eroded surface is usually very shallow and it can be masked by vegetation or fast weathering as early as one-two years after a landslide has occurred. For this reason, even areas that are highly susceptible to debris flow might suffer of a lack of reliable landslide inventories. However, these inventories are necessary for susceptibility assessment. Model transferability, which is based on calibrating a susceptibility model in a training area in order to predict the distribution of debris flows in a target area, might provide an efficient solution to dealing with this limit. However, when applying a transferability procedure, a key point is the optimal selection of the predictors to be included for calibrating the model in the source area. In this paper, the issue of optimal factor selection is analysed by comparing the predictive performances obtained following three different factor selection criteria. The study includes: i) a test of the similarity between the source and the target areas; ii) the calibration of the susceptibility model in the (training) source area, using different criteria for the selection of the predictors; iii) the validation of the models, both at the source (self-validation, through random partition) and at the target (transferring, through spatial partition) areas. The debris flow susceptibility is evaluated here using binary logistic regression through a R-scripted based procedure. Two separate study areas were selected in the Messina province (southern Italy) in its Ionian (Itala catchment) and Tyrrhenian sides (Saponara catchment), each hit by a severe debris flow event (in 2009 and 2011, respectively). The investigation attested that the best fitting model in the calibration areas resulted poorly performing in predicting the landslides of the test target area. At the same time, the susceptibility models calibrated with an optimal set of covariates in the source area allowed us to produce a robust and accurate prediction image for the debris flows activated in the Saponara catchment in 2011, exploiting only the data known after the Itala-2009 event.

  5. Investigation of airfoil leading edge separation control with nanosecond plasma actuator

    NASA Astrophysics Data System (ADS)

    Zheng, J. G.; Cui, Y. D.; Zhao, Z. J.; Li, J.; Khoo, B. C.

    2016-11-01

    A combined numerical and experimental investigation of airfoil leading edge flow separation control with a nanosecond dielectric barrier discharge (DBD) plasma actuator is presented. Our study concentrates on describing dynamics of detailed flow actuation process and elucidating the nanosecond DBD actuation mechanism. A loose coupling methodology is employed to perform simulation, which consists of a self-similar plasma model for the description of pulsed discharge and two-dimensional Reynolds averaged Navier-Stokes (RANS) equations for the calculation of external airflow. A series of simulations of poststall flows around a NACA0015 airfoil is conducted with a Reynolds number range covering both low and high Re at Re=(0.05 ,0.15 ,1.2 ) ×106 . Meanwhile, wind-tunnel experiment is performed for two low Re flows to measure aerodynamic force on airfoil model and transient flow field with time-resolved particle image velocimetry (PIV). The PIV measurement provides possibly the clearest view of flow reattachment process under the actuation of a nanosecond plasma actuator ever observed in experiments, which is highly comparable to that predicted by simulation. It is found from the detailed simulation that the discharge-induced residual heat rather than shock wave plays a dominant role in flow control. For any leading edge separations, the preliminary flow reattachment is realized by residual heat-induced spanwise vortices. After that, the nanosecond actuator functions by continuing exciting flow instability at poststall attack angles or acting as an active trip near stall angle. As a result, the controlled flow is characterized by a train of repetitive, downstream moving vortices over suction surface or an attached turbulent boundary layer, which depends on both angle of attack and Reynolds number. The advection of residual temperature with external flow offers a nanosecond plasma actuator a lot of flexibility to extend its influence region. Animations are provided for baseline flow and that subjected to plasma control at two typical Reynolds numbers.

  6. A numerical model simulation of the regional air pollution meteorology of the greater Chesapeake Bay area - Summer day case study

    NASA Technical Reports Server (NTRS)

    Segal, M.; Pielke, R. A.; Mcnider, R. T.; Mcdougal, D. S.

    1982-01-01

    The mesoscale numerical model of the University of Virginia (UVMM), has been applied to the greater Chesapeake Bay area in order to provide a detailed description of the air pollution meteorology during a typical summer day. This model provides state of the art simulations for land-sea thermally induced circulations. The model-predicted results agree favorably with available observed data. The effects of synoptic flow and sea breeze coupling on air pollution meteorological characteristics in this region, are demonstrated by a spatial and temporal presentation of various model predicted fields. A transport analysis based on predicted wind velocities indicated possible recirculation of pollutants back onto the Atlantic coast due to the sea breeze circulation.

  7. Computational modeling for prediction of the shear stress of three-dimensional isotropic and aligned fiber networks.

    PubMed

    Park, Seungman

    2017-09-01

    Interstitial flow (IF) is a creeping flow through the interstitial space of the extracellular matrix (ECM). IF plays a key role in diverse biological functions, such as tissue homeostasis, cell function and behavior. Currently, most studies that have characterized IF have focused on the permeability of ECM or shear stress distribution on the cells, but less is known about the prediction of shear stress on the individual fibers or fiber networks despite its significance in the alignment of matrix fibers and cells observed in fibrotic or wound tissues. In this study, I developed a computational model to predict shear stress for different structured fibrous networks. To generate isotropic models, a random growth algorithm and a second-order orientation tensor were employed. Then, a three-dimensional (3D) solid model was created using computer-aided design (CAD) software for the aligned models (i.e., parallel, perpendicular and cubic models). Subsequently, a tetrahedral unstructured mesh was generated and flow solutions were calculated by solving equations for mass and momentum conservation for all models. Through the flow solutions, I estimated permeability using Darcy's law. Average shear stress (ASS) on the fibers was calculated by averaging the wall shear stress of the fibers. By using nonlinear surface fitting of permeability, viscosity, velocity, porosity and ASS, I devised new computational models. Overall, the developed models showed that higher porosity induced higher permeability, as previous empirical and theoretical models have shown. For comparison of the permeability, the present computational models were matched well with previous models, which justify our computational approach. ASS tended to increase linearly with respect to inlet velocity and dynamic viscosity, whereas permeability was almost the same. Finally, the developed model nicely predicted the ASS values that had been directly estimated from computational fluid dynamics (CFD). The present computational models will provide new tools for predicting accurate functional properties and designing fibrous porous materials, thereby significantly advancing tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Analytical study of mixed electroosmotic-pressure-driven flow in rectangular micro-channels

    NASA Astrophysics Data System (ADS)

    Movahed, Saeid; Kamali, Reza; Eghtesad, Mohammad; Khosravifard, Amir

    2013-09-01

    Operational state of many miniaturized devices deals with flow field in microchannels. Pressure-driven flow (PDF) and electroosmotic flow (EOF) can be recognized as the two most important types of the flow field in such channels. EOF has many advantages in comparison with PDF, such as being vibration free and not requiring any external mechanical pumps or moving parts. However, the disadvantages of this type of flow such as Joule heating, electrophoresis demixing, and not being suitable for mobile devices must be taken into consideration carefully. By using mixed electroosmotic/pressure-driven flow, the role of EOF in producing desired velocity profile will be reduced. In this way, the advantages of EOF can be exploited, and its disadvantages can be prevented. Induced pressure gradient can be utilized in order to control the separation in the system. Furthermore, in many complicated geometries such as T-shape microchannels, turns may induce pressure gradient to the electroosmotic velocity. While analytical formulas are completely essential for analysis and control of any industrial and laboratory microdevices, lack of such formulas in the literature for solving Poisson-Boltzmann equation and predicting electroosmotic velocity field in rectangular domains is evident. In the present study, first a novel method is proposed to solve Poisson-Boltzmann equation (PBE). Subsequently, this solution is utilized to find the electroosmotic and the mixed electroosmotic/pressure-driven velocity profile in a rectangular domain of the microchannels. To demonstrate the accuracy of the presented analytical method in solving PBE and finding electroosmotic velocity, a general nondimensional example is analyzed, and the results are compared with the solution of boundary element method. Additionally, the effects of different nondimensional parameters and also aspect ratio of channels on the electroosmotic part of the flow field will be investigated.

  9. Experimental evaluation of a flat wake theory for predicting rotor inflow-wake velocities

    NASA Technical Reports Server (NTRS)

    Wilson, John C.

    1992-01-01

    The theory for predicting helicopter inflow-wake velocities called flat wake theory was correlated with several sets of experimental data. The theory was developed by V. E. Baskin of the USSR, and a computer code known as DOWN was developed at Princeton University to implement the theory. The theory treats the wake geometry as rigid without interaction between induced velocities and wake structure. The wake structure is assumed to be a flat sheet of vorticity composed of trailing elements whose strength depends on the azimuthal and radial distributions of circulation on a rotor blade. The code predicts the three orthogonal components of flow velocity in the field surrounding the rotor. The predictions can be utilized in rotor performance and helicopter real-time flight-path simulation. The predictive capability of the coded version of flat wake theory provides vertical inflow patterns similar to experimental patterns.

  10. Modeling Shear Induced Von Willebrand Factor Binding to Collagen

    NASA Astrophysics Data System (ADS)

    Dong, Chuqiao; Wei, Wei; Morabito, Michael; Webb, Edmund; Oztekin, Alparslan; Zhang, Xiaohui; Cheng, Xuanhong

    2017-11-01

    Von Willebrand factor (vWF) is a blood glycoprotein that binds with platelets and collagen on injured vessel surfaces to form clots. VWF bioactivity is shear flow induced: at low shear, binding between VWF and other biological entities is suppressed; for high shear rate conditions - as are found near arterial injury sites - VWF elongates, activating its binding with platelets and collagen. Based on parameters derived from single molecule force spectroscopy experiments, we developed a coarse-grain molecular model to simulate bond formation probability as a function of shear rate. By introducing a binding criterion that depends on the conformation of a sub-monomer molecular feature of our model, the model predicts shear-induced binding, even for conditions where binding is highly energetically favorable. We further investigate the influence of various model parameters on the ability to predict shear-induced binding (vWF length, collagen site density and distribution, binding energy landscape, and slip/catch bond length) and demonstrate parameter ranges where the model provides good agreement with existing experimental data. Our results may be important for understanding vWF activity and also for achieving targeted drug therapy via biomimetic synthetic molecules. National Science Foundation (NSF),Division of Mathematical Sciences (DMS).

  11. Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. I

    NASA Astrophysics Data System (ADS)

    Zhou, Ye

    2017-12-01

    Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities play an important role in a wide range of engineering, geophysical, and astrophysical flows. They represent a triggering event that, in many cases, leads to large-scale turbulent mixing. Much effort has been expended over the past 140 years, beginning with the seminal work of Lord Rayleigh, to predict the evolution of the instabilities and of the instability-induced mixing layers. The objective of Part I of this review is to provide the basic properties of the flow, turbulence, and mixing induced by RT, RM, and Kelvin-Helmholtz (KH) instabilities. Historical efforts to study these instabilities are briefly reviewed, and the significance of these instabilities is discussed for a variety of flows, particularly for astrophysical flows and for the case of inertial confinement fusion. Early experimental efforts are described, and analytical attempts to model the linear, and nonlinear regimes of these mixing layers are examined. These analytical efforts include models for both single-mode and multi-mode initial conditions, as well as multi-scale models to describe the evolution. Comparisons of these models and theories to experimental and simulation studies are then presented. Next, attention is paid to the issue of the influence of stabilizing mechanisms (e.g., viscosity, surface tension, and diffuse interface) on the evolution of these instabilities, as well as the limitations and successes of numerical methods. Efforts to study these instabilities and mixing layers using group-theoretic ideas, as well as more formal notions of turbulence cascade processes during the later stages of the induced mixing layers, are inspected. A key element of the review is the discussion of the late-time self-similar scaling for the RT and RM growth factors, α and θ. These parameters are influenced by the initial conditions and much of the observed variation can be explained by this. In some cases, these instabilities induced flows can transition to turbulence. Both the spatial and temporal criteria to achieve the transition to turbulence have been examined. Finally, a description of the energy-containing scales in the mixing layers, including energy "injection" and cascade processes are presented in greater detail. Part II of this review is designed to provide a much broader and in-depth understanding of this critical area of research (Zhou, 2017. Physics Reports, 723-725, 1-160).

  12. Contour forming of metals by laser peening

    DOEpatents

    Hackel, Lloyd; Harris, Fritz

    2002-01-01

    A method and apparatus are provided for forming shapes and contours in metal sections by generating laser induced compressive stress on the surface of the metal workpiece. The laser process can generate deep compressive stresses to shape even thick components without inducing unwanted tensile stress at the metal surface. The precision of the laser-induced stress enables exact prediction and subsequent contouring of parts. A light beam of 10 to 100 J/pulse is imaged to create an energy fluence of 60 to 200 J/cm.sup.2 on an absorptive layer applied over a metal surface. A tamping layer of water is flowed over the absorptive layer. The absorption of laser light causes a plasma to form and consequently creates a shock wave that induces a deep residual compressive stress into the metal. The metal responds to this residual stress by bending.

  13. Experimental investigation on in-plane/out-of-plane vortex-induced vibrations of curved cylinder in parallel and perpendicular flows

    NASA Astrophysics Data System (ADS)

    Srinil, Narakorn; Ma, Bowen; Zhang, Licong

    2018-05-01

    This study is motivated by an industrial need to better understand the vortex-induced vibration (VIV) of a curved structure subject to current flows with varying directions whose data for model calibration and validation are lacking. In this paper, new experimental investigations on the two-degree-of-freedom in-plane/out-of-plane VIV of a rigid curved circular cylinder immersed in steady and uniform free-stream flows are presented. The principal objective is to examine how the approaching flow direction versus the cylinder curvature plane affects cross-flow and in-line VIV and the associated hydrodynamic properties. This is achieved by testing the curved cylinder in 3 different flow orientations comprising the parallel flows aligned with the curvature vertical plane in convex and concave configurations, and the flows perpendicular to the curvature plane. The case of varying flow velocities in a subcritical flow range with a maximum Reynolds number of about 50,000 is considered for the curved cylinder with a low mass ratio and damping ratio. Experimental results are presented and discussed in terms of the cylinder response amplitudes, inclination angles, mean displacements, motion trajectories, oscillation frequencies, hydrodynamic forces, relative phases, fluid excitation and added inertia coefficients. Comparisons with other experimental results of curved and straight cylinder VIV are also presented. The experiments highlight the important effects of cylinder curvature versus flow orientation on the combined cross-flow/in-line VIV. The maximum (minimum) responses occur in the perpendicular (convex) flow case whereas the extended lower-branch responses occur in the concave flow case. For perpendicular flows, some meaningful features are observed, including the appearances of cross-flow mean displacements and asymmetric eight-shaped motion trajectories due to multiple 2:1:1 resonances where two out-of-plane and one in-plane dominant frequencies are simultaneously excited. Overall VIV phenomena caused by the system asymmetry should be recognised in a prediction model and design codes to capture the combined effects of curved configuration and approaching flow direction.

  14. Howthe IMF By induces a By component in the closed magnetosphere and how it leads to asymmetric currents and convection patterns in the two hemispheres

    NASA Astrophysics Data System (ADS)

    Tenfjord, Paul; Østgaard, Nikolai; Snekvik, Kristian; Reistad, Jone; Magnus Laundal, Karl; Haaland, Stein; Milan, Steve

    2016-04-01

    We describe the effects of the interplanetary magnetic field (IMF) By component on the coupling between the solar wind and magnetosphere-ionosphere system using AMPERE observations and MHD simulations. We show how By is induced on closed magnetospheric field lines on both the dayside and nightside. The magnetosphere imposes asymmetric forces on the ionosphere, and the effects on the ionospheric flow are characterized by distorted convection cell patterns, often referred to as "banana" and "orange" cell patterns. The flux asymmetrically added to the lobes results in a nonuniform induced By in the closed magnetosphere. We present a mechanism that predicts asymmetric Birkeland currents at conjugate foot points. Asymmetric Birkeland currents are created as a consequence of y directed tension contained in the return flow. Associated with these currents, we expect aurora and fast localized ionospheric azimuthal flows present in one hemisphere but not necessarily in the other. We present a statistical study where we show that these processes should occur on timescales of about 30 minutes after the IMF By has arrived at the magnetopause. We also present an event with simultaneous global imaging of the aurora and SuperDARN measurements from both hemisphere. The event is interpreted as an example of the of the proposed asymmetric current mechanism.

  15. Interaction between intra-oral cinnamaldehyde and nicotine assessed by psychophysical and physiological responses.

    PubMed

    Jensen, Tanja K; Andersen, Michelle V; Nielsen, Kent A; Arendt-Nielsen, Lars; Boudreau, Shellie A

    2016-08-01

    Cinnamaldehyde and nicotine activate the transient receptor potential subtype A1 (TRPA1) channel, which may cause burning sensations. This study investigated whether cinnamaldehyde modulates nicotine-induced psychophysical and physiological responses in oral tissues. Healthy non-smokers (n = 22) received, in a randomized, double-blind, crossover design, three different gums containing 4 mg of nicotine, 20 mg of cinnamaldehyde, or a combination thereof. Assessments of orofacial temperature and blood flow, blood pressure, heart rate, taste experience, and intra-oral pain/irritation area and intensity were performed before, during, and after a 10-min chewing regime. Cinnamaldehyde increased the temperature of the tongue and blood flow of the lip, and was associated with pain/irritation, especially in the mouth. Nicotine increased the temperature of the tongue and blood flow of the cheek, and produced pain/irritation in the mouth and throat. The combination of cinnamaldehyde and nicotine did not overtly change the psychophysical or physiological responses. Interestingly, half of the subjects responded to cinnamaldehyde as an irritant, and these cinnamaldehyde responders reported greater nicotine-induced pain/irritation areas in the throat. Whether sensitivity to cinnamaldehyde can predict the response to nicotine-induced oral irritation remains to be determined. A better understanding of the sensory properties of nicotine in the oral mucosa has important therapeutic implications because pain and irritation represent compliance issues for nicotine replacement products. © 2016 Eur J Oral Sci.

  16. Comparison of aquifer characterization approaches through steady state groundwater model validation: A controlled laboratory sandbox study

    USGS Publications Warehouse

    Illman, W.A.; Zhu, J.; Craig, A.J.; Yin, D.

    2010-01-01

    Groundwater modeling has become a vital component to water supply and contaminant transport investigations. An important component of groundwater modeling under steady state conditions is selecting a representative hydraulic conductivity (K) estimate or set of estimates which defines the K field of the studied region. Currently, there are a number of characterization approaches to obtain K at various scales and in varying degrees of detail, but there is a paucity of information in terms of which characterization approach best predicts flow through aquifers or drawdowns caused by some drawdown inducing events. The main objective of this paper is to assess K estimates obtained by various approaches by predicting drawdowns from independent cross-hole pumping tests and total flow rates through a synthetic heterogeneous aquifer from flow-through tests. Specifically, we (1) characterize a synthetic heterogeneous aquifer built in the sandbox through various techniques (permeameter analyses of core samples, single-hole, cross-hole, and flow-through testing), (2) obtain mean K fields through traditional analysis of test data by treating the medium to be homogeneous, (3) obtain heterogeneous K fields through kriging and steady state hydraulic tomography, and (4) conduct forward simulations of 16 independent pumping tests and six flowthrough tests using these homogeneous and heterogeneous K fields and comparing them to actual data. Results show that the mean K and heterogeneous K fields estimated through kriging of small-scale K data (core and single-hole tests) yield biased predictions of drawdowns and flow rates in this synthetic heterogeneous aquifer. In contrast, the heterogeneous K distribution or ?K tomogram? estimated via steady state hydraulic tomography yields excellent predictions of drawdowns of pumping tests not used in the construction of the tomogram and very good estimates of total flow rates from the flowthrough tests. These results suggest that steady state groundwater model validation is possible in this laboratory sandbox aquifer if the heterogeneous K distribution and forcing functions (boundary conditions and source/sink terms) are characterized sufficiently. ?? 2010 by the American Geophysical Union.

  17. Laboratory modeling of multiple zonal jets on the polar beta-plane

    NASA Astrophysics Data System (ADS)

    Afanasyev, Y.

    2011-12-01

    Zonal jets observed in the oceans and atmospheres of planets are studied in a laboratory rotating tank. The fluid layer in the rotating tank has parabolic free surface and dynamically simulates the polar beta-plane where the Coriolis parameter varies quadratically with distance from the pole. Velocity and surface elevation fields are measured with an optical altimetry method (Afanasyev et al., Exps Fluids 2009). The flows are induced by a localized buoyancy source along radial direction. The baroclinic flow consisting of a field of eddies propagates away from the source due West and forms zonal jets (Fig. 1). Barotropic jets ahead of the baroclinic flow are formed by radiation of beta plumes. Inside the baroclinic flow the jets flow between the chains of eddies. Experimental evidence of so-called noodles (baroclinic instability mode with motions in the radial, North-South direction) theoretically predicted by Berloff et al. (JFM, JPO 2009) was found in our experiments. Beta plume radiation mechanism and the mechanism associated with the instability of noodles are likely to contribute to formation of jets in the baroclinic flow.

  18. Future Climate Impacts of Direct Radiative Forcing Anthropogenic Aerosols, Tropospheric Ozone, and Long-lived Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Chen, Wei-Ting; Liao, Hong; Seinfeld, John H.

    2007-01-01

    Long-lived greenhouse gases (GHGs) are the most important driver of climate change over the next century. Aerosols and tropospheric ozone (O3) are expected to induce significant perturbations to the GHG-forced climate. To distinguish the equilibrium climate responses to changes in direct radiative forcing of anthropogenic aerosols, tropospheric ozone, and GHG between present day and year 2100, four 80-year equilibrium climates are simulated using a unified tropospheric chemistry-aerosol model within the Goddard Institute for Space Studies (GISS) general circulation model (GCM) 110. Concentrations of sulfate, nitrate, primary organic (POA) carbon, secondary organic (SOA) carbon, black carbon (BC) aerosols, and tropospheric ozone for present day and year 2100 are obtained a priori by coupled chemistry-aerosol GCM simulations, with emissions of aerosols, ozone, and precursors based on the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenario (SRES) A2. Changing anthropogenic aerosols, tropospheric ozone, and GHG from present day to year 2100 is predicted to perturb the global annual mean radiative forcing by +0.18 (considering aerosol direct effects only), +0.65, and +6.54 W m(sup -2) at the tropopause, and to induce an equilibrium global annual mean surface temperature change of +0.14, +0.32, and +5.31 K, respectively, with the largest temperature response occurring at northern high latitudes. Anthropogenic aerosols, through their direct effect, are predicted to alter the Hadley circulation owing to an increasing interhemispheric temperature gradient, leading to changes in tropical precipitation. When changes in both aerosols and tropospheric ozone are considered, the predicted patterns of change in global circulation and the hydrological cycle are similar to those induced by aerosols alone. GHG-induced climate changes, such as amplified warming over high latitudes, weakened Hadley circulation, and increasing precipitation over the Tropics and high latitudes, are consistent with predictions of a number of previous GCM studies. Finally, direct radiative forcing of anthropogenic aerosols is predicted to induce strong regional cooling over East and South Asia. Wintertime rainfall over southeastern China and the Indian subcontinent is predicted to decrease because of the increased atmospheric stability and decreased surface evaporation, while the geographic distribution of precipitation is also predicted to be altered as a result of aerosol-induced changes in wind flow.

  19. Prediction of Rainfall-Induced Landslides

    NASA Astrophysics Data System (ADS)

    Nadim, F.; Sandersen, F.

    2009-12-01

    Rainfall-induced landslides can be triggered by two main mechanisms: shear failure due to build-up of pore water pressure and erosion by surface water runoff when flow velocity exceeds a critical value. Field measurements indicate that, in the initial phase, the slip surface of a landslide often occurs along the top of a relatively impermeable layer located at some depth within the soil profile, e.g. at the contact with a shallow underlying bedrock or parent rock. The shear strength along this surface and hence the stability of the slope is governed by the pore water pressure. The pore pressure is in turn controlled by water seepage through the slope, either from infiltrated rain, or from groundwater that follows bedrock joints and soil layers with high permeability. When the infiltration rate of the underlying layer is too low for further downward penetration of water or when a wetting front is produced, pore water pressure builds up, reducing the soil shear strength. During high intensity rainfall, surface water runoff will exert shear stresses on the bed material. De-pending on the grain size distribution and specific gravity of the material, erosion might occur when the flow velocity exceeds a critical value. As erosion progresses and sediment concentration increases, the flow regime may become unstable with heavy erosion at high flow velocity locations triggering a debris flow. In many cases, previous landslides along steep gully walls have fed an abundance of loose soil material into the gullies. Landslides along gully walls that obstruct the water transport may also trigger debris flows when the landslide-dam collapses, creating a surge downstream. Both the long-duration (1 or more days) and short-duration precipitation (of the order of 1 hour) are significant in the triggering of shallow landslides, since the critical short-duration rainfall intensity reduces as the antecedent accumulated rainfall increases. Experiences in Norway indicate that the maxi-mum intensity of rain within a short period of time (1-3 hours) during a storm is most critical for triggering of debris flows. Therefore empirical methods developed for prediction of initiation of debris flows include both long-duration and short-duration rain-fall. More recent research has focused on the spatial distribution of unstable areas and on better spatial resolution of the occurrence of landslide-triggering precipitation events. Spatial distribution can be assessed by analyzing the stability conditions for shallow landslides if reasonable estimates of strength parameters are available. In general, two different approaches may be adopted for the assessment of threshold values for rainfall-induced landslides: empirical methods that are based on past observations and statistical analyses, and numerical analyses that are based on geo-mechanical modelling. The former approach together with very short-term weather forecasting (now-casting) are commonly used in the design of early warning systems for debris flows.

  20. Internal flows and force matrices in axial flow inducers

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Abhijit

    1994-01-01

    Axial flow inducers such as those used in high speed rocket engine turbopumps are subject to complex internal flows and fluid-induced lateral and rotordynamic forces. An investigation of these internal flows was conducted using boundary layer flow visualization on the blades, hub and housing of unshrouded and shrouded inducers. Results showed that the blade boundary layer flows have strong radial components at off-design conditions and remain attached to the blade surface at all flow coefficients tested. The origin of upstream swirling backflow was found to be at the discharge plane of the inducer. In addition, flow reversal was observed at the suction side blade tip near the leading edge in a shrouded inducer. Re-entry of the hub boundary layer flow, a downstream backflow, into the blade passage area was observed at flow coefficients below design. For unshrouded inducers the radially outward flow near the blade tip mixed with the leakage flow to form the upstream backflow. The lateral and rotordynamic forces acting on an inducer due to an imposed whirl motion was also investigated at various flow coefficients. It was found that the rotordynamic force data at various whirl frequency ratios does not allow a normal quadratic fit; consequently the conventional inertial, stiffness and damping coefficients cannot be obtained and a definite whirl ratio describing the instability region does not result. Application of an actuator disk theory proved to be inaccurate in estimating the rotordynamic tangential force in a non-whirling inducer. The effect of upstream and downstream flow distortions on the rotordynamic and lateral forces on an inducer were studied. It was found that at flow coefficients below design, large lateral forces occurred in the presence of a downstream asymmetry. Results of inlet distortion experiments show that a strong inlet shear causes a significant increase in the lateral force. Cavitation was found to have important consequences for fluid-induced rotordynamic forces. These forces become destabilizing for both forward and reverse whirl. Decreasing cavitation numbers caused an increase in the magnitudes of the destabilizing forces.

  1. Model predictions of deformation, embolization and permeability of partially obstructive blood clots under variable shear flow.

    PubMed

    Xu, Shixin; Xu, Zhiliang; Kim, Oleg V; Litvinov, Rustem I; Weisel, John W; Alber, Mark

    2017-11-01

    Thromboembolism, one of the leading causes of morbidity and mortality worldwide, is characterized by formation of obstructive intravascular clots (thrombi) and their mechanical breakage (embolization). A novel two-dimensional multi-phase computational model is introduced that describes active interactions between the main components of the clot, including platelets and fibrin, to study the impact of various physiologically relevant blood shear flow conditions on deformation and embolization of a partially obstructive clot with variable permeability. Simulations provide new insights into mechanisms underlying clot stability and embolization that cannot be studied experimentally at this time. In particular, model simulations, calibrated using experimental intravital imaging of an established arteriolar clot, show that flow-induced changes in size, shape and internal structure of the clot are largely determined by two shear-dependent mechanisms: reversible attachment of platelets to the exterior of the clot and removal of large clot pieces. Model simulations predict that blood clots with higher permeability are more prone to embolization with enhanced disintegration under increasing shear rate. In contrast, less permeable clots are more resistant to rupture due to shear rate-dependent clot stiffening originating from enhanced platelet adhesion and aggregation. These results can be used in future to predict risk of thromboembolism based on the data about composition, permeability and deformability of a clot under specific local haemodynamic conditions. © 2017 The Author(s).

  2. Flow Through Cement Fracture Under Geological Carbon Sequestration Conditions: Critical Residence Time as a Unifying Parameter for Fracture Opening or Self-Sealing Behavior

    NASA Astrophysics Data System (ADS)

    Li, L.; Brunet, J. P. L.; Karpyn, Z.; Huerta, N. J.

    2016-12-01

    During geological carbon sequestration (GCS) large quantities of CO2 are injected in underground formations. Cement fractures represent preferential leakage pathways in abandoned wells upon exposure to CO2-rich fluid. Contrasting self- healing and fracture opening behavior have been observed while a unifying framework is still missing. The modelling of this process is challenging as it involves complex chemical, mechanical and transport interactions. We developed a process-based reactive transport model that explicitly simulates flow and multi-component reactive transport in fractured cement by reproducing experimental observations of sharp flow rate reduction during exposure to carbonated water. Mechanical interactions have not been included. The simulation shows a similar reaction network as in diffusion-controlled systems without flow. That is, CO2-rich water induced portlandite dissolution, releasing calcium that further reacted with carbonate to form calcite. This created localized changes in porosity and permeability inducing large differences in the long term response of the system through a complex positive feedback loop (e.g., a decrease in local permeability induces a decrease in flow that in turn amplifies the precipitation of calcite through a reduced acidic brine flow). The calibrated model was used to generate 250 numerical experiments of CO2-flooding in cement fractures with varying initial hydraulic apertures (b) and residence times (τ) defined as the ratio of fracture volume over flow rate. A long τ leads to slow replenishment of carbonated water, calcite precipitation, and self-sealing. The opposite occurs when τ is small with short fractures and fast flow rates. Simulation results indicate that a critical residence time τc - the minimum τ required for self-sealing -divides the conditions that trigger the diverging opening and self-sealing behavior. The τc value depends on the initial aperture size (see figure). Among the 250 simulated fracture cases, significant changes in effective permeability - self-healing or opening - typically occurs within hours to a day, thus providing a supporting argument for the extrapolation of short-term laboratory observations (hours to months) to long-term predictions at relevant GCS time scales (years to hundreds of years).

  3. Turbulent particulate transportation during electrostatic precipitation

    NASA Astrophysics Data System (ADS)

    Choi, Bum Seog

    The generation of secondary flows and turbulence by a corona discharge influences particle transport in an electrostatic precipitator (ESP), and is known to play an important role in the particle collection process. However, it is difficult to characterise theoretically and experimentally the ``turbulent'' fluctuations of the gas flow produced by negative tuft corona. Because of this difficulty, only limited studies have been undertaken previously to understand the structure of corona-induced turbulence and its influence on particle transport in ESPs. The present study is aimed at modelling electrohydrodynamic turbulent flows and particle transport, and at establishing an unproved understanding of them. For a multiply interactive coupling of electrostatics, fluid dynamics and particle dynamics, a strongly coupled system of the governing equations has been solved. The present computer model has considered the most important interaction mechanisms including an ionic wind, corona- induced turbulence and the particle space charge effect. Numerical simulations have been performed for the extensive validation of the numerical and physical models. To account for electrically excited turbulence associated with the inhomogeneous and unsteady characteristics of negative corona discharges, a new turbulence model (called the electrostatic turbulence model) has been developed. In this, an additional production or destruction term is included into the turbulent kinetic energy and dissipation rate equations. It employs a gradient type model of the current density and an electrostatic diffusivity concept. The results of the computation show that the electrostatic turbulence model gives much better agreement with the experimental data than the conventional RNG k-ɛ turbulence model when predicting turbulent gas flows and particle distributions in an ESP. Computations of turbulent particulate two-phase flows for both mono-dispersed and poly-dispersed particles have been performed. The effects of coriona-induced turbulence and the particle space charge on particle transport and the collection process have been investigated. The calculated results for the poly-dispersed particulate flow were compared with those of the mono-dispersed particulate flow, and significant differences were demonstrated. It is established that effective particle- particle interaction occurs, due to the influence of the particle space charge, even for dilute gas-particle flows that occur in ESPs.

  4. Kinetics of electrically and chemically induced swelling in polyelectrolyte gels

    NASA Astrophysics Data System (ADS)

    Grimshaw, P. E.; Nussbaum, J. H.; Grodzinsky, A. J.; Yarmush, M. L.

    1990-09-01

    Controlled swelling and shrinking of polyelectrolyte gels is useful for regulating the transport of solutes into, out of, and through these materials. A macroscopic continuum model is presented to predict the kinetics of swelling in polyelectrolyte gel membranes induced by augmentation of electrostatic swelling forces arising from membrane fixed charge groups. The model accounts for ionic transport within the membrane, electrodiffusion phenomena, dissociation of membrane charge groups, intramembrane fluid flow, and mechanical deformation of the membrane matrix. Model predictions are compared with measurements of chemically and electrically induced swelling and shrinking in crosslinked polymethacrylic acid (PMAA) membranes. Large, reversible changes in PMAA membrane hydration were observed after changing the bath pH or by applying an electric field to modify the intramembrane ionic environment and fixed charge density. A relatively slow swelling process and more rapid shrinking for both chemical and electrical modulation of the intramembrane pH are observed. The model indicates that retardation of membrane swelling is dominated by diffusion-limited reaction of H+ ions with membrane charge groups, and that the more rapid shrinking is limited primarily by mechanical processes.

  5. Post-fire debris flow prediction in Western United States: Advancements based on a nonparametric statistical technique

    NASA Astrophysics Data System (ADS)

    Nikolopoulos, E. I.; Destro, E.; Bhuiyan, M. A. E.; Borga, M., Sr.; Anagnostou, E. N.

    2017-12-01

    Fire disasters affect modern societies at global scale inducing significant economic losses and human casualties. In addition to their direct impacts they have various adverse effects on hydrologic and geomorphologic processes of a region due to the tremendous alteration of the landscape characteristics (vegetation, soil properties etc). As a consequence, wildfires often initiate a cascade of hazards such as flash floods and debris flows that usually follow the occurrence of a wildfire thus magnifying the overall impact in a region. Post-fire debris flows (PFDF) is one such type of hazards frequently occurring in Western United States where wildfires are a common natural disaster. Prediction of PDFD is therefore of high importance in this region and over the last years a number of efforts from United States Geological Survey (USGS) and National Weather Service (NWS) have been focused on the development of early warning systems that will help mitigate PFDF risk. This work proposes a prediction framework that is based on a nonparametric statistical technique (random forests) that allows predicting the occurrence of PFDF at regional scale with a higher degree of accuracy than the commonly used approaches that are based on power-law thresholds and logistic regression procedures. The work presented is based on a recently released database from USGS that reports a total of 1500 storms that triggered and did not trigger PFDF in a number of fire affected catchments in Western United States. The database includes information on storm characteristics (duration, accumulation, max intensity etc) and other auxiliary information of land surface properties (soil erodibility index, local slope etc). Results show that the proposed model is able to achieve a satisfactory prediction accuracy (threat score > 0.6) superior of previously published prediction frameworks highlighting the potential of nonparametric statistical techniques for development of PFDF prediction systems.

  6. Vegetation-Induced Roughness in Low-Reynold's Number Flows

    NASA Astrophysics Data System (ADS)

    Piercy, C. D.; Wynn, T. M.

    2008-12-01

    Wetlands are important ecosystems, providing habitat for wildlife and fish and shellfish production, water storage, erosion control, and water quality improvement and preservation. Models to estimate hydraulic resistance due to vegetation in emergent wetlands are crucial to good wetland design and analysis. The goal of this project is to improve modeling of emergent wetlands by linking properties of the vegetation to flow. Existing resistance equations such as Hoffmann (2004), Kadlec (1990), Moghadam and Kouwen (1997), Nepf (1999), and Stone and Shen (2002) were evaluated. A large outdoor vegetated flume was constructed at the Price's Fork Research Center near Blacksburg, Virginia to measure flow and water surface slope through woolgrass (Scirpus cyperinus), a common native emergent wetland plant. Measurements of clump and stem density, diameter, and volume, blockage factor, and stiffness were made after each set of flume runs. Flow rates through the flume were low (3-4 L/s) resulting in very low stem-Reynold's numbers (15-102). Since experimental flow conditions were in the laminar to transitional range, most of the models considered did not predict velocity or stage accurately except for conditions in which the stem-Reynold's number approached 100. At low stem-Reynold's numbers (<100), the drag coefficient is inversely proportional to the Reynold's number and can vary greatly with flow conditions. Most of the models considered assumed a stem-Reynold's number in the 100-105 range in which the drag coefficient is relatively constant and as a result did not predict velocity or stage accurately except for conditions in which the stem-Reynold's number approached 100. The only model that accurately predicted stem layer velocity was the Kadlec (1990) model since it does not make assumptions about flow regime; instead, the parameters are adjusted according to the site conditions. Future work includes relating the parameters used to fit the Kadlec (1990) model to measured vegetation parameters as described previously and adapting the force balance upon which all the considered models were based for the observed experimental conditions, leading to a model that will conform to assumptions consistent with low stem-Reynold's number flows.

  7. Higher-order force moments of active particles

    NASA Astrophysics Data System (ADS)

    Nasouri, Babak; Elfring, Gwynn J.

    2018-04-01

    Active particles moving through fluids generate disturbance flows due to their activity. For simplicity, the induced flow field is often modeled by the leading terms in a far-field approximation of the Stokes equations, whose coefficients are the force, torque, and stresslet (zeroth- and first-order force moments) of the active particle. This level of approximation is quite useful, but may also fail to predict more complex behaviors that are observed experimentally. In this study, to provide a better approximation, we evaluate the contribution of the second-order force moments to the flow field and, by reciprocal theorem, present explicit formulas for the stresslet dipole, rotlet dipole, and potential dipole for an arbitrarily shaped active particle. As examples of this method, we derive modified Faxén laws for active spherical particles and resolve higher-order moments for active rod-like particles.

  8. Dynamics of hairpin vortices and polymer-induced turbulent drag reduction.

    PubMed

    Kim, Kyoungyoun; Adrian, Ronald J; Balachandar, S; Sureshkumar, R

    2008-04-04

    It has been known for over six decades that the dissolution of minute amounts of high molecular weight polymers in wall-bounded turbulent flows results in a dramatic reduction in turbulent skin friction by up to 70%. First principles simulations of turbulent flow of model polymer solutions can predict the drag reduction (DR) phenomenon. However, the essential dynamical interactions between the coherent structures present in turbulent flows and polymer conformation field that lead to DR are poorly understood. We examine this connection via dynamical simulations that track the evolution of hairpin vortices, i.e., counter-rotating pairs of quasistreamwise vortices whose nonlinear autogeneration and growth, decay and breakup are centrally important to turbulence stress production. The results show that the autogeneration of new vortices is suppressed by the polymer stresses, thereby decreasing the turbulent drag.

  9. Simulation of the Flow Field Associated with a Rocket Thruster Having an Attached Panel

    NASA Technical Reports Server (NTRS)

    Davoudzadeh, Farhad; Liu, Nan-Suey

    2003-01-01

    Two-dimensional inviscid and viscous numerical simulations are performed to predict the flow field induced by a H2-O2 rocket thruster and to provide insight into the heat load on the articles placed in the hot gas exhaust of the thruster under a variety of operating conditions, using the National Combustion Code (NCC). The simulations have captured physical details of the flow field, such as the plume formation and expansion, formation of the shock waves and their effects on the temperature and pressure distributions on the walls of the apparatus and the flat panel. Comparison between the computed results for 2-D and adiabatic walls and the related experimental measurements for 3-D and cooled walls shows that the results of the simulations are consistent with those obtained from the related rig tests.

  10. Kr-PLIF for scalar imaging in supersonic flows.

    PubMed

    Narayanaswamy, V; Burns, R; Clemens, N T

    2011-11-01

    Experiments were performed to explore the use of two-photon planar laser-induced fluorescence (PLIF) of krypton gas for applications of scalar imaging in supersonic flows. Experiments were performed in an underexpanded jet of krypton, which exhibited a wide range of conditions, from subsonic to hypersonic. Excellent signal-to-noise ratios were obtained, showing the technique is suitable for single-shot imaging. The data were used to infer the distribution of gas density and temperature by correcting the fluorescence signal for quenching effects and using isentropic relations. The centerline variation of the density and temperature from the experiments agree very well with those predicted with an empirical correlation and a CFD simulation (FLUENT). Overall, the high signal levels and quantifiable measurements indicate that Kr-PLIF could be an effective scalar marker for use in supersonic and hypersonic flow applications.

  11. Real-Time Feedback Control of Flow-Induced Cavity Tones. Part 1; Fixed-Gain Control

    NASA Technical Reports Server (NTRS)

    Kegerise, M. A.; Cabell, R. H.; Cattafesta, L. N., III

    2006-01-01

    A generalized predictive control (GPC) algorithm was formulated and applied to the cavity flow-tone problem. The control algorithm demonstrated multiple Rossiter-mode suppression at fixed Mach numbers ranging from 0.275 to 0.38. Controller performance was evaluated with a measure of output disturbance rejection and an input sensitivity transfer function. The results suggest that disturbances entering the cavity flow are collocated with the control input at the cavity leading edge. In that case, only tonal components of the cavity wall-pressure fluctuations can be suppressed and arbitrary broadband pressure reduction is not possible with the present sensor/actuator arrangement. In the control-algorithm development, the cavity dynamics were treated as linear and time invariant (LTI) for a fixed Mach number. The experimental results lend support to that treatment.

  12. USM3D Simulations of Saturn V Plume Induced Flow Separation

    NASA Technical Reports Server (NTRS)

    Deere, Karen; Elmlilgui, Alaa; Abdol-Hamid, K. S.

    2011-01-01

    The NASA Constellation Program included the Ares V heavy lift cargo vehicle. During the design stage, engineers questioned if the Plume Induced Flow Separation (PIFS) that occurred along Saturn V rocket during moon missions at some flight conditions, would also plague the newly proposed rocket. Computational fluid dynamics (CFD) was offered as a tool for initiating the investigation of PIFS along the Ares V rocket. However, CFD best practice guidelines were not available for such an investigation. In an effort to establish a CFD process and define guidelines for Ares V powered simulations, the Saturn V vehicle was used because PIFS flight data existed. The ideal gas, computational flow solver USM3D was evaluated for its viability in computing PIFS along the Saturn V vehicle with F-1 engines firing. Solutions were computed at supersonic freestream conditions, zero degree angle of attack, zero degree sideslip, and at flight Reynolds numbers. The effects of solution sensitivity to grid refinement, turbulence models, and the engine boundary conditions on the predicted PIFS distance along the Saturn V were discussed and compared to flight data from the Apollo 11 mission AS-506.

  13. Selected Streamflow Statistics and Regression Equations for Predicting Statistics at Stream Locations in Monroe County, Pennsylvania

    USGS Publications Warehouse

    Thompson, Ronald E.; Hoffman, Scott A.

    2006-01-01

    A suite of 28 streamflow statistics, ranging from extreme low to high flows, was computed for 17 continuous-record streamflow-gaging stations and predicted for 20 partial-record stations in Monroe County and contiguous counties in north-eastern Pennsylvania. The predicted statistics for the partial-record stations were based on regression analyses relating inter-mittent flow measurements made at the partial-record stations indexed to concurrent daily mean flows at continuous-record stations during base-flow conditions. The same statistics also were predicted for 134 ungaged stream locations in Monroe County on the basis of regression analyses relating the statistics to GIS-determined basin characteristics for the continuous-record station drainage areas. The prediction methodology for developing the regression equations used to estimate statistics was developed for estimating low-flow frequencies. This study and a companion study found that the methodology also has application potential for predicting intermediate- and high-flow statistics. The statistics included mean monthly flows, mean annual flow, 7-day low flows for three recurrence intervals, nine flow durations, mean annual base flow, and annual mean base flows for two recurrence intervals. Low standard errors of prediction and high coefficients of determination (R2) indicated good results in using the regression equations to predict the statistics. Regression equations for the larger flow statistics tended to have lower standard errors of prediction and higher coefficients of determination (R2) than equations for the smaller flow statistics. The report discusses the methodologies used in determining the statistics and the limitations of the statistics and the equations used to predict the statistics. Caution is indicated in using the predicted statistics for small drainage area situations. Study results constitute input needed by water-resource managers in Monroe County for planning purposes and evaluation of water-resources availability.

  14. A numerical investigation of the effects of the spanwise length on the 3-D wake of a circular cylinder

    NASA Astrophysics Data System (ADS)

    Labbé, D. F. L.; Wilson, P. A.

    2007-11-01

    The numerical prediction of vortex-induced vibrations has been the focus of numerous investigations to date using tools such as computational fluid dynamics. In particular, the flow around a circular cylinder has raised much attention as it is present in critical engineering problems such as marine cables or risers. Limitations due to the computational cost imposed by the solution of a large number of equations have resulted in the study of mostly 2-D flows with only a few exceptions. The discrepancies found between experimental data and 2-D numerical simulations suggested that 3-D instabilities occurred in the wake of the cylinder that affect substantially the characteristics of the flow. The few 3-D numerical solutions available in the literature confirmed such a hypothesis. In the present investigation the effect of the spanwise extension of the solution domain on the 3-D wake of a circular cylinder is investigated for various Reynolds numbers between 40 and 1000. By assessing the minimum spanwise extension required to predict accurately the flow around a circular cylinder, the infinitely long cylinder is reduced to a finite length cylinder, thus making numerical solution an effective way of investigating flows around circular cylinders. Results are presented for three different spanwise extensions, namely πD/2, πD and 2πD. The analysis of the force coefficients obtained for the various Reynolds numbers together with a visualization of the three-dimensionalities in the wake of the cylinder allowed for a comparison between the effects of the three spanwise extensions. Furthermore, by showing the different modes of vortex shedding present in the wake and by analysing the streamwise components of the vorticity, it was possible to estimate the spanwise wavelengths at the various Reynolds numbers and to demonstrate that a finite spanwise extension is sufficient to accurately predict the flow past an infinitely long circular cylinder.

  15. Performance of a reduced-order FSI model for flow-induced vocal fold vibration

    NASA Astrophysics Data System (ADS)

    Chang, Siyuan; Luo, Haoxiang; Luo's lab Team

    2016-11-01

    Vocal fold vibration during speech production involves a three-dimensional unsteady glottal jet flow and three-dimensional nonlinear tissue mechanics. A full 3D fluid-structure interaction (FSI) model is computationally expensive even though it provides most accurate information about the system. On the other hand, an efficient reduced-order FSI model is useful for fast simulation and analysis of the vocal fold dynamics, which is often needed in procedures such as optimization and parameter estimation. In this work, we study the performance of a reduced-order model as compared with the corresponding full 3D model in terms of its accuracy in predicting the vibration frequency and deformation mode. In the reduced-order model, we use a 1D flow model coupled with a 3D tissue model. Two different hyperelastic tissue behaviors are assumed. In addition, the vocal fold thickness and subglottal pressure are varied for systematic comparison. The result shows that the reduced-order model provides consistent predictions as the full 3D model across different tissue material assumptions and subglottal pressures. However, the vocal fold thickness has most effect on the model accuracy, especially when the vocal fold is thin. Supported by the NSF.

  16. Inverse Problems in Geodynamics Using Machine Learning Algorithms

    NASA Astrophysics Data System (ADS)

    Shahnas, M. H.; Yuen, D. A.; Pysklywec, R. N.

    2018-01-01

    During the past few decades numerical studies have been widely employed to explore the style of circulation and mixing in the mantle of Earth and other planets. However, in geodynamical studies there are many properties from mineral physics, geochemistry, and petrology in these numerical models. Machine learning, as a computational statistic-related technique and a subfield of artificial intelligence, has rapidly emerged recently in many fields of sciences and engineering. We focus here on the application of supervised machine learning (SML) algorithms in predictions of mantle flow processes. Specifically, we emphasize on estimating mantle properties by employing machine learning techniques in solving an inverse problem. Using snapshots of numerical convection models as training samples, we enable machine learning models to determine the magnitude of the spin transition-induced density anomalies that can cause flow stagnation at midmantle depths. Employing support vector machine algorithms, we show that SML techniques can successfully predict the magnitude of mantle density anomalies and can also be used in characterizing mantle flow patterns. The technique can be extended to more complex geodynamic problems in mantle dynamics by employing deep learning algorithms for putting constraints on properties such as viscosity, elastic parameters, and the nature of thermal and chemical anomalies.

  17. 3D numerical modeling of hyporheic exchange processes in fractal riverbed

    NASA Astrophysics Data System (ADS)

    Lee, A.; Aubeneau, A.

    2017-12-01

    The subsurface region receiving stream water is known as the hyporheic zone and the flow of water in and out of this zone is called hyporheic exchange. The hyporheic zone is populated by biofilms and is a hotspot for nutrient uptake and contaminant transformation. Traditionally, pumping models predicting the head distribution over the riverbed boundary are used to obtain the velocity field in the subsurface. However, past research has largely overlooked the nonlinearity of the turbulent flow above the bumpy riverbed. The main objective of this research is to investigate the effect of spatial and temporal heterogeneity created by turbulent flow on hyporheic exchange and residence time distribution in fractal channel beds. The 3-D fractal riverbed is created from the power spectrum. Large-Eddy Simulation is used to provide the pressure field over the benthic boundary. Finally, Darcian fluxes in the sub-surface are calculated and hyporheic travel times computed using random walks. Surface and subsurface transport processes are represented explicitly and can be studied in detail. Our results suggest that (1) Eddies and wakes around the dunes force the exchange (2) The bigger the dunes, the greater the influence of turbulence (3) Turbulence induces more exchange than pumping predicts.

  18. Predictive models for pressure-driven fluid infusions into brain parenchyma

    NASA Astrophysics Data System (ADS)

    Raghavan, Raghu; Brady, Martin

    2011-10-01

    Direct infusions into brain parenchyma of biological therapeutics for serious brain diseases have been, and are being, considered. However, individual brains, as well as distinct cytoarchitectural regions within brains, vary in their response to fluid flow and pressure. Further, the tissue responds dynamically to these stimuli, requiring a nonlinear treatment of equations that would describe fluid flow and drug transport in brain. We here report in detail on an individual-specific model and a comparison of its prediction with simulations for living porcine brains. Two critical features we introduced into our model—absent from previous ones, but requirements for any useful simulation—are the infusion-induced interstitial expansion and the backflow. These are significant determinants of the flow. Another feature of our treatment is the use of cross-property relations to obtain individual-specific parameters that are coefficients in the equations. The quantitative results are at least encouraging, showing a high fraction of overlap between the computed and measured volumes of distribution of a tracer molecule and are potentially clinically useful. Several improvements are called for; principally a treatment of the interstitial expansion more fundamentally based on poroelasticity and a better delineation of the diffusion tensor of a particle confined to the interstitial spaces.

  19. Development of a nonlinear vortex method

    NASA Technical Reports Server (NTRS)

    Kandil, O. A.

    1982-01-01

    Steady and unsteady Nonliner Hybrid Vortex (NHV) method, for low aspect ratio wings at large angles of attack, is developed. The method uses vortex panels with first-order vorticity distribution (equivalent to second-order doublet distribution) to calculate the induced velocity in the near field using closed form expressions. In the far field, the distributed vorticity is reduced to concentrated vortex lines and the simpler Biot-Savart's law is employed. The method is applied to rectangular wings in steady and unsteady flows without any restriction on the order of magnitude of the disturbances in the flow field. The numerical results show that the method accurately predicts the distributed aerodynamic loads and that it is of acceptable computational efficiency.

  20. Quantitative model of price diffusion and market friction based on trading as a mechanistic random process.

    PubMed

    Daniels, Marcus G; Farmer, J Doyne; Gillemot, László; Iori, Giulia; Smith, Eric

    2003-03-14

    We model trading and price formation in a market under the assumption that order arrival and cancellations are Poisson random processes. This model makes testable predictions for the most basic properties of markets, such as the diffusion rate of prices (which is the standard measure of financial risk) and the spread and price impact functions (which are the main determinants of transaction cost). Guided by dimensional analysis, simulation, and mean-field theory, we find scaling relations in terms of order flow rates. We show that even under completely random order flow the need to store supply and demand to facilitate trading induces anomalous diffusion and temporal structure in prices.

  1. Quantitative Model of Price Diffusion and Market Friction Based on Trading as a Mechanistic Random Process

    NASA Astrophysics Data System (ADS)

    Daniels, Marcus G.; Farmer, J. Doyne; Gillemot, László; Iori, Giulia; Smith, Eric

    2003-03-01

    We model trading and price formation in a market under the assumption that order arrival and cancellations are Poisson random processes. This model makes testable predictions for the most basic properties of markets, such as the diffusion rate of prices (which is the standard measure of financial risk) and the spread and price impact functions (which are the main determinants of transaction cost). Guided by dimensional analysis, simulation, and mean-field theory, we find scaling relations in terms of order flow rates. We show that even under completely random order flow the need to store supply and demand to facilitate trading induces anomalous diffusion and temporal structure in prices.

  2. Characterization and Prediction of Flow Behavior in High-Manganese Twinning Induced Plasticity Steels: Part II. Jerky Flow and Instantaneous Strain Rate

    NASA Astrophysics Data System (ADS)

    Saeed-Akbari, A.; Mishra, A. K.; Mayer, J.; Bleck, W.

    2012-05-01

    The jerky and smooth flow curves in high-manganese twinning induced plasticity (TWIP) steels were investigated by comparing Fe-Mn-C and Fe-Mn-Al-C systems. The pronounced serrations on the flow curves of Fe-Mn-C TWIP steel, produced during tensile testing at 300 K (27 °C) and 373 K (100 °C), were shown to be the result of localized high-temperature Portevin Le-Chatelier (PLC) bands moving across the gage length throughout the deformation. The speed of the PLC bands and their temperature effects were found to be strongly dependent on the applied strain rate, which was controlled by adjusting the cross-head speed of the tensile testing machine. The localized temperature-dependent stacking fault energy (SFE) variations resulting from the PLC effect and adiabatic heating were analyzed and compared for both slow and fast deformation rates. The instabilities in the measured logarithmic strain values caused by jerky flow could cause the local strain rate to deviate systematically from the targeted (applied) strain rate. These instabilities are better observed by calculating the instantaneous strain rate (ISR) values for each instant of deformation along the entire gage length. Finally, a new type of diagram was developed by plotting the true stress against the ISR values. From the diagram, the onset of different mechanisms, such as deformation twinning, nonpronounced, and pronounced serrations, could be marked precisely.

  3. Fluid flow and convective transport of solutes within the intervertebral disc.

    PubMed

    Ferguson, Stephen J; Ito, Keita; Nolte, Lutz P

    2004-02-01

    Previous experimental and analytical studies of solute transport in the intervertebral disc have demonstrated that for small molecules diffusive transport alone fulfils the nutritional needs of disc cells. It has been often suggested that fluid flow into and within the disc may enhance the transport of larger molecules. The goal of the study was to predict the influence of load-induced interstitial fluid flow on mass transport in the intervertebral disc. An iterative procedure was used to predict the convective transport of physiologically relevant molecules within the disc. An axisymmetric, poroelastic finite-element structural model of the disc was developed. The diurnal loading was divided into discrete time steps. At each time step, the fluid flow within the disc due to compression or swelling was calculated. A sequentially coupled diffusion/convection model was then employed to calculate solute transport, with a constant concentration of solute being provided at the vascularised endplates and outer annulus. Loading was simulated for a complete diurnal cycle, and the relative convective and diffusive transport was compared for solutes with molecular weights ranging from 400 Da to 40 kDa. Consistent with previous studies, fluid flow did not enhance the transport of low-weight solutes. During swelling, interstitial fluid flow increased the unidirectional penetration of large solutes by approximately 100%. Due to the bi-directional temporal nature of disc loading, however, the net effect of convective transport over a full diurnal cycle was more limited (30% increase). Further study is required to determine the significance of large solutes and the timing of their delivery for disc physiology.

  4. Two-dimensional simulation of red blood cell motion near a wall under a lateral force

    NASA Astrophysics Data System (ADS)

    Hariprasad, Daniel S.; Secomb, Timothy W.

    2014-11-01

    The motion of a red blood cell suspended in a linear shear flow adjacent to a fixed boundary subject to an applied lateral force directed toward the boundary is simulated. A two-dimensional model is used that represents the viscous and elastic properties of normal red blood cells. Shear rates in the range of 100 to 600 s-1 are considered, and the suspending medium viscosity is 1 cP. In the absence of a lateral force, the cell executes a tumbling motion. With increasing lateral force, a transition from tumbling to tank-treading is predicted. The minimum force required to ensure tank-treading increases nonlinearly with the shear rate. Transient swinging motions occur when the force is slightly larger than the transition value. The applied lateral force is balanced by a hydrodynamic lift force resulting from the positive orientation of the long axis of the cell with respect to the wall. In the case of cyclic tumbling motions, the orientation angle takes positive values through most of the cycle, resulting in lift generation. These results are used to predict the motion of a cell close to the outer edge of the cell-rich core region that is generated when blood flows in a narrow tube. In this case, the lateral force is generated by shear-induced dispersion, resulting from cell-cell interactions in a region with a concentration gradient. This force is estimated using previous data on shear-induced dispersion. The cell is predicted to execute tank-treading motions at normal physiological hematocrit levels, with the possibility of tumbling at lower hematocrit levels.

  5. SKS Anisotropy Measurements in Mid-Plate South America: a Test of Subduction-Induced Upper Mantle Flow and the Effect of Cratonic Keels

    NASA Astrophysics Data System (ADS)

    Assumpcao, M.; Melo, B. C.

    2017-12-01

    Shear-wave splitting from core-refracted (SKS) waves indicates the amount and orientation of seismic anisotropy in the upper mantle, and is used to infer past and present mantle dynamics and continental evolution. Previous SKS studies in South America concentrated mainly in the Andes and in SE Brazil. Although effects of frozen anisotropy in the lithospheric mantle were suggested in some parts of SE Brazil, the main contribution to the orientation of the fast polarization directions have been attributed to asthenospheric flow around cratonic keels, especially around the São Francisco craton in eastern Brazil (Assumpção et al., 2006,2011). We added extra SKS splitting measurements in the area of the Pantanal and Paraná-Chaco basins (FAPESP-funded "3-Basins" Project). Results from 47 new stations will be presented, both from the temporary deployments and from the Brazilian permanent net. This data set partly fills the gap in SKS measurements between the Andes and SE Brazil, providing a more complete and robust anisotropy map of the S. American stable platform. On average, over most of the mid-continent, the fast polarization orientation tends to be close to the absolute plate motion given by the hotspot reference frame HS3-NUVEL-1A. Nevertheless, the new and previously published fast polarizations results suggest mantle flow around the Amazon and São Francisco cratons. A comparison with recent modeling of upper mantle flow induced by the Nazca plate subduction (Hu et al., 2017) shows good agreement with the predictions of mantle flow around the Amazon craton. Further south, however, especially in the Pantanal Basin, the observed SKS fast orientations are ENE-WSW, deviating from the general ESE-WNW predicted orientations. We propose that the observed ENE-WSW orientation may be due to flow around a possible cratonic nucleus beneath the northern part of the Paraná Basin ("Paranapanema block"). This cratonic block (inferred from geological observations) is also seen in regional surface-wave tomography. Large delay times at the Pantanal Basin may indicate a stronger asthenospheric channel, a more coherent flow, or a thicker asthenosphere. Similarly, small delay times beneath the northern Paraná Basin may indicate thinner anisotropic asthenosphere in that region, similar to the observations in the Amazon craton.

  6. An Investigation of Transonic Resonance in a Mach 2.2 Round Convergent-Divergent Nozzle

    NASA Technical Reports Server (NTRS)

    Dippold, Vance F., III; Zaman, Khairul B. M. Q.

    2015-01-01

    Hot-wire and acoustic measurements were taken for a round convergent nozzle and a round convergent-divergent (C-D) nozzle at a jet Mach number of 0.61. The C-D nozzle had a design Mach number of 2.2. Compared to the convergent nozzle jet flow, the Mach 2.2 nozzle jet flow produced excess broadband noise (EBBN). It also produced a transonic resonance tone at 1200 Herz. Computational simulations were performed for both nozzle flows. A steady Reynolds-Averaged Navier-Stokes simulation was performed for the convergent nozzle jet flow. For the Mach 2.2 nozzle flow, a steady RANS simulation, an unsteady RANS (URANS) simulation, and an unsteady Detached Eddy Simulation (DES) were performed. The RANS simulation of the convergent nozzle showed good agreement with the hot-wire velocity and turbulence measurements, though the decay of the potential core was over-predicted. The RANS simulation of the Mach 2.2 nozzle showed poor agreement with the experimental data, and more closely resembled an ideally-expanded jet. The URANS simulation also showed qualitative agreement with the hot-wire data, but predicted a transonic resonance at 1145 Herz. The DES showed good agreement with the hot-wire velocity and turbulence data. The DES also produced a transonic tone at 1135 Herz. The DES solution showed that the destabilization of the shock-induced separation region inside the nozzle produced increased levels of turbulence intensity. This is likely the source of the EBBN.

  7. Applications of Low Density Flow Techniques and Catalytic Recombination at the Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Scott, Carl D.

    2000-01-01

    The talk presents a brief background on defInitions of catalysis and effects associated with chemically nonequilibrium and low-density flows of aerospace interest. Applications of catalytic recombination on surfaces in dissociated flow are given, including aero heating on reentry spacecraft thermal protection surfaces and reflection of plume flow on pressure distributions associated with the space station. Examples include aero heating predictions for the X-38 test vehicle, the inlet of a proposed gas-sampling probe used in high enthalpy test facilities, and a parabolic body at angle of attack. The effect of accommodation coefficients on thruster induced pressure distributions is also included. Examples of tools used include simple aero heating formulas based on boundary layer solutions, an engineering approximation that uses axisymmetric viscous shock layer flow to simulate full three dimensional flow, full computational fluid dynamics, and direct simulation Monte-Carlo calculations. Methods of determining catalytic recombination rates in arc jet flow are discus ed. An area of catalysis not fully understood is the formation of single-wall carbon nanotubes (SWNT) with gas phase or nano-size metal particles. The Johnson Space Center is making SWNTs using both a laser ablation technique and an electric arc vaporization technique.

  8. Liquid explosions induced by X-ray laser pulses

    DOE PAGES

    Stan, Claudiu A.; Milathianaki, Despina; Laksmono, Hartawan; ...

    2016-05-23

    Explosions are spectacular and intriguing phenomena that expose the dynamics of matter under extreme conditions. We investigated, using time-resolved imaging, explosions induced by ultraintense X-ray laser pulses in water drops and jets. Our observations revealed an explosive vaporization followed by high-velocity interacting flows of liquid and vapour, and by the generation of shock trains in the liquid jets. These flows are different from those previously observed in laser ablation, owing to a simpler spatial pattern of X-ray absorption. We show that the explosion dynamics in our experiments is consistent with a redistribution of absorbed energy, mediated by a pressure ormore » shock wave in the liquid, and we model the effects of explosions, including their adverse impact on X-ray laser experiments. As a result, X-ray laser explosions have predictable dynamics that may prove useful for controlling the state of pure liquids over broad energy scales and timescales, and for triggering pressure-sensitive molecular dynamics in solutions.« less

  9. Analysis of methods to estimate spring flows in a karst aquifer

    USGS Publications Warehouse

    Sepulveda, N.

    2009-01-01

    Hydraulically and statistically based methods were analyzed to identify the most reliable method to predict spring flows in a karst aquifer. Measured water levels at nearby observation wells, measured spring pool altitudes, and the distance between observation wells and the spring pool were the parameters used to match measured spring flows. Measured spring flows at six Upper Floridan aquifer springs in central Florida were used to assess the reliability of these methods to predict spring flows. Hydraulically based methods involved the application of the Theis, Hantush-Jacob, and Darcy-Weisbach equations, whereas the statistically based methods were the multiple linear regressions and the technology of artificial neural networks (ANNs). Root mean square errors between measured and predicted spring flows using the Darcy-Weisbach method ranged between 5% and 15% of the measured flows, lower than the 7% to 27% range for the Theis or Hantush-Jacob methods. Flows at all springs were estimated to be turbulent based on the Reynolds number derived from the Darcy-Weisbach equation for conduit flow. The multiple linear regression and the Darcy-Weisbach methods had similar spring flow prediction capabilities. The ANNs provided the lowest residuals between measured and predicted spring flows, ranging from 1.6% to 5.3% of the measured flows. The model prediction efficiency criteria also indicated that the ANNs were the most accurate method predicting spring flows in a karst aquifer. ?? 2008 National Ground Water Association.

  10. Analysis of methods to estimate spring flows in a karst aquifer.

    PubMed

    Sepúlveda, Nicasio

    2009-01-01

    Hydraulically and statistically based methods were analyzed to identify the most reliable method to predict spring flows in a karst aquifer. Measured water levels at nearby observation wells, measured spring pool altitudes, and the distance between observation wells and the spring pool were the parameters used to match measured spring flows. Measured spring flows at six Upper Floridan aquifer springs in central Florida were used to assess the reliability of these methods to predict spring flows. Hydraulically based methods involved the application of the Theis, Hantush-Jacob, and Darcy-Weisbach equations, whereas the statistically based methods were the multiple linear regressions and the technology of artificial neural networks (ANNs). Root mean square errors between measured and predicted spring flows using the Darcy-Weisbach method ranged between 5% and 15% of the measured flows, lower than the 7% to 27% range for the Theis or Hantush-Jacob methods. Flows at all springs were estimated to be turbulent based on the Reynolds number derived from the Darcy-Weisbach equation for conduit flow. The multiple linear regression and the Darcy-Weisbach methods had similar spring flow prediction capabilities. The ANNs provided the lowest residuals between measured and predicted spring flows, ranging from 1.6% to 5.3% of the measured flows. The model prediction efficiency criteria also indicated that the ANNs were the most accurate method predicting spring flows in a karst aquifer.

  11. A study of the compressible flow through a diffusing S-duct

    NASA Technical Reports Server (NTRS)

    Wellborn, Steven R.; Okiishi, Theodore H.; Reichert, Bruce A.

    1993-01-01

    Benchmark aerodynamic data are presented for compressible flow through a representative S-duct configuration. A numerical prediction of the S-duct flow field, obtained from a subsonic parabolized Navier-Stokes algorithm, is also shown. The experimental and numerical results are compared. Measurements of the three-dimensional velocity field, total pressures, and static pressures were obtained at five cross-sectional planes. Aerodynamic data were gathered with calibrated pneumatic probes. Surface static pressure and surface flow visualization data were also acquired. All reported tests were conducted with an inlet centerline Mach number of 0.6. The Reynolds number, based on the inlet centerline velocity and duct inlet diameter, was 2.6 x 10(exp 6). Thin inlet turbulent boundary layers existed. The collected data should be beneficial to aircraft inlet designers and the measurements are suitable for the validation of computational codes. The results show that a region of streamwise flow separation occurred within the duct. Details about the separated flow region, including mechanisms which drive this complicated flow phenomenon, are discussed. Results also indicate that the duct curvature induces strong pressure driven secondary flows. The cross flows evolve into counter-rotating vortices. These vortices convect low momentum fluid of the boundary layer toward the center of the duct, degrading both the uniformity and magnitude of the total pressure profile.

  12. Direct numerical simulation of broadband trailing edge noise from a NACA 0012 airfoil

    NASA Astrophysics Data System (ADS)

    Mehrabadi, Mohammad; Bodony, Daniel

    2016-11-01

    Commercial jet-powered aircraft produce unwanted noise at takeoff and landing when they are close to near-airport communities. Modern high-bypass-ratio turbofan engines have reduced jet exhaust noise sufficiently such that noise from the main fan is now significant. In preparation for a large-eddy simulation of the NASA/GE Source Diagnostic Test Fan, we study the broadband noise due to the turbulent flow on a NACA 0012 airfoil at zero degree angle-of-attack, a chord-based Reynolds number of 408,000 and a Mach number of 0.115 using direct numerical simulation (DNS) and wall-modeled large-eddy simulation (WMLES). The flow conditions correspond to existing experimental data. We investigate the roughness-induced transition-to-turbulence and sound generation from a DNS perspective as well as examine how these two features are captured by a wall model. Comparisons between the DNS- and WMLES-predicted noise are made and provide guidance on the use of WMLES for broadband fan noise prediction. AeroAcoustics Research Consortium.

  13. Dragging a floating horizontal cylinder

    NASA Astrophysics Data System (ADS)

    Lee, Duck-Gyu; Kim, Ho-Young

    2010-11-01

    A cylinder immersed in a fluid stream experiences a drag, and it is well known that the drag coefficient is a function of the Reynolds number only. Here we study the force exerted on a long horizontal cylinder that is dragged perpendicular to its axis while floating on an air-water interface with a high Reynolds number. In addition to the flow-induced drag, the floating body is subjected to capillary forces along the contact line where the three phases of liquid/solid/gas meet. We first theoretically predict the meniscus profile around the horizontally moving cylinder assuming the potential flow, and show that the profile is in good agreement with that obtained experimentally. Then we compare our theoretical predictions and experimental measurement results for the drag coefficient of a floating horizontal cylinder that is given by a function of the Weber number and the Bond number. This study can help us to understand the horizontal motion of partially submerged objects at air-liquid interface, such as semi-aquatic insects and marine plants.

  14. COBRA-WC pretest predictions and post-test analysis of the FOTA temperature distribution during FFTF natural-circulation transients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, E.U.; George, T.L.; Rector, D.R.

    The natural circulation tests of the Fast Flux Test Facility (FFTF) demonstrated a safe and stable transition from forced convection to natural convection and showed that natural convection may adequately remove decay heat from the reactor core. The COBRA-WC computer code was developed by the Pacific Northwest laboratory (PNL) to account for buoyancy-induced coolant flow redistribution and interassembly heat transfer, effects that become important in mitigating temperature gradients and reducing reactor core temperatures when coolant flow rate in the core is low. This report presents work sponsored by the US Department of Energy (DOE) with the objective of checking themore » validity of COBRA-WC during the first 220 seconds (sec) of the FFTF natural-circulation (plant-startup) tests using recorded data from two instrumented Fuel Open Test Assemblies (FOTAs). Comparison of COBRA-WC predictions of the FOTA data is a part of the final confirmation of the COBRA-WC methodology for core natural-convection analysis.« less

  15. Computational analysis of blood clot dissolution using a vibrating catheter tip.

    PubMed

    Lee, Jeong Hyun; Oh, Jin Sun; Yoon, Bye Ri; Choi, Seung Hong; Rhee, Kyehan; Jho, Jae Young; Han, Moon Hee

    2012-04-01

    We developed a novel concept of endovascular thrombolysis that employs a vibrating electroactive polymer actuator. In order to predict the efficacy of thrombolysis using the developed vibrating actuator, enzyme (plasminogen activator) perfusion into a clot was analyzed by solving flow fields and species transport equations considering the fluid structure interaction. In vitro thrombolysis experiments were also performed. Computational results showed that plasminogen activator perfusion into a clot was enhanced by actuator vibration at frequencies of 1 and 5 Hz. Plasminogen activator perfusion was affected by the actuator oscillation frequencies and amplitudes that were determined by electromechanical characteristics of a polymer actuator. Computed plasminogen activator perfused volumes were compared with experimentally measured dissolved clot volumes. The computed plasminogen activator perfusion volumes with threshold concentrations of 16% of the initial plasminogen activator concentration agreed well with the in vitro experimental data. This study showed the effectiveness of actuator oscillation on thrombolysis and the validity of the computational plasminogen activator perfusion model for predicting thrombolysis in complex flow fields induced by an oscillating actuator.

  16. Field-Scale Evaluation of Infiltration Parameters From Soil Texture for Hydrologic Analysis

    NASA Astrophysics Data System (ADS)

    Springer, Everett P.; Cundy, Terrance W.

    1987-02-01

    Recent interest in predicting soil hydraulic properties from simple physical properties such as texture has major implications in the parameterization of physically based models of surface runoff. This study was undertaken to (1) compare, on a field scale, soil hydraulic parameters predicted from texture to those derived from field measurements and (2) compare simulated overland flow response using these two parameter sets. The parameters for the Green-Ampt infiltration equation were obtained from field measurements and using texture-based predictors for two agricultural fields, which were mapped as single soil units. Results of the analyses were that (1) the mean and variance of the field-based parameters were not preserved by the texture-based estimates, (2) spatial and cross correlations between parameters were induced by the texture-based estimation procedures, (3) the overland flow simulations using texture-based parameters were significantly different than those from field-based parameters, and (4) simulations using field-measured hydraulic conductivities and texture-based storage parameters were very close to simulations using only field-based parameters.

  17. Prediction of Transitional Flows in the Low Pressure Turbine

    NASA Technical Reports Server (NTRS)

    Huang, George; Xiong, Guohua

    1998-01-01

    Current turbulence models tend to give too early and too short a length of flow transition to turbulence, and hence fail to predict flow separation induced by the adverse pressure gradients and streamline flow curvatures. Our discussion will focus on the development and validation of transition models. The baseline data for model comparisons are the T3 series, which include a range of free-stream turbulence intensity and cover zero-pressure gradient to aft-loaded turbine pressure gradient flows. The method will be based on the conditioned N-S equations and a transport equation for the intermittency factor. First, several of the most popular 2-equation models in predicting flow transition are examined: k-e [Launder-Sharina], k-w [Wilcox], Lien-Leschiziner and SST [Menter] models. All models fail to predict the onset and the length of transition, even for the simplest flat plate with zero-pressure gradient(T3A). Although the predicted onset position of transition can be varied by providing different inlet turbulent energy dissipation rates, the appropriate inlet conditions for turbulence quantities should be adjusted to match the decay of the free-stream turbulence. Arguably, one may adjust the low-Reynolds-number part of the model to predict transition. This approach has so far not been very successful. However, we have found that the low-Reynolds-number model of Launder and Sharma [1974], which is an improved version of Jones and Launder [1972] gave the best overall performance. The Launder and Sharma model was designed to capture flow re-laminarization (a reverse of flow transition), but tends to give rise to a too early and too fast transition in comparison with the physical transition. The three test cases were for flows with zero pressure gradient but with different free-stream turbulent intensities. The same can be said about the model when considering flows subject to pressure gradient(T3C1). To capture the effects of transition using existing turbulence models, one approach is to make use of the concept of the intermittency to predict the flow transition. It was originally based on the intermittency distribution of Narasimha [1957], and then gradually evolved into a transport equation for the intermittency factor. Gostelow and associates [1994,1995] have made some improvements to Narasimha's method in an attempt to account for both favorable and adverse pressure gradients. Their approach is based on a linear, explicit combination of laminar and turbulent solutions. This approach fails to predict the overshoot of the skin friction on a flat plate near the end of transition zone, even though the length of transition is well predicted. The major flaw of Gostelow's approach is that it assumes the non-turbulent part being the laminar solution and the turbulent part being the turbulent solution and they do not interact across the transitional region. The technique in condition averaging the flow equations in intermittent flows was first introduced by Libby [1975] and Dopazo [1977] and further refined by Dick and associates [1988, 1996]. This approach employs two sets of transport equations for the non-turbulent part and the other for the turbulent part. The advantage of this approach is that it allows the interaction of non-turbulent and turbulent velocities through the introduction of additional source terms in the continuity and momentum equations for the non-turbulent and turbulent velocities. However, the strong coupling of the two sets of equations has caused some numerical difficulties, which requires special attention. The prediction of the skin friction can be improved by this approach via the implicit coupling of non-turbulent and turbulent velocity flelds. Another improvement of the interrmittency model can be further made by allowing the intermittency to vary in the cross-stream direction. This is one step prior to testing any proposal for the transport equation for the intermittency factor. Instead of solving the transport equation for the intermittency factor, the distribution for the intermittency factor is prescribed by Klebanoff's empirical formula [1955]. The skin friction is very well predicted by this new modification, including the overshoot of the profile near the end of the transition zone. The outcome of this study is very encouraging since it indicates that the proper description of the intermittency distribution is the key to the success of the model prediction. This study will be used to guide us on the modelling of the intermittency transport equation.

  18. Activation of G proteins mediates flow-induced prostaglandin E2 production in osteoblasts

    NASA Technical Reports Server (NTRS)

    Reich, K. M.; McAllister, T. N.; Gudi, S.; Frangos, J. A.

    1997-01-01

    Interstitial fluid flow may play a role in load-induced bone remodeling. Previously, we have shown that fluid flow stimulates osteoblast production of cAMP inositol trisphosphate (IP3), and PGE2. Flow-induced increases in cAMP and IP3 were shown to be a result of PG production. Thus, PGE2 production appears to be an important component in fluid flow induced signal transduction. In the present study, we investigated the mechanism of flow-induced PGE2 synthesis. Flow-induced a 20-fold increase in PGE2 production in osteoblasts. Increases were also observed with ALF4-(10mM) (98-fold), an activator of guanidine nucleotide-binding proteins (G proteins), and calcium ionophore A23187 (2 microM) (100-fold) in stationary cells. We then investigated whether flow stimulation is mediated by G proteins and increases in intracellular calcium. Flow-induced PGE2 production was inhibited by the G protein inhibitors GDP beta S (100 microM) and pertussis toxin (1 microgram/ml) by 83% and 72%, respectively. Chelation of extracellular calcium by EGTA (2 mM) and intracellular calcium by quin-2/AM (30 microM) blocked flow stimulation by 87% and 67%, respectively. These results suggest that G proteins and calcium play an important role in mediating mechanochemical signal transduction in osteoblasts.

  19. Mechanisms of flow and ACh-induced dilation in rat soleus arterioles are altered by hindlimb unweighting

    NASA Technical Reports Server (NTRS)

    Schrage, William G.; Woodman, Christopher R.; Laughlin, M. Harold

    2002-01-01

    The purpose of this study was to test the hypothesis that endothelium-dependent dilation (flow-induced dilation and ACh-induced dilation) in rat soleus muscle arterioles is impaired by hindlimb unweighting (HLU). Male Sprague-Dawley rats (approximately 300 g) were exposed to HLU or weight-bearing control (Con) conditions for 14 days. Soleus first-order (1A) and second-order (2A) arterioles were isolated, cannulated, and exposed to step increases in luminal flow at constant pressure. Flow-induced dilation was not impaired by HLU in 1A or 2A arterioles. The cyclooxygenase inhibitor indomethacin (Indo; 50 microM) did not alter flow-induced dilation in 1As or 2As. Inhibition of nitric oxide synthase (NOS) with N(omega)-nitro-L-arginine (L-NNA; 300 microM) reduced flow-induced dilation by 65-70% in Con and HLU 1As. In contrast, L-NNA abolished flow-induced dilation in 2As from Con rats but had no effect in HLU 2As. Combined treatment with L-NNA + Indo reduced tone in 1As and 2As from Con rats, but flow-induced dilation in the presence of L-NNA + Indo was not different from responses without inhibitors in either Con or HLU 1As or 2As. HLU also did not impair ACh-induced dilation (10(-9)-10(-4) M) in soleus 2As. L-NNA reduced ACh-induced dilation by approximately 40% in Con 2As but abolished dilation in HLU 2As. Indo did not alter ACh-induced dilation in Con or HLU 2As, whereas combined treatment with L-NNA + Indo abolished ACh-induced dilation in 2As from both groups. We conclude that flow-induced dilation (1As and 2As) was preserved after 2 wk HLU, but HLU decreased the contribution of NOS in mediating flow-induced dilation and increased the contribution of a NOS- and cyclooxygenase-independent mechanism (possibly endothelium-derived hyperpolarizing factor). In soleus 2As, ACh-induced dilation was preserved after 2-wk HLU but the contribution of NOS in mediating ACh-induced dilation was increased.

  20. Modeling of Compressible Flow with Friction and Heat Transfer Using the Generalized Fluid System Simulation Program (GFSSP)

    NASA Technical Reports Server (NTRS)

    Bandyopadhyay, Alak; Majumdar, Alok

    2007-01-01

    The present paper describes the verification and validation of a quasi one-dimensional pressure based finite volume algorithm, implemented in Generalized Fluid System Simulation Program (GFSSP), for predicting compressible flow with friction, heat transfer and area change. The numerical predictions were compared with two classical solutions of compressible flow, i.e. Fanno and Rayleigh flow. Fanno flow provides an analytical solution of compressible flow in a long slender pipe where incoming subsonic flow can be choked due to friction. On the other hand, Raleigh flow provides analytical solution of frictionless compressible flow with heat transfer where incoming subsonic flow can be choked at the outlet boundary with heat addition to the control volume. Nonuniform grid distribution improves the accuracy of numerical prediction. A benchmark numerical solution of compressible flow in a converging-diverging nozzle with friction and heat transfer has been developed to verify GFSSP's numerical predictions. The numerical predictions compare favorably in all cases.

  1. Variability of bed drag on cohesive beds under wave action

    USGS Publications Warehouse

    Safak, Ilgar

    2016-01-01

    Drag force at the bed acting on water flow is a major control on water circulation and sediment transport. Bed drag has been thoroughly studied in sandy waters, but less so in muddy coastal waters. The variation of bed drag on a muddy shelf is investigated here using field observations of currents, waves, and sediment concentration collected during moderate wind and wave events. To estimate bottom shear stress and the bed drag coefficient, an indirect empirical method of logarithmic fitting to current velocity profiles (log-law), a bottom boundary layer model for combined wave-current flow, and a direct method that uses turbulent fluctuations of velocity are used. The overestimation by the log-law is significantly reduced by taking turbulence suppression due to sediment-induced stratification into account. The best agreement between the model and the direct estimates is obtained by using a hydraulic roughness of 10 -4">−4 m in the model. Direct estimate of bed drag on the muddy bed is found to have a decreasing trend with increasing current speed, and is estimated to be around 0.0025 in conditions where wave-induced flow is relatively weak. Bed drag shows an increase (up to fourfold) with increasing wave energy. These findings can be used to test the bed drag parameterizations in hydrodynamic and sediment transport models and the skills of these models in predicting flows in muddy environments.

  2. Deep vein thrombus formation induced by flow reduction in mice is determined by venous side branches.

    PubMed

    Brandt, Moritz; Schönfelder, Tanja; Schwenk, Melanie; Becker, Christian; Jäckel, Sven; Reinhardt, Christoph; Stark, Konstantin; Massberg, Steffen; Münzel, Thomas; von Brühl, Marie-Luise; Wenzel, Philip

    2014-01-01

    Interaction between vascular wall abnormalities, inflammatory leukocytes, platelets, coagulation factors and hemorheology in the pathogenesis of deep vein thrombosis (DVT) is incompletely understood, requiring well defined animal models of human disease. We subjected male C57BL/6 mice to ligation of the inferior vena cava (IVC) as a flow reduction model to induce DVT. Thrombus size and weight were analyzed macroscopically and sonographically by B-mode, pulse wave (pw) Doppler and power Doppler imaging (PDI) using high frequency ultrasound. Thrombus size varied substantially between individual procedures and mice, irrespective of the flow reduction achieved by the ligature. Interestingly, PDI accurately predicted thrombus size in a very robust fashion (r2 = 0.9734, p < 0.0001). Distance of the insertion of side branches from the ligature significantly determines thrombus weight (r2 = 0.5597, p < 0.0001) and length (r2 = 0.5441, p < 0.0001) in the IVC, regardless of the flow measured by pw-Doppler with distances <1.5 mm drastically impairing thrombus formation. Occlusion of side branches prior to ligation of IVC did not increase thrombus size, probably due to patent side branches inaccessible to surgery. Venous side branches influence thrombus size in experimental DVT and might therefore prevent thrombus formation. This renders vessel anatomy and hemorheology important determinants in mouse models of DVT, which should be controlled for.

  3. Numerical and experimental investigation of VG flow control for a low-boom inlet

    NASA Astrophysics Data System (ADS)

    Rybalko, Michael

    The application of vortex generators (VGs) for shock/boundary layer interaction flow control in a novel external compression, axisymmetric, low-boom concept inlet was studied using numerical and experimental methods. The low-boom inlet design features a zero-angle cowl and relaxed isentropic compression centerbody spike, resulting in defocused oblique shocks and a weak terminating normal shock. This allows reduced external gas dynamic waves at high mass flow rates but suffers from flow separation near the throat and a large hub-side boundary layer at the Aerodynamic Interface Plane (AIP), which marks the inflow to the jet engine turbo-machinery. Supersonic VGs were investigated to reduce the shock-induced flow separation near the throat while subsonic VGs were investigated to reduce boundary layer radial distortion at the AIP. To guide large-scale inlet experiments, Reynolds-Averaged Navier-Stokes (RANS) simulations using three-dimensional, structured, chimera (overset) grids and the WIND-US code were conducted. Flow control cases included conventional and novel types of vortex generators at positions both upstream of the terminating normal shock (supersonic VGs) and downstream (subsonic VGs). The performance parameters included incompressible axisymmetric shape factor, post-shock separation area, inlet pressure recovery, and mass flow ratio. The design of experiments (DOE) methodology was used to select device size and location, analyze the resulting data, and determine the optimal choice of device geometry. Based on the above studies, a test matrix of supersonic and subsonic VGs was adapted for a large-scale inlet test to be conducted at the 8'x6' supersonic wind tunnel at NASA Glenn Research Center (GRC). Comparisons of RANS simulations with data from the Fall 2010 8'x6' inlet test showed that predicted VG performance trends and case rankings for both supersonic and subsonic devices were consistent with experimental results. For example, experimental surface oil flow visualization revealed a significant post-shock separation bubble with flow recirculation for the baseline (no VG) case that was substantially broken up in the micro-ramp VG case, consistent with simulations. Furthermore, the predicted subsonic VG performance with respect to a reduction in radial distortion (quantified in terms of axisymmetric incompressible shape factor) was found to be consistent with boundary layer rake measurements. To investigate the unsteady turbulent flow features associated with the shock-induced flow separation and the hub-side boundary layer, a detached eddy simulation (DES) approach using the WIND-US code was employed to model the baseline inlet flow field. This approach yielded improved agreement with experimental data for time-averaged diffuser stagnation pressure profiles and allowed insight into the pressure fluctuations and turbulent kinetic energy distributions which may be present at the AIP. In addition, streamwise shock position statistics were obtained and compared with experimental Schlieren results. The predicted shock oscillations were much weaker than those seen experimentally (by a factor of four), which indicates that the mechanism for the experimental shock oscillations was not captured. In addition, the novel supersonic vortex generator geometries were investigated experimentally (prior to the large-scale inlet 8'x6' wind tunnel tests) in an inlet-relevant flow field containing a Mach 1.4 normal shock wave followed by a subsonic diffuser. A parametric study of device height and distance upstream of the normal shock was undertaken for split-ramp and ramped-vane geometries. Flow field diagnostics included high-speed Schlieren, oil flow visualization, and Pitot-static pressure measurements. Parameters including flow separation, pressure recovery, centerline incompressible boundary layer shape factor, and shock stability were analyzed and compared to the baseline uncontrolled case. While all vortex generators tested eliminated centerline flow separation, the presence of VGs also increased the significant three-dimensionality of the flow via increased side-wall interaction. The stronger streamwise vorticity generated by ramped-vanes also yielded improved pressure recovery and fuller boundary layer velocity profiles within the subsonic diffuser. (Abstract shortened by UMI.)

  4. Electrokinetic instability in microchannel ferrofluid/water co-flows

    PubMed Central

    Song, Le; Yu, Liandong; Zhou, Yilong; Antao, Asher Reginald; Prabhakaran, Rama Aravind; Xuan, Xiangchun

    2017-01-01

    Electrokinetic instability refers to unstable electric field-driven disturbance to fluid flows, which can be harnessed to promote mixing for various electrokinetic microfluidic applications. This work presents a combined numerical and experimental study of electrokinetic ferrofluid/water co-flows in microchannels of various depths. Instability waves are observed at the ferrofluid and water interface when the applied DC electric field is beyond a threshold value. They are generated by the electric body force that acts on the free charge induced by the mismatch of ferrofluid and water electric conductivities. A nonlinear depth-averaged numerical model is developed to understand and simulate the interfacial electrokinetic behaviors. It considers the top and bottom channel walls’ stabilizing effects on electrokinetic flow through the depth averaging of three-dimensional transport equations in a second-order asymptotic analysis. This model is found accurate to predict both the observed electrokinetic instability patterns and the measured threshold electric fields for ferrofluids of different concentrations in shallow microchannels. PMID:28406228

  5. An improved viscid/inviscid interaction procedure for transonic flow over airfoils

    NASA Technical Reports Server (NTRS)

    Melnik, R. E.; Chow, R. R.; Mead, H. R.; Jameson, A.

    1985-01-01

    A new interacting boundary layer approach for computing the viscous transonic flow over airfoils is described. The theory includes a complete treatment of viscous interaction effects induced by the wake and accounts for normal pressure gradient effects across the boundary layer near trailing edges. The method is based on systematic expansions of the full Reynolds equation of turbulent flow in the limit of Reynolds numbers, Reynolds infinity. Procedures are developed for incorporating the local trailing edge solution into the numerical solution of the coupled full potential and integral boundary layer equations. Although the theory is strictly applicable to airfoils with cusped or nearly cusped trailing edges and to turbulent boundary layers that remain fully attached to the airfoil surface, the method was successfully applied to more general airfoils and to flows with small separation zones. Comparisons of theoretical solutions with wind tunnel data indicate the present method can accurately predict the section characteristics of airfoils including the absolute levels of drag.

  6. Surface Tension Driven Convection Experiment (STDCE)

    NASA Technical Reports Server (NTRS)

    Ostrach, Simon; Kamotani, Y.; Pline, A.

    1994-01-01

    Results are reported of the Surface Tension Driven Convection Experiment (STDCE) aboard the USML-1 (first United States Microgravity Laboratory) Spacelab which was launched on June 25, 1992. In the experiment 10 cSt silicone oil was placed in an open circular container which was 10 cm wide by 5 cm deep. The fluid was heated either by a cylindrical heater (1.11 cm dia.) located along the container centerline or by a CO2 laser beam to induce thermocapillary flow. The flow field was studied by flow visualization. Several thermistor probes were placed in the fluid to measure the temperature distribution. The temperature distribution along the liquid free surface was measured by an infrared imager. Tests were conducted over a range of heating powers, laser beam diameters, and free surface shapes. In conjunction with the experiments an extensive numerical modeling of the flow was conducted. In this paper some results of the velocity and temperature measurements with flat and curved free surfaces are presented and they are shown to agree well with the numerical predictions.

  7. Geometric Optimization for Non-Thrombogenicity of a Centrifugal Blood Pump through Flow Visualization

    NASA Astrophysics Data System (ADS)

    Toyoda, Masahiro; Nishida, Masahiro; Maruyama, Osamu; Yamane, Takashi; Tsutsui, Tatsuo; Sankai, Yoshiyuki

    A monopivot centrifugal blood pump, whose impeller is supported with a pivot bearing and a passive magnetic bearing, is under development for implantable artificial heart. The hemolysis level is less than that of commercial centrifugal pumps and the pump size is as small as 160 mL in volume. To solve a problem of thrombus caused by fluid dynamics, flow visualization experiments and animal experiments have been undertaken. For flow visualization a three-fold scale-up model, high-speed video system, and particle tracking velocimetry software were used. To verify non-thrombogenicity one-week animal experiments were conducted with sheep. The initially observed thrombus around the pivot was removed through unifying the separate washout holes to a small centered hole to induce high shear around the pivot. It was found that the thrombus contours corresponded to the shear rate of 300s-1 for red thrombus and 1300-1700s-1 for white thrombus, respectively. Thus flow visualization technique was found to be a useful tool to predict thrombus location.

  8. NRA8-21 Cycle 2 RBCC Turbopump Risk Reduction

    NASA Technical Reports Server (NTRS)

    Ferguson, Thomas V.; Williams, Morgan; Marcu, Bogdan

    2004-01-01

    This project was composed of three sub-tasks. The objective of the first task was to use the CFD code INS3D to generate both on- and off-design predictions for the consortium optimized impeller flowfield. The results of the flow simulations are given in the first section. The objective of the second task was to construct a turbomachinery testing database comprised of measurements made on several different impellers, an inducer and a diffuser. The data was in the form of static pressure measurements as well as laser velocimeter measurements of velocities and flow angles within the stated components. Several databases with this information were created for these components. The third subtask objective was two-fold: first, to validate the Enigma CFD code for pump diffuser analysis, and secondly, to perform steady and unsteady analyses on some wide flow range diffuser concepts using Enigma. The code was validated using the consortium optimized impeller database and then applied to two different concepts for wide flow diffusers.

  9. Nonlinear modeling of forced magnetic reconnection in slab geometry with NIMROD

    NASA Astrophysics Data System (ADS)

    Beidler, M. T.; Callen, J. D.; Hegna, C. C.; Sovinec, C. R.

    2017-05-01

    The nonlinear, extended-magnetohydrodynamic (MHD) code NIMROD is benchmarked with the theory of time-dependent forced magnetic reconnection induced by small resonant fields in slab geometry in the context of visco-resistive MHD modeling. Linear computations agree with time-asymptotic, linear theory of flow screening of externally applied fields. The inclusion of flow in nonlinear computations can result in mode penetration due to the balance between electromagnetic and viscous forces in the time-asymptotic state, which produces bifurcations from a high-slip state to a low-slip state as the external field is slowly increased. We reproduce mode penetration and unlocking transitions by employing time-dependent externally applied magnetic fields. Mode penetration and unlocking exhibit hysteresis and occur at different magnitudes of applied field. We also establish how nonlinearly determined flow screening of the resonant field is affected by the square of the magnitude of the externally applied field. These results emphasize that the inclusion of nonlinear physics is essential for accurate prediction of the reconnected field in a flowing plasma.

  10. Hybrid Equation/Agent-Based Model of Ischemia-Induced Hyperemia and Pressure Ulcer Formation Predicts Greater Propensity to Ulcerate in Subjects with Spinal Cord Injury

    PubMed Central

    Solovyev, Alexey; Mi, Qi; Tzen, Yi-Ting; Brienza, David; Vodovotz, Yoram

    2013-01-01

    Pressure ulcers are costly and life-threatening complications for people with spinal cord injury (SCI). People with SCI also exhibit differential blood flow properties in non-ulcerated skin. We hypothesized that a computer simulation of the pressure ulcer formation process, informed by data regarding skin blood flow and reactive hyperemia in response to pressure, could provide insights into the pathogenesis and effective treatment of post-SCI pressure ulcers. Agent-Based Models (ABM) are useful in settings such as pressure ulcers, in which spatial realism is important. Ordinary Differential Equation-based (ODE) models are useful when modeling physiological phenomena such as reactive hyperemia. Accordingly, we constructed a hybrid model that combines ODEs related to blood flow along with an ABM of skin injury, inflammation, and ulcer formation. The relationship between pressure and the course of ulcer formation, as well as several other important characteristic patterns of pressure ulcer formation, was demonstrated in this model. The ODE portion of this model was calibrated to data related to blood flow following experimental pressure responses in non-injured human subjects or to data from people with SCI. This model predicted a higher propensity to form ulcers in response to pressure in people with SCI vs. non-injured control subjects, and thus may serve as novel diagnostic platform for post-SCI ulcer formation. PMID:23696726

  11. Flow induced force of labyrinth seal

    NASA Technical Reports Server (NTRS)

    Iwatsubo, T.; Motooka, N.; Kawai, R.

    1982-01-01

    Flow induced instability force due to a labyrinth seal is analyzed. An approximate solution is given for the partial differential equation representing the flow in labyrinth seal and it is compared with the finite difference method in order to verify the accuracy of both methods. The effects of difference of inlet and outlet pressures of the seal, deflection of pressure and mass flow from the steady state, rotor diameter, seal clearance, seal interval and seal number on the flow induced force of the seal are investigated and it is known that some of these factors are very influential on the flow induced force.

  12. Numerical demonstration of surfactant concentration-dependent capillarity and viscosity effects on infiltration from a constant flux line source

    NASA Astrophysics Data System (ADS)

    Henry, Eric J.; Smith, James E.

    2006-09-01

    SummarySurface infiltration line sources can deliver surfactant solutions for agricultural purposes or for use in subsurface remediation. Though the prediction of water distribution below a line source has received considerable attention in the scientific literature, little has been has been reported on how infiltration of surfactant solution from a line source differs from water infiltration. Few numerical models are capable of simulating surfactant-induced changes in moisture characteristic and hydraulic conductivity properties of unsaturated soil, so it is difficult to assess the importance of these effects when designing surfactant application schemes. We investigated surfactant infiltration behavior by using the variably-saturated flow and transport model HYDRUS-2D [Simunek, J., Sejna, M., van Genuchten, M.Th., 1999. The HYDRUS-2D software package for simulating the two-dimensional movement of water, heat, and multiple solutes in variably-saturated media, Version 2.0. IGWMC-TPS-53C. International Ground Water Modeling Center, Colorado School of Mines, Golden, CO] which was modified by [Henry, E.J., Smith, J.E., Warrick, A.W., 2002. Two-dimensional modeling of flow and transport in the vadose zone with surfactant-induced flow. Water Resour. Res. 38. DOI: doi:10.1029/2001WR000674] to incorporate surfactant effects on unsaturated flow. Significant differences were found between pure water and surfactant solution infiltration into a fine sand that was initially at residual moisture content. The surfactant solution wetted a larger area, both horizontally and vertically, relative to water, while the distribution of water within the wetted zone was more uniform than in the surfactant system. The surfactant system exhibited transient localized drainage and rewetting caused by surfactant-induced capillary pressure gradients within the wetting front. A standard unsaturated flow model (i.e., one that does not include surfactant effects on flow) is not capable of capturing the transient flow behavior. However, our results show that by using an effective scaled media (ESM) approach a standard model can be used to simulate later-time hydraulic conditions in a surfactant system.

  13. Noxious heat and scratching decrease histamine-induced itch and skin blood flow.

    PubMed

    Yosipovitch, Gil; Fast, Katharine; Bernhard, Jeffrey D

    2005-12-01

    The aim of this study was to assess the effect of thermal stimuli or distal scratching on skin blood flow and histamine-induced itch in healthy volunteers. Twenty-one healthy volunteers participated in the study. Baseline measurements of skin blood flow were obtained on the flexor aspect of the forearm. These measurements were compared with skin blood flow after various stimuli: heating the skin, cooling the skin, noxious cold 2 degrees C, noxious heat 49 degrees C, and scratching via a brush with controlled pressure. Afterwards histamine iontophoresis was performed and skin blood flow and itch intensity were measured immediately after the above-mentioned stimuli. Scratching reduced mean histamine-induced skin blood flow and itch intensity. Noxious heat pain increased basal skin blood flow but reduced histamine-induced maximal skin blood flow and itch intensity. Cold pain and cooling reduced itch intensity, but neither affected histamine-induced skin blood flow. Sub-noxious warming the skin did not affect the skin blood flow or itch intensity. These findings suggest that heat pain and scratching may inhibit itch through a neurogenic mechanism that also affects skin blood flow.

  14. Three-dimensional finite amplitude electroconvection in dielectric liquids

    NASA Astrophysics Data System (ADS)

    Luo, Kang; Wu, Jian; Yi, Hong-Liang; Tan, He-Ping

    2018-02-01

    Charge injection induced electroconvection in a dielectric liquid lying between two parallel plates is numerically simulated in three dimensions (3D) using a unified lattice Boltzmann method (LBM). Cellular flow patterns and their subcritical bifurcation phenomena of 3D electroconvection are numerically investigated for the first time. A unit conversion is also derived to connect the LBM system to the real physical system. The 3D LBM codes are validated by three carefully chosen cases and all results are found to be highly consistent with the analytical solutions or other numerical studies. For strong injection, the steady state roll, polygon, and square flow patterns are observed under different initial disturbances. Numerical results show that the hexagonal cell with the central region being empty of charge and centrally downward flow is preferred in symmetric systems under random initial disturbance. For weak injection, the numerical results show that the flow directly passes from the motionless state to turbulence once the system loses its linear stability. In addition, the numerically predicted linear and finite amplitude stability criteria of different flow patterns are discussed.

  15. Flow measurement in an in-vitro model of a single human alveolus

    NASA Astrophysics Data System (ADS)

    Chhabra, Sudhaker; Prasad, Ajay

    2006-03-01

    The alveolus is the smallest and most important unit in the acinar region of the human lung. It is responsible for gas exchange between the lungs and the blood. A complete knowledge of the airflow pattern in the acinar region is necessary to predict the transport and deposition of inhaled aerosol particles. Such knowledge will benefit the pharmaceutical community in its effort to deliver therapeutic aerosols for lung-specific as well as system-wide ailments. In addition, it can also help to assess the health effects of the toxic aerosols in the environment. We have constructed an in-vitro model of a single spherical alveolus on a circular tube. The alveolus is capable of expanding and contracting in phase with the oscillatory flow through the tube. Realistic breathing conditions are reproduced by matching Reynolds and Womersley numbers. Experimental methods such as particle imaging velocimetry and laser induced fluorescence are used to study the resulting flow patterns. In particular, recirculating flow within the alveolus, and the fluid exchange between the alveolar duct and the alveolus are important for better understanding the flow in the acinar region.

  16. Estimation of groundwater flow from temperature monitoring in a borehole heat exchanger during a thermal response test

    NASA Astrophysics Data System (ADS)

    Yoshioka, Mayumi; Takakura, Shinichi; Uchida, Youhei

    2018-05-01

    To estimate the groundwater flow around a borehole heat exchanger (BHE), thermal properties of geological core samples were measured and a thermal response test (TRT) was performed in the Tsukuba upland, Japan. The thermal properties were measured at 57 points along a 50-m-long geological core, consisting predominantly of sand, silt, and clay, drilled near the BHE. In this TRT, the vertical temperature in the BHE was also monitored during and after the test. Results for the thermal properties of the core samples and from the monitoring indicated that groundwater flow enhanced thermal transfers, especially at shallow depths. The groundwater velocities around the BHE were estimated using a two-dimensional numerical model with monitoring data on temperature changes. According to the results, the estimated groundwater velocity was generally consistent with hydrogeological data from previous studies, except for the data collected at shallow depths consisting of a clay layer. The reasons for this discrepancy at shallow depths were predicted to be preferential flow and the occurrence of vertical flow through the BHE grout, induced by the hydrogeological conditions.

  17. Hydrodynamic characteristics of the two-phase flow field at gas-evolving electrodes: numerical and experimental studies

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-Lin; Sun, Ze; Lu, Gui-Min; Yu, Jian-Guo

    2018-05-01

    Gas-evolving vertical electrode system is a typical electrochemical industrial reactor. Gas bubbles are released from the surfaces of the anode and affect the electrolyte flow pattern and even the cell performance. In the current work, the hydrodynamics induced by the air bubbles in a cold model was experimentally and numerically investigated. Particle image velocimetry and volumetric three-component velocimetry techniques were applied to experimentally visualize the hydrodynamics characteristics and flow fields in a two-dimensional (2D) plane and a three-dimensional (3D) space, respectively. Measurements were performed at different gas rates. Furthermore, the corresponding mathematical model was developed under identical conditions for the qualitative and quantitative analyses. The experimental measurements were compared with the numerical results based on the mathematical model. The study of the time-averaged flow field, three velocity components, instantaneous velocity and turbulent intensity indicate that the numerical model qualitatively reproduces liquid motion. The 3D model predictions capture the flow behaviour more accurately than the 2D model in this study.

  18. Hydrodynamic characteristics of the two-phase flow field at gas-evolving electrodes: numerical and experimental studies.

    PubMed

    Liu, Cheng-Lin; Sun, Ze; Lu, Gui-Min; Yu, Jian-Guo

    2018-05-01

    Gas-evolving vertical electrode system is a typical electrochemical industrial reactor. Gas bubbles are released from the surfaces of the anode and affect the electrolyte flow pattern and even the cell performance. In the current work, the hydrodynamics induced by the air bubbles in a cold model was experimentally and numerically investigated. Particle image velocimetry and volumetric three-component velocimetry techniques were applied to experimentally visualize the hydrodynamics characteristics and flow fields in a two-dimensional (2D) plane and a three-dimensional (3D) space, respectively. Measurements were performed at different gas rates. Furthermore, the corresponding mathematical model was developed under identical conditions for the qualitative and quantitative analyses. The experimental measurements were compared with the numerical results based on the mathematical model. The study of the time-averaged flow field, three velocity components, instantaneous velocity and turbulent intensity indicate that the numerical model qualitatively reproduces liquid motion. The 3D model predictions capture the flow behaviour more accurately than the 2D model in this study.

  19. Hydrodynamic characteristics of the two-phase flow field at gas-evolving electrodes: numerical and experimental studies

    PubMed Central

    Lu, Gui-Min; Yu, Jian-Guo

    2018-01-01

    Gas-evolving vertical electrode system is a typical electrochemical industrial reactor. Gas bubbles are released from the surfaces of the anode and affect the electrolyte flow pattern and even the cell performance. In the current work, the hydrodynamics induced by the air bubbles in a cold model was experimentally and numerically investigated. Particle image velocimetry and volumetric three-component velocimetry techniques were applied to experimentally visualize the hydrodynamics characteristics and flow fields in a two-dimensional (2D) plane and a three-dimensional (3D) space, respectively. Measurements were performed at different gas rates. Furthermore, the corresponding mathematical model was developed under identical conditions for the qualitative and quantitative analyses. The experimental measurements were compared with the numerical results based on the mathematical model. The study of the time-averaged flow field, three velocity components, instantaneous velocity and turbulent intensity indicate that the numerical model qualitatively reproduces liquid motion. The 3D model predictions capture the flow behaviour more accurately than the 2D model in this study. PMID:29892347

  20. Magnetically-driven oceans on Jovian satellites

    NASA Astrophysics Data System (ADS)

    Gissinger, C.; Petitdemange, L.

    2017-12-01

    During the last decade, data from Galileo space missions have added strong support for the existence of subsurface liquid oceans on several moons of Jupiter. For instance, it is now commonly accepted that an electrically conducting fluid beneath the icy crust of Europa's surface may explain the variations of the induced field measured near the satellite. These observations have raised many questions regarding the size and the salinity of such subsurface ocean, or how and why the water remains liquid. In addition, the hydrodynamics of such oceans is mostly unknown. These questions are of primary importance since Europa is often considered as a good candidate for the presence of life beyond the Earth. Here, we present the first numerical modeling of the rapidly-rotating magnetohydrodynamic (MHD) flow generated in Europa's interior: due to Jupiter's rotation with respect to Europa, we show that the Lorentz force induced by the time-varying Jovian magnetic field is able to generate an oceanic flow of a few km/h. Our results are understood in the framework of a simple theoretical model and we obtain a scaling law for the prediction of the mean oceanic velocity and the total heating generated inside the ocean of Europa. Finally, by comparing our simulations to Galileo observations, we make predictions on both the thickness and the electrical conductivity of the ocean of different Jovian's satellites.

  1. Analysis of the Tangjiaxi landslide-generated waves in the Zhexi Reservoir, China, by a granular flow coupling model

    NASA Astrophysics Data System (ADS)

    Huang, Bolin; Yin, Yueping; Wang, Shichang; Tan, Jianmin; Liu, Guangning

    2017-05-01

    A rocky granular flow is commonly formed after the failure of rocky bank slopes. An impulse wave disaster may also be initiated if the rocky granular flow rushes into a river with a high velocity. Currently, the granular mass-water body coupling study is an important trend in the field of landslide-induced impulse waves. In this paper, a full coupling numerical model for landslide-induced impulse waves is developed based on a non-coherent granular flow equation, i.e., the Mih equation. In this model, the Mih equation for continuous non-coherent granular flow controls movements of sliding mass, the two-phase flow equation regulates the interaction between sliding mass and water, and the renormalization group (RNG) turbulence model governs the movement of the water body. The proposed model is validated and applied for the 2014 Tangjiaxi landslide of the Zhexi Reservoir located in Hunan Province, China, to analyze the characteristics of both landslide motion and its following impulse waves. On 16 July 2014, a rocky debris flow was formed after the failure of the Tangjiaxi landslide, damming the Tangjiaxi stream and causing an impulse wave disaster with three dead and nine missing bodies. Based on the full coupling numerical analysis, the granular flow impacts the water with a maximum velocity of about 22.5 m s-1. Moreover, the propagation velocity of the generated waves reaches up to 12 m s-1. The maximum calculated run-up of 21.8 m is close enough to the real value of 22.7 m. The predicted landslide final deposit and wave run-up heights are in a good agreement with the field survey data. These facts verify the ability of the proposed model for simulating the real impulse wave generated by rocky granular flow events.

  2. Task II: Three-dimensional Rotating Stall Inception and Effects of Rotating Tip Clearance Asymmetry in Axial Compressors

    NASA Technical Reports Server (NTRS)

    Suder, Kenneth (Technical Monitor); Tan, Choon-Sooi

    2003-01-01

    The effects of two types of flow non-uniformity on stall inception behavior were assessed with linearized stability analyses of two compressor flow models. Response to rotating tip clearance asymmetries induced by a whirling rotor shaft or rotor height variations were investigated with a two-dimensional flow model. A 3-D compressor model was also developed to study the stability of both full-span and part-span rotating stall modes in annular geometries with radial flow variations. The studies focussed on (1) understanding what compressor designs were sensitive to these types of circumferential and spanwise flow non-uniformities, and (2) situations where 2-D stability theories were inadequate because of 3-D flow effects. Rotating tip clearance non-uniformity caused the greatest performance loss for shafts whirling at the rotating stall frequency. A whirling shaft displacement of 1 percent chord caused the stalling mass flow to rise by as much as 10 percent and the peak pressure rise to decrease by 6 percent. These changes were an order of magnitude larger than for equivalent-sized stationary or rotor-locked clearance asymmetries. Spanwise flow non-uniformity always destabilized the compressor, so that 2-D models over-predicted that stall margin compared to 3-D theory. The difference increased for compressors with larger spanwise variations of characteristic slope and reduced characteristic curvature near the peak. Differences between 2-D and 3-D stall point predictions were generally unacceptable (2 - 4 percent of flow coefficient) for single-stage configurations, but were less than 1 percent for multistage compressors. 2-D analyses predicted the wrong stall mode for specific cases of radial inlet flow distortion, mismatching and annulus area contraction, where higher-order radial modes led to stall. The stability behavior of flows with circumferential or radial non-uniformity was unified through a single stability criterion. The stall point for both cases was set by the integral around the annulus of the pressure rise characteristic slope, weighted by the amplitude of the mode shape. For the case of steady circumferential variations, this criterion reduced to the integrated mean slope (IMS) condition associated with steady inlet distortions. The rotating tip clearance asymmetry model was also used to demonstrate the feasibility of actively controlling the shaft position to suppress rotating stall. In axisymmetric mean flow, this method only stabilized the first harmonic mode, increasing the operating range until surge or higher harmonic modes became unstable.

  3. Rotary blood pump

    NASA Technical Reports Server (NTRS)

    Benkowski, Robert J. (Inventor); Kiris, Cetin (Inventor); Kwak, Dochan (Inventor); Rosenbaum, Bernard J. (Inventor); Bacak, James W. (Inventor); DeBakey, Michael E. (Inventor)

    1999-01-01

    A blood pump that comprises a pump housing having a blood flow path therethrough, a blood inlet, and a blood outlet; a stator mounted to the pump housing, the stator having a stator field winding for producing a stator magnetic field; a flow straightener located within the pump housing, and comprising a flow straightener hub and at least one flow straightener blade attached to the flow straightener hub; a rotor mounted within the pump housing for rotation in response to the stator magnetic field, the rotor comprising an inducer and an impeller; the inducer being located downstream of the flow straightener, and comprising an inducer hub and at least one inducer blade attached to the inducer hub; the impeller being located downstream of the inducer, and comprising an impeller hub and at least one impeller blade attached to the impeller hub; and preferably also comprising a diffuser downstream of the impeller, the diffuser comprising a diffuser hub and at least one diffuser blade. Blood flow stagnation and clot formation within the pump are minimized by, among other things, providing the inducer hub with a diameter greater than the diameter of the flow straightener hub; by optimizing the axial spacing between the flow straightener hub and the inducer hub, and between the impeller hub and the diffuser hub; by optimizing the inlet angle of the diffuser blades; and by providing fillets or curved transitions between the upstream end of the inducer hub and the shaft mounted therein, and between the impeller hub and the shaft mounted therein.

  4. Droplet Deformation in an Extensional Flow: The Role of Surfactant Physical Chemistry

    NASA Technical Reports Server (NTRS)

    Stebe, Kathleen J.

    1996-01-01

    Surfactant-induced Marangoni effects strongly alter the stresses exerted along fluid particle interfaces. In low gravity processes, these stresses can dictate the system behavior. The dependence of Marangoni effects on surfactant physical chemistry is not understood, severely impacting our ability to predict and control fluid particle flows. A droplet in an extensional flow allows the controlled study of stretching and deforming interfaces. The deformations of the drop allow both Marangoni stresses, which resist tangential shear, and Marangoni elasticities, which resist surface dilatation, to develop. This flow presents an ideal model system for studying these effects. Prior surfactant-related work in this flow considered a linear dependence of the surface tension on the surface concentration, valid only at dilute surface concentrations, or a non-linear framework at concentrations sufficiently dilute that the linear approximation was valid. The linear framework becomes inadequate for several reasons. The finite dimensions of surfactant molecules must be taken into account with a model that includes surfaces saturation. Nonideal interactions between adsorbed surfactant molecules alter the partitioning of surfactant between the bulk and the interface, the dynamics of surfactant adsorptive/desorptive exchange, and the sensitivity of the surface tension to adsorbed surfactant. For example, cohesion between hydrocarbon chains favors strong adsorption. Cohesion also slows the rate of desorption from interfaces, and decreases the sensitivity of the surface tension to adsorbed surfactant. Strong cohesive interactions result in first order surface phase changes with a plateau in the surface tension vs surface concentration. Within this surface concentration range, the surface tension is decoupled from surface concentration gradients. We are engaged in the study of the role of surfactant physical chemistry in determining the Marangoni stresses on a drop in an extensional flow in a numerical and experimental program. Using surfactants whose dynamics and equilibrium behavior have been characterized in our laboratory, drop deformation will be studied in ground-based experiment. In an accompanying numerical study, predictive drop deformations will be determined based on the isotherm and equation of state determined in our laboratory. This work will improve our abilities to predict and control all fluid particle flows.

  5. In Situ Spatiotemporal Mapping of Flow Fields around Seeded Stem Cells at the Subcellular Length Scale

    PubMed Central

    Song, Min Jae; Dean, David; Knothe Tate, Melissa L.

    2010-01-01

    A major hurdle to understanding and exploiting interactions between the stem cell and its environment is the lack of a tool for precise delivery of mechanical cues concomitant to observing sub-cellular adaptation of structure. These studies demonstrate the use of microscale particle image velocimetry (μ-PIV) for in situ spatiotemporal mapping of flow fields around mesenchymal stem cells, i.e. murine embryonic multipotent cell line C3H10T1/2, at the subcellular length scale, providing a tool for real time observation and analysis of stem cell adaptation to the prevailing mechanical milieu. In the absence of cells, computational fluid dynamics (CFD) predicts flow regimes within 12% of μ-PIV measures, achieving the technical specifications of the chamber and the flow rates necessary to deliver target shear stresses at a particular height from the base of the flow chamber. However, our μ-PIV studies show that the presence of cells per se as well as the density at which cells are seeded significantly influences local flow fields. Furthermore, for any given cell or cell seeding density, flow regimes vary significantly along the vertical profile of the cell. Hence, the mechanical milieu of the stem cell exposed to shape changing shear stresses, induced by fluid drag, varies with respect to proximity of surrounding cells as well as with respect to apical height. The current study addresses a previously unmet need to predict and observe both flow regimes as well as mechanoadaptation of cells in flow chambers designed to deliver precisely controlled mechanical signals to live cells. An understanding of interactions and adaptation in response to forces at the interface between the surface of the cell and its immediate local environment may be key for de novo engineering of functional tissues from stem cell templates as well as for unraveling the mechanisms underlying multiscale development, growth and adaptation of organisms. PMID:20862249

  6. Investigation of River Seismic Signal Induced by Sediment Transport and Water Flow: Controlled Dam Breaking Experiments

    NASA Astrophysics Data System (ADS)

    Chen, H. Y.; Chen, S. C.; Chao, W. A.

    2015-12-01

    Natural river's bedload often hard to measure, which leads numerous uncertainties for us to predict the landscape evolution. However, the measurement of bedload flux has its certain importance to estimate the river hazard. Thus, we use seismometer to receive the seismic signal induced by bedload for partially fill the gap of field measurement capabilities. Our research conducted a controlled dam breaking experiments at Landao River, Huisun Forest since it has advantage to well constraining the spatial and temporal variation of bedload transport. We set continuous bedload trap at downstream riverbed of dam to trap the transport bedload after dam breaking so as to analyze its grain size distribution and transport behavior. In the meantime we cooperate with two portable velocity seismometers (Guralp CMG6TD) along the river to explore the relationship between bedload transport and seismic signal. Bedload trap was divided into three layers, bottom, middle, and top respectively. After the experiment, we analyzed the grain size and found out the median particle size from bottom to top is 88.664mm, 129.601mm, and 214.801mm individually. The median particle size of top layer is similar with the upstream riverbed before the experiment which median particle size is 230.683mm. This phenomena indicated that as the river flow become stronger after dam breaking, the sediment size will thereupon become larger, which meant the sediment from upstream will be carried down by the water flow and turned into bedload. Furthermore, we may tell apart the seismic signal induced by water flow and bedload by means of two different position seismometers. Eventually, we may estimate the probable error band of bedload quantity via accurately control of water depth, time-lapse photography, 3D LiDAR and other hydrology parameters.

  7. Assessment of turbulent viscous stress using ICOSA 4D Flow MRI for prediction of hemodynamic blood damage

    NASA Astrophysics Data System (ADS)

    Ha, Hojin; Lantz, Jonas; Haraldsson, Henrik; Casas, Belen; Ziegler, Magnus; Karlsson, Matts; Saloner, David; Dyverfeldt, Petter; Ebbers, Tino

    2016-12-01

    Flow-induced blood damage plays an important role in determining the hemodynamic impact of abnormal blood flow, but quantifying of these effects, which are dominated by shear stresses in highly fluctuating turbulent flow, has not been feasible. This study evaluated the novel application of turbulence tensor measurements using simulated 4D Flow MRI data with six-directional velocity encoding for assessing hemodynamic stresses and corresponding blood damage index (BDI) in stenotic turbulent blood flow. The results showed that 4D Flow MRI underestimates the maximum principal shear stress of laminar viscous stress (PLVS), and overestimates the maximum principal shear stress of Reynolds stress (PRSS) with increasing voxel size. PLVS and PRSS were also overestimated by about 1.2 and 4.6 times at medium signal to noise ratio (SNR) = 20. In contrast, the square sum of the turbulent viscous shear stress (TVSS), which is used for blood damage index (BDI) estimation, was not severely affected by SNR and voxel size. The square sum of TVSS and the BDI at SNR >20 were underestimated by less than 1% and 10%, respectively. In conclusion, this study demonstrated the feasibility of 4D Flow MRI based quantification of TVSS and BDI which are closely linked to blood damage.

  8. Flutter Phenomenon in Flow Driven Energy Harvester–A Unified Theoretical Model for “Stiff” and “Flexible” Materials

    PubMed Central

    Chen, Yu; Mu, Xiaojing; Wang, Tao; Ren, Weiwei; Yang, Ya; Wang, Zhong Lin; Sun, Chengliang; Gu, Alex Yuandong

    2016-01-01

    Here, we report a stable and predictable aero-elastic motion in the flow-driven energy harvester, which is different from flapping and vortex-induced-vibration (VIV). A unified theoretical frame work that describes the flutter phenomenon observed in both “stiff” and “flexible” materials for flow driven energy harvester was presented in this work. We prove flutter in both types of materials is the results of the coupled effects of torsional and bending modes. Compared to “stiff” materials, which has a flow velocity-independent flutter frequency, flexible material presents a flutter frequency that almost linearly scales with the flow velocity. Specific to “flexible” materials, pre-stress modulates the frequency range in which flutter occurs. It is experimentally observed that a double-clamped “flexible” piezoelectric P(VDF-TrFE) thin belt, when driven into the flutter state, yields a 1,000 times increase in the output voltage compared to that of the non-fluttered state. At a fixed flow velocity, increase in pre-stress level of the P(VDF-TrFE) thin belt up-shifts the flutter frequency. In addition, this work allows the rational design of flexible piezoelectric devices, including flow-driven energy harvester, triboelectric energy harvester, and self-powered wireless flow speed sensor. PMID:27739484

  9. Flutter Phenomenon in Flow Driven Energy Harvester-A Unified Theoretical Model for "Stiff" and "Flexible" Materials.

    PubMed

    Chen, Yu; Mu, Xiaojing; Wang, Tao; Ren, Weiwei; Yang, Ya; Wang, Zhong Lin; Sun, Chengliang; Gu, Alex Yuandong

    2016-10-14

    Here, we report a stable and predictable aero-elastic motion in the flow-driven energy harvester, which is different from flapping and vortex-induced-vibration (VIV). A unified theoretical frame work that describes the flutter phenomenon observed in both "stiff" and "flexible" materials for flow driven energy harvester was presented in this work. We prove flutter in both types of materials is the results of the coupled effects of torsional and bending modes. Compared to "stiff" materials, which has a flow velocity-independent flutter frequency, flexible material presents a flutter frequency that almost linearly scales with the flow velocity. Specific to "flexible" materials, pre-stress modulates the frequency range in which flutter occurs. It is experimentally observed that a double-clamped "flexible" piezoelectric P(VDF-TrFE) thin belt, when driven into the flutter state, yields a 1,000 times increase in the output voltage compared to that of the non-fluttered state. At a fixed flow velocity, increase in pre-stress level of the P(VDF-TrFE) thin belt up-shifts the flutter frequency. In addition, this work allows the rational design of flexible piezoelectric devices, including flow-driven energy harvester, triboelectric energy harvester, and self-powered wireless flow speed sensor.

  10. Using Magnetic Field Gradients to Simulate Variable Gravity in Fluids and Materials Experiments

    NASA Technical Reports Server (NTRS)

    Ramachandran, Narayanan

    2006-01-01

    Fluid flow due to a gravitational field is caused by sedimentation, thermal buoyancy, or solutal buoyancy induced convection. During crystal growth, for example, these flows are undesirable and can lead to crystal imperfections. While crystallization in microgravity can approach diffusion limited growth conditions (no convection), terrestrially strong magnetic fields can be used to control fluid flow and sedimentation effects. In this work, a theory is presented on the stability of solutal convection of a magnetized fluid(weak1y paramagnetic) in the presence of a magnetic field. The requirements for stability are developed and compared to experiments performed within the bore of a superconducting magnet. The theoretical predictions are in good agreement with the experiments. Extension of the technique can also be applied to study artificial gravity requirements for long duration exploration missions. Discussion of this application with preliminary experiments and application of the technique to crystal growth will be provided.

  11. Analytical modeling for heat transfer in sheared flows of nanofluids.

    PubMed

    Ferrari, Claudio; Kaoui, Badr; L'vov, Victor S; Procaccia, Itamar; Rudenko, Oleksii; ten Thije Boonkkamp, J H M; Toschi, Federico

    2012-07-01

    We developed a model for the enhancement of the heat flux by spherical and elongated nanoparticles in sheared laminar flows of nanofluids. Besides the heat flux carried by the nanoparticles, the model accounts for the contribution of their rotation to the heat flux inside and outside the particles. The rotation of the nanoparticles has a twofold effect: it induces a fluid advection around the particle and it strongly influences the statistical distribution of particle orientations. These dynamical effects, which were not included in existing thermal models, are responsible for changing the thermal properties of flowing fluids as compared to quiescent fluids. The proposed model is strongly supported by extensive numerical simulations, demonstrating a potential increase of the heat flux far beyond the Maxwell-Garnett limit for the spherical nanoparticles. The road ahead, which should lead toward robust predictive models of heat flux enhancement, is discussed.

  12. Anomalous Price Impact and the Critical Nature of Liquidity in Financial Markets

    NASA Astrophysics Data System (ADS)

    Tóth, B.; Lempérière, Y.; Deremble, C.; de Lataillade, J.; Kockelkoren, J.; Bouchaud, J.-P.

    2011-10-01

    We propose a dynamical theory of market liquidity that predicts that the average supply/demand profile is V shaped and vanishes around the current price. This result is generic, and only relies on mild assumptions about the order flow and on the fact that prices are, to a first approximation, diffusive. This naturally accounts for two striking stylized facts: First, large metaorders have to be fragmented in order to be digested by the liquidity funnel, which leads to a long memory in the sign of the order flow. Second, the anomalously small local liquidity induces a breakdown of the linear response and a diverging impact of small orders, explaining the “square-root” impact law, for which we provide additional empirical support. Finally, we test our arguments quantitatively using a numerical model of order flow based on the same minimal ingredients.

  13. Proceedings of the 2004 Workshop on CFD Validation of Synthetic Jets and Turbulent Separation Control

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L. (Compiler)

    2007-01-01

    The papers presented here are from the Langley Research Center Workshop on Computational Fluid Dynamics (CFD) Validation of Synthetic Jets and Turbulent Separation Control (nicknamed "CFDVAL2004"), held March 2004 in Williamsburg, Virginia. The goal of the workshop was to bring together an international group of CFD practitioners to assess the current capabilities of different classes of turbulent flow solution methodologies to predict flow fields induced by synthetic jets and separation control geometries. The workshop consisted of three flow-control test cases of varying complexity, and participants could contribute to any number of the cases. Along with their workshop submissions, each participant included a short write-up describing their method for computing the particular case(s). These write-ups are presented as received from the authors with no editing. Descriptions of each of the test cases and experiments are also included.

  14. Effects of Anti-VEGF on Predicted Antibody Biodistribution: Roles of Vascular Volume, Interstitial Volume, and Blood Flow

    PubMed Central

    Boswell, C. Andrew; Ferl, Gregory Z.; Mundo, Eduardo E.; Bumbaca, Daniela; Schweiger, Michelle G.; Theil, Frank-Peter; Fielder, Paul J.; Khawli, Leslie A.

    2011-01-01

    Background The identification of clinically meaningful and predictive models of disposition kinetics for cancer therapeutics is an ongoing pursuit in drug development. In particular, the growing interest in preclinical evaluation of anti-angiogenic agents alone or in combination with other drugs requires a complete understanding of the associated physiological consequences. Methodology/Principal Findings Technescan™ PYP™, a clinically utilized radiopharmaceutical, was used to measure tissue vascular volumes in beige nude mice that were naïve or administered a single intravenous bolus dose of a murine anti-vascular endothelial growth factor (anti-VEGF) antibody (10 mg/kg) 24 h prior to assay. Anti-VEGF had no significant effect (p>0.05) on the fractional vascular volumes of any tissues studied; these findings were further supported by single photon emission computed tomographic imaging. In addition, apart from a borderline significant increase (p = 0.048) in mean hepatic blood flow, no significant anti-VEGF-induced differences were observed (p>0.05) in two additional physiological parameters, interstitial fluid volume and the organ blood flow rate, measured using indium-111-pentetate and rubidium-86 chloride, respectively. Areas under the concentration-time curves generated by a physiologically-based pharmacokinetic model changed substantially (>25%) in several tissues when model parameters describing compartmental volumes and blood flow rates were switched from literature to our experimentally derived values. However, negligible changes in predicted tissue exposure were observed when comparing simulations based on parameters measured in naïve versus anti-VEGF-administered mice. Conclusions/Significance These observations may foster an enhanced understanding of anti-VEGF effects in murine tissues and, in particular, may be useful in modeling antibody uptake alone or in combination with anti-VEGF. PMID:21436893

  15. An unsteady rotor/fuselage interaction method

    NASA Technical Reports Server (NTRS)

    Egolf, T. Alan; Lorber, Peter F.

    1987-01-01

    An analytical method has been developed to treat unsteady helicopter rotor, wake, and fuselage interaction aerodynamics. An existing lifting line/prescribed wake rotor analysis and a source panel fuselage analysis were modified to predict vibratory fuselage airloads. The analyses were coupled through the induced flow velocities of the rotor and wake on the fuselage and the fuselage on the rotor. A prescribed displacement technique was used to distort the rotor wake about the fuselage. Sensitivity studies were performed to determine the influence of wake and body geometry on the computed airloads. Predicted and measured mean and unsteady pressures on a cylindrical body in the wake of a two-bladed rotor were compared. Initial results show good qualitative agreement.

  16. Instabilities and spin-up behaviour of a rotating magnetic field driven flow in a rectangular cavity

    NASA Astrophysics Data System (ADS)

    Galindo, V.; Nauber, R.; Räbiger, D.; Franke, S.; Beyer, H.; Büttner, L.; Czarske, J.; Eckert, S.

    2017-11-01

    This study presents numerical simulations and experiments considering the flow of an electrically conducting fluid inside a cube driven by a rotating magnetic field (RMF). The investigations are focused on the spin-up, where a liquid metal (GaInSn) is suddenly exposed to an azimuthal body force generated by the RMF and the subsequent flow development. The numerical simulations rely on a semi-analytical expression for the induced electromagnetic force density in an electrically conducting medium inside a cuboid container with insulating walls. Velocity distributions in two perpendicular planes are measured using a novel dual-plane, two-component ultrasound array Doppler velocimeter with continuous data streaming, enabling long term measurements for investigating transient flows. This approach allows identifying the main emerging flow modes during the transition from stable to unstable flow regimes with exponentially growing velocity oscillations using the Proper Orthogonal Decomposition method. Characteristic frequencies in the oscillating flow regimes are determined in the super critical range above the critical magnetic Taylor number T ac≈1.26 ×1 05, where the transition from the steady double vortex structure of the secondary flow to an unstable regime with exponentially growing oscillations is detected. The mean flow structures and the temporal evolution of the flow predicted by the numerical simulations and observed in experiments are in very good agreement.

  17. A prediction of 3-D viscous flow and performance of the NASA Low-Speed Centrifugal Compressor

    NASA Technical Reports Server (NTRS)

    Moore, John; Moore, Joan G.

    1990-01-01

    A prediction of the three-dimensional turbulent flow in the NASA Low-Speed Centrifugal Compressor Impeller has been made. The calculation was made for the compressor design conditions with the specified uniform tip clearance gap. The predicted performance is significantly worse than that predicted in the NASA design study. This is explained by the high tip leakage flow in the present calculation and by the different model adopted for tip leakage flow mixing. The calculation gives an accumulation of high losses in the shroud/pressure-side quadrant near the exit of the impeller. It also predicts a region of meridional backflow near the shroud wall. Both of these flow features should be extensive enough in the NASA impeller to allow detailed flow measurements, leading to improved flow modeling. Recommendations are made for future flow studies in the NASA impeller.

  18. A prediction of 3-D viscous flow and performance of the NASA low-speed centrifugal compressor

    NASA Technical Reports Server (NTRS)

    Moore, John; Moore, Joan G.

    1989-01-01

    A prediction of the 3-D turbulent flow in the NASA Low-Speed Centrifugal Compressor Impeller has been made. The calculation was made for the compressor design conditions with the specified uniform tip clearance gap. The predicted performance is significantly worse than that predicted in the NASA design study. This is explained by the high tip leakage flow in the present calculation and by the different model adopted for tip leakage flow mixing. The calculation gives an accumulation for high losses in the shroud/pressure-side quadrant near the exit of the impeller. It also predicts a region of meridional backflow near the shroud wall. Both of these flow features should be extensive enough in the NASA impeller to allow detailed flow measurements, leading to improved flow modelling. Recommendations are made for future flow studies in the NASA impeller.

  19. City traffic flow breakdown prediction based on fuzzy rough set

    NASA Astrophysics Data System (ADS)

    Yang, Xu; Da-wei, Hu; Bing, Su; Duo-jia, Zhang

    2017-05-01

    In city traffic management, traffic breakdown is a very important issue, which is defined as a speed drop of a certain amount within a dense traffic situation. In order to predict city traffic flow breakdown accurately, in this paper, we propose a novel city traffic flow breakdown prediction algorithm based on fuzzy rough set. Firstly, we illustrate the city traffic flow breakdown problem, in which three definitions are given, that is, 1) Pre-breakdown flow rate, 2) Rate, density, and speed of the traffic flow breakdown, and 3) Duration of the traffic flow breakdown. Moreover, we define a hazard function to represent the probability of the breakdown ending at a given time point. Secondly, as there are many redundant and irrelevant attributes in city flow breakdown prediction, we propose an attribute reduction algorithm using the fuzzy rough set. Thirdly, we discuss how to predict the city traffic flow breakdown based on attribute reduction and SVM classifier. Finally, experiments are conducted by collecting data from I-405 Freeway, which is located at Irvine, California. Experimental results demonstrate that the proposed algorithm is able to achieve lower average error rate of city traffic flow breakdown prediction.

  20. ATP mediates flow-induced NO production in thick ascending limbs

    PubMed Central

    Hong, Nancy J.; Garvin, Jeffrey L.

    2012-01-01

    Mechanical stimulation caused by increasing flow induces nucleotide release from many cells. Luminal flow and extracellular ATP stimulate production of nitric oxide (NO) in thick ascending limbs. However, the factors that mediate flow-induced NO production are unknown. We hypothesized that luminal flow stimulates thick ascending limb NO production via ATP. We measured NO in isolated, perfused rat thick ascending limbs using the fluorescent dye DAF FM. The rate of increase in dye fluorescence reflects NO accumulation. Increasing luminal flow from 0 to 20 nl/min stimulated NO production from 17 ± 16 to 130 ± 37 arbitrary units (AU)/min (P < 0.02). Increasing flow from 0 to 20 nl/min raised ATP release from 4 ± 1 to 21 ± 6 AU/min (P < 0.04). Hexokinase (10 U/ml) plus glucose, which consumes ATP, completely prevented the measured increase in ATP. Luminal flow did not increase NO production in the presence of luminal and basolateral hexokinase (10 U/ml). When flow was increased with the ATPase apyrase in both luminal and basolateral solutions (5 U/ml), NO levels did not change significantly. The P2 receptor antagonist suramin (300 μmol/l) reduced flow-induced NO production by 83 ± 25% (P < 0.03) when added to both and basolateral sides. Luminal hexokinase decreased flow-induced NO production from 205.6 ± 85.6 to 36.6 ± 118.6 AU/min (P < 0.02). Basolateral hexokinase also reduced flow-induced NO production. The P2X receptor-selective antagonist NF023 (200 μmol/l) prevented flow-induced NO production when added to the basolateral side but not the luminal side. We conclude that ATP mediates flow-induced NO production in the thick ascending limb likely via activation of P2Y receptors in the luminal and P2X receptors in the basolateral membrane. PMID:22496412

  1. Getting drowned in a swirl: Deformable bead-spring model microswimmers in external flow fields

    NASA Astrophysics Data System (ADS)

    Küchler, Niklas; Löwen, Hartmut; Menzel, Andreas M.

    2016-02-01

    Deformability is a central feature of many types of microswimmers, e.g., for artificially generated self-propelled droplets. Here, we analyze deformable bead-spring microswimmers in an externally imposed solvent flow field as simple theoretical model systems. We focus on their behavior in a circular swirl flow in two spatial dimensions. Linear (straight) two-bead swimmers are found to circle around the swirl with a slight drift to the outside with increasing activity. In contrast to that, we observe for triangular three-bead or squarelike four-bead swimmers a tendency of being drawn into the swirl and finally getting drowned, although a radial inward component is absent in the flow field. During one cycle around the swirl, the self-propulsion direction of an active triangular or squarelike swimmer remains almost constant, while their orbits become deformed exhibiting an "egglike" shape. Over time, the swirl flow induces slight net rotations of these swimmer types, which leads to net rotations of the egg-shaped orbits. Interestingly, in certain cases, the orbital rotation changes sense when the swimmer approaches the flow singularity. Our predictions can be verified in real-space experiments on artificial microswimmers.

  2. Mean Line Pump Flow Model in Rocket Engine System Simulation

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.; Lavelle, Thomas M.

    2000-01-01

    A mean line pump flow modeling method has been developed to provide a fast capability for modeling turbopumps of rocket engines. Based on this method, a mean line pump flow code PUMPA has been written that can predict the performance of pumps at off-design operating conditions, given the loss of the diffusion system at the design point. The pump code can model axial flow inducers, mixed-flow and centrifugal pumps. The code can model multistage pumps in series. The code features rapid input setup and computer run time, and is an effective analysis and conceptual design tool. The map generation capability of the code provides the map information needed for interfacing with a rocket engine system modeling code. The off-design and multistage modeling capabilities of the code permit parametric design space exploration of candidate pump configurations and provide pump performance data for engine system evaluation. The PUMPA code has been integrated with the Numerical Propulsion System Simulation (NPSS) code and an expander rocket engine system has been simulated. The mean line pump flow code runs as an integral part of the NPSS rocket engine system simulation and provides key pump performance information directly to the system model at all operating conditions.

  3. High-latitude convection on open and closed field lines for large IMF B(y)

    NASA Technical Reports Server (NTRS)

    Moses, J. J.; Crooker, N. U.; Gorney, D. J.; Siscoe, G. L.

    1985-01-01

    S3-3 electric field observations for August 23, 1976, show a single convection cell engulfing the northern polar cap. The flow direction is that for a positive IMF B(y) component. The particle data indicate that nearly half the duskside sunward flow occurs on closed field lines whereas the dawnside flow is entirely on open field lines. This is interpreted in terms of an IMF B(y)-induced deformation in the polar cap boundary, where the deformation moves with the convective flow. Thus, convection streamlines cross the deformed polar cap boundary, but no flow crosses the boundary because it is carried by the flow. Since southern hemisphere convection is expected to occur with the opposite sense of rotation, closed field lines that will be forced to tilt azimuthally are predicted. On the nightside the tilt produces a y component of the magnetic field in the same direction as the IMF for either sign of IMF B(y). This interpretation is consistent with observations of a greater y component in the plasma sheet than the tail lobes, which are difficult to understand in terms of the common explanation of IMF penetration. Alternatives to this interpretation are also discussed.

  4. Jet-induced ground effects on a parametric flat-plate model in hover

    NASA Technical Reports Server (NTRS)

    Wardwell, Douglas A.; Hange, Craig E.; Kuhn, Richard E.; Stewart, Vearl R.

    1993-01-01

    The jet-induced forces generated on short takeoff and vertical landing (STOVL) aircraft when in close proximity to the ground can have a significant effect on aircraft performance. Therefore, accurate predictions of these aerodynamic characteristics are highly desirable. Empirical procedures for estimating jet-induced forces during the vertical/short takeoff and landing (V/STOL) portions of the flight envelope are currently limited in accuracy. The jet-induced force data presented significantly add to the current STOVL configurations data base. Further development of empirical prediction methods for jet-induced forces, to provide more configuration diversity and improved overall accuracy, depends on the viability of this STOVL data base. The data base may also be used to validate computational fluid dynamics (CFD) analysis codes. The hover data obtained at the NASA Ames Jet Calibration and Hover Test (JCAHT) facility for a parametric flat-plate model is presented. The model tested was designed to allow variations in the planform aspect ratio, number of jets, nozzle shape, and jet location. There were 31 different planform/nozzle configurations tested. Each configuration had numerous pressure taps installed to measure the pressures on the undersurface of the model. All pressure data along with the balance jet-induced lift and pitching-moment increments are tabulated. For selected runs, pressure data are presented in the form of contour plots that show lines of constant pressure coefficient on the model undersurface. Nozzle-thrust calibrations and jet flow-pressure survey information are also provided.

  5. Multisensory Integration of Visual and Vestibular Signals Improves Heading Discrimination in the Presence of a Moving Object

    PubMed Central

    Dokka, Kalpana; DeAngelis, Gregory C.

    2015-01-01

    Humans and animals are fairly accurate in judging their direction of self-motion (i.e., heading) from optic flow when moving through a stationary environment. However, an object moving independently in the world alters the optic flow field and may bias heading perception if the visual system cannot dissociate object motion from self-motion. We investigated whether adding vestibular self-motion signals to optic flow enhances the accuracy of heading judgments in the presence of a moving object. Macaque monkeys were trained to report their heading (leftward or rightward relative to straight-forward) when self-motion was specified by vestibular, visual, or combined visual-vestibular signals, while viewing a display in which an object moved independently in the (virtual) world. The moving object induced significant biases in perceived heading when self-motion was signaled by either visual or vestibular cues alone. However, this bias was greatly reduced when visual and vestibular cues together signaled self-motion. In addition, multisensory heading discrimination thresholds measured in the presence of a moving object were largely consistent with the predictions of an optimal cue integration strategy. These findings demonstrate that multisensory cues facilitate the perceptual dissociation of self-motion and object motion, consistent with computational work that suggests that an appropriate decoding of multisensory visual-vestibular neurons can estimate heading while discounting the effects of object motion. SIGNIFICANCE STATEMENT Objects that move independently in the world alter the optic flow field and can induce errors in perceiving the direction of self-motion (heading). We show that adding vestibular (inertial) self-motion signals to optic flow almost completely eliminates the errors in perceived heading induced by an independently moving object. Furthermore, this increased accuracy occurs without a substantial loss in the precision. Our results thus demonstrate that vestibular signals play a critical role in dissociating self-motion from object motion. PMID:26446214

  6. Computational simulations of vocal fold vibration: Bernoulli versus Navier-Stokes.

    PubMed

    Decker, Gifford Z; Thomson, Scott L

    2007-05-01

    The use of the mechanical energy (ME) equation for fluid flow, an extension of the Bernoulli equation, to predict the aerodynamic loading on a two-dimensional finite element vocal fold model is examined. Three steady, one-dimensional ME flow models, incorporating different methods of flow separation point prediction, were compared. For two models, determination of the flow separation point was based on fixed ratios of the glottal area at separation to the minimum glottal area; for the third model, the separation point determination was based on fluid mechanics boundary layer theory. Results of flow rate, separation point, and intraglottal pressure distribution were compared with those of an unsteady, two-dimensional, finite element Navier-Stokes model. Cases were considered with a rigid glottal profile as well as with a vibrating vocal fold. For small glottal widths, the three ME flow models yielded good predictions of flow rate and intraglottal pressure distribution, but poor predictions of separation location. For larger orifice widths, the ME models were poor predictors of flow rate and intraglottal pressure, but they satisfactorily predicted separation location. For the vibrating vocal fold case, all models resulted in similar predictions of mean intraglottal pressure, maximum orifice area, and vibration frequency, but vastly different predictions of separation location and maximum flow rate.

  7. Micromechanics of failure waves in glass. 2: Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espinosa, H.D.; Xu, Y.; Brar, N.S.

    1997-08-01

    In an attempt to elucidate the failure mechanism responsible for the so-called failure waves in glass, numerical simulations of plate and rod impact experiments, with a multiple-plane model, have been performed. These simulations show that the failure wave phenomenon can be modeled by the nucleation and growth of penny-shaped shear defects from the specimen surface to its interior. Lateral stress increase, reduction of spall strength,and progressive attenuation of axial stress behind the failure front are properly predicted by the multiple-plane model. Numerical simulations of high-strain-rate pressure-shear experiments indicate that the model predicts reasonably well the shear resistance of the materialmore » at strain rates as high as 1 {times} 10{sup 6}/s. The agreement is believed to be the result of the model capability in simulating damage-induced anisotropy. By examining the kinetics of the failure process in plate experiments, the authors show that the progressive glass spallation in the vicinity of the failure front and the rate of increase in lateral stress are more consistent with a representation of inelasticity based on shear-activated flow surfaces, inhomogeneous flow, and microcracking, rather than pure microcracking. In the former mechanism, microcracks are likely formed at a later time at the intersection of flow surfaces, in the case of rod-on-rod impact, stress and radial velocity histories predicted by the microcracking model are in agreement with the experimental measurements. Stress attenuation, pulse duration, and release structure are properly simulated. It is shown that failure wave speeds in excess to 3,600 m/s are required for adequate prediction in rod radial expansion.« less

  8. Multiscale modelling of Flow-Induced Blood Cell Damage

    NASA Astrophysics Data System (ADS)

    Liu, Yaling; Sohrabi, Salman

    2017-11-01

    We study red blood cell (RBC) damage and hemolysis at cellular level. Under high shear rates, pores form on RBC membranes through which hemoglobin (Hb) leaks out and increases free Hb content of plasma leading to hemolysis. By coupling lattice Boltzmann and spring connected network models through immersed boundary method, we estimate hemolysis of a single RBC under various shear rates. The developed cellular damage model can be used as a predictive tool for hydrodynamic and hematologic design optimization of blood-wetting medical devices.

  9. Mathematical Fluid Dynamics of Plasma Flow Control over High Speed Wings

    DTIC Science & Technology

    2010-12-01

    discharges ( DBD ) that fall into a wider class of discharges known as surface barrier discharges (SBD). In 2004-2006 we have improved the fidelity of our...K E\\ exp K B\\ r + 4 T T , I CAp ./or /•: > 0 Jont --, ,/ ^ if y = fe ( , .(• < (). Ev < 0 0 if (/ = 0. i > 0 (2.20) (2.21...obtained data are not sufficient to predict the momentum and heat sources induced by actual DBD -plasma actuators. These sources result from few tens of

  10. Convection-induced distortion of a solid-liquid interface

    NASA Technical Reports Server (NTRS)

    Schaefer, R. J.; Coriell, S. R.

    1984-01-01

    Measurements of convective flow fields and solid-liquid interface shapes during the solidification of a pure and a slightly alloyed transparent material reveal that the convective transport of solute can cause a macroscopic depression to develop in the solid-liquid interface. This effect occurs under conditions close to those which are predicted to produce morphological instability of a planar interface. A cellular or dendritic microstructure later develops within the interface depression. The convection is attributed to the effect of radial temperature gradients in the crystal growth apparatus.

  11. Remote measurement utilizing NASA's scanning laser Doppler systems. Volume 2: Laser Doppler dust devil velocity profile measurement program

    NASA Technical Reports Server (NTRS)

    Howle, R. E.; Krause, M. C.; Craven, C. E.; Gorzynski, E. J.; Edwards, B. B.

    1976-01-01

    The first detailed velocity profile data on thermally induced dust vortices are presented. These dust devils will be analyzed and studied to determine their flow fields and origin in an effort to correlate this phenomena with the generation and characteristics of tornadoes. A continuing effort to increase mankind's knowledge of vortex and other meteorological phenomena will hopefully allow the prediction of tornado occurrence, their path, and perhaps eventually even lead to some technique for their destruction.

  12. Numerical Modeling of Compressible Flow and Its Control

    DTIC Science & Technology

    2014-03-01

    surface just outbound of the fin . This impinging jet is believed to be responsible for the high surface pressure, skin friction, and heat transfer in...and fine grid simulations over predict the heat transfer by roughly 13% for this case. E. LF12 Case, Sharp Fin at 12° In the LF12 case, a sharp...Dolling, D. S., and Knight, D. D., “An Experimental/Computational Study of Heat Transfer in Sharp Fin Induced Turbulent Interactions at Mach 5,” AIAA

  13. Parametres pour l'instabilite fluidelastique: Derivees de stabilite et amortissement diphasique

    NASA Astrophysics Data System (ADS)

    Charreton, Constant

    Heat exchangers and steam generators are crucial components in nuclear power plants. Water heated by nuclear fission is flowing through thousands of tubes inside a steam generator. Heat is transmitted to a second water network, external to the tubes. Steam is generated from the water of the secondary to power the turbines that produce electrical power. In this process, two-phase cross flow across the tubes causes several excitation phenomena. Vibration induced on the tubes can compromise the structural integrity of the steam generator, and can lead to power plant shutdowns. Better understanding of parameters at stake would lead to improved power plant safety and reliability. Fluidelastic instability is without doubt one of the most destructive vibration phenomena. It causes the steam generator tubes to collide against one another. This can lead to premature wear on the tubes, cracks due to fatigue and eventually, leaks leading to radioactive water contamination. Therefore, predicting conditions leading to fluidelastic instability would allow to control the damage on the tubes. In this thesis, we aim at identifying the key parameters to predict fluidelastic instability. To do so, a theoretical approach is based on the quasi-steady model. It is shown that the equation used to predict fluidelastic instability comprises two parameters that are hard to characterize. There is, on one hand, the derivative of the lift coefficient on a cylinder, and damping on the other hand. The main objective of this project is to measure these parameters experimentally. Knowing that the sign of the lift coefficient derivative is a sufficient indicator of fluidelastic instability, this derivative was measured. The experiments were carried out on the center tube of an array. The flow is single-phase and values of Reynolds number are low to moderate, thus filling a gap in the literature. Indeed, the lift coefficient derivative is known for high values of the Reynolds number only. Meanwhile, numerical methods are developed. They are based on the direct resolution of Navier-Stokes equations with the finite-element method, and on potential flow theory. Results for the lift coefficient derivative are compared to the measurements. Furthermore, the influence of geometric parameters of the array are investigated. The trend in the results show that the derivative of the lift coefficient becomes Reynolds independent for high values. From the literature and the measurements, a relationship is proposed for the lift coefficient derivative with respect to the Reynolds number. Values are injected in the quasi-steady model to predict the critical velocity for the onset of instability of a single flexible tube. Stability maps for various Reynolds numbers are proposed, using typical values for the tube damping. However, the maps do not compare well with critical velocities found in the literature for high values of the Reynolds number. Stability tests would be necessary to confirm the validity of the maps for low Reynolds, as fluidelastic has never been investigated in this range of Reynolds number. Yet, for high values of the Reynolds number, it seems like the quasi-steady model fails to predict the behavior of the experiments. An accurate value for the total damping of a tube is required to locate instability results on a map. However, in steam generators subjected to two-phase flow, damping on a tube is much more important than for single-phase flow. Yet, its origin is unknown. Therefore, we measured two-phase damping for internal flow using a specific test section. Indeed, a few studies on two-phase flow suggest that the damping mechanism is the same for a tube in cross-flow and for a tube subjected to internal flow. The present study focuses on the physics underlying the two-phase damping mechanism. The test bench consists of a sliding rigid tube subjected to upward internal two-phase flow. It essentially is a mass-spring system subjected to a transverse sinusoidal force. The damping is extracted from the frequency response function of the tube. Meanwhile, gas phase motion is characterized through video processing of the oscillating tube. The relative amplitude of the gas phase is related to two-phase flow damping values via a model of the forces acting on the bubbles. Varying excitation parameters such as frequency and excitation force confirms that two-phase damping is a viscous (velocity dependent) dissipation mechanism. Its direct relation with flow pattern transitions was confirmed. Furthermore, the combination of the videos and the analytical model suggests that the power dissipated by the drag force on the bubbles is significant in the two-phase damping mechanism. However, the model over-predicts the amplitude of the gas phase. This suggests that pseudo-turbulence generated by the motion of the tube is to be considered. The results of this study form an experimental database that can be used as input for fluidelastic instability models. Particularly, two-phase flow experiments will eventually help validating numerical methods, regarding the damping as well as the behavior of the gas phase. This work contributes to modeling and understanding two-phase flow induced vibration.

  14. Studies of several small seawater MHD thrusters using the high-field solenoid of MIT's bitter magnet laboratory. Annual report, 1 February 1992-31 January 1993. [MHD (Magnetohydrodynamic)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, T.F.; Aumiller, D.L.; Gilbert, J.B.

    1993-02-01

    The performance of several small, seawater magnetohydrodynamic (MHD) thrusters was studied in a closed loop environment. Three different thrusters were designed, constructed, and evaluated. For the first time, videographic and photographic recordings of flow through an MHD thrusters were obtained. The MHD induced flowrate, thrust, and mechanical efficiency was measured/calculated for each thruster at different combinations of electric current and magnetic field strength. Direct determination of thrust, and subsequently of efficiency were not possible. Therefore, the hydraulic resistance of each different thruster was correlated with flowrate. This information was used in conjunction with the measured MHD induced flowrate to calculatemore » the thrust and efficiency of each thruster. Experimental results were repeatable. A theoretical model was developed to predict the performance of each thruster. The results of this model are presented for one thruster at several magnetic field strengths at various electric currents. These predictions corresponded well with the measured/calculated values of MHD induced flowrate and mechanical efficiency. Finally, several MHD thrusters with radically different configurations are proposed.« less

  15. A computational modeling approach of the jet-like acoustic streaming and heat generation induced by low frequency high power ultrasonic horn reactors.

    PubMed

    Trujillo, Francisco Javier; Knoerzer, Kai

    2011-11-01

    High power ultrasound reactors have gained a lot of interest in the food industry given the effects that can arise from ultrasonic-induced cavitation in liquid foods. However, most of the new food processing developments have been based on empirical approaches. Thus, there is a need for mathematical models which help to understand, optimize, and scale up ultrasonic reactors. In this work, a computational fluid dynamics (CFD) model was developed to predict the acoustic streaming and induced heat generated by an ultrasonic horn reactor. In the model it is assumed that the horn tip is a fluid inlet, where a turbulent jet flow is injected into the vessel. The hydrodynamic momentum rate of the incoming jet is assumed to be equal to the total acoustic momentum rate emitted by the acoustic power source. CFD velocity predictions show excellent agreement with the experimental data for power densities higher than W(0)/V ≥ 25kWm(-3). This model successfully describes hydrodynamic fields (streaming) generated by low-frequency-high-power ultrasound. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  16. Numerical results of the influence of thermal effects on the turbo machine rotordynamics induced by light-rubs against a brush seal

    NASA Astrophysics Data System (ADS)

    Fay, R.; Kreuzer, D.; Liebich, R.; Wiedemann, T.; Werner, S.

    2018-07-01

    Brush seals are an efficient alternative for labyrinth seals in turbomachinery. Brush seals show on the one hand a better leakage reduction in relation to their axial length and hence allow a shorter design of the machinery. On the other hand, the particularly small gap between bristles and the engine shaft increases the risk of rotor-stator-contact. The flexible brush seals induces basically light-rubs that in some cases might lead to spiral vibrations and thermal mechanical instabilities. Spiral vibrations are caused by a thermal deflection of the rotor induced by a heat flow into the shaft. To predict areas of instabilites during the design process a tool was developed at the Berlin Institute of Technology. The model combines a rotor dynamic model and a thermal model. The thermal system is reduced using a stationary solution, so that the final system, on which the stability analysis is performed, is comparable to the established Kellenberger model. The paper presents the numerical model for the predictions of unstable regions depending on rotational speed. This is illustrated by means of an example of an axial compressor manufactured by MAN Diesel & Turbo.

  17. Effect of molecular topology on the transport properties of dendrimers in dilute solution at Θ temperature: A Brownian dynamics study

    NASA Astrophysics Data System (ADS)

    Bosko, Jaroslaw T.; Ravi Prakash, J.

    2008-01-01

    Structure and transport properties of dendrimers in dilute solution are studied with the aid of Brownian dynamics simulations. To investigate the effect of molecular topology on the properties, linear chain, star, and dendrimer molecules of comparable molecular weights are studied. A bead-spring chain model with finitely extensible springs and fluctuating hydrodynamic interactions is used to represent polymer molecules under Θ conditions. Structural properties as well as the diffusivity and zero-shear-rate intrinsic viscosity of polymers with varied degrees of branching are analyzed. Results for the free-draining case are compared to and found in very good agreement with the Rouse model predictions. Translational diffusivity is evaluated and the difference between the short-time and long-time behavior due to dynamic correlations is observed. Incorporation of hydrodynamic interactions is found to be sufficient to reproduce the maximum in the intrinsic viscosity versus molecular weight observed experimentally for dendrimers. Results of the nonequilibrium Brownian dynamics simulations of dendrimers and linear chain polymers subjected to a planar shear flow in a wide range of strain rates are also reported. The flow-induced molecular deformation of molecules is found to decrease hydrodynamic interactions and lead to the appearance of shear thickening. Further, branching is found to suppress flow-induced molecular alignment and deformation.

  18. Polymer Stress-Gradient Induced Migration in Thin Film Flow Over Topography

    NASA Astrophysics Data System (ADS)

    Tsouka, Sophia; Dimakopoulos, Yiannis; Tsamopoulos, John

    2014-11-01

    We consider the 2D, steady film flow of a dilute polymer solution over a periodic topography. We examine how the distribution of polymer in the planarization of topographical features is affected by flow intensity and physical properties. The thermodynamically acceptable, Mavrantzas-Beris two-fluid Hamiltonian model is used for polymer migration. The resulting system of differential equations is solved via the mixed FE method combined with an elliptic grid generation scheme. We present numerical results for polymer concentration, stress, velocity and flux of components as a function of the non-dimensional parameters of the problem (Deborah, Peclet, Reynolds and Capillary numbers, ratio of solvent viscosity to total liquid viscosity and geometric features of the topography). Polymer migration to the free surface is enhanced when the cavity gets steeper and deeper. This increases the spatial extent of the polymer depletion layer and induces strong banding in the stresses away from the substrate wall, especially in low polymer concentration. Macromolecules with longer relaxation times are predicted to migrate towards the free surface more easily, while high surface tension combined with a certain range of Reynolds numbers affects the free surface deformations. Work supported by the General Secretariat of Research & Technology of Greece through the program ``Excellence'' (Grant No. 1918) in the framework ``Education and Lifelong Learning'' co-funded by the ESF.

  19. Robust Feedback Control of Flow Induced Structural Radiation of Sound

    NASA Technical Reports Server (NTRS)

    Heatwole, Craig M.; Bernhard, Robert J.; Franchek, Matthew A.

    1997-01-01

    A significant component of the interior noise of aircraft and automobiles is a result of turbulent boundary layer excitation of the vehicular structure. In this work, active robust feedback control of the noise due to this non-predictable excitation is investigated. Both an analytical model and experimental investigations are used to determine the characteristics of the flow induced structural sound radiation problem. The problem is shown to be broadband in nature with large system uncertainties associated with the various operating conditions. Furthermore the delay associated with sound propagation is shown to restrict the use of microphone feedback. The state of the art control methodologies, IL synthesis and adaptive feedback control, are evaluated and shown to have limited success for solving this problem. A robust frequency domain controller design methodology is developed for the problem of sound radiated from turbulent flow driven plates. The control design methodology uses frequency domain sequential loop shaping techniques. System uncertainty, sound pressure level reduction performance, and actuator constraints are included in the design process. Using this design method, phase lag was added using non-minimum phase zeros such that the beneficial plant dynamics could be used. This general control approach has application to lightly damped vibration and sound radiation problems where there are high bandwidth control objectives requiring a low controller DC gain and controller order.

  20. The initial instability and finite-amplitude stability of alternate bars in straight channels

    USGS Publications Warehouse

    Nelson, J.M.

    1990-01-01

    The initial instability and fully developed stability of alternate bars in straight channels are investigated using linearized and nonlinear analyses. The fundamental instability leading to these features is identified through a linear stability analysis of the equations governing the flow and sediment transport fields. This instability is explained in terms of topographically induced steering of the flow and the associated pattern of erosion and deposition on the bed. While the linear theory is useful for examining the instability mechanism, this approach is shown to yield relatively little information about well-developed alternate bars and, specifically, the linear analysis is shown to yield poor predictions of the fully developed bar wavelength. A fully nonlinear approach is presented that permits computation of the evolution of these bed features from an initial perturbation to their fully developed morphology. This analysis indicates that there is typically substantial elongation of the bar wavelength during the evolution process, a result that is consistent with observations of bar development in flumes and natural channels. The nonlinear approach demonstrates that the eventual stability of these features is a result of the interplay between topographic steering effects, secondary flow production as a result of streamline curvature, and gravitationally induced modifications of sediment fluxes over a sloping bed. ?? 1990.

  1. Cetuximab-activated natural killer (NK) and dendritic cells (DC) collaborate to trigger tumor antigen-specific T cell immunity in head and neck cancer patients

    PubMed Central

    Srivastava, Raghvendra M.; Lee, Steve C.; Filho, Pedro A. Andrade; Lord, Christopher A.; Jie, Hyun-bae; Davidson, H. Carter; López-Albaitero, Andrés; Gibson, Sandra P.; Gooding, William E.; Ferrone, Soldano; Ferris, Robert L.

    2013-01-01

    Purpose Tumor antigen (TA)-specific monoclonal antibodies (mAb) block oncogenic signaling and induce Fcγ receptor (FcγR)-mediated cytotoxicity. However, the role of CD8+ cytotoxic T lymphocyte (CTL) and FcγR in initiating innate and adaptive immune responses in mAb-treated human cancer patients is still emerging. Experimental Design FcγRIIIa codon 158 polymorphism was correlated with survival in 107 cetuximab-treated head and neck cancer (HNC) patients. Flow cytometry was performed to quantify EGFR-specific T cells in cetuximab-treated HNC patients. The effect of cetuximab on NK cell, dendritic cell (DC), and T cell activation was measured using IFN-γ release assays and flow cytometry. Results FcγR IIIa polymorphism did not predict clinical outcome in cetuximab-treated HNC patients, however elevated circulating EGFR -specific CD8+ 853-861 T cells were found in cetuximab-treated HNC patients (p<0.005). Cetuximab promoted EGFR-specific cellular immunity through the interaction of EGFR+ tumor cells and FcγRIIIa on NK cells, but not on the polymorphism per se. Cetuximab-activated NK cells induced IFN-γ dependent expression of DC maturation markers, antigen presentation machinery (APM) components such as TAP-1/2, and Th1 chemokines through NKG2D/MICA binding. Cetuximab initiated adaptive immune responses via NK-cell induced DC maturation, which enhanced cross-presentation to CTL specific for EGFR as well as another TA, MAGE-3. Conclusion Cetuximab-activated NK cells promote DC maturation and CD8+ T cell priming, leading to TA spreading and Th1 cytokine release through ‘NK-DC cross-talk.’ FcγRIIIa polymorphism did not predict clinical response to cetuximab, but was necessary for NK-DC interaction and mAb induced cross-presentation. EGFR-specific T cells in cetuximab treated HNC patients may contribute to clinical response. PMID:23444227

  2. Computational and experimental analysis of TMS-induced electric field vectors critical to neuronal activation

    NASA Astrophysics Data System (ADS)

    Krieg, Todd D.; Salinas, Felipe S.; Narayana, Shalini; Fox, Peter T.; Mogul, David J.

    2015-08-01

    Objective. Transcranial magnetic stimulation (TMS) represents a powerful technique to noninvasively modulate cortical neurophysiology in the brain. However, the relationship between the magnetic fields created by TMS coils and neuronal activation in the cortex is still not well-understood, making predictable cortical activation by TMS difficult to achieve. Our goal in this study was to investigate the relationship between induced electric fields and cortical activation measured by blood flow response. Particularly, we sought to discover the E-field characteristics that lead to cortical activation. Approach. Subject-specific finite element models (FEMs) of the head and brain were constructed for each of six subjects using magnetic resonance image scans. Positron emission tomography (PET) measured each subject’s cortical response to image-guided robotically-positioned TMS to the primary motor cortex. FEM models that employed the given coil position, orientation, and stimulus intensity in experimental applications of TMS were used to calculate the electric field (E-field) vectors within a region of interest for each subject. TMS-induced E-fields were analyzed to better understand what vector components led to regional cerebral blood flow (CBF) responses recorded by PET. Main results. This study found that decomposing the E-field into orthogonal vector components based on the cortical surface geometry (and hence, cortical neuron directions) led to significant differences between the regions of cortex that were active and nonactive. Specifically, active regions had significantly higher E-field components in the normal inward direction (i.e., parallel to pyramidal neurons in the dendrite-to-axon orientation) and in the tangential direction (i.e., parallel to interneurons) at high gradient. In contrast, nonactive regions had higher E-field vectors in the outward normal direction suggesting inhibitory responses. Significance. These results provide critical new understanding of the factors by which TMS induces cortical activation necessary for predictive and repeatable use of this noninvasive stimulation modality.

  3. A Comprehensive High Performance Predictive Tool for Fusion Liquid Metal Hydromagnetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Peter; Chhabra, Rupanshi; Munipalli, Ramakanth

    In Phase I SBIR project, HyPerComp and Texcel initiated the development of two induction-based MHD codes as a predictive tool for fusion hydro-magnetics. The newly-developed codes overcome the deficiency of other MHD codes based on the quasi static approximation by defining a more general mathematical model that utilizes the induced magnetic field rather than the electric potential as the main electromagnetic variable. The UCLA code is a finite-difference staggered-mesh code that serves as a supplementary tool to the massively-parallel finite-volume code developed by HyPerComp. As there is no suitable experimental data under blanket-relevant conditions for code validation, code-to-code comparisons andmore » comparisons against analytical solutions were successfully performed for three selected test cases: (1) lid-driven MHD flow, (2) flow in a rectangular duct in a transverse magnetic field, and (3) unsteady finite magnetic Reynolds number flow in a rectangular enclosure. The performed tests suggest that the developed codes are accurate and robust. Further work will focus on enhancing the code capabilities towards higher flow parameters and faster computations. At the conclusion of the current Phase-II Project we have completed the preliminary validation efforts in performing unsteady mixed-convection MHD flows (against limited data that is currently available in literature), and demonstrated flow behavior in large 3D channels including important geometrical features. Code enhancements such as periodic boundary conditions, unmatched mesh structures are also ready. As proposed, we have built upon these strengths and explored a much increased range of Grashof numbers and Hartmann numbers under various flow conditions, ranging from flows in a rectangular duct to prototypic blanket modules and liquid metal PFC. Parametric studies, numerical and physical model improvements to expand the scope of simulations, code demonstration, and continued validation activities have also been completed.« less

  4. Low speed streak formation in a separating turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Santos, Leonardo; Lang, Amy; Wahidi, Redha; Bonacci, Andrew

    2017-11-01

    Separation control mechanisms present on the skin of the shortfin mako shark may permit higher swimming speeds. The morphology of the scales varies over the entire body, with maximum scale flexibility found on the flank region with an adverse pressure gradient(APG). It is hypothesized that reversing flow close the skin bristles the scales inhibiting further flow reversal and controlling flow separation. Experiments are conducted in water tunnel facility and the flow field of a separating turbulent boundary layer(TBL) is measured using DPIV and Insight V3V. Flow separation is induced by a rotating cylinder which generates a controlled APG over a flat plate (Re = 510000 and 620000). Specifically, the low speed streak(LSS) formation is documented and matches predicted sizing based on viscous length scale calculations. It is surmised that shark scale width corresponds to this LSS sizing for real swimming TBL conditions. However, flow separation control has been demonstrated over real skin specimens under much lower speed conditions which indicates the mechanism is fairly Re independent if multiple scales are bristled as the width of the LSS increases. The formation of reversing flow within the streaks is studied specifically to better understand the process by which this flow initiates scale bristling on shortfin mako skin as a passive, flow actuated separation control mechanism. The authors would like to greatefully acknowledge the Army Research Office for funding this project.

  5. An analytical model of capped turbulent oscillatory bottom boundary layers

    NASA Astrophysics Data System (ADS)

    Shimizu, Kenji

    2010-03-01

    An analytical model of capped turbulent oscillatory bottom boundary layers (BBLs) is proposed using eddy viscosity of a quadratic form. The common definition of friction velocity based on maximum bottom shear stress is found unsatisfactory for BBLs under rotating flows, and a possible extension based on turbulent kinetic energy balance is proposed. The model solutions show that the flow may slip at the top of the boundary layer due to capping by the water surface or stratification, reducing the bottom shear stress, and that the Earth's rotation induces current and bottom shear stress components perpendicular to the interior flow with a phase lag (or lead). Comparisons with field and numerical experiments indicate that the model predicts the essential characteristics of the velocity profiles, although the agreement is rather qualitative due to assumptions of quadratic eddy viscosity with time-independent friction velocity and a well-mixed boundary layer. On the other hand, the predicted linear friction coefficients, phase lead, and veering angle at the bottom agreed with available data with an error of 3%-10%, 5°-10°, and 5°-10°, respectively. As an application of the model, the friction coefficients are used to calculate e-folding decay distances of progressive internal waves with a semidiurnal frequency.

  6. Performance of a reduced-order FSI model for flow-induced vocal fold vibration

    NASA Astrophysics Data System (ADS)

    Luo, Haoxiang; Chang, Siyuan; Chen, Ye; Rousseau, Bernard; PhonoSim Team

    2017-11-01

    Vocal fold vibration during speech production involves a three-dimensional unsteady glottal jet flow and three-dimensional nonlinear tissue mechanics. A full 3D fluid-structure interaction (FSI) model is computationally expensive even though it provides most accurate information about the system. On the other hand, an efficient reduced-order FSI model is useful for fast simulation and analysis of the vocal fold dynamics, which can be applied in procedures such as optimization and parameter estimation. In this work, we study performance of a reduced-order model as compared with the corresponding full 3D model in terms of its accuracy in predicting the vibration frequency and deformation mode. In the reduced-order model, we use a 1D flow model coupled with a 3D tissue model that is the same as in the full 3D model. Two different hyperelastic tissue behaviors are assumed. In addition, the vocal fold thickness and subglottal pressure are varied for systematic comparison. The result shows that the reduced-order model provides consistent predictions as the full 3D model across different tissue material assumptions and subglottal pressures. However, the vocal fold thickness has most effect on the model accuracy, especially when the vocal fold is thin.

  7. Numerical Studies on a Rotor with Distributed Suction for Noise Reduction

    NASA Astrophysics Data System (ADS)

    Lutz, Thorsten; Arnold, Benjamin; Wolf, Alexander; Krämer, Ewald

    2014-06-01

    Minimizing the flow-induced noise is an important issue in the design of modern onshore wind turbines. There is a number of proven passive means to reduce the aeroacoustic noise, such as the implementation of serrations, porous trailing edges or the aeroacoustic airfoil design. The noise emission can be further reduced by active flow control techniques. In the present study the impact of distributed boundary layer suction on the noise emission of an airfoil and a complete rotor is investigated. Aerodynamic and aeroacoustic wind tunnel tests were performed for the NACA 64-418 airfoil and supplemented by numerical calculations. The aeroacoustic analyses have been conducted by means of the institute's Rnoise prediction scheme. The 2D studies have shown that noise reductions of 5 dB can be achieved by suction at moderate mass flow rates. To study the impact of three-dimensional effects numerical investigations have been conducted on the example of the generic NREL 5MW rotor with suction applied in the outer part of the blade. The predictions for the complete rotor provided smaller benefits compared to those for the isolated airfoil, mainly because the examined suction configurations were not optimized with respect to the extent of the suction patch and suction distribution.

  8. Investigation of combustion characteristics in a scramjet combustor using a modified flamelet model

    NASA Astrophysics Data System (ADS)

    Zhao, Guoyan; Sun, Mingbo; Wang, Hongbo; Ouyang, Hao

    2018-07-01

    In this study, the characteristics of supersonic combustion inside an ethylene-fueled scramjet combustor equipped with multi-cavities were investigated with different injection schemes. Experimental results showed that the flames concentrated in the cavity and separated boundary layer downstream of the cavity, and they occupied the flow channel further enhancing the bulk flow compression. The flame structure in distributed injection scheme differed from that in centralized injection scheme. In numerical simulations, a modified flamelet model was introduced to consider that the pressure distribution is far from homogenous inside the scramjet combustor. Compared with original flamelet model, numerical predictions based on the modified model showed better agreement with the experimental results, validating the reliability of the calculations. Based on the modified model, the simulations with different injection schemes were analysed. The predicted flame agreed reasonably with the experimental observations in structure. The CO masses were concentrated in cavity and subsonic region adjacent to the cavity shear layer leading to intense heat release. Compared with centralized scheme, the higher jet mixing efficiency in distributed scheme induced an intense combustion in posterior upper cavity and downstream of the cavity. From streamline and isolation surfaces, the combustion at trail of lower cavity was depressed since the bulk flow downstream of the cavity is pushed down.

  9. ρ-VOF: An interface sharpening method for gas-liquid flow simulation

    NASA Astrophysics Data System (ADS)

    Wang, Jiantao; Liu, Gang; Jiang, Xiong; Mou, Bin

    2018-05-01

    The study on simulation of compressible gas-liquid flow remains open. Popular methods are either confined to incompressible flow regime, or inevitably induce smear of the free interface. A new finite volume method for compressible two-phase flow simulation is contributed for this subject. First, the “heterogeneous equilibrium” assumption is introduced to the control volume, by hiring free interface reconstruction technology, the distribution of each component in the control volume is achieved. Next, AUSM+-up (advection upstream splitting method) scheme is employed to calculate the convective fluxes and pressure fluxes, with the contact discontinuity characteristic considered, followed by the update of the whole flow field. The new method features on density-based pattern and interface reconstruction technology from VOF (volume of fluid), thus we name it “ρ-VOF method”. Inherited from AUSM families and VOF, ρ-VOF behaves as an all-speed method, capable of simulating shock in gas-liquid flow, and preserving the sharpness of the free interface. Gas-liquid shock tube is simulated to evaluate the method, from which good agreement is obtained between the predicted results and those of the cited literature, meanwhile, sharper free interface is identified. Finally, the capability and validity of ρ-VOF method can be concluded in compressible gas-liquid flow simulation.

  10. Comparison of gamma densitometry and electrical capacitance measurements applied to hold-up prediction of oil–water flow patterns in horizontal and slightly inclined pipes

    NASA Astrophysics Data System (ADS)

    Perera, Kshanthi; Kumara, W. A. S.; Hansen, Fredrik; Mylvaganam, Saba; Time, Rune W.

    2018-06-01

    Measurement techniques are vital for the control and operation of multiphase oil–water flow in pipes. The development of such techniques depends on laboratory experiments involving flow visualization, liquid fraction (‘hold-up’), phase slip and pressure drop measurements. They provide valuable information by revealing the physics, spatial and temporal structures of complex multiphase flow phenomena. This paper presents the hold-up measurement of oil–water flow in pipelines using gamma densitometry and electrical capacitance tomography (ECT) sensors. The experiments were carried out with different pipe inclinations from  ‑5° to  +6° for selected mixture velocities (0.2–1.5 m s‑1), and at selected watercuts (0.05–0.95). Mineral oil (Exxsol D60) and water were used as test fluids. Nine flow patterns were identified including a new pattern called stratified wavy and mixed interface flow. As a third direct method, visual observations and high-speed videos were used for the flow regime and interface identification. ECT and gamma densitometry hold-up measurements show similar trends for changes in pipeline inclinations. Changing the pipe inclination affected the flow mostly at lower mixture velocities and caused a change of flow patterns, allowing the highest change of hold-up. ECT hold-up measurements overpredict the gamma densitometry measurements at higher input water cuts and underpredict at intermediate water cuts. Gamma hold-up results showed good agreement with the literature results, having a maximum deviation of 6%, while it was as high as 22% for ECT in comparison to gamma densitometry. Uncertainty analysis of the measurement techniques was carried out with single-phase oil flow. This shows that the measurement error associated with gamma densitometry is approximately 3.2%, which includes 1.3% statistical error and 2.9% error identified as electromagnetically induced noise in electronics. Thus, gamma densitometry can predict hold-up with a higher accuracy in comparison to ECT when applied to oil–water systems at minimized electromagnetic noise.

  11. Nucleation of protein crystals under the influence of solution shear flow.

    PubMed

    Penkova, Anita; Pan, Weichun; Hodjaoglu, Feyzim; Vekilov, Peter G

    2006-09-01

    Several recent theories and simulations have predicted that shear flow could enhance, or, conversely, suppress the nucleation of crystals from solution. Such modulations would offer a pathway for nucleation control and provide a novel explanation for numerous mysteries in nucleation research. For experimental tests of the effects of shear flow on protein crystal nucleation, we found that if a protein solution droplet of approximately 5 microL (2-3 mm diameter at base) is held on a hydrophobic substrate in an enclosed environment and in a quasi-uniform constant electric field of 2 to 6 kV cm(-1), a rotational flow with a maximum rate at the droplet top of approximately 10 microm s(-1) is induced. The shear rate varies from 10(-3) to 10(-1) s(-1). The likely mechanism of the rotational flow involves adsorption of the protein and amphiphylic buffer molecules on the air-water interface and their redistribution in the electric field, leading to nonuniform surface tension of the droplet and surface tension-driven flow. Observations of the number of nucleated crystals in 24- and 72-h experiments with the proteins ferritin, apoferritin, and lysozyme revealed that the crystals are typically nucleated at a certain radius of the droplet, that is, at a preferred shear rate. Variations of the rotational flow velocity resulted in suppression or enhancement of the total number of nucleated crystals of ferritin and apoferritin, while all solution flow rates were found to enhance lysozyme crystal nucleation. These observations show that shear flow may strongly affect nucleation, and that for some systems, an optimal flow velocity, leading to fastest nucleation, exists. Comparison with the predictions of theories and simulations suggest that the formation of ordered nuclei in a "normal" protein solution cannot be affected by such low shear rates. We conclude that the flow acts by helping or suppressing the formation of ordered nuclei within mesoscopic metastable dense liquid clusters. Such clusters were recently shown to exist in protein solutions and to constitute the first step in the nucleation mechanism of many protein and nonproteinsystems.

  12. Full-field initialized decadal predictions with the MPI earth system model: an initial shock in the North Atlantic

    NASA Astrophysics Data System (ADS)

    Kröger, Jürgen; Pohlmann, Holger; Sienz, Frank; Marotzke, Jochem; Baehr, Johanna; Köhl, Armin; Modali, Kameswarrao; Polkova, Iuliia; Stammer, Detlef; Vamborg, Freja S. E.; Müller, Wolfgang A.

    2017-12-01

    Our decadal climate prediction system, which is based on the Max-Planck-Institute Earth System Model, is initialized from a coupled assimilation run that utilizes nudging to selected state parameters from reanalyses. We apply full-field nudging in the atmosphere and either full-field or anomaly nudging in the ocean. Full fields from two different ocean reanalyses are considered. This comparison of initialization strategies focuses on the North Atlantic Subpolar Gyre (SPG) region, where the transition from anomaly to full-field nudging reveals large differences in prediction skill for sea surface temperature and ocean heat content (OHC). We show that nudging of temperature and salinity in the ocean modifies OHC and also induces changes in mass and heat transports associated with the ocean flow. In the SPG region, the assimilated OHC signal resembles well OHC from observations, regardless of using full fields or anomalies. The resulting ocean transport, on the other hand, reveals considerable differences between full-field and anomaly nudging. In all assimilation runs, ocean heat transport together with net heat exchange at the surface does not correspond to OHC tendencies, the SPG heat budget is not closed. Discrepancies in the budget in the cases of full-field nudging exceed those in the case of anomaly nudging by a factor of 2-3. The nudging-induced changes in ocean transport continue to be present in the free running hindcasts for up to 5 years, a clear expression of memory in our coupled system. In hindcast mode, on annual to inter-annual scales, ocean heat transport is the dominant driver of SPG OHC. Thus, we ascribe a significant reduction in OHC prediction skill when using full-field instead of anomaly initialization to an initialization shock resulting from the poor initialization of the ocean flow.

  13. An analysis of induced pressure fields in electroosmotic flows through microchannels.

    PubMed

    Zhang, Yonghao; Gu, Xiao-Jun; Barber, Robert W; Emerson, David R

    2004-07-15

    Induced pressure gradients are found to cause band-broadening effects which are important to the performance of microfluidic devices, such as capillary electrophoresis and capillary chromatography. An improved understanding of the underlying mechanisms causing an induced pressure gradient in electroosmotic flows is presented. The analysis shows that the induced pressure distribution is the key to understanding the experimentally observed phenomena of leakage flows. A novel way of determining the static pressures at the inlet and outlet of microchannels is also presented that takes account of the pressure losses due to flow contraction and expansion. These commonly neglected pressure losses at the channel entrance and outlet are shown to be important in accurately describing the flow. The important parameters that define the effect of induced pressure on the flows are discussed, which may facilitate the design of improved microfluidic devices. The present model clearly identifies the mechanism behind the experimentally observed leakage flows, which is further confirmed by numerical simulations. Not only can the leakage flow occur from the electric-field-free side channel to the main channel, but also the fluid in the main channel can be attracted into the side channel by the induced pressure gradient. Copyright 2004 Elsevier Inc.

  14. Influence of exercise induced hyperlactatemia on retinal blood flow during normo- and hyperglycemia.

    PubMed

    Garhöfer, Gerhard; Kopf, Andreas; Polska, Elzbieta; Malec, Magdalena; Dorner, Guido T; Wolzt, Michael; Schmetterer, Leopold

    2004-05-01

    Short term hyperglycemia has previously been shown to induce a blood flow increase in the retina. The mechanism behind this effect is poorly understood. We set out to investigate whether exercise-induced hyperlactatemia may alter the response of retinal blood flow to hyperglycemia. We performed a randomized, controlled two-way cross over study comprising 12 healthy subjects, performed a 6-minutes period of dynamic exercise during an euglcaemic or hyperglycaemic insulin clamp. Retinal blood flow was assessed by combined vessel size measurement with the Zeiss retinal vessel analyzer and measurement of red blood cell velocities using bi-directional laser Doppler velocimetry. Retinal and systemic hemodynamic parameters were measured before, immediately after and 10 and 20 minutes after isometric exercise. On the euglycemic study day retinal blood flow increased after dynamic exercise. The maximum increase in retinal blood flow was observed 10 minutes after the end of exercise when lactate plasma concentration peaked. Hyperglycemia increased retinal blood flow under basal conditions, but had no incremental effect during exercise induced hyperlactatemia. Our results indicate that both lactate and glucose induce an increase in retinal blood flow in healthy humans. This may indicate a common pathway between glucose and lactate induced blood flow changes in the human retina.

  15. Confined Turbulent Swirling Recirculating Flow Predictions. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Abujelala, M. T.

    1984-01-01

    Turbulent swirling flow, the STARPIC computer code, turbulence modeling of turbulent flows, the k-xi turbulence model and extensions, turbulence parameters deduction from swirling confined flow measurements, extension of the k-xi to confined swirling recirculating flows, and general predictions for confined turbulent swirling flow are discussed.

  16. Visualizing and quantifying dose distribution in a UV reactor using three-dimensional laser-induced fluorescence.

    PubMed

    Gandhi, Varun N; Roberts, Philip J W; Kim, Jae-Hong

    2012-12-18

    Evaluating the performance of typical water treatment UV reactors is challenging due to the complexity in assessing spatial and temporal variation of UV fluence, resulting from highly unsteady, turbulent nature of flow and variation in UV intensity. In this study, three-dimensional laser-induced fluorescence (3DLIF) was applied to visualize and quantitatively analyze a lab-scale UV reactor consisting of one lamp sleeve placed perpendicular to flow. Mapping the spatial and temporal fluence delivery and MS2 inactivation revealed the highest local fluence in the wake zone due to longer residence time and higher UV exposure, while the lowest local fluence occurred in a region near the walls due to short-circuiting flow and lower UV fluence rate. Comparing the tracer based decomposition between hydrodynamics and IT revealed similar coherent structures showing the dependency of fluence delivery on the reactor flow. The location of tracer injection, varying the height and upstream distance from the lamp center, was found to significantly affect the UV fluence received by the tracer. A Lagrangian-based analysis was also employed to predict the fluence along specific paths of travel, which agreed with the experiments. The 3DLIF technique developed in this study provides new insight on dose delivery that fluctuates both spatially and temporally and is expected to aid design and optimization of UV reactors as well as validate computational fluid dynamics models that are widely used to simulate UV reactor performances.

  17. Reversing cooling flows with AGN jets: shock waves, rarefaction waves and trailing outflows

    NASA Astrophysics Data System (ADS)

    Guo, Fulai; Duan, Xiaodong; Yuan, Ye-Fei

    2018-01-01

    The cooling flow problem is one of the central problems in galaxy clusters, and active galactic nucleus (AGN) feedback is considered to play a key role in offsetting cooling. However, how AGN jets heat and suppress cooling flows remains highly debated. Using an idealized simulation of a cool-core cluster, we study the development of central cooling catastrophe and how a subsequent powerful AGN jet event averts cooling flows, with a focus on complex gasdynamical processes involved. We find that the jet drives a bow shock, which reverses cooling inflows and overheats inner cool-core regions. The shocked gas moves outward in a rarefaction wave, which rarefies the dense core and adiabatically transports a significant fraction of heated energy to outer regions. As the rarefaction wave propagates away, inflows resume in the cluster core, but a trailing outflow is uplifted by the AGN bubble, preventing gas accumulation and catastrophic cooling in central regions. Inflows and trailing outflows constitute meridional circulations in the cluster core. At later times, trailing outflows fall back to the cluster centre, triggering central cooling catastrophe and potentially a new generation of AGN feedback. We thus envisage a picture of cool cluster cores going through cycles of cooling-induced contraction and AGN-induced expansion. This picture naturally predicts an anti-correlation between the gas fraction (or X-ray luminosity) of cool cores and the central gas entropy, which may be tested by X-ray observations.

  18. A mathematical model for predicting the life of polymer electrolyte fuel cell membranes subjected to hydration cycling

    NASA Astrophysics Data System (ADS)

    Burlatsky, S. F.; Gummalla, M.; O'Neill, J.; Atrazhev, V. V.; Varyukhin, A. N.; Dmitriev, D. V.; Erikhman, N. S.

    2012-10-01

    Under typical Polymer Electrolyte Membrane Fuel Cell (PEMFC) fuel cell operating conditions, part of the membrane electrode assembly is subjected to humidity cycling due to variation of inlet gas RH and/or flow rate. Cyclic membrane hydration/dehydration would cause cyclic swelling/shrinking of the unconstrained membrane. In a constrained membrane, it causes cyclic stress resulting in mechanical failure in the area adjacent to the gas inlet. A mathematical modeling framework for prediction of the lifetime of a PEMFC membrane subjected to hydration cycling is developed in this paper. The model predicts membrane lifetime as a function of RH cycling amplitude and membrane mechanical properties. The modeling framework consists of three model components: a fuel cell RH distribution model, a hydration/dehydration induced stress model that predicts stress distribution in the membrane, and a damage accrual model that predicts membrane lifetime. Short descriptions of the model components along with overall framework are presented in the paper. The model was used for lifetime prediction of a GORE-SELECT membrane.

  19. Flow-induced voltage generation in non-ionic liquids over monolayer graphene

    NASA Astrophysics Data System (ADS)

    Ho Lee, Seung; Jung, Yousung; Kim, Soohyun; Han, Chang-Soo

    2013-02-01

    To clarify the origin of the flow-induced voltage generation in graphene, we prepared a new experimental device whose electrodes were aligned perpendicular to the flow with a non-ionic liquid. We found that significant voltage in our device was generated with increasing flow velocity, thereby confirming that voltage was due to an intrinsic interaction between graphene and the flowing liquid. To understand the mechanism of the observed flow-induced voltage generation, we systematically varied several important experimental parameters: flow velocity, electrode alignment, liquid polarity, and liquid viscosity. Based on these measurements, we suggest that polarity of the fluid is a significant factor in determining the extent of the voltage generated, and the major mechanism can be attributed to instantaneous potential differences induced in the graphene due to an interaction with polar liquids and to the momentum transferred from the flowing liquid to the graphene.

  20. Generalized thick strip modelling for vortex-induced vibration of long flexible cylinders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao, Y., E-mail: ybao@sjtu.edu.cn; Department of Aeronautics, Imperial College London, South Kensington Campus, London; Palacios, R., E-mail: r.palacios@imperial.ac.uk

    2016-09-15

    We propose a generalized strip modelling method that is computationally efficient for the VIV prediction of long flexible cylinders in three-dimensional incompressible flow. In order to overcome the shortcomings of conventional strip-theory-based 2D models, the fluid domain is divided into “thick” strips, which are sufficiently thick to locally resolve the small scale turbulence effects and three dimensionality of the flow around the cylinder. An attractive feature of the model is that we independently construct a three-dimensional scale resolving model for individual strips, which have local spanwise scale along the cylinder's axial direction and are only coupled through the structural modelmore » of the cylinder. Therefore, this approach is able to cover the full spectrum for fully resolved 3D modelling to 2D strip theory. The connection between these strips is achieved through the calculation of a tensioned beam equation, which is used to represent the dynamics of the flexible body. In the limit, however, a single “thick” strip would fill the full 3D domain. A parallel Fourier spectral/hp element method is employed to solve the 3D flow dynamics in the strip-domain, and then the VIV response prediction is achieved through the strip–structure interactions. Numerical tests on both laminar and turbulent flows as well as the comparison against the fully resolved DNS are presented to demonstrate the applicability of this approach.« less

  1. Effect of added mass on the interaction of bubbles in a low-Reynolds-number shear flow.

    PubMed

    Lavrenteva, Olga; Prakash, Jai; Nir, Avinoam

    2016-02-01

    Equal size air bubbles that are entrapped by a Taylor vortex of the secondary flow in a Couette device, thereby defying buoyancy, slowly form a stable ordered ring with equal separation distances between all neighbors. We present two models of the process dynamics based on force balance on a bubble in the presence of other bubbles positioned on the same streamline in a simple shear flow. The forces taken into account are the viscous resistance, the added mass force, and the inertia-induced repulsing force between two bubbles in a low-Reynolds-number shear flow obtained in Prakash et al. [J. Prakash et al., Phys. Rev. E 87, 043002 (2013)]. The first model of the process assumes that each bubble interacts solely with its nearest neighbors. The second model takes into account pairwise interactions among all the bubbles in the ring. The performed dynamic simulations were compared to the experimental results reported in Prakash et al. [J. Prakash et al., Phys. Rev. E 87, 043002 (2013)] and to the results of quasistationary models (ignoring the added mass effect) suggested in that paper. It is demonstrated that taking into account the effect of added mass, the models describe the major effect of the bubbles' ordering, provide good estimation of the relaxation time, and also predict nonmonotonic behavior of the separation distance between the bubbles, which exhibit over- and undershooting of equilibrium separations. The latter effects were observed in experiments, but are not predicted by the quasistationary models.

  2. Experiments and numerical simulations of flow field and heat transfer coefficients inside an autoclave model

    NASA Astrophysics Data System (ADS)

    Ghamlouch, T.; Roux, S.; Bailleul, J.-L.; Lefèvre, N.; Sobotka, V.

    2017-10-01

    Today's aerospace industrial first priority is the quality improvement of the composite material parts with the reduction of the manufacturing time in order to increase their quality/cost ratio. A fabrication method that could meet these specifications especially for large parts is the autoclave curing process. In fact the autoclave molding ensures the thermal control of the composite parts during the whole curing cycle. However the geometry of the tools as well as their positioning in the autoclave induce non uniform and complex flows around composite parts. This heterogeneity implies non-uniform heat transfers which can directly impact on part quality. One of the main challenges is therefore to describe the flow field inside an autoclave as well as the convective heat transfer from the heated pressurized gas to the composite part and the mold. For this purpose, and given the technical issues associated with instrumentation and measurements in actual autoclaves, an autoclave model was designed and then manufactured based on similarity laws. This tool allows the measurement of the flow field around representative real industrial molds using the PIV technique and the characterization of the heat transfer thanks to thermal instrumentation. The experimental results are then compared with those derived from numerical simulations using a commercial RANS CFD code. This study aims at developing a semi-empirical approach for the prediction of the heat transfer coefficient around the parts and therefore predicts its thermal history during the process with a view of optimization.

  3. Solidification structures grown under induced flow and continuous casting of steel

    NASA Technical Reports Server (NTRS)

    Tsavaras, A. A.

    1984-01-01

    The use of induced flow as a means to control solidification structures in strand cast steel is investigated. The quality problems in strand cast steel stemming from columnar growth can be partially controlled, by Electro Magnetic Stirring (EMS). Induced flow changes the normal morphology of dendrites. Solids grown under intense stirring conditions show both negative and positive segregation which is considered unacceptable by some steel producers. The inclusion size and population is strongly affected by induced flow (EMS). Laboratory and industrial data show substantial reduction in inclusion size and content, but the overall effect of flow on inclusions is affected by the particular type of flow patterns utilized in each case. Productivity and quality are raised substantially in steel strand casting by utilizing EMS.

  4. Ability of commercially available dairy ration programs to predict duodenal flows of protein and essential amino acids in dairy cows.

    PubMed

    Pacheco, D; Patton, R A; Parys, C; Lapierre, H

    2012-02-01

    The objective of this analysis was to compare the rumen submodel predictions of 4 commonly used dairy ration programs to observed values of duodenal flows of crude protein (CP), protein fractions, and essential AA (EAA). The literature was searched and 40 studies, including 154 diets, were used to compare observed values with those predicted by AminoCow (AC), Agricultural Modeling and Training Systems (AMTS), Cornell-Penn-Miner (CPM), and National Research Council 2001 (NRC) models. The models were evaluated based on their ability to predict the mean, their root mean square prediction error (RMSPE), error bias, and adequacy of regression equations for each protein fraction. The models predicted the mean duodenal CP flow within 5%, with more than 90% of the variation due to random disturbance. The models also predicted within 5% the mean microbial CP flow except CPM, which overestimated it by 27%. Only NRC, however, predicted mean rumen-undegraded protein (RUP) flows within 5%, whereas AC and AMTS underpredicted it by 8 to 9% and CPM by 24%. Regarding duodenal flows of individual AA, across all diets, CPM predicted substantially greater (>10%) mean flows of Arg, His, Ile, Met, and Lys; AMTS predicted greater flow for Arg and Met, whereas AC and NRC estimations were, on average, within 10% of observed values. Overpredictions by the CPM model were mainly related to mean bias, whereas the NRC model had the highest proportion of bias in random disturbance for flows of EAA. Models tended to predict mean flows of EAA more accurately on corn silage and alfalfa diets than on grass-based diets, more accurately on corn grain-based diets than on non-corn-based diets, and finally more accurately in the mid range of diet types. The 4 models were accurate at predicting mean dry matter intake. The AC, AMTS, and NRC models were all sufficiently accurate to be used for balancing EAA in dairy rations under field conditions. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Precipitation forecasts for rainfall runoff predictions. A case study in poorly gauged Ribb and Gumara catchments, upper Blue Nile, Ethiopia

    NASA Astrophysics Data System (ADS)

    Seyoum, Mesgana; van Andel, Schalk Jan; Xuan, Yunqing; Amare, Kibreab

    Flow forecasting in poorly gauged, flood-prone Ribb and Gumara sub-catchments of the Blue Nile was studied with the aim of testing the performance of Quantitative Precipitation Forecasts (QPFs). Four types of QPFs namely MM5 forecasts with a spatial resolution of 2 km; the Maximum, Mean and Minimum members (MaxEPS, MeanEPS and MinEPS where EPS stands for Ensemble Prediction System) of the fixed, low resolution (2.5 by 2.5 degrees) National Oceanic and Atmospheric Administration Global Forecast System (NOAA GFS) ensemble forecasts were used. Both the MM5 and the EPS were not calibrated (bias correction, downscaling (for EPS), etc.). In addition, zero forecasts assuming no rainfall in the coming days, and monthly average forecasts assuming average monthly rainfall in the coming days, were used. These rainfall forecasts were then used to drive the Hydrologic Engineering Center’s-Hydrologic Modeling System, HEC-HMS, hydrologic model for flow predictions. The results show that flow predictions using MaxEPS and MM5 precipitation forecasts over-predicted the peak flow for most of the seven events analyzed, whereas under-predicted peak flow was found using zero- and monthly average rainfall. The comparison of observed and predicted flow hydrographs shows that MM5, MaxEPS and MeanEPS precipitation forecasts were able to capture the rainfall signal that caused peak flows. Flow predictions based on MaxEPS and MeanEPS gave results that were quantitatively close to the observed flow for most events, whereas flow predictions based on MM5 resulted in large overestimations for some events. In follow-up research for this particular case study, calibration of the MM5 model will be performed. The overall analysis shows that freely available atmospheric forecasting products can provide additional information on upcoming rainfall and peak flow events in areas where only base-line forecasts such as no-rainfall or climatology are available.

  6. Flow-induced vibration and fretting-wear damage in a moisture separator reheater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pettigrew, M.J.; Taylor, C.E.; Fisher, N.J.

    1996-12-01

    Tube failures due to excessive flow-induced vibration were experienced in the tube bundles of moisture separator reheaters in a BWR nuclear station. This paper presents the results of a root cause analysis and covers recommendations for continued operation and for replacement tube bundles. The following tasks are discussed: tube failure analysis; flow velocity distribution calculations; flow-induced vibration analysis with particular emphasis on finned-tubes; fretting-wear testing of a tube and tube-support material combination under simulated operating conditions; field measurements of flow-induced vibration; and development of vibration specifications for replacement tube bundles. The effect of transient operating conditions and of other operationalmore » changes such as tube fouling were considered in the analysis. This paper outlines a typical field problem and illustrates the application of flow-induced vibration technology for the solution of a practical problem.« less

  7. Self-sustained oscillations of a sinusoidally-deformed plate

    NASA Astrophysics Data System (ADS)

    Muriel, Diego F.; Cowen, Edwin A.

    2015-11-01

    Motivated by energy harvesting, the oscillatory motion of a deformed elastic material with aspect ratio Length/Width=2, immerse in an incompressible flow is studied experimentally. To induce the wave-like deformation a polycarbonate sheet is placed under longitudinal compression with external forcing provided by equispaced tension lines anchored in a frame. No additional constrains are placed in the material. Based on quantitative image-based edge detection, ADV, and PIV measurements, we document the existence of three natural states of motion. Bellow a critical velocity, a stable state presents a sinusoidal-like deformation with weak small perturbations. Above a critical velocity, instability appears in the form of a traveling wave with predictable dominant frequency accompanied by higher-order harmonics. As the flow velocity increases the instability converges faster to its limit cycle in the phase plane (e.g., vertical velocity and position), until the stable oscillatory mode transitions to chaos showing a broad energy spectrum and unstable limit cycle. The underlying objective is to induce the onset of the instability at lower critical velocities for higher bending rigidities, promoting possible energy extraction and increasing the range at which stable oscillations appear.

  8. Hydrodynamic cavitation: characterization of a novel design with energy considerations for the inactivation of Saccharomyces cerevisiae in apple juice.

    PubMed

    Milly, P J; Toledo, R T; Kerr, W L; Armstead, D

    2008-08-01

    A Shockwave Power Reactor consisting of an annulus with a rotating pock-marked inner cylinder was used to induce hydrodynamic cavitation in calcium-fortified apple juice flowing in the annular space. Lethality on Saccharomyces cerevisiae was assessed at processing temperatures of 65 and 76.7 degrees C. Details of the novel equipment design were presented and energy consumption was compared to conventional and pulsed electric fields processing technologies. The mean log cycle reduction of S. cerevisiae was 6.27 CFU/mL and all treatments resulted in nonrecoverable viable cells. Induced lethality from hydrodynamic cavitation on S. cerevisiae exceeded the predicted values based on experimentally determined thermal resistance. Rotation of 3000 and 3600 rpm at flow rates greater than 1.0 L/min raised product temperature from 20 to 65.6 or 76.7 degrees C, respectively, and energy input was less than 220 kJ/kg. Conversion efficiency from electrical to thermal was 55% to 84%. Hydrodynamic cavitation enhanced lethality of spoilage microorganisms in minimally processed juices and reduced energy usage.

  9. Momentum considerations on the New MEXICO experiment

    NASA Astrophysics Data System (ADS)

    Parra, E. A.; Boorsma, K.; Schepers, J. G.; Snel, H.

    2016-09-01

    The present paper regards axial and angular momentum considerations combining detailed loads from pressure sensors and the flow field mapped with particle image velocimetry (PIV) techniques. For this end, the study implements important results leaning on experimental data from wind tunnel measurements of the New MEXICO project. The measurements, taken on a fully instrumented rotor, were carried out in the German Dutch Wind tunnel Organisation (DNW) testing the MEXICO rotor in the open section. The work revisits the so-called momentum theory, showing that the integral thrust and torque measured on the rotor correspond with an extent of 0.7 and 2.4% respectively to the momentum balance of the global flow field using the general momentum equations. Likewise, the sectional forces combined with the local induced velocities are found to plausibly obey the annular streamtube theory, albeit some limitations in the axial momentum become more apparent at high inductions after a=0.3. Finally, azimuth induced velocities are measured and compared to predictions from models of Glauert and Burton et al., showing close-matching forecasts for blade spans above 25%.

  10. Magnetic Control of Solutal Buoyancy Driven Convection

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Leslie, F. W.

    2003-01-01

    Volumetric forces resulting from local density variations and gravitational acceleration cause buoyancy induced convective motion in melts and solutions. Solutal buoyancy is a result of concentration differences in an otherwise isothermal fluid. If the fluid also exhibits variations in magnetic susceptibility with concentration then convection control by external magnetic fields can be hypothesized. Magnetic control of thermal buoyancy induced convection in ferrofluids (dispersions of ferromagnetic particles in a carrier fluid) and paramagnetic fluids have been demonstrated. Here we show the nature of magnetic control of solutal buoyancy driven convection of a paramagnetic fluid, an aqueous solution of Manganese Chloride hydrate. We predict the critical magnetic field required for balancing gravitational solutal buoyancy driven convection and validate it through a simple experiment. We demonstrate that gravity driven flow can be completely reversed by a magnetic field but the exact cancellation of the flow is not possible. This is because the phenomenon is unstable. The technique can be applied to crystal growth processes in order to reduce convection and to heat exchanger devices for enhancing convection. The method can also be applied to impose a desired g-level in reduced gravity applications.

  11. Validation of theoretical models of intrinsic torque in DIII-D

    NASA Astrophysics Data System (ADS)

    Grierson, B. A.; Wang, W. X.; Battaglia, D. J.; Chrystal, C.; Solomon, W. M.; Degrassie, J. S.; Staebler, G. M.; Boedo, J. A.

    2016-10-01

    Plasma rotation experiments in DIII-D are validating models of main-ion intrinsic rotation by testing Reynolds stress induced toroidal flow in the plasma core and intrinsic rotation induced by ion orbit losses in the plasma edge. In the core of dominantly electron heated plasmas with Te=Ti, the main-ion intrinsic toroidal rotation undergoes a reversal that correlates with the critical gradient for ITG turbulence. Residual stress arising from zonal-flow ExB shear and turbulence intensity gradient produce residual stress and counter-current intrinsic torque, which is balanced by momentum diffusion, creating the hollow profile. Quantitative agreement is obtained for the first time between the measured main-ion toroidal rotation and the rotation profile predicted by nonlinear GTS gyrokinetic simulations. At the plasma boundary, new main-ion CER measurements show a co-current rotation layer and this is tested against ion orbit loss models as the source of bulk plasma rotation. Work supported by the US Department of Energy under DE-AC02-09CH11466 and DE-FC02-04ER54698.

  12. Navier-Stokes analysis and experimental data comparison of compressible flow within ducts

    NASA Technical Reports Server (NTRS)

    Harloff, G. J.; Reichert, B. A.; Sirbaugh, J. R.; Wellborn, S. R.

    1992-01-01

    Many aircraft employ ducts with centerline curvature or changing cross-sectional shape to join the engine with inlet and exhaust components. S-ducts convey air to the engine compressor from the intake and often decelerate the flow to achieve an acceptable Mach number at the engine compressor by increasing the cross-sectional area downstream. Circular-to-rectangular transition ducts are used on aircraft with rectangular exhaust nozzles to connect the engine and nozzle. To achieve maximum engine performance, the ducts should minimize flow total pressure loss and total pressure distortion at the duct exit. Changes in the curvature of the duct centerline or the duct cross-sectional shape give rise to streamline curvature which causes cross stream pressure gradients. Secondary flows can be caused by deflection of the transverse vorticity component of the boundary layer. This vortex tilting results in counter-rotating vortices. Additionally, the adverse streamwise pressure gradient caused by increasing cross-sectional area can lead to flow separation. Vortex pairs have been observed in the exit planes of both duct types. These vortices are due to secondary flows induced by pressure gradients resulting from streamline curvature. Regions of low total pressure are produced when the vortices convect boundary layer fluid into the main flow. The purpose of the present study is to predict the measured flow field in a diffusing S-duct and a circular-to-rectangular transition duct with a full Navier-Stokes computer program, PARC3D, and to compare the numerical predictions with new detailed experimental measurements. The work was undertaken to extend previous studies and to provide additional CFD validation data needed to help model flows with strong secondary flow and boundary layer separation. The S-duct computation extends the study of Smith et al, and Harloff et al, which concluded that the computation might be improved by using a finer grid and more advanced turbulence models. The present study compares results for both the Baldwin-Lomas and k-epsilon turbulence models and is conducted with a refined grid. For the transition duct, two inlet conditions were considered, the first with straight flow and the second with swirling flow. The first case permits examination of the effects of the geometric transition on the flow field, while the second case includes the rotational flow effect characteristic of a gas turbine engine.

  13. Assessment and prediction of debris-flow hazards

    USGS Publications Warehouse

    Wieczorek, Gerald F.; ,

    1993-01-01

    Study of debris-flow geomorphology and initiation mechanism has led to better understanding of debris-flow processes. This paper reviews how this understanding is used in current techniques for assessment and prediction of debris-flow hazards.

  14. Rise of Buoyant Emissions from Low-Level Sources in the Presence of Upstream and Downstream Obstacles

    NASA Astrophysics Data System (ADS)

    Pournazeri, Sam; Princevac, Marko; Venkatram, Akula

    2012-08-01

    Field and laboratory studies have been conducted to investigate the effect of surrounding buildings on the plume rise from low-level buoyant sources, such as distributed power generators. The field experiments were conducted in Palm Springs, California, USA in November 2010 and plume rise from a 9.3 m stack was measured. In addition to the field study, a laboratory study was conducted in a water channel to investigate the effects of surrounding buildings on plume rise under relatively high wind-speed conditions. Different building geometries and source conditions were tested. The experiments revealed that plume rise from low-level buoyant sources is highly affected by the complex flows induced by buildings stationed upstream and downstream of the source. The laboratory results were compared with predictions from a newly developed numerical plume-rise model. Using the flow measurements associated with each building configuration, the numerical model accurately predicted plume rise from low-level buoyant sources that are influenced by buildings. This numerical plume rise model can be used as a part of a computational fluid dynamics model.

  15. Friction law and hysteresis in granular materials

    PubMed Central

    Wyart, M.

    2017-01-01

    The macroscopic friction of particulate materials often weakens as the flow rate is increased, leading to potentially disastrous intermittent phenomena including earthquakes and landslides. We theoretically and numerically study this phenomenon in simple granular materials. We show that velocity weakening, corresponding to a nonmonotonic behavior in the friction law, μ(I), is present even if the dynamic and static microscopic friction coefficients are identical, but disappears for softer particles. We argue that this instability is induced by endogenous acoustic noise, which tends to make contacts slide, leading to faster flow and increased noise. We show that soft spots, or excitable regions in the materials, correspond to rolling contacts that are about to slide, whose density is described by a nontrivial exponent θs. We build a microscopic theory for the nonmonotonicity of μ(I), which also predicts the scaling behavior of acoustic noise, the fraction of sliding contacts χ, and the sliding velocity, in terms of θs. Surprisingly, these quantities have no limit when particles become infinitely hard, as confirmed numerically. Our analysis rationalizes previously unexplained observations and makes experimentally testable predictions. PMID:28811373

  16. Friction law and hysteresis in granular materials

    NASA Astrophysics Data System (ADS)

    DeGiuli, E.; Wyart, M.

    2017-08-01

    The macroscopic friction of particulate materials often weakens as the flow rate is increased, leading to potentially disastrous intermittent phenomena including earthquakes and landslides. We theoretically and numerically study this phenomenon in simple granular materials. We show that velocity weakening, corresponding to a nonmonotonic behavior in the friction law, μ(I), is present even if the dynamic and static microscopic friction coefficients are identical, but disappears for softer particles. We argue that this instability is induced by endogenous acoustic noise, which tends to make contacts slide, leading to faster flow and increased noise. We show that soft spots, or excitable regions in the materials, correspond to rolling contacts that are about to slide, whose density is described by a nontrivial exponent θs. We build a microscopic theory for the nonmonotonicity of μ(I), which also predicts the scaling behavior of acoustic noise, the fraction of sliding contacts χ, and the sliding velocity, in terms of θs. Surprisingly, these quantities have no limit when particles become infinitely hard, as confirmed numerically. Our analysis rationalizes previously unexplained observations and makes experimentally testable predictions.

  17. Validation of finite element model of transcranial electrical stimulation using scalp potentials: implications for clinical dose

    NASA Astrophysics Data System (ADS)

    Datta, Abhishek; Zhou, Xiang; Su, Yuzhou; Parra, Lucas C.; Bikson, Marom

    2013-06-01

    Objective. During transcranial electrical stimulation, current passage across the scalp generates voltage across the scalp surface. The goal was to characterize these scalp voltages for the purpose of validating subject-specific finite element method (FEM) models of current flow. Approach. Using a recording electrode array, we mapped skin voltages resulting from low-intensity transcranial electrical stimulation. These voltage recordings were used to compare the predictions obtained from the high-resolution model based on the subject undergoing transcranial stimulation. Main results. Each of the four stimulation electrode configurations tested resulted in a distinct distribution of scalp voltages; these spatial maps were linear with applied current amplitude (0.1 to 1 mA) over low frequencies (1 to 10 Hz). The FEM model accurately predicted the distinct voltage distributions and correlated the induced scalp voltages with current flow through cortex. Significance. Our results provide the first direct model validation for these subject-specific modeling approaches. In addition, the monitoring of scalp voltages may be used to verify electrode placement to increase transcranial electrical stimulation safety and reproducibility.

  18. An experimental-computational analysis of MHV cavitation: effects of leaflet squeezing and rebound.

    PubMed

    Makhijani, V B; Yang, H Q; Singhal, A K; Hwang, N H

    1994-04-01

    A combined experimental-computational study was performed to investigate the flow mechanics which could cause cavitation during the squeezing and rebounding phases of valve closure in the 29 mm mitral bileaflet Edwards-Duromedics (ED) mechanical heart valve (MHV). Leaflet closing motion was measured in vitro, and input into a computational fluid mechanics software package, CFD-ACE, to compute flow velocities and pressures in the small gap space between the occluder tip and valve housing. The possibility of cavitation inception was predicted when fluid pressures dropped below the saturated vapor pressure for blood plasma. The computational analysis indicated that cavitation is more likely to be induced during valve rebound rather than the squeezing phase of valve closure in the 29 mm ED-MHV. Also, there is a higher probability of cavitation at lower values of the gap width at the point of impact between the leaflet tip and housing. These predictions of cavitation inception are not likely to be significantly influenced by the water-hammer pressure gradient that develops during valve closure.

  19. New developments in cerebral blood flow autoregulation analysis in preterm infants: a mechanistic approach.

    PubMed

    Riera, Joan; Cabañas, Fernando; Serrano, José Javier; Madero, Rosario; Pellicer, Adelina

    2016-03-01

    Impaired autoregulation capacity implies that changes in cerebral perfusion follow changes in blood pressure; however, no analytical method has explored such a signal causality relationship in infants. We sought to develop a method to assess cerebral autoregulation from a mechanistic point of view and explored the predictive capacity of the method to classify infants at risk for adverse outcomes. The partial directed coherence (PDC) method, which considers synchronicity and directionality of signal dependence across frequencies, was used to analyze the relationship between spontaneous changes in mean arterial pressure (MAP) and the cerebral tissue oxygenation index (TOI). PDCMAP>TOI indicated that changes in TOI were induced by MAP changes, and PDCTOI>MAP indicated the opposite. The PDCMAP>TOI and PDCTOI>MAP values differed. PDCMAP>TOI adjusted by gestational age predicted low superior vena cava flow (≤41 ml/kg per min), with an area under the receiver operating characteristic curve of 0.72 (95% CI: 0.63-0.81; P < 0.001), whereas PDCTOI>MAP did not. The adjusted pPDCMAP>TOI (the average value per patient) predicted severe intracranial hemorrhage and mortality. PDCMAP>TOI allows for a noninvasive physiological interpretation of the pressure autoregulation process in neonates. PDCMAP>TOI is a good classifier for infants at risk of brain hypoperfusion and adverse outcomes.

  20. Fine-grained sediment gravity flow deposits induced by flood and lake slope failure events: examples of lacustrine varved sediments in Japan

    NASA Astrophysics Data System (ADS)

    Ishihara, Yoshiro; Sasaki, Yasunori; Sasaki, Hana; Onishi, Yuri

    2016-04-01

    Fine-grained sediment gravity flow deposits induced by flood and lake slope failure events are frequently intercalated in lacustrine successions. When sediment gravity flow deposits are present in varved sediments, it is suggested that they provide valuable information about sediment gravity flows, because they can easily trace laterally and can give the magnitude of erosion and recurrence interval of events. In addition, because large sedimentary bodies of stacked sediment gravity flow deposits in varved sediments of a calm lake are not suggested, a relatively simple depositional environment is expected. In the present study, we analysed sedimentary facies of sediment gravity flow deposits in varved lacustrine diatomites in the Middle Pleistocene Hiruzenbara and Miyajima formations in Japan, and concluded a depositional model of the lacustrine sediment gravity flow deposits. Varved diatomites: The Hiruzenbara Fm., a dammed lake fill as foots of Hiruzen Volcanos, is deposited during an interglacial period during MIS12 to 15. Varves of ca. 8000 yr were measured in a 20 m intercalating flood and lake slope failure-induced sediment gravity flow deposits. The Miyajima Fm., distributed in a paleo-caldera lake in NE Japan, includes many sediment gravity flow deposits possibly originated from fandeltas around the lake. These formations have differences in their depositional setting; the Hiruzebara Fm. was deposited in a large lake basin, whereas the Miyajima Fm. was deposited in a relatively small basin. Because of the depositional setting, intercalation of volcaniclastics is dominant in the Miyajima Fm. Lacustrine sediment gravity flow deposits: Sediment gravity flow deposits in both formations can be classified into flood- and lake slope failure-induced types based on the sedimentary facies. Composites of the both types are also found. Flood-induced types comprise fine-grained silts dominated by carbonaceous fragments, whereas lake slope failure-induced types are dominated by rip-up clasts of diatomite. The former is well continued in outcrops; however, the thickness of the latter is changeable and the lower contact is erosive. In the Hirzenbara Fm., flood-induced type includes epiphytic diatom valves as river inflows, whereas slope failure-induced type is composed of diatom valves of varved diatomite. Flood-induced types are suggested to be classified into hyperpycnal flow and hypopycnal flow types with regard to the presence of basal erosion. On the other hand, slope failure-induced types can be interpreted as debris flow deposits occurred in the lakes. Differences in the two types are also shown as bed-thickness frequency distributions indicating event magnitude.

Top