Sample records for predicting future climate

  1. Assessing effects of variation in global climate data sets on spatial predictions from climate envelope models

    USGS Publications Warehouse

    Romañach, Stephanie; Watling, James I.; Fletcher, Robert J.; Speroterra, Carolina; Bucklin, David N.; Brandt, Laura A.; Pearlstine, Leonard G.; Escribano, Yesenia; Mazzotti, Frank J.

    2014-01-01

    Climate change poses new challenges for natural resource managers. Predictive modeling of species–environment relationships using climate envelope models can enhance our understanding of climate change effects on biodiversity, assist in assessment of invasion risk by exotic organisms, and inform life-history understanding of individual species. While increasing interest has focused on the role of uncertainty in future conditions on model predictions, models also may be sensitive to the initial conditions on which they are trained. Although climate envelope models are usually trained using data on contemporary climate, we lack systematic comparisons of model performance and predictions across alternative climate data sets available for model training. Here, we seek to fill that gap by comparing variability in predictions between two contemporary climate data sets to variability in spatial predictions among three alternative projections of future climate. Overall, correlations between monthly temperature and precipitation variables were very high for both contemporary and future data. Model performance varied across algorithms, but not between two alternative contemporary climate data sets. Spatial predictions varied more among alternative general-circulation models describing future climate conditions than between contemporary climate data sets. However, we did find that climate envelope models with low Cohen's kappa scores made more discrepant spatial predictions between climate data sets for the contemporary period than did models with high Cohen's kappa scores. We suggest conservation planners evaluate multiple performance metrics and be aware of the importance of differences in initial conditions for spatial predictions from climate envelope models.

  2. Do We Need Better Climate Predictions to Adapt to a Changing Climate? (Invited)

    NASA Astrophysics Data System (ADS)

    Dessai, S.; Hulme, M.; Lempert, R.; Pielke, R., Jr.

    2009-12-01

    Based on a series of international scientific assessments, climate change has been presented to society as a major problem that needs urgently to be tackled. The science that underpins these assessments has been pre-dominantly from the realm of the natural sciences and central to this framing have been ‘projections’ of future climate change (and its impacts on environment and society) under various greenhouse gas emissions scenarios and using a variety of climate model predictions with embedded assumptions. Central to much of the discussion surrounding adaptation to climate change is the claim - explicit or implicit - that decision makers need accurate and increasingly precise assessments of future impacts of climate change in order to adapt successfully. If true, this claim places a high premium on accurate and precise climate predictions at a range of geographical and temporal scales; such predictions therefore become indispensable, and indeed a prerequisite for, effective adaptation decision-making. But is effective adaptation tied to the ability of the scientific enterprise to predict future climate with accuracy and precision? If so, this may impose a serious and intractable limit on adaptation. This paper proceeds in three sections. It first gathers evidence of claims that climate prediction is necessary for adaptation decision-making. This evidence is drawn from peer-reviewed literature and from published science funding strategies and government policy in a number of different countries. The second part discusses the challenges of climate prediction and why science will consistently be unable to provide accurate and precise predictions of future climate relevant for adaptation (usually at the local/regional level). Section three discusses whether these limits to future foresight represent a limit to adaptation, arguing that effective adaptation need not be limited by a general inability to predict future climate. Given the deep uncertainties involved in climate prediction (and even more so in the prediction of climate impacts) and given that climate is usually only one factor in decisions aimed at climate adaptation, we conclude that the ‘predict and provide’ approach to science in support of climate change adaptation is largely flawed. We consider other important areas of public policy fraught with uncertainty - e.g. earthquake risk, national security, public health - where such a ‘predict and provide’ approach is not attempted. Instead of relying on an approach which has climate prediction (and consequent risk assessment) at its heart - which because of the associated epistemological limits to prediction will consequently act as an apparent limit to adaptation - we need to view adaptation differently, in a manner that opens up options for decision making under uncertainty. We suggest an approach which examines the robustness of adaptation strategies/policies/activities to the myriad of uncertainties that face us in the future, only one of which is the state of climate.

  3. Impact of Future Climate on Radial Growth of Four Major Boreal Tree Species in the Eastern Canadian Boreal Forest

    PubMed Central

    Huang, Jian-Guo; Bergeron, Yves; Berninger, Frank; Zhai, Lihong; Tardif, Jacques C.; Denneler, Bernhard

    2013-01-01

    Immediate phenotypic variation and the lagged effect of evolutionary adaptation to climate change appear to be two key processes in tree responses to climate warming. This study examines these components in two types of growth models for predicting the 2010–2099 diameter growth change of four major boreal species Betula papyrifera, Pinus banksiana, Picea mariana, and Populus tremuloides along a broad latitudinal gradient in eastern Canada under future climate projections. Climate-growth response models for 34 stands over nine latitudes were calibrated and cross-validated. An adaptive response model (A-model), in which the climate-growth relationship varies over time, and a fixed response model (F-model), in which the relationship is constant over time, were constructed to predict future growth. For the former, we examined how future growth of stands in northern latitudes could be forecasted using growth-climate equations derived from stands currently growing in southern latitudes assuming that current climate in southern locations provide an analogue for future conditions in the north. For the latter, we tested if future growth of stands would be maximally predicted using the growth-climate equation obtained from the given local stand assuming a lagged response to climate due to genetic constraints. Both models predicted a large growth increase in northern stands due to more benign temperatures, whereas there was a minimal growth change in southern stands due to potentially warm-temperature induced drought-stress. The A-model demonstrates a changing environment whereas the F-model highlights a constant growth response to future warming. As time elapses we can predict a gradual transition between a response to climate associated with the current conditions (F-model) to a more adapted response to future climate (A-model). Our modeling approach provides a template to predict tree growth response to climate warming at mid-high latitudes of the Northern Hemisphere. PMID:23468879

  4. Impact of future climate on radial growth of four major boreal tree species in the Eastern Canadian boreal forest.

    PubMed

    Huang, Jian-Guo; Bergeron, Yves; Berninger, Frank; Zhai, Lihong; Tardif, Jacques C; Denneler, Bernhard

    2013-01-01

    Immediate phenotypic variation and the lagged effect of evolutionary adaptation to climate change appear to be two key processes in tree responses to climate warming. This study examines these components in two types of growth models for predicting the 2010-2099 diameter growth change of four major boreal species Betula papyrifera, Pinus banksiana, Picea mariana, and Populus tremuloides along a broad latitudinal gradient in eastern Canada under future climate projections. Climate-growth response models for 34 stands over nine latitudes were calibrated and cross-validated. An adaptive response model (A-model), in which the climate-growth relationship varies over time, and a fixed response model (F-model), in which the relationship is constant over time, were constructed to predict future growth. For the former, we examined how future growth of stands in northern latitudes could be forecasted using growth-climate equations derived from stands currently growing in southern latitudes assuming that current climate in southern locations provide an analogue for future conditions in the north. For the latter, we tested if future growth of stands would be maximally predicted using the growth-climate equation obtained from the given local stand assuming a lagged response to climate due to genetic constraints. Both models predicted a large growth increase in northern stands due to more benign temperatures, whereas there was a minimal growth change in southern stands due to potentially warm-temperature induced drought-stress. The A-model demonstrates a changing environment whereas the F-model highlights a constant growth response to future warming. As time elapses we can predict a gradual transition between a response to climate associated with the current conditions (F-model) to a more adapted response to future climate (A-model). Our modeling approach provides a template to predict tree growth response to climate warming at mid-high latitudes of the Northern Hemisphere.

  5. Recent and projected future climatic suitability of North America for the Asian tiger mosquito Aedes albopictus.

    PubMed

    Ogden, Nicholas H; Milka, Radojević; Caminade, Cyril; Gachon, Philippe

    2014-12-02

    Since the 1980s, populations of the Asian tiger mosquito Aedes albopictus have become established in south-eastern, eastern and central United States, extending to approximately 40°N. Ae. albopictus is a vector of a wide range of human pathogens including dengue and chikungunya viruses, which are currently emerging in the Caribbean and Central America and posing a threat to North America. The risk of Ae. albopictus expanding its geographic range in North America under current and future climate was assessed using three climatic indicators of Ae. albopictus survival: overwintering conditions (OW), OW combined with annual air temperature (OWAT), and a linear index of precipitation and air temperature suitability expressed through a sigmoidal function (SIG). The capacity of these indicators to predict Ae. albopictus occurrence was evaluated using surveillance data from the United States. Projected future climatic suitability for Ae. albopictus was obtained using output of nine Regional Climate Model experiments (RCMs). OW and OWAT showed >90% specificity and sensitivity in predicting observed Ae. albopictus occurrence and also predicted moderate to high risk of Ae. albopictus invasion in Pacific coastal areas of the Unites States and Canada under current climate. SIG also well predicted observed Ae. albopictus occurrence (ROC area under the curve was 0.92) but predicted wider current climatic suitability in the north-central and north-eastern United States and south-eastern Canada. RCM output projected modest (circa 500 km) future northward range expansion of Ae. albopictus by the 2050s when using OW and OWAT indicators, but greater (600-1000 km) range expansion, particularly in eastern and central Canada, when using the SIG indicator. Variation in future possible distributions of Ae. albopictus was greater amongst the climatic indicators used than amongst the RCM experiments. Current Ae. albopictus distributions were well predicted by simple climatic indicators and northward range expansion was predicted for the future with climate change. However, current and future predicted geographic distributions of Ae. albopictus varied amongst the climatic indicators used. Further field studies are needed to assess which climatic indicator is the most accurate in predicting regions suitable for Ae. albopictus survival in North America.

  6. Flow regime alterations under changing climate in two river basins: Implications for freshwater ecosystems

    USGS Publications Warehouse

    Gibson, C.A.; Meyer, J.L.; Poff, N.L.; Hay, L.E.; Georgakakos, A.

    2005-01-01

    We examined impacts of future climate scenarios on flow regimes and how predicted changes might affect river ecosystems. We examined two case studies: Cle Elum River, Washington, and Chattahoochee-Apalachicola River Basin, Georgia and Florida. These rivers had available downscaled global circulation model (GCM) data and allowed us to analyse the effects of future climate scenarios on rivers with (1) different hydrographs, (2) high future water demands, and (3) a river-floodplain system. We compared observed flow regimes to those predicted under future climate scenarios to describe the extent and type of changes predicted to occur. Daily stream flow under future climate scenarios was created by either statistically downscaling GCMs (Cle Elum) or creating a regression model between climatological parameters predicted from GCMs and stream flow (Chattahoochee-Apalachicola). Flow regimes were examined for changes from current conditions with respect to ecologically relevant features including the magnitude and timing of minimum and maximum flows. The Cle Elum's hydrograph under future climate scenarios showed a dramatic shift in the timing of peak flows and lower low flow of a longer duration. These changes could mean higher summer water temperatures, lower summer dissolved oxygen, and reduced survival of larval fishes. The Chattahoochee-Apalachicola basin is heavily impacted by dams and water withdrawals for human consumption; therefore, we made comparisons between pre-large dam conditions, current conditions, current conditions with future demand, and future climate scenarios with future demand to separate climate change effects and other anthropogenic impacts. Dam construction, future climate, and future demand decreased the flow variability of the river. In addition, minimum flows were lower under future climate scenarios. These changes could decrease the connectivity of the channel and the floodplain, decrease habitat availability, and potentially lower the ability of the river to assimilate wastewater treatment plant effluent. Our study illustrates the types of changes that river ecosystems might experience under future climates. Copyright ?? 2005 John Wiley & Sons, Ltd.

  7. Impacts of Climate Change on Native Landcover: Seeking Future Climatic Refuges

    PubMed Central

    Mangabeira Albernaz, Ana Luisa

    2016-01-01

    Climate change is a driver for diverse impacts on global biodiversity. We investigated its impacts on native landcover distribution in South America, seeking to predict its effect as a new force driving habitat loss and population isolation. Moreover, we mapped potential future climatic refuges, which are likely to be key areas for biodiversity conservation under climate change scenarios. Climatically similar native landcovers were aggregated using a decision tree, generating a reclassified landcover map, from which 25% of the map’s coverage was randomly selected to fuel distribution models. We selected the best geographical distribution models among twelve techniques, validating the predicted distribution for current climate with the landcover map and used the best technique to predict the future distribution. All landcover categories showed changes in area and displacement of the latitudinal/longitudinal centroid. Closed vegetation was the only landcover type predicted to expand its distributional range. The range contractions predicted for other categories were intense, even suggesting extirpation of the sparse vegetation category. The landcover refuges under future climate change represent a small proportion of the South American area and they are disproportionately represented and unevenly distributed, predominantly occupying five of 26 South American countries. The predicted changes, regardless of their direction and intensity, can put biodiversity at risk because they are expected to occur in the near future in terms of the temporal scales of ecological and evolutionary processes. Recognition of the threat of climate change allows more efficient conservation actions. PMID:27618445

  8. Impacts of Climate Change on Native Landcover: Seeking Future Climatic Refuges.

    PubMed

    Zanin, Marina; Mangabeira Albernaz, Ana Luisa

    2016-01-01

    Climate change is a driver for diverse impacts on global biodiversity. We investigated its impacts on native landcover distribution in South America, seeking to predict its effect as a new force driving habitat loss and population isolation. Moreover, we mapped potential future climatic refuges, which are likely to be key areas for biodiversity conservation under climate change scenarios. Climatically similar native landcovers were aggregated using a decision tree, generating a reclassified landcover map, from which 25% of the map's coverage was randomly selected to fuel distribution models. We selected the best geographical distribution models among twelve techniques, validating the predicted distribution for current climate with the landcover map and used the best technique to predict the future distribution. All landcover categories showed changes in area and displacement of the latitudinal/longitudinal centroid. Closed vegetation was the only landcover type predicted to expand its distributional range. The range contractions predicted for other categories were intense, even suggesting extirpation of the sparse vegetation category. The landcover refuges under future climate change represent a small proportion of the South American area and they are disproportionately represented and unevenly distributed, predominantly occupying five of 26 South American countries. The predicted changes, regardless of their direction and intensity, can put biodiversity at risk because they are expected to occur in the near future in terms of the temporal scales of ecological and evolutionary processes. Recognition of the threat of climate change allows more efficient conservation actions.

  9. Predicting ecological responses in a changing ocean: the effects of future climate uncertainty.

    PubMed

    Freer, Jennifer J; Partridge, Julian C; Tarling, Geraint A; Collins, Martin A; Genner, Martin J

    2018-01-01

    Predicting how species will respond to climate change is a growing field in marine ecology, yet knowledge of how to incorporate the uncertainty from future climate data into these predictions remains a significant challenge. To help overcome it, this review separates climate uncertainty into its three components (scenario uncertainty, model uncertainty, and internal model variability) and identifies four criteria that constitute a thorough interpretation of an ecological response to climate change in relation to these parts (awareness, access, incorporation, communication). Through a literature review, the extent to which the marine ecology community has addressed these criteria in their predictions was assessed. Despite a high awareness of climate uncertainty, articles favoured the most severe emission scenario, and only a subset of climate models were used as input into ecological analyses. In the case of sea surface temperature, these models can have projections unrepresentative against a larger ensemble mean. Moreover, 91% of studies failed to incorporate the internal variability of a climate model into results. We explored the influence that the choice of emission scenario, climate model, and model realisation can have when predicting the future distribution of the pelagic fish, Electrona antarctica . Future distributions were highly influenced by the choice of climate model, and in some cases, internal variability was important in determining the direction and severity of the distribution change. Increased clarity and availability of processed climate data would facilitate more comprehensive explorations of climate uncertainty, and increase in the quality and standard of marine prediction studies.

  10. Temperature and tree growth [editorial

    Treesearch

    Michael G. Ryan

    2010-01-01

    Tree growth helps US forests take up 12% of the fossil fuels emitted in the USA (Woodbury et al. 2007), so predicting tree growth for future climates matters. Predicting future climates themselves is uncertain, but climate scientists probably have the most confidence in predictions for temperature. Temperatures are projected to rise by 0.2 °C in the next two decades,...

  11. Assessment of soil organic carbon stocks under future climate and land cover changes in Europe.

    PubMed

    Yigini, Yusuf; Panagos, Panos

    2016-07-01

    Soil organic carbon plays an important role in the carbon cycling of terrestrial ecosystems, variations in soil organic carbon stocks are very important for the ecosystem. In this study, a geostatistical model was used for predicting current and future soil organic carbon (SOC) stocks in Europe. The first phase of the study predicts current soil organic carbon content by using stepwise multiple linear regression and ordinary kriging and the second phase of the study projects the soil organic carbon to the near future (2050) by using a set of environmental predictors. We demonstrate here an approach to predict present and future soil organic carbon stocks by using climate, land cover, terrain and soil data and their projections. The covariates were selected for their role in the carbon cycle and their availability for the future model. The regression-kriging as a base model is predicting current SOC stocks in Europe by using a set of covariates and dense SOC measurements coming from LUCAS Soil Database. The base model delivers coefficients for each of the covariates to the future model. The overall model produced soil organic carbon maps which reflect the present and the future predictions (2050) based on climate and land cover projections. The data of the present climate conditions (long-term average (1950-2000)) and the future projections for 2050 were obtained from WorldClim data portal. The future climate projections are the recent climate projections mentioned in the Fifth Assessment IPCC report. These projections were extracted from the global climate models (GCMs) for four representative concentration pathways (RCPs). The results suggest an overall increase in SOC stocks by 2050 in Europe (EU26) under all climate and land cover scenarios, but the extent of the increase varies between the climate model and emissions scenarios. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Climates Past, Present, and Yet-to-Come Shape Climate Change Vulnerabilities.

    PubMed

    Nadeau, Christopher P; Urban, Mark C; Bridle, Jon R

    2017-10-01

    Climate change is altering life at multiple scales, from genes to ecosystems. Predicting the vulnerability of populations to climate change is crucial to mitigate negative impacts. We suggest that regional patterns of spatial and temporal climatic variation scaled to the traits of an organism can predict where and why populations are most vulnerable to climate change. Specifically, historical climatic variation affects the sensitivity and response capacity of populations to climate change by shaping traits and the genetic variation in those traits. Present and future climatic variation can affect both climate change exposure and population responses. We provide seven predictions for how climatic variation might affect the vulnerability of populations to climate change and suggest key directions for future research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. How will climate novelty influence ecological forecasts? Using the Quaternary to assess future reliability.

    PubMed

    Fitzpatrick, Matthew C; Blois, Jessica L; Williams, John W; Nieto-Lugilde, Diego; Maguire, Kaitlin C; Lorenz, David J

    2018-03-23

    Future climates are projected to be highly novel relative to recent climates. Climate novelty challenges models that correlate ecological patterns to climate variables and then use these relationships to forecast ecological responses to future climate change. Here, we quantify the magnitude and ecological significance of future climate novelty by comparing it to novel climates over the past 21,000 years in North America. We then use relationships between model performance and climate novelty derived from the fossil pollen record from eastern North America to estimate the expected decrease in predictive skill of ecological forecasting models as future climate novelty increases. We show that, in the high emissions scenario (RCP 8.5) and by late 21st century, future climate novelty is similar to or higher than peak levels of climate novelty over the last 21,000 years. The accuracy of ecological forecasting models is projected to decline steadily over the coming decades in response to increasing climate novelty, although models that incorporate co-occurrences among species may retain somewhat higher predictive skill. In addition to quantifying future climate novelty in the context of late Quaternary climate change, this work underscores the challenges of making reliable forecasts to an increasingly novel future, while highlighting the need to assess potential avenues for improvement, such as increased reliance on geological analogs for future novel climates and improving existing models by pooling data through time and incorporating assemblage-level information. © 2018 John Wiley & Sons Ltd.

  14. Predicting Nitrate Transport under Future Climate Scenarios beneath the Nebraska Management Systems Evaluation Area (MSEA) site

    NASA Astrophysics Data System (ADS)

    Li, Y.; Akbariyeh, S.; Gomez Peña, C. A.; Bartlet-Hunt, S.

    2017-12-01

    Understanding the impacts of future climate change on soil hydrological processes and solute transport is crucial to develop appropriate strategies to minimize adverse impacts of agricultural activities on groundwater quality. The goal of this work is to evaluate the direct effects of climate change on the fate and transport of nitrate beneath a center-pivot irrigated corn field in Nebraska Management Systems Evaluation Area (MSEA) site. Future groundwater recharge rate and actual evapotranspiration rate were predicted based on an inverse modeling approach using climate data generated by Weather Research and Forecasting (WRF) model under the RCP 8.5 scenario, which was downscaled from global CCSM4 model to a resolution of 24 by 24 km2. A groundwater flow model was first calibrated based on historical groundwater table measurement and was then applied to predict future groundwater table in the period 2057-2060. Finally, predicted future groundwater recharge rate, actual evapotranspiration rate, and groundwater level, together with future precipitation data from WRF, were used in a three-dimensional (3D) model, which was validated based on rich historic data set collected from 1993-1996, to predict nitrate concentration in soil and groundwater from the year 2057 to 2060. Future groundwater recharge was found to be decreasing in the study area compared to average groundwater recharge data from the literature. Correspondingly, groundwater elevation was predicted to decrease (1 to 2 ft) over the five years of simulation. Predicted higher transpiration data from climate model resulted in lower infiltration of nitrate concentration in subsurface within the root zone.

  15. Predicting Nitrate Transport under Future Climate Scenarios beneath the Nebraska Management Systems Evaluation Area (MSEA) site

    NASA Astrophysics Data System (ADS)

    Li, Y.; Akbariyeh, S.; Gomez Peña, C. A.; Bartlet-Hunt, S.

    2016-12-01

    Understanding the impacts of future climate change on soil hydrological processes and solute transport is crucial to develop appropriate strategies to minimize adverse impacts of agricultural activities on groundwater quality. The goal of this work is to evaluate the direct effects of climate change on the fate and transport of nitrate beneath a center-pivot irrigated corn field in Nebraska Management Systems Evaluation Area (MSEA) site. Future groundwater recharge rate and actual evapotranspiration rate were predicted based on an inverse modeling approach using climate data generated by Weather Research and Forecasting (WRF) model under the RCP 8.5 scenario, which was downscaled from global CCSM4 model to a resolution of 24 by 24 km2. A groundwater flow model was first calibrated based on historical groundwater table measurement and was then applied to predict future groundwater table in the period 2057-2060. Finally, predicted future groundwater recharge rate, actual evapotranspiration rate, and groundwater level, together with future precipitation data from WRF, were used in a three-dimensional (3D) model, which was validated based on rich historic data set collected from 1993-1996, to predict nitrate concentration in soil and groundwater from the year 2057 to 2060. Future groundwater recharge was found to be decreasing in the study area compared to average groundwater recharge data from the literature. Correspondingly, groundwater elevation was predicted to decrease (1 to 2 ft) over the five years of simulation. Predicted higher transpiration data from climate model resulted in lower infiltration of nitrate concentration in subsurface within the root zone.

  16. Impacts of climate change and renewable energy development on habitat of an endemic squirrel, Xerospermophilus mohavensis, in the Mojave Desert, USA

    USGS Publications Warehouse

    Inman, Richard D.; Esque, Todd C.; Nussear, Kenneth E.; Leitner, Philip; Matocq, Marjorie D.; Weisberg, Peter J.; Dilts, Thomas E.

    2016-01-01

    Predicting changes in species distributions under a changing climate is becoming widespread with the use of species distribution models (SDMs). The resulting predictions of future potential habitat can be cast in light of planned land use changes, such as urban expansion and energy development to identify areas with potential conflict. However, SDMs rarely incorporate an understanding of dispersal capacity, and therefore assume unlimited dispersal in potential range shifts under uncertain climate futures. We use SDMs to predict future distributions of the Mojave ground squirrel, Xerospermophilus mohavensis Merriam, and incorporate partial dispersal models informed by field data on juvenile dispersal to assess projected impact of climate change and energy development on future distributions of X. mohavensis. Our models predict loss of extant habitat, but also concurrent gains of new habitat under two scenarios of future climate change. Under the B1 emissions scenario- a storyline describing a convergent world with emphasis on curbing greenhouse gas emissions- our models predicted losses of up to 64% of extant habitat by 2080, while under the increased greenhouse gas emissions of the A2 scenario, we suggest losses of 56%. New potential habitat may become available to X. mohavensis, thereby offsetting as much as 6330 km2 (50%) of the current habitat lost. Habitat lost due to planned energy development was marginal compared to habitat lost from changing climates, but disproportionately affected current habitat. Future areas of overlap in potential habitat between the two climate change scenarios are identified and discussed in context of proposed energy development.

  17. Predicting the genetic consequences of future climate change: The power of coupling spatial demography, the coalescent, and historical landscape changes.

    PubMed

    Brown, Jason L; Weber, Jennifer J; Alvarado-Serrano, Diego F; Hickerson, Michael J; Franks, Steven J; Carnaval, Ana C

    2016-01-01

    Climate change is a widely accepted threat to biodiversity. Species distribution models (SDMs) are used to forecast whether and how species distributions may track these changes. Yet, SDMs generally fail to account for genetic and demographic processes, limiting population-level inferences. We still do not understand how predicted environmental shifts will impact the spatial distribution of genetic diversity within taxa. We propose a novel method that predicts spatially explicit genetic and demographic landscapes of populations under future climatic conditions. We use carefully parameterized SDMs as estimates of the spatial distribution of suitable habitats and landscape dispersal permeability under present-day, past, and future conditions. We use empirical genetic data and approximate Bayesian computation to estimate unknown demographic parameters. Finally, we employ these parameters to simulate realistic and complex models of responses to future environmental shifts. We contrast parameterized models under current and future landscapes to quantify the expected magnitude of change. We implement this framework on neutral genetic data available from Penstemon deustus. Our results predict that future climate change will result in geographically widespread declines in genetic diversity in this species. The extent of reduction will heavily depend on the continuity of population networks and deme sizes. To our knowledge, this is the first study to provide spatially explicit predictions of within-species genetic diversity using climatic, demographic, and genetic data. Our approach accounts for climatic, geographic, and biological complexity. This framework is promising for understanding evolutionary consequences of climate change, and guiding conservation planning. © 2016 Botanical Society of America.

  18. Is the future already here? The impact of climate change on the distribution of the eastern coral snake (Micrurus fulvius).

    PubMed

    Archis, Jennifer N; Akcali, Christopher; Stuart, Bryan L; Kikuchi, David; Chunco, Amanda J

    2018-01-01

    Anthropogenic climate change is a significant global driver of species distribution change. Although many species have undergone range expansion at their poleward limits, data on several taxonomic groups are still lacking. A common method for studying range shifts is using species distribution models to evaluate current, and predict future, distributions. Notably, many sources of 'current' climate data used in species distribution modeling use the years 1950-2000 to calculate climatic averages. However, this does not account for recent (post 2000) climate change. This study examines the influence of climate change on the eastern coral snake ( Micrurus fulvius ). Specifically, we: (1) identified the current range and suitable environment of M. fulvius in the Southeastern United States, (2) investigated the potential impacts of climate change on the distribution of M. fulvius , and (3) evaluated the utility of future models in predicting recent (2001-2015) records. We used the species distribution modeling program Maxent and compared both current (1950-2000) and future (2050) climate conditions. Future climate models showed a shift in the distribution of suitable habitat across a significant portion of the range; however, results also suggest that much of the Southeastern United States will be outside the range of current conditions, suggesting that there may be no-analog environments in the future. Most strikingly, future models were more effective than the current models at predicting recent records, suggesting that range shifts may already be occurring. These results have implications for both M. fulvius and its Batesian mimics. More broadly, we recommend future Maxent studies consider using future climate data along with current data to better estimate the current distribution.

  19. Predicting the distributions of predator (snow leopard) and prey (blue sheep) under climate change in the Himalaya.

    PubMed

    Aryal, Achyut; Shrestha, Uttam Babu; Ji, Weihong; Ale, Som B; Shrestha, Sujata; Ingty, Tenzing; Maraseni, Tek; Cockfield, Geoff; Raubenheimer, David

    2016-06-01

    Future climate change is likely to affect distributions of species, disrupt biotic interactions, and cause spatial incongruity of predator-prey habitats. Understanding the impacts of future climate change on species distribution will help in the formulation of conservation policies to reduce the risks of future biodiversity losses. Using a species distribution modeling approach by MaxEnt, we modeled current and future distributions of snow leopard (Panthera uncia) and its common prey, blue sheep (Pseudois nayaur), and observed the changes in niche overlap in the Nepal Himalaya. Annual mean temperature is the major climatic factor responsible for the snow leopard and blue sheep distributions in the energy-deficient environments of high altitudes. Currently, about 15.32% and 15.93% area of the Nepal Himalaya are suitable for snow leopard and blue sheep habitats, respectively. The bioclimatic models show that the current suitable habitats of both snow leopard and blue sheep will be reduced under future climate change. The predicted suitable habitat of the snow leopard is decreased when blue sheep habitats is incorporated in the model. Our climate-only model shows that only 11.64% (17,190 km(2)) area of Nepal is suitable for the snow leopard under current climate and the suitable habitat reduces to 5,435 km(2) (reduced by 24.02%) after incorporating the predicted distribution of blue sheep. The predicted distribution of snow leopard reduces by 14.57% in 2030 and by 21.57% in 2050 when the predicted distribution of blue sheep is included as compared to 1.98% reduction in 2030 and 3.80% reduction in 2050 based on the climate-only model. It is predicted that future climate may alter the predator-prey spatial interaction inducing a lower degree of overlap and a higher degree of mismatch between snow leopard and blue sheep niches. This suggests increased energetic costs of finding preferred prey for snow leopards - a species already facing energetic constraints due to the limited dietary resources in its alpine habitat. Our findings provide valuable information for extension of protected areas in future.

  20. Woody plants and the prediction of climate-change impacts on bird diversity.

    PubMed

    Kissling, W D; Field, R; Korntheuer, H; Heyder, U; Böhning-Gaese, K

    2010-07-12

    Current methods of assessing climate-induced shifts of species distributions rarely account for species interactions and usually ignore potential differences in response times of interacting taxa to climate change. Here, we used species-richness data from 1005 breeding bird and 1417 woody plant species in Kenya and employed model-averaged coefficients from regression models and median climatic forecasts assembled across 15 climate-change scenarios to predict bird species richness under climate change. Forecasts assuming an instantaneous response of woody plants and birds to climate change suggested increases in future bird species richness across most of Kenya whereas forecasts assuming strongly lagged woody plant responses to climate change indicated a reversed trend, i.e. reduced bird species richness. Uncertainties in predictions of future bird species richness were geographically structured, mainly owing to uncertainties in projected precipitation changes. We conclude that assessments of future species responses to climate change are very sensitive to current uncertainties in regional climate-change projections, and to the inclusion or not of time-lagged interacting taxa. We expect even stronger effects for more specialized plant-animal associations. Given the slow response time of woody plant distributions to climate change, current estimates of future biodiversity of many animal taxa may be both biased and too optimistic.

  1. Live Fast, Die Young: Experimental Evidence of Population Extinction Risk due to Climate Change.

    PubMed

    Bestion, Elvire; Teyssier, Aimeric; Richard, Murielle; Clobert, Jean; Cote, Julien

    2015-10-01

    Evidence has accumulated in recent decades on the drastic impact of climate change on biodiversity. Warming temperatures have induced changes in species physiology, phenology, and have decreased body size. Such modifications can impact population dynamics and could lead to changes in life cycle and demography. More specifically, conceptual frameworks predict that global warming will severely threaten tropical ectotherms while temperate ectotherms should resist or even benefit from higher temperatures. However, experimental studies measuring the impacts of future warming trends on temperate ectotherms' life cycle and population persistence are lacking. Here we investigate the impacts of future climates on a model vertebrate ectotherm species using a large-scale warming experiment. We manipulated climatic conditions in 18 seminatural populations over two years to obtain a present climate treatment and a warm climate treatment matching IPCC predictions for future climate. Warmer temperatures caused a faster body growth, an earlier reproductive onset, and an increased voltinism, leading to a highly accelerated life cycle but also to a decrease in adult survival. A matrix population model predicts that warm climate populations in our experiment should go extinct in around 20 y. Comparing our experimental climatic conditions to conditions encountered by populations across Europe, we suggest that warming climates should threaten a significant number of populations at the southern range of the distribution. Our findings stress the importance of experimental approaches on the entire life cycle to more accurately predict population and species persistence in future climates.

  2. Live Fast, Die Young: Experimental Evidence of Population Extinction Risk due to Climate Change

    PubMed Central

    Bestion, Elvire; Teyssier, Aimeric; Richard, Murielle; Clobert, Jean; Cote, Julien

    2015-01-01

    Evidence has accumulated in recent decades on the drastic impact of climate change on biodiversity. Warming temperatures have induced changes in species physiology, phenology, and have decreased body size. Such modifications can impact population dynamics and could lead to changes in life cycle and demography. More specifically, conceptual frameworks predict that global warming will severely threaten tropical ectotherms while temperate ectotherms should resist or even benefit from higher temperatures. However, experimental studies measuring the impacts of future warming trends on temperate ectotherms' life cycle and population persistence are lacking. Here we investigate the impacts of future climates on a model vertebrate ectotherm species using a large-scale warming experiment. We manipulated climatic conditions in 18 seminatural populations over two years to obtain a present climate treatment and a warm climate treatment matching IPCC predictions for future climate. Warmer temperatures caused a faster body growth, an earlier reproductive onset, and an increased voltinism, leading to a highly accelerated life cycle but also to a decrease in adult survival. A matrix population model predicts that warm climate populations in our experiment should go extinct in around 20 y. Comparing our experimental climatic conditions to conditions encountered by populations across Europe, we suggest that warming climates should threaten a significant number of populations at the southern range of the distribution. Our findings stress the importance of experimental approaches on the entire life cycle to more accurately predict population and species persistence in future climates. PMID:26501958

  3. The Use of Statistical Downscaling to Project Regional Climate Changes as they Relate to Future Energy Production

    NASA Astrophysics Data System (ADS)

    Werth, D. W.; O'Steen, L.; Chen, K.; Altinakar, M. S.; Garrett, A.; Aleman, S.; Ramalingam, V.

    2010-12-01

    Global climate change has the potential for profound impacts on society, and poses significant challenges to government and industry in the areas of energy security and sustainability. Given that the ability to exploit energy resources often depends on the climate, the possibility of climate change means we cannot simply assume that the untapped potential of today will still exist in the future. Predictions of future climate are generally based on global climate models (GCMs) which, due to computational limitations, are run at spatial resolutions of hundreds of kilometers. While the results from these models can predict climatic trends averaged over large spatial and temporal scales, their ability to describe the effects of atmospheric phenomena that affect weather on regional to local scales is inadequate. We propose the use of several optimized statistical downscaling techniques that can infer climate change at the local scale from coarse resolution GCM predictions, and apply the results to assess future sustainability for two sources of energy production dependent on adequate water resources: nuclear power (through the dissipation of waste heat from cooling towers, ponds, etc.) and hydroelectric power. All methods will be trained with 20th century data, and applied to data from the years 2040-2049 to get the local-scale changes. Models of cooling tower operation and hydropower potential will then use the downscaled data to predict the possible changes in energy production, and the implications of climate change on plant siting, design, and contribution to the future energy grid can then be examined.

  4. Potential Distribution Predicted for Rhynchophorus ferrugineus in China under Different Climate Warming Scenarios.

    PubMed

    Ge, Xuezhen; He, Shanyong; Wang, Tao; Yan, Wei; Zong, Shixiang

    2015-01-01

    As the primary pest of palm trees, Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) has caused serious harm to palms since it first invaded China. The present study used CLIMEX 1.1 to predict the potential distribution of R. ferrugineus in China according to both current climate data (1981-2010) and future climate warming estimates based on simulated climate data for the 2020s (2011-2040) provided by the Tyndall Center for Climate Change Research (TYN SC 2.0). Additionally, the Ecoclimatic Index (EI) values calculated for different climatic conditions (current and future, as simulated by the B2 scenario) were compared. Areas with a suitable climate for R. ferrugineus distribution were located primarily in central China according to the current climate data, with the northern boundary of the distribution reaching to 40.1°N and including Tibet, north Sichuan, central Shaanxi, south Shanxi, and east Hebei. There was little difference in the potential distribution predicted by the four emission scenarios according to future climate warming estimates. The primary prediction under future climate warming models was that, compared with the current climate model, the number of highly favorable habitats would increase significantly and expand into northern China, whereas the number of both favorable and marginally favorable habitats would decrease. Contrast analysis of EI values suggested that climate change and the density of site distribution were the main effectors of the changes in EI values. These results will help to improve control measures, prevent the spread of this pest, and revise the targeted quarantine areas.

  5. Potential Distribution Predicted for Rhynchophorus ferrugineus in China under Different Climate Warming Scenarios

    PubMed Central

    Ge, Xuezhen; He, Shanyong; Wang, Tao; Yan, Wei; Zong, Shixiang

    2015-01-01

    As the primary pest of palm trees, Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) has caused serious harm to palms since it first invaded China. The present study used CLIMEX 1.1 to predict the potential distribution of R. ferrugineus in China according to both current climate data (1981–2010) and future climate warming estimates based on simulated climate data for the 2020s (2011–2040) provided by the Tyndall Center for Climate Change Research (TYN SC 2.0). Additionally, the Ecoclimatic Index (EI) values calculated for different climatic conditions (current and future, as simulated by the B2 scenario) were compared. Areas with a suitable climate for R. ferrugineus distribution were located primarily in central China according to the current climate data, with the northern boundary of the distribution reaching to 40.1°N and including Tibet, north Sichuan, central Shaanxi, south Shanxi, and east Hebei. There was little difference in the potential distribution predicted by the four emission scenarios according to future climate warming estimates. The primary prediction under future climate warming models was that, compared with the current climate model, the number of highly favorable habitats would increase significantly and expand into northern China, whereas the number of both favorable and marginally favorable habitats would decrease. Contrast analysis of EI values suggested that climate change and the density of site distribution were the main effectors of the changes in EI values. These results will help to improve control measures, prevent the spread of this pest, and revise the targeted quarantine areas. PMID:26496438

  6. Cetacean range and climate in the eastern North Atlantic: future predictions and implications for conservation.

    PubMed

    Lambert, Emily; Pierce, Graham J; Hall, Karen; Brereton, Tom; Dunn, Timothy E; Wall, Dave; Jepson, Paul D; Deaville, Rob; MacLeod, Colin D

    2014-06-01

    There is increasing evidence that the distributions of a large number of species are shifting with global climate change as they track changing surface temperatures that define their thermal niche. Modelling efforts to predict species distributions under future climates have increased with concern about the overall impact of these distribution shifts on species ecology, and especially where barriers to dispersal exist. Here we apply a bio-climatic envelope modelling technique to investigate the impacts of climate change on the geographic range of ten cetacean species in the eastern North Atlantic and to assess how such modelling can be used to inform conservation and management. The modelling process integrates elements of a species' habitat and thermal niche, and employs "hindcasting" of historical distribution changes in order to verify the accuracy of the modelled relationship between temperature and species range. If this ability is not verified, there is a risk that inappropriate or inaccurate models will be used to make future predictions of species distributions. Of the ten species investigated, we found that while the models for nine could successfully explain current spatial distribution, only four had a good ability to predict distribution changes over time in response to changes in water temperature. Applied to future climate scenarios, the four species-specific models with good predictive abilities indicated range expansion in one species and range contraction in three others, including the potential loss of up to 80% of suitable white-beaked dolphin habitat. Model predictions allow identification of affected areas and the likely time-scales over which impacts will occur. Thus, this work provides important information on both our ability to predict how individual species will respond to future climate change and the applicability of predictive distribution models as a tool to help construct viable conservation and management strategies. © 2014 John Wiley & Sons Ltd.

  7. Forecasting distributions of an aquatic invasive species (Nitellopsis obtusa) under future climate scenarios

    PubMed Central

    Varela, Sara; Larkin, Daniel J.; Phelps, Nicholas B. D.

    2017-01-01

    Starry stonewort (Nitellopsis obtusa) is an alga that has emerged as an aquatic invasive species of concern in the United States. Where established, starry stonewort can interfere with recreational uses of water bodies and potentially have ecological impacts. Incipient invasion of starry stonewort in Minnesota provides an opportunity to predict future expansion in order to target early detection and strategic management. We used ecological niche models to identify suitable areas for starry stonewort in Minnesota based on global occurrence records and present-day and future climate conditions. We assessed sensitivity of forecasts to different parameters, using four emission scenarios (i.e., RCP 2.6, RCP 4.5, RCP 6, and RCP 8.5) from five future climate models (i.e., CCSM, GISS, IPSL, MIROC, and MRI). From our niche model analyses, we found that (i) occurrences from the entire range, instead of occurrences restricted to the invaded range, provide more informed models; (ii) default settings in Maxent did not provide the best model; (iii) the model calibration area and its background samples impact model performance; (iv) model projections to future climate conditions should be restricted to analogous environments; and (v) forecasts in future climate conditions should include different future climate models and model calibration areas to better capture uncertainty in forecasts. Under present climate, the most suitable areas for starry stonewort are predicted to be found in central and southeastern Minnesota. In the future, suitable areas for starry stonewort are predicted to shift in geographic range under some future climate models and to shrink under others, with most permutations indicating a net decrease of the species’ suitable range. Our suitability maps can serve to design short-term plans for surveillance and education, while future climate models suggest a plausible reduction of starry stonewort spread in the long-term if the trends in climate warming remain. PMID:28704433

  8. Forecasting distributions of an aquatic invasive species (Nitellopsis obtusa) under future climate scenarios.

    PubMed

    Romero-Alvarez, Daniel; Escobar, Luis E; Varela, Sara; Larkin, Daniel J; Phelps, Nicholas B D

    2017-01-01

    Starry stonewort (Nitellopsis obtusa) is an alga that has emerged as an aquatic invasive species of concern in the United States. Where established, starry stonewort can interfere with recreational uses of water bodies and potentially have ecological impacts. Incipient invasion of starry stonewort in Minnesota provides an opportunity to predict future expansion in order to target early detection and strategic management. We used ecological niche models to identify suitable areas for starry stonewort in Minnesota based on global occurrence records and present-day and future climate conditions. We assessed sensitivity of forecasts to different parameters, using four emission scenarios (i.e., RCP 2.6, RCP 4.5, RCP 6, and RCP 8.5) from five future climate models (i.e., CCSM, GISS, IPSL, MIROC, and MRI). From our niche model analyses, we found that (i) occurrences from the entire range, instead of occurrences restricted to the invaded range, provide more informed models; (ii) default settings in Maxent did not provide the best model; (iii) the model calibration area and its background samples impact model performance; (iv) model projections to future climate conditions should be restricted to analogous environments; and (v) forecasts in future climate conditions should include different future climate models and model calibration areas to better capture uncertainty in forecasts. Under present climate, the most suitable areas for starry stonewort are predicted to be found in central and southeastern Minnesota. In the future, suitable areas for starry stonewort are predicted to shift in geographic range under some future climate models and to shrink under others, with most permutations indicating a net decrease of the species' suitable range. Our suitability maps can serve to design short-term plans for surveillance and education, while future climate models suggest a plausible reduction of starry stonewort spread in the long-term if the trends in climate warming remain.

  9. Insensitivity of evapotranspiration to seasonal rainfall distribution directs climate change impacts at water yield

    NASA Astrophysics Data System (ADS)

    Montaldo, N.; Oren, R.

    2017-12-01

    Over the past century, climate change is affecting precipitation regimes across the world. In the Mediterranean regions there is a persistent trend of precipitation and runoff decreases, generating a desertification process. Given the past winter precipitation shifts, the impacts on evapotranspiration (ET) need to be carefully evaluated, and the compelling question is what will be the impact of future climate change scenarios (predicting changes of precipitation and vapor pressure deficit, VPD) on evapotranspiration and water yield? Looking for the key elements of the climate change that are impacting annual ET, we investigate main climate conditions (e.g. precipitation and VPD) and basin physiographic properties contributing to annual ET. We propose a simplified model for annual ET predictions that accounts for the strong meteo seasonality typical of Mediterranean climates, using the steady state assumption of the basin water balance at mean annual scale. We investigate the Sardinia case study because the position of the island of Sardinia in the center of the western Mediterranean Sea basin and its low urbanization and human activity make Sardinia a perfect reference laboratory for Mediterranean hydrologic studies. Sardinian runoff decreased drastically over the 1975-2010 period, with mean yearly runoff reduced by more than 40% compared to the previous 1922-1974 period, and most yearly runoff in the Sardinian basins (70% on average) is produced by winter precipitation due to the seasonality typical of the Mediterranean climate regime. The use of our proposed model allows to predict future ET and water yield using future climate scenarios. We use the future climate scenarios predicted by Global climate models (GCM) in the Fifth Assessment report of the Intergovernmental Panel on Climate Change (IPCC), and we select most reliable models testing the past GCM predictions with historical data. Contrasting shifts of precipitation (both positive and negative) are predicted in the future scenarios by GCMs but these changes will produce significant changes (level of significance > 90%) only in runoff and not in ET. Surprisingly, we show that ET is insensitive to intra-annual rainfall distribution changes, and is insensitive to VPD scenario changes.

  10. Development of flood regressions and climate change scenarios to explore estimates of future peak flows

    USGS Publications Warehouse

    Burns, Douglas A.; Smith, Martyn J.; Freehafer, Douglas A.

    2015-12-31

    The application uses predictions of future annual precipitation from five climate models and two future greenhouse gas emissions scenarios and provides results that are averaged over three future periods—2025 to 2049, 2050 to 2074, and 2075 to 2099. Results are presented in ensemble form as the mean, median, maximum, and minimum values among the five climate models for each greenhouse gas emissions scenario and period. These predictions of future annual precipitation are substituted into either the precipitation variable or a water balance equation for runoff to calculate potential future peak flows. This application is intended to be used only as an exploratory tool because (1) the regression equations on which the application is based have not been adequately tested outside the range of the current climate and (2) forecasting future precipitation with climate models and downscaling these results to a fine spatial resolution have a high degree of uncertainty. This report includes a discussion of the assumptions, uncertainties, and appropriate use of this exploratory application.

  11. Beyond Prediction: the Many Ways in which Climate Science can Inform Adaptation Decisions

    NASA Astrophysics Data System (ADS)

    Lempert, R. J.

    2017-12-01

    Climate science provides an increasingly rich understanding of current and future climate, but this understanding is often not fully incorporated into climate adaptation decisions. In particular, the provision of climate information is still trapped in a narrow prediction-based framework, which envisions a sequential process that begins with model-based forecasts of future climate and decision makers then acting on those forecasts. Among its challenges, this framework can discourage action when climate predictions are deemed too uncertain, encourage overconfidence when climate scientists and decision makers fail to focus on decision-relevant but poorly understood extreme events, and offers a too-narrow communication path among climate scientists and decision makers. This talk will describe how robust decision approaches, organized around the idea of stress testing proposed adaptation decisions over a wide range of futures, can enable a richer flow information among climate scientists and decision makers. The talk illustrates these themes with two examples: 1) conservation management that explores the tradeoffs among alternative climate information products with different combinations of ensemble size and spatial resolution and 2) water quality implementation planning that focuses on the handling of extremes.

  12. Improving predictions of tropical forest response to climate change through integration of field studies and ecosystem modeling.

    PubMed

    Feng, Xiaohui; Uriarte, María; González, Grizelle; Reed, Sasha; Thompson, Jill; Zimmerman, Jess K; Murphy, Lora

    2018-01-01

    Tropical forests play a critical role in carbon and water cycles at a global scale. Rapid climate change is anticipated in tropical regions over the coming decades and, under a warmer and drier climate, tropical forests are likely to be net sources of carbon rather than sinks. However, our understanding of tropical forest response and feedback to climate change is very limited. Efforts to model climate change impacts on carbon fluxes in tropical forests have not reached a consensus. Here, we use the Ecosystem Demography model (ED2) to predict carbon fluxes of a Puerto Rican tropical forest under realistic climate change scenarios. We parameterized ED2 with species-specific tree physiological data using the Predictive Ecosystem Analyzer workflow and projected the fate of this ecosystem under five future climate scenarios. The model successfully captured interannual variability in the dynamics of this tropical forest. Model predictions closely followed observed values across a wide range of metrics including aboveground biomass, tree diameter growth, tree size class distributions, and leaf area index. Under a future warming and drying climate scenario, the model predicted reductions in carbon storage and tree growth, together with large shifts in forest community composition and structure. Such rapid changes in climate led the forest to transition from a sink to a source of carbon. Growth respiration and root allocation parameters were responsible for the highest fraction of predictive uncertainty in modeled biomass, highlighting the need to target these processes in future data collection. Our study is the first effort to rely on Bayesian model calibration and synthesis to elucidate the key physiological parameters that drive uncertainty in tropical forests responses to climatic change. We propose a new path forward for model-data synthesis that can substantially reduce uncertainty in our ability to model tropical forest responses to future climate. © 2017 John Wiley & Sons Ltd.

  13. Improving predictions of tropical forest response to climate change through integration of field studies and ecosystem modeling

    USGS Publications Warehouse

    Feng, Xiaohui; Uriarte, María; González, Grizelle; Reed, Sasha C.; Thompson, Jill; Zimmerman, Jess K.; Murphy, Lora

    2018-01-01

    Tropical forests play a critical role in carbon and water cycles at a global scale. Rapid climate change is anticipated in tropical regions over the coming decades and, under a warmer and drier climate, tropical forests are likely to be net sources of carbon rather than sinks. However, our understanding of tropical forest response and feedback to climate change is very limited. Efforts to model climate change impacts on carbon fluxes in tropical forests have not reached a consensus. Here we use the Ecosystem Demography model (ED2) to predict carbon fluxes of a Puerto Rican tropical forest under realistic climate change scenarios. We parameterized ED2 with species-specific tree physiological data using the Predictive Ecosystem Analyzer workflow and projected the fate of this ecosystem under five future climate scenarios. The model successfully captured inter-annual variability in the dynamics of this tropical forest. Model predictions closely followed observed values across a wide range of metrics including above-ground biomass, tree diameter growth, tree size class distributions, and leaf area index. Under a future warming and drying climate scenario, the model predicted reductions in carbon storage and tree growth, together with large shifts in forest community composition and structure. Such rapid changes in climate led the forest to transition from a sink to a source of carbon. Growth respiration and root allocation parameters were responsible for the highest fraction of predictive uncertainty in modeled biomass, highlighting the need to target these processes in future data collection. Our study is the first effort to rely on Bayesian model calibration and synthesis to elucidate the key physiological parameters that drive uncertainty in tropical forests responses to climatic change. We propose a new path forward for model-data synthesis that can substantially reduce uncertainty in our ability to model tropical forest responses to future climate.

  14. Global Change Impacts on Future Fire Regimes: Distinguishing Between Climate-limited vs Ignition-Limited Landscapes

    NASA Astrophysics Data System (ADS)

    Keeley, J. E.; Syphard, A. D.

    2016-12-01

    Global warming is expected to exacerbate fire impacts. Predicting how climates will impact future fire regimes requires an understanding of how temperature and precipitation interact to control fire activity. Inevitably this requires historical analyses that relate annual burning to climate variation. Within climatically homogeneous subregions, montane forested landscapes show strong relationships between annual fluctuations in temperature and precipitation with area burned, however, this is strongly seasonal dependent; e.g., winter temperatures have very little or no effect but spring and summer temperatures are critical. Climate models are needed that predict future seasonal temperature changes if we are to forecast future fire regimes in these forests. Climate does not appear to be a major determinant of fire activity on all landscapes. Lower elevations and lower latitudes show little or no increase in fire activity with hotter and drier conditions. On these landscapes climate is not usually limiting to fires but these vegetation types are ignition-limited, and because they are closely juxtaposed with human habitations fire regimes are more strongly controlled by other direct anthropogenic impacts. Predicting future fire regimes is not rocket science, it is far more complicated than that. Climate change is not relevant on some landscapes, but where climate is relevant the relationship will change due to direct climate effects on vegetation trajectories, as well as by feedback processes of fire effects on vegetation distribution, plus policy changes in how we manage ecosystems.

  15. Predicting Plant Diversity Patterns in Madagascar: Understanding the Effects of Climate and Land Cover Change in a Biodiversity Hotspot

    PubMed Central

    Brown, Kerry A.; Parks, Katherine E.; Bethell, Colin A.; Johnson, Steig E.; Mulligan, Mark

    2015-01-01

    Climate and land cover change are driving a major reorganization of terrestrial biotic communities in tropical ecosystems. In an effort to understand how biodiversity patterns in the tropics will respond to individual and combined effects of these two drivers of environmental change, we use species distribution models (SDMs) calibrated for recent climate and land cover variables and projected to future scenarios to predict changes in diversity patterns in Madagascar. We collected occurrence records for 828 plant genera and 2186 plant species. We developed three scenarios, (i.e., climate only, land cover only and combined climate-land cover) based on recent and future climate and land cover variables. We used this modelling framework to investigate how the impacts of changes to climate and land cover influenced biodiversity across ecoregions and elevation bands. There were large-scale climate- and land cover-driven changes in plant biodiversity across Madagascar, including both losses and gains in diversity. The sharpest declines in biodiversity were projected for the eastern escarpment and high elevation ecosystems. Sharp declines in diversity were driven by the combined climate-land cover scenarios; however, there were subtle, region-specific differences in model outputs for each scenario, where certain regions experienced relatively higher species loss under climate or land cover only models. We strongly caution that predicted future gains in plant diversity will depend on the development and maintenance of dispersal pathways that connect current and future suitable habitats. The forecast for Madagascar’s plant diversity in the face of future environmental change is worrying: regional diversity will continue to decrease in response to the combined effects of climate and land cover change, with habitats such as ericoid thickets and eastern lowland and sub-humid forests particularly vulnerable into the future. PMID:25856241

  16. Predicting plant diversity patterns in Madagascar: understanding the effects of climate and land cover change in a biodiversity hotspot.

    PubMed

    Brown, Kerry A; Parks, Katherine E; Bethell, Colin A; Johnson, Steig E; Mulligan, Mark

    2015-01-01

    Climate and land cover change are driving a major reorganization of terrestrial biotic communities in tropical ecosystems. In an effort to understand how biodiversity patterns in the tropics will respond to individual and combined effects of these two drivers of environmental change, we use species distribution models (SDMs) calibrated for recent climate and land cover variables and projected to future scenarios to predict changes in diversity patterns in Madagascar. We collected occurrence records for 828 plant genera and 2186 plant species. We developed three scenarios, (i.e., climate only, land cover only and combined climate-land cover) based on recent and future climate and land cover variables. We used this modelling framework to investigate how the impacts of changes to climate and land cover influenced biodiversity across ecoregions and elevation bands. There were large-scale climate- and land cover-driven changes in plant biodiversity across Madagascar, including both losses and gains in diversity. The sharpest declines in biodiversity were projected for the eastern escarpment and high elevation ecosystems. Sharp declines in diversity were driven by the combined climate-land cover scenarios; however, there were subtle, region-specific differences in model outputs for each scenario, where certain regions experienced relatively higher species loss under climate or land cover only models. We strongly caution that predicted future gains in plant diversity will depend on the development and maintenance of dispersal pathways that connect current and future suitable habitats. The forecast for Madagascar's plant diversity in the face of future environmental change is worrying: regional diversity will continue to decrease in response to the combined effects of climate and land cover change, with habitats such as ericoid thickets and eastern lowland and sub-humid forests particularly vulnerable into the future.

  17. Climate change and future fire regimes: Examples from California

    USGS Publications Warehouse

    Keeley, Jon E.; Syphard, Alexandra D.

    2016-01-01

    Climate and weather have long been noted as playing key roles in wildfire activity, and global warming is expected to exacerbate fire impacts on natural and urban ecosystems. Predicting future fire regimes requires an understanding of how temperature and precipitation interact to control fire activity. Inevitably this requires historical analyses that relate annual burning to climate variation. Fuel structure plays a critical role in determining which climatic parameters are most influential on fire activity, and here, by focusing on the diversity of ecosystems in California, we illustrate some principles that need to be recognized in predicting future fire regimes. Spatial scale of analysis is important in that large heterogeneous landscapes may not fully capture accurate relationships between climate and fires. Within climatically homogeneous subregions, montane forested landscapes show strong relationships between annual fluctuations in temperature and precipitation with area burned; however, this is strongly seasonal dependent; e.g., winter temperatures have very little or no effect but spring and summer temperatures are critical. Climate models that predict future seasonal temperature changes are needed to improve fire regime projections. Climate does not appear to be a major determinant of fire activity on all landscapes. Lower elevations and lower latitudes show little or no increase in fire activity with hotter and drier conditions. On these landscapes climate is not usually limiting to fires but these vegetation types are ignition-limited. Moreover, because they are closely juxtaposed with human habitations, fire regimes are more strongly controlled by other direct anthropogenic impacts. Predicting future fire regimes is not rocket science; it is far more complicated than that. Climate change is not relevant to some landscapes, but where climate is relevant, the relationship will change due to direct climate effects on vegetation trajectories, as well as by feedback processes of fire effects on vegetation distribution, plus policy changes in how we manage ecosystems.

  18. Future C loss in mid-latitude mineral soils: climate change exceeds land use mitigation potential in France

    PubMed Central

    Meersmans, Jeroen; Arrouays, Dominique; Van Rompaey, Anton J. J.; Pagé, Christian; De Baets, Sarah; Quine, Timothy A.

    2016-01-01

    Many studies have highlighted significant interactions between soil C reservoir dynamics and global climate and environmental change. However, in order to estimate the future soil organic carbon sequestration potential and related ecosystem services well, more spatially detailed predictions are needed. The present study made detailed predictions of future spatial evolution (at 250 m resolution) of topsoil SOC driven by climate change and land use change for France up to the year 2100 by taking interactions between climate, land use and soil type into account. We conclude that climate change will have a much bigger influence on future SOC losses in mid-latitude mineral soils than land use change dynamics. Hence, reducing CO2 emissions will be crucial to prevent further loss of carbon from our soils. PMID:27808169

  19. Future C loss in mid-latitude mineral soils: climate change exceeds land use mitigation potential in France.

    PubMed

    Meersmans, Jeroen; Arrouays, Dominique; Van Rompaey, Anton J J; Pagé, Christian; De Baets, Sarah; Quine, Timothy A

    2016-11-03

    Many studies have highlighted significant interactions between soil C reservoir dynamics and global climate and environmental change. However, in order to estimate the future soil organic carbon sequestration potential and related ecosystem services well, more spatially detailed predictions are needed. The present study made detailed predictions of future spatial evolution (at 250 m resolution) of topsoil SOC driven by climate change and land use change for France up to the year 2100 by taking interactions between climate, land use and soil type into account. We conclude that climate change will have a much bigger influence on future SOC losses in mid-latitude mineral soils than land use change dynamics. Hence, reducing CO 2 emissions will be crucial to prevent further loss of carbon from our soils.

  20. The shaping of genetic variation in edge-of-range populations under past and future climate change

    PubMed Central

    Razgour, Orly; Juste, Javier; Ibáñez, Carlos; Kiefer, Andreas; Rebelo, Hugo; Puechmaille, Sébastien J; Arlettaz, Raphael; Burke, Terry; Dawson, Deborah A; Beaumont, Mark; Jones, Gareth; Wiens, John

    2013-01-01

    With rates of climate change exceeding the rate at which many species are able to shift their range or adapt, it is important to understand how future changes are likely to affect biodiversity at all levels of organisation. Understanding past responses and extent of niche conservatism in climatic tolerance can help predict future consequences. We use an integrated approach to determine the genetic consequences of past and future climate changes on a bat species, Plecotus austriacus. Glacial refugia predicted by palaeo-modelling match those identified from analyses of extant genetic diversity and model-based inference of demographic history. Former refugial populations currently contain disproportionately high genetic diversity, but niche conservatism, shifts in suitable areas and barriers to migration mean that these hotspots of genetic diversity are under threat from future climate change. Evidence of population decline despite recent northward migration highlights the need to conserve leading-edge populations for spearheading future range shifts. PMID:23890483

  1. Abrupt shifts in phenology and vegetation productivity under climate extremes

    USDA-ARS?s Scientific Manuscript database

    Amplification of the hydrologic cycle as a consequence of global warming is predicted to increase climate variability and the frequency and severity of droughts. Predicting how ecosystems will be affected by climate change requires not only reliable forecasts of future climate, but also observationa...

  2. The Impacts of Climate Variations on Military Operations in the Horn of Africa

    DTIC Science & Technology

    2006-03-01

    variability in a region. Climate forecasts are predictions of the future state of the climate , much as we think of weather forecasts but at longer...arrive at accurate characterizations of the future state of the climate . Many of the civilian organizations that generate reanalysis data also

  3. 78 FR 65248 - Endangered and Threatened Wildlife and Plants; Threatened Status for the Distinct Population...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    ... effects of climate change on wolverines in the future. Our assessment of climate change impacts on wolverines used wolverines' snow dependence and suitable wolverine habitat and climate change models to predict future impacts of climate change on wolverine habitat suitability. Some of the commenters...

  4. Seasonal Drought Prediction: Advances, Challenges, and Future Prospects

    NASA Astrophysics Data System (ADS)

    Hao, Zengchao; Singh, Vijay P.; Xia, Youlong

    2018-03-01

    Drought prediction is of critical importance to early warning for drought managements. This review provides a synthesis of drought prediction based on statistical, dynamical, and hybrid methods. Statistical drought prediction is achieved by modeling the relationship between drought indices of interest and a suite of potential predictors, including large-scale climate indices, local climate variables, and land initial conditions. Dynamical meteorological drought prediction relies on seasonal climate forecast from general circulation models (GCMs), which can be employed to drive hydrological models for agricultural and hydrological drought prediction with the predictability determined by both climate forcings and initial conditions. Challenges still exist in drought prediction at long lead time and under a changing environment resulting from natural and anthropogenic factors. Future research prospects to improve drought prediction include, but are not limited to, high-quality data assimilation, improved model development with key processes related to drought occurrence, optimal ensemble forecast to select or weight ensembles, and hybrid drought prediction to merge statistical and dynamical forecasts.

  5. Pathogen-Host Associations and Predicted Range Shifts of Human Monkeypox in Response to Climate Change in Central Africa

    PubMed Central

    Thomassen, Henri A.; Fuller, Trevon; Asefi-Najafabady, Salvi; Shiplacoff, Julia A. G.; Mulembakani, Prime M.; Blumberg, Seth; Johnston, Sara C.; Kisalu, Neville K.; Kinkela, Timothée L.; Fair, Joseph N.; Wolfe, Nathan D.; Shongo, Robert L.; LeBreton, Matthew; Meyer, Hermann; Wright, Linda L.; Muyembe, Jean-Jacques; Buermann, Wolfgang; Okitolonda, Emile; Hensley, Lisa E.; Lloyd-Smith, James O.; Smith, Thomas B.; Rimoin, Anne W.

    2013-01-01

    Climate change is predicted to result in changes in the geographic ranges and local prevalence of infectious diseases, either through direct effects on the pathogen, or indirectly through range shifts in vector and reservoir species. To better understand the occurrence of monkeypox virus (MPXV), an emerging Orthopoxvirus in humans, under contemporary and future climate conditions, we used ecological niche modeling techniques in conjunction with climate and remote-sensing variables. We first created spatially explicit probability distributions of its candidate reservoir species in Africa's Congo Basin. Reservoir species distributions were subsequently used to model current and projected future distributions of human monkeypox (MPX). Results indicate that forest clearing and climate are significant driving factors of the transmission of MPX from wildlife to humans under current climate conditions. Models under contemporary climate conditions performed well, as indicated by high values for the area under the receiver operator curve (AUC), and tests on spatially randomly and non-randomly omitted test data. Future projections were made on IPCC 4th Assessment climate change scenarios for 2050 and 2080, ranging from more conservative to more aggressive, and representing the potential variation within which range shifts can be expected to occur. Future projections showed range shifts into regions where MPX has not been recorded previously. Increased suitability for MPX was predicted in eastern Democratic Republic of Congo. Models developed here are useful for identifying areas where environmental conditions may become more suitable for human MPX; targeting candidate reservoir species for future screening efforts; and prioritizing regions for future MPX surveillance efforts. PMID:23935820

  6. Statistical modelling predicts almost complete loss of major periglacial processes in Northern Europe by 2100.

    PubMed

    Aalto, Juha; Harrison, Stephan; Luoto, Miska

    2017-09-11

    The periglacial realm is a major part of the cryosphere, covering a quarter of Earth's land surface. Cryogenic land surface processes (LSPs) control landscape development, ecosystem functioning and climate through biogeochemical feedbacks, but their response to contemporary climate change is unclear. Here, by statistically modelling the current and future distributions of four major LSPs unique to periglacial regions at fine scale, we show fundamental changes in the periglacial climate realm are inevitable with future climate change. Even with the most optimistic CO 2 emissions scenario (Representative Concentration Pathway (RCP) 2.6) we predict a 72% reduction in the current periglacial climate realm by 2050 in our climatically sensitive northern Europe study area. These impacts are projected to be especially severe in high-latitude continental interiors. We further predict that by the end of the twenty-first century active periglacial LSPs will exist only at high elevations. These results forecast a future tipping point in the operation of cold-region LSP, and predict fundamental landscape-level modifications in ground conditions and related atmospheric feedbacks.Cryogenic land surface processes characterise the periglacial realm and control landscape development and ecosystem functioning. Here, via statistical modelling, the authors predict a 72% reduction of the periglacial realm in Northern Europe by 2050, and almost complete disappearance by 2100.

  7. Tropical and Extratropical Cyclone Damages under Climate Change

    NASA Astrophysics Data System (ADS)

    Ranson, M.; Kousky, C.; Ruth, M.; Jantarasami, L.; Crimmins, A.; Tarquinio, L.

    2014-12-01

    This paper provides the first quantitative synthesis of the rapidly growing literature on future tropical and extratropical cyclone losses under climate change. We estimate a probability distribution for the predicted impact of changes in global surface air temperatures on future storm damages, using an ensemble of 296 estimates of the temperature-damage relationship from twenty studies. Our analysis produces three main empirical results. First, we find strong but not conclusive support for the hypothesis that climate change will cause damages from tropical cyclones and wind storms to increase, with most models (84 and 92 percent, respectively) predicting higher future storm damages due to climate change. Second, there is substantial variation in projected changes in losses across regions. Potential changes in damages are greatest in the North Atlantic basin, where the multi-model average predicts that a 2.5°C increase in global surface air temperature would cause hurricane damages to increase by 62 percent. The ensemble predictions for Western North Pacific tropical cyclones and European wind storms (extratropical cyclones) are approximately one third of that magnitude. Finally, our analysis shows that existing models of storm damages under climate change generate a wide range of predictions, ranging from moderate decreases to very large increases in losses.

  8. Increased wind risk from sting-jet windstorms with climate change

    NASA Astrophysics Data System (ADS)

    Martínez-Alvarado, Oscar; Gray, Suzanne L.; Hart, Neil C. G.; Clark, Peter A.; Hodges, Kevin; Roberts, Malcolm J.

    2018-04-01

    Extra-tropical cyclones dominate autumn and winter weather over western Europe. The strongest cyclones, often termed windstorms, have a large socio-economic impact on landfall due to strong surface winds and coastal storm surges. Climate model integrations have predicted a future increase in the frequency of, and potential damage from, European windstorms and yet these integrations cannot properly represent localised jets, such as sting jets, that may significantly enhance damage. Here we present the first prediction of how the climatology of sting-jet-containing cyclones will change in a future warmer climate, considering the North Atlantic and Europe. A proven sting-jet precursor diagnostic is applied to 13 year present-day and future (~2100) climate integrations from the Met Office Unified Model in its Global Atmosphere 3.0 configuration. The present-day climate results are consistent with previously-published results from a reanalysis dataset (with around 32% of cyclones exhibiting the sing-jet precursor), lending credibility to the analysis of the future-climate integration. The proportion of cyclones exhibiting the sting-jet precursor in the future-climate integration increases to 45%. Furthermore, while the proportion of explosively-deepening storms increases only slightly in the future climate, the proportion of those storms with the sting-jet precursor increases by 60%. The European resolved-wind risk associated with explosively-deepening storms containing a sting-jet precursor increases substantially in the future climate; in reality this wind risk is likely to be further enhanced by the release of localised moist instability, unresolved by typical climate models.

  9. Understanding climate: A strategy for climate modeling and predictability research, 1985-1995

    NASA Technical Reports Server (NTRS)

    Thiele, O. (Editor); Schiffer, R. A. (Editor)

    1985-01-01

    The emphasis of the NASA strategy for climate modeling and predictability research is on the utilization of space technology to understand the processes which control the Earth's climate system and it's sensitivity to natural and man-induced changes and to assess the possibilities for climate prediction on time scales of from about two weeks to several decades. Because the climate is a complex multi-phenomena system, which interacts on a wide range of space and time scales, the diversity of scientific problems addressed requires a hierarchy of models along with the application of modern empirical and statistical techniques which exploit the extensive current and potential future global data sets afforded by space observations. Observing system simulation experiments, exploiting these models and data, will also provide the foundation for the future climate space observing system, e.g., Earth observing system (EOS), 1985; Tropical Rainfall Measuring Mission (TRMM) North, et al. NASA, 1984.

  10. A crucial step toward realism: responses to climate change from an evolving metacommunity perspective.

    PubMed

    Urban, Mark C; De Meester, Luc; Vellend, Mark; Stoks, Robby; Vanoverbeke, Joost

    2012-02-01

    We need to understand joint ecological and evolutionary responses to climate change to predict future threats to biological diversity. The 'evolving metacommunity' framework emphasizes that interactions between ecological and evolutionary mechanisms at both local and regional scales will drive community dynamics during climate change. Theory suggests that ecological and evolutionary dynamics often interact to produce outcomes different from those predicted based on either mechanism alone. We highlight two of these dynamics: (i) species interactions prevent adaptation of nonresident species to new niches and (ii) resident species adapt to changing climates and thereby prevent colonization by nonresident species. The rate of environmental change, level of genetic variation, source-sink structure, and dispersal rates mediate between these potential outcomes. Future models should evaluate multiple species, species interactions other than competition, and multiple traits. Future experiments should manipulate factors such as genetic variation and dispersal to determine their joint effects on responses to climate change. Currently, we know much more about how climates will change across the globe than about how species will respond to these changes despite the profound effects these changes will have on global biological diversity. Integrating evolving metacommunity perspectives into climate change biology should produce more accurate predictions about future changes to species distributions and extinction threats.

  11. A crucial step toward realism: responses to climate change from an evolving metacommunity perspective

    PubMed Central

    Urban, Mark C; De Meester, Luc; Vellend, Mark; Stoks, Robby; Vanoverbeke, Joost

    2012-01-01

    We need to understand joint ecological and evolutionary responses to climate change to predict future threats to biological diversity. The ‘evolving metacommunity’ framework emphasizes that interactions between ecological and evolutionary mechanisms at both local and regional scales will drive community dynamics during climate change. Theory suggests that ecological and evolutionary dynamics often interact to produce outcomes different from those predicted based on either mechanism alone. We highlight two of these dynamics: (i) species interactions prevent adaptation of nonresident species to new niches and (ii) resident species adapt to changing climates and thereby prevent colonization by nonresident species. The rate of environmental change, level of genetic variation, source-sink structure, and dispersal rates mediate between these potential outcomes. Future models should evaluate multiple species, species interactions other than competition, and multiple traits. Future experiments should manipulate factors such as genetic variation and dispersal to determine their joint effects on responses to climate change. Currently, we know much more about how climates will change across the globe than about how species will respond to these changes despite the profound effects these changes will have on global biological diversity. Integrating evolving metacommunity perspectives into climate change biology should produce more accurate predictions about future changes to species distributions and extinction threats. PMID:25568038

  12. A linear regression model for predicting PNW estuarine temperatures in a changing climate

    EPA Science Inventory

    Pacific Northwest coastal regions, estuaries, and associated ecosystems are vulnerable to the potential effects of climate change, especially to changes in nearshore water temperature. While predictive climate models simulate future air temperatures, no such projections exist for...

  13. Response of Groundwater Recharge to Potential Future Climate Change in the Grand River Watershed

    NASA Astrophysics Data System (ADS)

    Jyrkama, M. I.; Sykes, J. F.

    2004-05-01

    The Grand River watershed is situated in south-western Ontario, draining an area of nearly 7000 square kilometres into Lake Erie. Approximately eighty percent of the population in the watershed derive their drinking water from groundwater sources. Quantifying the recharge input to the groundwater system and the impact of climate variability due to climate change is, therefore, essential for ensuring the quantity and sustainability of the watershed's drinking water resources in the future. The primary goal of this study is to investigate the impact of potential future climate changes on groundwater recharge in the Grand River watershed. The physically based hydrologic model HELP3 is used in conjunction with GIS to simulate the past conditions and future changes in evapotranspiration, potential surface runoff, and groundwater recharge rates as a result of projected changes in the regions climate. The climate change projections are based on the general predictions reported by the Intergovernmental Panel on Climate Change (IPCC) in 2001. Forty years of daily historical weather data are used as the reference condition. The impact of climate change on the hydrologic cycle over a forty year study period is modelled by perturbing the HELP3 model input parameters using predicted future changes in precipitation, temperature, and solar radiation. The changes in land use and vegetation cover over time were not considered in the study. The results of the study indicate that the overall simulated rate of groundwater recharge is predicted to increase in the watershed as a result of the projected future climate change. Warmer winter temperatures will reduce the extent and duration of ground frost and shift the springmelt from spring toward winter months, allowing more water to infiltrate into the ground. This results in decreased surface runoff, higher infiltration, and subsequently increased groundwater recharge. The predicted higher intensity and frequency of future precipitation will not only contribute significantly to increased surface runoff, but also results in higher evapotranspiration and groundwater recharge rates due to increased amounts of available water. Changes in the incoming solar radiation have a minimal impact on the simulated hydrologic processes. The overall simulated average annual recharge in the watershed is predicted to increase by approximately 100 mm/year over the next forty years from 189 mm/year to 289 mm/year.

  14. Incorporating climate change projections into riparian restoration planning and design

    USGS Publications Warehouse

    Perry, Laura G.; Reynolds, Lindsay V.; Beechie, Timothy J.; Collins, Mathias J.; Shafroth, Patrick B.

    2015-01-01

    Climate change and associated changes in streamflow may alter riparian habitats substantially in coming decades. Riparian restoration provides opportunities to respond proactively to projected climate change effects, increase riparian ecosystem resilience to climate change, and simultaneously address effects of both climate change and other human disturbances. However, climate change may alter which restoration methods are most effective and which restoration goals can be achieved. Incorporating climate change into riparian restoration planning and design is critical to long-term restoration of desired community composition and ecosystem services. In this review, we discuss and provide examples of how climate change might be incorporated into restoration planning at the key stages of assessing the project context, establishing restoration goals and design criteria, evaluating design alternatives, and monitoring restoration outcomes. Restoration planners have access to numerous tools to predict future climate, streamflow, and riparian ecology at restoration sites. Planners can use those predictions to assess which species or ecosystem services will be most vulnerable under future conditions, and which sites will be most suitable for restoration. To accommodate future climate and streamflow change, planners may need to adjust methods for planting, invasive species control, channel and floodplain reconstruction, and water management. Given the considerable uncertainty in future climate and streamflow projections, riparian ecological responses, and effects on restoration outcomes, planners will need to consider multiple potential future scenarios, implement a variety of restoration methods, design projects with flexibility to adjust to future conditions, and plan to respond adaptively to unexpected change.

  15. Plant distributions in the southwestern United States; a scenario assessment of the modern-day and future distribution ranges of 166 Species

    USGS Publications Warehouse

    Thomas, Kathryn A.; Guertin, Patricia P.; Gass, Leila

    2012-01-01

    The authors developed spatial models of the predicted modern-day suitable habitat (SH) of 166 dominant and indicator plant species of the southwestern United States (herein referred to as the Southwest) and then conducted a coarse assessment of potential future changes in the distribution of their suitable habitat under three climate-change scenarios for two time periods. We used Maxent-based spatial modeling to predict the modern-day and future scenarios of SH for each species in an over 342-million-acre area encompassing all or parts of six states in the Southwest--Arizona, California, Colorado, Nevada, New Mexico, and Utah. Modern-day SH models were predicted by our using 26 annual and monthly average temperature and precipitation variables, averaged for the years 1971-2000. Future SH models were predicted for each species by our using six climate models based on application of the average of 16 General Circulation Models to Intergovernmental Panel on Climate Change emission scenarios B1, A1B, and A2 for two time periods, 2040 to 2069 and 2070 and 2100, referred to respectively as the 2050 and 2100 time periods. The assessment examined each species' vulnerability to loss of modern-day SH under future climate scenarios, potential to gain SH under future climate scenarios, and each species' estimated risk as a function of both vulnerability and potential gains. All 166 species were predicted to lose modern-day SH in the future climate change scenarios. In the 2050 time period, nearly 30 percent of the species lost 75 percent or more of their modern-day suitable habitat, 21 species gained more new SH than their modern-day SH, and 30 species gained less new SH than 25 percent of their modern-day SH. In the 2100 time period, nearly half of the species lost 75 percent or more of their modern-day SH, 28 species gained more new SH than their modern-day SH, and 34 gained less new SH than 25 percent of their modern-day SH. Using nine risk categories we found only two species were in the least risk category, while 20 species were in the highest risk category. The assessment showed that species respond independently to predicted climate change, suggesting that current plant assemblages may disassemble under predicted climate change scenarios. This report presents the results for each species in tables (Appendix A) and maps (14 for each species) in Appendix B.

  16. Genomic signals of selection predict climate-driven population declines in a migratory bird.

    PubMed

    Bay, Rachael A; Harrigan, Ryan J; Underwood, Vinh Le; Gibbs, H Lisle; Smith, Thomas B; Ruegg, Kristen

    2018-01-05

    The ongoing loss of biodiversity caused by rapid climatic shifts requires accurate models for predicting species' responses. Despite evidence that evolutionary adaptation could mitigate climate change impacts, evolution is rarely integrated into predictive models. Integrating population genomics and environmental data, we identified genomic variation associated with climate across the breeding range of the migratory songbird, yellow warbler ( Setophaga petechia ). Populations requiring the greatest shifts in allele frequencies to keep pace with future climate change have experienced the largest population declines, suggesting that failure to adapt may have already negatively affected populations. Broadly, our study suggests that the integration of genomic adaptation can increase the accuracy of future species distribution models and ultimately guide more effective mitigation efforts. Copyright © 2018, American Association for the Advancement of Science.

  17. Understanding the dynamics in distribution of invasive alien plant species under predicted climate change in Western Himalaya

    PubMed Central

    Chitale, Vishwas; Rijal, Srijana Joshi; Bisht, Neha; Shrestha, Bharat Babu

    2018-01-01

    Invasive alien plant species (IAPS) can pose severe threats to biodiversity and stability of native ecosystems, therefore, predicting the distribution of the IAPS plays a crucial role in effective planning and management of ecosystems. In the present study, we use Maximum Entropy (MaxEnt) modelling approach to predict the potential of distribution of eleven IAPS under future climatic conditions under RCP 2.6 and RCP 8.5 in part of Kailash sacred landscape region in Western Himalaya. Based on the model predictions, distribution of most of these invasive plants is expected to expand under future climatic scenarios, which might pose a serious threat to the native ecosystems through competition for resources in the study area. Native scrublands and subtropical needle-leaved forests will be the most affected ecosystems by the expansion of these IAPS. The present study is first of its kind in the Kailash Sacred Landscape in the field of invasive plants and the predictions of potential distribution under future climatic conditions from our study could help decision makers in planning and managing these forest ecosystems effectively. PMID:29664961

  18. Understanding the dynamics in distribution of invasive alien plant species under predicted climate change in Western Himalaya.

    PubMed

    Thapa, Sunil; Chitale, Vishwas; Rijal, Srijana Joshi; Bisht, Neha; Shrestha, Bharat Babu

    2018-01-01

    Invasive alien plant species (IAPS) can pose severe threats to biodiversity and stability of native ecosystems, therefore, predicting the distribution of the IAPS plays a crucial role in effective planning and management of ecosystems. In the present study, we use Maximum Entropy (MaxEnt) modelling approach to predict the potential of distribution of eleven IAPS under future climatic conditions under RCP 2.6 and RCP 8.5 in part of Kailash sacred landscape region in Western Himalaya. Based on the model predictions, distribution of most of these invasive plants is expected to expand under future climatic scenarios, which might pose a serious threat to the native ecosystems through competition for resources in the study area. Native scrublands and subtropical needle-leaved forests will be the most affected ecosystems by the expansion of these IAPS. The present study is first of its kind in the Kailash Sacred Landscape in the field of invasive plants and the predictions of potential distribution under future climatic conditions from our study could help decision makers in planning and managing these forest ecosystems effectively.

  19. Increasing Potential Risk of a Global Aquatic Invader in Europe in Contrast to Other Continents under Future Climate Change

    PubMed Central

    Liu, Xuan; Guo, Zhongwei; Ke, Zunwei; Wang, Supen; Li, Yiming

    2011-01-01

    Background Anthropogenically-induced climate change can alter the current climatic habitat of non-native species and can have complex effects on potentially invasive species. Predictions of the potential distributions of invasive species under climate change will provide critical information for future conservation and management strategies. Aquatic ecosystems are particularly vulnerable to invasive species and climate change, but the effect of climate change on invasive species distributions has been rather neglected, especially for notorious global invaders. Methodology/Principal Findings We used ecological niche models (ENMs) to assess the risks and opportunities that climate change presents for the red swamp crayfish (Procambarus clarkii), which is a worldwide aquatic invasive species. Linking the factors of climate, topography, habitat and human influence, we developed predictive models incorporating both native and non-native distribution data of the crayfish to identify present areas of potential distribution and project the effects of future climate change based on a consensus-forecast approach combining the CCCMA and HADCM3 climate models under two emission scenarios (A2a and B2a) by 2050. The minimum temperature from the coldest month, the human footprint and precipitation of the driest quarter contributed most to the species distribution models. Under both the A2a and B2a scenarios, P. clarkii shifted to higher latitudes in continents of both the northern and southern hemispheres. However, the effect of climate change varied considerately among continents with an expanding potential in Europe and contracting changes in others. Conclusions/Significance Our findings are the first to predict the impact of climate change on the future distribution of a globally invasive aquatic species. We confirmed the complexities of the likely effects of climate change on the potential distribution of globally invasive species, and it is extremely important to develop wide-ranging and effective control measures according to predicted geographical shifts and changes. PMID:21479188

  20. Integrating environmental and genetic effects to predict responses of tree populations to climate.

    PubMed

    Wang, Tongli; O'Neill, Gregory A; Aitken, Sally N

    2010-01-01

    Climate is a major environmental factor affecting the phenotype of trees and is also a critical agent of natural selection that has molded among-population genetic variation. Population response functions describe the environmental effect of planting site climates on the performance of a single population, whereas transfer functions describe among-population genetic variation molded by natural selection for climate. Although these approaches are widely used to predict the responses of trees to climate change, both have limitations. We present a novel approach that integrates both genetic and environmental effects into a single "universal response function" (URF) to better predict the influence of climate on phenotypes. Using a large lodgepole pine (Pinus contorta Dougl. ex Loud.) field transplant experiment composed of 140 populations planted on 62 sites to demonstrate the methodology, we show that the URF makes full use of data from provenance trials to: (1) improve predictions of climate change impacts on phenotypes; (2) reduce the size and cost of future provenance trials without compromising predictive power; (3) more fully exploit existing, less comprehensive provenance tests; (4) quantify and compare environmental and genetic effects of climate on population performance; and (5) predict the performance of any population growing in any climate. Finally, we discuss how the last attribute allows the URF to be used as a mechanistic model to predict population and species ranges for the future and to guide assisted migration of seed for reforestation, restoration, or afforestation and genetic conservation in a changing climate.

  1. Symbiont diversity may help coral reefs survive moderate climate change.

    PubMed

    Baskett, Marissa L; Gaines, Steven D; Nisbet, Roger M

    2009-01-01

    Given climate change, thermal stress-related mass coral-bleaching events present one of the greatest anthropogenic threats to coral reefs. While corals and their symbiotic algae may respond to future temperatures through genetic adaptation and shifts in community compositions, the climate may change too rapidly for coral response. To test this potential for response, here we develop a model of coral and symbiont ecological dynamics and symbiont evolutionary dynamics. Model results without variation in symbiont thermal tolerance predict coral reef collapse within decades under multiple future climate scenarios, consistent with previous threshold-based predictions. However, model results with genetic or community-level variation in symbiont thermal tolerance can predict coral reef persistence into the next century, provided low enough greenhouse gas emissions occur. Therefore, the level of greenhouse gas emissions will have a significant effect on the future of coral reefs, and accounting for biodiversity and biological dynamics is vital to estimating the size of this effect.

  2. Interactions of changing climate and shifts in forest composition on stand carbon balance

    Treesearch

    Chiang Jyh-Min; Louis Iverson; Anantha Prasad; Kim Brown

    2006-01-01

    Given that climate influences forest biogeographic distribution, many researchers have created models predicting shifts in tree species range with future climate change scenarios. The objective of this study is to investigate the forest carbon consequences of shifts in stand species composition with current and future climate scenarios using such a model.

  3. Prestoration: Using species in restoration that will persist now and into the future

    USGS Publications Warehouse

    Butterfield, B.J.; Copeland, Stella; Munson, Seth M.; Roybal, C.M.; Wood, Troy E.

    2017-01-01

    Climate change presents new challenges for selecting species for restoration. If migration fails to keep pace with climate change, as models predict, the most suitable sources for restoration may not occur locally at all. To address this issue we propose a strategy of “prestoration”: utilizing species in restoration for which a site represents suitable habitat now and into the future. Using the Colorado Plateau, USA as a case study, we assess the ability of grass species currently used regionally in restoration to persist into the future using projections of ecological niche models (or climate envelope models) across a suite of climate change scenarios. We then present a technique for identifying new species that best compensate for future losses of suitable habitat by current target species. We found that the current suite of species, selected by a group of experts, is predicted to perform reasonably well in the short-term, but that losses of prestorable habitat by mid-century would approach 40%. Using an algorithm to identify additional species, we found that fewer than ten species could compensate for nearly all of the losses incurred by the current target species. This case study highlights the utility of integrating ecological niche modeling and future climate forecasts to predict the utility of species in restoring under climate change across a wide range of spatial and temporal scales.

  4. Assessing forest vulnerability and the potential distribution of pine beetles under current and future climate scenarios in the Interior West of the US

    USGS Publications Warehouse

    Evangelista, P.H.; Kumar, S.; Stohlgren, T.J.; Young, N.E.

    2011-01-01

    The aim of our study was to estimate forest vulnerability and potential distribution of three bark beetles (Curculionidae: Scolytinae) under current and projected climate conditions for 2020 and 2050. Our study focused on the mountain pine beetle (Dendroctonus ponderosae), western pine beetle (Dendroctonus brevicomis), and pine engraver (Ips pini). This study was conducted across eight states in the Interior West of the US covering approximately 2.2millionkm2 and encompassing about 95% of the Rocky Mountains in the contiguous US. Our analyses relied on aerial surveys of bark beetle outbreaks that occurred between 1991 and 2008. Occurrence points for each species were generated within polygons created from the aerial surveys. Current and projected climate scenarios were acquired from the WorldClim database and represented by 19 bioclimatic variables. We used Maxent modeling technique fit with occurrence points and current climate data to model potential beetle distributions and forest vulnerability. Three available climate models, each having two emission scenarios, were modeled independently and results averaged to produce two predictions for 2020 and two predictions for 2050 for each analysis. Environmental parameters defined by current climate models were then used to predict conditions under future climate scenarios, and changes in different species' ranges were calculated. Our results suggested that the potential distribution for bark beetles under current climate conditions is extensive, which coincides with infestation trends observed in the last decade. Our results predicted that suitable habitats for the mountain pine beetle and pine engraver beetle will stabilize or decrease under future climate conditions, while habitat for the western pine beetle will continue to increase over time. The greatest increase in habitat area was for the western pine beetle, where one climate model predicted a 27% increase by 2050. In contrast, the predicted habitat of the mountain pine beetle from another climate model suggested a decrease in habitat areas as great as 46% by 2050. Generally, 2020 and 2050 models that tested the three climate scenarios independently had similar trends, though one climate scenario for the western pine beetle produced contrasting results. Ranges for all three species of bark beetles shifted considerably geographically suggesting that some host species may become more vulnerable to beetle attack in the future, while others may have a reduced risk over time. ?? 2011 Elsevier B.V.

  5. Projected climate-induced faunal change in the Western Hemisphere

    USGS Publications Warehouse

    Lawler, J.J.; Shafer, S.L.; White, D.; Kareiva, P.; Maurer, E.P.; Blaustein, A.R.; Bartlein, P.J.

    2009-01-01

    Climate change is predicted to be one of the greatest drivers of ecological change in the coming century. Increases in temperature over the last century have clearly been linked to shifts in species distributions. Given the magnitude of projected future climatic changes, we can expect even larger range shifts in the coming century. These changes will, in turn, alter ecological communities and the functioning of ecosystems. Despite the seriousness of predicted climate change, the uncertainty in climate-change projections makes it difficult for conservation managers and planners to proactively respond to climate stresses. To address one aspect of this uncertainty, we identified predictions of faunal change for which a high level of consensus was exhibited by different climate models. Specifically, we assessed the potential effects of 30 coupled atmosphere-ocean general circulation model (AOGCM) future-climate simulations on the geographic ranges of 2954 species of birds, mammals, and amphibians in the Western Hemisphere. Eighty percent of the climate projections based on a relatively low greenhouse-gas emissions scenario result in the local loss of at least 10% of the vertebrate fauna over much of North and South America. The largest changes in fauna are predicted for the tundra, Central America, and the Andes Mountains where, assuming no dispersal constraints, specific areas are likely to experience over 90% turnover, so that faunal distributions in the future will bear little resemblance to those of today. ?? 2009 by the Ecological Society of America.

  6. Climatically-mediated landcover change: impacts on Brazilian territory.

    PubMed

    Zanin, Marina; Tessarolo, Geiziane; Machado, Nathália; Albernaz, Ana Luisa M

    2017-01-01

    In the face of climate change threats, governments are drawing attention to policies for mitigating its effects on biodiversity. However, the lack of distribution data makes predictions at species level a difficult task, mainly in regions of higher biodiversity. To overcome this problem, we use native landcover as a surrogate biodiversity, because it can represent specialized habitat for species, and investigate the effects of future climate change on Brazilian biomes. We characterize the climatic niches of native landcover and use ecological niche modeling to predict the potential distribution under current and future climate scenarios. Our results highlight expansion of the distribution of open vegetation and the contraction of closed forests. Drier Brazilian biomes, like Caatinga and Cerrado, are predicted to expand their distributions, being the most resistant to climate change impacts. However, these would also be affected by losses of their closed forest enclaves and their habitat-specific or endemic species. Replacement by open vegetation and overall reductions are a considerable risk for closed forest, threatening Amazon and Atlantic forest biomes. Here, we evidence the impacts of climate change on Brazilian biomes, and draw attention to the necessity for management and attenuation plans to guarantee the future of Brazilian biodiversity.

  7. Modelling the influence of predicted future climate change on the risk of wind damage within New Zealand's planted forests.

    PubMed

    Moore, John R; Watt, Michael S

    2015-08-01

    Wind is the major abiotic disturbance in New Zealand's planted forests, but little is known about how the risk of wind damage may be affected by future climate change. We linked a mechanistic wind damage model (ForestGALES) to an empirical growth model for radiata pine (Pinus radiata D. Don) and a process-based growth model (cenw) to predict the risk of wind damage under different future emissions scenarios and assumptions about the future wind climate. The cenw model was used to estimate site productivity for constant CO2 concentration at 1990 values and for assumed increases in CO2 concentration from current values to those expected during 2040 and 2090 under the B1 (low), A1B (mid-range) and A2 (high) emission scenarios. Stand development was modelled for different levels of site productivity, contrasting silvicultural regimes and sites across New Zealand. The risk of wind damage was predicted for each regime and emission scenario combination using the ForestGALES model. The sensitivity to changes in the intensity of the future wind climate was also examined. Results showed that increased tree growth rates under the different emissions scenarios had the greatest impact on the risk of wind damage. The increase in risk was greatest for stands growing at high stand density under the A2 emissions scenario with increased CO2 concentration. The increased productivity under this scenario resulted in increased tree height, without a corresponding increase in diameter, leading to more slender trees that were predicted to be at greater risk from wind damage. The risk of wind damage was further increased by the modest increases in the extreme wind climate that are predicted to occur. These results have implications for the development of silvicultural regimes that are resilient to climate change and also indicate that future productivity gains may be offset by greater losses from disturbances. © 2015 John Wiley & Sons Ltd.

  8. Future Climate Change Will Favour Non-Specialist Mammals in the (Sub)Arctics

    PubMed Central

    Hof, Anouschka R.; Jansson, Roland; Nilsson, Christer

    2012-01-01

    Arctic and subarctic (i.e., [sub]arctic) ecosystems are predicted to be particularly susceptible to climate change. The area of tundra is expected to decrease and temperate climates will extend further north, affecting species inhabiting northern environments. Consequently, species at high latitudes should be especially susceptible to climate change, likely experiencing significant range contractions. Contrary to these expectations, our modelling of species distributions suggests that predicted climate change up to 2080 will favour most mammals presently inhabiting (sub)arctic Europe. Assuming full dispersal ability, most species will benefit from climate change, except for a few cold-climate specialists. However, most resident species will contract their ranges if they are not able to track their climatic niches, but no species is predicted to go extinct. If climate would change far beyond current predictions, however, species might disappear. The reason for the relative stability of mammalian presence might be that arctic regions have experienced large climatic shifts in the past, filtering out sensitive and range-restricted taxa. We also provide evidence that for most (sub)arctic mammals it is not climate change per se that will threaten them, but possible constraints on their dispersal ability and changes in community composition. Such impacts of future changes in species communities should receive more attention in literature. PMID:23285098

  9. Bayesian prediction of future ice sheet volume using local approximation Markov chain Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Davis, A. D.; Heimbach, P.; Marzouk, Y.

    2017-12-01

    We develop a Bayesian inverse modeling framework for predicting future ice sheet volume with associated formal uncertainty estimates. Marine ice sheets are drained by fast-flowing ice streams, which we simulate using a flowline model. Flowline models depend on geometric parameters (e.g., basal topography), parameterized physical processes (e.g., calving laws and basal sliding), and climate parameters (e.g., surface mass balance), most of which are unknown or uncertain. Given observations of ice surface velocity and thickness, we define a Bayesian posterior distribution over static parameters, such as basal topography. We also define a parameterized distribution over variable parameters, such as future surface mass balance, which we assume are not informed by the data. Hyperparameters are used to represent climate change scenarios, and sampling their distributions mimics internal variation. For example, a warming climate corresponds to increasing mean surface mass balance but an individual sample may have periods of increasing or decreasing surface mass balance. We characterize the predictive distribution of ice volume by evaluating the flowline model given samples from the posterior distribution and the distribution over variable parameters. Finally, we determine the effect of climate change on future ice sheet volume by investigating how changing the hyperparameters affects the predictive distribution. We use state-of-the-art Bayesian computation to address computational feasibility. Characterizing the posterior distribution (using Markov chain Monte Carlo), sampling the full range of variable parameters and evaluating the predictive model is prohibitively expensive. Furthermore, the required resolution of the inferred basal topography may be very high, which is often challenging for sampling methods. Instead, we leverage regularity in the predictive distribution to build a computationally cheaper surrogate over the low dimensional quantity of interest (future ice sheet volume). Continual surrogate refinement guarantees asymptotic sampling from the predictive distribution. Directly characterizing the predictive distribution in this way allows us to assess the ice sheet's sensitivity to climate variability and change.

  10. Distributional dynamics of a vulnerable species in response to past and future climate change: a window for conservation prospects

    PubMed Central

    Bai, Yunjun; Wei, Xueping

    2018-01-01

    Background The ongoing change in climate is predicted to exert unprecedented effects on Earth’s biodiversity at all levels of organization. Biological conservation is important to prevent biodiversity loss, especially for species facing a high risk of extinction. Understanding the past responses of species to climate change is helpful for revealing response mechanisms, which will contribute to the development of effective conservation strategies in the future. Methods In this study, we modelled the distributional dynamics of a ‘Vulnerable’ species, Pseudolarix amabilis, in response to late Quaternary glacial-interglacial cycles and future 2080 climate change using an ecological niche model (MaxEnt). We also performed migration vector analysis to reveal the potential migration of the population over time. Results Historical modelling indicates that the range dynamics of P. amabilis is highly sensitive to climate change and that its long-distance dispersal ability and potential for evolutionary adaption are limited. Compared to the current climatically suitable areas for this species, future modelling showed significant migration northward towards future potential climatically suitable areas. Discussion In combination with the predicted future distribution, the mechanism revealed by the historical response suggests that this species will not be able to fully occupy the future expanded areas of suitable climate or adapt to the unsuitable climate across the future contraction regions. As a result, we suggest assisted migration as an effective supplementary means of conserving this vulnerable species in the face of the unprecedentedly rapid climate change of the 21st century. As a study case, this work highlights the significance of introducing historical perspectives while researching species conservation, especially for currently vulnerable or endangered taxa that once had a wider distribution in geological time. PMID:29362700

  11. Distributional dynamics of a vulnerable species in response to past and future climate change: a window for conservation prospects.

    PubMed

    Bai, Yunjun; Wei, Xueping; Li, Xiaoqiang

    2018-01-01

    The ongoing change in climate is predicted to exert unprecedented effects on Earth's biodiversity at all levels of organization. Biological conservation is important to prevent biodiversity loss, especially for species facing a high risk of extinction. Understanding the past responses of species to climate change is helpful for revealing response mechanisms, which will contribute to the development of effective conservation strategies in the future. In this study, we modelled the distributional dynamics of a 'Vulnerable' species, Pseudolarix amabilis , in response to late Quaternary glacial-interglacial cycles and future 2080 climate change using an ecological niche model (MaxEnt). We also performed migration vector analysis to reveal the potential migration of the population over time. Historical modelling indicates that the range dynamics of P. amabilis is highly sensitive to climate change and that its long-distance dispersal ability and potential for evolutionary adaption are limited. Compared to the current climatically suitable areas for this species, future modelling showed significant migration northward towards future potential climatically suitable areas. In combination with the predicted future distribution, the mechanism revealed by the historical response suggests that this species will not be able to fully occupy the future expanded areas of suitable climate or adapt to the unsuitable climate across the future contraction regions. As a result, we suggest assisted migration as an effective supplementary means of conserving this vulnerable species in the face of the unprecedentedly rapid climate change of the 21st century. As a study case, this work highlights the significance of introducing historical perspectives while researching species conservation, especially for currently vulnerable or endangered taxa that once had a wider distribution in geological time.

  12. Recent ecological responses to climate change support predictions of high extinction risk

    PubMed Central

    Maclean, Ilya M. D.; Wilson, Robert J.

    2011-01-01

    Predicted effects of climate change include high extinction risk for many species, but confidence in these predictions is undermined by a perceived lack of empirical support. Many studies have now documented ecological responses to recent climate change, providing the opportunity to test whether the magnitude and nature of recent responses match predictions. Here, we perform a global and multitaxon metaanalysis to show that empirical evidence for the realized effects of climate change supports predictions of future extinction risk. We use International Union for Conservation of Nature (IUCN) Red List criteria as a common scale to estimate extinction risks from a wide range of climate impacts, ecological responses, and methods of analysis, and we compare predictions with observations. Mean extinction probability across studies making predictions of the future effects of climate change was 7% by 2100 compared with 15% based on observed responses. After taking account of possible bias in the type of climate change impact analyzed and the parts of the world and taxa studied, there was less discrepancy between the two approaches: predictions suggested a mean extinction probability of 10% across taxa and regions, whereas empirical evidence gave a mean probability of 14%. As well as mean overall extinction probability, observations also supported predictions in terms of variability in extinction risk and the relative risk associated with broad taxonomic groups and geographic regions. These results suggest that predictions are robust to methodological assumptions and provide strong empirical support for the assertion that anthropogenic climate change is now a major threat to global biodiversity. PMID:21746924

  13. Recent ecological responses to climate change support predictions of high extinction risk.

    PubMed

    Maclean, Ilya M D; Wilson, Robert J

    2011-07-26

    Predicted effects of climate change include high extinction risk for many species, but confidence in these predictions is undermined by a perceived lack of empirical support. Many studies have now documented ecological responses to recent climate change, providing the opportunity to test whether the magnitude and nature of recent responses match predictions. Here, we perform a global and multitaxon metaanalysis to show that empirical evidence for the realized effects of climate change supports predictions of future extinction risk. We use International Union for Conservation of Nature (IUCN) Red List criteria as a common scale to estimate extinction risks from a wide range of climate impacts, ecological responses, and methods of analysis, and we compare predictions with observations. Mean extinction probability across studies making predictions of the future effects of climate change was 7% by 2100 compared with 15% based on observed responses. After taking account of possible bias in the type of climate change impact analyzed and the parts of the world and taxa studied, there was less discrepancy between the two approaches: predictions suggested a mean extinction probability of 10% across taxa and regions, whereas empirical evidence gave a mean probability of 14%. As well as mean overall extinction probability, observations also supported predictions in terms of variability in extinction risk and the relative risk associated with broad taxonomic groups and geographic regions. These results suggest that predictions are robust to methodological assumptions and provide strong empirical support for the assertion that anthropogenic climate change is now a major threat to global biodiversity.

  14. Climate, ecosystems, and planetary futures: The challenge to predict life in Earth system models.

    PubMed

    Bonan, Gordon B; Doney, Scott C

    2018-02-02

    Many global change stresses on terrestrial and marine ecosystems affect not only ecosystem services that are essential to humankind, but also the trajectory of future climate by altering energy and mass exchanges with the atmosphere. Earth system models, which simulate terrestrial and marine ecosystems and biogeochemical cycles, offer a common framework for ecological research related to climate processes; analyses of vulnerability, impacts, and adaptation; and climate change mitigation. They provide an opportunity to move beyond physical descriptors of atmospheric and oceanic states to societally relevant quantities such as wildfire risk, habitat loss, water availability, and crop, fishery, and timber yields. To achieve this, the science of climate prediction must be extended to a more multifaceted Earth system prediction that includes the biosphere and its resources. Copyright © 2018, American Association for the Advancement of Science.

  15. Impacts of Considering Climate Variability on Investment Decisions in Ethiopia

    NASA Astrophysics Data System (ADS)

    Strzepek, K.; Block, P.; Rosegrant, M.; Diao, X.

    2005-12-01

    In Ethiopia, climate extremes, inducing droughts or floods, are not unusual. Monitoring the effects of these extremes, and climate variability in general, is critical for economic prediction and assessment of the country's future welfare. The focus of this study involves adding climate variability to a deterministic, mean climate-driven agro-economic model, in an attempt to understand its effects and degree of influence on general economic prediction indicators for Ethiopia. Four simulations are examined, including a baseline simulation and three investment strategies: simulations of irrigation investment, roads investment, and a combination investment of both irrigation and roads. The deterministic model is transformed into a stochastic model by dynamically adding year-to-year climate variability through climate-yield factors. Nine sets of actual, historic, variable climate data are individually assembled and implemented into the 12-year stochastic model simulation, producing an ensemble of economic prediction indicators. This ensemble allows for a probabilistic approach to planning and policy making, allowing decision makers to consider risk. The economic indicators from the deterministic and stochastic approaches, including rates of return to investments, are significantly different. The predictions of the deterministic model appreciably overestimate the future welfare of Ethiopia; the predictions of the stochastic model, utilizing actual climate data, tend to give a better semblance of what may be expected. Inclusion of climate variability is vital for proper analysis of the predictor values from this agro-economic model.

  16. Regional analysis of drought and heat impacts on forests: current and future science directions.

    PubMed

    Law, Beverly E

    2014-12-01

    Accurate assessments of forest response to current and future climate and human actions are needed at regional scales. Predicting future impacts on forests will require improved analysis of species-level adaptation, resilience, and vulnerability to mortality. Land system models can be enhanced by creating trait-based groupings of species that better represent climate sensitivity, such as risk of hydraulic failure from drought. This emphasizes the need for more coordinated in situ and remote sensing observations to track changes in ecosystem function, and to improve model inputs, spatio-temporal diagnosis, and predictions of future conditions, including implications of actions to mitigate climate change. © 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  17. The impact of future climate on historic interiors.

    PubMed

    Lankester, Paul; Brimblecombe, Peter

    2012-02-15

    The socio-economic significance of climate change is widely recognised. However, its potential to affect our cultural heritage has not been discussed in detail (i.e. not explicit in IPCC 4) even though the cultural impacts of future outdoor climate have been the focus of some European Commission projects (e.g. NOAH'S ARK) and World Heritage Centre reports. Recently there have been a few projects that have examined the changing environmental threats to tangible heritage indoors (e.g. Preparing Historic Collections for Climate Change and Climate for Culture). Here we predict future indoor temperature and humidity, and damage arising from changes to climate in historic rooms in Southern England with little climate control, using simple building simulations coupled with high resolution (~5 km) climate predictions. The calculations suggest an increase in indoor temperature over the next century that is slightly less than that outdoors. Annual relative humidity shows little change, but the seasonal cycles suggest drier summers and slightly damper winters indoors. Damage from mould growth and pests is likely to increase in the future, while humidity driven dimensional change to materials (e.g. wood) should decrease somewhat. The results allow collection managers to prepare for the impact of long-term climate change, putting strategic measures in place to prevent increased damage, and thus preserve our heritage for future generations. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Contrasted demographic responses facing future climate change in Southern Ocean seabirds.

    PubMed

    Barbraud, Christophe; Rivalan, Philippe; Inchausti, Pablo; Nevoux, Marie; Rolland, Virginie; Weimerskirch, Henri

    2011-01-01

    1. Recent climate change has affected a wide range of species, but predicting population responses to projected climate change using population dynamics theory and models remains challenging, and very few attempts have been made. The Southern Ocean sea surface temperature and sea ice extent are projected to warm and shrink as concentrations of atmospheric greenhouse gases increase, and several top predator species are affected by fluctuations in these oceanographic variables. 2. We compared and projected the population responses of three seabird species living in sub-tropical, sub-Antarctic and Antarctic biomes to predicted climate change over the next 50 years. Using stochastic population models we combined long-term demographic datasets and projections of sea surface temperature and sea ice extent for three different IPCC emission scenarios (from most to least severe: A1B, A2, B1) from general circulation models of Earth's climate. 3. We found that climate mostly affected the probability to breed successfully, and in one case adult survival. Interestingly, frequent nonlinear relationships in demographic responses to climate were detected. Models forced by future predicted climatic change provided contrasted population responses depending on the species considered. The northernmost distributed species was predicted to be little affected by a future warming of the Southern Ocean, whereas steep declines were projected for the more southerly distributed species due to sea surface temperature warming and decrease in sea ice extent. For the most southerly distributed species, the A1B and B1 emission scenarios were respectively the most and less damaging. For the two other species, population responses were similar for all emission scenarios. 4. This is among the first attempts to study the demographic responses for several populations with contrasted environmental conditions, which illustrates that investigating the effects of climate change on core population dynamics is feasible for different populations using a common methodological framework. Our approach was limited to single populations and have neglected population settlement in new favourable habitats or changes in inter-specific relations as a potential response to future climate change. Predictions may be enhanced by merging demographic population models and climatic envelope models. © 2010 The Authors. Journal compilation © 2010 British Ecological Society.

  19. Ecological genomics predicts climate vulnerability in an endangered southwestern songbird.

    PubMed

    Ruegg, Kristen; Bay, Rachael A; Anderson, Eric C; Saracco, James F; Harrigan, Ryan J; Whitfield, Mary; Paxton, Eben H; Smith, Thomas B

    2018-05-09

    Few regions have been more severely impacted by climate change in the USA than the Desert Southwest. Here, we use ecological genomics to assess the potential for adaptation to rising global temperatures in a widespread songbird, the willow flycatcher (Empidonax traillii), and find the endangered desert southwestern subspecies (E. t. extimus) most vulnerable to future climate change. Highly significant correlations between present abundance and estimates of genomic vulnerability - the mismatch between current and predicted future genotype-environment relationships - indicate small, fragmented populations of the southwestern willow flycatcher will have to adapt most to keep pace with climate change. Links between climate-associated genotypes and genes important to thermal tolerance in birds provide a potential mechanism for adaptation to temperature extremes. Our results demonstrate that the incorporation of genotype-environment relationships into landscape-scale models of climate vulnerability can facilitate more precise predictions of climate impacts and help guide conservation in threatened and endangered groups. © 2018 John Wiley & Sons Ltd/CNRS.

  20. Habitat availability and gene flow influence diverging local population trajectories under scenarios of climate change: a place-based approach.

    PubMed

    Schwalm, Donelle; Epps, Clinton W; Rodhouse, Thomas J; Monahan, William B; Castillo, Jessica A; Ray, Chris; Jeffress, Mackenzie R

    2016-04-01

    Ecological niche theory holds that species distributions are shaped by a large and complex suite of interacting factors. Species distribution models (SDMs) are increasingly used to describe species' niches and predict the effects of future environmental change, including climate change. Currently, SDMs often fail to capture the complexity of species' niches, resulting in predictions that are generally limited to climate-occupancy interactions. Here, we explore the potential impact of climate change on the American pika using a replicated place-based approach that incorporates climate, gene flow, habitat configuration, and microhabitat complexity into SDMs. Using contemporary presence-absence data from occupancy surveys, genetic data to infer connectivity between habitat patches, and 21 environmental niche variables, we built separate SDMs for pika populations inhabiting eight US National Park Service units representing the habitat and climatic breadth of the species across the western United States. We then predicted occurrence probability under current (1981-2010) and three future time periods (out to 2100). Occurrence probabilities and the relative importance of predictor variables varied widely among study areas, revealing important local-scale differences in the realized niche of the American pika. This variation resulted in diverse and - in some cases - highly divergent future potential occupancy patterns for pikas, ranging from complete extirpation in some study areas to stable occupancy patterns in others. Habitat composition and connectivity, which are rarely incorporated in SDM projections, were influential in predicting pika occupancy in all study areas and frequently outranked climate variables. Our findings illustrate the importance of a place-based approach to species distribution modeling that includes fine-scale factors when assessing current and future climate impacts on species' distributions, especially when predictions are intended to manage and conserve species of concern within individual protected areas. © 2015 John Wiley & Sons Ltd.

  1. Climate Change and Crop Exposure to Adverse Weather: Changes to Frost Risk and Grapevine Flowering Conditions.

    PubMed

    Mosedale, Jonathan R; Wilson, Robert J; Maclean, Ilya M D

    2015-01-01

    The cultivation of grapevines in the UK and many other cool climate regions is expected to benefit from the higher growing season temperatures predicted under future climate scenarios. Yet the effects of climate change on the risk of adverse weather conditions or events at key stages of crop development are not always captured by aggregated measures of seasonal or yearly climates, or by downscaling techniques that assume climate variability will remain unchanged under future scenarios. Using fine resolution projections of future climate scenarios for south-west England and grapevine phenology models we explore how risks to cool-climate vineyard harvests vary under future climate conditions. Results indicate that the risk of adverse conditions during flowering declines under all future climate scenarios. In contrast, the risk of late spring frosts increases under many future climate projections due to advancement in the timing of budbreak. Estimates of frost risk, however, were highly sensitive to the choice of phenology model, and future frost exposure declined when budbreak was calculated using models that included a winter chill requirement for dormancy break. The lack of robust phenological models is a major source of uncertainty concerning the impacts of future climate change on the development of cool-climate viticulture in historically marginal climatic regions.

  2. Climate Change and Crop Exposure to Adverse Weather: Changes to Frost Risk and Grapevine Flowering Conditions

    PubMed Central

    Mosedale, Jonathan R.; Wilson, Robert J.; Maclean, Ilya M. D.

    2015-01-01

    The cultivation of grapevines in the UK and many other cool climate regions is expected to benefit from the higher growing season temperatures predicted under future climate scenarios. Yet the effects of climate change on the risk of adverse weather conditions or events at key stages of crop development are not always captured by aggregated measures of seasonal or yearly climates, or by downscaling techniques that assume climate variability will remain unchanged under future scenarios. Using fine resolution projections of future climate scenarios for south-west England and grapevine phenology models we explore how risks to cool-climate vineyard harvests vary under future climate conditions. Results indicate that the risk of adverse conditions during flowering declines under all future climate scenarios. In contrast, the risk of late spring frosts increases under many future climate projections due to advancement in the timing of budbreak. Estimates of frost risk, however, were highly sensitive to the choice of phenology model, and future frost exposure declined when budbreak was calculated using models that included a winter chill requirement for dormancy break. The lack of robust phenological models is a major source of uncertainty concerning the impacts of future climate change on the development of cool-climate viticulture in historically marginal climatic regions. PMID:26496127

  3. The ice-core record - Climate sensitivity and future greenhouse warming

    NASA Technical Reports Server (NTRS)

    Lorius, C.; Raynaud, D.; Jouzel, J.; Hansen, J.; Le Treut, H.

    1990-01-01

    The prediction of future greenhouse-gas-warming depends critically on the sensitivity of earth's climate to increasing atmospheric concentrations of these gases. Data from cores drilled in polar ice sheets show a remarkable correlation between past glacial-interglacial temperature changes and the inferred atmospheric concentration of gases such as carbon dioxide and methane. These and other palaeoclimate data are used to assess the role of greenhouse gases in explaining past global climate change, and the validity of models predicting the effect of increasing concentrations of such gases in the atmosphere.

  4. Past and ongoing shifts in Joshua tree distribution support future modeled range contraction

    USGS Publications Warehouse

    Cole, Kenneth L.; Ironside, Kirsten; Eischeid, Jon K.; Garfin, Gregg; Duffy, Phil; Toney, Chris

    2011-01-01

    The future distribution of the Joshua tree (Yucca brevifolia) is projected by combining a geostatistical analysis of 20th-century climates over its current range, future modeled climates, and paleoecological data showing its response to a past similar climate change. As climate rapidly warmed ;11 700 years ago, the range of Joshua tree contracted, leaving only the populations near what had been its northernmost limit. Its ability to spread northward into new suitable habitats after this time may have been inhibited by the somewhat earlier extinction of megafaunal dispersers, especially the Shasta ground sloth. We applied a model of climate suitability for Joshua tree, developed from its 20th-century range and climates, to future climates modeled through a set of six individual general circulation models (GCM) and one suite of 22 models for the late 21st century. All distribution data, observed climate data, and future GCM results were scaled to spatial grids of ;1 km and ;4 km in order to facilitate application within this topographically complex region. All of the models project the future elimination of Joshua tree throughout most of the southern portions of its current range. Although estimates of future monthly precipitation differ between the models, these changes are outweighed by large increases in temperature common to all the models. Only a few populations within the current range are predicted to be sustainable. Several models project significant potential future expansion into new areas beyond the current range, but the species' Historical and current rates of dispersal would seem to prevent natural expansion into these new areas. Several areas are predicted to be potential sites for relocation/ assisted migration. This project demonstrates how information from paleoecology and modern ecology can be integrated in order to understand ongoing processes and future distributions.

  5. Towards a predictive understanding of belowground process responses to climate change: have we moved any closer?

    Treesearch

    Elise Pendall; Lindsey Rustad; Josh Schimel

    2008-01-01

    Belowground processes, including root production and exudation, microbial activity and community dynamics, and biogeochemical cycling interact to help regulate climate change. Feedbacks associated with these processes, such as warming-enhanced decomposition rates, give rise to major uncertainties in predictions of future climate. Uncertainties associated with these...

  6. Modelling climate change effects on Atlantic salmon: Implications for mitigation in regulated rivers.

    PubMed

    Sundt-Hansen, L E; Hedger, R D; Ugedal, O; Diserud, O H; Finstad, A G; Sauterleute, J F; Tøfte, L; Alfredsen, K; Forseth, T

    2018-08-01

    Climate change is expected to alter future temperature and discharge regimes of rivers. These regimes have a strong influence on the life history of most aquatic river species, and are key variables controlling the growth and survival of Atlantic salmon. This study explores how the future abundance of Atlantic salmon may be influenced by climate-induced changes in water temperature and discharge in a regulated river, and investigates how negative impacts in the future can be mitigated by applying different regulated discharge regimes during critical periods for salmon survival. A spatially explicit individual-based model was used to predict juvenile Atlantic salmon population abundance in a regulated river under a range of future water temperature and discharge scenarios (derived from climate data predicted by the Hadley Centre's Global Climate Model (GCM) HadAm3H and the Max Plank Institute's GCM ECHAM4), which were then compared with populations predicted under control scenarios representing past conditions. Parr abundance decreased in all future scenarios compared to the control scenarios due to reduced wetted areas (with the effect depending on climate scenario, GCM, and GCM spatial domain). To examine the potential for mitigation of climate change-induced reductions in wetted area, simulations were run with specific minimum discharge regimes. An increase in abundance of both parr and smolt occurred with an increase in the limit of minimum permitted discharge for three of the four GCM/GCM spatial domains examined. This study shows that, in regulated rivers with upstream storage capacity, negative effects of climate change on Atlantic salmon populations can potentially be mitigated by release of water from reservoirs during critical periods for juvenile salmon. Copyright © 2018. Published by Elsevier B.V.

  7. PREDICTING CLIMATE-INDUCED RANGE SHIFTS: MODEL DIFFERENCES AND MODEL RELIABILITY

    EPA Science Inventory

    Predicted changes in the global climate are likely to cause large shifts in the geographic ranges of many plant and animal species. To date, predictions of future range shifts have relied on a variety of modeling approaches with different levels of model accuracy. Using a common ...

  8. Future distribution of tundra refugia in northern Alaska

    USGS Publications Warehouse

    Hope, Andrew G.; Waltari, Eric; Payer, David C.; Cook, Joseph A.; Talbot, Sandra L.

    2013-01-01

    Climate change in the Arctic is a growing concern for natural resource conservation and management as a result of accelerated warming and associated shifts in the distribution and abundance of northern species. We introduce a predictive framework for assessing the future extent of Arctic tundra and boreal biomes in northern Alaska. We use geo-referenced museum specimens to predict the velocity of distributional change into the next century and compare predicted tundra refugial areas with current land-use. The reliability of predicted distributions, including differences between fundamental and realized niches, for two groups of species is strengthened by fossils and genetic signatures of demographic shifts. Evolutionary responses to environmental change through the late Quaternary are generally consistent with past distribution models. Predicted future refugia overlap managed areas and indicate potential hotspots for tundra diversity. To effectively assess future refugia, variable responses among closely related species to climate change warrants careful consideration of both evolutionary and ecological histories.

  9. North American vegetation model for land-use planning in a changing climate: A solution to large classification problems

    Treesearch

    Gerald E. Rehfeldt; Nicholas L. Crookston; Cuauhtemoc Saenz-Romero; Elizabeth M. Campbell

    2012-01-01

    Data points intensively sampling 46 North American biomes were used to predict the geographic distribution of biomes from climate variables using the Random Forests classification tree. Techniques were incorporated to accommodate a large number of classes and to predict the future occurrence of climates beyond the contemporary climatic range of the biomes. Errors of...

  10. Simulating Climate Change in Ireland

    NASA Astrophysics Data System (ADS)

    Nolan, P.; Lynch, P.

    2012-04-01

    At the Meteorology & Climate Centre at University College Dublin, we are using the CLM-Community's COSMO-CLM Regional Climate Model (RCM) and the WRF RCM (developed at NCAR) to simulate the climate of Ireland at high spatial resolution. To address the issue of model uncertainty, a Multi-Model Ensemble (MME) approach is used. The ensemble method uses different RCMs, driven by several Global Climate Models (GCMs), to simulate climate change. Through the MME approach, the uncertainty in the RCM projections is quantified, enabling us to estimate the probability density function of predicted changes, and providing a measure of confidence in the predictions. The RCMs were validated by performing a 20-year simulation of the Irish climate (1981-2000), driven by ECMWF ERA-40 global re-analysis data, and comparing the output to observations. Results confirm that the output of the RCMs exhibit reasonable and realistic features as documented in the historical data record. Projections for the future Irish climate were generated by downscaling the Max Planck Institute's ECHAM5 GCM, the UK Met Office HadGEM2-ES GCM and the CGCM3.1 GCM from the Canadian Centre for Climate Modelling. Simulations were run for a reference period 1961-2000 and future period 2021-2060. The future climate was simulated using the A1B, A2, B1, RCP 4.5 & RCP 8.5 greenhouse gas emission scenarios. Results for the downscaled simulations show a substantial overall increase in precipitation and wind speed for the future winter months and a decrease during the summer months. The predicted annual change in temperature is approximately 1.1°C over Ireland. To date, all RCM projections are in general agreement, thus increasing our confidence in the robustness of the results.

  11. Predicting climate change impacts on polar bear litter size.

    PubMed

    Molnár, Péter K; Derocher, Andrew E; Klanjscek, Tin; Lewis, Mark A

    2011-02-08

    Predicting the ecological impacts of climate warming is critical for species conservation. Incorporating future warming into population models, however, is challenging because reproduction and survival cannot be measured for yet unobserved environmental conditions. In this study, we use mechanistic energy budget models and data obtainable under current conditions to predict polar bear litter size under future conditions. In western Hudson Bay, we predict climate warming-induced litter size declines that jeopardize population viability: ∼28% of pregnant females failed to reproduce for energetic reasons during the early 1990s, but 40-73% could fail if spring sea ice break-up occurs 1 month earlier than during the 1990s, and 55-100% if break-up occurs 2 months earlier. Simultaneously, mean litter size would decrease by 22-67% and 44-100%, respectively. The expected timeline for these declines varies with climate-model-specific sea ice predictions. Similar litter size declines may occur in over one-third of the global polar bear population.

  12. Predicting climate change impacts on polar bear litter size

    PubMed Central

    Molnár, Péter K.; Derocher, Andrew E.; Klanjscek, Tin; Lewis, Mark A.

    2011-01-01

    Predicting the ecological impacts of climate warming is critical for species conservation. Incorporating future warming into population models, however, is challenging because reproduction and survival cannot be measured for yet unobserved environmental conditions. In this study, we use mechanistic energy budget models and data obtainable under current conditions to predict polar bear litter size under future conditions. In western Hudson Bay, we predict climate warming-induced litter size declines that jeopardize population viability: ∼28% of pregnant females failed to reproduce for energetic reasons during the early 1990s, but 40–73% could fail if spring sea ice break-up occurs 1 month earlier than during the 1990s, and 55–100% if break-up occurs 2 months earlier. Simultaneously, mean litter size would decrease by 22–67% and 44–100%, respectively. The expected timeline for these declines varies with climate-model-specific sea ice predictions. Similar litter size declines may occur in over one-third of the global polar bear population. PMID:21304515

  13. Impact of Climate Change on Potential Distribution of Chinese Caterpillar Fungus (Ophiocordyceps sinensis) in Nepal Himalaya

    PubMed Central

    Shrestha, Uttam Babu; Bawa, Kamaljit S.

    2014-01-01

    Climate change has already impacted ecosystems and species and substantial impacts of climate change in the future are expected. Species distribution modeling is widely used to map the current potential distribution of species as well as to model the impact of future climate change on distribution of species. Mapping current distribution is useful for conservation planning and understanding the change in distribution impacted by climate change is important for mitigation of future biodiversity losses. However, the current distribution of Chinese caterpillar fungus, a flagship species of the Himalaya with very high economic value, is unknown. Nor do we know the potential changes in suitable habitat of Chinese caterpillar fungus caused by future climate change. We used MaxEnt modeling to predict current distribution and changes in the future distributions of Chinese caterpillar fungus in three future climate change trajectories based on representative concentration pathways (RCPs: RCP 2.6, RCP 4.5, and RCP 6.0) in three different time periods (2030, 2050, and 2070) using species occurrence points, bioclimatic variables, and altitude. About 6.02% (8,989 km2) area of the Nepal Himalaya is suitable for Chinese caterpillar fungus habitat. Our model showed that across all future climate change trajectories over three different time periods, the area of predicted suitable habitat of Chinese caterpillar fungus would expand, with 0.11–4.87% expansion over current suitable habitat. Depending upon the representative concentration pathways, we observed both increase and decrease in average elevation of the suitable habitat range of the species. PMID:25180515

  14. Impact of climate change on potential distribution of Chinese caterpillar fungus (Ophiocordyceps sinensis) in Nepal Himalaya.

    PubMed

    Shrestha, Uttam Babu; Bawa, Kamaljit S

    2014-01-01

    Climate change has already impacted ecosystems and species and substantial impacts of climate change in the future are expected. Species distribution modeling is widely used to map the current potential distribution of species as well as to model the impact of future climate change on distribution of species. Mapping current distribution is useful for conservation planning and understanding the change in distribution impacted by climate change is important for mitigation of future biodiversity losses. However, the current distribution of Chinese caterpillar fungus, a flagship species of the Himalaya with very high economic value, is unknown. Nor do we know the potential changes in suitable habitat of Chinese caterpillar fungus caused by future climate change. We used MaxEnt modeling to predict current distribution and changes in the future distributions of Chinese caterpillar fungus in three future climate change trajectories based on representative concentration pathways (RCPs: RCP 2.6, RCP 4.5, and RCP 6.0) in three different time periods (2030, 2050, and 2070) using species occurrence points, bioclimatic variables, and altitude. About 6.02% (8,989 km2) area of the Nepal Himalaya is suitable for Chinese caterpillar fungus habitat. Our model showed that across all future climate change trajectories over three different time periods, the area of predicted suitable habitat of Chinese caterpillar fungus would expand, with 0.11-4.87% expansion over current suitable habitat. Depending upon the representative concentration pathways, we observed both increase and decrease in average elevation of the suitable habitat range of the species.

  15. The fate of threatened coastal dune habitats in Italy under climate change scenarios.

    PubMed

    Prisco, Irene; Carboni, Marta; Acosta, Alicia T R

    2013-01-01

    Coastal dunes worldwide harbor threatened habitats characterized by high diversity in terms of plant communities. In Italy, recent assessments have highlighted the insufficient state of conservation of these habitats as defined by the EU Habitats Directive. The effects of predicted climate change could have dramatic consequences for coastal environments in the near future. An assessment of the efficacy of protection measures under climate change is thus a priority. Here, we have developed environmental envelope models for the most widespread dune habitats in Italy, following two complementary approaches: an "indirect" plant-species-based one and a simple "direct" one. We analyzed how habitats distribution will be altered under the effects of two climate change scenarios and evaluated if the current Italian network of protected areas will be effective in the future after distribution shifts. While modeling dune habitats with the "direct" approach was unsatisfactory, "indirect" models had a good predictive performance, highlighting the importance of using species' responses to climate change for modeling these habitats. The results showed that habitats closer to the sea may even increase their geographical distribution in the near future. The transition dune habitat is projected to remain stable, although mobile and fixed dune habitats are projected to lose most of their actual geographical distribution, the latter being more sensitive to climate change effects. Gap analysis highlighted that the habitats' distribution is currently adequately covered by protected areas, achieving the conservation target. However, according to predictions, protection level for mobile and fixed dune habitats is predicted to drop drastically under the climate change scenarios which we examined. Our results provide useful insights for setting management priorities and better addressing conservation efforts to preserve these threatened habitats in future.

  16. The Fate of Threatened Coastal Dune Habitats in Italy under Climate Change Scenarios

    PubMed Central

    Prisco, Irene; Carboni, Marta; Acosta, Alicia T. R.

    2013-01-01

    Coastal dunes worldwide harbor threatened habitats characterized by high diversity in terms of plant communities. In Italy, recent assessments have highlighted the insufficient state of conservation of these habitats as defined by the EU Habitats Directive. The effects of predicted climate change could have dramatic consequences for coastal environments in the near future. An assessment of the efficacy of protection measures under climate change is thus a priority. Here, we have developed environmental envelope models for the most widespread dune habitats in Italy, following two complementary approaches: an “indirect” plant-species-based one and a simple “direct” one. We analyzed how habitats distribution will be altered under the effects of two climate change scenarios and evaluated if the current Italian network of protected areas will be effective in the future after distribution shifts. While modeling dune habitats with the “direct” approach was unsatisfactory, “indirect” models had a good predictive performance, highlighting the importance of using species’ responses to climate change for modeling these habitats. The results showed that habitats closer to the sea may even increase their geographical distribution in the near future. The transition dune habitat is projected to remain stable, although mobile and fixed dune habitats are projected to lose most of their actual geographical distribution, the latter being more sensitive to climate change effects. Gap analysis highlighted that the habitats’ distribution is currently adequately covered by protected areas, achieving the conservation target. However, according to predictions, protection level for mobile and fixed dune habitats is predicted to drop drastically under the climate change scenarios which we examined. Our results provide useful insights for setting management priorities and better addressing conservation efforts to preserve these threatened habitats in future. PMID:23874787

  17. Ensemble Prediction of Tropical Cyclone Genesis

    DTIC Science & Technology

    2017-02-23

    future changes in tropical cyclone (TC) activity around the Hawaiian Islands are investigated using the state-of-the-art climate models1–3. We find that...future warmer climate . This is in contrast to the NA, where BDI increases for all dynamic variables investigated while it shows little change for...Li, and A. Kitoh, 2013: Projected future increase in tropical cyclones near Hawaii. Nature Climate Change , 3, 749-754, doi:10.1038/nclimate1890

  18. Sensitivity of river fishes to climate change: The role of hydrological stressors on habitat range shifts.

    PubMed

    Segurado, Pedro; Branco, Paulo; Jauch, Eduardo; Neves, Ramiro; Ferreira, M Teresa

    2016-08-15

    Climate change will predictably change hydrological patterns and processes at the catchment scale, with impacts on habitat conditions for fish. The main goal of this study is to assess how shifts in fish habitat favourability under climate change scenarios are affected by hydrological stressors. The interplay between climate and hydrological stressors has important implications in river management under climate change because management actions to control hydrological parameters are more feasible than controlling climate. This study was carried out in the Tamega catchment of the Douro basin. A set of hydrological stressor variables were generated through a process-based modelling based on current climate data (2008-2014) and also considering a high-end future climate change scenario. The resulting parameters, along with climatic and site-descriptor variables were used as explanatory variables in empirical habitat models for nine fish species using boosted regression trees. Models were calibrated for the whole Douro basin using 254 fish sampling sites and predictions under future climate change scenarios were made for the Tamega catchment. Results show that models using climatic variables but not hydrological stressors produce more stringent predictions of future favourability, predicting more distribution contractions or stronger range shifts. The use of hydrological stressors strongly influences projections of habitat favourability shifts; the integration of these stressors in the models thinned shifts in range due to climate change. Hydrological stressors were retained in the models for most species and had a high importance, demonstrating that it is important to integrate hydrology in studies of impacts of climate change on freshwater fishes. This is a relevant result because it means that management actions to control hydrological parameters in rivers will have an impact on the effects of climate change and may potentially be helpful to mitigate its negative effects on fish populations and assemblages. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Model and Scenario Variations in Predicted Number of Generations of Spodoptera litura Fab. on Peanut during Future Climate Change Scenario

    PubMed Central

    Srinivasa Rao, Mathukumalli; Swathi, Pettem; Rama Rao, Chitiprolu Anantha; Rao, K. V.; Raju, B. M. K.; Srinivas, Karlapudi; Manimanjari, Dammu; Maheswari, Mandapaka

    2015-01-01

    The present study features the estimation of number of generations of tobacco caterpillar, Spodoptera litura. Fab. on peanut crop at six locations in India using MarkSim, which provides General Circulation Model (GCM) of future data on daily maximum (T.max), minimum (T.min) air temperatures from six models viz., BCCR-BCM2.0, CNRM-CM3, CSIRO-Mk3.5, ECHams5, INCM-CM3.0 and MIROC3.2 along with an ensemble of the six from three emission scenarios (A2, A1B and B1). This data was used to predict the future pest scenarios following the growing degree days approach in four different climate periods viz., Baseline-1975, Near future (NF) -2020, Distant future (DF)-2050 and Very Distant future (VDF)—2080. It is predicted that more generations would occur during the three future climate periods with significant variation among scenarios and models. Among the seven models, 1–2 additional generations were predicted during DF and VDF due to higher future temperatures in CNRM-CM3, ECHams5 & CSIRO-Mk3.5 models. The temperature projections of these models indicated that the generation time would decrease by 18–22% over baseline. Analysis of variance (ANOVA) was used to partition the variation in the predicted number of generations and generation time of S. litura on peanut during crop season. Geographical location explained 34% of the total variation in number of generations, followed by time period (26%), model (1.74%) and scenario (0.74%). The remaining 14% of the variation was explained by interactions. Increased number of generations and reduction of generation time across the six peanut growing locations of India suggest that the incidence of S. litura may increase due to projected increase in temperatures in future climate change periods. PMID:25671564

  20. Climate downscaling effects on predictive ecological models: a case study for threatened and endangered vertebrates in the southeastern United States

    USGS Publications Warehouse

    Bucklin, David N.; Watling, James I.; Speroterra, Carolina; Brandt, Laura A.; Mazzotti, Frank J.; Romañach, Stephanie S.

    2013-01-01

    High-resolution (downscaled) projections of future climate conditions are critical inputs to a wide variety of ecological and socioeconomic models and are created using numerous different approaches. Here, we conduct a sensitivity analysis of spatial predictions from climate envelope models for threatened and endangered vertebrates in the southeastern United States to determine whether two different downscaling approaches (with and without the use of a regional climate model) affect climate envelope model predictions when all other sources of variation are held constant. We found that prediction maps differed spatially between downscaling approaches and that the variation attributable to downscaling technique was comparable to variation between maps generated using different general circulation models (GCMs). Precipitation variables tended to show greater discrepancies between downscaling techniques than temperature variables, and for one GCM, there was evidence that more poorly resolved precipitation variables contributed relatively more to model uncertainty than more well-resolved variables. Our work suggests that ecological modelers requiring high-resolution climate projections should carefully consider the type of downscaling applied to the climate projections prior to their use in predictive ecological modeling. The uncertainty associated with alternative downscaling methods may rival that of other, more widely appreciated sources of variation, such as the general circulation model or emissions scenario with which future climate projections are created.

  1. Ocean Modeling and Visualization on Massively Parallel Computer

    NASA Technical Reports Server (NTRS)

    Chao, Yi; Li, P. Peggy; Wang, Ping; Katz, Daniel S.; Cheng, Benny N.

    1997-01-01

    Climate modeling is one of the grand challenges of computational science, and ocean modeling plays an important role in both understanding the current climatic conditions and predicting future climate change.

  2. Major challenges for correlational ecological niche model projections to future climate conditions.

    PubMed

    Peterson, A Townsend; Cobos, Marlon E; Jiménez-García, Daniel

    2018-06-20

    Species-level forecasts of distributional potential and likely distributional shifts, in the face of changing climates, have become popular in the literature in the past 20 years. Many refinements have been made to the methodology over the years, and the result has been an approach that considers multiple sources of variation in geographic predictions, and how that variation translates into both specific predictions and uncertainty in those predictions. Although numerous previous reviews and overviews of this field have pointed out a series of assumptions and caveats associated with the methodology, three aspects of the methodology have important impacts but have not been treated previously in detail. Here, we assess those three aspects: (1) effects of niche truncation on model transfers to future climate conditions, (2) effects of model selection procedures on future-climate transfers of ecological niche models, and (3) relative contributions of several factors (replicate samples of point data, general circulation models, representative concentration pathways, and alternative model parameterizations) to overall variance in model outcomes. Overall, the view is one of caution: although resulting predictions are fascinating and attractive, this paradigm has pitfalls that may bias and limit confidence in niche model outputs as regards the implications of climate change for species' geographic distributions. © 2018 New York Academy of Sciences.

  3. Characterizing bias correction uncertainty in wheat yield predictions

    NASA Astrophysics Data System (ADS)

    Ortiz, Andrea Monica; Jones, Julie; Freckleton, Robert; Scaife, Adam

    2017-04-01

    Farming systems are under increased pressure due to current and future climate change, variability and extremes. Research on the impacts of climate change on crop production typically rely on the output of complex Global and Regional Climate Models, which are used as input to crop impact models. Yield predictions from these top-down approaches can have high uncertainty for several reasons, including diverse model construction and parameterization, future emissions scenarios, and inherent or response uncertainty. These uncertainties propagate down each step of the 'cascade of uncertainty' that flows from climate input to impact predictions, leading to yield predictions that may be too complex for their intended use in practical adaptation options. In addition to uncertainty from impact models, uncertainty can also stem from the intermediate steps that are used in impact studies to adjust climate model simulations to become more realistic when compared to observations, or to correct the spatial or temporal resolution of climate simulations, which are often not directly applicable as input into impact models. These important steps of bias correction or calibration also add uncertainty to final yield predictions, given the various approaches that exist to correct climate model simulations. In order to address how much uncertainty the choice of bias correction method can add to yield predictions, we use several evaluation runs from Regional Climate Models from the Coordinated Regional Downscaling Experiment over Europe (EURO-CORDEX) at different resolutions together with different bias correction methods (linear and variance scaling, power transformation, quantile-quantile mapping) as input to a statistical crop model for wheat, a staple European food crop. The objective of our work is to compare the resulting simulation-driven hindcasted wheat yields to climate observation-driven wheat yield hindcasts from the UK and Germany in order to determine ranges of yield uncertainty that result from different climate model simulation input and bias correction methods. We simulate wheat yields using a General Linear Model that includes the effects of seasonal maximum temperatures and precipitation, since wheat is sensitive to heat stress during important developmental stages. We use the same statistical model to predict future wheat yields using the recently available bias-corrected simulations of EURO-CORDEX-Adjust. While statistical models are often criticized for their lack of complexity, an advantage is that we are here able to consider only the effect of the choice of climate model, resolution or bias correction method on yield. Initial results using both past and future bias-corrected climate simulations with a process-based model will also be presented. Through these methods, we make recommendations in preparing climate model output for crop models.

  4. Future of endemic flora of biodiversity hotspots in India.

    PubMed

    Chitale, Vishwas Sudhir; Behera, Mukund Dev; Roy, Partha Sarthi

    2014-01-01

    India is one of the 12 mega biodiversity countries of the world, which represents 11% of world's flora in about 2.4% of global land mass. Approximately 28% of the total Indian flora and 33% of angiosperms occurring in India are endemic. Higher human population density in biodiversity hotspots in India puts undue pressure on these sensitive eco-regions. In the present study, we predict the future distribution of 637 endemic plant species from three biodiversity hotspots in India; Himalaya, Western Ghats, Indo-Burma, based on A1B scenario for year 2050 and 2080. We develop individual variable based models as well as mixed models in MaxEnt by combining ten least co-related bioclimatic variables, two disturbance variables and one physiography variable as predictor variables. The projected changes suggest that the endemic flora will be adversely impacted, even under such a moderate climate scenario. The future distribution is predicted to shift in northern and north-eastern direction in Himalaya and Indo-Burma, while in southern and south-western direction in Western Ghats, due to cooler climatic conditions in these regions. In the future distribution of endemic plants, we observe a significant shift and reduction in the distribution range compared to the present distribution. The model predicts a 23.99% range reduction and a 7.70% range expansion in future distribution by 2050, while a 41.34% range reduction and a 24.10% range expansion by 2080. Integration of disturbance and physiography variables along with bioclimatic variables in the models improved the prediction accuracy. Mixed models provide most accurate results for most of the combinations of climatic and non-climatic variables as compared to individual variable based models. We conclude that a) regions with cooler climates and higher moisture availability could serve as refugia for endemic plants in future climatic conditions; b) mixed models provide more accurate results, compared to single variable based models.

  5. Future of Endemic Flora of Biodiversity Hotspots in India

    PubMed Central

    Chitale, Vishwas Sudhir; Behera, Mukund Dev; Roy, Partha Sarthi

    2014-01-01

    India is one of the 12 mega biodiversity countries of the world, which represents 11% of world's flora in about 2.4% of global land mass. Approximately 28% of the total Indian flora and 33% of angiosperms occurring in India are endemic. Higher human population density in biodiversity hotspots in India puts undue pressure on these sensitive eco-regions. In the present study, we predict the future distribution of 637 endemic plant species from three biodiversity hotspots in India; Himalaya, Western Ghats, Indo-Burma, based on A1B scenario for year 2050 and 2080. We develop individual variable based models as well as mixed models in MaxEnt by combining ten least co-related bioclimatic variables, two disturbance variables and one physiography variable as predictor variables. The projected changes suggest that the endemic flora will be adversely impacted, even under such a moderate climate scenario. The future distribution is predicted to shift in northern and north-eastern direction in Himalaya and Indo-Burma, while in southern and south-western direction in Western Ghats, due to cooler climatic conditions in these regions. In the future distribution of endemic plants, we observe a significant shift and reduction in the distribution range compared to the present distribution. The model predicts a 23.99% range reduction and a 7.70% range expansion in future distribution by 2050, while a 41.34% range reduction and a 24.10% range expansion by 2080. Integration of disturbance and physiography variables along with bioclimatic variables in the models improved the prediction accuracy. Mixed models provide most accurate results for most of the combinations of climatic and non-climatic variables as compared to individual variable based models. We conclude that a) regions with cooler climates and higher moisture availability could serve as refugia for endemic plants in future climatic conditions; b) mixed models provide more accurate results, compared to single variable based models. PMID:25501852

  6. Forecasting Western U.S. Snowpack

    NASA Astrophysics Data System (ADS)

    Kapnick, S. B.; Yang, X.; Vecchi, G. A.; Delworth, T. L.; Gudgel, R.; Malyshev, S.; Milly, C.; Shevliakova, E.; Underwood, S.; Margulis, S. A.

    2017-12-01

    Cold season mountain snow accumulation in the western United States plays a critical role in regional hydroclimate and water supply. While climate projections provide estimates of future snowpack loss by the end of the century and weather forecasts provide predictions of weather conditions and hazards out to two weeks, less progress has been made for snow predictions at seasonal timescales (months to 2 years), particularly beyond 6 months. Utilizing observations, climate indices, and a suite of global climate models, we demonstrate our dynamical system's feasibility of seasonal snowpack predictions and quantify the limits of predictive skill more than 2 seasons in advance for snowpack—snow that accumulates on the ground in the mountains. Our ability to predict snowpack is reliant on both temperature and precipitation prediction skill modulating both the amount of frozen precipitation that falls and how much snow accumulates and stays on the ground throughout the season. We will quantify prediction skill and outline areas necessary for the future advancement of seasonal hydroclimate prediction.

  7. DBP formation and disinfection under current and future climates - slides

    EPA Science Inventory

    How to predict and monitoring DBP formation under current and future climate is a challenge and important to water plant operations and water supply security. This presentation summarizes a system approach being developed at the EPA Water Resources Adaptation Program (WRAP).

  8. Projecting future precipitation and temperature at sites with diverse climate through multiple statistical downscaling schemes

    NASA Astrophysics Data System (ADS)

    Vallam, P.; Qin, X. S.

    2017-10-01

    Anthropogenic-driven climate change would affect the global ecosystem and is becoming a world-wide concern. Numerous studies have been undertaken to determine the future trends of meteorological variables at different scales. Despite these studies, there remains significant uncertainty in the prediction of future climates. To examine the uncertainty arising from using different schemes to downscale the meteorological variables for the future horizons, projections from different statistical downscaling schemes were examined. These schemes included statistical downscaling method (SDSM), change factor incorporated with LARS-WG, and bias corrected disaggregation (BCD) method. Global circulation models (GCMs) based on CMIP3 (HadCM3) and CMIP5 (CanESM2) were utilized to perturb the changes in the future climate. Five study sites (i.e., Alice Springs, Edmonton, Frankfurt, Miami, and Singapore) with diverse climatic conditions were chosen for examining the spatial variability of applying various statistical downscaling schemes. The study results indicated that the regions experiencing heavy precipitation intensities were most likely to demonstrate the divergence between the predictions from various statistical downscaling methods. Also, the variance computed in projecting the weather extremes indicated the uncertainty derived from selection of downscaling tools and climate models. This study could help gain an improved understanding about the features of different downscaling approaches and the overall downscaling uncertainty.

  9. Effects of changing climate on aquatic habitat and connectivity for remnant populations of a wide-ranging frog species in an arid landscape.

    PubMed

    Pilliod, David S; Arkle, Robert S; Robertson, Jeanne M; Murphy, Melanie A; Funk, W Chris

    2015-09-01

    Amphibian species persisting in isolated streams and wetlands in desert environments can be susceptible to low connectivity, genetic isolation, and climate changes. We evaluated the past (1900-1930), recent (1981-2010), and future (2071-2100) climate suitability of the arid Great Basin (USA) for the Columbia spotted frog (Rana luteiventris) and assessed whether changes in surface water may affect connectivity for remaining populations. We developed a predictive model of current climate suitability and used it to predict the historic and future distribution of suitable climates. We then modeled changes in surface water availability at each time period. Finally, we quantified connectivity among existing populations on the basis of hydrology and correlated it with interpopulation genetic distance. We found that the area of the Great Basin with suitable climate conditions has declined by approximately 49% over the last century and will likely continue to decline under future climate scenarios. Climate conditions at currently occupied locations have been relatively stable over the last century, which may explain persistence at these sites. However, future climates at these currently occupied locations are predicted to become warmer throughout the year and drier during the frog's activity period (May - September). Fall and winter precipitation may increase, but as rain instead of snow. Earlier runoff and lower summer base flows may reduce connectivity between neighboring populations, which is already limited. Many of these changes could have negative effects on remaining populations over the next 50-80 years, but milder winters, longer growing seasons, and wetter falls might positively affect survival and dispersal. Collectively, however, seasonal shifts in temperature, precipitation, and stream flow patterns could reduce habitat suitability and connectivity for frogs and possibly other aquatic species inhabiting streams in this arid region.

  10. Potential changes in forest composition could reduce impacts of climate change on boreal wildfires.

    PubMed

    Terrier, Aurélie; Girardin, Martin P; Périé, Catherine; Legendre, Pierre; Bergeron, Yves

    2013-01-01

    There is general consensus that wildfires in boreal forests will increase throughout this century in response to more severe and frequent drought conditions induced by climate change. However, prediction models generally assume that the vegetation component will remain static over the next few decades. As deciduous species are less flammable than conifer species, it is reasonable to believe that a potential expansion of deciduous species in boreal forests, either occurring naturally or through landscape management, could offset some of the impacts of climate change on the occurrence of boreal wildfires. The objective of this study was to determine the potential of this offsetting effect through a simulation experiment conducted in eastern boreal North America. Predictions of future fire activity were made using multivariate adaptive regression splines (MARS) with fire behavior indices and ecological niche models as predictor variables so as to take into account the effects of changing climate and tree distribution on fire activity. A regional climate model (RCM) was used for predictions of future fire risk conditions. The experiment was conducted under two tree dispersal scenarios: the status quo scenario, in which the distribution of forest types does not differ from the present one, and the unlimited dispersal scenario, which allows forest types to expand their range to fully occupy their climatic niche. Our results show that future warming will create climate conditions that are more prone to fire occurrence. However, unlimited dispersal of southern restricted deciduous species could reduce the impact of climate change on future fire occurrence. Hence, the use of deciduous species could be a good option for an efficient strategic fire mitigation strategy aimed at reducing fire Propagation in coniferous landscapes and increasing public safety in remote populated areas of eastern boreal Canada under climate change.

  11. Population response to climate change: linear vs. non-linear modeling approaches.

    PubMed

    Ellis, Alicia M; Post, Eric

    2004-03-31

    Research on the ecological consequences of global climate change has elicited a growing interest in the use of time series analysis to investigate population dynamics in a changing climate. Here, we compare linear and non-linear models describing the contribution of climate to the density fluctuations of the population of wolves on Isle Royale, Michigan from 1959 to 1999. The non-linear self excitatory threshold autoregressive (SETAR) model revealed that, due to differences in the strength and nature of density dependence, relatively small and large populations may be differentially affected by future changes in climate. Both linear and non-linear models predict a decrease in the population of wolves with predicted changes in climate. Because specific predictions differed between linear and non-linear models, our study highlights the importance of using non-linear methods that allow the detection of non-linearity in the strength and nature of density dependence. Failure to adopt a non-linear approach to modelling population response to climate change, either exclusively or in addition to linear approaches, may compromise efforts to quantify ecological consequences of future warming.

  12. New methods in hydrologic modeling and decision support for culvert flood risk under climate change

    NASA Astrophysics Data System (ADS)

    Rosner, A.; Letcher, B. H.; Vogel, R. M.; Rees, P. S.

    2015-12-01

    Assessing culvert flood vulnerability under climate change poses an unusual combination of challenges. We seek a robust method of planning for an uncertain future, and therefore must consider a wide range of plausible future conditions. Culverts in our case study area, northwestern Massachusetts, USA, are predominantly found in small, ungaged basins. The need to predict flows both at numerous sites and under numerous plausible climate conditions requires a statistical model with low data and computational requirements. We present a statistical streamflow model that is driven by precipitation and temperature, allowing us to predict flows without reliance on reference gages of observed flows. The hydrological analysis is used to determine each culvert's risk of failure under current conditions. We also explore the hydrological response to a range of plausible future climate conditions. These results are used to determine the tolerance of each culvert to future increases in precipitation. In a decision support context, current flood risk as well as tolerance to potential climate changes are used to provide a robust assessment and prioritization for culvert replacements.

  13. Predicting the Impacts of Climate Change on Central American Agriculture

    NASA Astrophysics Data System (ADS)

    Winter, J. M.; Ruane, A. C.; Rosenzweig, C.

    2011-12-01

    Agriculture is a vital component of Central America's economy. Poor crop yields and harvest reliability can produce food insecurity, malnutrition, and conflict. Regional climate models (RCMs) and agricultural models have the potential to greatly enhance the efficiency of Central American agriculture and water resources management under both current and future climates. A series of numerical experiments was conducted using Regional Climate Model Version 3 (RegCM3) and the Weather Research and Forecasting Model (WRF) to evaluate the ability of RCMs to reproduce the current climate of Central America and assess changes in temperature and precipitation under multiple future climate scenarios. Control simulations were thoroughly compared to a variety of observational datasets, including local weather station data, gridded meteorological data, and high-resolution satellite-based precipitation products. Future climate simulations were analyzed for both mean shifts in climate and changes in climate variability, including extreme events (droughts, heat waves, floods). To explore the impacts of changing climate on maize, bean, and rice yields in Central America, RCM output was used to force the Decision Support System for Agrotechnology Transfer Model (DSSAT). These results were synthesized to create climate change impacts predictions for Central American agriculture that explicitly account for evolving distributions of precipitation and temperature extremes.

  14. Temperature drives abundance fluctuations, but spatial dynamics is constrained by landscape configuration: Implications for climate-driven range shift in a butterfly.

    PubMed

    Fourcade, Yoan; Ranius, Thomas; Öckinger, Erik

    2017-10-01

    Prediction of species distributions in an altered climate requires knowledge on how global- and local-scale factors interact to limit their current distributions. Such knowledge can be gained through studies of spatial population dynamics at climatic range margins. Here, using a butterfly (Pyrgus armoricanus) as model species, we first predicted based on species distribution modelling that its climatically suitable habitats currently extend north of its realized range. Projecting the model into scenarios of future climate, we showed that the distribution of climatically suitable habitats may shift northward by an additional 400 km in the future. Second, we used a 13-year monitoring dataset including the majority of all habitat patches at the species northern range margin to assess the synergetic impact of temperature fluctuations and spatial distribution of habitat, microclimatic conditions and habitat quality, on abundance and colonization-extinction dynamics. The fluctuation in abundance between years was almost entirely determined by the variation in temperature during the species larval development. In contrast, colonization and extinction dynamics were better explained by patch area, between-patch connectivity and host plant density. This suggests that the response of the species to future climate change may be limited by future land use and how its host plants respond to climate change. It is, thus, probable that dispersal limitation will prevent P. armoricanus from reaching its potential future distribution. We argue that models of range dynamics should consider the factors influencing metapopulation dynamics, especially at the range edges, and not only broad-scale climate. It includes factors acting at the scale of habitat patches such as habitat quality and microclimate and landscape-scale factors such as the spatial configuration of potentially suitable patches. Knowledge of population dynamics under various environmental conditions, and the incorporation of realistic scenarios of future land use, appears essential to provide predictions useful for actions mitigating the negative effects of climate change. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  15. A changing climate: impacts on human exposures to O3 using ...

    EPA Pesticide Factsheets

    Predicting the impacts of changing climate on human exposure to air pollution requires future scenarios that account for changes in ambient pollutant concentrations, population sizes and distributions, and housing stocks. An integrated methodology to model changes in human exposures due to these impacts was developed by linking climate, air quality, land-use, and human exposure models. This methodology was then applied to characterize changes in predicted human exposures to O3 under multiple future scenarios. Regional climate projections for the U.S. were developed by downscaling global circulation model (GCM) scenarios for three of the Intergovernmental Panel on Climate Change’s (IPCC’s) Representative Concentration Pathways (RCPs) using the Weather Research and Forecasting (WRF) model. The regional climate results were in turn used to generate air quality (concentration) projections using the Community Multiscale Air Quality (CMAQ) model. For each of the climate change scenarios, future U.S. census-tract level population distributions from the Integrated Climate and Land Use Scenarios (ICLUS) model for four future scenarios based on the IPCC’s Special Report on Emissions Scenarios (SRES) storylines were used. These climate, air quality, and population projections were used as inputs to EPA’s Air Pollutants Exposure (APEX) model for 12 U.S. cities. Probability density functions show changes in the population distribution of 8 h maximum daily O3 exposur

  16. Climate Ocean Modeling on Parallel Computers

    NASA Technical Reports Server (NTRS)

    Wang, P.; Cheng, B. N.; Chao, Y.

    1998-01-01

    Ocean modeling plays an important role in both understanding the current climatic conditions and predicting future climate change. However, modeling the ocean circulation at various spatial and temporal scales is a very challenging computational task.

  17. A blueprint for using climate change predictions in an eco-hydrological study

    NASA Astrophysics Data System (ADS)

    Caporali, E.; Fatichi, S.; Ivanov, V. Y.

    2009-12-01

    There is a growing interest to extend climate change predictions to smaller, catchment-size scales and identify their implications on hydrological and ecological processes. Small scale processes are, in fact, expected to mediate climate changes, producing local effects and feedbacks that can interact with the principal consequences of the change. This is particularly applicable, when a complex interaction, such as the inter-relationship between the hydrological cycle and vegetation dynamics, is considered. This study presents a blueprint methodology for studying climate change impacts, as inferred from climate models, on eco-hydrological dynamics at the catchment scale. Climate conditions, present or future, are imposed through input hydrometeorological variables for hydrological and eco-hydrological models. These variables are simulated with an hourly weather generator as an outcome of a stochastic downscaling technique. The generator is parameterized to reproduce the climate of southwestern Arizona for present (1961-2000) and future (2081-2100) conditions. The methodology provides the capability to generate ensemble realizations for the future that take into account the heterogeneous nature of climate predictions from different models. The generated time series of meteorological variables for the two scenarios corresponding to the current and mean expected future serve as input to a coupled hydrological and vegetation dynamics model, “Tethys-Chloris”. The hydrological model reproduces essential components of the land-surface hydrological cycle, solving the mass and energy budget equations. The vegetation model parsimoniously parameterizes essential plant life-cycle processes, including photosynthesis, phenology, carbon allocation, and tissue turnover. The results for the two mean scenarios are compared and discussed in terms of changes in the hydrological balance components, energy fluxes, and indices of vegetation productivity The need to account for uncertainties in projections of future climate is discussed and a methodology for propagating these uncertainties into the probability density functions of changes in eco-hydrological variables is presented.

  18. The importance of considering shifts in seasonal changes in discharges when predicting future phosphorus loads in streams

    USGS Publications Warehouse

    LaBeau, Meredith B.; Mayer, Alex S.; Griffis, Veronica; Watkins, David Jr.; Robertson, Dale M.; Gyawali, Rabi

    2015-01-01

    In this work, we hypothesize that phosphorus (P) concentrations in streams vary seasonally and with streamflow and that it is important to incorporate this variation when predicting changes in P loading associated with climate change. Our study area includes 14 watersheds with a range of land uses throughout the U.S. Great Lakes Basin. We develop annual seasonal load-discharge regression models for each watershed and apply these models with simulated discharges generated for future climate scenarios to simulate future P loading patterns for two periods: 2046–2065 and 2081–2100. We utilize output from the Coupled Model Intercomparison Project phase 3 downscaled climate change projections that are input into the Large Basin Runoff Model to generate future discharge scenarios, which are in turn used as inputs to the seasonal P load regression models. In almost all cases, the seasonal load-discharge models match observed loads better than the annual models. Results using the seasonal models show that the concurrence of nonlinearity in the load-discharge model and changes in high discharges in the spring months leads to the most significant changes in P loading for selected tributaries under future climate projections. These results emphasize the importance of using seasonal models to understand the effects of future climate change on nutrient loads.

  19. A Novel Modelling Approach for Predicting Forest Growth and Yield under Climate Change.

    PubMed

    Ashraf, M Irfan; Meng, Fan-Rui; Bourque, Charles P-A; MacLean, David A

    2015-01-01

    Global climate is changing due to increasing anthropogenic emissions of greenhouse gases. Forest managers need growth and yield models that can be used to predict future forest dynamics during the transition period of present-day forests under a changing climatic regime. In this study, we developed a forest growth and yield model that can be used to predict individual-tree growth under current and projected future climatic conditions. The model was constructed by integrating historical tree growth records with predictions from an ecological process-based model using neural networks. The new model predicts basal area (BA) and volume growth for individual trees in pure or mixed species forests. For model development, tree-growth data under current climatic conditions were obtained using over 3000 permanent sample plots from the Province of Nova Scotia, Canada. Data to reflect tree growth under a changing climatic regime were projected with JABOWA-3 (an ecological process-based model). Model validation with designated data produced model efficiencies of 0.82 and 0.89 in predicting individual-tree BA and volume growth. Model efficiency is a relative index of model performance, where 1 indicates an ideal fit, while values lower than zero means the predictions are no better than the average of the observations. Overall mean prediction error (BIAS) of basal area and volume growth predictions was nominal (i.e., for BA: -0.0177 cm(2) 5-year(-1) and volume: 0.0008 m(3) 5-year(-1)). Model variability described by root mean squared error (RMSE) in basal area prediction was 40.53 cm(2) 5-year(-1) and 0.0393 m(3) 5-year(-1) in volume prediction. The new modelling approach has potential to reduce uncertainties in growth and yield predictions under different climate change scenarios. This novel approach provides an avenue for forest managers to generate required information for the management of forests in transitional periods of climate change. Artificial intelligence technology has substantial potential in forest modelling.

  20. A Novel Modelling Approach for Predicting Forest Growth and Yield under Climate Change

    PubMed Central

    Ashraf, M. Irfan; Meng, Fan-Rui; Bourque, Charles P.-A.; MacLean, David A.

    2015-01-01

    Global climate is changing due to increasing anthropogenic emissions of greenhouse gases. Forest managers need growth and yield models that can be used to predict future forest dynamics during the transition period of present-day forests under a changing climatic regime. In this study, we developed a forest growth and yield model that can be used to predict individual-tree growth under current and projected future climatic conditions. The model was constructed by integrating historical tree growth records with predictions from an ecological process-based model using neural networks. The new model predicts basal area (BA) and volume growth for individual trees in pure or mixed species forests. For model development, tree-growth data under current climatic conditions were obtained using over 3000 permanent sample plots from the Province of Nova Scotia, Canada. Data to reflect tree growth under a changing climatic regime were projected with JABOWA-3 (an ecological process-based model). Model validation with designated data produced model efficiencies of 0.82 and 0.89 in predicting individual-tree BA and volume growth. Model efficiency is a relative index of model performance, where 1 indicates an ideal fit, while values lower than zero means the predictions are no better than the average of the observations. Overall mean prediction error (BIAS) of basal area and volume growth predictions was nominal (i.e., for BA: -0.0177 cm2 5-year-1 and volume: 0.0008 m3 5-year-1). Model variability described by root mean squared error (RMSE) in basal area prediction was 40.53 cm2 5-year-1 and 0.0393 m3 5-year-1 in volume prediction. The new modelling approach has potential to reduce uncertainties in growth and yield predictions under different climate change scenarios. This novel approach provides an avenue for forest managers to generate required information for the management of forests in transitional periods of climate change. Artificial intelligence technology has substantial potential in forest modelling. PMID:26173081

  1. Evaluation of global climate model on performances of precipitation simulation and prediction in the Huaihe River basin

    NASA Astrophysics Data System (ADS)

    Wu, Yenan; Zhong, Ping-an; Xu, Bin; Zhu, Feilin; Fu, Jisi

    2017-06-01

    Using climate models with high performance to predict the future climate changes can increase the reliability of results. In this paper, six kinds of global climate models that selected from the Coupled Model Intercomparison Project Phase 5 (CMIP5) under Representative Concentration Path (RCP) 4.5 scenarios were compared to the measured data during baseline period (1960-2000) and evaluate the simulation performance on precipitation. Since the results of single climate models are often biased and highly uncertain, we examine the back propagation (BP) neural network and arithmetic mean method in assembling the precipitation of multi models. The delta method was used to calibrate the result of single model and multimodel ensembles by arithmetic mean method (MME-AM) during the validation period (2001-2010) and the predicting period (2011-2100). We then use the single models and multimodel ensembles to predict the future precipitation process and spatial distribution. The result shows that BNU-ESM model has the highest simulation effect among all the single models. The multimodel assembled by BP neural network (MME-BP) has a good simulation performance on the annual average precipitation process and the deterministic coefficient during the validation period is 0.814. The simulation capability on spatial distribution of precipitation is: calibrated MME-AM > MME-BP > calibrated BNU-ESM. The future precipitation predicted by all models tends to increase as the time period increases. The order of average increase amplitude of each season is: winter > spring > summer > autumn. These findings can provide useful information for decision makers to make climate-related disaster mitigation plans.

  2. Establishing a Real-Money Prediction Market for Climate on Decadal Horizons

    NASA Astrophysics Data System (ADS)

    Roulston, M. S.; Hand, D. J.; Harding, D. W.

    2016-12-01

    A plan to establish a not-for-profit prediction market that will allow participants to bet on the value of selected climate variables decades into the future will be presented. It is hoped that this market will provide an objective measure of the consensus view on climate change, including information concerning the uncertainty of climate projections. The proposed design of the market and the definition of the climate variables underlying the contracts will be discussed, as well as relevant regulatory and legal issues.

  3. Projected changes in distributions of Australian tropical savanna birds under climate change using three dispersal scenarios

    PubMed Central

    Reside, April E; VanDerWal, Jeremy; Kutt, Alex S

    2012-01-01

    Identifying the species most vulnerable to extinction as a result of climate change is a necessary first step in mitigating biodiversity decline. Species distribution modeling (SDM) is a commonly used tool to assess potential climate change impacts on distributions of species. We use SDMs to predict geographic ranges for 243 birds of Australian tropical savannas, and to project changes in species richness and ranges under a future climate scenario between 1990 and 2080. Realistic predictions require recognition of the variability in species capacity to track climatically suitable environments. Here we assess the effect of dispersal on model results by using three approaches: full dispersal, no dispersal and a partial-dispersal scenario permitting species to track climate change at a rate of 30 km per decade. As expected, the projected distributions and richness patterns are highly sensitive to the dispersal scenario. Projected future range sizes decreased for 66% of species if full dispersal was assumed, but for 89% of species when no dispersal was assumed. However, realistic future predictions should not assume a single dispersal scenario for all species and as such, we assigned each species to the most appropriate dispersal category based on individual mobility and habitat specificity; this permitted the best estimates of where species will be in the future. Under this “realistic” dispersal scenario, projected ranges sizes decreased for 67% of species but showed that migratory and tropical-endemic birds are predicted to benefit from climate change with increasing distributional area. Richness hotspots of tropical savanna birds are expected to move, increasing in southern savannas and southward along the east coast of Australia, but decreasing in the arid zone. Understanding the complexity of effects of climate change on species’ range sizes by incorporating dispersal capacities is a crucial step toward developing adaptation policies for the conservation of vulnerable species. PMID:22837819

  4. Stress testing hydrologic models using bottom-up climate change assessment

    NASA Astrophysics Data System (ADS)

    Stephens, C.; Johnson, F.; Marshall, L. A.

    2017-12-01

    Bottom-up climate change assessment is a promising approach for understanding the vulnerability of a system to potential future changes. The technique has been utilised successfully in risk-based assessments of future flood severity and infrastructure vulnerability. We find that it is also an ideal tool for assessing hydrologic model performance in a changing climate. In this study, we applied bottom-up climate change to compare the performance of two different hydrologic models (an event-based and a continuous model) under increasingly severe climate change scenarios. This allowed us to diagnose likely sources of future prediction error in the two models. The climate change scenarios were based on projections for southern Australia, which indicate drier average conditions with increased extreme rainfall intensities. We found that the key weakness in using the event-based model to simulate drier future scenarios was the model's inability to dynamically account for changing antecedent conditions. This led to increased variability in model performance relative to the continuous model, which automatically accounts for the wetness of a catchment through dynamic simulation of water storages. When considering more intense future rainfall events, representation of antecedent conditions became less important than assumptions around (non)linearity in catchment response. The linear continuous model we applied may underestimate flood risk in a future climate with greater extreme rainfall intensity. In contrast with the recommendations of previous studies, this indicates that continuous simulation is not necessarily the key to robust flood modelling under climate change. By applying bottom-up climate change assessment, we were able to understand systematic changes in relative model performance under changing conditions and deduce likely sources of prediction error in the two models.

  5. The Climate Variability & Predictability (CVP) Program at NOAA - Recent Program Advancements in Understanding AMOC

    NASA Astrophysics Data System (ADS)

    Lucas, S. E.

    2016-12-01

    The Climate Variability & Predictability (CVP) Program supports research aimed at providing process-level understanding of the climate system through observation, modeling, analysis, and field studies. This vital knowledge is needed to improve climate models and predictions so that scientists can better anticipate the impacts of future climate variability and change. To achieve its mission, the CVP Program supports research carried out at NOAA and other federal laboratories, NOAA Cooperative Institutes, and academic institutions. The Program also coordinates its sponsored projects with major national and international scientific bodies including the World Climate Research Programme (WCRP), the International and U.S. Climate Variability and Predictability (CLIVAR/US CLIVAR) Program, and the U.S. Global Change Research Program (USGCRP). The CVP program sits within NOAA's Climate Program Office (http://cpo.noaa.gov/CVP). This poster will present the recently funded CVP projects on improving the understanding Atlantic Meridional Overturning Circulation (AMOC), its impact on decadal predictability, and its relationship with the overall climate system.

  6. Newer classification and regression tree techniques: Bagging and Random Forests for ecological prediction

    Treesearch

    Anantha M. Prasad; Louis R. Iverson; Andy Liaw; Andy Liaw

    2006-01-01

    We evaluated four statistical models - Regression Tree Analysis (RTA), Bagging Trees (BT), Random Forests (RF), and Multivariate Adaptive Regression Splines (MARS) - for predictive vegetation mapping under current and future climate scenarios according to the Canadian Climate Centre global circulation model.

  7. Precipitation Organization in a Warmer Climate

    NASA Astrophysics Data System (ADS)

    Rickenbach, T. M.; Nieto Ferreira, R.; Nissenbaum, M.

    2014-12-01

    This study will investigate changes in precipitation organization in a warmer climate using the Weather Research and Forecasting (WRF) model and CMIP-5 ensemble climate simulations. This work builds from an existing four-year NEXRAD radar-based precipitation climatology over the southeastern U.S. that uses a simple two-category framework of precipitation organization based on instantaneous precipitating feature size. The first category - mesoscale precipitation features (MPF) - dominates winter precipitation and is linked to the more predictable large-scale forcing provided by the extratropical cyclones. In contrast, the second category - isolated precipitation - dominates the summer season precipitation in the southern coastal and inland regions but is linked to less predictable mesoscale circulations and to local thermodynamics more crudely represented in climate models. Most climate modeling studies suggest that an accelerated water cycle in a warmer world will lead to an overall increase in precipitation, but few studies have addressed how precipitation organization may change regionally. To address this, WRF will simulate representative wintertime and summertime precipitation events in the Southeast US under the current and future climate. These events will be simulated in an environment resembling the future climate of the 2090s using the pseudo-global warming (PGW) approach based on an ensemble of temperature projections. The working hypothesis is that the higher water vapor content in the future simulation will result in an increase in the number of isolated convective systems, while MPFs will be more intense and longer-lasting. In the context of the seasonal climatology of MPF and isolated precipitation, these results have implications for assessing the predictability of future regional precipitation in the southeastern U.S.

  8. Climate Change: Past, Present, and Future

    NASA Astrophysics Data System (ADS)

    Chapman, David S.; Davis, Michael G.

    2010-09-01

    Questions about global warming concern climate scientists and the general public alike. Specifically, what are the reliable surface temperature reconstructions over the past few centuries? And what are the best predictions of global temperature change the Earth might expect for the next century? Recent publications [National Research Council (NRC), 2006; Intergovernmental Panel on Climate Change (IPCC), 2007] permit these questions to be answered in a single informative illustration by assembling temperature reconstructions of the past thousand years with predictions for the next century. The result, shown in Figure 1, illustrates present and future warming in the context of natural variations in the past [see also Oldfield and Alverson, 2003]. To quote a Chinese proverb, “A picture's meaning can express ten thousand words.” Because it succinctly captures past inferences and future projections of climate, the illustration should be of interest to scientists, educators, policy makers, and the public.

  9. Landscape genomic prediction for restoration of a Eucalyptus foundation species under climate change.

    PubMed

    Supple, Megan Ann; Bragg, Jason G; Broadhurst, Linda M; Nicotra, Adrienne B; Byrne, Margaret; Andrew, Rose L; Widdup, Abigail; Aitken, Nicola C; Borevitz, Justin O

    2018-04-24

    As species face rapid environmental change, we can build resilient populations through restoration projects that incorporate predicted future climates into seed sourcing decisions. Eucalyptus melliodora is a foundation species of a critically endangered community in Australia that is a target for restoration. We examined genomic and phenotypic variation to make empirical based recommendations for seed sourcing. We examined isolation by distance and isolation by environment, determining high levels of gene flow extending for 500 km and correlations with climate and soil variables. Growth experiments revealed extensive phenotypic variation both within and among sampling sites, but no site-specific differentiation in phenotypic plasticity. Model predictions suggest that seed can be sourced broadly across the landscape, providing ample diversity for adaptation to environmental change. Application of our landscape genomic model to E. melliodora restoration projects can identify genomic variation suitable for predicted future climates, thereby increasing the long term probability of successful restoration. © 2018, Supple et al.

  10. Uncertainty of a hydrological climate change impact assessment - Is it really all about climate uncertainty?

    NASA Astrophysics Data System (ADS)

    Honti, Mark; Reichert, Peter; Scheidegger, Andreas; Stamm, Christian

    2013-04-01

    Climate change impact assessments have become more and more popular in hydrology since the middle 1980's with another boost after the publication of the IPCC AR4 report. During hundreds of impact studies a quasi-standard methodology emerged, which is mainly shaped by the growing public demand for predicting how water resources management or flood protection should change in the close future. The ``standard'' workflow considers future climate under a specific IPCC emission scenario simulated by global circulation models (GCMs), possibly downscaled by a regional climate model (RCM) and/or a stochastic weather generator. The output from the climate models is typically corrected for bias before feeding it into a calibrated hydrological model, which is run on the past and future meteorological data to analyse the impacts of climate change on the hydrological indicators of interest. The impact predictions are as uncertain as any forecast that tries to describe the behaviour of an extremely complex system decades into the future. Future climate predictions are uncertain due to the scenario uncertainty and the GCM model uncertainty that is obvious on finer resolution than continental scale. Like in any hierarchical model system, uncertainty propagates through the descendant components. Downscaling increases uncertainty with the deficiencies of RCMs and/or weather generators. Bias correction adds a strong deterministic shift to the input data. Finally the predictive uncertainty of the hydrological model ends the cascade that leads to the total uncertainty of the hydrological impact assessment. There is an emerging consensus between many studies on the relative importance of the different uncertainty sources. The prevailing perception is that GCM uncertainty dominates hydrological impact studies. There are only few studies, which found that the predictive uncertainty of hydrological models can be in the same range or even larger than climatic uncertainty. We carried out a climate change impact assessment and estimated the relative importance of the uncertainty sources. The study was performed on 2 small catchments in the Swiss Plateau with a lumped conceptual rainfall runoff model. In the climatic part we applied the standard ensemble approach to quantify uncertainty but in hydrology we used formal Bayesian uncertainty assessment method with 2 different likelihood functions. One was a time-series error model that was able to deal with the complicated statistical properties of hydrological model residuals. The second was a likelihood function for the flow quantiles directly. Due to the better data coverage and smaller hydrological complexity in one of our test catchments we had better performance from the hydrological model and thus could observe that the relative importance of different uncertainty sources varied between sites, boundary conditions and flow indicators. The uncertainty of future climate was important, but not dominant. The deficiencies of the hydrological model were on the same scale, especially for the sites and flow components where model performance for the past observations was further from optimal (Nash-Sutcliffe index = 0.5 - 0.7). The overall uncertainty of predictions was well beyond the expected change signal even for the best performing site and flow indicator.

  11. Effect assessment of Future Climate Change on Water Resource and Snow Quality in cold snowy regions in Japan

    NASA Astrophysics Data System (ADS)

    Taniguchi, Y.; Nakatsugawa, M.; Kudo, K.

    2017-12-01

    It is predicted that the effects of global warming on everyday life will be clearly seen in cold, snowy regions such as Hokkaido. In relation to climate change, there is the concern that the warmer climate will affect not only water resources, but also local economies, in snowy areas, when air temperature increases and snowfall decreases become more marked in the future. Communities whose economies are greatly dependent on snow as a tourism resource, such as for winter sports and snow events, will lose large numbers of visitors because of the shortened winter season. This study was done as a basic study to provide basic ideas for planning adaptation strategies against climate change based on the local characteristics of a cold, snowy region. By taking dam catchment basins in Hokkaido as the subject areas and by using the climate change prediction data that correspond to IPCCAR5, the local-level influence of future climate change on snowfall and snow quality in relation to water resources and winter sports was quantitatively assessed. The water budget was examined for a dam catchment basin in Hokkaido under the present climate (September 1984 to August 2004) and under the future climate (September 2080 to August 2100) by using rainfall, snowfall and evapotranspiration estimated by the LoHAS heat and water balance analysis model.The examination found that, under the future climate, the net annual precipitation will decrease by up to 200 mm because of decreases in precipitation and in runoff height that will result from increased evapotranspiration. The predicted decrease in annual hydro potential of snowfall was considered to greatly affect the dam reservoir operation during the snowmelt season. The snow quality analysis by SNOWPACK revealed that the future snow would become granular earlier than it does at present. Most skiers' snow preferences, from best to worst, are light dry snow (i.e., fresh snow), lightly compacted snow, compacted snow and, finally, granular snow. If the late-season snow on the slope becomes granular earlier than it has in previous years, then the ski resort's snow conditions will deteriorate. Businesses that receive economic benefits from snow have developed in cold, snowy areas. This study demonstrates that the economic benefits of snow are expected to be greatly reduced by future climate change.

  12. Revisiting the Cassandra syndrome; the changing climate of coral reef research

    NASA Astrophysics Data System (ADS)

    Maynard, J. A.; Baird, A. H.; Pratchett, M. S.

    2008-12-01

    Climate change will be with us for decades, even with significant reductions in emissions. Therefore, predictions made with respect to climate change impacts on coral reefs need to be highly defensible to ensure credibility over the timeframes this issue demands. If not, a Cassandra syndrome could be created whereby future more well-supported predictions of the fate of reefs are neither heard nor acted upon. Herein, popularising predictions based on essentially untested assumptions regarding reefs and their capacity to cope with future climate change is questioned. Some of these assumptions include that: all corals live close to their thermal limits, corals cannot adapt/acclimatize to rapid rates of change, physiological trade-offs resulting from ocean acidification will lead to reduced fecundity, and that climate-induced coral loss leads to widespread fisheries collapse. We argue that, while there is a place for popularising worst-case scenarios, the coral reef crisis has been effectively communicated and, though this communication should be sustained, efforts should now focus on addressing critical knowledge gaps.

  13. Wildlife habitat connectivity in the changing climate of New York's Hudson Valley.

    PubMed

    Howard, Timothy G; Schlesinger, Matthew D

    2013-09-01

    Maintaining and restoring connectivity are key adaptation strategies for biodiversity conservation under climate change. We present a novel combination of species distribution and connectivity modeling using current and future climate regimes to prioritize connections among populations of 26 rare species in New York's Hudson Valley. We modeled patches for each species for each time period and modeled potential connections among habitat patches by finding the least-cost path for every patch-to-patch connection. Finally, we aggregated these patches and paths to the tax parcel, commonly the primary unit of conservation action. Under future climate regimes, suitable habitat was predicted to contract or appear upslope and farther north. On average, predicted patches were nine times smaller and paths were twice as long under future climate. Parcels within the Hudson Highlands, Shawangunk Ridge, Catskill Mountains, and Harlem Valley had high species overlap, with areas upslope and northward increasing in importance over time. We envision that land managers and conservation planners can use these results to help prioritize parcel-level conservation and management and thus support biodiversity adaptation to climate change. © 2013 New York Academy of Sciences.

  14. Nowhere to Invade: Rumex crispus and Typha latifolia Projected to Disappear under Future Climate Scenarios

    PubMed Central

    Xu, Zhonglin; Feng, Zhaodong; Yang, Jianjun; Zheng, Jianghua; Zhang, Fang

    2013-01-01

    Future climate change has been predicted to affect the potential distribution of plant species. However, only few studies have addressed how invasive species may respond to future climate change despite the known effects of plant species invasion on nutrient cycles, ecosystem functions, and agricultural yields. In this study, we predicted the potential distributions of two invasive species, Rumex crispus and Typha latifolia, under current and future (2050) climatic conditions. Future climate scenarios considered in our study include A1B, A2, A2A, B1, and B2A. We found that these two species will lose their habitat under the A1B, A2, A2A, and B1 scenarios. Their distributions will be maintained under future climatic conditions related to B2A scenarios, but the total area will be less than 10% of that under the current climatic condition. We also investigated variations of the most influential climatic variables that are likely to cause habitat loss of the two species. Our results demonstrate that rising mean annual temperature, variations of the coldest quarter, and precipitation of the coldest quarter are the main factors contributing to habitat loss of R. crispus. For T. latifolia, the main factors are rising mean annual temperature, variations in temperature of the coldest quarter, mean annual precipitation, and precipitation of the coldest quarter. These results demonstrate that the warmer and wetter climatic conditions of the coldest season (or month) will be mainly responsible for habitat loss of R. crispus and T. latifolia in the future. We also discuss uncertainties related to our study (and similar studies) and suggest that particular attention should be directed toward the manner in which invasive species cope with rapid climate changes because evolutionary change can be rapid for species that invade new areas. PMID:23923020

  15. Asymmetries in Climate Change Feedbacks: Why the Future may be Hotter Than you Think

    NASA Astrophysics Data System (ADS)

    Torn, M. S.; Harte, J.

    2006-12-01

    Feedbacks in the climate system are major sources of uncertainty, and climate predictions do not yet include one key set of feedbacks, namely biospheric greenhouse gas (GhG) feedbacks. Historical evidence shows that atmospheric GhG concentrations increase during periods of warming, implying a positive feedback to future climate change. We quantify this feedback for carbon dioxide (CO2) and methane (CH4) by combining the mathematics of feedback with both empirical ice-core information and general circulation model climate sensitivity. We find that a warming of 1.7-5.8°C predicted for the year 2100 is amplified to a warming commitment of 1.9-7.7°C, with the range deriving from different GCM simulations and paleo temperature records. Thus, anthropogenic emissions result in higher final GhG concentrations, and therefore more warming, than would be predicted in the absence of this feedback. Uncertainty in climate change predictions have been used as a rationale for inaction against the threat of global warming, based on a prevailing view that the uncertainties are symmetric, giving equal support to climate "optimists" (who think it will be a small problem) and "pessimists," (it will be a big problem). Our results show that even a symmetrical uncertainty in any component of feedback, whether positive or negative, produces an asymmetrical distribution of expected temperatures skewed towards higher temperature. For both reasons, the omission of key positive feedbacks and asymmetrical uncertainty from feedbacks, it is likely that the future will be hotter than we think, which implies more severe climate change impacts. Thus, these results suggest that a conservative policy approach would employ lower emission targets and tighter stabilization time horizons than would otherwise be required.

  16. Evaluating Urban Resilience to Climate Change: A Multi-Sector Approach (External Review Draft)

    EPA Science Inventory

    Climate change impacts are diverse, long-term, and not easily predictable. Adapting to climate change requires making context specific and forward-looking decisions regarding a variety of climate change impacts and vulnerabilities when the future is highly uncertain. EPA scientis...

  17. Climate, CO2, and demographic impacts on global wildfire emissions

    NASA Astrophysics Data System (ADS)

    Knorr, W.; Jiang, L.; Arneth, A.

    2015-09-01

    Wildfires are by far the largest contributor to global biomass burning and constitute a large global source of atmospheric traces gases and aerosols. Such emissions have a considerable impact on air quality and constitute a major health hazard. Biomass burning also influences the radiative balance of the atmosphere and is thus not only of societal, but also of significant scientific interest. There is a common perception that climate change will lead to an increase in emissions as hot and dry weather events that promote wildfire will become more common. However, even though a few studies have found that the inclusion of CO2 fertilization of photosynthesis and changes in human population patterns will tend to somewhat lower predictions of future wildfire emissions, no such study has included full ensemble ranges of both climate predictions and population projections, including the effect of different degrees of urbanisation. Here, we present a series of 124 simulations with the LPJ-GUESS-SIMFIRE global dynamic vegetation - wildfire model, including a semi-empirical formulation for the prediction of burned area based on fire weather, fuel continuity and human population density. The simulations comprise Climate Model Intercomparison Project 5 (CMIP5) climate predictions from eight Earth system models using two Representative Concentration Pathways (RCPs) and five scenarios of future human population density based on the series of Shared Socioeconomic Pathways (SSPs), sensitivity tests for the effect of climate and CO2, as well as a sensitivity analysis using two alternative parameterisations of the semi-empirical burned-area model. Contrary to previous work, we find no clear future trend of global wildfire emissions for the moderate emissions and climate change scenario based on the RCP 4.5. Only historical population change introduces a decline by around 15 % since 1900. Future emissions could either increase for low population growth and fast urbanisation, or continue to decline for high population growth and slow urbanisation. Only for high future climate change (RCP8.5), wildfire emissions start to rise again after ca. 2020 but are unlikely to reach the levels of 1900 by the end of the 21st century. We find that climate warming will generally increase the risk of fire, but that this is only one of several equally important factors driving future levels of wildfire emissions, which include population change, CO2 fertilisation causing woody thickening, increased productivity and fuel load, and faster litter turnover in a warmer climate.

  18. Climate, CO2 and human population impacts on global wildfire emissions

    NASA Astrophysics Data System (ADS)

    Knorr, W.; Jiang, L.; Arneth, A.

    2016-01-01

    Wildfires are by far the largest contributor to global biomass burning and constitute a large global source of atmospheric traces gases and aerosols. Such emissions have a considerable impact on air quality and constitute a major health hazard. Biomass burning also influences the radiative balance of the atmosphere and is thus not only of societal, but also of significant scientific interest. There is a common perception that climate change will lead to an increase in emissions as hot and dry weather events that promote wildfire will become more common. However, even though a few studies have found that the inclusion of CO2 fertilisation of photosynthesis and changes in human population patterns will tend to somewhat lower predictions of future wildfire emissions, no such study has included full ensemble ranges of both climate predictions and population projections, including the effect of different degrees of urbanisation.

    Here, we present a series of 124 simulations with the LPJ-GUESS-SIMFIRE global dynamic vegetation-wildfire model, including a semi-empirical formulation for the prediction of burned area based on fire weather, fuel continuity and human population density. The simulations use Climate Model Intercomparison Project 5 (CMIP5) climate predictions from eight Earth system models. These were combined with two Representative Concentration Pathways (RCPs) and five scenarios of future human population density based on the series of Shared Socioeconomic Pathways (SSPs) to assess the sensitivity of emissions to the effect of climate, CO2 and humans. In addition, two alternative parameterisations of the semi-empirical burned-area model were applied. Contrary to previous work, we find no clear future trend of global wildfire emissions for the moderate emissions and climate change scenario based on the RCP 4.5. Only historical population change introduces a decline by around 15 % since 1900. Future emissions could either increase for low population growth and fast urbanisation, or continue to decline for high population growth and slow urbanisation. Only for high future climate change (RCP8.5), wildfire emissions start to rise again after ca. 2020 but are unlikely to reach the levels of 1900 by the end of the 21st century. We find that climate warming will generally increase the risk of fire, but that this is only one of several equally important factors driving future levels of wildfire emissions, which include population change, CO2 fertilisation causing woody thickening, increased productivity and fuel load and faster litter turnover in a warmer climate.

  19. PREDICTING REGIONAL ALLERGY HOTSPOTS IN FUTURE CLIMATE SCENARIOS – PUTTING THE WHERE & WHEN ON WHEEZING

    EPA Science Inventory

    This research addresses both the effects and mechanisms by which current and future climate conditions affect the risk factors related to allergic airway disease in humans. Our intensive sampling of pollen production, output, and potency in ecologically distinct ragweed popul...

  20. Future climate data from RCP 4.5 and occurrence of malaria in Korea.

    PubMed

    Kwak, Jaewon; Noh, Huiseong; Kim, Soojun; Singh, Vijay P; Hong, Seung Jin; Kim, Duckgil; Lee, Keonhaeng; Kang, Narae; Kim, Hung Soo

    2014-10-15

    Since its reappearance at the Military Demarcation Line in 1993, malaria has been occurring annually in Korea. Malaria is regarded as a third grade nationally notifiable disease susceptible to climate change. The objective of this study is to quantify the effect of climatic factors on the occurrence of malaria in Korea and construct a malaria occurrence model for predicting the future trend of malaria under the influence of climate change. Using data from 2001-2011, the effect of time lag between malaria occurrence and mean temperature, relative humidity and total precipitation was investigated using spectral analysis. Also, a principal component regression model was constructed, considering multicollinearity. Future climate data, generated from RCP 4.5 climate change scenario and CNCM3 climate model, was applied to the constructed regression model to simulate future malaria occurrence and analyze the trend of occurrence. Results show an increase in the occurrence of malaria and the shortening of annual time of occurrence in the future.

  1. Future Climate Data from RCP 4.5 and Occurrence of Malaria in Korea

    PubMed Central

    Kwak, Jaewon; Noh, Huiseong; Kim, Soojun; Singh, Vijay P.; Hong, Seung Jin; Kim, Duckgil; Lee, Keonhaeng; Kang, Narae; Kim, Hung Soo

    2014-01-01

    Since its reappearance at the Military Demarcation Line in 1993, malaria has been occurring annually in Korea. Malaria is regarded as a third grade nationally notifiable disease susceptible to climate change. The objective of this study is to quantify the effect of climatic factors on the occurrence of malaria in Korea and construct a malaria occurrence model for predicting the future trend of malaria under the influence of climate change. Using data from 2001–2011, the effect of time lag between malaria occurrence and mean temperature, relative humidity and total precipitation was investigated using spectral analysis. Also, a principal component regression model was constructed, considering multicollinearity. Future climate data, generated from RCP 4.5 climate change scenario and CNCM3 climate model, was applied to the constructed regression model to simulate future malaria occurrence and analyze the trend of occurrence. Results show an increase in the occurrence of malaria and the shortening of annual time of occurrence in the future. PMID:25321875

  2. Climate-driven range shifts explain the distribution of extant gene pools and predict future loss of unique lineages in a marine brown alga.

    PubMed

    Assis, J; Serrão, E A; Claro, B; Perrin, C; Pearson, G A

    2014-06-01

    The climate-driven dynamics of species ranges is a critical research question in evolutionary ecology. We ask whether present intraspecific diversity is determined by the imprint of past climate. This is an ongoing debate requiring interdisciplinary examination of population genetic pools and persistence patterns across global ranges. Previously, contrasting inferences and predictions have resulted from distinct genomic coverage and/or geographical information. We aim to describe and explain the causes of geographical contrasts in genetic diversity and their consequences for the future baseline of the global genetic pool, by comparing present geographical distribution of genetic diversity and differentiation with predictive species distribution modelling (SDM) during past extremes, present time and future climate scenarios for a brown alga, Fucus vesiculosus. SDM showed that both atmospheric and oceanic variables shape the global distribution of intertidal species, revealing regions of persistence, extinction and expansion during glacial and postglacial periods. These explained the distribution and structure of present genetic diversity, consisting of differentiated genetic pools with maximal diversity in areas of long-term persistence. Most of the present species range comprises postglacial expansion zones and, in contrast to highly dispersive marine organisms, expansions involved only local fronts, leaving distinct genetic pools at rear edges. Besides unravelling a complex phylogeographical history and showing congruence between genetic diversity and persistent distribution zones, supporting the hypothesis of niche conservatism, range shifts and loss of unique genetic diversity at the rear edge were predicted for future climate scenarios, impoverishing the global gene pool. © 2014 John Wiley & Sons Ltd.

  3. Data-Conditioned Distributions of Groundwater Recharge Under Climate Change Scenarios

    NASA Astrophysics Data System (ADS)

    McLaughlin, D.; Ng, G. C.; Entekhabi, D.; Scanlon, B.

    2008-12-01

    Groundwater recharge is likely to be impacted by climate change, with changes in precipitation amounts altering moisture availability and changes in temperature affecting evaporative demand. This could have major implications for sustainable aquifer pumping rates and contaminant transport into groundwater reservoirs in the future, thus making predictions of recharge under climate change very important. Unfortunately, in dry environments where groundwater resources are often most critical, low recharge rates are difficult to resolve due to high sensitivity to modeling and input errors. Some recent studies on climate change and groundwater have considered recharge using a suite of general circulation model (GCM) weather predictions, an obvious and key source of uncertainty. This work extends beyond those efforts by also accounting for uncertainty in other land-surface model inputs in a probabilistic manner. Recharge predictions are made using a range of GCM projections for a rain-fed cotton site in the semi-arid Southern High Plains region of Texas. Results showed that model simulations using a range of unconstrained literature-based parameter values produce highly uncertain and often misleading recharge rates. Thus, distributional recharge predictions are found using soil and vegetation parameters conditioned on current unsaturated zone soil moisture and chloride concentration observations; assimilation of observations is carried out with an ensemble importance sampling method. Our findings show that the predicted distribution shapes can differ for the various GCM conditions considered, underscoring the importance of probabilistic analysis over deterministic simulations. The recharge predictions indicate that the temporal distribution (over seasons and rain events) of climate change will be particularly critical for groundwater impacts. Overall, changes in recharge amounts and intensity were often more pronounced than changes in annual precipitation and temperature, thus suggesting high susceptibility of groundwater systems to future climate change. Our approach provides a probabilistic sensitivity analysis of recharge under potential climate changes, which will be critical for future management of water resources.

  4. Direct and indirect climate controls predict heterogeneous early-mid 21st century wildfire burned area across western and boreal North America

    PubMed Central

    Falk, Donald A.; Westerling, Anthony L.; Swetnam, Thomas W.

    2017-01-01

    Predicting wildfire under future conditions is complicated by complex interrelated drivers operating across large spatial scales. Annual area burned (AAB) is a useful index of global wildfire activity. Current and antecedent seasonal climatic conditions, and the timing of snowpack melt, have been suggested as important drivers of AAB. As climate warms, seasonal climate and snowpack co-vary in intricate ways, influencing fire at continental and sub-continental scales. We used independent records of seasonal climate and snow cover duration (last date of permanent snowpack, LDPS) and cell-based Structural Equation Models (SEM) to separate direct (climatic) and indirect (snow cover) effects on relative changes in AAB under future climatic scenarios across western and boreal North America. To isolate seasonal climate variables with the greatest effect on AAB, we ran multiple regression models of log-transformed AAB on seasonal climate variables and LDPS. We used the results of multiple regressions to project future AAB using GCM ensemble climate variables and LDPS, and validated model predictions with recent AAB trends. Direct influences of spring and winter temperatures on AAB are larger and more widespread than the indirect effect mediated by changes in LDPS in most areas. Despite significant warming trends and reductions in snow cover duration, projected responses of AAB to early-mid 21st century are heterogeneous across the continent. Changes in AAB range from strongly increasing (one order of magnitude increases in AAB) to moderately decreasing (more than halving of baseline AAB). Annual wildfire area burned in coming decades is likely to be highly geographically heterogeneous, reflecting interacting regional and seasonal climate drivers of fire occurrence and spread. PMID:29244839

  5. Direct and indirect climate controls predict heterogeneous early-mid 21st century wildfire burned area across western and boreal North America.

    PubMed

    Kitzberger, Thomas; Falk, Donald A; Westerling, Anthony L; Swetnam, Thomas W

    2017-01-01

    Predicting wildfire under future conditions is complicated by complex interrelated drivers operating across large spatial scales. Annual area burned (AAB) is a useful index of global wildfire activity. Current and antecedent seasonal climatic conditions, and the timing of snowpack melt, have been suggested as important drivers of AAB. As climate warms, seasonal climate and snowpack co-vary in intricate ways, influencing fire at continental and sub-continental scales. We used independent records of seasonal climate and snow cover duration (last date of permanent snowpack, LDPS) and cell-based Structural Equation Models (SEM) to separate direct (climatic) and indirect (snow cover) effects on relative changes in AAB under future climatic scenarios across western and boreal North America. To isolate seasonal climate variables with the greatest effect on AAB, we ran multiple regression models of log-transformed AAB on seasonal climate variables and LDPS. We used the results of multiple regressions to project future AAB using GCM ensemble climate variables and LDPS, and validated model predictions with recent AAB trends. Direct influences of spring and winter temperatures on AAB are larger and more widespread than the indirect effect mediated by changes in LDPS in most areas. Despite significant warming trends and reductions in snow cover duration, projected responses of AAB to early-mid 21st century are heterogeneous across the continent. Changes in AAB range from strongly increasing (one order of magnitude increases in AAB) to moderately decreasing (more than halving of baseline AAB). Annual wildfire area burned in coming decades is likely to be highly geographically heterogeneous, reflecting interacting regional and seasonal climate drivers of fire occurrence and spread.

  6. Means and extremes: building variability into community-level climate change experiments.

    PubMed

    Thompson, Ross M; Beardall, John; Beringer, Jason; Grace, Mike; Sardina, Paula

    2013-06-01

    Experimental studies assessing climatic effects on ecological communities have typically applied static warming treatments. Although these studies have been informative, they have usually failed to incorporate either current or predicted future, patterns of variability. Future climates are likely to include extreme events which have greater impacts on ecological systems than changes in means alone. Here, we review the studies which have used experiments to assess impacts of temperature on marine, freshwater and terrestrial communities, and classify them into a set of 'generations' based on how they incorporate variability. The majority of studies have failed to incorporate extreme events. In terrestrial ecosystems in particular, experimental treatments have reduced temperature variability, when most climate models predict increased variability. Marine studies have tended to not concentrate on changes in variability, likely in part because the thermal mass of oceans will moderate variation. In freshwaters, climate change experiments have a much shorter history than in the other ecosystems, and have tended to take a relatively simple approach. We propose a new 'generation' of climate change experiments using down-scaled climate models which incorporate predicted changes in climatic variability, and describe a process for generating data which can be applied as experimental climate change treatments. © 2013 John Wiley & Sons Ltd/CNRS.

  7. Modeling erosion under future climates with the WEPP model

    Treesearch

    Timothy Bayley; William Elliot; Mark A. Nearing; D. Phillp Guertin; Thomas Johnson; David Goodrich; Dennis Flanagan

    2010-01-01

    The Water Erosion Prediction Project Climate Assessment Tool (WEPPCAT) was developed to be an easy-to-use, web-based erosion model that allows users to adjust climate inputs for user-specified climate scenarios. WEPPCAT allows the user to modify monthly mean climate parameters, including maximum and minimum temperatures, number of wet days, precipitation, and...

  8. Unlocking the climate riddle in forested ecosystems

    Treesearch

    Greg C. Liknes; Christopher W. Woodall; Brian F. Walters; Sara A. Goeking

    2012-01-01

    Climate information is often used as a predictor in ecological studies, where temporal averages are typically based on climate normals (30-year means) or seasonal averages. While ensemble projections of future climate forecast a higher global average annual temperature, they also predict increased climate variability. It remains to be seen whether forest ecosystems...

  9. Predicting climate-induced range shifts: model differences and model reliability.

    Treesearch

    Joshua J. Lawler; Denis White; Ronald P. Neilson; Andrew R. Blaustein

    2006-01-01

    Predicted changes in the global climate are likely to cause large shifts in the geographic ranges of many plant and animal species. To date, predictions of future range shifts have relied on a variety of modeling approaches with different levels of model accuracy. Using a common data set, we investigated the potential implications of alternative modeling approaches for...

  10. Impact of climate change on mercury concentrations and deposition in the eastern United States.

    PubMed

    Megaritis, Athanasios G; Murphy, Benjamin N; Racherla, Pavan N; Adams, Peter J; Pandis, Spyros N

    2014-07-15

    The global-regional climate-air pollution modeling system (GRE-CAPS) was applied over the eastern United States to study the impact of climate change on the concentration and deposition of atmospheric mercury. Summer and winter periods (300 days for each) were simulated, and the present-day model predictions (2000s) were compared to the future ones (2050s) assuming constant emissions. Climate change affects Hg(2+) concentrations in both periods. On average, atmospheric Hg(2+) levels are predicted to increase in the future by 3% in summer and 5% in winter respectively due to enhanced oxidation of Hg(0) under higher temperatures. The predicted concentration change of Hg(2+) was found to vary significantly in space due to regional-scale changes in precipitation, ranging from -30% to 30% during summer and -20% to 40% during winter. Particulate mercury, Hg(p) has a similar spatial response to climate change as Hg(2+), while Hg(0) levels are not predicted to change significantly. In both periods, the response of mercury deposition to climate change varies spatially with an average predicted increase of 6% during summer and 4% during winter. During summer, deposition increases are predicted mostly in the western parts of the domain while mercury deposition is predicted to decrease in the Northeast and also in many areas in the Midwest and Southeast. During winter mercury deposition is predicted to change from -30% to 50% mainly due to the changes in rainfall and the corresponding changes in wet deposition. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Predicting future uncertainty constraints on global warming projections

    DOE PAGES

    Shiogama, H.; Stone, D.; Emori, S.; ...

    2016-01-11

    Projections of global mean temperature changes (ΔT) in the future are associated with intrinsic uncertainties. Much climate policy discourse has been guided by "current knowledge" of the ΔTs uncertainty, ignoring the likely future reductions of the uncertainty, because a mechanism for predicting these reductions is lacking. By using simulations of Global Climate Models from the Coupled Model Intercomparison Project Phase 5 ensemble as pseudo past and future observations, we estimate how fast and in what way the uncertainties of ΔT can decline when the current observation network of surface air temperature is maintained. At least in the world of pseudomore » observations under the Representative Concentration Pathways (RCPs), we can drastically reduce more than 50% of the ΔTs uncertainty in the 2040 s by 2029, and more than 60% of the ΔTs uncertainty in the 2090 s by 2049. Under the highest forcing scenario of RCPs, we can predict the true timing of passing the 2°C (3°C) warming threshold 20 (30) years in advance with errors less than 10 years. These results demonstrate potential for sequential decision-making strategies to take advantage of future progress in understanding of anthropogenic climate change.« less

  12. Predicting future uncertainty constraints on global warming projections

    PubMed Central

    Shiogama, H.; Stone, D.; Emori, S.; Takahashi, K.; Mori, S.; Maeda, A.; Ishizaki, Y.; Allen, M. R.

    2016-01-01

    Projections of global mean temperature changes (ΔT) in the future are associated with intrinsic uncertainties. Much climate policy discourse has been guided by “current knowledge” of the ΔTs uncertainty, ignoring the likely future reductions of the uncertainty, because a mechanism for predicting these reductions is lacking. By using simulations of Global Climate Models from the Coupled Model Intercomparison Project Phase 5 ensemble as pseudo past and future observations, we estimate how fast and in what way the uncertainties of ΔT can decline when the current observation network of surface air temperature is maintained. At least in the world of pseudo observations under the Representative Concentration Pathways (RCPs), we can drastically reduce more than 50% of the ΔTs uncertainty in the 2040 s by 2029, and more than 60% of the ΔTs uncertainty in the 2090 s by 2049. Under the highest forcing scenario of RCPs, we can predict the true timing of passing the 2 °C (3 °C) warming threshold 20 (30) years in advance with errors less than 10 years. These results demonstrate potential for sequential decision-making strategies to take advantage of future progress in understanding of anthropogenic climate change. PMID:26750491

  13. Predicting future uncertainty constraints on global warming projections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiogama, H.; Stone, D.; Emori, S.

    Projections of global mean temperature changes (ΔT) in the future are associated with intrinsic uncertainties. Much climate policy discourse has been guided by "current knowledge" of the ΔTs uncertainty, ignoring the likely future reductions of the uncertainty, because a mechanism for predicting these reductions is lacking. By using simulations of Global Climate Models from the Coupled Model Intercomparison Project Phase 5 ensemble as pseudo past and future observations, we estimate how fast and in what way the uncertainties of ΔT can decline when the current observation network of surface air temperature is maintained. At least in the world of pseudomore » observations under the Representative Concentration Pathways (RCPs), we can drastically reduce more than 50% of the ΔTs uncertainty in the 2040 s by 2029, and more than 60% of the ΔTs uncertainty in the 2090 s by 2049. Under the highest forcing scenario of RCPs, we can predict the true timing of passing the 2°C (3°C) warming threshold 20 (30) years in advance with errors less than 10 years. These results demonstrate potential for sequential decision-making strategies to take advantage of future progress in understanding of anthropogenic climate change.« less

  14. On climate prediction: how much can we expect from climate memory?

    NASA Astrophysics Data System (ADS)

    Yuan, Naiming; Huang, Yan; Duan, Jianping; Zhu, Congwen; Xoplaki, Elena; Luterbacher, Jürg

    2018-03-01

    Slowing variability in climate system is an important source of climate predictability. However, it is still challenging for current dynamical models to fully capture the variability as well as its impacts on future climate. In this study, instead of simulating the internal multi-scale oscillations in dynamical models, we discussed the effects of internal variability in terms of climate memory. By decomposing climate state x(t) at a certain time point t into memory part M(t) and non-memory part ɛ (t) , climate memory effects from the past 30 years on climate prediction are quantified. For variables with strong climate memory, high variance (over 20% ) in x(t) is explained by the memory part M(t), and the effects of climate memory are non-negligible for most climate variables, but the precipitation. Regarding of multi-steps climate prediction, a power law decay of the explained variance was found, indicating long-lasting climate memory effects. The explained variances by climate memory can remain to be higher than 10% for more than 10 time steps. Accordingly, past climate conditions can affect both short (monthly) and long-term (interannual, decadal, or even multidecadal) climate predictions. With the memory part M(t) precisely calculated from Fractional Integral Statistical Model, one only needs to focus on the non-memory part ɛ (t) , which is an important quantity that determines climate predictive skills.

  15. The influence of El Niño-Southern Oscillation regimes on eastern African vegetation and its future implications under the RCP8.5 warming scenario

    NASA Astrophysics Data System (ADS)

    Fer, Istem; Tietjen, Britta; Jeltsch, Florian; Wolff, Christian

    2017-09-01

    The El Niño-Southern Oscillation (ENSO) is the main driver of the interannual variability in eastern African rainfall, with a significant impact on vegetation and agriculture and dire consequences for food and social security. In this study, we identify and quantify the ENSO contribution to the eastern African rainfall variability to forecast future eastern African vegetation response to rainfall variability related to a predicted intensified ENSO. To differentiate the vegetation variability due to ENSO, we removed the ENSO signal from the climate data using empirical orthogonal teleconnection (EOT) analysis. Then, we simulated the ecosystem carbon and water fluxes under the historical climate without components related to ENSO teleconnections. We found ENSO-driven patterns in vegetation response and confirmed that EOT analysis can successfully produce coupled tropical Pacific sea surface temperature-eastern African rainfall teleconnection from observed datasets. We further simulated eastern African vegetation response under future climate change as it is projected by climate models and under future climate change combined with a predicted increased ENSO intensity. Our EOT analysis highlights that climate simulations are still not good at capturing rainfall variability due to ENSO, and as we show here the future vegetation would be different from what is simulated under these climate model outputs lacking accurate ENSO contribution. We simulated considerable differences in eastern African vegetation growth under the influence of an intensified ENSO regime which will bring further environmental stress to a region with a reduced capacity to adapt effects of global climate change and food security.

  16. Translating Uncertain Sea Level Projections Into Infrastructure Impacts Using a Bayesian Framework

    NASA Astrophysics Data System (ADS)

    Moftakhari, Hamed; AghaKouchak, Amir; Sanders, Brett F.; Matthew, Richard A.; Mazdiyasni, Omid

    2017-12-01

    Climate change may affect ocean-driven coastal flooding regimes by both raising the mean sea level (msl) and altering ocean-atmosphere interactions. For reliable projections of coastal flood risk, information provided by different climate models must be considered in addition to associated uncertainties. In this paper, we propose a framework to project future coastal water levels and quantify the resulting flooding hazard to infrastructure. We use Bayesian Model Averaging to generate a weighted ensemble of storm surge predictions from eight climate models for two coastal counties in California. The resulting ensembles combined with msl projections, and predicted astronomical tides are then used to quantify changes in the likelihood of road flooding under representative concentration pathways 4.5 and 8.5 in the near-future (1998-2063) and mid-future (2018-2083). The results show that road flooding rates will be significantly higher in the near-future and mid-future compared to the recent past (1950-2015) if adaptation measures are not implemented.

  17. Species-free species distribution models describe macroecological properties of protected area networks.

    PubMed

    Robinson, Jason L; Fordyce, James A

    2017-01-01

    Among the greatest challenges facing the conservation of plants and animal species in protected areas are threats from a rapidly changing climate. An altered climate creates both challenges and opportunities for improving the management of protected areas in networks. Increasingly, quantitative tools like species distribution modeling are used to assess the performance of protected areas and predict potential responses to changing climates for groups of species, within a predictive framework. At larger geographic domains and scales, protected area network units have spatial geoclimatic properties that can be described in the gap analysis typically used to measure or aggregate the geographic distributions of species (stacked species distribution models, or S-SDM). We extend the use of species distribution modeling techniques in order to model the climate envelope (or "footprint") of individual protected areas within a network of protected areas distributed across the 48 conterminous United States and managed by the US National Park System. In our approach we treat each protected area as the geographic range of a hypothetical endemic species, then use MaxEnt and 5 uncorrelated BioClim variables to model the geographic distribution of the climatic envelope associated with each protected area unit (modeling the geographic area of park units as the range of a species). We describe the individual and aggregated climate envelopes predicted by a large network of 163 protected areas and briefly illustrate how macroecological measures of geodiversity can be derived from our analysis of the landscape ecological context of protected areas. To estimate trajectories of change in the temporal distribution of climatic features within a protected area network, we projected the climate envelopes of protected areas in current conditions onto a dataset of predicted future climatic conditions. Our results suggest that the climate envelopes of some parks may be locally unique or have narrow geographic distributions, and are thus prone to future shifts away from the climatic conditions in these parks in current climates. In other cases, some parks are broadly similar to large geographic regions surrounding the park or have climatic envelopes that may persist into near-term climate change. Larger parks predict larger climatic envelopes, in current conditions, but on average the predicted area of climate envelopes are smaller in our single future conditions scenario. Individual units in a protected area network may vary in the potential for climate adaptation, and adaptive management strategies for the network should account for the landscape contexts of the geodiversity or climate diversity within individual units. Conservation strategies, including maintaining connectivity, assessing the feasibility of assisted migration and other landscape restoration or enhancements can be optimized using analysis methods to assess the spatial properties of protected area networks in biogeographic and macroecological contexts.

  18. Modeling the impact of climate change on wild Piper nigrum (Black Pepper) in Western Ghats, India using ecological niche models.

    PubMed

    Sen, Sandeep; Gode, Ameya; Ramanujam, Srirama; Ravikanth, G; Aravind, N A

    2016-11-01

    The center of diversity of Piper nigrum L. (Black Pepper), one of the highly valued spice crops is reported to be from India. Black pepper is naturally distributed in India in the Western Ghats biodiversity hotspot and is the only known existing source of its wild germplasm in the world. We used ecological niche models to predict the potential distribution of wild P. nigrum in the present and two future climate change scenarios viz (A1B) and (A2A) for the year 2080. Three topographic and nine uncorrelated bioclim variables were used to develop the niche models. The environmental variables influencing the distribution of wild P. nigrum across different climate change scenarios were identified. We also assessed the direction and magnitude of the niche centroid shift and the change in niche breadth to estimate the impact of projected climate change on the distribution of P. nigrum. The study shows a niche centroid shift in the future climate scenarios. Both the projected future climate scenarios predicted a reduction in the habitat of P. nigrum in Southern Western Ghats, which harbors many wild accessions of P. nigrum. Our results highlight the impact of future climate change on P. nigrum and provide useful information for designing sound germplasm conservation strategies for P. nigrum.

  19. Considerations for building climate-based species distribution models

    USGS Publications Warehouse

    Bucklin, David N.; Basille, Mathieu; Romañach, Stephanie; Brandt, Laura A.; Mazzotti, Frank J.; Watling, James I.

    2016-01-01

    Climate plays an important role in the distribution of species. A given species may adjust to new conditions in-place, move to new areas with suitable climates, or go extinct. Scientists and conservation practitioners use mathematical models to predict the effects of future climate change on wildlife and plan for a biodiverse future. This 8-page fact sheet written by David N. Bucklin, Mathieu Basille, Stephanie S. Romañach, Laura A. Brandt, Frank J. Mazzotti, and James I. Watling and published by the Department of Wildlife Ecology and Conservation explains how, with a better understanding of species distribution models, we can predict how species may respond to climate change. The models alone cannot tell us how a certain species will actually respond to changes in climate, but they can inform conservation planning that aims to allow species to both adapt in place and (for those that are able to) move to newly suitable areas. Such planning will likely minimize loss of biodiversity due to climate change.

  20. Progress report of the Interagency Climate Change Adaptation Task Force : recommended actions in support of a national climate change adaptation strategy

    DOT National Transportation Integrated Search

    2010-10-05

    The scope, severity, and pace of : future climate change impacts are : difficult to predict. However, : observations and long-term scientific : trends indicate that the potential : impacts of a changing climate on : society and the environment will b...

  1. Climate control of terrestrial carbon exchange across biomes and continents

    Treesearch

    Chuixiang Yi; Daniel Ricciuto; Runze Li; John Wolbeck; Xiyan Xu; Mats Nilsson; John Frank; William J. Massman

    2010-01-01

    Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate-carbon cycle feedbacks. However, directly observed relationships between climate and terrestrial CO2 exchange with the atmosphere across biomes...

  2. Predicting the unpredictable: potential climate change impacts on vegetation in the Pacific Northwest

    Treesearch

    Marie Oliver; David W. Peterson; Becky Kerns

    2016-01-01

    Earth's climate is changing, as evidenced by warming temperatures, increased temperature variability, fluctuating precipitation patterns, and climate-related environmental disturbances. And with considerable uncertainty about the future, Forest Service land managers are now considering climate change adaptation in their planning efforts. They want practical...

  3. Climate-driven spatial mismatches between British orchards and their pollinators: increased risks of pollination deficits

    PubMed Central

    Polce, Chiara; Garratt, Michael P; Termansen, Mette; Ramirez-Villegas, Julian; Challinor, Andrew J; Lappage, Martin G; Boatman, Nigel D; Crowe, Andrew; Endalew, Ayenew Melese; Potts, Simon G; Somerwill, Kate E; Biesmeijer, Jacobus C

    2014-01-01

    Understanding how climate change can affect crop-pollinator systems helps predict potential geographical mismatches between a crop and its pollinators, and therefore identify areas vulnerable to loss of pollination services. We examined the distribution of orchard species (apples, pears, plums and other top fruits) and their pollinators in Great Britain, for present and future climatic conditions projected for 2050 under the SRES A1B Emissions Scenario. We used a relative index of pollinator availability as a proxy for pollination service. At present, there is a large spatial overlap between orchards and their pollinators, but predictions for 2050 revealed that the most suitable areas for orchards corresponded to low pollinator availability. However, we found that pollinator availability may persist in areas currently used for fruit production, which are predicted to provide suboptimal environmental suitability for orchard species in the future. Our results may be used to identify mitigation options to safeguard orchard production against the risk of pollination failure in Great Britain over the next 50 years; for instance, choosing fruit tree varieties that are adapted to future climatic conditions, or boosting wild pollinators through improving landscape resources. Our approach can be readily applied to other regions and crop systems, and expanded to include different climatic scenarios. PMID:24638986

  4. Contrasting fire responses to climate and management: insights from two Australian ecosystems.

    PubMed

    King, Karen J; Cary, Geoffrey J; Bradstock, Ross A; Marsden-Smedley, Jonathan B

    2013-04-01

    This study explores effects of climate change and fuel management on unplanned fire activity in ecosystems representing contrasting extremes of the moisture availability spectrum (mesic and arid). Simulation modelling examined unplanned fire activity (fire incidence and area burned, and the area burned by large fires) for alternate climate scenarios and prescribed burning levels in: (i) a cool, moist temperate forest and wet moorland ecosystem in south-west Tasmania (mesic); and (ii) a spinifex and mulga ecosystem in central Australia (arid). Contemporary fire activity in these case study systems is limited, respectively, by fuel availability and fuel amount. For future climates, unplanned fire incidence and area burned increased in the mesic landscape, but decreased in the arid landscape in accordance with predictions based on these limiting factors. Area burned by large fires (greater than the 95th percentile of historical, unplanned fire size) increased with future climates in the mesic landscape. Simulated prescribed burning was more effective in reducing unplanned fire activity in the mesic landscape. However, the inhibitory effects of prescribed burning are predicted to be outweighed by climate change in the mesic landscape, whereas in the arid landscape prescribed burning reinforced a predicted decline in fire under climate change. The potentially contrasting direction of future changes to fire will have fundamentally different consequences for biodiversity in these contrasting ecosystems, and these will need to be accommodated through contrasting, innovative management solutions. © 2012 Blackwell Publishing Ltd.

  5. Growth response of conifers in Adirondack plantations to changing environment: Model approaches based on stem-analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Y.

    1993-01-01

    Based on model approaches, three conifer species, red pine, Norway spruce and Scots pine grown in plantations at Pack Demonstration Forest, in the southeastern Adirondack mountains of New York, were chosen to study growth response to different environmental changes, including silvicultural treatments and changes in climate and chemical environment. Detailed stem analysis data provided a basis for constructing tree growth models. These models were organized into three groups: morphological, dynamic and predictive. The morphological model was designed to evaluate relationship between tree attributes and interactive influences of intrinsic and extrinsic factors on the annual increments. Three types of morphological patternsmore » have been characterized: space-time patterns of whole-stem rings, intrinsic wood deposition pattern along the tree-stem, and bolewood allocation ratio patterns along the tree-stem. The dynamic model reflects the growth process as a system which responds to extrinsic signal inputs, including fertilization pulses, spacing effects and climatic disturbance, as well as intrinsic feedback. Growth signals indicative of climatic effects were used to construct growth-climate models using both multivariate analysis and Kalman filter methods. The predictive model utilized GCMs and growth-climate relationships to forecast tree growth responses in relation to future scenarios of CO[sub 2]-induced climate change. Prediction results indicate that different conifer species have individualistic growth response to future climatic change and suggest possible changes in future growth and distribution of naturally occurring conifers in this region.« less

  6. Modeling the potential impacts of climate change on the water table level of selected forested wetlands in the southeastern United States

    NASA Astrophysics Data System (ADS)

    Zhu, Jie; Sun, Ge; Li, Wenhong; Zhang, Yu; Miao, Guofang; Noormets, Asko; McNulty, Steve G.; King, John S.; Kumar, Mukesh; Wang, Xuan

    2017-12-01

    The southeastern United States hosts extensive forested wetlands, providing ecosystem services including carbon sequestration, water quality improvement, groundwater recharge, and wildlife habitat. However, these wetland ecosystems are dependent on local climate and hydrology, and are therefore at risk due to climate and land use change. This study develops site-specific empirical hydrologic models for five forested wetlands with different characteristics by analyzing long-term observed meteorological and hydrological data. These wetlands represent typical cypress ponds/swamps, Carolina bays, pine flatwoods, drained pocosins, and natural bottomland hardwood ecosystems. The validated empirical models are then applied at each wetland to predict future water table changes using climate projections from 20 general circulation models (GCMs) participating in Coupled Model Inter-comparison Project 5 (CMIP5) under the Representative Concentration Pathways (RCPs) 4.5 and 8.5 scenarios. We show that combined future changes in precipitation and potential evapotranspiration would significantly alter wetland hydrology including groundwater dynamics by the end of the 21st century. Compared to the historical period, all five wetlands are predicted to become drier over time. The mean water table depth is predicted to drop by 4 to 22 cm in response to the decrease in water availability (i.e., precipitation minus potential evapotranspiration) by the year 2100. Among the five examined wetlands, the depressional wetland in hot and humid Florida appears to be most vulnerable to future climate change. This study provides quantitative information on the potential magnitude of wetland hydrological response to future climate change in typical forested wetlands in the southeastern US.

  7. Effects of climate change, invasive species, and disease on the distribution of native European crayfishes.

    PubMed

    Capinha, César; Larson, Eric R; Tricarico, Elena; Olden, Julian D; Gherardi, Francesca

    2013-08-01

    Climate change will require species to adapt to new conditions or follow preferred climates to higher latitudes or elevations, but many dispersal-limited freshwater species may be unable to move due to barriers imposed by watershed boundaries. In addition, invasive nonnative species may expand into new regions under future climate conditions and contribute to the decline of native species. We evaluated future distributions for the threatened European crayfish fauna in response to climate change, watershed boundaries, and the spread of invasive crayfishes, which transmit the crayfish plague, a lethal disease for native European crayfishes. We used climate projections from general circulation models and statistical models based on Mahalanobis distance to predict climate-suitable regions for native and invasive crayfishes in the middle and at the end of the 21st century. We identified these suitable regions as accessible or inaccessible on the basis of major watershed boundaries and present occurrences and evaluated potential future overlap with 3 invasive North American crayfishes. Climate-suitable areas decreased for native crayfishes by 19% to 72%, and the majority of future suitable areas for most of these species were inaccessible relative to native and current distributions. Overlap with invasive crayfish plague-transmitting species was predicted to increase. Some native crayfish species (e.g., noble crayfish [Astacus astacus]) had no future refugia that were unsuitable for the modeled nonnative species. Our results emphasize the importance of preventing additional introductions and spread of invasive crayfishes in Europe to minimize interactions between the multiple stressors of climate change and invasive species, while suggesting candidate regions for the debatable management option of assisted colonization. © 2013 Society for Conservation Biology.

  8. Impacts of past and future climate change on wind energy resources in the United States

    NASA Astrophysics Data System (ADS)

    McCaa, J. R.; Wood, A.; Eichelberger, S.; Westrick, K.

    2009-12-01

    The links between climate change and trends in wind energy resources have important potential implications for the wind energy industry, and have received significant attention in recent studies. We have conducted two studies that provide insights into the potential for climate change to affect future wind power production. In one experiment, we projected changes in power capacity for a hypothetical wind farm located near Kennewick, Washington, due to greenhouse gas-induced climate change, estimated using a set of regional climate model simulations. Our results show that the annual wind farm power capacity is projected to decrease 1.3% by 2050. In a wider study focusing on wind speed instead of power, we analyzed projected changes in wind speed from 14 different climate simulations that were performed in support of the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4). Our results show that the predicted ensemble mean changes in annual mean wind speeds are expected to be modest. However, seasonal changes and changes predicted by individual models are large enough to affect the profitability of existing and future wind projects. The majority of the model simulations reveal that near-surface wind speed values are expected to shift poleward in response to the IPCC A2 emission scenario, particularly during the winter season. In the United States, most models agree that the mean annual wind speed values will increase in a region extending from the Great Lakes southward across the Midwest and into Texas. Decreased values, though, are predicted across most of the western United States. However, these predicted changes have a strong seasonal dependence, with wind speed increases over most of the United States during the winter and decreases over the northern United States during the summer.

  9. Designing optimized multi-species monitoring networks to detect range shifts driven by climate change: a case study with bats in the North of Portugal.

    PubMed

    Amorim, Francisco; Carvalho, Sílvia B; Honrado, João; Rebelo, Hugo

    2014-01-01

    Here we develop a framework to design multi-species monitoring networks using species distribution models and conservation planning tools to optimize the location of monitoring stations to detect potential range shifts driven by climate change. For this study, we focused on seven bat species in Northern Portugal (Western Europe). Maximum entropy modelling was used to predict the likely occurrence of those species under present and future climatic conditions. By comparing present and future predicted distributions, we identified areas where each species is likely to gain, lose or maintain suitable climatic space. We then used a decision support tool (the Marxan software) to design three optimized monitoring networks considering: a) changes in species likely occurrence, b) species conservation status, and c) level of volunteer commitment. For present climatic conditions, species distribution models revealed that areas suitable for most species occur in the north-eastern part of the region. However, areas predicted to become climatically suitable in the future shifted towards west. The three simulated monitoring networks, adaptable for an unpredictable volunteer commitment, included 28, 54 and 110 sampling locations respectively, distributed across the study area and covering the potential full range of conditions where species range shifts may occur. Our results show that our framework outperforms the traditional approach that only considers current species ranges, in allocating monitoring stations distributed across different categories of predicted shifts in species distributions. This study presents a straightforward framework to design monitoring schemes aimed specifically at testing hypotheses about where and when species ranges may shift with climatic changes, while also ensuring surveillance of general population trends.

  10. Modelling benthic macrofauna and seagrass distribution patterns in a North Sea tidal basin in response to 2050 climatic and environmental scenarios

    NASA Astrophysics Data System (ADS)

    Singer, Anja; Millat, Gerald; Staneva, Joanna; Kröncke, Ingrid

    2017-03-01

    Small-scale spatial distribution patterns of seven macrofauna species, seagrass beds and mixed mussel/oyster reefs were modelled for the Jade Bay (North Sea, Germany) in response to climatic and environmental scenarios (representing 2050). For the species distribution models four presence-absence modelling methods were merged within the ensemble forecasting platform 'biomod2'. The present spatial distribution (representing 2009) was modelled by statistically related species presences, true species absences and six high-resolution environmental grids. The future spatial distribution was then predicted in response to expected climate change-induced ongoing (1) sea-level rise and (2) water temperature increase. Between 2009 and 2050, the present and future prediction maps revealed a significant range gain for two macrofauna species (Macoma balthica, Tubificoides benedii), whereas the species' range sizes of five macrofauna species remained relatively stable across space and time. The predicted probability of occurrence (PO) of two macrofauna species (Cerastoderma edule, Scoloplos armiger) decreased significantly under the potential future habitat conditions. In addition, a clear seagrass bed extension (Zostera noltii) on the lower intertidal flats (mixed sediments) and a decrease in the PO of mixed Mytilus edulis/Crassostrea gigas reefs was predicted for 2050. Until the mid-21st century, our future climatic and environmental scenario revealed significant changes in the range sizes (gains-losses) and/or the PO (increases-decreases) for seven of the 10 modelled species at the study site.

  11. The Impact of Climate Change on Indigenous Arabica Coffee (Coffea arabica): Predicting Future Trends and Identifying Priorities

    PubMed Central

    Gole, Tadesse Woldemariam; Baena, Susana

    2012-01-01

    Precise modelling of the influence of climate change on Arabica coffee is limited; there are no data available for indigenous populations of this species. In this study we model the present and future predicted distribution of indigenous Arabica, and identify priorities in order to facilitate appropriate decision making for conservation, monitoring and future research. Using distribution data we perform bioclimatic modelling and examine future distribution with the HadCM3 climate model for three emission scenarios (A1B, A2A, B2A) over three time intervals (2020, 2050, 2080). The models show a profoundly negative influence on indigenous Arabica. In a locality analysis the most favourable outcome is a c. 65% reduction in the number of pre-existing bioclimatically suitable localities, and at worst an almost 100% reduction, by 2080. In an area analysis the most favourable outcome is a 38% reduction in suitable bioclimatic space, and the least favourable a c. 90% reduction, by 2080. Based on known occurrences and ecological tolerances of Arabica, bioclimatic unsuitability would place populations in peril, leading to severe stress and a high risk of extinction. This study establishes a fundamental baseline for assessing the consequences of climate change on wild populations of Arabica coffee. Specifically, it: (1) identifies and categorizes localities and areas that are predicted to be under threat from climate change now and in the short- to medium-term (2020–2050), representing assessment priorities for ex situ conservation; (2) identifies ‘core localities’ that could have the potential to withstand climate change until at least 2080, and therefore serve as long-term in situ storehouses for coffee genetic resources; (3) provides the location and characterization of target locations (populations) for on-the-ground monitoring of climate change influence. Arabica coffee is confimed as a climate sensitivite species, supporting data and inference that existing plantations will be neagtively impacted by climate change. PMID:23144840

  12. Effects of changing climate on aquatic habitat and connectivity for remnant populations of a wide-ranging frog species in an arid landscape

    USGS Publications Warehouse

    Pilliod, David S.; Arkle, Robert S.; Robertson, Jeanne M; Murphy, Melanie; Funk, W. Chris

    2015-01-01

    Amphibian species persisting in isolated streams and wetlands in desert environments can be susceptible to low connectivity, genetic isolation, and climate changes. We evaluated the past (1900–1930), recent (1981–2010), and future (2071–2100) climate suitability of the arid Great Basin (USA) for the Columbia spotted frog (Rana luteiventris) and assessed whether changes in surface water may affect connectivity for remaining populations. We developed a predictive model of current climate suitability and used it to predict the historic and future distribution of suitable climates. We then modeled changes in surface water availability at each time period. Finally, we quantified connectivity among existing populations on the basis of hydrology and correlated it with interpopulation genetic distance. We found that the area of the Great Basin with suitable climate conditions has declined by approximately 49% over the last century and will likely continue to decline under future climate scenarios. Climate conditions at currently occupied locations have been relatively stable over the last century, which may explain persistence at these sites. However, future climates at these currently occupied locations are predicted to become warmer throughout the year and drier during the frog's activity period (May – September). Fall and winter precipitation may increase, but as rain instead of snow. Earlier runoff and lower summer base flows may reduce connectivity between neighboring populations, which is already limited. Many of these changes could have negative effects on remaining populations over the next 50–80 years, but milder winters, longer growing seasons, and wetter falls might positively affect survival and dispersal. Collectively, however, seasonal shifts in temperature, precipitation, and stream flow patterns could reduce habitat suitability and connectivity for frogs and possibly other aquatic species inhabiting streams in this arid region.

  13. Survey of Armillaria spp. in the Oregon East Cascades: Baseline data for predicting climatic influences on Armillaria root disease

    Treesearch

    J. W. Hanna; A. L. Smith; H. M. Maffei; M.-S. Kim; N. B. Klopfenstein

    2008-01-01

    Root disease pathogens, such as Armillaria solidipes Peck (recently recognized older name for A. ostoyae), will likely have increasing impacts to forest ecosystems as trees undergo stress due to climate change. Before we can predict future impacts of root disease pathogens, we must first develop an ability to predict current distributions of the pathogens (and their...

  14. Simulating post-wildfire forest trajectories under alternative climate and management scenarios

    Treesearch

    Alicia Azpeleta Tarancon; Peter Z. Fule; Kristen L. Shive; Carolyn H. Sieg; Andrew Sanchez Meador; Barbara Strom

    2014-01-01

    Post-fire predictions of forest recovery under future climate change and management actions are necessary for forest managers to make decisions about treatments. We applied the Climate-Forest Vegetation Simulator (Climate-FVS), a new version of a widely used forest management model, to compare alternative climate and management scenarios in a severely burned...

  15. Predictability of Precipitation Over the Conterminous U.S. Based on the CMIP5 Multi-Model Ensemble

    PubMed Central

    Jiang, Mingkai; Felzer, Benjamin S.; Sahagian, Dork

    2016-01-01

    Characterizing precipitation seasonality and variability in the face of future uncertainty is important for a well-informed climate change adaptation strategy. Using the Colwell index of predictability and monthly normalized precipitation data from the Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model ensembles, this study identifies spatial hotspots of changes in precipitation predictability in the United States under various climate scenarios. Over the historic period (1950–2005), the recurrent pattern of precipitation is highly predictable in the East and along the coastal Northwest, and is less so in the arid Southwest. Comparing the future (2040–2095) to the historic period, larger changes in precipitation predictability are observed under Representative Concentration Pathways (RCP) 8.5 than those under RCP 4.5. Finally, there are region-specific hotspots of future changes in precipitation predictability, and these hotspots often coincide with regions of little projected change in total precipitation, with exceptions along the wetter East and parts of the drier central West. Therefore, decision-makers are advised to not rely on future total precipitation as an indicator of water resources. Changes in precipitation predictability and the subsequent changes on seasonality and variability are equally, if not more, important factors to be included in future regional environmental assessment. PMID:27425819

  16. Predictability of Precipitation Over the Conterminous U.S. Based on the CMIP5 Multi-Model Ensemble.

    PubMed

    Jiang, Mingkai; Felzer, Benjamin S; Sahagian, Dork

    2016-07-18

    Characterizing precipitation seasonality and variability in the face of future uncertainty is important for a well-informed climate change adaptation strategy. Using the Colwell index of predictability and monthly normalized precipitation data from the Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model ensembles, this study identifies spatial hotspots of changes in precipitation predictability in the United States under various climate scenarios. Over the historic period (1950-2005), the recurrent pattern of precipitation is highly predictable in the East and along the coastal Northwest, and is less so in the arid Southwest. Comparing the future (2040-2095) to the historic period, larger changes in precipitation predictability are observed under Representative Concentration Pathways (RCP) 8.5 than those under RCP 4.5. Finally, there are region-specific hotspots of future changes in precipitation predictability, and these hotspots often coincide with regions of little projected change in total precipitation, with exceptions along the wetter East and parts of the drier central West. Therefore, decision-makers are advised to not rely on future total precipitation as an indicator of water resources. Changes in precipitation predictability and the subsequent changes on seasonality and variability are equally, if not more, important factors to be included in future regional environmental assessment.

  17. Predicting body temperature and activity of adult Polyommatus icarus using neural network models under current and projected climate scenarios.

    PubMed

    Howe, P D; Bryant, S R; Shreeve, T G

    2007-10-01

    We use field observations in two geographic regions within the British Isles and regression and neural network models to examine the relationship between microhabitat use, thoracic temperatures and activity in a widespread lycaenid butterfly, Polyommatus icarus. We also make predictions for future activity under climate change scenarios. Individuals from a univoltine northern population initiated flight with significantly lower thoracic temperatures than individuals from a bivoltine southern population. Activity is dependent on body temperature and neural network models of body temperature are better at predicting body temperature than generalized linear models. Neural network models of activity with a sole input of predicted body temperature (using weather and microclimate variables) are good predictors of observed activity and were better predictors than generalized linear models. By modelling activity under climate change scenarios for 2080 we predict differences in activity in relation to both regional differences of climate change and differing body temperature requirements for activity in different populations. Under average conditions for low-emission scenarios there will be little change in the activity of individuals from central-southern Britain and a reduction in northwest Scotland from 2003 activity levels. Under high-emission scenarios, flight-dependent activity in northwest Scotland will increase the greatest, despite smaller predicted increases in temperature and decreases in cloud cover. We suggest that neural network models are an effective way of predicting future activity in changing climates for microhabitat-specialist butterflies and that regional differences in the thermoregulatory response of populations will have profound effects on how they respond to climate change.

  18. Seasonal Prediction of Hydro-Climatic Extremes in the Greater Horn of Africa Under Evolving Climate Conditions to Support Adaptation Strategies

    NASA Astrophysics Data System (ADS)

    Tadesse, T.; Zaitchik, B. F.; Habib, S.; Funk, C. C.; Senay, G. B.; Dinku, T.; Policelli, F. S.; Block, P.; Baigorria, G. A.; Beyene, S.; Wardlow, B.; Hayes, M. J.

    2014-12-01

    The development of effective strategies to adapt to changes in the character of droughts and floods in Africa will rely on improved seasonal prediction systems that are robust to an evolving climate baseline and can be integrated into disaster preparedness and response. Many efforts have been made to build models to improve seasonal forecasts in the Greater Horn of Africa region (GHA) using satellite and climate data, but these efforts and models must be improved and translated into future conditions under evolving climate conditions. This has considerable social significance, but is challenged by the nature of climate predictability and the adaptability of coupled natural and human systems facing exposure to climate extremes. To address these issues, work is in progress under a project funded by NASA. The objectives of the project include: 1) Characterize and explain large-scale drivers in the ocean-atmosphere-land system associated with years of extreme flood or drought in the GHA. 2) Evaluate the performance of state-of-the-art seasonal forecast methods for prediction of decision-relevant metrics of hydrologic extremes. 3) Apply seasonal forecast systems to prediction of socially relevant impacts on crops, flood risk, and economic outcomes, and assess the value of these predictions to decision makers. 4) Evaluate the robustness of seasonal prediction systems to evolving climate conditions. The National Drought Mitigation Center (University of Nebraska-Lincoln, USA) is leading this project in collaboration with the USGS, Johns Hopkins University, University of Wisconsin-Madison, the International Research Institute for Climate and Society, NASA, and GHA local experts. The project is also designed to have active engagement of end users in various sectors, university researchers, and extension agents in GHA through workshops and/or webinars. This project is expected improve and implement new and existing climate- and remote sensing-based agricultural, meteorological, and hydrologic drought and flood monitoring products (or indicators) that can enhance the preparedness for extreme climate events and climate change adaptation and mitigation strategies in the GHA. Even though this project is in its first year, the preliminary results and future plans to carry out the objectives will be presented.

  19. The evolution of the Brewer-Dobson Circulation from 1960-2100 in simulations with the Chemistry Climate Model EMAC

    NASA Astrophysics Data System (ADS)

    Oberländer, Sophie; Langematz, Ulrike; Kubin, Anne; Abalichin, Janna; Meul, Stefanie; Jöckel, Patrick; Brühl, Christoph

    2010-05-01

    First results of research performed within the new DFG Research Unit Stratospheric Change and its Role for Climate Prediction (SHARP) will be presented. SHARP investigates past and future changes in stratospheric dynamics and composition to improve the understanding of global climate change and the accuracy of climate change predictions. SHARP combines the efforts of eight German research institutes and expertise in state-of-the-art climate modelling and observations. Within the scope of the scientific sub-project SHARP-BDC (Brewer-Dobson-Circulation) the past and future evolution of the BDC in an atmosphere with changing composition will be analysed. Radiosonde data show an annual mean cooling of the tropical lower stratosphere over the past few decades (Thompson and Solomon, 2005). Several independent model simulations indicate an acceleration of the BDC due to higher greenhouse gas (GHG) concentrations with direct impact on the exchange of air masses between the troposphere and stratosphere (e.g., Butchart et al, 2006). In contrast, from balloon-born measurements no significant acceleration in the BDC could be identified (Engel et al, 2008). This disagreement between observations and model analyses motivates further studies. For the future, expected changes in planetary wave generation and propagation in an atmosphere with increasing GHG concentrations are a major source of uncertainty for predicting future levels of stratospheric composition. To analyse and interpret the past and future evolution of the BDC, results from a transient multi-decadal simulation with the Chemistry-Climate Model (CCM) EMAC will be presented. The model has been integrated from 1960 to 2100 following the SCN2d scenario recommendations of the SPARC CCMVal initiative for the temporal evolution of GHGs, ozone depleting substances and sea surface temperatures as well as sea ice. The role of increasing GHG concentrations for the BDC will be assessed by comparing the SCN2d-results with a ‘non-climate change' (NCC) simulation, in which greenhouse gases have been kept fixed at their 1960 concentrations.

  20. Future warming patterns linked to today’s climate variability

    DOE PAGES

    Dai, Aiguo

    2016-01-11

    The reliability of model projections of greenhouse gas (GHG)-induced future climate change is often assessed based on models’ ability to simulate the current climate, but there has been little evidence that connects the two. In fact, this practice has been questioned because the GHG-induced future climate change may involve additional physical processes that are not important for the current climate. Here I show that the spatial patterns of the GHG-induced future warming in the 21 st century is highly correlated with the patterns of the year-to-year variations of surface air temperature for today’s climate, with areas of larger variations duringmore » 1950–1979 having more GHG-induced warming in the 21 st century in all climate models. Such a relationship also exists in other climate fields such as atmospheric water vapor, and it is evident in observed temperatures from 1950–2010. The results suggest that many physical processes may work similarly in producing the year-to-year climate variations in the current climate and the GHG-induced long-term changes in the 21 st century in models and in the real world. Furthermore, they support the notion that models that simulate present-day climate variability better are likely to make more reliable predictions of future climate change.« less

  1. Future warming patterns linked to today’s climate variability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Aiguo

    The reliability of model projections of greenhouse gas (GHG)-induced future climate change is often assessed based on models’ ability to simulate the current climate, but there has been little evidence that connects the two. In fact, this practice has been questioned because the GHG-induced future climate change may involve additional physical processes that are not important for the current climate. Here I show that the spatial patterns of the GHG-induced future warming in the 21 st century is highly correlated with the patterns of the year-to-year variations of surface air temperature for today’s climate, with areas of larger variations duringmore » 1950–1979 having more GHG-induced warming in the 21 st century in all climate models. Such a relationship also exists in other climate fields such as atmospheric water vapor, and it is evident in observed temperatures from 1950–2010. The results suggest that many physical processes may work similarly in producing the year-to-year climate variations in the current climate and the GHG-induced long-term changes in the 21 st century in models and in the real world. Furthermore, they support the notion that models that simulate present-day climate variability better are likely to make more reliable predictions of future climate change.« less

  2. Future Warming Patterns Linked to Today's Climate Variability.

    PubMed

    Dai, Aiguo

    2016-01-11

    The reliability of model projections of greenhouse gas (GHG)-induced future climate change is often assessed based on models' ability to simulate the current climate, but there has been little evidence that connects the two. In fact, this practice has been questioned because the GHG-induced future climate change may involve additional physical processes that are not important for the current climate. Here I show that the spatial patterns of the GHG-induced future warming in the 21(st) century is highly correlated with the patterns of the year-to-year variations of surface air temperature for today's climate, with areas of larger variations during 1950-1979 having more GHG-induced warming in the 21(st) century in all climate models. Such a relationship also exists in other climate fields such as atmospheric water vapor, and it is evident in observed temperatures from 1950-2010. The results suggest that many physical processes may work similarly in producing the year-to-year climate variations in the current climate and the GHG-induced long-term changes in the 21(st) century in models and in the real world. They support the notion that models that simulate present-day climate variability better are likely to make more reliable predictions of future climate change.

  3. Effect of climate change on shoreline shifts at a straight and continuous coast

    NASA Astrophysics Data System (ADS)

    Rajasree, B. R.; Deo, M. C.; Sheela Nair, L.

    2016-12-01

    The prediction of the rate of shoreline shifts as well as that of erosion and accretion over future at a given location is traditionally done on the basis of analysis of past wave data. However under the changing climate affected by global warming it is better done considering the projected wave conditions over the future. The same is demonstrated in this work with respect to a stretch of coastline at 'Udupi' along the west coast of India. The shoreline changes in the past are first determined with the help of historic satellite images. A numerical shoreline model is later run on the basis of wave simulations of past 35 years as well as future 35 years. The latter wave conditions are obtained from wind projections corresponding to a high resolution regional climate model run for a moderate pathway of global warming. Alternatively prediction of the changes over future 35 years is also made by using the soft computing tool of artificial neural network (ANN) trained with the help of past satellite images. The results indicate that the area under consideration presently undergoes considerable erosion and this process will accelerate in future. The volume of annual sediment transport will also substantially increase over the future. The alternative computations made with the help of an ANN confirmed the future rising trend of erosion, albeit at smaller rate than the numerically predicted one.

  4. Incorporating population viability models into species status assessment and listing decisions under the U.S. Endangered Species Act

    USGS Publications Warehouse

    McGowan, Conor P.; Allan, Nathan; Servoss, Jeff; Hedwall, Shaula J.; Wooldridge, Brian

    2017-01-01

    Assessment of a species' status is a key part of management decision making for endangered and threatened species under the U.S. Endangered Species Act. Predicting the future state of the species is an essential part of species status assessment, and projection models can play an important role in developing predictions. We built a stochastic simulation model that incorporated parametric and environmental uncertainty to predict the probable future status of the Sonoran desert tortoise in the southwestern United States and North Central Mexico. Sonoran desert tortoise was a Candidate species for listing under the Endangered Species Act, and decision makers wanted to use model predictions in their decision making process. The model accounted for future habitat loss and possible effects of climate change induced droughts to predict future population growth rates, abundances, and quasi-extinction probabilities. Our model predicts that the population will likely decline over the next few decades, but there is very low probability of quasi-extinction less than 75 years into the future. Increases in drought frequency and intensity may increase extinction risk for the species. Our model helped decision makers predict and characterize uncertainty about the future status of the species in their listing decision. We incorporated complex ecological processes (e.g., climate change effects on tortoises) in transparent and explicit ways tailored to support decision making processes related to endangered species.

  5. Forecasting the future risk of Barmah Forest virus disease under climate change scenarios in Queensland, Australia.

    PubMed

    Naish, Suchithra; Mengersen, Kerrie; Hu, Wenbiao; Tong, Shilu

    2013-01-01

    Mosquito-borne diseases are climate sensitive and there has been increasing concern over the impact of climate change on future disease risk. This paper projected the potential future risk of Barmah Forest virus (BFV) disease under climate change scenarios in Queensland, Australia. We obtained data on notified BFV cases, climate (maximum and minimum temperature and rainfall), socio-economic and tidal conditions for current period 2000-2008 for coastal regions in Queensland. Grid-data on future climate projections for 2025, 2050 and 2100 were also obtained. Logistic regression models were built to forecast the otential risk of BFV disease distribution under existing climatic, socio-economic and tidal conditions. The model was applied to estimate the potential geographic distribution of BFV outbreaks under climate change scenarios. The predictive model had good model accuracy, sensitivity and specificity. Maps on potential risk of future BFV disease indicated that disease would vary significantly across coastal regions in Queensland by 2100 due to marked differences in future rainfall and temperature projections. We conclude that the results of this study demonstrate that the future risk of BFV disease would vary across coastal regions in Queensland. These results may be helpful for public health decision making towards developing effective risk management strategies for BFV disease control and prevention programs in Queensland.

  6. Phylogeny predicts future habitat shifts due to climate change.

    PubMed

    Kuntner, Matjaž; Năpăruş, Magdalena; Li, Daiqin; Coddington, Jonathan A

    2014-01-01

    Taxa may respond differently to climatic changes, depending on phylogenetic or ecological effects, but studies that discern among these alternatives are scarce. Here, we use two species pairs from globally distributed spider clades, each pair representing two lifestyles (generalist, specialist) to test the relative importance of phylogeny versus ecology in predicted responses to climate change. We used a recent phylogenetic hypothesis for nephilid spiders to select four species from two genera (Nephilingis and Nephilengys) that match the above criteria, are fully allopatric but combined occupy all subtropical-tropical regions. Based on their records, we modeled each species niche spaces and predicted their ecological shifts 20, 40, 60, and 80 years into the future using customized GIS tools and projected climatic changes. Phylogeny better predicts the species current ecological preferences than do lifestyles. By 2080 all species face dramatic reductions in suitable habitat (54.8-77.1%) and adapt by moving towards higher altitudes and latitudes, although at different tempos. Phylogeny and life style explain simulated habitat shifts in altitude, but phylogeny is the sole best predictor of latitudinal shifts. Models incorporating phylogenetic relatedness are an important additional tool to predict accurately biotic responses to global change.

  7. Predicting the distributions of Egypt's medicinal plants and their potential shifts under future climate change.

    PubMed

    Kaky, Emad; Gilbert, Francis

    2017-01-01

    Climate change is one of the most difficult of challenges to conserving biodiversity, especially for countries with few data on the distributions of their taxa. Species distribution modelling is a modern approach to the assessment of the potential effects of climate change on biodiversity, with the great advantage of being robust to small amounts of data. Taking advantage of a recently validated dataset, we use the medicinal plants of Egypt to identify hotspots of diversity now and in the future by predicting the effect of climate change on the pattern of species richness using species distribution modelling. Then we assess how Egypt's current Protected Area network is likely to perform in protecting plants under climate change. The patterns of species richness show that in most cases the A2a 'business as usual' scenario was more harmful than the B2a 'moderate mitigation' scenario. Predicted species richness inside Protected Areas was higher than outside under all scenarios, indicating that Egypt's PAs are well placed to help conserve medicinal plants.

  8. Statistical Approaches for Spatiotemporal Prediction of Low Flows

    NASA Astrophysics Data System (ADS)

    Fangmann, A.; Haberlandt, U.

    2017-12-01

    An adequate assessment of regional climate change impacts on streamflow requires the integration of various sources of information and modeling approaches. This study proposes simple statistical tools for inclusion into model ensembles, which are fast and straightforward in their application, yet able to yield accurate streamflow predictions in time and space. Target variables for all approaches are annual low flow indices derived from a data set of 51 records of average daily discharge for northwestern Germany. The models require input of climatic data in the form of meteorological drought indices, derived from observed daily climatic variables, averaged over the streamflow gauges' catchments areas. Four different modeling approaches are analyzed. Basis for all pose multiple linear regression models that estimate low flows as a function of a set of meteorological indices and/or physiographic and climatic catchment descriptors. For the first method, individual regression models are fitted at each station, predicting annual low flow values from a set of annual meteorological indices, which are subsequently regionalized using a set of catchment characteristics. The second method combines temporal and spatial prediction within a single panel data regression model, allowing estimation of annual low flow values from input of both annual meteorological indices and catchment descriptors. The third and fourth methods represent non-stationary low flow frequency analyses and require fitting of regional distribution functions. Method three is subject to a spatiotemporal prediction of an index value, method four to estimation of L-moments that adapt the regional frequency distribution to the at-site conditions. The results show that method two outperforms successive prediction in time and space. Method three also shows a high performance in the near future period, but since it relies on a stationary distribution, its application for prediction of far future changes may be problematic. Spatiotemporal prediction of L-moments appeared highly uncertain for higher-order moments resulting in unrealistic future low flow values. All in all, the results promote an inclusion of simple statistical methods in climate change impact assessment.

  9. Climate Information Responding to User Needs (CIRUN)

    NASA Astrophysics Data System (ADS)

    Busalacchi, A. J.

    2009-05-01

    For the past several decades many different US agencies have been involved in collecting Earth observations, e.g., NASA, NOAA, DoD, USGS, USDA. More recently, the US has led the international effort to design a Global Earth Observation System of Systems (GEOSS). Yet, there has been little substantive progress at the synthesis and integration of the various research and operational, space-based and in situ, observations. Similarly, access to such a range of observations across the atmosphere, ocean, and land surface remains fragmented. With respect to prediction of the Earth System, the US has not developed a comprehensive strategy. For climate, the US (e.g., NOAA, NASA, DoE) has taken a two-track strategy. At the more immediate time scale, coupled ocean-atmosphere models of the physical climate system have built upon the tradition of daily numerical weather prediction in order to extend the forecast window to seasonal to interannual times scales. At the century time scale, the nascent development of Earth System models, combining components of the physical climate system with biogeochemical cycles, are being used to provide future climate change projections in response to anticipated greenhouse gas forcings. Between these to two approaches to prediction lies a key deficiency of interest to decision makers, especially as it pertains to adaptation, i.e., deterministic prediction of the Earth System at time scales from days to decades with spatial scales from global to regional. One of many obstacles to be overcome is the design of present day observation and prediction products based on user needs. To date, most of such products have evolved from the technology and research "push" rather than the user or stakeholder "pull". In the future as planning proceeds for a national climate service, emphasis must be given to a more coordinated approach in which stakeholders' needs help design future Earth System observational and prediction products, and similarly, such products need to be tailored to provide decision support.

  10. Assessing the impact of a future volcanic eruption on decadal predictions

    NASA Astrophysics Data System (ADS)

    Illing, Sebastian; Kadow, Christopher; Pohlmann, Holger; Timmreck, Claudia

    2018-06-01

    The likelihood of a large volcanic eruption in the future provides the largest uncertainty concerning the evolution of the climate system on the timescale of a few years, but also an excellent opportunity to learn about the behavior of the climate system, and our models thereof. So the following question emerges: how predictable is the response of the climate system to future eruptions? By this we mean to what extent will the volcanic perturbation affect decadal climate predictions and how does the pre-eruption climate state influence the impact of the volcanic signal on the predictions? To address these questions, we performed decadal forecasts with the MiKlip prediction system, which is based on the MPI-ESM, in the low-resolution configuration for the initialization years 2012 and 2014, which differ in the Pacific Decadal Oscillation (PDO) and North Atlantic Oscillation (NAO) phase. Each forecast contains an artificial Pinatubo-like eruption starting in June of the first prediction year and consists of 10 ensemble members. For the construction of the aerosol radiative forcing, we used the global aerosol model ECHAM5-HAM in a version adapted for volcanic eruptions. We investigate the response of different climate variables, including near-surface air temperature, precipitation, frost days, and sea ice area fraction. Our results show that the average global cooling response over 4 years of about 0.2 K and the precipitation decrease of about 0.025 mm day-1 is relatively robust throughout the different experiments and seemingly independent of the initialization state. However, on a regional scale, we find substantial differences between the initializations. The cooling effect in the North Atlantic and Europe lasts longer and the Arctic sea ice increase is stronger in the simulations initialized in 2014. In contrast, the forecast initialized in 2012 with a negative PDO shows a prolonged cooling in the North Pacific basin.

  11. Climate Change Research - What Do We Need Really?

    NASA Astrophysics Data System (ADS)

    Rama Chandra Prasad, P.

    2015-01-01

    This research note focuses on the current climate change research scenario and discusses primarily what is required in the present global climate change conditions. Most of the climate change research and models predict adverse future conditions that have to be faced by humanity, with less emphasis on mitigation measures. Moreover, research ends as reports on the shelves of scientists and researchers and as publications in journals. At this juncture the major focus should be on research that helps in reducing the impact rather than on analysing future scenarios of climate change using different models. The article raises several questions and suggestions regards climate change research and lays emphasis on what we really need from climate change researchers.

  12. Phylogenetic approaches reveal biodiversity threats under climate change

    NASA Astrophysics Data System (ADS)

    González-Orozco, Carlos E.; Pollock, Laura J.; Thornhill, Andrew H.; Mishler, Brent D.; Knerr, Nunzio; Laffan, Shawn W.; Miller, Joseph T.; Rosauer, Dan F.; Faith, Daniel P.; Nipperess, David A.; Kujala, Heini; Linke, Simon; Butt, Nathalie; Külheim, Carsten; Crisp, Michael D.; Gruber, Bernd

    2016-12-01

    Predicting the consequences of climate change for biodiversity is critical to conservation efforts. Extensive range losses have been predicted for thousands of individual species, but less is known about how climate change might impact whole clades and landscape-scale patterns of biodiversity. Here, we show that climate change scenarios imply significant changes in phylogenetic diversity and phylogenetic endemism at a continental scale in Australia using the hyper-diverse clade of eucalypts. We predict that within the next 60 years the vast majority of species distributions (91%) across Australia will shrink in size (on average by 51%) and shift south on the basis of projected suitable climatic space. Geographic areas currently with high phylogenetic diversity and endemism are predicted to change substantially in future climate scenarios. Approximately 90% of the current areas with concentrations of palaeo-endemism (that is, places with old evolutionary diversity) are predicted to disappear or shift their location. These findings show that climate change threatens whole clades of the phylogenetic tree, and that the outlined approach can be used to forecast areas of biodiversity losses and continental-scale impacts of climate change.

  13. Climate change and fire effects on a prairie-woodland ecotone: projecting species range shifts with a dynamic global vegetation model

    USGS Publications Warehouse

    King, David A.; Bachelet, Dominique M.; Symstad, Amy J.

    2013-01-01

    Large shifts in species ranges have been predicted under future climate scenarios based primarily on niche-based species distribution models. However, the mechanisms that would cause such shifts are uncertain. Natural and anthropogenic fires have shaped the distributions of many plant species, but their effects have seldom been included in future projections of species ranges. Here, we examine how the combination of climate and fire influence historical and future distributions of the ponderosa pine–prairie ecotone at the edge of the Black Hills in South Dakota, USA, as simulated by MC1, a dynamic global vegetation model that includes the effects of fire, climate, and atmospheric CO2 concentration on vegetation dynamics. For this purpose, we parameterized MC1 for ponderosa pine in the Black Hills, designating the revised model as MC1-WCNP. Results show that fire frequency, as affected by humidity and temperature, is central to the simulation of historical prairies in the warmer lowlands versus woodlands in the cooler, moister highlands. Based on three downscaled general circulation model climate projections for the 21st century, we simulate greater frequencies of natural fire throughout the area due to substantial warming and, for two of the climate projections, lower relative humidity. However, established ponderosa pine forests are relatively fire resistant, and areas that were initially wooded remained so over the 21st century for most of our future climate x fire management scenarios. This result contrasts with projections for ponderosa pine based on climatic niches, which suggest that its suitable habitat in the Black Hills will be greatly diminished by the middle of the 21st century. We hypothesize that the differences between the future predictions from these two approaches are due in part to the inclusion of fire effects in MC1, and we highlight the importance of accounting for fire as managed by humans in assessing both historical species distributions and future climate change effects.

  14. Climate change and fire effects on a prairie-woodland ecotone: projecting species range shifts with a dynamic global vegetation model.

    PubMed

    King, David A; Bachelet, Dominique M; Symstad, Amy J

    2013-12-01

    Large shifts in species ranges have been predicted under future climate scenarios based primarily on niche-based species distribution models. However, the mechanisms that would cause such shifts are uncertain. Natural and anthropogenic fires have shaped the distributions of many plant species, but their effects have seldom been included in future projections of species ranges. Here, we examine how the combination of climate and fire influence historical and future distributions of the ponderosa pine-prairie ecotone at the edge of the Black Hills in South Dakota, USA, as simulated by MC1, a dynamic global vegetation model that includes the effects of fire, climate, and atmospheric CO2 concentration on vegetation dynamics. For this purpose, we parameterized MC1 for ponderosa pine in the Black Hills, designating the revised model as MC1-WCNP. Results show that fire frequency, as affected by humidity and temperature, is central to the simulation of historical prairies in the warmer lowlands versus woodlands in the cooler, moister highlands. Based on three downscaled general circulation model climate projections for the 21st century, we simulate greater frequencies of natural fire throughout the area due to substantial warming and, for two of the climate projections, lower relative humidity. However, established ponderosa pine forests are relatively fire resistant, and areas that were initially wooded remained so over the 21st century for most of our future climate x fire management scenarios. This result contrasts with projections for ponderosa pine based on climatic niches, which suggest that its suitable habitat in the Black Hills will be greatly diminished by the middle of the 21st century. We hypothesize that the differences between the future predictions from these two approaches are due in part to the inclusion of fire effects in MC1, and we highlight the importance of accounting for fire as managed by humans in assessing both historical species distributions and future climate change effects.

  15. Climate change and fire effects on a prairie–woodland ecotone: projecting species range shifts with a dynamic global vegetation model

    PubMed Central

    King, David A; Bachelet, Dominique M; Symstad, Amy J

    2013-01-01

    Large shifts in species ranges have been predicted under future climate scenarios based primarily on niche-based species distribution models. However, the mechanisms that would cause such shifts are uncertain. Natural and anthropogenic fires have shaped the distributions of many plant species, but their effects have seldom been included in future projections of species ranges. Here, we examine how the combination of climate and fire influence historical and future distributions of the ponderosa pine–prairie ecotone at the edge of the Black Hills in South Dakota, USA, as simulated by MC1, a dynamic global vegetation model that includes the effects of fire, climate, and atmospheric CO2 concentration on vegetation dynamics. For this purpose, we parameterized MC1 for ponderosa pine in the Black Hills, designating the revised model as MC1-WCNP. Results show that fire frequency, as affected by humidity and temperature, is central to the simulation of historical prairies in the warmer lowlands versus woodlands in the cooler, moister highlands. Based on three downscaled general circulation model climate projections for the 21st century, we simulate greater frequencies of natural fire throughout the area due to substantial warming and, for two of the climate projections, lower relative humidity. However, established ponderosa pine forests are relatively fire resistant, and areas that were initially wooded remained so over the 21st century for most of our future climate x fire management scenarios. This result contrasts with projections for ponderosa pine based on climatic niches, which suggest that its suitable habitat in the Black Hills will be greatly diminished by the middle of the 21st century. We hypothesize that the differences between the future predictions from these two approaches are due in part to the inclusion of fire effects in MC1, and we highlight the importance of accounting for fire as managed by humans in assessing both historical species distributions and future climate change effects. PMID:24455138

  16. Dispersal and extrapolation on the accuracy of temporal predictions from distribution models for the Darwin's frog.

    PubMed

    Uribe-Rivera, David E; Soto-Azat, Claudio; Valenzuela-Sánchez, Andrés; Bizama, Gustavo; Simonetti, Javier A; Pliscoff, Patricio

    2017-07-01

    Climate change is a major threat to biodiversity; the development of models that reliably predict its effects on species distributions is a priority for conservation biogeography. Two of the main issues for accurate temporal predictions from Species Distribution Models (SDM) are model extrapolation and unrealistic dispersal scenarios. We assessed the consequences of these issues on the accuracy of climate-driven SDM predictions for the dispersal-limited Darwin's frog Rhinoderma darwinii in South America. We calibrated models using historical data (1950-1975) and projected them across 40 yr to predict distribution under current climatic conditions, assessing predictive accuracy through the area under the ROC curve (AUC) and True Skill Statistics (TSS), contrasting binary model predictions against temporal-independent validation data set (i.e., current presences/absences). To assess the effects of incorporating dispersal processes we compared the predictive accuracy of dispersal constrained models with no dispersal limited SDMs; and to assess the effects of model extrapolation on the predictive accuracy of SDMs, we compared this between extrapolated and no extrapolated areas. The incorporation of dispersal processes enhanced predictive accuracy, mainly due to a decrease in the false presence rate of model predictions, which is consistent with discrimination of suitable but inaccessible habitat. This also had consequences on range size changes over time, which is the most used proxy for extinction risk from climate change. The area of current climatic conditions that was absent in the baseline conditions (i.e., extrapolated areas) represents 39% of the study area, leading to a significant decrease in predictive accuracy of model predictions for those areas. Our results highlight (1) incorporating dispersal processes can improve predictive accuracy of temporal transference of SDMs and reduce uncertainties of extinction risk assessments from global change; (2) as geographical areas subjected to novel climates are expected to arise, they must be reported as they show less accurate predictions under future climate scenarios. Consequently, environmental extrapolation and dispersal processes should be explicitly incorporated to report and reduce uncertainties in temporal predictions of SDMs, respectively. Doing so, we expect to improve the reliability of the information we provide for conservation decision makers under future climate change scenarios. © 2017 by the Ecological Society of America.

  17. Simulating malaria transmission in the current and future climate of West Africa

    NASA Astrophysics Data System (ADS)

    Yamana, T. K.; Bomblies, A.; Eltahir, E. A. B.

    2015-12-01

    Malaria transmission in West Africa is closely tied to climate, as rain fed water pools provide breeding habitat for the anopheles mosquito vector, and temperature affects the mosquito's ability to spread disease. We present results of a highly detailed, spatially explicit mechanistic modelling study exploring the relationships between the environment and malaria in the current and future climate of West Africa. A mechanistic model of human immunity was incorporated into an existing agent-based model of malaria transmission, allowing us to move beyond entomological measures such as mosquito density and vectorial capacity to analyzing the prevalence of the malaria parasite within human populations. The result is a novel modelling tool that mechanistically simulates all of the key processes linking environment to malaria transmission. Simulations were conducted across climate zones in West Africa, linking temperature and rainfall to entomological and epidemiological variables with a focus on nonlinearities due to threshold effects and interannual variability. Comparisons to observations from the region confirmed that the model provides a reasonable representation of the entomological and epidemiological conditions in this region. We used the predictions of future climate from the most credible CMIP5 climate models to predict the change in frequency and severity of malaria epidemics in West Africa as a result of climate change.

  18. Landuse/Landcover and Climate Change Interaction in the Derived Savannah Region of Nigeria

    NASA Astrophysics Data System (ADS)

    Akintuyi, A. O.; Fasona, M.; Soneye, A. S. O.

    2016-12-01

    The interaction of landuse/Landcover (LULC) and climate change, to a large extent, involves anthropogenic activities. This study was carried out in the derived savannah of Nigeria, a delicate ecological zone where the interaction of LULC and climate change could be well appreciated. The study evaluated coupled interaction between LULC and climate change and assessed the changes in the landuse/landcover patterns for the periods 1972, 1986, 2002 and 2010, evaluated the present (1941 - 2010) and future (2011 - 2050) variability in rainfall patterns and an attempt was made to predict the interaction between LULC and climate change during future climate. The study adopted remote sensing and GIS techniques, land change modeller and multivariate statistics The results suggest that the built up area, farmland, waterbody and woodland experienced a rapid increase of about 1,134.69%, 1,202.85%, 631.51% and 188.09%, respectively, while the forest cover, degraded surfaces and grassland lost about 19.32%, 72.76% and 0.05% respectively between 1972 and 2010. Furthermore, the study predicted 40.28% and 37.84% reduction in the forested area between 1986 and 2050 and 2010 and 2050 respectively. The study concludes that rainfall will be the major driver of LULC change within the study area under a future climate.

  19. Climate change and the future of seed zones

    Treesearch

    Francis Kilkenny; Brad St. Clair; Matt Horning

    2013-01-01

    The use of native plants in wildland restoration is critical to the recovery and health of ecosystems. Information from genecological and reciprocal transplant common garden studies can be used to develop seed transfer guidelines and to predict how plants will respond to future climate change. Tools developed from these data, such as universal response functions and...

  20. Simple Astronomical Theory of Climate.

    ERIC Educational Resources Information Center

    Benumof, Reuben

    1979-01-01

    The author derives, applying perturbation theory, from a simple astronomical model the approximate periods of secular variation of some of the parameters of the Earth's orbit and relates these periods to the past climate of the Earth, indicating the difficulties in predicting the climate of the future. (GA)

  1. Quantifying the sources of uncertainty in an ensemble of hydrological climate-impact projections

    NASA Astrophysics Data System (ADS)

    Aryal, Anil; Shrestha, Sangam; Babel, Mukand S.

    2018-01-01

    The objective of this paper is to quantify the various sources of uncertainty in the assessment of climate change impact on hydrology in the Tamakoshi River Basin, located in the north-eastern part of Nepal. Multiple climate and hydrological models were used to simulate future climate conditions and discharge in the basin. The simulated results of future climate and river discharge were analysed for the quantification of sources of uncertainty using two-way and three-way ANOVA. The results showed that temperature and precipitation in the study area are projected to change in near- (2010-2039), mid- (2040-2069) and far-future (2070-2099) periods. Maximum temperature is likely to rise by 1.75 °C under Representative Concentration Pathway (RCP) 4.5 and by 3.52 °C under RCP 8.5. Similarly, the minimum temperature is expected to rise by 2.10 °C under RCP 4.5 and by 3.73 °C under RCP 8.5 by the end of the twenty-first century. Similarly, the precipitation in the study area is expected to change by - 2.15% under RCP 4.5 and - 2.44% under RCP 8.5 scenarios. The future discharge in the study area was projected using two hydrological models, viz. Soil and Water Assessment Tool (SWAT) and Hydrologic Engineering Center's Hydrologic Modelling System (HEC-HMS). The SWAT model projected discharge is expected to change by small amount, whereas HEC-HMS model projected considerably lower discharge in future compared to the baseline period. The results also show that future climate variables and river hydrology contain uncertainty due to the choice of climate models, RCP scenarios, bias correction methods and hydrological models. During wet days, more uncertainty is observed due to the use of different climate models, whereas during dry days, the use of different hydrological models has a greater effect on uncertainty. Inter-comparison of the impacts of different climate models reveals that the REMO climate model shows higher uncertainty in the prediction of precipitation and, consequently, in the prediction of future discharge and maximum probable flood.

  2. Vulnerability of breeding waterbirds to climate change in the Prairie Pothole Region, U.S.A.

    PubMed

    Steen, Valerie; Skagen, Susan K; Noon, Barry R

    2014-01-01

    The Prairie Pothole Region (PPR) of the north-central U.S. and south-central Canada contains millions of small prairie wetlands that provide critical habitat to many migrating and breeding waterbirds. Due to their small size and the relatively dry climate of the region, these wetlands are considered at high risk for negative climate change effects as temperatures increase. To estimate the potential impacts of climate change on breeding waterbirds, we predicted current and future distributions of species common in the PPR using species distribution models (SDMs). We created regional-scale SDMs for the U.S. PPR using Breeding Bird Survey occurrence records for 1971-2011 and wetland, upland, and climate variables. For each species, we predicted current distribution based on climate records for 1981-2000 and projected future distributions to climate scenarios for 2040-2049. Species were projected to, on average, lose almost half their current habitat (-46%). However, individual species projections varied widely, from +8% (Upland Sandpiper) to -100% (Wilson's Snipe). Variable importance ranks indicated that land cover (wetland and upland) variables were generally more important than climate variables in predicting species distributions. However, climate variables were relatively more important during a drought period. Projected distributions of species responses to climate change contracted within current areas of distribution rather than shifting. Given the large variation in species-level impacts, we suggest that climate change mitigation efforts focus on species projected to be the most vulnerable by enacting targeted wetland management, easement acquisition, and restoration efforts.

  3. Are Plant Species Able to Keep Pace with the Rapidly Changing Climate?

    PubMed Central

    Cunze, Sarah; Heydel, Felix; Tackenberg, Oliver

    2013-01-01

    Future climate change is predicted to advance faster than the postglacial warming. Migration may therefore become a key driver for future development of biodiversity and ecosystem functioning. For 140 European plant species we computed past range shifts since the last glacial maximum and future range shifts for a variety of Intergovernmental Panel on Climate Change (IPCC) scenarios and global circulation models (GCMs). Range shift rates were estimated by means of species distribution modelling (SDM). With process-based seed dispersal models we estimated species-specific migration rates for 27 dispersal modes addressing dispersal by wind (anemochory) for different wind conditions, as well as dispersal by mammals (dispersal on animal's coat – epizoochory and dispersal by animals after feeding and digestion – endozoochory) considering different animal species. Our process-based modelled migration rates generally exceeded the postglacial range shift rates indicating that the process-based models we used are capable of predicting migration rates that are in accordance with realized past migration. For most of the considered species, the modelled migration rates were considerably lower than the expected future climate change induced range shift rates. This implies that most plant species will not entirely be able to follow future climate-change-induced range shifts due to dispersal limitation. Animals with large day- and home-ranges are highly important for achieving high migration rates for many plant species, whereas anemochory is relevant for only few species. PMID:23894290

  4. Potential effects of climate change on the distribution of waterbirds in the Prairie Pothole Region, U.S.A.

    USGS Publications Warehouse

    Steen, Valerie; Powell, Abby N.

    2012-01-01

    Wetland-dependent birds are considered to be at particularly high risk for negative climate change effects. Current and future distributions of American Bittern (Botaurus lentiginosus), American Coot (Fulica americana), Black Tern (Chlidonias niger), Pied-billed Grebe (Podilymbus podiceps) and Sora (Porzana carolina), five waterbird species common in the Prairie Pothole Region (PPR), were predicted using species distribution models (SDMs) in combination with climate data that projected a drier future for the PPR. Regional-scale SDMs were created for the U.S. PPR using breeding bird survey occurrence records for 1971-2000 and wetland and climate parameters. For each waterbird species, current distribution and four potential future distributions were predicted: all combinations of two Global Circulation Models and two emissions scenarios. Averaged for all five species, the ensemble range reduction was 64%. However, projected range losses for individual species varied widely with Sora and Black Tern projected to lose close to 100% and American Bittern 29% of their current range. Future distributions were also projected to a hypothetical landscape where wetlands were numerous and constant to highlight areas suitable as conservation reserves under a drier future climate. The ensemble model indicated that northeastern North Dakota and northern Minnesota would be the best areas for conservation reserves within the U.S. PPR under the modeled conditions.

  5. A Climatic Stability Approach to Prioritizing Global Conservation Investments

    PubMed Central

    Iwamura, Takuya; Wilson, Kerrie A.; Venter, Oscar; Possingham, Hugh P.

    2010-01-01

    Climate change is impacting species and ecosystems globally. Many existing templates to identify the most important areas to conserve terrestrial biodiversity at the global scale neglect the future impacts of climate change. Unstable climatic conditions are predicted to undermine conservation investments in the future. This paper presents an approach to developing a resource allocation algorithm for conservation investment that incorporates the ecological stability of ecoregions under climate change. We discover that allocating funds in this way changes the optimal schedule of global investments both spatially and temporally. This allocation reduces the biodiversity loss of terrestrial endemic species from protected areas due to climate change by 22% for the period of 2002–2052, when compared to allocations that do not consider climate change. To maximize the resilience of global biodiversity to climate change we recommend that funding be increased in ecoregions located in the tropics and/or mid-elevation habitats, where climatic conditions are predicted to remain relatively stable. Accounting for the ecological stability of ecoregions provides a realistic approach to incorporating climate change into global conservation planning, with potential to save more species from extinction in the long term. PMID:21152095

  6. Future climate stimulates population out-breaks by relaxing constraints on reproduction.

    PubMed

    Heldt, Katherine A; Connell, Sean D; Anderson, Kathryn; Russell, Bayden D; Munguia, Pablo

    2016-09-14

    When conditions are stressful, reproduction and population growth are reduced, but when favourable, reproduction and population size can boom. Theory suggests climate change is an increasingly stressful environment, predicting extinctions or decreased abundances. However, if favourable conditions align, such as an increase in resources or release from competition and predation, future climate can fuel population growth. Tests of such population growth models and the mechanisms by which they are enabled are rare. We tested whether intergenerational increases in population size might be facilitated by adjustments in reproductive success to favourable environmental conditions in a large-scale mesocosm experiment. Herbivorous amphipod populations responded to future climate by increasing 20 fold, suggesting that future climate might relax environmental constraints on fecundity. We then assessed whether future climate reduces variation in mating success, boosting population fecundity and size. The proportion of gravid females doubled, and variance in phenotypic variation of male secondary sexual characters (i.e. gnathopods) was significantly reduced. While future climate can enhance individual growth and survival, it may also reduce constraints on mechanisms of reproduction such that enhanced intra-generational productivity and reproductive success transfers to subsequent generations. Where both intra and intergenerational production is enhanced, population sizes might boom.

  7. Physiological plasticity increases resilience of ectothermic animals to climate change

    NASA Astrophysics Data System (ADS)

    Seebacher, Frank; White, Craig R.; Franklin, Craig E.

    2015-01-01

    Understanding how climate change affects natural populations remains one of the greatest challenges for ecology and management of natural resources. Animals can remodel their physiology to compensate for the effects of temperature variation, and this physiological plasticity, or acclimation, can confer resilience to climate change. The current lack of a comprehensive analysis of the capacity for physiological plasticity across taxonomic groups and geographic regions, however, constrains predictions of the impacts of climate change. Here, we assembled the largest database to date to establish the current state of knowledge of physiological plasticity in ectothermic animals. We show that acclimation decreases the sensitivity to temperature and climate change of freshwater and marine animals, but less so in terrestrial animals. Animals from more stable environments have greater capacity for acclimation, and there is a significant trend showing that the capacity for thermal acclimation increases with decreasing latitude. Despite the capacity for acclimation, climate change over the past 20 years has already resulted in increased physiological rates of up to 20%, and we predict further future increases under climate change. The generality of these predictions is limited, however, because much of the world is drastically undersampled in the literature, and these undersampled regions are the areas of greatest need for future research efforts.

  8. Incorporating abundance information and guiding variable selection for climate-based ensemble forecasting of species' distributional shifts.

    PubMed

    Tanner, Evan P; Papeş, Monica; Elmore, R Dwayne; Fuhlendorf, Samuel D; Davis, Craig A

    2017-01-01

    Ecological niche models (ENMs) have increasingly been used to estimate the potential effects of climate change on species' distributions worldwide. Recently, predictions of species abundance have also been obtained with such models, though knowledge about the climatic variables affecting species abundance is often lacking. To address this, we used a well-studied guild (temperate North American quail) and the Maxent modeling algorithm to compare model performance of three variable selection approaches: correlation/variable contribution (CVC), biological (i.e., variables known to affect species abundance), and random. We then applied the best approach to forecast potential distributions, under future climatic conditions, and analyze future potential distributions in light of available abundance data and presence-only occurrence data. To estimate species' distributional shifts we generated ensemble forecasts using four global circulation models, four representative concentration pathways, and two time periods (2050 and 2070). Furthermore, we present distributional shifts where 75%, 90%, and 100% of our ensemble models agreed. The CVC variable selection approach outperformed our biological approach for four of the six species. Model projections indicated species-specific effects of climate change on future distributions of temperate North American quail. The Gambel's quail (Callipepla gambelii) was the only species predicted to gain area in climatic suitability across all three scenarios of ensemble model agreement. Conversely, the scaled quail (Callipepla squamata) was the only species predicted to lose area in climatic suitability across all three scenarios of ensemble model agreement. Our models projected future loss of areas for the northern bobwhite (Colinus virginianus) and scaled quail in portions of their distributions which are currently areas of high abundance. Climatic variables that influence local abundance may not always scale up to influence species' distributions. Special attention should be given to selecting variables for ENMs, and tests of model performance should be used to validate the choice of variables.

  9. Predicted extinction of unique genetic diversity in marine forests of Cystoseira spp.

    PubMed

    Buonomo, Roberto; Chefaoui, Rosa M; Lacida, Ricardo Bermejo; Engelen, Aschwin H; Serrão, Ester A; Airoldi, Laura

    2018-07-01

    Climate change is inducing shifts in species ranges across the globe. These can affect the genetic pools of species, including loss of genetic variability and evolutionary potential. In particular, geographically enclosed ecosystems, like the Mediterranean Sea, have a higher risk of suffering species loss and genetic erosion due to barriers to further range shifts and to dispersal. In this study, we address these questions for three habitat-forming seaweed species, Cystoseira tamariscifolia, C. amentacea and C. compressa, throughout their entire ranges in the Atlantic and Mediterranean regions. We aim to 1) describe their population genetic structure and diversity, 2) model the present and predict the future distribution and 3) assess the consequences of predicted future range shifts for their population genetic structure, according to two contrasting future climate change scenarios. A net loss of suitable areas was predicted in both climatic scenarios across the range of distribution of the three species. This loss was particularly severe for C. amentacea in the Mediterranean Sea (less 90% in the most extreme climatic scenario), suggesting that the species could become potentially at extinction risk. For all species, genetic data showed very differentiated populations, indicating low inter-population connectivity, and high and distinct genetic diversity in areas that were predicted to become lost, causing erosion of unique evolutionary lineages. Our results indicated that the Mediterranean Sea is the most threatened region, where future suitable Cystoseira habitats will become more limited. This is likely to have wider ecosystem impacts as there is a lack of species with the same ecological niche and functional role in the Mediterranean. The projected accelerated loss of already fragmented and disturbed populations and the long-term genetic effects highlight the urge for local scale management strategies that sustain the capacity of these habitat-forming species to persist despite climatic impacts while waiting for global emission reductions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Indigenous Waters: Applying the SWAT Hydrological Model to the Lumbee River Watershed

    NASA Astrophysics Data System (ADS)

    Painter, J.; Singh, N.; Martin, K. L.; Vose, J. M.; Wear, D. N.; Emanuel, R. E.

    2016-12-01

    Hydrological modeling can reveal insight about how rainfall becomes streamflow in a watershed comprising heterogeneous soils, terrain and land cover. Modeling can also help disentangle predicted impacts of climate and land use change on hydrological processes. We applied a hydrological model to the Lumbee River watershed, also known as the Lumber River Watershed, in the coastal plain of North Carolina (USA) to better understand how streamflow may be impacted by predicted climate and land use change in the mid-21st century. The Lumbee River flows through a predominantly Native American community, which may be affected by changing water resources during this period. The long-term goal of our project is to predict the effects of climate and land use change on the Lumbee River watershed and on the Native community that relies upon the river. We applied the Soil & Water Assessment Tool for ArcGIS (ArcSWAT), which was calibrated to historical climate and USGS streamflow data during the late 20th century, and we determined frequency distributions for key model parameters that best predicted streamflow during this time period. After calibrating and validating the model during the historical period, we identified land use and climate projections to represent a range of future conditions in the watershed. Specifically, we selected downscaled climate forcing data from four general circulation models running the RCP8.5 scenario. We also selected land use projections from a cornerstone scenario of the USDA Forest Service's Southern Forest Futures Project. This presentation reports on our methods for propagating parameter and climatic uncertainty through model predictions, and it reports on spatial patterns of land use change predicted by the cornerstone scenario.

  11. 2011 Souris River flood—Will it happen again?

    USGS Publications Warehouse

    Nustad, Rochelle A.; Kolars, Kelsey A.; Vecchia, Aldo V.; Ryberg, Karen R.

    2016-09-29

    The Souris River Basin is a 61,000 square kilometer basin in the provinces of Saskatchewan and Manitoba and the state of North Dakota. Record setting rains in May and June of 2011 led to record flooding with peak annual streamflow values (762 cubic meters per second [m3/s]) more than twice that of any previously recorded peak streamflow and more than five times the estimated 100 year postregulation streamflow (142 m3/s) at the U.S. Geological Survey (USGS) streamflow-gaging station above Minot, North Dakota. Upstream from Minot, N. Dak., the Souris River is regulated by three reservoirs in Saskatchewan (Rafferty, Boundary, and Alameda) and Lake Darling in North Dakota. During the 2011 flood, the city of Minot, N. Dak., experienced devastating damages with more than 4,000 homes flooded and 11,000 evacuated. As a result, the Souris River Basin Task Force recommended the U.S. Geological Survey (in cooperation with the North Dakota State Water Commission) develop a model for estimating the probabilities of future flooding and drought. The model that was developed took on four parts: (1) looking at past climate, (2) predicting future climate, (3) developing a streamflow model in response to certain climatic variables, and (4) combining future climate estimates with the streamflow model to predict future streamflow events. By taking into consideration historical climate record and trends in basin response to various climatic conditions, it was determined flood risk will remain high in the Souris River Basin until the wet climate state ends.

  12. Interactions of predominant insects and diseases with climate change in Douglas-fir forests of western Oregon and Washington, U.S.A.

    PubMed

    Agne, Michelle C; Beedlow, Peter A; Shaw, David C; Woodruff, David R; Lee, E Henry; Cline, Steven P; Comeleo, Randy L

    2018-02-01

    Forest disturbance regimes are beginning to show evidence of climate-mediated changes, such as increasing severity of droughts and insect outbreaks. We review the major insects and pathogens affecting the disturbance regime for coastal Douglas-fir forests in western Oregon and Washington State, USA, and ask how future climate changes may influence their role in disturbance ecology. Although the physiological constraints of light, temperature, and moisture largely control tree growth, episodic and chronic disturbances interacting with biological factors have substantial impacts on the structure and functioning of forest ecosystems in this region. Understanding insect and disease interactions is critical to predicting forest response to climate change and the consequences for ecosystem services, such as timber, clean water, fish and wildlife. We focused on future predictions for warmer wetter winters, hotter drier summers, and elevated atmospheric CO 2 to hypothesize the response of Douglas-fir forests to the major insects and diseases influencing this forest type: Douglas-fir beetle, Swiss needle cast, black stain root disease, and laminated root rot. We hypothesize that 1) Douglas-fir beetle and black stain root disease could become more prevalent with increasing, fire, temperature stress, and moisture stress, 2) future impacts of Swiss needle cast are difficult to predict due to uncertainties in May-July leaf wetness, but warmer winters could contribute to intensification at higher elevations, and 3) laminated root rot will be influenced primarily by forest management, rather than climatic change. Furthermore, these biotic disturbance agents interact in complex ways that are poorly understood. Consequently, to inform management decisions, insect and disease influences on disturbance regimes must be characterized specifically by forest type and region in order to accurately capture these interactions in light of future climate-mediated changes.

  13. Using ensemble forecasting to examine how climate change promotes worldwide invasion of the golden apple snail (Pomacea canaliculata).

    PubMed

    Lei, Juncheng; Chen, Lian; Li, Hong

    2017-08-01

    The golden apple snail, Pomacea canaliculata, is one of the world's 100 most notorious invasive alien species. Knowledge about the critical climate variables that limit the global distribution range of the snail, as well as predictions of future species distributions under climate change, is very helpful for management of snail. In this study, the climatically suitable habitats for this kind of snail under current climate conditions were modeled by biomod2 and projected to eight future climate scenarios (2 time periods [2050s, 2080s] × 2 Representative Concentration Pathways [RCPs; RCP2.6, RCP8.5] × 2 atmospheric General Circulation Models [GCMs; Canadian Centre for Climate Modelling and Analysis (CCCMA), Commonwealth Scientific and Industrial Research Organisation (CSIRO)]). The results suggest that the lowest temperature of coldest month is the critical climate variable to restrict the global distribution range of P. canaliculata. It is predicted that the climatically suitable habitats for P. canaliculata will increase by an average of 3.3% in 2050s and 3.8% in 2080s for the RCP2.6 scenario, while they increase by an average of 8.7% in 2050s and 10.3% in 2080s for the RCP8.5 scenario. In general, climate change in the future may promote the global invasion of the invasive species. Therefore, it is necessary to take proactive measures to monitor and preclude the invasion of this species.

  14. An eco-evolutionary IBM improves predictions of future geneticconnectivity for American Pikas (Ochotona princeps) in Crater Lake National Park, Oregon

    EPA Science Inventory

    In the face of rapid, contemporary climate change, conservationbiologists are relying heavily on species distribution models (SDMs)to predict shifting occupancy and distribution patterns in responseto future conditions. These models are critical tools for assessingvulnerability t...

  15. Surface temperatures of the Mid-Pliocene North Atlantic Ocean: Implications for future climate

    USGS Publications Warehouse

    Dowsett, Harry J.; Chandler, Mark A.; Robinson, Marci M.

    2009-01-01

    The Mid-Pliocene is the most recent interval in the Earth's history to have experienced warming of the magnitude predicted for the second half of the twenty-first century and is, therefore, a possible analogue for future climate conditions. With continents basically in their current positions and atmospheric CO2 similar to early twenty-first century values, the cause of Mid-Pliocene warmth remains elusive. Understanding the behaviour of the North Atlantic Ocean during the Mid-Pliocene is integral to evaluating future climate scenarios owing to its role in deep water formation and its sensitivity to climate change. Under the framework of the Pliocene Research, Interpretation and Synoptic Mapping (PRISM) sea surface reconstruction, we synthesize Mid-Pliocene North Atlantic studies by PRISM members and others, describing each region of the North Atlantic in terms of palaeoceanography. We then relate Mid-Pliocene sea surface conditions to expectations of future warming. The results of the data and climate model comparisons suggest that the North Atlantic is more sensitive to climate change than is suggested by climate model simulations, raising the concern that estimates of future climate change are conservative.

  16. PROJECTED CLIMATE-INDUCED FAUNAL CHANGE IN THE WESTERN HEMISPHERE

    EPA Science Inventory

    Climate change is predicted to be one of the greatest drivers of ecological change in the coming century. Increases in temperature over the last century have clearly been linked to shifts in species distributions. Given the magnitude of projected future climatic changes, we can e...

  17. SIMULATING REGIONAL-SCALE AIR QUALITY WITH DYNAMIC CHANGES IN REGIONAL CLIMATE AND CHEMICAL BOUNDARY CONDITIONS

    EPA Science Inventory

    This poster compares air quality modeling simulations under current climate and a future (approximately 2050) climate scenario. Differences in predicted ozone episodes and daily average PM2.5 concentrations are presented, along with vertical ozone profiles. Modeling ...

  18. Lessons from Earth's Deep Time

    ERIC Educational Resources Information Center

    Soreghan, G. S.

    2005-01-01

    Earth is a repository of data on climatic changes from its deep-time history. Article discusses the collection and study of these data to predict future climatic changes, the need to create national study centers for the purpose, and the necessary cooperation between different branches of science in climatic research.

  19. Shifts in frog size and phenology: Testing predictions of climate change on a widespread anuran using data from prior to rapid climate warming.

    PubMed

    Sheridan, Jennifer A; Caruso, Nicholas M; Apodaca, Joseph J; Rissler, Leslie J

    2018-01-01

    Changes in body size and breeding phenology have been identified as two major ecological consequences of climate change, yet it remains unclear whether climate acts directly or indirectly on these variables. To better understand the relationship between climate and ecological changes, it is necessary to determine environmental predictors of both size and phenology using data from prior to the onset of rapid climate warming, and then to examine spatially explicit changes in climate, size, and phenology, not just general spatial and temporal trends. We used 100 years of natural history collection data for the wood frog, Lithobates sylvaticus with a range >9 million km 2 , and spatially explicit environmental data to determine the best predictors of size and phenology prior to rapid climate warming (1901-1960). We then tested how closely size and phenology changes predicted by those environmental variables reflected actual changes from 1961 to 2000. Size, phenology, and climate all changed as expected (smaller, earlier, and warmer, respectively) at broad spatial scales across the entire study range. However, while spatially explicit changes in climate variables accurately predicted changes in phenology, they did not accurately predict size changes during recent climate change (1961-2000), contrary to expectations from numerous recent studies. Our results suggest that changes in climate are directly linked to observed phenological shifts. However, the mechanisms driving observed body size changes are yet to be determined, given the less straightforward relationship between size and climate factors examined in this study. We recommend that caution be used in "space-for-time" studies where measures of a species' traits at lower latitudes or elevations are considered representative of those under future projected climate conditions. Future studies should aim to determine mechanisms driving trends in phenology and body size, as well as the impact of climate on population density, which may influence body size.

  20. The uncertainty of future water supply adequacy in megacities: Effects of population growth and climate change

    NASA Astrophysics Data System (ADS)

    Alarcon, T.; Garcia, M. E.; Small, D. L.; Portney, K.; Islam, S.

    2013-12-01

    Providing water to the expanding population of megacities, which have over 10 million people, with a stressed and aging water infrastructure creates unprecedented challenges. These challenges are exacerbated by dwindling supply and competing demands, altered precipitation and runoff patterns in a changing climate, fragmented water utility business models, and changing consumer behavior. While there is an extensive literature on the effects of climate change on water resources, the uncertainty of climate change predictions continues to be high. This hinders the value of these predictions for municipal water supply planning. The ability of water utilities to meet future water needs will largely depend on their capacity to make decisions under uncertainty. Water stressors, like changes in demographics, climate, and socioeconomic patterns, have varying degrees of uncertainty. Identifying which stressors will have a greater impact on water resources, may reduce the level of future uncertainty for planning and managing water utilities. Within this context, we analyze historical and projected changes of population and climate to quantify the relative impacts of these two stressors on water resources. We focus on megacities that rely primarily on surface water resources to evaluate (a) population growth pattern from 1950-2010 and projected population for 2010-2060; (b) climate change impact on projected climate change scenarios for 2010-2060; and (c) water access for 1950-2010; projected needs for 2010-2060.

  1. In ecoregions across western USA streamflow increases during post-wildfire recovery

    NASA Astrophysics Data System (ADS)

    Wine, Michael L.; Cadol, Daniel; Makhnin, Oleg

    2018-01-01

    Continued growth of the human population on Earth will increase pressure on already stressed terrestrial water resources required for drinking water, agriculture, and industry. This stress demands improved understanding of critical controls on water resource availability, particularly in water-limited regions. Mechanistic predictions of future water resource availability are needed because non-stationary conditions exist in the form of changing climatic conditions, land management paradigms, and ecological disturbance regimes. While historically ecological disturbances have been small and could be neglected relative to climatic effects, evidence is accumulating that ecological disturbances, particularly wildfire, can increase regional water availability. However, wildfire hydrologic impacts are typically estimated locally and at small spatial scales, via disparate measurement methods and analysis techniques, and outside the context of climate change projections. Consequently, the relative importance of climate change driven versus wildfire driven impacts on streamflow remains unknown across the western USA. Here we show that considering wildfire in modeling streamflow significantly improves model predictions. Mixed effects modeling attributed 2%-14% of long-term annual streamflow to wildfire effects. The importance of this wildfire-linked streamflow relative to predicted climate change-induced streamflow reductions ranged from 20%-370% of the streamflow decrease predicted to occur by 2050. The rate of post-wildfire vegetation recovery and the proportion of watershed area burned controlled the wildfire effect. Our results demonstrate that in large areas of the western USA affected by wildfire, regional predictions of future water availability are subject to greater structural uncertainty than previously thought. These results suggest that future streamflows may be underestimated in areas affected by increased prevalence of hydrologically relevant ecological disturbances such as wildfire.

  2. Effects of Climate Change and Fisheries Bycatch on Shy Albatross (Thalassarche cauta) in Southern Australia

    PubMed Central

    2015-01-01

    The impacts of climate change on marine species are often compounded by other stressors that make direct attribution and prediction difficult. Shy albatrosses (Thalassarche cauta) breeding on Albatross Island, Tasmania, show an unusually restricted foraging range, allowing easier discrimination between the influence of non-climate stressors (fisheries bycatch) and environmental variation. Local environmental conditions (rainfall, air temperature, and sea-surface height, an indicator of upwelling) during the vulnerable chick-rearing stage, have been correlated with breeding success of shy albatrosses. We use an age-, stage- and sex-structured population model to explore potential relationships between local environmental factors and albatross breeding success while accounting for fisheries bycatch by trawl and longline fisheries. The model uses time-series of observed breeding population counts, breeding success, adult and juvenile survival rates and a bycatch mortality observation for trawl fishing to estimate fisheries catchability, environmental influence, natural mortality rate, density dependence, and productivity. Observed at-sea distributions for adult and juvenile birds were coupled with reported fishing effort to estimate vulnerability to incidental bycatch. The inclusion of rainfall, temperature and sea-surface height as explanatory variables for annual chick mortality rate was statistically significant. Global climate models predict little change in future local average rainfall, however, increases are forecast in both temperatures and upwelling, which are predicted to have detrimental and beneficial effects, respectively, on breeding success. The model shows that mitigation of at least 50% of present bycatch is required to offset losses due to future temperature changes, even if upwelling increases substantially. Our results highlight the benefits of using an integrated modeling approach, which uses available demographic as well as environmental data within a single estimation framework, to provide future predictions. Such predictions inform the development of management options in the face of climate change. PMID:26057739

  3. Effects of Climate Change and Fisheries Bycatch on Shy Albatross (Thalassarche cauta) in Southern Australia.

    PubMed

    Thomson, Robin B; Alderman, Rachael L; Tuck, Geoffrey N; Hobday, Alistair J

    2015-01-01

    The impacts of climate change on marine species are often compounded by other stressors that make direct attribution and prediction difficult. Shy albatrosses (Thalassarche cauta) breeding on Albatross Island, Tasmania, show an unusually restricted foraging range, allowing easier discrimination between the influence of non-climate stressors (fisheries bycatch) and environmental variation. Local environmental conditions (rainfall, air temperature, and sea-surface height, an indicator of upwelling) during the vulnerable chick-rearing stage, have been correlated with breeding success of shy albatrosses. We use an age-, stage- and sex-structured population model to explore potential relationships between local environmental factors and albatross breeding success while accounting for fisheries bycatch by trawl and longline fisheries. The model uses time-series of observed breeding population counts, breeding success, adult and juvenile survival rates and a bycatch mortality observation for trawl fishing to estimate fisheries catchability, environmental influence, natural mortality rate, density dependence, and productivity. Observed at-sea distributions for adult and juvenile birds were coupled with reported fishing effort to estimate vulnerability to incidental bycatch. The inclusion of rainfall, temperature and sea-surface height as explanatory variables for annual chick mortality rate was statistically significant. Global climate models predict little change in future local average rainfall, however, increases are forecast in both temperatures and upwelling, which are predicted to have detrimental and beneficial effects, respectively, on breeding success. The model shows that mitigation of at least 50% of present bycatch is required to offset losses due to future temperature changes, even if upwelling increases substantially. Our results highlight the benefits of using an integrated modeling approach, which uses available demographic as well as environmental data within a single estimation framework, to provide future predictions. Such predictions inform the development of management options in the face of climate change.

  4. Climate-change influences on the response of macroinvertebrate communities to pesticide contamination in the Sacramento River, California watershed.

    PubMed

    Chiu, Ming-Chih; Hunt, Lisa; Resh, Vincent H

    2017-03-01

    Limited studies have addressed how future climate-change scenarios may alter the effects of pesticides on biotic assemblages or the effects of exposures to repeated pulses of pesticide mixtures. We used reported pesticide-use data as input to a hydrological fate and transport model (Soil and Water Assessment Tool) under multiple climate-change scenarios to simulate spatiotemporal dynamics of pesticides mixtures in streams on a daily time-step in the Sacramento River watershed of California. We predicted that there will be increased pesticide application with warming across the watershed, especially in upstream areas. Using a statistical model describing the relationship between macroinvertebrate communities and pesticide dynamics, we found that compared to the baseline period of 1970-1999: (1) most climate-change scenarios predicted increased rainfall and warming across the watershed during 2070-2099; and (2) increasing pesticide contamination and increased impact on macroinvertebrates will likely occur in most areas of the watershed by 2070-2099; and (3) lower increases in effects of pesticides on macroinvertebrates were predicted for the downstream areas with intensive agriculture compared to some upstream areas with less-intensive agriculture. Future efforts on practical adaptation and mitigation strategies can be improved by awareness of altered threats of pesticide mixtures under future climate-change conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Impact of climate change on runoff in Lake Urmia basin, Iran

    NASA Astrophysics Data System (ADS)

    Sanikhani, Hadi; Kisi, Ozgur; Amirataee, Babak

    2018-04-01

    Investigation of the impact of climate change on water resources is very necessary in dry and arid regions. In the first part of this paper, the climate model Long Ashton Research Station Weather Generator (LARS-WG) was used for downscaling climate data including rainfall, solar radiation, and minimum and maximum temperatures. Two different case studies including Aji-Chay and Mahabad-Chay River basins as sub-basins of Lake Urmia in the northwest part of Iran were considered. The results indicated that the LARS-WG successfully downscaled the climatic variables. By application of different emission scenarios (i.e., A1B, A2, and B1), an increasing trend in rainfall and a decreasing trend in temperature were predicted for both the basins over future time periods. In the second part of this paper, gene expression programming (GEP) was applied for simulating runoff of the basins in the future time periods including 2020, 2055, and 2090. The input combination including rainfall, solar radiation, and minimum and maximum temperatures in current and prior time was selected as the best input combination with highest predictive power for runoff prediction. The results showed that the peak discharge will decrease by 50 and 55.9% in 2090 comparing with the baseline period for the Aji-Chay and Mahabad-Chay basins, respectively. The results indicated that the sustainable adaptation strategies are necessary for these basins for protection of water resources in future.

  6. Climate change impact on soil erosion in the Mandakini River Basin, North India

    NASA Astrophysics Data System (ADS)

    Khare, Deepak; Mondal, Arun; Kundu, Sananda; Mishra, Prabhash Kumar

    2017-09-01

    Correct estimation of soil loss at catchment level helps the land and water resources planners to identify priority areas for soil conservation measures. Soil erosion is one of the major hazards affected by the climate change, particularly the increasing intensity of rainfall resulted in increasing erosion, apart from other factors like landuse change. Changes in climate have an adverse effect with increasing rainfall. It has caused increasing concern for modeling the future rainfall and projecting future soil erosion. In the present study, future rainfall has been generated with the downscaling of GCM (Global Circulation Model) data of Mandakini river basin, a hilly catchment in the state of Uttarakhand, India, to obtain future impact on soil erosion within the basin. The USLE is an erosion prediction model designed to predict the long-term average annual soil loss from specific field slopes in specified landuse and management systems (i.e., crops, rangeland, and recreational areas) using remote sensing and GIS technologies. Future soil erosion has shown increasing trend due to increasing rainfall which has been generated from the statistical-based downscaling method.

  7. Predicting and mapping malaria under climate change scenarios: the potential redistribution of malaria vectors in Africa.

    PubMed

    Tonnang, Henri E Z; Kangalawe, Richard Y M; Yanda, Pius Z

    2010-04-23

    Malaria is rampant in Africa and causes untold mortality and morbidity. Vector-borne diseases are climate sensitive and this has raised considerable concern over the implications of climate change on future disease risk. The problem of malaria vectors (Anopheles mosquitoes) shifting from their traditional locations to invade new zones is an important concern. The vision of this study was to exploit the sets of information previously generated by entomologists, e.g. on geographical range of vectors and malaria distribution, to build models that will enable prediction and mapping the potential redistribution of Anopheles mosquitoes in Africa. The development of the modelling tool was carried out through calibration of CLIMEX parameters. The model helped estimate the potential geographical distribution and seasonal abundance of the species in relation to climatic factors. These included temperature, rainfall and relative humidity, which characterized the living environment for Anopheles mosquitoes. The same parameters were used in determining the ecoclimatic index (EI). The EI values were exported to a GIS package for special analysis and proper mapping of the potential future distribution of Anopheles gambiae and Anophles arabiensis within the African continent under three climate change scenarios. These results have shown that shifts in these species boundaries southward and eastward of Africa may occur rather than jumps into quite different climatic environments. In the absence of adequate control, these predictions are crucial in understanding the possible future geographical range of the vectors and the disease, which could facilitate planning for various adaptation options. Thus, the outputs from this study will be helpful at various levels of decision making, for example, in setting up of an early warning and sustainable strategies for climate change and climate change adaptation for malaria vectors control programmes in Africa.

  8. Using changes in agricultural utility to quantify future climate-induced risk to conservation.

    PubMed

    Estes, Lyndon D; Paroz, Lydie-Line; Bradley, Bethany A; Green, Jonathan M H; Hole, David G; Holness, Stephen; Ziv, Guy; Oppenheimer, Michael G; Wilcove, David S

    2014-04-01

    Much of the biodiversity-related climate change impacts research has focused on the direct effects to species and ecosystems. Far less attention has been paid to the potential ecological consequences of human efforts to address the effects of climate change, which may equal or exceed the direct effects of climate change on biodiversity. One of the most significant human responses is likely to be mediated through changes in the agricultural utility of land. As farmers adapt their practices to changing climates, they may increase pressure on some areas that are important to conserve (conservation lands) whereas lessening it on others. We quantified how the agricultural utility of South African conservation lands may be altered by climate change. We assumed that the probability of an area being farmed is linked to the economic benefits of doing so, using land productivity values to represent production benefit and topographic ruggedness as a proxy for costs associated with mechanical workability. We computed current and future values of maize and wheat production in key conservation lands using the DSSAT4.5 model and 36 crop-climate response scenarios. Most conservation lands had, and were predicted to continue to have, low agricultural utility because of their location in rugged terrain. However, several areas were predicted to maintain or gain high agricultural utility and may therefore be at risk of near-term or future conversion to cropland. Conversely, some areas were predicted to decrease in agricultural utility and may therefore prove easier to protect from conversion. Our study provides an approximate but readily transferable method for incorporating potential human responses to climate change into conservation planning. © 2013 Society for Conservation Biology.

  9. Complex networks as a unified framework for descriptive analysis and predictive modeling in climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinhaeuser, Karsten J K; Chawla, Nitesh; Ganguly, Auroop R

    The analysis of climate data has relied heavily on hypothesis-driven statistical methods, while projections of future climate are based primarily on physics-based computational models. However, in recent years a wealth of new datasets has become available. Therefore, we take a more data-centric approach and propose a unified framework for studying climate, with an aim towards characterizing observed phenomena as well as discovering new knowledge in the climate domain. Specifically, we posit that complex networks are well-suited for both descriptive analysis and predictive modeling tasks. We show that the structural properties of climate networks have useful interpretation within the domain. Further,more » we extract clusters from these networks and demonstrate their predictive power as climate indices. Our experimental results establish that the network clusters are statistically significantly better predictors than clusters derived using a more traditional clustering approach. Using complex networks as data representation thus enables the unique opportunity for descriptive and predictive modeling to inform each other.« less

  10. Fine-scale variability in growth-climate relationships of Douglas-fir, North Cascade Range, Washington.

    Treesearch

    Michael J. Case; David L. Peterson

    2005-01-01

    Information about the sensitivity to climate of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) is valuable because it will allow forest managers to maximize growth, better understand how carbon sequestration may change over time, and better model and predict future ecosystem responses to climatic change. We examined the effects of climatic...

  11. Evaluating the sources of potential migrant species: implications under climate change

    Treesearch

    Ines Ibanez; James S. Clark; Michael C. Dietze

    2008-01-01

    As changes in climate become more apparent, ecologists face the challenge of predicting species responses to the new conditions. Most forecasts are based on climate envelopes (CE), correlative approaches that project future distributions on the basis of the current climate often assuming some dispersal lag. One major caveat with this approach is that it ignores the...

  12. Dual impacts of climate change: forest migration and turnover through life history

    Treesearch

    Kai Zhu; Christopher W. Woodall; Souparno Ghosh; Alan E. Gelfand; James S. Clark

    2014-01-01

    Tree species are predicted to track future climate by shifting their geographic distributions, but climate-mediated migrations are not apparent in a recent continental-scale analysis. To better understand the mechanisms of a possible migration lag, we analyzed relative recruitment patterns by comparing juvenile and adult tree abundances in climate space. One would...

  13. Climate change risk to forests in China associated with warming.

    PubMed

    Yin, Yunhe; Ma, Danyang; Wu, Shaohong

    2018-01-11

    Variations in forest net primary productivity (NPP) reflects the combined effects of key climate variables on ecosystem structure and function, especially on the carbon cycle. We performed risk analysis indicated by the magnitude of future negative anomalies in NPP in comparison with the natural interannual variability to investigate the impact of future climatic projections on forests in China. Results from the multi-model ensemble showed that climate change risk of decreases in forest NPP would be more significant in higher emission scenario in China. Under relatively low emission scenarios, the total area of risk was predicted to decline, while for RCP8.5, it was predicted to first decrease and then increase after the middle of 21st century. The rapid temperature increases predicted under the RCP8.5 scenario would be probably unfavorable for forest vegetation growth in the long term. High-level risk area was likely to increase except RCP2.6. The percentage area at high risk was predicted to increase from 5.39% (2021-2050) to 27.62% (2071-2099) under RCP8.5. Climate change risk to forests was mostly concentrated in southern subtropical and tropical regions, generally significant under high emission scenario of RCP8.5, which was mainly attributed to the intensified dryness in south China.

  14. Assessment of climate change impact on yield of major crops in the Banas River Basin, India.

    PubMed

    Dubey, Swatantra Kumar; Sharma, Devesh

    2018-09-01

    Crop growth models like AquaCrop are useful in understanding the impact of climate change on crop production considering the various projections from global circulation models and regional climate models. The present study aims to assess the climate change impact on yield of major crops in the Banas River Basin i.e., wheat, barley and maize. Banas basin is part of the semi-arid region of Rajasthan state in India. AquaCrop model is used to calculate the yield of all the three crops for a historical period of 30years (1981-2010) and then compared with observed yield data. Root Mean Square Error (RMSE) values are calculated to assess the model accuracy in prediction of yield. Further, the calibrated model is used to predict the possible impacts of climate change and CO 2 concentration on crop yield using CORDEX-SA climate projections of three driving climate models (CNRM-CM5, CCSM4 and MPI-ESM-LR) for two different scenarios (RCP4.5 and RCP8.5) for the future period 2021-2050. RMSE values of simulated yield with respect to observed yield of wheat, barley and maize are 11.99, 16.15 and 19.13, respectively. It is predicted that crop yield of all three crops will increase under the climate change conditions for future period (2021-2050). Copyright © 2018 Elsevier B.V. All rights reserved.

  15. The weather roulette: assessing the economic value of seasonal wind speed predictions

    NASA Astrophysics Data System (ADS)

    Christel, Isadora; Cortesi, Nicola; Torralba-Fernandez, Veronica; Soret, Albert; Gonzalez-Reviriego, Nube; Doblas-Reyes, Francisco

    2016-04-01

    Climate prediction is an emerging and highly innovative research area. For the wind energy sector, predicting the future variability of wind resources over the coming weeks or seasons is especially relevant to quantify operation and maintenance logistic costs or to inform energy trading decision with potential cost savings and/or economic benefits. Recent advances in climate predictions have already shown that probabilistic forecasting can improve the current prediction practices, which are based in the use of retrospective climatology and the assumption that what happened in the past is the best estimation of future conditions. Energy decision makers now have this new set of climate services but, are they willing to use them? Our aim is to properly explain the potential economic benefits of adopting probabilistic predictions, compared with the current practice, by using the weather roulette methodology (Hagedorn & Smith, 2009). This methodology is a diagnostic tool created to inform in a more intuitive and relevant way about the skill and usefulness of a forecast in the decision making process, by providing an economic and financial oriented assessment of the benefits of using a particular forecast system. We have selected a region relevant to the energy stakeholders where the predictions of the EUPORIAS climate service prototype for the energy sector (RESILIENCE) are skillful. In this region, we have applied the weather roulette to compare the overall prediction success of RESILIENCE's predictions and climatology illustrating it as an effective interest rate, an economic term that is easier to understand for energy stakeholders.

  16. Thermal and hydrologic responses to climate change predict marked alterations in boreal stream invertebrate assemblages.

    PubMed

    Mustonen, Kaisa-Riikka; Mykrä, Heikki; Marttila, Hannu; Sarremejane, Romain; Veijalainen, Noora; Sippel, Kalle; Muotka, Timo; Hawkins, Charles P

    2018-06-01

    Air temperature at the northernmost latitudes is predicted to increase steeply and precipitation to become more variable by the end of the 21st century, resulting in altered thermal and hydrological regimes. We applied five climate scenarios to predict the future (2070-2100) benthic macroinvertebrate assemblages at 239 near-pristine sites across Finland (ca. 1200 km latitudinal span). We used a multitaxon distribution model with air temperature and modeled daily flow as predictors. As expected, projected air temperature increased the most in northernmost Finland. Predicted taxonomic richness also increased the most in northern Finland, congruent with the predicted northwards shift of many species' distributions. Compositional changes were predicted to be high even without changes in richness, suggesting that species replacement may be the main mechanism causing climate-induced changes in macroinvertebrate assemblages. Northern streams were predicted to lose much of the seasonality of their flow regimes, causing potentially marked changes in stream benthic assemblages. Sites with the highest loss of seasonality were predicted to support future assemblages that deviate most in compositional similarity from the present-day assemblages. Macroinvertebrate assemblages were also predicted to change more in headwaters than in larger streams, as headwaters were particularly sensitive to changes in flow patterns. Our results emphasize the importance of focusing protection and mitigation on headwater streams with high-flow seasonality because of their vulnerability to climate change. © 2018 John Wiley & Sons Ltd.

  17. Assessing the ability of plants to respond to climatic change through distribution shifts

    Treesearch

    Mark W. Schwartz

    1996-01-01

    Predictions of future global warming suggest northward shifts of up to 800 km in the equilibrium distributions of plant species. Historical data estimating the maximum rate of tree distribution shifts (migration) suggest that most species will not keep pace with future rates of human-induced climatic change. Previous plant migrations have occurred at rates typically...

  18. Predicting the Distribution of Commercially Important Invertebrate Stocks under Future Climate

    PubMed Central

    Russell, Bayden D.; Connell, Sean D.; Mellin, Camille; Brook, Barry W.; Burnell, Owen W.; Fordham, Damien A.

    2012-01-01

    The future management of commercially exploited species is challenging because techniques used to predict the future distribution of stocks under climate change are currently inadequate. We projected the future distribution and abundance of two commercially harvested abalone species (blacklip abalone, Haliotis rubra and greenlip abalone, H. laevigata) inhabiting coastal South Australia, using multiple species distribution models (SDM) and for decadal time slices through to 2100. Projections are based on two contrasting global greenhouse gas emissions scenarios. The SDMs identified August (winter) Sea Surface Temperature (SST) as the best descriptor of abundance and forecast that warming of winter temperatures under both scenarios may be beneficial to both species by allowing increased abundance and expansion into previously uninhabited coasts. This range expansion is unlikely to be realised, however, as projected warming of March SST is projected to exceed temperatures which cause up to 10-fold increases in juvenile mortality. By linking fine-resolution forecasts of sea surface temperature under different climate change scenarios to SDMs and physiological experiments, we provide a practical first approximation of the potential impact of climate-induced change on two species of marine invertebrates in the same fishery. PMID:23251326

  19. How will climate change pathways and mitigation options alter incidence of vector-borne diseases? A framework for leishmaniasis in South and Meso-America

    PubMed Central

    Masante, Dario; Golding, Nicholas; Pigott, David; Day, John C.; Ibañez-Bernal, Sergio; Kolb, Melanie; Jones, Laurence

    2017-01-01

    The enormous global burden of vector-borne diseases disproportionately affects poor people in tropical, developing countries. Changes in vector-borne disease impacts are often linked to human modification of ecosystems as well as climate change. For tropical ecosystems, the health impacts of future environmental and developmental policy depend on how vector-borne disease risks trade off against other ecosystem services across heterogeneous landscapes. By linking future socio-economic and climate change pathways to dynamic land use models, this study is amongst the first to analyse and project impacts of both land use and climate change on continental-scale patterns in vector-borne diseases. Models were developed for cutaneous and visceral leishmaniasis in the Americas—ecologically complex sand fly borne infections linked to tropical forests and diverse wild and domestic mammal hosts. Both diseases were hypothesised to increase with available interface habitat between forest and agricultural or domestic habitats and with mammal biodiversity. However, landscape edge metrics were not important as predictors of leishmaniasis. Models including mammal richness were similar in accuracy and predicted disease extent to models containing only climate and land use predictors. Overall, climatic factors explained 80% and land use factors only 20% of the variance in past disease patterns. Both diseases, but especially cutaneous leishmaniasis, were associated with low seasonality in temperature and precipitation. Since such seasonality increases under future climate change, particularly under strong climate forcing, both diseases were predicted to contract in geographical extent to 2050, with cutaneous leishmaniasis contracting by between 35% and 50%. Whilst visceral leishmaniasis contracted slightly more under strong than weak management for carbon, biodiversity and ecosystem services, future cutaneous leishmaniasis extent was relatively insensitive to future alternative socio-economic pathways. Models parameterised at narrower geographical scales may be more sensitive to land use pattern and project more substantial changes in disease extent under future alternative socio-economic pathways. PMID:29020041

  20. How will climate change pathways and mitigation options alter incidence of vector-borne diseases? A framework for leishmaniasis in South and Meso-America.

    PubMed

    Purse, Bethan V; Masante, Dario; Golding, Nicholas; Pigott, David; Day, John C; Ibañez-Bernal, Sergio; Kolb, Melanie; Jones, Laurence

    2017-01-01

    The enormous global burden of vector-borne diseases disproportionately affects poor people in tropical, developing countries. Changes in vector-borne disease impacts are often linked to human modification of ecosystems as well as climate change. For tropical ecosystems, the health impacts of future environmental and developmental policy depend on how vector-borne disease risks trade off against other ecosystem services across heterogeneous landscapes. By linking future socio-economic and climate change pathways to dynamic land use models, this study is amongst the first to analyse and project impacts of both land use and climate change on continental-scale patterns in vector-borne diseases. Models were developed for cutaneous and visceral leishmaniasis in the Americas-ecologically complex sand fly borne infections linked to tropical forests and diverse wild and domestic mammal hosts. Both diseases were hypothesised to increase with available interface habitat between forest and agricultural or domestic habitats and with mammal biodiversity. However, landscape edge metrics were not important as predictors of leishmaniasis. Models including mammal richness were similar in accuracy and predicted disease extent to models containing only climate and land use predictors. Overall, climatic factors explained 80% and land use factors only 20% of the variance in past disease patterns. Both diseases, but especially cutaneous leishmaniasis, were associated with low seasonality in temperature and precipitation. Since such seasonality increases under future climate change, particularly under strong climate forcing, both diseases were predicted to contract in geographical extent to 2050, with cutaneous leishmaniasis contracting by between 35% and 50%. Whilst visceral leishmaniasis contracted slightly more under strong than weak management for carbon, biodiversity and ecosystem services, future cutaneous leishmaniasis extent was relatively insensitive to future alternative socio-economic pathways. Models parameterised at narrower geographical scales may be more sensitive to land use pattern and project more substantial changes in disease extent under future alternative socio-economic pathways.

  1. Direct and indirect effects of climate change on projected future fire regimes in the western United States.

    PubMed

    Liu, Zhihua; Wimberly, Michael C

    2016-01-15

    We asked two research questions: (1) What are the relative effects of climate change and climate-driven vegetation shifts on different components of future fire regimes? (2) How does incorporating climate-driven vegetation change into future fire regime projections alter the results compared to projections based only on direct climate effects? We used the western United States (US) as study area to answer these questions. Future (2071-2100) fire regimes were projected using statistical models to predict spatial patterns of occurrence, size and spread for large fires (>400 ha) and a simulation experiment was conducted to compare the direct climatic effects and the indirect effects of climate-driven vegetation change on fire regimes. Results showed that vegetation change amplified climate-driven increases in fire frequency and size and had a larger overall effect on future total burned area in the western US than direct climate effects. Vegetation shifts, which were highly sensitive to precipitation pattern changes, were also a strong determinant of the future spatial pattern of burn rates and had different effects on fire in currently forested and grass/shrub areas. Our results showed that climate-driven vegetation change can exert strong localized effects on fire occurrence and size, which in turn drive regional changes in fire regimes. The effects of vegetation change for projections of the geographic patterns of future fire regimes may be at least as important as the direct effects of climate change, emphasizing that accounting for changing vegetation patterns in models of future climate-fire relationships is necessary to provide accurate projections at continental to global scales. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Sensitivity of grassland plant community composition to spatial vs. temporal variation in precipitation

    USDA-ARS?s Scientific Manuscript database

    Climate gradients shape spatial variation in the richness and composition of plant communities. Given future predicted changes in climate means and variability, and likely regional variation in the magnitudes of these changes, it is important to determine how temporal variation in climate influences...

  3. Implications of Climate Change for Children in Developing Countries

    ERIC Educational Resources Information Center

    Hanna, Rema; Oliva, Paulina

    2016-01-01

    Climate change may be particularly dangerous for children in developing countries. Even today, many developing countries experience a disproportionate share of extreme weather, and they are predicted to suffer disproportionately from the effects of climate change in the future. Moreover, developing countries often have limited social safety nets,…

  4. Branching out: Agroforestry as a climate change mitigation and adaptation tool for agriculture

    USDA-ARS?s Scientific Manuscript database

    The United States and Canadian agricultural lands are being targeted to provide more environmental and economic services while at the same time their capacity to provide these services under potential climate change (CC) is being questioned. Predictions of future climate conditions include longer gr...

  5. Microclimate and ecological threshold responses in a warming and wetting experiment following whole-tree harvest

    USDA-ARS?s Scientific Manuscript database

    Ecosystem climate manipulation experiments (ECMEs) are a key tool for predicting the effects of climate on ecosystems. However, the strength of inferences drawn from these experiments depends on whether the manipulated conditions mimic future climate changes. While ECMEs have examined mean tempera...

  6. Land use scenarios development and impacts assessment on vegetation carbon/nitrogen sequestration in the West African Sudan savanna watershed, Benin

    NASA Astrophysics Data System (ADS)

    Chabi, A.

    2015-12-01

    ackground: Reduced Emissions from Deforestation and Degradation (REDD+), being developed through the United Nations Framework Convention on Climate Change (UNFCCC) requires information on the carbon/nitrogen stocks in the plant biomass for predicting future climate under scenarios development. The development of land use scenarios in West Africa is needed to predict future impacts of change in the environment and the socio-economic status of rural communities. The study aims at developing land use scenario based on mitigation strategy to climate change as an issue of contributing for carbon and nitrogen sequestration, the condition 'food focused' as a scenario based crop production and 'financial investment' as scenario based on an economic development pathway, and to explore the possible future temporal and spatial impacts on vegetation carbon/nitrogen sequestration/emission and socio-economic status of rural communities. Preliminary results: BEN-LUDAS (Benin-Land Use DyNamic Simulator) model, carbon and nitrogen equations, remote sensing and socio-economic data were used to predict the future impacts of each scenario in the environment and human systems. The preliminary results which are under analysis will be presented soon. Conclusion: The proposed BEN-LUDAS models will help to contribute to policy decision making at the local and regional scale and to predict future impacts of change in the environment and socio-economic status of the rural communities. Keywords: Land use scenarios development, BEN-LUDAS, socio-economic status of rural communities, future impacts of change, assessment, West African Sudan savanna watershed, Benin

  7. Forecasting the Future Risk of Barmah Forest Virus Disease under Climate Change Scenarios in Queensland, Australia

    PubMed Central

    Naish, Suchithra; Mengersen, Kerrie; Hu, Wenbiao; Tong, Shilu

    2013-01-01

    Background Mosquito-borne diseases are climate sensitive and there has been increasing concern over the impact of climate change on future disease risk. This paper projected the potential future risk of Barmah Forest virus (BFV) disease under climate change scenarios in Queensland, Australia. Methods/Principal Findings We obtained data on notified BFV cases, climate (maximum and minimum temperature and rainfall), socio-economic and tidal conditions for current period 2000–2008 for coastal regions in Queensland. Grid-data on future climate projections for 2025, 2050 and 2100 were also obtained. Logistic regression models were built to forecast the otential risk of BFV disease distribution under existing climatic, socio-economic and tidal conditions. The model was applied to estimate the potential geographic distribution of BFV outbreaks under climate change scenarios. The predictive model had good model accuracy, sensitivity and specificity. Maps on potential risk of future BFV disease indicated that disease would vary significantly across coastal regions in Queensland by 2100 due to marked differences in future rainfall and temperature projections. Conclusions/Significance We conclude that the results of this study demonstrate that the future risk of BFV disease would vary across coastal regions in Queensland. These results may be helpful for public health decision making towards developing effective risk management strategies for BFV disease control and prevention programs in Queensland. PMID:23690959

  8. The Contribution of Soils to North America's Current and Future Climate

    NASA Astrophysics Data System (ADS)

    Mayes, M. A.; Reed, S.; Thornton, P. E.; Lajtha, K.; Bailey, V. L.; Shrestha, G.; Jastrow, J. D.; Torn, M. S.

    2015-12-01

    This presentation will cover key aspects of the terrestrial soil carbon cycle in North America and the US for the upcoming State of the Carbon Cycle Report (SOCCRII). SOCCRII seeks to summarize how natural processes and human interactions affect the global carbon cycle, how socio-economic trends affect greenhouse gas concentrations in the atmosphere, and how ecosystems are influenced by and respond to greenhouse gas emissions, management decisions, and concomitant climate effects. Here, we will summarize the contemporary understanding of carbon stocks, fluxes, and drivers in the soil ecosystem compartment. We will highlight recent advances in modeling the magnitude of soil carbon stocks and fluxes, as well as the importance of remaining uncertainties in predicting soil carbon cycling and its relationship with climate. Attention will be given to the role of uncertainties in predicting future fluxes from soils, and how those uncertainties vary by region and ecosystem. We will also address how climate feedbacks and management decisions can enhance or minimize future climatic effects based on current understanding and observations, and will highlight select research needs to improve our understanding of the balance of carbon in soils in North America.

  9. Evaluating the uncertainty of predicting future climate time series at the hourly time scale

    NASA Astrophysics Data System (ADS)

    Caporali, E.; Fatichi, S.; Ivanov, V. Y.

    2011-12-01

    A stochastic downscaling methodology is developed to generate hourly, point-scale time series for several meteorological variables, such as precipitation, cloud cover, shortwave radiation, air temperature, relative humidity, wind speed, and atmospheric pressure. The methodology uses multi-model General Circulation Model (GCM) realizations and an hourly weather generator, AWE-GEN. Probabilistic descriptions of factors of change (a measure of climate change with respect to historic conditions) are computed for several climate statistics and different aggregation times using a Bayesian approach that weights the individual GCM contributions. The Monte Carlo method is applied to sample the factors of change from their respective distributions thereby permitting the generation of time series in an ensemble fashion, which reflects the uncertainty of climate projections of future as well as the uncertainty of the downscaling procedure. Applications of the methodology and probabilistic expressions of certainty in reproducing future climates for the periods, 2000 - 2009, 2046 - 2065 and 2081 - 2100, using the 1962 - 1992 period as the baseline, are discussed for the location of Firenze (Italy). The climate predictions for the period of 2000 - 2009 are tested against observations permitting to assess the reliability and uncertainties of the methodology in reproducing statistics of meteorological variables at different time scales.

  10. Can we use the past as a lens to the future? Using historic events to predict regional grassland and shrubland responses to multi-year drought or wet periods under climate change

    USDA-ARS?s Scientific Manuscript database

    Background/Question/Methods Ecologists are being challenged to predict ecosystem responses under changing climatic conditions. Water availability is the primary driver of ecosystem processes in temperate grasslands and shrublands, but uncertainty in the magnitude and direction of change in precipita...

  11. Why are coast redwood and giant sequoia not where they are not?

    Treesearch

    W.J. Libby

    2017-01-01

    Models predicting future climates and other kinds of information are being developed to anticipate where these two species may fail, where they may continue to thrive, and where they may colonize, given changes in climate and other elements of the environment. Important elements of such predictions, among others, are: photoperiod; site qualities; changes in levels and...

  12. Evaluation of the impacts of climate change on disease vectors through ecological niche modelling.

    PubMed

    Carvalho, B M; Rangel, E F; Vale, M M

    2017-08-01

    Vector-borne diseases are exceptionally sensitive to climate change. Predicting vector occurrence in specific regions is a challenge that disease control programs must meet in order to plan and execute control interventions and climate change adaptation measures. Recently, an increasing number of scientific articles have applied ecological niche modelling (ENM) to study medically important insects and ticks. With a myriad of available methods, it is challenging to interpret their results. Here we review the future projections of disease vectors produced by ENM, and assess their trends and limitations. Tropical regions are currently occupied by many vector species; but future projections indicate poleward expansions of suitable climates for their occurrence and, therefore, entomological surveillance must be continuously done in areas projected to become suitable. The most commonly applied methods were the maximum entropy algorithm, generalized linear models, the genetic algorithm for rule set prediction, and discriminant analysis. Lack of consideration of the full-known current distribution of the target species on models with future projections has led to questionable predictions. We conclude that there is no ideal 'gold standard' method to model vector distributions; researchers are encouraged to test different methods for the same data. Such practice is becoming common in the field of ENM, but still lags behind in studies of disease vectors.

  13. Climate Change and West Nile Virus in a Highly Endemic Region of North America

    PubMed Central

    Chen, Chen C.; Jenkins, Emily; Epp, Tasha; Waldner, Cheryl; Curry, Philip S.; Soos, Catherine

    2013-01-01

    The Canadian prairie provinces of Manitoba, Saskatchewan, and Alberta have reported the highest human incidence of clinical cases of West Nile virus (WNV) infection in Canada. The primary vector for WVN in this region is the mosquito Culex tarsalis. This study used constructed models and biological thresholds to predict the spatial and temporal distribution of Cx. tarsalis and WNV infection rate in the prairie provinces under a range of potential future climate and habitat conditions. We selected one median and two extreme outcome scenarios to represent future climate conditions in the 2020 (2010–2039), 2050 (2040–2069) and 2080 (2070–2099) time slices. In currently endemic regions, the projected WNV infection rate under the median outcome scenario in 2050 raised 17.91 times (ranged from 1.29-27.45 times for all scenarios and time slices) comparing to current climate conditions. Seasonal availability of Cx. tarsalis infected with WNV extended from June to August to include May and September. Moreover, our models predicted northward range expansion for Cx. tarsalis (1.06–2.56 times the current geographic area) and WNV (1.08–2.34 times the current geographic area). These findings predict future public and animal health risk of WNV in the Canadian prairie provinces. PMID:23880729

  14. Linking environmental filtering and disequilibrium to biogeography with a community climate framework.

    PubMed

    Blonder, Benjamin; Nogués-Bravo, David; Borregaard, Michael K; Donoghue, John C; Jørgensen, Peter M; Kraft, Nathan J B; Lessard, Jean-Philippe; Morueta-Holme, Naia; Sandel, Brody; Svenning, Jens-Christian; Violle, Cyrille; Rahbek, Carsten; Enquist, Brian J

    2015-04-01

    We present a framework to measure the strength of environmental filtering and disequilibrium of the species composition of a local community across time, relative to past, current, and future climates. We demonstrate the framework by measuring the impact of climate change on New World forests, integrating data for climate niches of more than 14000 species, community composition of 471 New World forest plots, and observed climate across the most recent glacial-interglacial interval. We show that a majority of communities have species compositions that are strongly filtered and are more in equilibrium with current climate than random samples from the regional pool. Variation in the level of current community disequilibrium can be predicted from Last Glacial Maximum climate and will increase with near-future climate change.

  15. Climate impact on airborne particulate matter concentrations in California using seven year analysis periods

    NASA Astrophysics Data System (ADS)

    Mahmud, A.; Hixson, M.; Hu, J.; Zhao, Z.; Chen, S.-H.; Kleeman, M. J.

    2010-11-01

    The effect of global climate change on the annual average concentration of fine particulate matter (PM2.5) in California was studied using a climate-air quality modeling system composed of global through regional models. Output from the NCAR/DOE Parallel Climate Model (PCM) generated under the "business as usual" global emissions scenario was downscaled using the Weather Research and Forecasting (WRF) model followed by air quality simulations using the UCD/CIT airshed model. The system represents major atmospheric processes acting on gas and particle phase species including meteorological effects on emissions, advection, dispersion, chemical reaction rates, gas-particle conversion, and dry/wet deposition. The air quality simulations were carried out for the entire state of California with a resolution of 8-km for the years 2000-2006 (present climate with present emissions) and 2047-2053 (future climate with present emissions). Each of these 7-year analysis periods was analyzed using a total of 1008 simulated days to span a climatologically relevant time period with a practical computational burden. The 7-year windows were chosen to properly account for annual variability with the added benefit that the air quality predictions under the present climate could be compared to actual measurements. The climate-air quality modeling system successfully predicted the spatial pattern of present climate PM2.5 concentrations in California but the absolute magnitude of the annual average PM2.5 concentrations were under-predicted by ~4-39% in the major air basins. The majority of this under-prediction was caused by excess ventilation predicted by PCM-WRF that should be present to the same degree in the current and future time periods so that the net bias introduced into the comparison is minimized. Surface temperature, relative humidity (RH), rain rate, and wind speed were predicted to increase in the future climate while the ultra violet (UV) radiation was predicted to decrease in major urban areas in the San Joaquin Valley (SJV) and South Coast Air Basin (SoCAB). These changes lead to a predicted decrease in PM2.5 mass concentrations of ~0.3-0.7 μg m-3 in the southern portion of the SJV and ~0.3-1.1 μg m-3 along coastal regions of California including the heavily populated San Francisco Bay Area and the SoCAB surrounding Los Angeles. Annual average PM2.5 concentrations were predicted to increase at certain locations within the SJV and the Sacramento Valley (SV) due to the effects of climate change, but a corresponding analysis of the annual variability showed that these predictions are not statistically significant (i.e. the choice of a different 7-year period could produce a different outcome for these regions). Overall, virtually no region in California outside of coastal + central Los Angeles, and a small region around the port of Oakland in the San Francisco Bay Area experienced a statistically significant change in annual average PM2.5 concentrations due to the effects of climate change in the present~study. The present study employs the highest spatial resolution (8 km) and the longest analysis windows (7 years) of any climate-air quality analysis conducted for California to date, but the results still have some degree of uncertainty. Most significantly, GCM calculations have inherent uncertainty that is not fully represented in the current study since a single GCM was used as the starting point for all calculations. The PCM results used in the current study predicted greater wintertime increases in air temperature over the Pacific Ocean than over land, further motivating comparison to other GCM results. Ensembles of GCM results are usually employed to build confidence in climate calculations. The current results provide a first data-point for the climate-air quality analysis that simultaneously employ the fine spatial resolution and long time scales needed to capture the behavior of climate-PM2.5 interactions in California. Future downscaling studies should follow up with a full ensemble of GCMs as their starting point, and include aerosol feedback effects on local meteorology.

  16. How early can the seeding dates of spring wheat be under current and future climate in Saskatchewan, Canada?

    PubMed

    He, Yong; Wang, Hong; Qian, Budong; McConkey, Brian; DePauw, Ron

    2012-01-01

    Shorter growing season and water stress near wheat maturity are the main factors that presumably limit the yield potential of spring wheat due to late seeding in Saskatchewan, Canada. Advancing seeding dates can be a strategy to help producers mitigate the impact of climate change on spring wheat. It is unknown, however, how early farmers can seed while minimizing the risk of spring frost damage and the soil and machinery constraints. This paper explores early seeding dates of spring wheat on the Canadian Prairies under current and projected future climate. To achieve this, (i) weather records from 1961 to 1990 were gathered at three sites with different soil and climate conditions in Saskatchewan, Canada; (ii) four climate databases that included a baseline (treated as historic weather climate during the period of 1961-1990) and three climate change scenarios (2040-2069) developed by the Canadian global climate model (GCM) with the forcing of three greenhouse gas (GHG) emission scenarios (A2, A1B and B1); (iii) seeding dates of spring wheat (Triticum aestivum L.) under baseline and projected future climate were predicted. Compared with the historical record of seeding dates, the predicted seeding dates were advanced under baseline climate for all sites using our seeding date model. Driven by the predicted temperature increase of the scenarios compared with baseline climate, all climate change scenarios projected significantly earlier seeding dates than those currently used. Compared to the baseline conditions, there is no reduction in grain yield because precipitation increases during sensitive growth stages of wheat, suggesting that there is potential to shift seeding to an earlier date. The average advancement of seeding dates varied among sites and chosen scenarios. The Swift Current (south-west) site has the highest potential for earlier seeding (7 to 11 days) whereas such advancement was small in the Melfort (north-east, 2 to 4 days) region. The extent of projected climate change in Saskatchewan indicates that growers in this region have the potential of earlier seeding. The results obtained in this study may be used for adaptation assessments of seeding dates under possible climate change to mitigate the impact of potential warming.

  17. Comparative study on Climate Change Policies in the EU and China

    NASA Astrophysics Data System (ADS)

    Bray, M.; Han, D.

    2012-04-01

    Both the EU and China are among the largest CO2 emitters in the world; their climate actions and policies have profound impacts on global climate change and may influence the activities in other countries. Evidence of climate change has been observed across Europe and China. Despite the many differences between the two regions, the European Commission and Chinese government support climate change actions. The EU has three priority areas in climate change: 1) understanding, monitoring and predicting climate change and its impact; 2) providing tools to analyse the effectiveness, cost and benefits of different policy options for mitigating climate change and adapting to its impacts; 3) improving, demonstrating and deploying existing climate friendly technologies and developing the technologies of the future. China is very vulnerable to climate change, because of its vast population, fast economic development, and fragile ecological environment. The priority policies in China are: 1) Carbon Trading Policy; 2) Financing Loan Policy (Special Funds for Renewable Energy Development); 3) Energy Efficiency Labelling Policy; 4) Subsidy Policy. In addition, China has formulated the "Energy Conservation Law", "Renewable Energy Law", "Cleaner Production Promotion Law" and "Circular Economy Promotion Law". Under the present EU Framework Programme FP7 there is a large number of funded research activities linked to climate change research. Current climate change research projects concentrate on the carbon cycle, water quality and availability, climate change predictors, predicting future climate and understanding past climates. Climate change-related scientific and technological projects in China are mostly carried out through national scientific and technological research programs. Areas under investigation include projections and impact of global climate change, the future trends of living environment change in China, countermeasures and supporting technologies of global environment change, formation mechanism and prediction theory of major climate and weather disasters in China, technologies of efficient use of clean energy, energy conservation and improvement of energy efficiency, development and utilisation technology of renewable energy and new energy. The EU recognises that developing countries, such as China and India, need to strengthen their economies through industrialisation. However this needs to be achieved at the same time as protecting the environment and sustainable use of energy. The EU has committed itself to assisting developing countries to achieve their goals in four priority areas: 1) raising the policy profile of climate change; 2) support for adaption to climate change; 3) support for mitigation of climate change; and 4) capacity development. This comparative study is part of the EU funded SPRING project which seeks to understand and assess Chinese and European competencies, with the aim of facilitating greater cooperation in future climate and environment research.

  18. Quantifying the health impacts of air pollution under a changing climate-a review of approaches and methodology.

    PubMed

    Sujaritpong, Sarunya; Dear, Keith; Cope, Martin; Walsh, Sean; Kjellstrom, Tord

    2014-03-01

    Climate change has been predicted to affect future air quality, with inevitable consequences for health. Quantifying the health effects of air pollution under a changing climate is crucial to provide evidence for actions to safeguard future populations. In this paper, we review published methods for quantifying health impacts to identify optimal approaches and ways in which existing challenges facing this line of research can be addressed. Most studies have employed a simplified methodology, while only a few have reported sensitivity analyses to assess sources of uncertainty. The limited investigations that do exist suggest that examining the health risk estimates should particularly take into account the uncertainty associated with future air pollution emissions scenarios, concentration-response functions, and future population growth and age structures. Knowledge gaps identified for future research include future health impacts from extreme air pollution events, interactions between temperature and air pollution effects on public health under a changing climate, and how population adaptation and behavioural changes in a warmer climate may modify exposure to air pollution and health consequences.

  19. Linking organizational resources and work engagement to employee performance and customer loyalty: the mediation of service climate.

    PubMed

    Salanova, Marisa; Agut, Sonia; Peiró, José María

    2005-11-01

    This study examined the mediating role of service climate in the prediction of employee performance and customer loyalty. Contact employees (N=342) from 114 service units (58 hotel front desks and 56 restaurants) provided information about organizational resources, engagement, and service climate. Furthermore, customers (N=1,140) from these units provided information on employee performance and customer loyalty. Structural equation modeling analyses were consistent with a full mediation model in which organizational resources and work engagement predict service climate, which in turn predicts employee performance and then customer loyalty. Further analyses revealed a potential reciprocal effect between service climate and customer loyalty. Implications of the study are discussed, together with limitations and suggestions for future research. ((c) 2005 APA, all rights reserved).

  20. Forecasting the effects of land use scenarios on farmland birds reveal a potential mitigation of climate change impacts.

    PubMed

    Princé, Karine; Lorrillière, Romain; Barbet-Massin, Morgane; Léger, François; Jiguet, Frédéric

    2015-01-01

    Climate and land use changes are key drivers of current biodiversity trends, but interactions between these drivers are poorly modeled, even though they could amplify or mitigate negative impacts of climate change. Here, we attempt to predict the impacts of different agricultural change scenarios on common breeding birds within farmland included in the potential future climatic suitable areas for these species. We used the Special Report on Emissions Scenarios (SRES) to integrate likely changes in species climatic suitability, based on species distribution models, and changes in area of farmland, based on the IMAGE model, inside future climatic suitable areas. We also developed six farmland cover scenarios, based on expert opinion, which cover a wide spectrum of potential changes in livestock farming and cropping patterns by 2050. We ran generalized linear mixed models to calibrate the effects of farmland cover and climate change on bird specific abundance within 386 small agricultural regions. We used model outputs to predict potential changes in bird populations on the basis of predicted changes in regional farmland cover, in area of farmland and in species climatic suitability. We then examined the species sensitivity according to their habitat requirements. A scenario based on extensification of agricultural systems (i.e., low-intensity agriculture) showed the greatest potential to reduce reverse current declines in breeding birds. To meet ecological requirements of a larger number of species, agricultural policies accounting for regional disparities and landscape structure appear more efficient than global policies uniformly implemented at national scale. Interestingly, we also found evidence that farmland cover changes can mitigate the negative effect of climate change. Here, we confirm that there is a potential for countering negative effects of climate change by adaptive management of landscape. We argue that such studies will help inform sustainable agricultural policies for the future.

  1. Vulnerability of Breeding Waterbirds to Climate Change in the Prairie Pothole Region, U.S.A

    PubMed Central

    Steen, Valerie; Skagen, Susan K.; Noon, Barry R.

    2014-01-01

    The Prairie Pothole Region (PPR) of the north-central U.S. and south-central Canada contains millions of small prairie wetlands that provide critical habitat to many migrating and breeding waterbirds. Due to their small size and the relatively dry climate of the region, these wetlands are considered at high risk for negative climate change effects as temperatures increase. To estimate the potential impacts of climate change on breeding waterbirds, we predicted current and future distributions of species common in the PPR using species distribution models (SDMs). We created regional-scale SDMs for the U.S. PPR using Breeding Bird Survey occurrence records for 1971–2011 and wetland, upland, and climate variables. For each species, we predicted current distribution based on climate records for 1981–2000 and projected future distributions to climate scenarios for 2040–2049. Species were projected to, on average, lose almost half their current habitat (-46%). However, individual species projections varied widely, from +8% (Upland Sandpiper) to -100% (Wilson's Snipe). Variable importance ranks indicated that land cover (wetland and upland) variables were generally more important than climate variables in predicting species distributions. However, climate variables were relatively more important during a drought period. Projected distributions of species responses to climate change contracted within current areas of distribution rather than shifting. Given the large variation in species-level impacts, we suggest that climate change mitigation efforts focus on species projected to be the most vulnerable by enacting targeted wetland management, easement acquisition, and restoration efforts. PMID:24927165

  2. Vulnerability of breeding waterbirds to climate change in the Prairie Pothole Region, U.S.A.

    USGS Publications Warehouse

    Steen, Valerie; Skagen, Susan K.; Noon, Barry R.

    2014-01-01

    The Prairie Pothole Region (PPR) of the north-central U.S. and south-central Canada contains millions of small prairie wetlands that provide critical habitat to many migrating and breeding waterbirds. Due to their small size and the relatively dry climate of the region, these wetlands are considered at high risk for negative climate change effects as temperatures increase. To estimate the potential impacts of climate change on breeding waterbirds, we predicted current and future distributions of species common in the PPR using species distribution models (SDMs). We created regional-scale SDMs for the U.S. PPR using Breeding Bird Survey occurrence records for 1971–2011 and wetland, upland, and climate variables. For each species, we predicted current distribution based on climate records for 1981–2000 and projected future distributions to climate scenarios for 2040–2049. Species were projected to, on average, lose almost half their current habitat (-46%). However, individual species projections varied widely, from +8% (Upland Sandpiper) to -100% (Wilson's Snipe). Variable importance ranks indicated that land cover (wetland and upland) variables were generally more important than climate variables in predicting species distributions. However, climate variables were relatively more important during a drought period. Projected distributions of species responses to climate change contracted within current areas of distribution rather than shifting. Given the large variation in species-level impacts, we suggest that climate change mitigation efforts focus on species projected to be the most vulnerable by enacting targeted wetland management, easement acquisition, and restoration efforts.

  3. Simulating post-wildfire forest trajectories under alternative climate and management scenarios.

    PubMed

    Tarancón, Alicia Azpeleta; Fulé, Peter Z; Shive, Kristen L; Sieg, Carolyn H; Meador, Andrew Sánchez; Strom, Barbara

    Post-fire predictions of forest recovery under future climate change and management actions are necessary for forest managers to make decisions about treatments. We applied the Climate-Forest Vegetation Simulator (Climate-FVS), a new version of a widely used forest management model, to compare alternative climate and management scenarios in a severely burned multispecies forest of Arizona, USA. The incorporation of seven combinations of General Circulation Models (GCM) and emissions scenarios altered long-term (100 years) predictions of future forest condition compared to a No Climate Change (NCC) scenario, which forecast a gradual increase to high levels of forest density and carbon stock. In contrast, emissions scenarios that included continued high greenhouse gas releases led to near-complete deforestation by 2111. GCM-emissions scenario combinations that were less severe reduced forest structure and carbon stock relative to NCC. Fuel reduction treatments that had been applied prior to the severe wildfire did have persistent effects, especially under NCC, but were overwhelmed by increasingly severe climate change. We tested six management strategies aimed at sustaining future forests: prescribed burning at 5, 10, or 20-year intervals, thinning 40% or 60% of stand basal area, and no treatment. Severe climate change led to deforestation under all management regimes, but important differences emerged under the moderate scenarios: treatments that included regular prescribed burning fostered low density, wildfire-resistant forests composed of the naturally dominant species, ponderosa pine. Non-fire treatments under moderate climate change were forecast to become dense and susceptible to severe wildfire, with a shift to dominance by sprouting species. Current U.S. forest management requires modeling of future scenarios but does not mandate consideration of climate change effects. However, this study showed substantial differences in model outputs depending on climate and management actions. Managers should incorporate climate change into the process of analyzing the environmental effects of alternative actions.

  4. Experiments with the living dead: Plants as monitors and recorders of Biosphere Geosphere interactions.

    NASA Astrophysics Data System (ADS)

    Lomax, Barry; Fraser, Wesley

    2016-04-01

    Understanding variations in the Earth's climate history will enhance our understanding of and capacity to predict future climate change. Importantly this information can then be used to reduce uncertainty around future climate change predictions. However to achieve this, it is necessary to develop well constrained and robustly tested palaeo-proxies. Plants are innately coupled to the atmosphere requiring both sunlight and CO2 to drive photosynthesis and carbon assimilation. When combined with their resilience and persistence, the study of plant responses to climate change in concert with the analysis of fossil plants offer the opportunity to monitor past atmospheric conditions and infer palaeoclimate change. In this presentation we highlight how this approach is leading to the development of mechanistic palaeoproxies tested on palaeobotanically relevant extant species showing that plant fossils can be used as both monitors and geochemical recorders of atmospheric changes.

  5. Model structures amplify uncertainty in predicted soil carbon responses to climate change.

    PubMed

    Shi, Zheng; Crowell, Sean; Luo, Yiqi; Moore, Berrien

    2018-06-04

    Large model uncertainty in projected future soil carbon (C) dynamics has been well documented. However, our understanding of the sources of this uncertainty is limited. Here we quantify the uncertainties arising from model parameters, structures and their interactions, and how those uncertainties propagate through different models to projections of future soil carbon stocks. Both the vertically resolved model and the microbial explicit model project much greater uncertainties to climate change than the conventional soil C model, with both positive and negative C-climate feedbacks, whereas the conventional model consistently predicts positive soil C-climate feedback. Our findings suggest that diverse model structures are necessary to increase confidence in soil C projection. However, the larger uncertainty in the complex models also suggests that we need to strike a balance between model complexity and the need to include diverse model structures in order to forecast soil C dynamics with high confidence and low uncertainty.

  6. Flight range, fuel load and the impact of climate change on the journeys of migrant birds

    PubMed Central

    Sheard, Catherine; Butchart, Stuart H. M.

    2018-01-01

    Climate change is predicted to increase migration distances for many migratory species, but the physiological and temporal implications of longer migratory journeys have not been explored. Here, we combine information about species' flight range potential and migratory refuelling requirements to simulate the number of stopovers required and the duration of current migratory journeys for 77 bird species breeding in Europe. Using tracking data, we show that our estimates accord with recorded journey times and stopovers for most species. We then combine projections of altered migratory distances under climate change with models of avian flight to predict future migratory journeys. We find that 37% of migratory journeys undertaken by long-distance migrants will necessitate an additional stopover in future. These greater distances and the increased number of stops will substantially increase overall journey durations of many long-distance migratory species, a factor not currently considered in climate impact studies. PMID:29467262

  7. Prediction of sport adherence through the influence of autonomy-supportive coaching among spanish adolescent athletes.

    PubMed

    Almagro, Bartolomé J; Sáenz-López, Pedro; Moreno, Juan A

    2010-01-01

    The purpose of this study was to test a motivational model of the coach-athlete relationship, based on self-determination theory and on the hierarchical model of intrinsic and extrinsic motivation. The sample comprised of 608 athletes (ages of 12-17 years) completed the following measures: interest in athlete's input, praise for autonomous behavior, perceived autonomy, intrinsic motivation, and the intention to be physically active. Structural equation modeling results demonstrated that interest in athletes' input and praise for autonomous behavior predicted perceived autonomy, and perceived autonomy positively predicted intrinsic motivation. Finally, intrinsic motivation predicted the intention to be physically active in the future. The results are discussed in relation to the importance of the climate of autonomy support created by the coach on intrinsic motivation and adherence to sport by adolescent athletes. Further, the results provide information related to the possible objectives of future interventions for the education of coaches, with the goal of providing them with tools and strategies to favor the development of intrinsic motivation among their athletes. In conclusion, the climate of autonomy support created by the coach can predict the autonomy perceived by the athletes which predicts the intrinsic motivation experienced by the athletes, and therefore, their adherence to athletic practice. Key pointsImportance of the climate of autonomy support created by the coach on intrinsic motivation and adherence to sport by adolescent athletes.Interest in athletes' input and praise for autonomous behavior predicted perceived autonomy, and perceived autonomy positively predicted intrinsic motivation.Intrinsic motivation predicted the intention to be physically active in the future.

  8. Prediction of Sport Adherence Through the Influence of Autonomy-Supportive Coaching Among Spanish Adolescent Athletes

    PubMed Central

    Almagro, Bartolomé J.; Sáenz-López, Pedro; Moreno, Juan A.

    2010-01-01

    The purpose of this study was to test a motivational model of the coach-athlete relationship, based on self-determination theory and on the hierarchical model of intrinsic and extrinsic motivation. The sample comprised of 608 athletes (ages of 12-17 years) completed the following measures: interest in athlete's input, praise for autonomous behavior, perceived autonomy, intrinsic motivation, and the intention to be physically active. Structural equation modeling results demonstrated that interest in athletes' input and praise for autonomous behavior predicted perceived autonomy, and perceived autonomy positively predicted intrinsic motivation. Finally, intrinsic motivation predicted the intention to be physically active in the future. The results are discussed in relation to the importance of the climate of autonomy support created by the coach on intrinsic motivation and adherence to sport by adolescent athletes. Further, the results provide information related to the possible objectives of future interventions for the education of coaches, with the goal of providing them with tools and strategies to favor the development of intrinsic motivation among their athletes. In conclusion, the climate of autonomy support created by the coach can predict the autonomy perceived by the athletes which predicts the intrinsic motivation experienced by the athletes, and therefore, their adherence to athletic practice. Key points Importance of the climate of autonomy support created by the coach on intrinsic motivation and adherence to sport by adolescent athletes. Interest in athletes' input and praise for autonomous behavior predicted perceived autonomy, and perceived autonomy positively predicted intrinsic motivation. Intrinsic motivation predicted the intention to be physically active in the future. PMID:24149380

  9. The Impacts of Thawing Permafrost and Climate Change on USAF Infrastructure Within Northern Tier Bases

    NASA Astrophysics Data System (ADS)

    Graboski, A. J.

    2016-12-01

    The Department of Defense (DoD) is planning over $600M in military construction on Eielson Air Force Base (AFB) within the next three fiscal years. Although many studies have been conducted on permafrost and climate change, the future of our climate as well as any impacts on arctic infrastructure, remains unclear. This research focused on future climate predictions to determine likely scenarios for the United States Air Force's Strategic Planners to consider. This research also looked at various construction methods being used by industry to glean best practices to incorporate into future construction in order to determine cost factors to consider when permafrost soils may be encountered. The most recent 2013 International Panel on Climate Change (IPCC) report predicts a 2.2ºC to 7.8ºC temperature rise in Arctic regions by the end of the 21st Century in the Representative Concentration Pathways, (RCP4.5) emissions scenario. A regression model was created using archived surface observations from 1944 to 2016. Initial analysis using regression/forecast techniques show a 1.17ºC temperature increase in the Arctic by the end of the 21st Century. Historical DoD construction data was then used to determine an appropriate cost factor. Applying statistical tests to the adjusted climate predictions supports continued usage of current DoD cost factors of 2.13 at Eielson and 2.97 at Thule AFBs as they should be sufficient when planning future construction projects in permafrost rich areas. These cost factors should allow planners the necessary funds to plan foundation mitigation techniques and prevent further degradation of permafrost soils around airbase infrastructure. This current research focused on Central Alaska while further research is recommended on the Alaskan North Slope and Greenland to determine climate change impacts on critical DoD infrastructure.

  10. Simulating effects of changing climate and CO(2) emissions on soil carbon pools at the Hubbard Brook experimental forest.

    PubMed

    Dib, Alain E; Johnson, Chris E; Driscoll, Charles T; Fahey, Timothy J; Hayhoe, Katharine

    2014-05-01

    Carbon (C) sequestration in forest biomass and soils may help decrease regional C footprints and mitigate future climate change. The efficacy of these practices must be verified by monitoring and by approved calculation methods (i.e., models) to be credible in C markets. Two widely used soil organic matter models - CENTURY and RothC - were used to project changes in SOC pools after clear-cutting disturbance, as well as under a range of future climate and atmospheric carbon dioxide (CO(2) ) scenarios. Data from the temperate, predominantly deciduous Hubbard Brook Experimental Forest (HBEF) in New Hampshire, USA, were used to parameterize and validate the models. Clear-cutting simulations demonstrated that both models can effectively simulate soil C dynamics in the northern hardwood forest when adequately parameterized. The minimum postharvest SOC predicted by RothC occurred in postharvest year 14 and was within 1.5% of the observed minimum, which occurred in year 8. CENTURY predicted the postharvest minimum SOC to occur in year 45, at a value 6.9% greater than the observed minimum; the slow response of both models to disturbance suggests that they may overestimate the time required to reach new steady-state conditions. Four climate change scenarios were used to simulate future changes in SOC pools. Climate-change simulations predicted increases in SOC by as much as 7% at the end of this century, partially offsetting future CO(2) emissions. This sequestration was the product of enhanced forest productivity, and associated litter input to the soil, due to increased temperature, precipitation and CO(2) . The simulations also suggested that considerable losses of SOC (8-30%) could occur if forest vegetation at HBEF does not respond to changes in climate and CO(2) levels. Therefore, the source/sink behavior of temperate forest soils likely depends on the degree to which forest growth is stimulated by new climate and CO(2) conditions. © 2013 John Wiley & Sons Ltd.

  11. Spatial analysis of plague in California: niche modeling predictions of the current distribution and potential response to climate change

    PubMed Central

    Holt, Ashley C; Salkeld, Daniel J; Fritz, Curtis L; Tucker, James R; Gong, Peng

    2009-01-01

    Background Plague, caused by the bacterium Yersinia pestis, is a public and wildlife health concern in California and the western United States. This study explores the spatial characteristics of positive plague samples in California and tests Maxent, a machine-learning method that can be used to develop niche-based models from presence-only data, for mapping the potential distribution of plague foci. Maxent models were constructed using geocoded seroprevalence data from surveillance of California ground squirrels (Spermophilus beecheyi) as case points and Worldclim bioclimatic data as predictor variables, and compared and validated using area under the receiver operating curve (AUC) statistics. Additionally, model results were compared to locations of positive and negative coyote (Canis latrans) samples, in order to determine the correlation between Maxent model predictions and areas of plague risk as determined via wild carnivore surveillance. Results Models of plague activity in California ground squirrels, based on recent climate conditions, accurately identified case locations (AUC of 0.913 to 0.948) and were significantly correlated with coyote samples. The final models were used to identify potential plague risk areas based on an ensemble of six future climate scenarios. These models suggest that by 2050, climate conditions may reduce plague risk in the southern parts of California and increase risk along the northern coast and Sierras. Conclusion Because different modeling approaches can yield substantially different results, care should be taken when interpreting future model predictions. Nonetheless, niche modeling can be a useful tool for exploring and mapping the potential response of plague activity to climate change. The final models in this study were used to identify potential plague risk areas based on an ensemble of six future climate scenarios, which can help public managers decide where to allocate surveillance resources. In addition, Maxent model results were significantly correlated with coyote samples, indicating that carnivore surveillance programs will continue to be important for tracking the response of plague to future climate conditions. PMID:19558717

  12. Physiological and ecological effects of increasing temperature on fish production in lakes of Arctic Alaska

    USGS Publications Warehouse

    Carey, Michael P.; Zimmerman, Christian E.

    2014-01-01

    Lake ecosystems in the Arctic are changing rapidly due to climate warming. Lakes are sensitive integrators of climate-induced changes and prominent features across the Arctic landscape, especially in lowland permafrost regions such as the Arctic Coastal Plain of Alaska. Despite many studies on the implications of climate warming, how fish populations will respond to lake changes is uncertain for Arctic ecosystems. Least Cisco (Coregonus sardinella) is a bellwether for Arctic lakes as an important consumer and prey resource. To explore the consequences of climate warming, we used a bioenergetics model to simulate changes in Least Cisco production under future climate scenarios for lakes on the Arctic Coastal Plain. First, we used current temperatures to fit Least Cisco consumption to observed annual growth. We then estimated growth, holding food availability, and then feeding rate constant, for future projections of temperature. Projected warmer water temperatures resulted in reduced Least Cisco production, especially for larger size classes, when food availability was held constant. While holding feeding rate constant, production of Least Cisco increased under all future scenarios with progressively more growth in warmer temperatures. Higher variability occurred with longer projections of time mirroring the expanding uncertainty in climate predictions further into the future. In addition to direct temperature effects on Least Cisco growth, we also considered changes in lake ice phenology and prey resources for Least Cisco. A shorter period of ice cover resulted in increased production, similar to warming temperatures. Altering prey quality had a larger effect on fish production in summer than winter and increased relative growth of younger rather than older age classes of Least Cisco. Overall, we predicted increased production of Least Cisco due to climate warming in lakes of Arctic Alaska. Understanding the implications of increased production of Least Cisco to the entire food web will be necessary to predict ecosystem responses in lakes of the Arctic.

  13. Physiological and ecological effects of increasing temperature on fish production in lakes of Arctic Alaska

    PubMed Central

    Carey, Michael P; Zimmerman, Christian E

    2014-01-01

    Lake ecosystems in the Arctic are changing rapidly due to climate warming. Lakes are sensitive integrators of climate-induced changes and prominent features across the Arctic landscape, especially in lowland permafrost regions such as the Arctic Coastal Plain of Alaska. Despite many studies on the implications of climate warming, how fish populations will respond to lake changes is uncertain for Arctic ecosystems. Least Cisco (Coregonus sardinella) is a bellwether for Arctic lakes as an important consumer and prey resource. To explore the consequences of climate warming, we used a bioenergetics model to simulate changes in Least Cisco production under future climate scenarios for lakes on the Arctic Coastal Plain. First, we used current temperatures to fit Least Cisco consumption to observed annual growth. We then estimated growth, holding food availability, and then feeding rate constant, for future projections of temperature. Projected warmer water temperatures resulted in reduced Least Cisco production, especially for larger size classes, when food availability was held constant. While holding feeding rate constant, production of Least Cisco increased under all future scenarios with progressively more growth in warmer temperatures. Higher variability occurred with longer projections of time mirroring the expanding uncertainty in climate predictions further into the future. In addition to direct temperature effects on Least Cisco growth, we also considered changes in lake ice phenology and prey resources for Least Cisco. A shorter period of ice cover resulted in increased production, similar to warming temperatures. Altering prey quality had a larger effect on fish production in summer than winter and increased relative growth of younger rather than older age classes of Least Cisco. Overall, we predicted increased production of Least Cisco due to climate warming in lakes of Arctic Alaska. Understanding the implications of increased production of Least Cisco to the entire food web will be necessary to predict ecosystem responses in lakes of the Arctic. PMID:24963391

  14. Physiological and ecological effects of increasing temperature on fish production in lakes of Arctic Alaska.

    PubMed

    Carey, Michael P; Zimmerman, Christian E

    2014-05-01

    Lake ecosystems in the Arctic are changing rapidly due to climate warming. Lakes are sensitive integrators of climate-induced changes and prominent features across the Arctic landscape, especially in lowland permafrost regions such as the Arctic Coastal Plain of Alaska. Despite many studies on the implications of climate warming, how fish populations will respond to lake changes is uncertain for Arctic ecosystems. Least Cisco (Coregonus sardinella) is a bellwether for Arctic lakes as an important consumer and prey resource. To explore the consequences of climate warming, we used a bioenergetics model to simulate changes in Least Cisco production under future climate scenarios for lakes on the Arctic Coastal Plain. First, we used current temperatures to fit Least Cisco consumption to observed annual growth. We then estimated growth, holding food availability, and then feeding rate constant, for future projections of temperature. Projected warmer water temperatures resulted in reduced Least Cisco production, especially for larger size classes, when food availability was held constant. While holding feeding rate constant, production of Least Cisco increased under all future scenarios with progressively more growth in warmer temperatures. Higher variability occurred with longer projections of time mirroring the expanding uncertainty in climate predictions further into the future. In addition to direct temperature effects on Least Cisco growth, we also considered changes in lake ice phenology and prey resources for Least Cisco. A shorter period of ice cover resulted in increased production, similar to warming temperatures. Altering prey quality had a larger effect on fish production in summer than winter and increased relative growth of younger rather than older age classes of Least Cisco. Overall, we predicted increased production of Least Cisco due to climate warming in lakes of Arctic Alaska. Understanding the implications of increased production of Least Cisco to the entire food web will be necessary to predict ecosystem responses in lakes of the Arctic.

  15. Assessment of the climate change impacts on fecal coliform contamination in a tidal estuarine system.

    PubMed

    Liu, Wen-Cheng; Chan, Wen-Ting

    2015-12-01

    Climate change is one of the key factors affecting the future microbiological water quality in rivers and tidal estuaries. A coupled 3D hydrodynamic and fecal coliform transport model was developed and applied to the Danshuei River estuarine system for predicting the influences of climate change on microbiological water quality. The hydrodynamic and fecal coliform model was validated using observational salinity and fecal coliform distributions. According to the analyses of the statistical error, predictions of the salinity and the fecal coliform concentration from the model simulation quantitatively agreed with the observed data. The validated model was then applied to predict the fecal coliform contamination as a result of climate change, including the change of freshwater discharge and the sea level rise. We found that the reduction of freshwater discharge under climate change scenarios resulted in an increase in the fecal coliform concentration. The sea level rise would decrease fecal coliform distributions because both the water level and the water volume increased. A reduction in freshwater discharge has a negative impact on the fecal coliform concentration, whereas a rising sea level has a positive influence on the fecal coliform contamination. An appropriate strategy for the effective microbiological management in tidal estuaries is required to reveal the persistent trends of climate in the future.

  16. Predicting future spatial distribution of SOC across entire France

    NASA Astrophysics Data System (ADS)

    Meersmans, Jeroen; Van Rompaey, Anton; Quine, Tim; Martin, Manuel; Pagé, Christian; Arrouays, Dominique

    2013-04-01

    Soil organic carbon (SOC) is widely recognized as a key factor controlling soil quality and as a crucial and active component of the global C-cycle. Hence, there exists a growing interest in monitoring and modeling the spatial and temporal behavior of this pool. So far, a large attempt has been made to map SOC at national scales for current and/or past situations. Despite some coarse predictions, detailed spatial SOC predictions for the future are still lacking. In this study we aim to predict future spatial evolution of SOC driven by climate and land use change for France up to the year 2100. Therefore, we combined 1) an existing model, predicting SOC as a function of soil type, climate, land use and management (Meersmans et al 2012), with 2) eight different IPCC spatial explicit climate change predictions (conducted by CERFACS) and 3) Land use change scenario predictions. We created business-as-usual land use change scenarios by extrapolating observed trends and calibrating logistic regression models, incorporating a large set of physical and socio-economic factors, at the regional level in combination with a multi-objective land allocation (MOLA) procedure. The resultant detailed projections of future SOC evolution across all regions of France, allow us to identify regions that are most likely to be characterized by a significant gain or loss of SOC and the degree to which land use decisions/outcomes control the scale of loss and gain. Therefore, this methodology and resulting maps can be considered as powerful tools to aid decision making concerning appropriate soil management, in order to enlarge SOC storage possibilities and reduce soil related CO2 fluxes.

  17. Climate suitability and human influences combined explain the range expansion of an invasive horticultural plant

    Treesearch

    Carolyn M. Beans; Francis F. Kilkenny; Laura F. Galloway

    2012-01-01

    Ecological niche models are commonly used to identify regions at risk of species invasions. Relying on climate alone may limit a model's success when additional variables contribute to invasion. While a climate-based model may predict the future spread of an invasive plant, we hypothesized that a model that combined climate with human influences would most...

  18. Climate change response of great basin bristlecone pine in the Nevada NSF-EPSCoR Project (www.nvclimatechange.org)

    Treesearch

    Franco Biondi; Scotty Strachan

    2011-01-01

    Predicting the future of high-elevation pine populations is closely linked to correctly interpreting their past responses to climatic variability. As a proxy index of climate, dendrochronological records have the advantage of seasonal to annual resolution over multiple centuries to millennia (Bradley 1999). All climate reconstructions rely on the 'uniformity...

  19. Spatial variability in forest growth—climate relationships in the Olympic Mountains, Washington.

    Treesearch

    Jill M. Nakawatase; David L. Peterson

    2006-01-01

    For many Pacific Northwest forests, little is known about the spatial and temporal variability in tree growth - climate relationships, yet it is this information that is needed to predict how forests will respond to future climatic change. We studied the effects of climatic variability on forest growth at 74 plots in the western and northeastern Olympic Mountains....

  20. Predicting evolutionary responses to climate change in the sea.

    PubMed

    Munday, Philip L; Warner, Robert R; Monro, Keyne; Pandolfi, John M; Marshall, Dustin J

    2013-12-01

    An increasing number of short-term experimental studies show significant effects of projected ocean warming and ocean acidification on the performance on marine organisms. Yet, it remains unclear if we can reliably predict the impact of climate change on marine populations and ecosystems, because we lack sufficient understanding of the capacity for marine organisms to adapt to rapid climate change. In this review, we emphasise why an evolutionary perspective is crucial to understanding climate change impacts in the sea and examine the approaches that may be useful for addressing this challenge. We first consider what the geological record and present-day analogues of future climate conditions can tell us about the potential for adaptation to climate change. We also examine evidence that phenotypic plasticity may assist marine species to persist in a rapidly changing climate. We then outline the various experimental approaches that can be used to estimate evolutionary potential, focusing on molecular tools, quantitative genetics, and experimental evolution, and we describe the benefits of combining different approaches to gain a deeper understanding of evolutionary potential. Our goal is to provide a platform for future research addressing the evolutionary potential for marine organisms to cope with climate change. © 2013 John Wiley & Sons Ltd/CNRS.

  1. Impacts of climate change on distributions and diversity of ungulates on the Tibetan Plateau.

    PubMed

    Luo, Zhenhua; Jiang, Zhigang; Tang, Songhua

    2015-01-01

    Climate change has significant impacts on species' distributions and diversity patterns. Understanding range shifts and changes in richness gradients under climate change is crucial for conservation. The Tibetan Plateau, home to wild yak, chiru, and kiang, contains a biome with many endemic ungulates. It is highly sensitive to climate change and a region that merits particular attention with regard to the impacts of global climate change on its biomes. Maximum entropy approaches were used to estimate current and future potential distributions, in response to climate change, for 22 ungulate species. We used three general circulation (MK3, HADCM3, MIROC3_2-MED) and three emissions scenarios (Bl, A1B, A2) to derive estimated future measurements of 14 environmental variables over three time periods (2020, 2050, 2080), and then modeled species distributions using these predicted environmental measurements for each time period under two dispersal hypotheses (full and zero, respectively). This resulted in a total of 6160 prediction models. We found that these ungulates, on average, may lose 30-50% of their distributional areas, depending on the dispersal scenarios. In addition, 55-68% of the ungulate species were predicted to become locally endangered under the different dispersal assumptions, 23-32% to become locally critically endangered, and 4-7 endemic species to become globally endangered. Furthermore, ungulate species ranges may experience average poleward shifts of ~300 km. We also predict west-to-east reductions in species richness: southeastern mountainous areas currently have the highest species richness, but are predicted to face the greatest diversity losses, whereas the northern areas are predicted to see increasing numbers of ungulate species in the 21st century. Our study indicates much more severe range reductions of ungulates on the Tibetan Plateau than those anticipated elsewhere in the world, and species richness patterns will change dramatically with climate change. For conservation, we suggest (1) securing existing protected areas, and (2) establishing new nature reserves to counterbalance climate change impacts.

  2. The interactive roles of mastery climate and performance climate in predicting intrinsic motivation.

    PubMed

    Buch, R; Nerstad, C G L; Säfvenbom, R

    2017-02-01

    This study examined the interplay between perceived mastery and performance climates in predicting increased intrinsic motivation. The results of a two-wave longitudinal study comprising of 141 individuals from three military academies revealed a positive relationship between a perceived mastery climate and increased intrinsic motivation only for individuals who perceived a low performance climate. This finding suggests a positive relationship between a perceived mastery climate and increased intrinsic motivation only when combined with low perceptions of a performance climate. Hence, introducing a performance climate in addition to a mastery climate can be an undermining motivational strategy, as it attenuates the positive relationship between a mastery climate and increased intrinsic motivation. Implications for future research and practice are discussed. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. The predictive state: Science, territory and the future of the Indian climate.

    PubMed

    Mahony, Martin

    2014-02-01

    Acts of scientific calculation have long been considered central to the formation of the modern nation state, yet the transnational spaces of knowledge generation and political action associated with climate change seem to challenge territorial modes of political order. This article explores the changing geographies of climate prediction through a study of the ways in which climate change is rendered knowable at the national scale in India. The recent controversy surrounding an erroneous prediction of melting Himalayan glaciers by the Intergovernmental Panel on Climate Change provides a window onto the complex and, at times, antagonistic relationship between the Panel and Indian political and scientific communities. The Indian reaction to the error, made public in 2009, drew upon a national history of contestation around climate change science and corresponded with the establishment of a scientific assessment network, the Indian Network for Climate Change Assessment, which has given the state a new platform on which to bring together knowledge about the future climate. I argue that the Indian Network for Climate Change Assessment is indicative of the growing use of regional climate models within longer traditions of national territorial knowledge-making, allowing a rescaling of climate change according to local norms and practices of linking scientific knowledge to political action. I illustrate the complex co-production of the epistemic and the normative in climate politics, but also seek to show how co-productionist understandings of science and politics can function as strategic resources in the ongoing negotiation of social order. In this case, scientific rationalities and modes of environmental governance contribute to the contested epistemic construction of territory and the evolving spatiality of the modern nation state under a changing climate.

  4. Decadal Recruitment and Mortality of Ponderosa pine Predicted for the 21st Century Under five Downscaled Climate Change Scenarios

    NASA Astrophysics Data System (ADS)

    Ironside, K. E.; Cole, K. L.; Eischeid, J. K.; Garfin, G. M.; Shaw, J. D.; Cobb, N. S.

    2008-12-01

    Ponderosa pine (Pinus ponderosa var. scopulorum) is the dominant conifer in higher elevation regions of the southwestern United States. Because this species is so prominent, southwestern montane ecosystems will be significantly altered if this species is strongly affected by future climate changes. These changes could be highly challenging for land management agencies. In order to model the consequences of future climates, 20th Century recruitment events and mortality for ponderosa pine were characterized using measures of seasonal water balance (precipitation - potential evapotranspiration). These relationships, assuming they will remain unchanged, were then used to predict 21st Century changes in ponderosa pine occurrence in the southwest. Twenty-one AR4 IPCC General Circulation Model (GCM) A1B simulation results were ranked on their ability to simulate the later 20th Century (1950-2000 AD) precipitation seasonality, spatial patterns, and quantity in the western United States. Among the top ranked GCMs, five were selected for downscaling to a 4 km grid that represented a range in predictions in terms of changes in water balance. Predicted decadal changes in southwestern ponderosa pine for the 21st Century for these five climate change scenarios were calculated using a multiple quadratic logistic regression model. Similar models of other western tree species (Pinus edulis, Yucca brevifolia) predicted severe contractions, especially in the southern half of their ranges. However, the results for Ponderosa pine suggested future expansions throughout its range to both higher and lower elevations, as well as very significant expansions northward.

  5. Social and economic impacts of climate.

    PubMed

    Carleton, Tamma A; Hsiang, Solomon M

    2016-09-09

    For centuries, thinkers have considered whether and how climatic conditions-such as temperature, rainfall, and violent storms-influence the nature of societies and the performance of economies. A multidisciplinary renaissance of quantitative empirical research is illuminating important linkages in the coupled climate-human system. We highlight key methodological innovations and results describing effects of climate on health, economics, conflict, migration, and demographics. Because of persistent "adaptation gaps," current climate conditions continue to play a substantial role in shaping modern society, and future climate changes will likely have additional impact. For example, we compute that temperature depresses current U.S. maize yields by ~48%, warming since 1980 elevated conflict risk in Africa by ~11%, and future warming may slow global economic growth rates by ~0.28 percentage points per year. In general, we estimate that the economic and social burden of current climates tends to be comparable in magnitude to the additional projected impact caused by future anthropogenic climate changes. Overall, findings from this literature point to climate as an important influence on the historical evolution of the global economy, they should inform how we respond to modern climatic conditions, and they can guide how we predict the consequences of future climate changes. Copyright © 2016, American Association for the Advancement of Science.

  6. Combined influence of multiple climatic factors on the incidence of bacterial foodborne diseases.

    PubMed

    Park, Myoung Su; Park, Ki Hwan; Bahk, Gyung Jin

    2018-01-01

    Information regarding the relationship between the incidence of foodborne diseases (FBD) and climatic factors is useful in designing preventive strategies for FBD based on anticipated future climate change. To better predict the effect of climate change on foodborne pathogens, the present study investigated the combined influence of multiple climatic factors on bacterial FBD incidence in South Korea. During 2011-2015, the relationships between 8 climatic factors and the incidences of 13 bacterial FBD, were determined based on inpatient stays, on a monthly basis using the Pearson correlation analyses, multicollinearity tests, principal component analysis (PCA), and the seasonal autoregressive integrated moving average (SARIMA) modeling. Of the 8 climatic variables, the combination of temperature, relative humidity, precipitation, insolation, and cloudiness was significantly associated with salmonellosis (P<0.01), vibriosis (P<0.05), and enterohemorrhagic Escherichia coli O157:H7 infection (P<0.01). The combined effects of snowfall, wind speed, duration of sunshine, and cloudiness were not significant for these 3 FBD. Other FBD, including campylobacteriosis, were not significantly associated with any combination of climatic factors. These findings indicate that the relationships between multiple climatic factors and bacterial FBD incidence can be valuable for the development of prediction models for future patterns of diseases in response to changes in climate. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Assessing the impact of future climate extremes on the US corn and soybean production

    NASA Astrophysics Data System (ADS)

    Jin, Z.

    2015-12-01

    Future climate changes will place big challenges to the US agricultural system, among which increasing heat stress and precipitation variability were the two major concerns. Reliable prediction of crop productions in response to the increasingly frequent and severe extreme climate is a prerequisite for developing adaptive strategies on agricultural risk management. However, the progress has been slow on quantifying the uncertainty of computational predictions at high spatial resolutions. Here we assessed the risks of future climate extremes on the US corn and soybean production using the Agricultural Production System sIMulator (APSIM) model under different climate scenarios. To quantify the uncertainty due to conceptual representations of heat, drought and flooding stress in crop models, we proposed a new strategy of algorithm ensemble in which different methods for simulating crop responses to those extreme climatic events were incorporated into the APSIM. This strategy allowed us to isolate irrelevant structure differences among existing crop models but only focus on the process of interest. Future climate inputs were derived from high-spatial-resolution (12km × 12km) Weather Research and Forecasting (WRF) simulations under Representative Concentration Pathways 4.5 (RCP 4.5) and 8.5 (RCP 8.5). Based on crop model simulations, we analyzed the magnitude and frequency of heat, drought and flooding stress for the 21st century. We also evaluated the water use efficiency and water deficit on regional scales if farmers were to boost their yield by applying more fertilizers. Finally we proposed spatially explicit adaptation strategies of irrigation and fertilizing for different management zones.

  8. Prediction Markets and Beliefs about Climate: Results from Agent-Based Simulations

    NASA Astrophysics Data System (ADS)

    Gilligan, J. M.; John, N. J.; van der Linden, M.

    2015-12-01

    Climate scientists have long been frustrated by persistent doubts a large portion of the public expresses toward the scientific consensus about anthropogenic global warming. The political and ideological polarization of this doubt led Vandenbergh, Raimi, and Gilligan [1] to propose that prediction markets for climate change might influence the opinions of those who mistrust the scientific community but do trust the power of markets.We have developed an agent-based simulation of a climate prediction market in which traders buy and sell future contracts that will pay off at some future year with a value that depends on the global average temperature at that time. The traders form a heterogeneous population with different ideological positions, different beliefs about anthropogenic global warming, and different degrees of risk aversion. We also vary characteristics of the market, including the topology of social networks among the traders, the number of traders, and the completeness of the market. Traders adjust their beliefs about climate according to the gains and losses they and other traders in their social network experience. This model predicts that if global temperature is predominantly driven by greenhouse gas concentrations, prediction markets will cause traders' beliefs to converge toward correctly accepting anthropogenic warming as real. This convergence is largely independent of the structure of the market and the characteristics of the population of traders. However, it may take considerable time for beliefs to converge. Conversely, if temperature does not depend on greenhouse gases, the model predicts that traders' beliefs will not converge. We will discuss the policy-relevance of these results and more generally, the use of agent-based market simulations for policy analysis regarding climate change, seasonal agricultural weather forecasts, and other applications.[1] MP Vandenbergh, KT Raimi, & JM Gilligan. UCLA Law Rev. 61, 1962 (2014).

  9. How will SOA change in the future?: SOA IN THE FUTURE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Guangxing; Penner, Joyce E.; Zhou, Cheng

    2016-02-17

    Secondary organic aerosol (SOA) plays a significant role in the Earth system by altering its radiative balance. Here we use an Earth system model coupled with an explicit SOA formation module to estimate the response of SOA concentrations to changes in climate, anthropogenic emissions, and human land use in the future. We find that climate change is the major driver for SOA change under the representative concentration pathways for the 8.5 future scenario. Climate change increases isoprene emission rate by 18% with the effect of temperature increases outweighing that of the CO2 inhibition effect. Annual mean global SOA mass ismore » increased by 25% as a result of climate change. However, anthropogenic emissions and land use change decrease SOA. The net effect is that future global SOA burden in 2100 is nearly the same as that of the present day. The SOA concentrations over the Northern Hemisphere are predicted to decline in the future due to the control of sulfur emissions.« less

  10. Locally Downscaled and Spatially Customizable Climate Data for Historical and Future Periods for North America

    PubMed Central

    Wang, Tongli; Hamann, Andreas; Spittlehouse, Dave; Carroll, Carlos

    2016-01-01

    Large volumes of gridded climate data have become available in recent years including interpolated historical data from weather stations and future predictions from general circulation models. These datasets, however, are at various spatial resolutions that need to be converted to scales meaningful for applications such as climate change risk and impact assessments or sample-based ecological research. Extracting climate data for specific locations from large datasets is not a trivial task and typically requires advanced GIS and data management skills. In this study, we developed a software package, ClimateNA, that facilitates this task and provides a user-friendly interface suitable for resource managers and decision makers as well as scientists. The software locally downscales historical and future monthly climate data layers into scale-free point estimates of climate values for the entire North American continent. The software also calculates a large number of biologically relevant climate variables that are usually derived from daily weather data. ClimateNA covers 1) 104 years of historical data (1901–2014) in monthly, annual, decadal and 30-year time steps; 2) three paleoclimatic periods (Last Glacial Maximum, Mid Holocene and Last Millennium); 3) three future periods (2020s, 2050s and 2080s); and 4) annual time-series of model projections for 2011–2100. Multiple general circulation models (GCMs) were included for both paleo and future periods, and two representative concentration pathways (RCP4.5 and 8.5) were chosen for future climate data. PMID:27275583

  11. Locally Downscaled and Spatially Customizable Climate Data for Historical and Future Periods for North America.

    PubMed

    Wang, Tongli; Hamann, Andreas; Spittlehouse, Dave; Carroll, Carlos

    2016-01-01

    Large volumes of gridded climate data have become available in recent years including interpolated historical data from weather stations and future predictions from general circulation models. These datasets, however, are at various spatial resolutions that need to be converted to scales meaningful for applications such as climate change risk and impact assessments or sample-based ecological research. Extracting climate data for specific locations from large datasets is not a trivial task and typically requires advanced GIS and data management skills. In this study, we developed a software package, ClimateNA, that facilitates this task and provides a user-friendly interface suitable for resource managers and decision makers as well as scientists. The software locally downscales historical and future monthly climate data layers into scale-free point estimates of climate values for the entire North American continent. The software also calculates a large number of biologically relevant climate variables that are usually derived from daily weather data. ClimateNA covers 1) 104 years of historical data (1901-2014) in monthly, annual, decadal and 30-year time steps; 2) three paleoclimatic periods (Last Glacial Maximum, Mid Holocene and Last Millennium); 3) three future periods (2020s, 2050s and 2080s); and 4) annual time-series of model projections for 2011-2100. Multiple general circulation models (GCMs) were included for both paleo and future periods, and two representative concentration pathways (RCP4.5 and 8.5) were chosen for future climate data.

  12. Predicting the size and elevation of future mountain forests: Scaling macroclimate to microclimate

    NASA Astrophysics Data System (ADS)

    Cory, S. T.; Smith, W. K.

    2017-12-01

    Global climate change is predicted to alter continental scale macroclimate and regional mesoclimate. Yet, it is at the microclimate scale that organisms interact with their physiochemical environments. Thus, to predict future changes in the biota such as biodiversity and distribution patterns, a quantitative coupling between macro-, meso-, and microclimatic parameters must be developed. We are evaluating the impact of climate change on the size and elevational distribution of conifer mountain forests by determining the microclimate necessary for new seedling survival at the elevational boundaries of the forest. This initial life stage, only a few centimeters away from the soil surface, appears to be the bottleneck to treeline migration and the expansion or contraction of a conifer mountain forest. For example, survival at the alpine treeline is extremely rare and appears to be limited to facilitated microsites with low sky exposure. Yet, abundant mesoclimate data from standard weather stations have rarely been scaled to the microclimate level. Our research is focusing on an empirical downscaling approach linking microclimate measurements at favorable seedling microsites to the meso- and macro-climate levels. Specifically, mesoclimate values of air temperature, relative humidity, incident sunlight, and wind speed from NOAA NCEI weather stations can be extrapolated to the microsite level that is physiologically relevant for seedling survival. Data will be presented showing a strong correlation between incident sunlight measured at 2-m and seedling microclimate, despite large differences from seedling/microsite temperatures. Our downscaling approach will ultimately enable predictions of microclimate from the much more abundant mesoclimate data available from a variety of sources. Thus, scaling from macro- to meso- to microclimate will be possible, enabling predictions of climate change models to be translated to the microsite level. This linkage between measurement scales will enable a more precise prediction of the effects of climate change on the future extent and elevational distribution of our mountain forests and an accompanying array of critical ecosystem services.

  13. Drought Prediction Site Specific and Regional up to Three Years in Advance

    NASA Astrophysics Data System (ADS)

    Suhler, G.; O'Brien, D. P.

    2002-12-01

    Dynamic Predictables has developed proprietary software that analyzes and predicts future climatic behavior based on past data. The programs employ both a regional thermodynamic model together with a unique predictive algorithm to achieve a high degree of prediction accuracy up to 36 months. The thermodynamic model was developed initially to explain the results of a study on global circulation models done at SUNY-Stony Brook by S. Hameed, R.G. Currie, and H. LaGrone (Int. Jour. Climatology, 15, pp.852-871, 1995). The authors pointed out that on a time scale of 2-70 months the spectrum of sea level pressure is dominated by the harmonics and subharmonics of the seasonal cycle and their combination tones. These oscillations are fundamental to an understanding of climatic variations on a sub-regional to continental basis. The oscillatory nature of these variations allows them to be used as broad based climate predictors. In addition, they can be subtracted from the data to yield residuals. The residuals are then analyzed to determine components that are predictable. The program then combines both the thermodynamic model results (the primary predictive model) with those from the residual data (the secondary model) to yield an estimate of the future behavior of the climatic variable. Spatial resolution is site specific or aggregated regional based upon appropriate length (45 years or more monthly data) and reasonable quality weather observation records. Most climate analysis has been based on monthly time-step data, but time scales on the order of days can be used. Oregon Climate Division 1 (Coastal) precipitation provides an example relating DynaPred's method to nature's observed elements in the early 2000s. The prediction's leading dynamic factors are the strong seasonal in the primary model combined with high secondary model contributions from planet Earth's Chandler Wobble (near 15 months) and what has been called the Quasi-Triennial Oscillation (QTO, near 36 months) in equatorial regions. Examples of regional aggregate and site-specific predictions previously made blind forward and publicly available (AASC Annual Meetings 1998-2002) will be shown. Certain climate dynamics features relevant to extrema prediction and specifically drought prediction will then be discussed. Time steps presented will be monthly. Climate variables examined are mean temperature and accumulated precipitation. NINO3 SST, interior continental and marine/continental transition area examples will be shown. http://www.dynamicpredictables.com

  14. Changing climate in Hungary and trends in the annual number of heat stress days

    NASA Astrophysics Data System (ADS)

    Solymosi, Norbert; Torma, Csaba; Kern, Anikó; Maróti-Agóts, Ákos; Barcza, Zoltán; Könyves, László; Berke, Olaf; Reiczigel, Jenő

    2010-07-01

    Global climate change can have serious direct effects on animal health and production through heat stress. In Hungary, the number of heat stress days per year (YNHD), i.e., days when the temperature humidity index (THI) is above a specific comfort threshold, has increased in recent years based on observed meteorological data. Between 1973 and 2008, the countrywide average increase in YNHD was 4.1% per year. Climate scenarios based on regional climate models (RCM) were used to predict possible changes in YNHD for the near future (2021-2050) relative to the reference period (1961-1990). This comparison shows that, in Hungary, the 30-year mean of YNHD is expected to increase by between 1 and 27 days, depending on the RCM used. Half of the scenarios investigated in this study predicted that, in large parts of Hungary, YNHD will increase by at least 1 week. However, the increase observed in the past, and that predicted for the near future, is spatially heterogeneous, and areas that currently have large cattle populations are expected to be affected more severely than other regions.

  15. Importance of Anthropogenic Aerosols for Climate Prediction: a Study on East Asian Sulfate Aerosols

    NASA Astrophysics Data System (ADS)

    Bartlett, R. E.; Bollasina, M. A.

    2017-12-01

    Climate prediction is vital to ensure that we are able to adapt to our changing climate. Understandably, the main focus for such prediction is greenhouse gas forcing, as this will be the main anthropogenic driver of long-term global climate change; however, other forcings could still be important. Atmospheric aerosols represent one such forcing, especially in regions with high present-day aerosol loading such as Asia; yet, uncertainty in their future emissions are under-sampled by commonly used climate forcing projections, such as the Representative Concentration Pathways (RCPs). Globally, anthropogenic aerosols exert a net cooling, but their effects show large variation at regional scales. Studies have shown that aerosols impact locally upon temperature, precipitation and hydroclimate, and also upon larger scale atmospheric circulation (for example, the Asian monsoon) with implications for climate remote from aerosol sources. We investigate how future climate could evolve differently given the same greenhouse gas forcing pathway but differing aerosol emissions. Specifically, we use climate modelling experiments (using HadGEM2-ES) of two scenarios based upon RCP2.6 greenhouse gas forcing but with large differences in sulfur dioxide emissions over East Asia. Results show that increased sulfate aerosols (associated with increased sulfur dioxide) lead to large regional cooling through aerosol-radiation and aerosol-cloud interactions. Focussing on dynamical mechanisms, we explore the consequences of this cooling for the Asian summer and winter monsoons. In addition to local temperature and precipitation changes, we find significant changes to large scale atmospheric circulation. Wave-like responses to upper-level atmospheric changes propagate across the northern hemisphere with far-reaching effects on surface climate, for example, cooling over Europe. Within the tropics, we find alterations to zonal circulation (notably, shifts in the Pacific Walker cell) and monsoon systems outside of Asia. These results indicate that anthropogenic aerosols have significant climate impacts against a background of greenhouse gas-induced climate change, and thus represent a key source of uncertainty in near-term climate projection that should be seriously considered in future climate assessments.

  16. Constrained range expansion and climate change assessments

    Treesearch

    Yohay Carmel; Curtis H. Flather

    2006-01-01

    Modeling the future distribution of keystone species has proved to be an important approach to assessing the potential ecological consequences of climate change (Loehle and LeBlanc 1996; Hansen et al. 2001). Predictions of range shifts are typically based on empirical models derived from simple correlative relationships between climatic characteristics of occupied and...

  17. Vulnerabilities and adapting irrigated and rainfed cotton to climate change in the lower Mississippi Delta Region

    USDA-ARS?s Scientific Manuscript database

    Overdependence on fossil fuels for human energy needs continues to emitpotential greenhouse gases (GHG) into the atmosphere leading to a warmer climate over the earth. Predicting the impacts of climate change (CC) on food and fiber production systems in the future is essential for divising adaptati...

  18. Future irrigation expansion outweigh groundwater recharge gains from climate change in semi-arid India.

    PubMed

    Sishodia, Rajendra P; Shukla, Sanjay; Wani, Suhas P; Graham, Wendy D; Jones, James W

    2018-09-01

    Simultaneous effects of future climate and irrigation intensification on surface and groundwater systems are not well understood. Efforts are needed to understand the future groundwater availability and associated surface flows under business-as-usual management to formulate policy changes to improve water sustainability. We combine measurements with integrated modeling (MIKE SHE/MIKE11) to evaluate the effects of future climate (2040-2069), with and without irrigation expansion, on water levels and flows in an agricultural watershed in low-storage crystalline aquifer region of south India. Demand and supply management changes, including improved efficiency of irrigation water as well as energy uses, were evaluated. Increased future rainfall (7-43%, from 5 Global Climate Models) with no further expansion of irrigation wells increased the groundwater recharge (10-55%); however, most of the recharge moved out of watershed as increased baseflow (17-154%) with a small increase in net recharge (+0.2mm/year). When increased rainfall was considered with projected increase in irrigation withdrawals, both hydrologic extremes of well drying and flooding were predicted. A 100-year flow event was predicted to be a 5-year event in the future. If irrigation expansion follows the historical trends, earlier and more frequent well drying, a source of farmers' distress in India, was predicted to worsen in the future despite the recharge gains from increased rainfall. Storage and use of excess flows, improved irrigation efficiency with flood to drip conversion in 25% of irrigated area, and reduced energy subsidy (free electricity for 3.5h compared to 7h/day; $1 billion savings) provided sufficient water savings to support future expansion in irrigated areas while mitigating well drying as well as flooding. Reductions in energy subsidy to fund the implementation of economically desirable (high benefit-cost ratio) demand (drip irrigation) and supply (water capture and storage) management was recommended to achieve a sustainable food-water-energy nexus in semi-arid regions. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Sorghum production under future climate in the Southwestern USA: model projections of yield, greenhouse gas emissions and soil C fluxes

    NASA Astrophysics Data System (ADS)

    Duval, B.; Ghimire, R.; Hartman, M. D.; Marsalis, M.

    2016-12-01

    Large tracts of semi-arid land in the Southwestern USA are relatively less important for food production than the US Corn Belt, and represent a promising area for expansion of biofuel/bioproduct crops. However, high temperatures, low available water and high solar radiation in the SW represent a challenge to suitable feedstock development, and future climate change scenarios predict that portions of the SW will experience increased temperature and temporal shifts in precipitation distribution. Sorghum (Sorghum bicolor) is a valuable forage crop with promise as a biofuel feedstock, given its high biomass under semi-arid conditions, relatively lower N fertilizer requirements compared to corn, and salinity tolerance. To evaluate the environmental impact of expanded sorghum cultivation under future climate in the SW USA, we used the DayCent model in concert with a suite of downscaled future weather projections to predict biogeochemical consequences (greenhouse gas flux and impacts on soil carbon) of sorghum cultivation in New Mexico. The model showed good correspondence with yield data from field trials including both dryland and irrigated sorghum (measured vs. modeled; r2 = 0.75). Simulation experiments tested the effect of dryland production versus irrigation, low N versus high N inputs and delayed fertilizer application. Nitrogen application timing and irrigation impacted yield and N2O emissions less than N rate and climate. Across N and irrigation treatments, future climate simulations resulted in 6% increased yield and 20% lower N2O emissions compared to current climate. Soil C pools declined under future climate. The greatest declines in soil C were from low N input sorghum simulations, regardless of irrigation (>20% declines in SOM in both cases), and requires further evaluation to determine if changing future climate is driving these declines, or if they are a function of prolonged sorghum-fallow rotations in the model. The relatively small gain in yield for irrigated sorghum, and strong control of N rate on N2O emissions suggests that a dryland sorghum bioproduct system could be environmentally sustainable in the Southwestern US with effective N management, and warrants further investigation in field trials.

  20. Factors Influencing Smallholder Farmers' Climate Change Perceptions: A Study from Farmers in Ethiopia

    NASA Astrophysics Data System (ADS)

    Habtemariam, Lemlem Teklegiorgis; Gandorfer, Markus; Kassa, Getachew Abate; Heissenhuber, Alois

    2016-08-01

    Factors influencing climate change perceptions have vital roles in designing strategies to enrich climate change understanding. Despite this, factors that influence smallholder farmers' climate change perceptions have not yet been adequately studied. As many of the smallholder farmers live in regions where climate change is predicted to have the most negative impact, their climate change perception is of particular interest. In this study, based on data collected from Ethiopian smallholder farmers, we assessed farmers' perceptions and anticipations of past and future climate change. Furthermore, the factors influencing farmers' climate change perceptions and the relation between farmers' perceptions and available public climate information were assessed. Our findings revealed that a majority of respondents perceive warming temperatures and decreasing rainfall trends that correspond with the local meteorological record. Farmers' perceptions about the past climate did not always reflect their anticipations about the future. A substantial number of farmers' anticipations of future climate were less consistent with climate model projections. The recursive bivariate probit models employed to explore factors affecting different categories of climate change perceptions illustrate statistical significance for explanatory variables including location, gender, age, education, soil fertility status, climate change information, and access to credit services. The findings contribute to the literature by providing evidence not just on farmers' past climate perceptions but also on future climate anticipations. The identified factors help policy makers to provide targeted extension and advisory services to enrich climate change understanding and support appropriate farm-level climate change adaptations.

  1. Factors Influencing Smallholder Farmers' Climate Change Perceptions: A Study from Farmers in Ethiopia.

    PubMed

    Habtemariam, Lemlem Teklegiorgis; Gandorfer, Markus; Kassa, Getachew Abate; Heissenhuber, Alois

    2016-08-01

    Factors influencing climate change perceptions have vital roles in designing strategies to enrich climate change understanding. Despite this, factors that influence smallholder farmers' climate change perceptions have not yet been adequately studied. As many of the smallholder farmers live in regions where climate change is predicted to have the most negative impact, their climate change perception is of particular interest. In this study, based on data collected from Ethiopian smallholder farmers, we assessed farmers' perceptions and anticipations of past and future climate change. Furthermore, the factors influencing farmers' climate change perceptions and the relation between farmers' perceptions and available public climate information were assessed. Our findings revealed that a majority of respondents perceive warming temperatures and decreasing rainfall trends that correspond with the local meteorological record. Farmers' perceptions about the past climate did not always reflect their anticipations about the future. A substantial number of farmers' anticipations of future climate were less consistent with climate model projections. The recursive bivariate probit models employed to explore factors affecting different categories of climate change perceptions illustrate statistical significance for explanatory variables including location, gender, age, education, soil fertility status, climate change information, and access to credit services. The findings contribute to the literature by providing evidence not just on farmers' past climate perceptions but also on future climate anticipations. The identified factors help policy makers to provide targeted extension and advisory services to enrich climate change understanding and support appropriate farm-level climate change adaptations.

  2. Global warming not so harmful for all plants - response of holomycotrophic orchid species for the future climate change.

    PubMed

    Kolanowska, Marta; Kras, Marta; Lipińska, Monika; Mystkowska, Katarzyna; Szlachetko, Dariusz L; Naczk, Aleksandra M

    2017-10-05

    Current and expected changes in global climate are major threat for biological diversity affecting individuals, communities and ecosystems. However, there is no general trend in the plants response to the climate change. The aim of present study was to evaluate impact of the future climate changes on the distribution of holomycotrophic orchid species using ecological niche modeling approach. Three different scenarios of future climate changes were tested to obtain the most comprehensive insight in the possible habitat loss of 16 holomycotrophic orchids. The extinction of Cephalanthera austiniae was predicted in all analyses. The coverage of suitable niches of Pogoniopsis schenckii will decrease to 1-30% of its current extent. The reduction of at least 50% of climatic niche of Erythrorchis cassythoides and Limodorum abortivum will be observed. In turn, the coverage of suitable niches of Hexalectris spicata, Uleiorchis ulaei and Wullschlaegelia calcarata may be even 16-74 times larger than in the present time. The conducted niche modeling and analysis of the similarity of their climatic tolerance showed instead that the future modification of the coverage of their suitable niches will not be unified and the future climate changes may be not so harmful for holomycotrophic orchids as expected.

  3. Remote-sensing based approach to forecast habitat quality under climate change scenarios.

    PubMed

    Requena-Mullor, Juan M; López, Enrique; Castro, Antonio J; Alcaraz-Segura, Domingo; Castro, Hermelindo; Reyes, Andrés; Cabello, Javier

    2017-01-01

    As climate change is expected to have a significant impact on species distributions, there is an urgent challenge to provide reliable information to guide conservation biodiversity policies. In addressing this challenge, we propose a remote sensing-based approach to forecast the future habitat quality for European badger, a species not abundant and at risk of local extinction in the arid environments of southeastern Spain, by incorporating environmental variables related with the ecosystem functioning and correlated with climate and land use. Using ensemble prediction methods, we designed global spatial distribution models for the distribution range of badger using presence-only data and climate variables. Then, we constructed regional models for an arid region in the southeast Spain using EVI (Enhanced Vegetation Index) derived variables and weighting the pseudo-absences with the global model projections applied to this region. Finally, we forecast the badger potential spatial distribution in the time period 2071-2099 based on IPCC scenarios incorporating the uncertainty derived from the predicted values of EVI-derived variables. By including remotely sensed descriptors of the temporal dynamics and spatial patterns of ecosystem functioning into spatial distribution models, results suggest that future forecast is less favorable for European badgers than not including them. In addition, change in spatial pattern of habitat suitability may become higher than when forecasts are based just on climate variables. Since the validity of future forecast only based on climate variables is currently questioned, conservation policies supported by such information could have a biased vision and overestimate or underestimate the potential changes in species distribution derived from climate change. The incorporation of ecosystem functional attributes derived from remote sensing in the modeling of future forecast may contribute to the improvement of the detection of ecological responses under climate change scenarios.

  4. Remote-sensing based approach to forecast habitat quality under climate change scenarios

    PubMed Central

    Requena-Mullor, Juan M.; López, Enrique; Castro, Antonio J.; Alcaraz-Segura, Domingo; Castro, Hermelindo; Reyes, Andrés; Cabello, Javier

    2017-01-01

    As climate change is expected to have a significant impact on species distributions, there is an urgent challenge to provide reliable information to guide conservation biodiversity policies. In addressing this challenge, we propose a remote sensing-based approach to forecast the future habitat quality for European badger, a species not abundant and at risk of local extinction in the arid environments of southeastern Spain, by incorporating environmental variables related with the ecosystem functioning and correlated with climate and land use. Using ensemble prediction methods, we designed global spatial distribution models for the distribution range of badger using presence-only data and climate variables. Then, we constructed regional models for an arid region in the southeast Spain using EVI (Enhanced Vegetation Index) derived variables and weighting the pseudo-absences with the global model projections applied to this region. Finally, we forecast the badger potential spatial distribution in the time period 2071–2099 based on IPCC scenarios incorporating the uncertainty derived from the predicted values of EVI-derived variables. By including remotely sensed descriptors of the temporal dynamics and spatial patterns of ecosystem functioning into spatial distribution models, results suggest that future forecast is less favorable for European badgers than not including them. In addition, change in spatial pattern of habitat suitability may become higher than when forecasts are based just on climate variables. Since the validity of future forecast only based on climate variables is currently questioned, conservation policies supported by such information could have a biased vision and overestimate or underestimate the potential changes in species distribution derived from climate change. The incorporation of ecosystem functional attributes derived from remote sensing in the modeling of future forecast may contribute to the improvement of the detection of ecological responses under climate change scenarios. PMID:28257501

  5. Forecasting Impacts of Climate Change on Indicators of British Columbia's Biodiversity

    NASA Astrophysics Data System (ADS)

    Holmes, Keith Richard

    Understanding the relationships between biodiversity and climate is essential for predicting the impact of climate change on broad-scale landscape processes. Utilizing indirect indicators of biodiversity derived from remotely sensed imagery, we present an approach to forecast shifts in the spatial distribution of biodiversity. Indirect indicators, such as remotely sensed plant productivity metrics, representing landscape seasonality, minimum growth, and total greenness have been linked to species richness over broad spatial scales, providing unique capacity for biodiversity modeling. Our goal is to map future spatial distributions of plant productivity metrics based on expected climate change and to quantify anticipated change to park habitat in British Columbia. Using an archival dataset sourced from the Advanced Very High Resolution Radiometer (AVHRR) satellite from the years 1987 to 2007 at 1km spatial resolution, corresponding historical climate data, and regression tree modeling, we developed regional models of the relationships between climate and annual productivity growth. Historical interconnections between climate and annual productivity were coupled with three climate change scenarios modeled by the Canadian Centre for Climate Modeling and Analysis (CCCma) to predict and map productivity components to the year 2065. Results indicate we can expect a warmer and wetter environment, which may lead to increased productivity in the north and higher elevations. Overall, seasonality is expected to decrease and greenness productivity metrics are expected to increase. The Coastal Mountains and high elevation edge habitats across British Columbia are forecasted to experience the greatest amount of change. In the future, protected areas may have potential higher greenness and lower seasonality as represented by indirect biodiversity indicators. The predictive model highlights potential gaps in protection along the central interior and Rocky Mountains. Protected areas are expected to experience the greatest change with indirect indicators located along mountainous elevations of British Columbia. Our indirect indicator approach to predict change in biodiversity provides resource managers with information to mitigate and adapt to future habitat dynamics. Spatially specific recommendations from our dataset provide information necessary for management. For instance, knowing there is a projected depletion of habitat representation in the East Rocky Mountains, sensitive species in the threatened Mountain Hemlock ecozone, or preservation of rare habitats in the decreasing greenness of the southern interior region is essential information for managers tasked with long term biodiversity conservation. Forecasting productivity levels, linked to the distribution of species richness, presents a novel approach for understanding the future implications of climate change on broad scale biodiversity.

  6. Assessing the response of area burned to changing climate in western boreal North America using a Multivariate Adaptive Regression Splines (MARS) approach

    USGS Publications Warehouse

    Balshi, M. S.; McGuire, A.D.; Duffy, P.; Flannigan, M.; Walsh, J.; Melillo, J.

    2009-01-01

    Fire is a common disturbance in the North American boreal forest that influences ecosystem structure and function. The temporal and spatial dynamics of fire are likely to be altered as climate continues to change. In this study, we ask the question: how will area burned in boreal North America by wildfire respond to future changes in climate? To evaluate this question, we developed temporally and spatially explicit relationships between air temperature and fuel moisture codes derived from the Canadian Fire Weather Index System to estimate annual area burned at 2.5?? (latitude ?? longitude) resolution using a Multivariate Adaptive Regression Spline (MARS) approach across Alaska and Canada. Burned area was substantially more predictable in the western portion of boreal North America than in eastern Canada. Burned area was also not very predictable in areas of substantial topographic relief and in areas along the transition between boreal forest and tundra. At the scale of Alaska and western Canada, the empirical fire models explain on the order of 82% of the variation in annual area burned for the period 1960-2002. July temperature was the most frequently occurring predictor across all models, but the fuel moisture codes for the months June through August (as a group) entered the models as the most important predictors of annual area burned. To predict changes in the temporal and spatial dynamics of fire under future climate, the empirical fire models used output from the Canadian Climate Center CGCM2 global climate model to predict annual area burned through the year 2100 across Alaska and western Canada. Relative to 1991-2000, the results suggest that average area burned per decade will double by 2041-2050 and will increase on the order of 3.5-5.5 times by the last decade of the 21st century. To improve the ability to better predict wildfire across Alaska and Canada, future research should focus on incorporating additional effects of long-term and successional vegetation changes on area burned to account more fully for interactions among fire, climate, and vegetation dynamics. ?? 2009 The Authors Journal compilation ?? 2009 Blackwell Publishing Ltd.

  7. Pollen dispersal slows geographical range shift and accelerates ecological niche shift under climate change

    PubMed Central

    Aguilée, Robin; Raoul, Gaël; Rousset, François; Ronce, Ophélie

    2016-01-01

    Species may survive climate change by migrating to track favorable climates and/or adapting to different climates. Several quantitative genetics models predict that species escaping extinction will change their geographical distribution while keeping the same ecological niche. We introduce pollen dispersal in these models, which affects gene flow but not directly colonization. We show that plant populations may escape extinction because of both spatial range and ecological niche shifts. Exact analytical formulas predict that increasing pollen dispersal distance slows the expected spatial range shift and accelerates the ecological niche shift. There is an optimal distance of pollen dispersal, which maximizes the sustainable rate of climate change. These conclusions hold in simulations relaxing several strong assumptions of our analytical model. Our results imply that, for plants with long distance of pollen dispersal, models assuming niche conservatism may not accurately predict their future distribution under climate change. PMID:27621443

  8. Pollen dispersal slows geographical range shift and accelerates ecological niche shift under climate change.

    PubMed

    Aguilée, Robin; Raoul, Gaël; Rousset, François; Ronce, Ophélie

    2016-09-27

    Species may survive climate change by migrating to track favorable climates and/or adapting to different climates. Several quantitative genetics models predict that species escaping extinction will change their geographical distribution while keeping the same ecological niche. We introduce pollen dispersal in these models, which affects gene flow but not directly colonization. We show that plant populations may escape extinction because of both spatial range and ecological niche shifts. Exact analytical formulas predict that increasing pollen dispersal distance slows the expected spatial range shift and accelerates the ecological niche shift. There is an optimal distance of pollen dispersal, which maximizes the sustainable rate of climate change. These conclusions hold in simulations relaxing several strong assumptions of our analytical model. Our results imply that, for plants with long distance of pollen dispersal, models assuming niche conservatism may not accurately predict their future distribution under climate change.

  9. Modelling the effects of climate change on the distribution and production of marine fishes: accounting for trophic interactions in a dynamic bioclimate envelope model.

    PubMed

    Fernandes, Jose A; Cheung, William W L; Jennings, Simon; Butenschön, Momme; de Mora, Lee; Frölicher, Thomas L; Barange, Manuel; Grant, Alastair

    2013-08-01

    Climate change has already altered the distribution of marine fishes. Future predictions of fish distributions and catches based on bioclimate envelope models are available, but to date they have not considered interspecific interactions. We address this by combining the species-based Dynamic Bioclimate Envelope Model (DBEM) with a size-based trophic model. The new approach provides spatially and temporally resolved predictions of changes in species' size, abundance and catch potential that account for the effects of ecological interactions. Predicted latitudinal shifts are, on average, reduced by 20% when species interactions are incorporated, compared to DBEM predictions, with pelagic species showing the greatest reductions. Goodness-of-fit of biomass data from fish stock assessments in the North Atlantic between 1991 and 2003 is improved slightly by including species interactions. The differences between predictions from the two models may be relatively modest because, at the North Atlantic basin scale, (i) predators and competitors may respond to climate change together; (ii) existing parameterization of the DBEM might implicitly incorporate trophic interactions; and/or (iii) trophic interactions might not be the main driver of responses to climate. Future analyses using ecologically explicit models and data will improve understanding of the effects of inter-specific interactions on responses to climate change, and better inform managers about plausible ecological and fishery consequences of a changing environment. © 2013 John Wiley & Sons Ltd.

  10. Statistical modeling of daily and subdaily stream temperatures: Application to the Methow River Basin, Washington

    NASA Astrophysics Data System (ADS)

    Caldwell, R. J.; Gangopadhyay, S.; Bountry, J.; Lai, Y.; Elsner, M. M.

    2013-07-01

    Management of water temperatures in the Columbia River Basin (Washington) is critical because water projects have substantially altered the habitat of Endangered Species Act listed species, such as salmon, throughout the basin. This is most important in tributaries to the Columbia, such as the Methow River, where the spawning and rearing life stages of these cold water fishes occurs. Climate change projections generally predict increasing air temperatures across the western United States, with less confidence regarding shifts in precipitation. As air temperatures rise, we anticipate a corresponding increase in water temperatures, which may alter the timing and availability of habitat for fish reproduction and growth. To assess the impact of future climate change in the Methow River, we couple historical climate and future climate projections with a statistical modeling framework to predict daily mean stream temperatures. A K-nearest neighbor algorithm is also employed to: (i) adjust the climate projections for biases compared to the observed record and (ii) provide a reference for performing spatiotemporal disaggregation in future hydraulic modeling of stream habitat. The statistical models indicate the primary drivers of stream temperature are maximum and minimum air temperature and stream flow and show reasonable skill in predictability. When compared to the historical reference time period of 1916-2006, we conclude that increases in stream temperature are expected to occur at each subsequent time horizon representative of the year 2020, 2040, and 2080, with an increase of 0.8 ± 1.9°C by the year 2080.

  11. Predicting wildfire occurrence distribution with spatial point process models and its uncertainty assessment: a case study in the Lake Tahoe Basin, USA

    Treesearch

    Jian Yang; Peter J. Weisberg; Thomas E. Dilts; E. Louise Loudermilk; Robert M. Scheller; Alison Stanton; Carl Skinner

    2015-01-01

    Strategic fire and fuel management planning benefits from detailed understanding of how wildfire occurrences are distributed spatially under current climate, and from predictive models of future wildfire occurrence given climate change scenarios. In this study, we fitted historical wildfire occurrence data from 1986 to 2009 to a suite of spatial point process (SPP)...

  12. The Urgent Need for Improved Climate Models and Predictions

    NASA Astrophysics Data System (ADS)

    Goddard, Lisa; Baethgen, Walter; Kirtman, Ben; Meehl, Gerald

    2009-09-01

    An investment over the next 10 years of the order of US$2 billion for developing improved climate models was recommended in a report (http://wcrp.wmo.int/documents/WCRP_WorldModellingSummit_Jan2009.pdf) from the May 2008 World Modelling Summit for Climate Prediction, held in Reading, United Kingdom, and presented by the World Climate Research Programme. The report indicated that “climate models will, as in the past, play an important, and perhaps central, role in guiding the trillion dollar decisions that the peoples, governments and industries of the world will be making to cope with the consequences of changing climate.” If trillions of dollars are going to be invested in making decisions related to climate impacts, an investment of $2 billion, which is less than 0.1% of that amount, to provide better climate information seems prudent. One example of investment in adaptation is the World Bank's Climate Investment Fund, which has drawn contributions of more than $6 billion for work on clean technologies and adaptation efforts in nine pilot countries and two pilot regions. This is just the beginning of expenditures on adaptation efforts by the World Bank and other mechanisms, focusing on only a small fraction of the nations of the world and primarily aimed at anticipated anthropogenic climate change. Moreover, decisions are being made now, all around the world—by individuals, companies, and governments—that affect people and their livelihoods today, not just 50 or more years in the future. Climate risk management, whether related to projects of the scope of the World Bank's or to the planning and decisions of municipalities, will be best guided by meaningful climate information derived from observations of the past and model predictions of the future.

  13. Predicting the geographical distribution of two invasive termite species from occurrence data.

    PubMed

    Tonini, Francesco; Divino, Fabio; Lasinio, Giovanna Jona; Hochmair, Hartwig H; Scheffrahn, Rudolf H

    2014-10-01

    Predicting the potential habitat of species under both current and future climate change scenarios is crucial for monitoring invasive species and understanding a species' response to different environmental conditions. Frequently, the only data available on a species is the location of its occurrence (presence-only data). Using occurrence records only, two models were used to predict the geographical distribution of two destructive invasive termite species, Coptotermes gestroi (Wasmann) and Coptotermes formosanus Shiraki. The first model uses a Bayesian linear logistic regression approach adjusted for presence-only data while the second one is the widely used maximum entropy approach (Maxent). Results show that the predicted distributions of both C. gestroi and C. formosanus are strongly linked to urban development. The impact of future scenarios such as climate warming and population growth on the biotic distribution of both termite species was also assessed. Future climate warming seems to affect their projected probability of presence to a lesser extent than population growth. The Bayesian logistic approach outperformed Maxent consistently in all models according to evaluation criteria such as model sensitivity and ecological realism. The importance of further studies for an explicit treatment of residual spatial autocorrelation and a more comprehensive comparison between both statistical approaches is suggested.

  14. Dengue: recent past and future threats

    PubMed Central

    Rogers, David J.

    2015-01-01

    This article explores four key questions about statistical models developed to describe the recent past and future of vector-borne diseases, with special emphasis on dengue: (1) How many variables should be used to make predictions about the future of vector-borne diseases?(2) Is the spatial resolution of a climate dataset an important determinant of model accuracy?(3) Does inclusion of the future distributions of vectors affect predictions of the futures of the diseases they transmit?(4) Which are the key predictor variables involved in determining the distributions of vector-borne diseases in the present and future?Examples are given of dengue models using one, five or 10 meteorological variables and at spatial resolutions of from one-sixth to two degrees. Model accuracy is improved with a greater number of descriptor variables, but is surprisingly unaffected by the spatial resolution of the data. Dengue models with a reduced set of climate variables derived from the HadCM3 global circulation model predictions for the 1980s are improved when risk maps for dengue's two main vectors (Aedes aegypti and Aedes albopictus) are also included as predictor variables; disease and vector models are projected into the future using the global circulation model predictions for the 2020s, 2040s and 2080s. The Garthwaite–Koch corr-max transformation is presented as a novel way of showing the relative contribution of each of the input predictor variables to the map predictions. PMID:25688021

  15. High Resolution Regional Climate Modeling for Lebanon, Eastern Mediterranean Coast

    NASA Astrophysics Data System (ADS)

    Katurji, Marwan; Soltanzadeh, Iman; Kuhnlein, Meike; Zawar-Reza, Peyman

    2013-04-01

    The Eastern Mediterranean coast consists of Lebanon, Palestine, Syria, Israel and a small part of southern Turkey. The region lies between latitudes 30 degrees S and 40 degrees N, which makes its climate affected by westerly propagating wintertime cyclones spinning off mid-latitude troughs (December, January and February), while during summer (June, July and August) the area is strongly affected by the sub-tropical anti-cyclonic belt as a result of the descending air of the Hadley cell circulation system. The area is considered to be in a transitional zone between tropical to mid-latitude climate regimes, and having a coastal topography up to 3000 m in elevation (like in the Western Ranges of Lebanon), which emphasizes the complexity of climate variability in this area under future predictions of climate change. This research incorporates both regional climate numerical simulations, Tropical Rainfall Measuring Mission (TRMM) satellite derived and surface rain gauge rainfall data to evaluate the Regional Climate Model (RegCM) version 4 ability to represent both the mean and variance of observed precipitation in the Eastern Mediterranean Region, with emphasis on the Lebanese coastal terrain and mountain ranges. The adopted methodology involves dynamically down scaling climate data from reanalysis synoptic files through a double nesting procedure. The retrospective analysis of 13 years with both 50 and 10 km spatial resolution allows for the assessment of the model results on both a climate scale and specific high intensity precipitating events. The spatial averaged mean bias error in precipitation rate for the rainy season predicted by RegCM 50 and 10 km resolution grids was 0.13 and 0.004 mm hr-1 respectively. When correlating RegCM and TRMM precipitation rate for the domain covering Lebanon's coastal mountains, the root mean square error (RMSE) for the mean quantities over the 13-year period was only 0.03, while the RMSE for the standard deviation was higher by one order of magnitude. Initial results showed good spatial variability agreement for precipitation with the satellite-derived data with improved results for the 10 km grid resolution setup. Also, results show a larger uncertainty within RegCM for predicting extreme precipitation events. Future work will investigate the ability of RegCM to simulate these extreme deviations in precipitation. The results from this research can be helpful for the better design of future regional climate down scaling predictions under climate change scenarios.

  16. Climate and human intervention effects on future fire activity and consequences for air pollution across the 21st century

    NASA Astrophysics Data System (ADS)

    Val Martin, M.; Pierce, J. R.; Heald, C. L.; Li, F.; Lawrence, D. M.; Wiedinmyer, C.; Tilmes, S.; Vitt, F.

    2016-12-01

    Emissions of aerosols and gases from fires have been shown to adversely affect air quality across the world. Fire activity is strongly related to climate and anthropogenic activities. Current fire projections for the 21st century seem very uncertain, ranging from increasing to declining depending on the climate, land cover change and population growth scenarios used. Here we present an analysis of the changes in future wildfire activity and consequences on air quality, with focus on PM2.5 and surface O3 over regions vulnerable to fire. We use the global Community Earth System Model (CESM) with a process-based fire model to simulate emissions from agriculture, peatland, deforestation and landscape fires for present-day and throughout the current century. We consider two future Representative Concentration Pathways climate scenarios combined with population density changes predicted from Shared Socio-economic Pathways to project climate and demographic effects on fire activity and further consequences for future air quality.

  17. Impacts of Climate Change on the Global Invasion Potential of the African Clawed Frog Xenopus laevis

    PubMed Central

    Ihlow, Flora; Courant, Julien; Secondi, Jean; Herrel, Anthony; Rebelo, Rui; Measey, G. John; Lillo, Francesco; De Villiers, F. André; Vogt, Solveig; De Busschere, Charlotte; Backeljau, Thierry; Rödder, Dennis

    2016-01-01

    By altering or eliminating delicate ecological relationships, non-indigenous species are considered a major threat to biodiversity, as well as a driver of environmental change. Global climate change affects ecosystems and ecological communities, leading to changes in the phenology, geographic ranges, or population abundance of several species. Thus, predicting the impacts of global climate change on the current and future distribution of invasive species is an important subject in macroecological studies. The African clawed frog (Xenopus laevis), native to South Africa, possesses a strong invasion potential and populations have become established in numerous countries across four continents. The global invasion potential of X. laevis was assessed using correlative species distribution models (SDMs). SDMs were computed based on a comprehensive set of occurrence records covering South Africa, North America, South America and Europe and a set of nine environmental predictors. Models were built using both a maximum entropy model and an ensemble approach integrating eight algorithms. The future occurrence probabilities for X. laevis were subsequently computed using bioclimatic variables for 2070 following four different IPCC scenarios. Despite minor differences between the statistical approaches, both SDMs predict the future potential distribution of X. laevis, on a global scale, to decrease across all climate change scenarios. On a continental scale, both SDMs predict decreasing potential distributions in the species’ native range in South Africa, as well as in the invaded areas in North and South America, and in Australia where the species has not been introduced. In contrast, both SDMs predict the potential range size to expand in Europe. Our results suggest that all probability classes will be equally affected by climate change. New regional conditions may promote new invasions or the spread of established invasive populations, especially in France and Great Britain. PMID:27248830

  18. Impacts of Climate Change on the Global Invasion Potential of the African Clawed Frog Xenopus laevis.

    PubMed

    Ihlow, Flora; Courant, Julien; Secondi, Jean; Herrel, Anthony; Rebelo, Rui; Measey, G John; Lillo, Francesco; De Villiers, F André; Vogt, Solveig; De Busschere, Charlotte; Backeljau, Thierry; Rödder, Dennis

    2016-01-01

    By altering or eliminating delicate ecological relationships, non-indigenous species are considered a major threat to biodiversity, as well as a driver of environmental change. Global climate change affects ecosystems and ecological communities, leading to changes in the phenology, geographic ranges, or population abundance of several species. Thus, predicting the impacts of global climate change on the current and future distribution of invasive species is an important subject in macroecological studies. The African clawed frog (Xenopus laevis), native to South Africa, possesses a strong invasion potential and populations have become established in numerous countries across four continents. The global invasion potential of X. laevis was assessed using correlative species distribution models (SDMs). SDMs were computed based on a comprehensive set of occurrence records covering South Africa, North America, South America and Europe and a set of nine environmental predictors. Models were built using both a maximum entropy model and an ensemble approach integrating eight algorithms. The future occurrence probabilities for X. laevis were subsequently computed using bioclimatic variables for 2070 following four different IPCC scenarios. Despite minor differences between the statistical approaches, both SDMs predict the future potential distribution of X. laevis, on a global scale, to decrease across all climate change scenarios. On a continental scale, both SDMs predict decreasing potential distributions in the species' native range in South Africa, as well as in the invaded areas in North and South America, and in Australia where the species has not been introduced. In contrast, both SDMs predict the potential range size to expand in Europe. Our results suggest that all probability classes will be equally affected by climate change. New regional conditions may promote new invasions or the spread of established invasive populations, especially in France and Great Britain.

  19. Adaptation options to future climate of maize crop in Southern Italy examined using thermal sums

    NASA Astrophysics Data System (ADS)

    Di Tommasi, P.; Alfieri, S. M.; Bonfante, A.; Basile, A.; De Lorenzi, F.; Menenti, M.

    2012-04-01

    Future climate scenarios predict substantial changes in air temperature within a few decades and agriculture needs to increase the capacity of adaptation both by changing spatial distribution of crops and shifting timing of management. In this context the prediction of future behaviour of crops with respect to present climate could be useful for farm and landscape management. In this work, thermal sums were used to simulate a maize crop in a future scenario, in terms of length of the growing season and of intervals between the main phenological stages. The area under study is the Sele plain (Campania Region), a pedo-climatic homogeneous area, one of the most agriculturally advanced and relevant flatland in Southern Italy. Maize was selected for the present study since it is extensively grown in the Sele Plain for water buffalofeeding,. Daily time-series of climatic data of the area under study were generated within the Italian project AGROSCENARI, and include maximum and minimum temperature and precipitation. The 1961-1990 and the 1998-2008 periods were compared to a future climate scenario (2021-2050). Future time series were generated using a statistical downscaling technique (Tomozeiu et al., 2007) from general circulation models (AOGCM). Differences in crop development length were calculated for different maize varieties under 3 management options for sowing time: custom date (typical for the area), before and after custom date. The interactions between future thermal regime and the length of growing season under the different management options were analyzed. Moreover, frequency of spells of high temperatures during the anthesis was examined. The feasibility of the early sowing option was discussed in relation with field trafficability at the beginning of the crop cycle. The work was carried out within the Italian national project AGROSCENARI funded by the Ministry for Agricultural, Food and Forest Policies (MIPAAF, D.M. 8608/7303/2008)

  20. Assessing climate change impact by integrated hydrological modelling

    NASA Astrophysics Data System (ADS)

    Lajer Hojberg, Anker; Jørgen Henriksen, Hans; Olsen, Martin; der Keur Peter, van; Seaby, Lauren Paige; Troldborg, Lars; Sonnenborg, Torben; Refsgaard, Jens Christian

    2013-04-01

    Future climate may have a profound effect on the freshwater cycle, which must be taken into consideration by water management for future planning. Developments in the future climate are nevertheless uncertain, thus adding to the challenge of managing an uncertain system. To support the water managers at various levels in Denmark, the national water resources model (DK-model) (Højberg et al., 2012; Stisen et al., 2012) was used to propagate future climate to hydrological response under considerations of the main sources of uncertainty. The DK-model is a physically based and fully distributed model constructed on the basis of the MIKE SHE/MIKE11 model system describing groundwater and surface water systems and the interaction between the domains. The model has been constructed for the entire 43.000 km2 land area of Denmark only excluding minor islands. Future climate from General Circulation Models (GCM) was downscaled by Regional Climate Models (RCM) by a distribution-based scaling method (Seaby et al., 2012). The same dataset was used to train all combinations of GCM-RCMs and they were found to represent the mean and variance at the seasonal basis equally well. Changes in hydrological response were computed by comparing the short term development from the period 1990 - 2010 to 2021 - 2050, which is the time span relevant for water management. To account for uncertainty in future climate predictions, hydrological response from the DK-model using nine combinations of GCMs and RCMs was analysed for two catchments representing the various hydrogeological conditions in Denmark. Three GCM-RCM combinations displaying high, mean and low future impacts were selected as representative climate models for which climate impact studies were carried out for the entire country. Parameter uncertainty was addressed by sensitivity analysis and was generally found to be of less importance compared to the uncertainty spanned by the GCM-RCM combinations. Analysis of the simulations showed some unexpected results, where climate models predicting the largest increase in net precipitation did not result in the largest increase in groundwater heads. This was found to be the result of different initial conditions (1990 - 2010) for the various climate models. In some areas a combination of a high initial groundwater head and an increase in precipitation towards 2021 - 2050 resulted in a groundwater head raise that reached the drainage or the surface water system. This will increase the exchange from the groundwater to the surface water system, but reduce the raise in groundwater heads. An alternative climate model, with a lower initial head can thus predict a higher increase in the groundwater head, although the increase in precipitation is lower. This illustrates an extra dimension in the uncertainty assessment, namely the climate models capability of simulating the current climatic conditions in a way that can reproduce the observed hydrological response. Højberg, AL, Troldborg, L, Stisen, S, et al. (2012) Stakeholder driven update and improvement of a national water resources model - http://www.sciencedirect.com/science/article/pii/S1364815212002423 Seaby, LP, Refsgaard, JC, Sonnenborg, TO, et al. (2012) Assessment of robustness and significance of climate change signals for an ensemble of distribution-based scaled climate projections (submitted) Journal of Hydrology Stisen, S, Højberg, AL, Troldborg, L et al., (2012): On the importance of appropriate rain-gauge catch correction for hydrological modelling at mid to high latitudes - http://www.hydrol-earth-syst-sci.net/16/4157/2012/

  1. The impacts of climate, land use, and demography on fires during the 21st century simulated by CLM-CN

    NASA Astrophysics Data System (ADS)

    Kloster, S.; Mahowald, N. M.; Randerson, J. T.; Lawrence, P. J.

    2012-01-01

    Landscape fires during the 21st century are expected to change in response to multiple agents of global change. Important controlling factors include climate controls on the length and intensity of the fire season, fuel availability, and fire management, which are already anthropogenically perturbed today and are predicted to change further in the future. An improved understanding of future fires will contribute to an improved ability to project future anthropogenic climate change, as changes in fire activity will in turn impact climate. In the present study we used a coupled-carbon-fire model to investigate how changes in climate, demography, and land use may alter fire emissions. We used climate projections following the SRES A1B scenario from two different climate models (ECHAM5/MPI-OM and CCSM) and changes in population. Land use and harvest rates were prescribed according to the RCP 45 scenario. In response to the combined effect of all these drivers, our model estimated, depending on our choice of climate projection, an increase in future (2075-2099) fire carbon emissions by 17 and 62% compared to present day (1985-2009). The largest increase in fire emissions was predicted for Southern Hemisphere South America for both climate projections. For Northern Hemisphere Africa, a region that contributed significantly to the global total fire carbon emissions, the response varied between a decrease and an increase depending on the climate projection. We disentangled the contribution of the single forcing factors to the overall response by conducting an additional set of simulations in which each factor was individually held constant at pre-industrial levels. The two different projections of future climate change evaluated in this study led to increases in global fire carbon emissions by 22% (CCSM) and 66% (ECHAM5/MPI-OM). The RCP 45 projection of harvest and land use led to a decrease in fire carbon emissions by -5%. The RCP 26 and RCP 60 harvest and landuse projections caused decreases around -20%. Changes in human ignition led to an increase of 20%. When we also included changes in fire management efforts to suppress fires in densely populated areas, global fire carbon emission decreased by -6% in response to changes in population density. We concluded from this study that changes in fire emissions in the future are controlled by multiple interacting factors. Although changes in climate led to an increase in future fire emissions this could be globally counterbalanced by coupled changes in land use, harvest, and demography.

  2. Predictions of future ephemeral springtime waterbird stopover habitat availability under global change

    USGS Publications Warehouse

    Uden, Daniel R.; Allen, Craig R.; Bishop, Andrew A.; Grosse, Roger; Jorgensen, Christopher F.; LaGrange, Theodore G.; Stutheit, Randy G.; Vrtiska, Mark P.

    2015-01-01

    In the present period of rapid, worldwide change in climate and landuse (i.e., global change), successful biodiversity conservation warrants proactive management responses, especially for long-distance migratory species. However, the development and implementation of management strategies can be impeded by high levels of uncertainty and low levels of control over potentially impactful future events and their effects. Scenario planning and modeling are useful tools for expanding perspectives and informing decisions under these conditions. We coupled scenario planning and statistical modeling to explain and predict playa wetland inundation (i.e., presence/absence of water) and ponded area (i.e., extent of water) in the Rainwater Basin, an anthropogenically altered landscape that provides critical stopover habitat for migratory waterbirds. Inundation and ponded area models for total wetlands, those embedded in rowcrop fields, and those not embedded in rowcrop fields were trained and tested with wetland ponding data from 2004 and 2006–2009, and then used to make additional predictions under two alternative climate change scenarios for the year 2050, yielding a total of six predictive models and 18 prediction sets. Model performance ranged from moderate to good, with inundation models outperforming ponded area models, and models for non-rowcrop-embedded wetlands outperforming models for total wetlands and rowcrop-embedded wetlands. Model predictions indicate that if the temperature and precipitation changes assumed under our climate change scenarios occur, wetland stopover habitat availability in the Rainwater Basin could decrease in the future. The results of this and similar studies could be aggregated to increase knowledge about the potential spatial and temporal distributions of future stopover habitat along migration corridors, and to develop and prioritize multi-scale management actions aimed at mitigating the detrimental effects of global change on migratory waterbird populations.

  3. An Empirical Approach to Predicting Effects of Climate Change on Stream Water Chemistry

    NASA Astrophysics Data System (ADS)

    Olson, J. R.; Hawkins, C. P.

    2014-12-01

    Climate change may affect stream solute concentrations by three mechanisms: dilution associated with increased precipitation, evaporative concentration associated with increased temperature, and changes in solute inputs associated with changes in climate-driven weathering. We developed empirical models predicting base-flow water chemistry from watershed geology, soils, and climate for 1975 individual stream sites across the conterminous USA. We then predicted future solute concentrations (2065 and 2099) by applying down-scaled global climate model predictions to these models. The electrical conductivity model (EC, model R2 = 0.78) predicted mean increases in EC of 19 μS/cm by 2065 and 40 μS/cm by 2099. However predicted responses for individual streams ranged from a 43% decrease to a 4x increase. Streams with the greatest predicted decreases occurred in the southern Rocky Mountains and Mid-West, whereas southern California and Sierra Nevada streams showed the greatest increases. Generally, streams in dry areas underlain by non-calcareous rocks were predicted to be the most vulnerable to increases in EC associated with climate change. Predicted changes in other water chemistry parameters (e.g., Acid Neutralization Capacity (ANC), SO4, and Ca) were similar to EC, although the magnitude of ANC and SO4 change was greater. Predicted changes in ANC and SO4 are in general agreement with those changes already observed in seven locations with long term records.

  4. Development of a Climate Prediction Market

    NASA Astrophysics Data System (ADS)

    Roulston, M. S.

    2017-12-01

    Winton, a global investment firm, is planning to establish a prediction market for climate. This prediction market will allow participants to place bets on global climate up to several decades in the future. Winton is pursuing this endeavour as part of its philanthropy that funds scientific research and the communication of scientific ideas. The Winton Climate Prediction Market will be based in the U.K. It will be structured as an online gambling site subject to the regulation of the Gambling Commission. Unlike existing betting sites, the Climate Prediction Market will be subsidized: a central market maker will inject money into the market. This is in contrast to traditional bookmakers or betting exchanges who set odds in their favour or charge commissions to make a profit. The philosophy of a subsidized prediction market is that the party seeking information should fund the market, rather than the participants who provide the information. The initial market will allow bets to be placed on the atmospheric concentration of carbon dioxide and the global mean temperature anomaly. It will thus produce implied forecasts of carbon dioxide concentration as well as global temperatures. If the initial market is successful, additional markets could be added which target other climate variables, such as regional temperatures or sea-level rise. These markets could be sponsored by organizations that are interested in predictions of the specific climate variables. An online platform for the Climate Prediction Market has been developed and has been tested internally at Winton.

  5. Implications of Climate Change for Bird Conservation in the Southwestern U.S. under Three Alternative Futures

    PubMed Central

    Friggens, Megan M.; Finch, Deborah M.

    2015-01-01

    Future expected changes in climate and human activity threaten many riparian habitats, particularly in the southwestern U.S. Using Maximum Entropy (MaxEnt3.3.3) modeling, we characterized habitat relationships and generated spatial predictions of habitat suitability for the Lucy’s warbler (Oreothlypis luciae), the Southwestern willow flycatcher (Empidonax traillii extimus) and the Western yellow-billed cuckoo (Coccyzus americanus). Our goal was to provide site- and species-specific information that can be used by managers to identify areas for habitat conservation and/or restoration along the Rio Grande in New Mexico. We created models of suitable habitat for each species based on collection and survey samples and climate, biophysical, and vegetation data. We projected habitat suitability under future climates by applying these models to conditions generated from three climate models for 2030, 2060 and 2090. By comparing current and future distributions, we identified how habitats are likely to change as a result of changing climate and the consequences of those changes for these bird species. We also examined whether land ownership of high value sites shifts under changing climate conditions. Habitat suitability models performed well. Biophysical characteristics were more important that climate conditions for predicting habitat suitability with distance to water being the single most important predictor. Climate, though less important, was still influential and led to declines of suitable habitat of more than 60% by 2090. For all species, suitable habitat tended to shrink over time within the study area leaving a few core areas of high importance. Overall, climate changes will increase habitat fragmentation and reduce breeding habitat patch size. The best strategy for conserving bird species within the Rio Grande will include measures to maintain and restore critical habitat refugia. This study provides an example of a presence-only habitat model that can be used to inform the management of species at intermediate scales. PMID:26700871

  6. Implications of Climate Change for Bird Conservation in the Southwestern U.S. under Three Alternative Futures.

    PubMed

    Friggens, Megan M; Finch, Deborah M

    2015-01-01

    Future expected changes in climate and human activity threaten many riparian habitats, particularly in the southwestern U.S. Using Maximum Entropy (MaxEnt3.3.3) modeling, we characterized habitat relationships and generated spatial predictions of habitat suitability for the Lucy's warbler (Oreothlypis luciae), the Southwestern willow flycatcher (Empidonax traillii extimus) and the Western yellow-billed cuckoo (Coccyzus americanus). Our goal was to provide site- and species-specific information that can be used by managers to identify areas for habitat conservation and/or restoration along the Rio Grande in New Mexico. We created models of suitable habitat for each species based on collection and survey samples and climate, biophysical, and vegetation data. We projected habitat suitability under future climates by applying these models to conditions generated from three climate models for 2030, 2060 and 2090. By comparing current and future distributions, we identified how habitats are likely to change as a result of changing climate and the consequences of those changes for these bird species. We also examined whether land ownership of high value sites shifts under changing climate conditions. Habitat suitability models performed well. Biophysical characteristics were more important that climate conditions for predicting habitat suitability with distance to water being the single most important predictor. Climate, though less important, was still influential and led to declines of suitable habitat of more than 60% by 2090. For all species, suitable habitat tended to shrink over time within the study area leaving a few core areas of high importance. Overall, climate changes will increase habitat fragmentation and reduce breeding habitat patch size. The best strategy for conserving bird species within the Rio Grande will include measures to maintain and restore critical habitat refugia. This study provides an example of a presence-only habitat model that can be used to inform the management of species at intermediate scales.

  7. The effects of climate change on storm surges around the United Kingdom.

    PubMed

    Lowe, J A; Gregory, J M

    2005-06-15

    Coastal flooding is often caused by extreme events, such as storm surges. In this study, improved physical models have been used to simulate the climate system and storm surges, and to predict the effect of increased atmospheric concentrations of greenhouse gases on the surges. In agreement with previous studies, this work indicates that the changes in atmospheric storminess and the higher time-average sea-level predicted for the end of the twenty-first century will lead to changes in the height of water levels measured relative to the present day tide. However, the details of these projections differ somewhat from earlier assessments. Uncertainty in projections of future extreme water levels arise from uncertainty in the amount and timing of future greenhouse gas emissions, uncertainty in the physical models used to simulate the climate system and from the natural variability of the system. The total uncertainty has not yet been reliably quantified and achieving this should be a priority for future research.

  8. Mountain landscapes offer few opportunities for high-elevation tree species migration

    USGS Publications Warehouse

    Bell, David M.; Bradford, John B.; Lauenroth, William K.

    2014-01-01

    Climate change is anticipated to alter plant species distributions. Regional context, notably the spatial complexity of climatic gradients, may influence species migration potential. While high-elevation species may benefit from steep climate gradients in mountain regions, their persistence may be threatened by limited suitable habitat as land area decreases with elevation. To untangle these apparently contradictory predictions for mountainous regions, we evaluated the climatic suitability of four coniferous forest tree species of the western United States based on species distribution modeling (SDM) and examined changes in climatically suitable areas under predicted climate change. We used forest structural information relating to tree species dominance, productivity, and demography from an extensive forest inventory system to assess the strength of inferences made with a SDM approach. We found that tree species dominance, productivity, and recruitment were highest where climatic suitability (i.e., probability of species occurrence under certain climate conditions) was high, supporting the use of predicted climatic suitability in examining species risk to climate change. By predicting changes in climatic suitability over the next century, we found that climatic suitability will likely decline, both in areas currently occupied by each tree species and in nearby unoccupied areas to which species might migrate in the future. These trends were most dramatic for high elevation species. Climatic changes predicted over the next century will dramatically reduce climatically suitable areas for high-elevation tree species while a lower elevation species, Pinus ponderosa, will be well positioned to shift upslope across the region. Reductions in suitable area for high-elevation species imply that even unlimited migration would be insufficient to offset predicted habitat loss, underscoring the vulnerability of these high-elevation species to climatic changes.

  9. Precipitation drives interannual variation in summer soil respiration in a Mediterranean-climate, mixed-conifer forest

    Treesearch

    M. Concilio; J. Chen; S. Ma; M. North

    2009-01-01

    Predictions of future climate change rely on models of how both environmental conditions and disturbance impact carbon cycling at various temporal and spatial scales. Few multi-year studies, however, have examined how carbon efflux is affected by the interaction of disturbance and interannual climate variation. We measured daytime soil respiration (R...

  10. It's lonely at the top: Biodiversity at risk to loss from climate change

    Treesearch

    John L. Koprowski; Sandra L. Doumas; Melissa J. Merrick; Brittany Oleson; Erin E. Posthumus; Timothy G. Jessen; R. Nathan Gwinn

    2013-01-01

    Climate change is a serious immediate and long-term threat to wildlife species. State and federal agencies are working with universities and non-government organizations to predict, plan for, and mitigate such uncertainties in the future. Endemic species may be particularly at-risk as climate-induced changes impact their limited geographic ranges. The Madrean...

  11. Assessing Potential Climate Change Effects on Loblolly Pine Growth: A Probabilistic Regional Modeling Approach

    Treesearch

    Peter B. Woodbury; James E. Smith; David A. Weinstein; John A. Laurence

    1998-01-01

    Most models of the potential effects of climate change on forest growth have produced deterministic predictions. However, there are large uncertainties in data on regional forest condition, estimates of future climate, and quantitative relationships between environmental conditions and forest growth rate. We constructed a new model to analyze these uncertainties...

  12. Changes in Black-legged Tick Population in New England with Future Climate Change

    NASA Astrophysics Data System (ADS)

    Krishnan, S.; Huber, M.

    2015-12-01

    Lyme disease is one of the most frequently reported vector-borne diseases in the United States. In the Northeastern United States, vector transmission is maintained in a horizontal transmission cycle between the vector, the black-legged ticks, and the vertebrate reservoir hosts, which include white-tailed deer, rodents and other medium to large sized mammals. Predicting how vector populations change with future climate change is critical to understanding disease spread in the future, and for developing suitable regional adaptation strategies. For the United States, these predictions have mostly been made using regressions based on field and lab studies, or using spatial suitability studies. However, the relation between tick populations at various life-cycle stages and climate variables are complex, necessitating a mechanistic approach. In this study, we present a framework for driving a mechanistic tick population model with high-resolution regional climate modeling projections. The goal is to estimate changes in black-legged tick populations in New England for the 21st century. The tick population model used is based on the mechanistic approach of Ogden et al., (2005) developed for Canada. Dynamically downscaled climate projections at a 3-kms resolution using the Weather and Research Forecasting Model (WRF) are used to drive the tick population model.

  13. Large sensitivity in land carbon storage due to geographical and temporal variation in the thermal response of photosynthetic capacity.

    PubMed

    Mercado, Lina M; Medlyn, Belinda E; Huntingford, Chris; Oliver, Rebecca J; Clark, Douglas B; Sitch, Stephen; Zelazowski, Przemyslaw; Kattge, Jens; Harper, Anna B; Cox, Peter M

    2018-06-01

    Plant temperature responses vary geographically, reflecting thermally contrasting habitats and long-term species adaptations to their climate of origin. Plants also can acclimate to fast temporal changes in temperature regime to mitigate stress. Although plant photosynthetic responses are known to acclimate to temperature, many global models used to predict future vegetation and climate-carbon interactions do not include this process. We quantify the global and regional impacts of biogeographical variability and thermal acclimation of temperature response of photosynthetic capacity on the terrestrial carbon (C) cycle between 1860 and 2100 within a coupled climate-carbon cycle model, that emulates 22 global climate models. Results indicate that inclusion of biogeographical variation in photosynthetic temperature response is most important for present-day and future C uptake, with increasing importance of thermal acclimation under future warming. Accounting for both effects narrows the range of predictions of the simulated global land C storage in 2100 across climate projections (29% and 43% globally and in the tropics, respectively). Contrary to earlier studies, our results suggest that thermal acclimation of photosynthetic capacity makes tropical and temperate C less vulnerable to warming, but reduces the warming-induced C uptake in the boreal region under elevated CO 2 . © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  14. Will seasonally dry tropical forests be sensitive or resistant to future changes in rainfall regimes?

    DOE PAGES

    Allen, Kara; Dupuy, Juan Manuel; Gei, Maria G.; ...

    2017-02-03

    Seasonally dry tropical forests (SDTF) are located in regions with alternating wet and dry seasons, with dry seasons that last several months or more. By the end of the 21st century, climate models predict substantial changes in rainfall regimes across these regions, but little is known about how individuals, species, and communities in SDTF will cope with the hotter, drier conditions predicted by climate models. In this review, we explore different rainfall scenarios that may result in ecological drought in SDTF through the lens of two alternative hypotheses: 1) these forests will be sensitive to drought because they are alreadymore » limited by water and close to climatic thresholds, or 2) they will be resistant/resilient to intra- and inter-annual changes in rainfall because they are adapted to predictable, seasonal drought. In our review of literature that spans microbial to ecosystem processes, a majority of the available studies suggests that increasing frequency and intensity of droughts in SDTF will likely alter species distributions and ecosystem processes. Though we conclude that SDTF will be sensitive to altered rainfall regimes, many gaps in the literature remain. Future research should focus on geographically comparative studies and well-replicated drought experiments that can provide empirical evidence to improve simulation models used to forecast SDTF responses to future climate change at coarser spatial and temporal scales.« less

  15. Will seasonally dry tropical forests be sensitive or resistant to future changes in rainfall regimes?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Kara; Dupuy, Juan Manuel; Gei, Maria G.

    Seasonally dry tropical forests (SDTF) are located in regions with alternating wet and dry seasons, with dry seasons that last several months or more. By the end of the 21st century, climate models predict substantial changes in rainfall regimes across these regions, but little is known about how individuals, species, and communities in SDTF will cope with the hotter, drier conditions predicted by climate models. In this review, we explore different rainfall scenarios that may result in ecological drought in SDTF through the lens of two alternative hypotheses: 1) these forests will be sensitive to drought because they are alreadymore » limited by water and close to climatic thresholds, or 2) they will be resistant/resilient to intra- and inter-annual changes in rainfall because they are adapted to predictable, seasonal drought. In our review of literature that spans microbial to ecosystem processes, a majority of the available studies suggests that increasing frequency and intensity of droughts in SDTF will likely alter species distributions and ecosystem processes. Though we conclude that SDTF will be sensitive to altered rainfall regimes, many gaps in the literature remain. Future research should focus on geographically comparative studies and well-replicated drought experiments that can provide empirical evidence to improve simulation models used to forecast SDTF responses to future climate change at coarser spatial and temporal scales.« less

  16. Will seasonally dry tropical forests be sensitive or resistant to future changes in rainfall regimes?

    NASA Astrophysics Data System (ADS)

    Allen, Kara; Dupuy, Juan Manuel; Gei, Maria G.; Hulshof, Catherine; Medvigy, David; Pizano, Camila; Salgado-Negret, Beatriz; Smith, Christina M.; Trierweiler, Annette; Van Bloem, Skip J.; Waring, Bonnie G.; Xu, Xiangtao; Powers, Jennifer S.

    2017-02-01

    Seasonally dry tropical forests (SDTF) are located in regions with alternating wet and dry seasons, with dry seasons that last several months or more. By the end of the 21st century, climate models predict substantial changes in rainfall regimes across these regions, but little is known about how individuals, species, and communities in SDTF will cope with the hotter, drier conditions predicted by climate models. In this review, we explore different rainfall scenarios that may result in ecological drought in SDTF through the lens of two alternative hypotheses: 1) these forests will be sensitive to drought because they are already limited by water and close to climatic thresholds, or 2) they will be resistant/resilient to intra- and inter-annual changes in rainfall because they are adapted to predictable, seasonal drought. In our review of literature that spans microbial to ecosystem processes, a majority of the available studies suggests that increasing frequency and intensity of droughts in SDTF will likely alter species distributions and ecosystem processes. Though we conclude that SDTF will be sensitive to altered rainfall regimes, many gaps in the literature remain. Future research should focus on geographically comparative studies and well-replicated drought experiments that can provide empirical evidence to improve simulation models used to forecast SDTF responses to future climate change at coarser spatial and temporal scales.

  17. Anticipating changes to future connectivity within a network of marine protected areas.

    PubMed

    Coleman, Melinda A; Cetina-Heredia, Paulina; Roughan, Moninya; Feng, Ming; van Sebille, Erik; Kelaher, Brendan P

    2017-09-01

    Continental boundary currents are projected to be altered under future scenarios of climate change. As these currents often influence dispersal and connectivity among populations of many marine organisms, changes to boundary currents may have dramatic implications for population persistence. Networks of marine protected areas (MPAs) often aim to maintain connectivity, but anticipation of the scale and extent of climatic impacts on connectivity are required to achieve this critical conservation goal in a future of climate change. For two key marine species (kelp and sea urchins), we use oceanographic modelling to predict how continental boundary currents are likely to change connectivity among a network of MPAs spanning over 1000 km of coastline off the coast of eastern Australia. Overall change in predicted connectivity among pairs of MPAs within the network did not change significantly over and above temporal variation within climatic scenarios, highlighting the need for future studies to incorporate temporal variation in dispersal to robustly anticipate likely change. However, the intricacies of connectivity between different pairs of MPAs were noteworthy. For kelp, poleward connectivity among pairs of MPAs tended to increase in the future, whereas equatorward connectivity tended to decrease. In contrast, for sea urchins, connectivity among pairs of MPAs generally decreased in both directions. Self-seeding within higher-latitude MPAs tended to increase, and the role of low-latitude MPAs as a sink for urchins changed significantly in contrasting ways. These projected changes have the potential to alter important genetic parameters with implications for adaptation and ecosystem vulnerability to climate change. Considering such changes, in the context of managing and designing MPA networks, may ensure that conservation goals are achieved into the future. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  18. Assessment of climate change impact on water diversion strategies of Melamchi Water Supply Project in Nepal

    NASA Astrophysics Data System (ADS)

    Shrestha, Sangam; Shrestha, Manish; Babel, Mukand S.

    2017-04-01

    This paper analyzes the climate change impact on water diversion plan of Melamchi Water Supply Project (MWSP) in Nepal. The MWSP is an interbasin water transfer project aimed at diverting water from the Melamchi River of the Indrawati River basin to Kathmandu Valley for drinking water purpose. Future temperature and precipitation of the basin were predicted using the outputs of two regional climate models (RCMs) and two general circulation models (GCMs) under two representative concentration pathway (RCP) scenarios which were then used as inputs to Soil and Water Assessment Tool (SWAT) to predict the water availability and evaluate the water diversion strategies in the future. The average temperature of the basin is projected to increase by 2.35 to 4.25 °C under RCP 4.5 and RCP 8.5, respectively, by 2085s. The average precipitation in the basin is projected to increase by 6-18 % in the future. The annual water availability is projected to increase in the future; however, the variability is observed in monthly water availability in the basin. The water supply and demand scenarios of Kathmandu Valley was also examined by considering the population increase, unaccounted for water and water diversion from MWSP in the future. It is observed that even with the additional supply of water from MWSP and reduction of unaccounted for water, the Kathmandu Valley will be still under water scarcity in the future. The findings of this study can be helpful to formulate water supply and demand management strategies in Kathmandu Valley in the context of climate change in the future.

  19. Reconstruction of late Holocene climate based on tree growth and mechanistic hierarchical models

    USGS Publications Warehouse

    Tipton, John; Hooten, Mevin B.; Pederson, Neil; Tingley, Martin; Bishop, Daniel

    2016-01-01

    Reconstruction of pre-instrumental, late Holocene climate is important for understanding how climate has changed in the past and how climate might change in the future. Statistical prediction of paleoclimate from tree ring widths is challenging because tree ring widths are a one-dimensional summary of annual growth that represents a multi-dimensional set of climatic and biotic influences. We develop a Bayesian hierarchical framework using a nonlinear, biologically motivated tree ring growth model to jointly reconstruct temperature and precipitation in the Hudson Valley, New York. Using a common growth function to describe the response of a tree to climate, we allow for species-specific parameterizations of the growth response. To enable predictive backcasts, we model the climate variables with a vector autoregressive process on an annual timescale coupled with a multivariate conditional autoregressive process that accounts for temporal correlation and cross-correlation between temperature and precipitation on a monthly scale. Our multi-scale temporal model allows for flexibility in the climate response through time at different temporal scales and predicts reasonable climate scenarios given tree ring width data.

  20. Spatial Patterns of Sea Level Variability Associated with Natural Internal Climate Modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Weiqing; Meehl, Gerald A.; Stammer, Detlef

    Sea level rise (SLR) can exert significant stress on highly populated coastal societies and low-lying island countries around the world. Because of this, there is huge societal demand for improved decadal predictions and future projections of SLR, particularly on a local scale along coastlines. Regionally, sea level variations can deviate considerably from the global mean due to various geophysical processes. These include changes of ocean circulations, which partially can be attributed to natural, internal modes of variability in the complex Earth’s climate system. Anthropogenic influence may also contribute to regional sea level variations. Separating the effects of natural climate modesmore » and anthropogenic forcing, however, remains a challenge and requires identification of the imprint of specific climate modes in observed sea level change patterns. In this article, we review our current state of knowledge about spatial patterns of sea level variability associated with natural climate modes on interannual-to-multidecadal timescales, with particular focus on decadal-to-multidecadal variability. Relevant climate modes and our current state of understanding their associated sea level patterns and driving mechanisms are elaborated separately for the Pacific, the Indian, the Atlantic, and the Arctic and Southern Oceans. We also discuss the issues, challenges and future outlooks for understanding the regional sea level patterns associated with climate modes. Effects of these internal modes have to be taken into account in order to achieve more reliable near-term predictions and future projections of regional SLR.« less

  1. Spatial Patterns of Sea Level Variability Associated with Natural Internal Climate Modes

    DOE PAGES

    Han, Weiqing; Meehl, Gerald A.; Stammer, Detlef; ...

    2016-10-04

    Sea level rise (SLR) can exert significant stress on highly populated coastal societies and low-lying island countries around the world. Because of this, there is huge societal demand for improved decadal predictions and future projections of SLR, particularly on a local scale along coastlines. Regionally, sea level variations can deviate considerably from the global mean due to various geophysical processes. These include changes of ocean circulations, which partially can be attributed to natural, internal modes of variability in the complex Earth’s climate system. Anthropogenic influence may also contribute to regional sea level variations. Separating the effects of natural climate modesmore » and anthropogenic forcing, however, remains a challenge and requires identification of the imprint of specific climate modes in observed sea level change patterns. In this article, we review our current state of knowledge about spatial patterns of sea level variability associated with natural climate modes on interannual-to-multidecadal timescales, with particular focus on decadal-to-multidecadal variability. Relevant climate modes and our current state of understanding their associated sea level patterns and driving mechanisms are elaborated separately for the Pacific, the Indian, the Atlantic, and the Arctic and Southern Oceans. We also discuss the issues, challenges and future outlooks for understanding the regional sea level patterns associated with climate modes. Effects of these internal modes have to be taken into account in order to achieve more reliable near-term predictions and future projections of regional SLR.« less

  2. Spatial Patterns of Sea Level Variability Associated with Natural Internal Climate Modes

    NASA Astrophysics Data System (ADS)

    Han, Weiqing; Meehl, Gerald A.; Stammer, Detlef; Hu, Aixue; Hamlington, Benjamin; Kenigson, Jessica; Palanisamy, Hindumathi; Thompson, Philip

    2017-01-01

    Sea level rise (SLR) can exert significant stress on highly populated coastal societies and low-lying island countries around the world. Because of this, there is huge societal demand for improved decadal predictions and future projections of SLR, particularly on a local scale along coastlines. Regionally, sea level variations can deviate considerably from the global mean due to various geophysical processes. These include changes of ocean circulations, which partially can be attributed to natural, internal modes of variability in the complex Earth's climate system. Anthropogenic influence may also contribute to regional sea level variations. Separating the effects of natural climate modes and anthropogenic forcing, however, remains a challenge and requires identification of the imprint of specific climate modes in observed sea level change patterns. In this paper, we review our current state of knowledge about spatial patterns of sea level variability associated with natural climate modes on interannual-to-multidecadal timescales, with particular focus on decadal-to-multidecadal variability. Relevant climate modes and our current state of understanding their associated sea level patterns and driving mechanisms are elaborated separately for the Pacific, the Indian, the Atlantic, and the Arctic and Southern Oceans. We also discuss the issues, challenges and future outlooks for understanding the regional sea level patterns associated with climate modes. Effects of these internal modes have to be taken into account in order to achieve more reliable near-term predictions and future projections of regional SLR.

  3. Including the dynamic relationship between climatic variables and leaf area index in a hydrological model to improve streamflow prediction under a changing climate

    NASA Astrophysics Data System (ADS)

    Tesemma, Z. K.; Wei, Y.; Peel, M. C.; Western, A. W.

    2015-06-01

    Anthropogenic climate change is projected to enrich the atmosphere with carbon dioxide, change vegetation dynamics and influence the availability of water at the catchment scale. This study combines a nonlinear model for estimating changes in leaf area index (LAI) due to climatic fluctuations with the variable infiltration capacity (VIC) hydrological model to improve catchment streamflow prediction under a changing climate. The combined model was applied to 13 gauged sub-catchments with different land cover types (crop, pasture and tree) in the Goulburn-Broken catchment, Australia, for the "Millennium Drought" (1997-2009) relative to the period 1983-1995, and for two future periods (2021-2050 and 2071-2100) and two emission scenarios (Representative Concentration Pathway (RCP) 4.5 and RCP8.5) which were compared with the baseline historical period of 1981-2010. This region was projected to be warmer and mostly drier in the future as predicted by 38 Coupled Model Intercomparison Project Phase 5 (CMIP5) runs from 15 global climate models (GCMs) and for two emission scenarios. The results showed that during the Millennium Drought there was about a 29.7-66.3 % reduction in mean annual runoff due to reduced precipitation and increased temperature. When drought-induced changes in LAI were included, smaller reductions in mean annual runoff of between 29.3 and 61.4 % were predicted. The proportional increase in runoff due to modeling LAI was 1.3-10.2 % relative to not including LAI. For projected climate change under the RCP4.5 emission scenario, ignoring the LAI response to changing climate could lead to a further reduction in mean annual runoff of between 2.3 and 27.7 % in the near-term (2021-2050) and 2.3 to 23.1 % later in the century (2071-2100) relative to modeling the dynamic response of LAI to precipitation and temperature changes. Similar results (near-term 2.5-25.9 % and end of century 2.6-24.2 %) were found for climate change under the RCP8.5 emission scenario. Incorporating climate-induced changes in LAI in the VIC model reduced the projected declines in streamflow and confirms the importance of including the effects of changes in LAI in future projections of streamflow.

  4. Are there pre-Quaternary geological analogues for a future greenhouse warming?

    USGS Publications Warehouse

    Haywood, A.M.; Ridgwell, A.; Lunt, D.J.; Hill, D.J.; Pound, M.J.; Dowsett, H.J.; Dolan, A.M.; Francis, J.E.; Williams, M.

    2011-01-01

    Given the inherent uncertainties in predicting how climate and environments will respond to anthropogenic emissions of greenhouse gases, it would be beneficial to society if science could identify geological analogues to the human race's current grand climate experiment. This has been a focus of the geological and palaeoclimate communities over the last 30 years, with many scientific papers claiming that intervals in Earth history can be used as an analogue for future climate change. Using a coupled ocean-atmosphere modelling approach, we test this assertion for the most probable pre-Quaternary candidates of the last 100 million years: the Mid- and Late Cretaceous, the Palaeocene-Eocene Thermal Maximum (PETM), the Early Eocene, as well as warm intervals within the Miocene and Pliocene epochs. These intervals fail as true direct analogues since they either represent equilibrium climate states to a long-term CO2 forcing-whereas anthropogenic emissions of greenhouse gases provide a progressive (transient) forcing on climate-or the sensitivity of the climate system itself to CO2 was different. While no close geological analogue exists, past warm intervals in Earth history provide a unique opportunity to investigate processes that operated during warm (high CO2) climate states. Palaeoclimate and environmental reconstruction/modelling are facilitating the assessment and calculation of the response of global temperatures to increasing CO2 concentrations in the longer term (multiple centuries); this is now referred to as the Earth System Sensitivity, which is critical in identifying CO2 thresholds in the atmosphere that must not be crossed to avoid dangerous levels of climate change in the long term. Palaeoclimatology also provides a unique and independent way to evaluate the qualities of climate and Earth system models used to predict future climate. ?? 2011 The Royal Society.

  5. Are there pre-Quaternary geological analogues for a future greenhouse warming?

    PubMed

    Haywood, Alan M; Ridgwell, Andy; Lunt, Daniel J; Hill, Daniel J; Pound, Matthew J; Dowsett, Harry J; Dolan, Aisling M; Francis, Jane E; Williams, Mark

    2011-03-13

    Given the inherent uncertainties in predicting how climate and environments will respond to anthropogenic emissions of greenhouse gases, it would be beneficial to society if science could identify geological analogues to the human race's current grand climate experiment. This has been a focus of the geological and palaeoclimate communities over the last 30 years, with many scientific papers claiming that intervals in Earth history can be used as an analogue for future climate change. Using a coupled ocean-atmosphere modelling approach, we test this assertion for the most probable pre-Quaternary candidates of the last 100 million years: the Mid- and Late Cretaceous, the Palaeocene-Eocene Thermal Maximum (PETM), the Early Eocene, as well as warm intervals within the Miocene and Pliocene epochs. These intervals fail as true direct analogues since they either represent equilibrium climate states to a long-term CO(2) forcing--whereas anthropogenic emissions of greenhouse gases provide a progressive (transient) forcing on climate--or the sensitivity of the climate system itself to CO(2) was different. While no close geological analogue exists, past warm intervals in Earth history provide a unique opportunity to investigate processes that operated during warm (high CO(2)) climate states. Palaeoclimate and environmental reconstruction/modelling are facilitating the assessment and calculation of the response of global temperatures to increasing CO(2) concentrations in the longer term (multiple centuries); this is now referred to as the Earth System Sensitivity, which is critical in identifying CO(2) thresholds in the atmosphere that must not be crossed to avoid dangerous levels of climate change in the long term. Palaeoclimatology also provides a unique and independent way to evaluate the qualities of climate and Earth system models used to predict future climate.

  6. A Case Study in Caribbean Climate Change: Impacts on Crop Suitability and Small Farmer Vulnerability in St. Elizabeth, Jamaica

    NASA Astrophysics Data System (ADS)

    Curtis, W. R.; Gamble, D. W.; Popke, J.

    2013-12-01

    This paper examines some of the implications of climate change for farming in the Caribbean, through an analysis of future crop suitability and a case study of climate variability and agricultural practices in St. Elizabeth Parish, Jamaica. To assess potential changes in Caribbean agriculture, we present results from a water budget model based on a 100-year regional climate projection of temperature and precipitation for the circum-Caribbean basin. We find that future water deficits in the region are climate type-dependent. Savanna climates experience the largest annual changes, while semi-arid environments are greatly impacted in the spring. When the impacts of temperature and precipitation are considered separately, we find that predicted future warming, and the associated increase in evapotranspiration, has a slightly larger climatological effect on crop water need than predicted decreases in precipitation. To illustrate how a changing climate regime may impact agricultural practices, we present results from recent fieldwork in St. Elizabeth Parish, one of the main farming regions on the island of Jamaica. Drawing on data from farmer interviews and a recently-installed weather mesonet, we highlight the ways in which local microclimates influence farmer livelihood strategies and community-level vulnerability. Initial results suggest that farmers are experiencing greater climate variability, and that communities with Savanna and semi-arid type climates may be more susceptible to drought than communities in wetter, higher-elevation microclimates. These changes have enhanced the importance of irrigation technology and water management strategies for successful farming. In this context, we argue, large, well-capitalized farmers may be better able to manage the uncertainties associated with climate change, leading to an uneven landscape of vulnerability across the region.

  7. Modeling the Effects of Climate Change on Whitebark Pine Along the Pacific Crest Trail

    NASA Astrophysics Data System (ADS)

    Anderson, R. S.; Nguyen, A.; Gill, N.; Kannan, S.; Patadia, N.; Meyer, M.; Schmidt, C.

    2012-12-01

    The Pacific Crest Trail (PCT), one of eight National Scenic Trails, stretches 2,650 miles from Mexico to the Canadian border. At high elevations along this trail, within Inyo and Sierra National Forests, populations of whitebark pine (Pinus albicaulis) have been diminishing due to infestation of the mountain pine beetle (Dendroctonus ponderosae) and are threatened due to a changing climate. Understanding the current and future condition of whitebark pine is a primary goal of forest managers due to its high ecological and economic importance, and it is currently a candidate for protection under the Endangered Species Act (ESA). Using satellite imagery, we analyzed the rate and spatial extent of whitebark pine tree mortality from 1984 to 2011 using the Landsat-based Detection of Trends in Disturbance and Recovery (LandTrendr) program. Climate data, soil properties, and biological features of the whitebark pine were incorporated in the Physiological Principles to Predict Growth (3-PG) model to predict future rates of growth and assess its applicability in modeling natural whitebark pine processes. Finally, the Random Forest algorithm was used with topographic data alongside recent and future climate data from the IPCC A2 and B1 climate scenarios for the years 2030, 2060, and 2090 to model the future distribution of whitebark pine. LandTrendr results indicate beetle related mortality covering 14,940 km2 of forest, 2,880 km2 of which are within whitebark pine forest. By 2090, our results show that under the A2 climate scenario, whitebark pine suitable habitat may be reduced by as much as 99.97% by the year 2090 within our study area. Under the B1 climate scenario, which has decreased CO2 emissions, 13.54% more habitat would be preserved in 2090.

  8. Projected shifts in fish species dominance in Wisconsin lakes under climate change.

    PubMed

    Hansen, Gretchen J A; Read, Jordan S; Hansen, Jonathan F; Winslow, Luke A

    2017-04-01

    Temperate lakes may contain both coolwater fish species such as walleye (Sander vitreus) and warmwater fish species such as largemouth bass (Micropterus salmoides). Recent declining walleye and increasing largemouth bass populations have raised questions regarding the future trajectories and management actions for these species. We developed a thermodynamic model of water temperatures driven by downscaled climate data and lake-specific characteristics to estimate daily water temperature profiles for 2148 lakes in Wisconsin, US, under contemporary (1989-2014) and future (2040-2064 and 2065-2089) conditions. We correlated contemporary walleye recruitment and largemouth bass relative abundance to modeled water temperature, lake morphometry, and lake productivity, and projected lake-specific changes in each species under future climate conditions. Walleye recruitment success was negatively related and largemouth bass abundance was positively related to water temperature degree days. Both species exhibited a threshold response at the same degree day value, albeit in opposite directions. Degree days were predicted to increase in the future, although the magnitude of increase varied among lakes, time periods, and global circulation models (GCMs). Under future conditions, we predicted a loss of walleye recruitment in 33-75% of lakes where recruitment is currently supported and a 27-60% increase in the number of lakes suitable for high largemouth bass abundance. The percentage of lakes capable of supporting abundant largemouth bass but failed walleye recruitment was predicted to increase from 58% in contemporary conditions to 86% by mid-century and to 91% of lakes by late century, based on median projections across GCMs. Conversely, the percentage of lakes with successful walleye recruitment and low largemouth bass abundance was predicted to decline from 9% of lakes in contemporary conditions to only 1% of lakes in both future periods. Importantly, we identify up to 85 resilient lakes predicted to continue to support natural walleye recruitment. Management resources could target preserving these resilient walleye populations. © 2016 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

  9. Projected shifts in fish species dominance in Wisconsin lakes under climate change

    USGS Publications Warehouse

    Hansen, Gretchen JA; Read, Jordan S.; Hansen, Jonathan F.; Winslow, Luke

    2016-01-01

    Temperate lakes may contain both coolwater fish species such as walleye (Sander vitreus) and warmwater fish species such as largemouth bass (Micropterus salmoides). Recent declining walleye and increasing largemouth bass populations have raised questions regarding the future trajectories and management actions for these species. We developed a thermodynamic model of water temperatures driven by downscaled climate data and lake-specific characteristics to estimate daily water temperature profiles for 2148 lakes in Wisconsin, US, under contemporary (1989–2014) and future (2040–2064 and 2065–2089) conditions. We correlated contemporary walleye recruitment and largemouth bass relative abundance to modeled water temperature, lake morphometry, and lake productivity, and projected lake-specific changes in each species under future climate conditions. Walleye recruitment success was negatively related and largemouth bass abundance was positively related to water temperature degree days. Both species exhibited a threshold response at the same degree day value, albeit in opposite directions. Degree days were predicted to increase in the future, although the magnitude of increase varied among lakes, time periods, and global circulation models (GCMs). Under future conditions, we predicted a loss of walleye recruitment in 33–75% of lakes where recruitment is currently supported and a 27–60% increase in the number of lakes suitable for high largemouth bass abundance. The percentage of lakes capable of supporting abundant largemouth bass but failed walleye recruitment was predicted to increase from 58% in contemporary conditions to 86% by mid-century and to 91% of lakes by late century, based on median projections across GCMs. Conversely, the percentage of lakes with successful walleye recruitment and low largemouth bass abundance was predicted to decline from 9% of lakes in contemporary conditions to only 1% of lakes in both future periods. Importantly, we identify up to 85 resilient lakes predicted to continue to support natural walleye recruitment. Management resources could target preserving these resilient walleye populations.

  10. Evaluating simplistic methods to understand current distributions and forecast distribution changes under climate change scenarios: An example with coypu (Myocastor coypus)

    USGS Publications Warehouse

    Jarnevich, Catherine S.; Young, Nicholas E; Sheffels, Trevor R.; Carter, Jacoby; Systma, Mark D.; Talbert, Colin

    2017-01-01

    Invasive species provide a unique opportunity to evaluate factors controlling biogeographic distributions; we can consider introduction success as an experiment testing suitability of environmental conditions. Predicting potential distributions of spreading species is not easy, and forecasting potential distributions with changing climate is even more difficult. Using the globally invasive coypu (Myocastor coypus [Molina, 1782]), we evaluate and compare the utility of a simplistic ecophysiological based model and a correlative model to predict current and future distribution. The ecophysiological model was based on winter temperature relationships with nutria survival. We developed correlative statistical models using the Software for Assisted Habitat Modeling and biologically relevant climate data with a global extent. We applied the ecophysiological based model to several global circulation model (GCM) predictions for mid-century. We used global coypu introduction data to evaluate these models and to explore a hypothesized physiological limitation, finding general agreement with known coypu distribution locally and globally and support for an upper thermal tolerance threshold. Global circulation model based model results showed variability in coypu predicted distribution among GCMs, but had general agreement of increasing suitable area in the USA. Our methods highlighted the dynamic nature of the edges of the coypu distribution due to climate non-equilibrium, and uncertainty associated with forecasting future distributions. Areas deemed suitable habitat, especially those on the edge of the current known range, could be used for early detection of the spread of coypu populations for management purposes. Combining approaches can be beneficial to predicting potential distributions of invasive species now and in the future and in exploring hypotheses of factors controlling distributions.

  11. Climate Observations from Space

    NASA Astrophysics Data System (ADS)

    Briggs, Stephen

    2016-07-01

    The latest Global Climate Observing System (GCOS) Status Report on global climate observations, delivered to the UNFCCC COP21 in November 2016, showed how satellite data are critical for observations relating to climate. Of the 50 Essential Climate Variables (ECVs) identified by GCOS as necessary for understanding climate change, about half are derived only from satellite data while half of the remainder have a significant input from satellites. Hence data from Earth observing satellite systems are now a fundamental requirement for understanding the climate system and for managing the consequences of climate change. Following the Paris Agreement of COP21 this need is only greater. Not only will satellites have to continue to provide data for modelling and predicting climate change but also for a much wider range of actions relating to climate. These include better information on loss and damage, resilience, improved adaptation to change, and on mitigation including information on greenhouse gas emissions. In addition there is an emerging need for indicators of the risks associated with future climate change which need to be better quantified, allowing policy makers both to understand what decisions need to be taken, and to see the consequences of their actions. The presentation will set out some of the ways in which satellite data are important in all aspects of understanding, managing and predicting climate change and how they may be used to support future decisions by those responsible for policy related to managing climate change and its consequences.

  12. Past climate variability and change in the Arctic and at high latitudes

    USGS Publications Warehouse

    Alley, Richard B.; Brigham-Grette, Julie; Miller, Gifford H.; Polyak, Leonid; ,; ,; ,

    2009-01-01

    Paleoclimate records play a key role in our understanding of Earth's past and present climate system and in our confidence in predicting future climate changes. Paleoclimate data help to elucidate past and present active mechanisms of climate change by placing the short instrumental record into a longer term context and by permitting models to be tested beyond the limited time that instrumental measurements have been available.

  13. Facilitation among plants in alpine environments in the face of climate change.

    PubMed

    Anthelme, Fabien; Cavieres, Lohengrin A; Dangles, Olivier

    2014-01-01

    While there is a large consensus that plant-plant interactions are a crucial component of the response of plant communities to the effects of climate change, available data remain scarce, particularly in alpine systems. This represents an important obstacle to making consistent predictions about the future of plant communities. Here, we review current knowledge on the effects of climate change on facilitation among alpine plant communities and propose directions for future research. In established alpine communities, while warming seemingly generates a net facilitation release, earlier snowmelt may increase facilitation. Some nurse plants are able to buffer microenvironmental changes in the long term and may ensure the persistence of other alpine plants through local migration events. For communities migrating to higher elevations, facilitation should play an important role in their reorganization because of the harsher environmental conditions. In particular, the absence of efficient nurse plants might slow down upward migration, possibly generating chains of extinction. Facilitation-climate change relationships are expected to shift along latitudinal gradients because (1) the magnitude of warming is predicted to vary along these gradients, and (2) alpine environments are significantly different at low vs. high latitudes. Data on these expected patterns are preliminary and thus need to be tested with further studies on facilitation among plants in alpine environments that have thus far not been considered. From a methodological standpoint, future studies will benefit from the spatial representation of the microclimatic environment of plants to predict their response to climate change. Moreover, the acquisition of long-term data on the dynamics of plant-plant interactions, either through permanent plots or chronosequences of glacial recession, may represent powerful approaches to clarify the relationship between plant interactions and climate change.

  14. Facilitation among plants in alpine environments in the face of climate change

    PubMed Central

    Anthelme, Fabien; Cavieres, Lohengrin A.; Dangles, Olivier

    2014-01-01

    While there is a large consensus that plant–plant interactions are a crucial component of the response of plant communities to the effects of climate change, available data remain scarce, particularly in alpine systems. This represents an important obstacle to making consistent predictions about the future of plant communities. Here, we review current knowledge on the effects of climate change on facilitation among alpine plant communities and propose directions for future research. In established alpine communities, while warming seemingly generates a net facilitation release, earlier snowmelt may increase facilitation. Some nurse plants are able to buffer microenvironmental changes in the long term and may ensure the persistence of other alpine plants through local migration events. For communities migrating to higher elevations, facilitation should play an important role in their reorganization because of the harsher environmental conditions. In particular, the absence of efficient nurse plants might slow down upward migration, possibly generating chains of extinction. Facilitation–climate change relationships are expected to shift along latitudinal gradients because (1) the magnitude of warming is predicted to vary along these gradients, and (2) alpine environments are significantly different at low vs. high latitudes. Data on these expected patterns are preliminary and thus need to be tested with further studies on facilitation among plants in alpine environments that have thus far not been considered. From a methodological standpoint, future studies will benefit from the spatial representation of the microclimatic environment of plants to predict their response to climate change. Moreover, the acquisition of long-term data on the dynamics of plant–plant interactions, either through permanent plots or chronosequences of glacial recession, may represent powerful approaches to clarify the relationship between plant interactions and climate change. PMID:25161660

  15. Evaluating Fire Risk in the Northeastern United States in the Past, Present, and Future

    NASA Astrophysics Data System (ADS)

    Miller, D.; Bradley, R. S.

    2017-12-01

    One poorly understood consequence of climate change is its effects on extreme events such as wildfires. Robust associations between wildfire frequency and climatic variability have been shown to exist, indicating that future climate change may continue to have a significant effect on wildfire activity. The Northeastern United States (NEUS) has seen some of the most infamous and largest historic fires in North America, such as the Miramichi Fire of 1825 and the fires of 1947. Although return intervals for large fires in the NEUS are long (hundreds of years), wildfires have played a critical role in ecosystem development and forest structure in the region. Understanding and predicting fire occurrence and vulnerability in the NEUS, especially in a changing climate, is economically and culturally important yet remains difficult due to human impacts (i.e. fire suppression activities and human disturbance). Thus, an alternative method for investigating fire risk in the NEUS is needed. Here, we present a compilation of meteorological data collected from Automated Surface Observing Systems (ASOS) from the NEUS throughout the 20th century through present day. We use these data to compute fifteen common "fire danger indices" employed in the USA and Canada to investigate changes in the region's fire risk over time, as well as the skill of each of these indices at predicting wildfire activity relative to the historical record of fires in the NEUS. We use dynamically-downscaled regional climate model output for the 21st century to project future wildfire activity based on the fire danger indices capable of capturing historical fire activity in the NEUS. These projections will aid in predicting how fire risk in the NEUS will evolve with anticipated climate change.

  16. Integrating geological archives and climate models for the mid-Pliocene warm period.

    PubMed

    Haywood, Alan M; Dowsett, Harry J; Dolan, Aisling M

    2016-02-16

    The mid-Pliocene Warm Period (mPWP) offers an opportunity to understand a warmer-than-present world and assess the predictive ability of numerical climate models. Environmental reconstruction and climate modelling are crucial for understanding the mPWP, and the synergy of these two, often disparate, fields has proven essential in confirming features of the past and in turn building confidence in projections of the future. The continual development of methodologies to better facilitate environmental synthesis and data/model comparison is essential, with recent work demonstrating that time-specific (time-slice) syntheses represent the next logical step in exploring climate change during the mPWP and realizing its potential as a test bed for understanding future climate change.

  17. Integrating geological archives and climate models for the mid-Pliocene warm period

    PubMed Central

    Haywood, Alan M.; Dowsett, Harry J.; Dolan, Aisling M.

    2016-01-01

    The mid-Pliocene Warm Period (mPWP) offers an opportunity to understand a warmer-than-present world and assess the predictive ability of numerical climate models. Environmental reconstruction and climate modelling are crucial for understanding the mPWP, and the synergy of these two, often disparate, fields has proven essential in confirming features of the past and in turn building confidence in projections of the future. The continual development of methodologies to better facilitate environmental synthesis and data/model comparison is essential, with recent work demonstrating that time-specific (time-slice) syntheses represent the next logical step in exploring climate change during the mPWP and realizing its potential as a test bed for understanding future climate change. PMID:26879640

  18. Future change of water vaiables from HadGEM2-AO simulation

    NASA Astrophysics Data System (ADS)

    Kim, Moon-Hyun; Kang, Hyun-Suk; Lee, Johan; Baek, Hee-Jeong; Cho, Chunho

    2013-04-01

    Complex global models developed for climate prediction are now applied to the future climate projection in a number of global modeling centers around the world. In climate prediction aspects, an atmosphere-ocean coupled model (one-tier climate system) has been recognized to exhibit useful skill for a global or certain regions (Graham et al., 2005). Wang et al. (2005) demonstrates that an AGCM coupled with an ocean model, simulates realistic SST-rainfall relationships for the Asia during the summer period. Also the transition from two-tier to one-tier approach in climate prediction are mainly caused by recent progresses in development of coupled climate models and enlargement of understanding air-sea interactions obtained from international collaborative efforts such as TOGA (the Tropical Ocean-Global Atmosphere) program (Wang et al., 2009). Meanwhile, water resource including river outflow in association with surface and sub-surface water flow is an important part of the global hydrological cycle, and is affected by climate variability and change through recharge processes (Chen et al., 2002), as well as by human interventions in many locations (Petheram et al., 2001). Also, water is critical resource to the social, economic and environmental aspects, and advances of these core elements requires improved water resource management. Better management and use of water need to abundant real time hydro-meteorological (river and weather) information as well as accurate water resource forecasting (Barrett, 1990). For this reason, many studies have recently carrying out the water resource prediction and estimation using hydrology and climate model. For example, Shiklomanov et al. (2011) predicted that water resource in Russian territory increases about 8-10% during 2010-2020 using the unit hydrograph (UH) model based on hydrologic rainfall-runoff model. Anderson et al. (2000) explained the probabilistic seasonal prediction of drought with a simplified climate model coupled hydrology-atmosphere for water resource planning. Arora et al. (1999) and Oki and Sud (1998) developed a method for routing river flows through GCM grid cells. Accordingly, reliable forecasts are expected to help water managers and users with long lead time decisions, leading to greater water use efficiency and better risk management (Wang, 2012). SO, we analysed hydrological cycle and drought index from precipitation, evaporation, runoff, soil moisture, river outflow, and so on using atmosphere-ocean coupled model which called by HadGEM2-AO. Details and added information by this climate projection system about the future water cycle's change will be presented at the workshop. Acknowledgments: This research has been supported by project NIMR-2013-B-2 of the National Institute of Meteorological Research in Korea Meteorological Administration.

  19. Environmental determinants of tropical forest and savanna distribution: A quantitative model evaluation and its implication

    NASA Astrophysics Data System (ADS)

    Zeng, Zhenzhong; Chen, Anping; Piao, Shilong; Rabin, Sam; Shen, Zehao

    2014-07-01

    The distributions of tropical ecosystems are rapidly being altered by climate change and anthropogenic activities. One possible trend—the loss of tropical forests and replacement by savannas—could result in significant shifts in ecosystem services and biodiversity loss. However, the influence and the relative importance of environmental factors in regulating the distribution of tropical forest and savanna biomes are still poorly understood, which makes it difficult to predict future tropical forest and savanna distributions in the context of climate change. Here we use boosted regression trees to quantitatively evaluate the importance of environmental predictors—mainly climatic, edaphic, and fire factors—for the tropical forest-savanna distribution at a mesoscale across the tropics (between 15°N and 35°S). Our results demonstrate that climate alone can explain most of the distribution of tropical forest and savanna at the scale considered; dry season average precipitation is the single most important determinant across tropical Asia-Australia, Africa, and South America. Given the strong tendency of increased seasonality and decreased dry season precipitation predicted by global climate models, we estimate that about 28% of what is now tropical forest would likely be lost to savanna by the late 21st century under the future scenario considered. This study highlights the importance of climate seasonality and interannual variability in predicting the distribution of tropical forest and savanna, supporting the climate as the primary driver in the savanna biogeography.

  20. Climate change and the distribution and conservation of the world's highest elevation woodlands in the South American Altiplano

    NASA Astrophysics Data System (ADS)

    Cuyckens, G. A. E.; Christie, D. A.; Domic, A. I.; Malizia, L. R.; Renison, D.

    2016-02-01

    Climate change is becoming an increasing threat to biodiversity. Consequently, methods for delineation, establishment and management of protected areas must consider the species' future distribution in response to future climate conditions. Biodiversity in high altitude semiarid regions may be particularly threatened by future climate change. In this study we assess the main environmental variables that best explain present day presence of the world's highest elevation woodlands in the South American Altiplano, and model how climate change may affect the future distribution of this unique ecosystem under different climate change scenarios. These woodlands are dominated by Polylepis tarapacana (Rosaceae), a species that forms unique biological communities with important conservation value. Our results indicate that five environmental variables are responsible for 91% and 90.3% of the present and future P. tarapacana distribution models respectively, and suggest that at the end of the 21st century, there will be a significant reduction (56%) in the potential habitat for this species due to more arid conditions. Since it is predicted that P. tarapacana's potential distribution will be severely reduced in the future, we propose a new network of national protected areas across this species distribution range in order to insure the future conservation of this unique ecosystem. Based on an extensive literature review we identify research topics and recommendations for on-ground conservation and management of P. tarapacana woodlands.

  1. Conflict in a changing climate

    NASA Astrophysics Data System (ADS)

    Carleton, T.; Hsiang, S. M.; Burke, M.

    2016-05-01

    A growing body of research illuminates the role that changes in climate have had on violent conflict and social instability in the recent past. Across a diversity of contexts, high temperatures and irregular rainfall have been causally linked to a range of conflict outcomes. These findings can be paired with climate model output to generate projections of the impact future climate change may have on conflicts such as crime and civil war. However, there are large degrees of uncertainty in such projections, arising from (i) the statistical uncertainty involved in regression analysis, (ii) divergent climate model predictions, and (iii) the unknown ability of human societies to adapt to future climate change. In this article, we review the empirical evidence of the climate-conflict relationship, provide insight into the likely extent and feasibility of adaptation to climate change as it pertains to human conflict, and discuss new methods that can be used to provide projections that capture these three sources of uncertainty.

  2. Climate Change Assessment of Precipitation in Tandula Reservoir System

    NASA Astrophysics Data System (ADS)

    Jaiswal, Rahul Kumar; Tiwari, H. L.; Lohani, A. K.

    2018-02-01

    The precipitation is the principle input of hydrological cycle affect availability of water in spatial and temporal scale of basin due to widely accepted climate change. The present study deals with the statistical downscaling using Statistical Down Scaling Model for rainfall of five rain gauge stations (Ambagarh, Bhanpura, Balod, Chamra and Gondli) in Tandula, Kharkhara and Gondli reservoirs of Chhattisgarh state of India to forecast future rainfall in three different periods under SRES A1B and A2 climatic forcing conditions. In the analysis, twenty-six climatic variables obtained from National Centers for Environmental Prediction were used and statistically tested for selection of best-fit predictors. The conditional process based statistical correlation was used to evolve multiple linear relations in calibration for period of 1981-1995 was tested with independent data of 1996-2003 for validation. The developed relations were further used to predict future rainfall scenarios for three different periods 2020-2035 (FP-1), 2046-2064 (FP-2) and 2081-2100 (FP-3) and compared with monthly rainfalls during base period (1981-2003) for individual station and all three reservoir catchments. From the analysis, it has been found that most of the rain gauge stations and all three reservoir catchments may receive significant less rainfall in future. The Thiessen polygon based annual and seasonal rainfall for different catchments confirmed a reduction of seasonal rainfall from 5.1 to 14.1% in Tandula reservoir, 11-19.2% in Kharkhara reservoir and 15.1-23.8% in Gondli reservoir. The Gondli reservoir may be affected the most in term of water availability in future prediction periods.

  3. Prediction of climate change in Brunei Darussalam using statistical downscaling model

    NASA Astrophysics Data System (ADS)

    Hasan, Dk. Siti Nurul Ain binti Pg. Ali; Ratnayake, Uditha; Shams, Shahriar; Nayan, Zuliana Binti Hj; Rahman, Ena Kartina Abdul

    2017-06-01

    Climate is changing and evidence suggests that the impact of climate change would influence our everyday lives, including agriculture, built environment, energy management, food security and water resources. Brunei Darussalam located within the heart of Borneo will be affected both in terms of precipitation and temperature. Therefore, it is crucial to comprehend and assess how important climate indicators like temperature and precipitation are expected to vary in the future in order to minimise its impact. This study assesses the application of a statistical downscaling model (SDSM) for downscaling General Circulation Model (GCM) results for maximum and minimum temperatures along with precipitation in Brunei Darussalam. It investigates future climate changes based on numerous scenarios using Hadley Centre Coupled Model, version 3 (HadCM3), Canadian Earth System Model (CanESM2) and third-generation Coupled Global Climate Model (CGCM3) outputs. The SDSM outputs were improved with the implementation of bias correction and also using a monthly sub-model instead of an annual sub-model. The outcomes of this assessment show that monthly sub-model performed better than the annual sub-model. This study indicates a satisfactory applicability for generation of maximum temperatures, minimum temperatures and precipitation for future periods of 2017-2046 and 2047-2076. All considered models and the scenarios were consistent in predicting increasing trend of maximum temperature, increasing trend of minimum temperature and decreasing trend of precipitations. Maximum overall trend of Tmax was also observed for CanESM2 with Representative Concentration Pathways (RCP) 8.5 scenario. The increasing trend is 0.014 °C per year. Accordingly, by 2076, the highest prediction of average maximum temperatures is that it will increase by 1.4 °C. The same model predicts an increasing trend of Tmin of 0.004 °C per year, while the highest trend is seen under CGCM3-A2 scenario which is 0.009 °C per year. The highest change predicted for the Tmin is therefore 0.9 °C by 2076. The precipitation showed a maximum trend of decrease of 12.7 mm year. It is also seen in the output using CanESM2 data that precipitation will be more chaotic with some reaching 4800 mm per year and also producing low rainfall about 1800 mm per year. All GCMs considered are consistent in predicting it is very likely that Brunei is expected to experience more warming as well as less frequent precipitation events but with a possibility of intensified and drastically high rainfalls in the future.

  4. Projected changes in daily fire spread across Canada over the next century

    NASA Astrophysics Data System (ADS)

    Wang, Xianli; Parisien, Marc-André; Taylor, Steve W.; Candau, Jean-Noël; Stralberg, Diana; Marshall, Ginny A.; Little, John M.; Flannigan, Mike D.

    2017-02-01

    In the face of climate change, predicting and understanding future fire regimes across Canada is a high priority for wildland fire research and management. Due in large part to the difficulties in obtaining future daily fire weather projections, one of the major challenges in predicting future fire activity is to estimate how much of the change in weather potential could translate into on-the-ground fire spread. As a result, past studies have used monthly, annual, or multi-decadal weather projections to predict future fires, thereby sacrificing information relevant to day-to-day fire spread. Using climate projections from the fifth phase of the Coupled Model Intercomparison Project (CMIP5), historical weather observations, MODIS fire detection data, and the national fire database of Canada, this study investigated potential changes in the number of active burning days of wildfires by relating ‘spread days’ to patterns of daily fire-conducive weather. Results suggest that climate change over the next century may have significant impacts on fire spread days in almost all parts of Canada’s forested landmass; the number of fire spread days could experience a 2-to-3-fold increase under a high CO2 forcing scenario in eastern Canada, and a greater than 50% increase in western Canada, where the fire potential is already high. The change in future fire spread is critical in understanding fire regime changes, but is also imminently relevant to fire management operations and in fire risk mitigation.

  5. The Copernicus Climate Change Service (C3S): Open Access to a Climate Data Store

    NASA Astrophysics Data System (ADS)

    Thepaut, Jean-Noel; Dee, Dick

    2016-04-01

    In November 2014, The European Centre for Medium-range Weather Forecasts (ECMWF) signed an agreement with the European Commission to deliver two of the Copernicus Earth Observation Programme Services on the Commission's behalf. The ECMWF delivered services - the Copernicus Climate Change Service (C3S) and Atmosphere Monitoring Service (CAMS) - will bring a consistent standard to how we monitor and predict atmospheric conditions and climate change. They will maximise the potential of past, current and future earth observations - ground, ocean, airborne, satellite - and analyse these to monitor and predict atmospheric conditions and in the future, climate change. With the wealth of free and open data that the services provide, they will help business users to assess the impact of their business decisions and make informed choices, delivering a more energy efficient and climate aware economy. These sound investment decisions now will not only stimulate growth in the short term, but reduce the impact of climate change on the economy and society in the future. C3S is in its proof of concept phase and through its Climate Data Store will provide • global and regional climate data reanalyses; • multi-model seasonal forecasts; • customisable visual data to enable examination of wide range of scenarios and model the impact of changes; • access to all the underlying data, including climate data records from various satellite and in-situ observations. In addition, C3S will provide key indicators on climate change drivers (such as carbon dioxide) and impacts (such as reducing glaciers). The aim of these indicators will be to support European adaptation and mitigation policies in a number of economic sectors. At the heart of the Service is the provision of open access to a one stop shop (the Climate Data Store) of climate data and modelling, analysing more than 20 Essential Climate Variables to build a global picture of our past, present and future climate and developing customisable climate indicators for key economic sectors, such as energy, water management, agriculture, insurance, health… This talk will focus on the Climate Data Store facility, designed as a distributed system, providing improved access to existing datasets though a unified web interface. This service will accommodate the needs of the highly diverse set of users, from policy makers to expert practitioners and scientists.

  6. Simulating soil organic carbon stock as affected by land cover change and climate change, Hyrcanian forests (northern Iran).

    PubMed

    Soleimani, Azam; Hosseini, Seyed Mohsen; Massah Bavani, Ali Reza; Jafari, Mostafa; Francaviglia, Rosa

    2017-12-01

    Soil organic carbon (SOC) contains a considerable portion of the world's terrestrial carbon stock, and is affected by changes in land cover and climate. SOC modeling is a useful approach to assess the impact of land use, land use change and climate change on carbon (C) sequestration. This study aimed to: (i) test the performance of RothC model using data measured from different land covers in Hyrcanian forests (northern Iran); and (ii) predict changes in SOC under different climate change scenarios that may occur in the future. The following land covers were considered: Quercus castaneifolia (QC), Acer velutinum (AV), Alnus subcordata (AS), Cupressus sempervirens (CS) plantations and a natural forest (NF). For assessment of future climate change projections the Fifth Assessment IPCC report was used. These projections were generated with nine Global Climate Models (GCMs), for two Representative Concentration Pathways (RCPs) leading to very low and high greenhouse gases concentration levels (RCP 2.6 and RCP 8.5 respectively), and for four 20year-periods up to 2099 (2030s, 2050s, 2070s and 2090s). Simulated values of SOC correlated well with measured data (R 2 =0.64 to 0.91) indicating a good efficiency of the RothC model. Our results showed an overall decrease in SOC stocks by 2099 under all land covers and climate change scenarios, but the extent of the decrease varied with the climate models, the emissions scenarios, time periods and land covers. Acer velutinum plantation was the most sensitive land cover to future climate change (range of decrease 8.34-21.83tCha -1 ). Results suggest that modeling techniques can be effectively applied for evaluating SOC stocks, allowing the identification of current patterns in the soil and the prediction of future conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Incorporating exposure to pitch canker disease to support management decisions of Pinus pinaster Ait. in the face of climate change.

    PubMed

    Serra-Varela, María Jesús; Alía, Ricardo; Pórtoles, Javier; Gonzalo, Julián; Soliño, Mario; Grivet, Delphine; Raposo, Rosa

    2017-01-01

    Climate change is gravely affecting forest ecosystems, resulting in large distribution shifts as well as in increasing infection diseases and biological invasions. Accordingly, forest management requires an evaluation of exposure to climate change that should integrate both its abiotic and biotic components. Here we address the implications of climate change in an emerging disease by analysing both the host species (Pinus pinaster, Maritime pine) and the pathogen's (Fusarium circinatum, pitch canker) environmental suitability i.e. estimating the host's risk of habitat loss and the disease`s future environmental range. We constrained our study area to the Spanish Iberian Peninsula, where accurate climate and pitch canker occurrence databases were available. While P. pinaster is widely distributed across the study area, the disease has only been detected in its north-central and north-western edges. We fitted species distribution models for the current distribution of the conifer and the disease. Then, these models were projected into nine Global Climate Models and two different climatic scenarios which totalled to 18 different future climate predictions representative of 2050. Based on the level of agreement among them, we created future suitability maps for the pine and for the disease independently, which were then used to assess exposure of current populations of P. pinaster to abiotic and biotic effects of climate change. Almost the entire distribution of P. pinaster in the Spanish Iberian Peninsula will be subjected to abiotic exposure likely to be driven by the predicted increase in drought events in the future. Furthermore, we detected a reduction in exposure to pitch canker that will be concentrated along the north-western edge of the study area. Setting up breeding programs is recommended in highly exposed and productive populations, while silvicultural methods and monitoring should be applied in those less productive, but still exposed, populations.

  8. Simulation of an ensemble of future climate time series with an hourly weather generator

    NASA Astrophysics Data System (ADS)

    Caporali, E.; Fatichi, S.; Ivanov, V. Y.; Kim, J.

    2010-12-01

    There is evidence that climate change is occurring in many regions of the world. The necessity of climate change predictions at the local scale and fine temporal resolution is thus warranted for hydrological, ecological, geomorphological, and agricultural applications that can provide thematic insights into the corresponding impacts. Numerous downscaling techniques have been proposed to bridge the gap between the spatial scales adopted in General Circulation Models (GCM) and regional analyses. Nevertheless, the time and spatial resolutions obtained as well as the type of meteorological variables may not be sufficient for detailed studies of climate change effects at the local scales. In this context, this study presents a stochastic downscaling technique that makes use of an hourly weather generator to simulate time series of predicted future climate. Using a Bayesian approach, the downscaling procedure derives distributions of factors of change for several climate statistics from a multi-model ensemble of GCMs. Factors of change are sampled from their distributions using a Monte Carlo technique to entirely account for the probabilistic information obtained with the Bayesian multi-model ensemble. Factors of change are subsequently applied to the statistics derived from observations to re-evaluate the parameters of the weather generator. The weather generator can reproduce a wide set of climate variables and statistics over a range of temporal scales, from extremes, to the low-frequency inter-annual variability. The final result of such a procedure is the generation of an ensemble of hourly time series of meteorological variables that can be considered as representative of future climate, as inferred from GCMs. The generated ensemble of scenarios also accounts for the uncertainty derived from multiple GCMs used in downscaling. Applications of the procedure in reproducing present and future climates are presented for different locations world-wide: Tucson (AZ), Detroit (MI), and Firenze (Italy). The stochastic downscaling is carried out with eight GCMs from the CMIP3 multi-model dataset (IPCC 4AR, A1B scenario).

  9. Incorporating exposure to pitch canker disease to support management decisions of Pinus pinaster Ait. in the face of climate change

    PubMed Central

    Serra-Varela, María Jesús; Alía, Ricardo; Pórtoles, Javier; Gonzalo, Julián; Soliño, Mario; Grivet, Delphine; Raposo, Rosa

    2017-01-01

    Climate change is gravely affecting forest ecosystems, resulting in large distribution shifts as well as in increasing infection diseases and biological invasions. Accordingly, forest management requires an evaluation of exposure to climate change that should integrate both its abiotic and biotic components. Here we address the implications of climate change in an emerging disease by analysing both the host species (Pinus pinaster, Maritime pine) and the pathogen’s (Fusarium circinatum, pitch canker) environmental suitability i.e. estimating the host’s risk of habitat loss and the disease`s future environmental range. We constrained our study area to the Spanish Iberian Peninsula, where accurate climate and pitch canker occurrence databases were available. While P. pinaster is widely distributed across the study area, the disease has only been detected in its north-central and north-western edges. We fitted species distribution models for the current distribution of the conifer and the disease. Then, these models were projected into nine Global Climate Models and two different climatic scenarios which totalled to 18 different future climate predictions representative of 2050. Based on the level of agreement among them, we created future suitability maps for the pine and for the disease independently, which were then used to assess exposure of current populations of P. pinaster to abiotic and biotic effects of climate change. Almost the entire distribution of P. pinaster in the Spanish Iberian Peninsula will be subjected to abiotic exposure likely to be driven by the predicted increase in drought events in the future. Furthermore, we detected a reduction in exposure to pitch canker that will be concentrated along the north-western edge of the study area. Setting up breeding programs is recommended in highly exposed and productive populations, while silvicultural methods and monitoring should be applied in those less productive, but still exposed, populations. PMID:28192454

  10. The U.S. Geological Survey Climate Geo Data Portal: an integrated broker for climate and geospatial data

    USGS Publications Warehouse

    Blodgett, David L.

    2013-01-01

    The increasing availability of downscaled climate projections and other data products that summarize or predict climate conditions, is making climate data use more common in research and management. Scientists and decisionmakers often need to construct ensembles and compare climate hindcasts and future projections for particular spatial areas. These tasks generally require an investigator to procure all datasets of interest en masse, integrate the various data formats and representations into commonly accessible and comparable formats, and then extract the subsets of the datasets that are actually of interest. This process can be challenging and time intensive due to data-transfer, -storage, and(or) -processing limits, or unfamiliarity with methods of accessing climate data. Data management for modeling and assessing the impacts of future climate conditions is also becoming increasingly expensive due to the size of the datasets. The Climate Geo Data Portal (http://cida.usgs.gov/climate/gdp/) addresses these limitations, making access to numerous climate datasets for particular areas of interest a simple and efficient task.

  11. Estimating uncertainty and its temporal variation related to global climate models in quantifying climate change impacts on hydrology

    NASA Astrophysics Data System (ADS)

    Shen, Mingxi; Chen, Jie; Zhuan, Meijia; Chen, Hua; Xu, Chong-Yu; Xiong, Lihua

    2018-01-01

    Uncertainty estimation of climate change impacts on hydrology has received much attention in the research community. The choice of a global climate model (GCM) is usually considered as the largest contributor to the uncertainty of climate change impacts. The temporal variation of GCM uncertainty needs to be investigated for making long-term decisions to deal with climate change. Accordingly, this study investigated the temporal variation (mainly long-term) of uncertainty related to the choice of a GCM in predicting climate change impacts on hydrology by using multi-GCMs over multiple continuous future periods. Specifically, twenty CMIP5 GCMs under RCP4.5 and RCP8.5 emission scenarios were adapted to adequately represent this uncertainty envelope, fifty-one 30-year future periods moving from 2021 to 2100 with 1-year interval were produced to express the temporal variation. Future climatic and hydrological regimes over all future periods were compared to those in the reference period (1971-2000) using a set of metrics, including mean and extremes. The periodicity of climatic and hydrological changes and their uncertainty were analyzed using wavelet analysis, while the trend was analyzed using Mann-Kendall trend test and regression analysis. The results showed that both future climate change (precipitation and temperature) and hydrological response predicted by the twenty GCMs were highly uncertain, and the uncertainty increased significantly over time. For example, the change of mean annual precipitation increased from 1.4% in 2021-2050 to 6.5% in 2071-2100 for RCP4.5 in terms of the median value of multi-models, but the projected uncertainty reached 21.7% in 2021-2050 and 25.1% in 2071-2100 for RCP4.5. The uncertainty under a high emission scenario (RCP8.5) was much larger than that under a relatively low emission scenario (RCP4.5). Almost all climatic and hydrological regimes and their uncertainty did not show significant periodicity at the P = .05 significance level, but their temporal variation could be well modeled by using the fourth-order polynomial. Overall, this study further emphasized the importance of using multiple GCMs for studying climate change impacts on hydrology. Furthermore, the temporal variation of uncertainty sourced from GCMs should be given more attention.

  12. Tool for obtaining projected future climate inputs for the WEPP and SWAT models

    USDA-ARS?s Scientific Manuscript database

    Climate change is an increasingly important issue affecting natural resources. Rising temperatures, reductions in snow cover, and variability in precipitation depths and intensities are altering the accepted normal approaches for predicting runoff, soil erosion, and chemical losses from upland areas...

  13. Biomes computed from simulated climatologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Claussen, M.; Esch, M.

    1994-01-01

    The biome model of Prentice et al. is used to predict global patterns of potential natural plant formations, or biomes, from climatologies simulated by ECHAM, a model used for climate simulations at the Max-Planck-Institut fuer Meteorologie. This study undertaken in order to show the advantage of this biome model in diagnosing the performance of a climate model and assessing effects of past and future climate changes predicted by a climate model. Good overall agreement is found between global patterns of biomes computed from observed and simulated data of present climate. But there are also major discrepancies indicated by a differencemore » in biomes in Australia, in the Kalahari Desert, and in the Middle West of North America. These discrepancies can be traced back to in simulated rainfall as well as summer or winter temperatures. Global patterns of biomes computed from an ice age simulation reveal that North America, Europe, and Siberia should have been covered largely by tundra and taiga, whereas only small differences are for the tropical rain forests. A potential northeast shift of biomes is expected from a simulation with enhanced CO{sub 2} concentration according to the IPCC Scenario A. Little change is seen in the tropical rain forest and the Sahara. Since the biome model used is not capable of predicting chances in vegetation patterns due to a rapid climate change, the latter simulation to be taken as a prediction of chances in conditions favourable for the existence of certain biomes, not as a reduction of a future distribution of biomes. 15 refs., 8 figs., 2 tabs.« less

  14. [Prediction of the potential distribution of Tibetan medicinal Lycium ruthenicum in context of climate change].

    PubMed

    Lin, Li; Jin, Ling; Wang, Zhen-Heng; Cui, Zhi-Jia; Ma, Yi

    2017-07-01

    To predict the suitable distribution patterns of Lycium ruthenicum in the present and future under the background of climate change, and provide reference for the resources sustainable utilization and GAP standardized planting. The software of Maxent and ArcGis was used to predict the potential suitable regions and grades of L. ruthenicum in China based on the 149 distribution information, climate data of contemporary (1950-2000) and future (20-80 decade of 21 century), and considering of three greenhouse gaseous emission scenario. The results showed that:the suitable distribution regions of L. ruthenicum are mainly concentrated in Xinjiang, Qinghai, Gansu, Neimenggu, and Ningxia province in present. In addition, Shaanxi, Shanxi and Xizang are also distribution regions.The suitable distribution area of L. ruthenicum is 284.506 949×104 km2, accounted for 29.6% of the land area of China.The relatively stable area of the suitable regions accounted for 25.2% of the total suitable region area.Under the background of climate change, compared with contemporary, the total area of suitable region is reducing and moderately suitable area is increasing at different degree at the 20, 30, 40, 50, 60, 70, 80 decade of 21 century. Climate change both can change the total area of suitable regions and habitat suitability of L. ruthenicum. It could provide a strategic guidance for protection, development and utilization of L. ruthenicum though the prediction of potential suitable regions distribution of L. ruthenicum based on the mainly factor of climate change. Copyright© by the Chinese Pharmaceutical Association.

  15. Impacts of climate change and establishing a vegetation cover on water erosion of contaminated spoils for two contrasting United Kingdom regional climates: a case study approach.

    PubMed

    De Munck, Cécile S; Hutchings, Tony R; Moffat, Andy J

    2008-10-01

    This study examines how pollutant linkage of contaminants will be influenced by predicted changes in precipitation and subsequent rainfall erosion of soils and spoils in the United Kingdom during the 21st century. Two contrasting regional climates were used in conjunction with 2 extreme emissions scenarios (low and high greenhouse gas emissions) to run the Revised Universal Soil Loss Equation 2 (RUSLE2) model for a case study that represents a high risk of pollutant linkage through water erosion. Results for the 2 scenarios and the 2 regions showed a significant and gradual increase in erosion rates with time as a consequence of climate change, by up to 32% for the southwest and 6.6% for the southeast regions by the 2080s. Revegetation of the site showed a dramatic reduction in predicted future amounts of sediment production and subsequent contaminant movement, well below existing levels. Limitations and future improvements of the methodology are discussed.

  16. Introduction. Pliocene climate, processes and problems

    USGS Publications Warehouse

    Haywood, A.M.; Dowsett, H.J.; Valdes, P.J.; Lunt, D.J.; Francis, J.E.; Sellwood, B.W.

    2009-01-01

    Climate predictions produced by numerical climate models, often referred to as general circulation models (GCMs), suggest that by the end of the twenty-first century global mean annual surface air temperatures will increase by 1.1-6.4??C. Trace gas records from ice cores indicate that atmospheric concentrations of CO2 are already higher than at any time during the last 650000 years. In the next 50 years, atmospheric CO2 concentrations are expected to reach a level not encountered since an epoch of time known as the Pliocene. Uniformitarianism is a key principle of geological science, but can the past also be a guide to the future? To what extent does an examination of the Pliocene geological record enable us to successfully understand and interpret this guide? How reliable are the 'retrodictions' of Pliocene climates produced by GCMs and what does this tell us about the accuracy of model predictions for the future? These questions provide the scientific rationale for this Theme Issue. ?? 2008 The Royal Society.

  17. Flight range, fuel load and the impact of climate change on the journeys of migrant birds.

    PubMed

    Howard, Christine; Stephens, Philip A; Tobias, Joseph A; Sheard, Catherine; Butchart, Stuart H M; Willis, Stephen G

    2018-02-28

    Climate change is predicted to increase migration distances for many migratory species, but the physiological and temporal implications of longer migratory journeys have not been explored. Here, we combine information about species' flight range potential and migratory refuelling requirements to simulate the number of stopovers required and the duration of current migratory journeys for 77 bird species breeding in Europe. Using tracking data, we show that our estimates accord with recorded journey times and stopovers for most species. We then combine projections of altered migratory distances under climate change with models of avian flight to predict future migratory journeys. We find that 37% of migratory journeys undertaken by long-distance migrants will necessitate an additional stopover in future. These greater distances and the increased number of stops will substantially increase overall journey durations of many long-distance migratory species, a factor not currently considered in climate impact studies. © 2018 The Authors.

  18. Designing the Climate Observing System of the Future

    NASA Astrophysics Data System (ADS)

    Weatherhead, Elizabeth C.; Wielicki, Bruce A.; Ramaswamy, V.; Abbott, Mark; Ackerman, Thomas P.; Atlas, Robert; Brasseur, Guy; Bruhwiler, Lori; Busalacchi, Antonio J.; Butler, James H.; Clack, Christopher T. M.; Cooke, Roger; Cucurull, Lidia; Davis, Sean M.; English, Jason M.; Fahey, David W.; Fine, Steven S.; Lazo, Jeffrey K.; Liang, Shunlin; Loeb, Norman G.; Rignot, Eric; Soden, Brian; Stanitski, Diane; Stephens, Graeme; Tapley, Byron D.; Thompson, Anne M.; Trenberth, Kevin E.; Wuebbles, Donald

    2018-01-01

    Climate observations are needed to address a large range of important societal issues including sea level rise, droughts, floods, extreme heat events, food security, and freshwater availability in the coming decades. Past, targeted investments in specific climate questions have resulted in tremendous improvements in issues important to human health, security, and infrastructure. However, the current climate observing system was not planned in a comprehensive, focused manner required to adequately address the full range of climate needs. A potential approach to planning the observing system of the future is presented in this article. First, this article proposes that priority be given to the most critical needs as identified within the World Climate Research Program as Grand Challenges. These currently include seven important topics: melting ice and global consequences; clouds, circulation and climate sensitivity; carbon feedbacks in the climate system; understanding and predicting weather and climate extremes; water for the food baskets of the world; regional sea-level change and coastal impacts; and near-term climate prediction. For each Grand Challenge, observations are needed for long-term monitoring, process studies and forecasting capabilities. Second, objective evaluations of proposed observing systems, including satellites, ground-based and in situ observations as well as potentially new, unidentified observational approaches, can quantify the ability to address these climate priorities. And third, investments in effective climate observations will be economically important as they will offer a magnified return on investment that justifies a far greater development of observations to serve society's needs.

  19. Agricultural drought in a future climate: results from 15 global climate models participating in the IPCC 4th assessment

    NASA Astrophysics Data System (ADS)

    Wang, Guiling

    2005-12-01

    This study examines the impact of greenhouse gas warming on soil moisture based on predictions of 15 global climate models by comparing the after-stabilization climate in the SRESA1b experiment with the pre-industrial control climate. The models are consistent in predicting summer dryness and winter wetness in only part of the northern middle and high latitudes. Slightly over half of the models predict year-round wetness in central Eurasia and/or year-round dryness in Siberia and mid-latitude Northeast Asia. One explanation is offered that relates such lack of seasonality to the carryover effect of soil moisture storage from season to season. In the tropics and subtropics, a decrease of soil moisture is the dominant response. The models are especially consistent in predicting drier soil over the southwest North America, Central America, the Mediterranean, Australia, and the South Africa in all seasons, and over much of the Amazon and West Africa in the June July August (JJA) season and the Asian monsoon region in the December January February (DJF) season. Since the only major areas of future wetness predicted with a high level of model consistency are part of the northern middle and high latitudes during the non-growing season, it is suggested that greenhouse gas warming will cause a worldwide agricultural drought. Over regions where there is considerable consistency among the analyzed models in predicting the sign of soil moisture changes, there is a wide range of magnitudes of the soil moisture response, indicating a high degree of model dependency in terrestrial hydrological sensitivity. A major part of the inter-model differences in the sensitivity of soil moisture response are attributable to differences in land surface parameterization.

  20. Do changes in climate and land use pose a risk to the future water availability of Mediterranean Lakes?

    NASA Astrophysics Data System (ADS)

    Bucak, T.; Trolle, D.; Andersen, H. E.; Thodsen, H.; Erdoğan, Ş.; Levi, E. E.; Filiz, N.; Jeppesen, E.; Beklioğlu, M.

    2016-12-01

    Inter- and intra-annual water level fluctuations and change in water flow regime are intrinsic characteristics of Mediterranean lakes. However, considering the climate change projections for the water-limited Mediterranean region where potential evapotranspiration exceeds precipitation and with increased air temperatures and decreased precipitation, more dramatic water level declines in lakes and severe water scarcity problems are expected to occur in the future. Our study lake, Lake Beyşehir, the largest freshwater lake in the Mediterranean basin, is - like other Mediterranean lakes - under pressure due to water abstraction for irrigated crop farming and climatic changes, and integrated water level management is therefore required. We used an integrated modeling approach to predict the future lake water level of Lake Beyşehir in response to the future changes in both climate and, potentially, land use by linking the catchment model Soil and Water Assessment Tool (SWAT) with a Support Vector Machine Regression model (ɛ-SVR). We found that climate change projections caused enhanced potential evapotranspiration and reduced total runoff, whereas the effects of various land use scenarios within the catchment were comparatively minor. In all climate scenarios applied in the ɛ-SVR model, changes in hydrological processes caused a water level reduction, predicting that the lake may dry out already in the 2040s with the current outflow regulation considering the most pessimistic scenario. Based on model runs with optimum outflow management, a 9-60% reduction in outflow withdrawal is needed to prevent the lake from drying out by the end of this century. Our results indicate that shallow Mediterranean lakes may face a severe risk of drying out and loss of ecosystem value in near future if the current intense water abstraction is maintained. Therefore, we conclude that outflow management in water-limited regions in a warmer and drier future and sustainable use of water sources are vitally important to sustain lake ecosystems and their ecosystem services.

  1. The impact of changing climate conditions on the hydrological behavior of several Mediterranean sub-catchments in Crete

    NASA Astrophysics Data System (ADS)

    Eirini Vozinaki, Anthi; Tapoglou, Evdokia; Tsanis, Ioannis

    2017-04-01

    Climate change, although is already happening, consists of a big threat capable of causing lots of inconveniences in future societies and their economies. In this work, the climate change impact on the hydrological behavior of several Mediterranean sub-catchments, in Crete, is presented. The sensitivity of these hydrological systems to several climate change scenarios is also provided. The HBV hydrological model has been used, calibrated and validated for the study sub-catchments against measured weather and streamflow data and inputs. The impact of climate change on several hydro-meteorological parameters (i.e. precipitation, streamflow etc.) and hydrological signatures (i.e. spring flood peak, length and volume, base flow, flow duration curves, seasonality etc.) have been statistically elaborated and analyzed, defining areas of increased probability risk associated additionally to flooding or drought. The potential impacts of climate change on current and future water resources have been quantified by driving HBV model with current and future scenarios, respectively, for specific climate periods. This work aims to present an integrated methodology for the definition of future climate and hydrological risks and the prediction of future water resources behavior. Future water resources management could be rationally effectuated, in Mediterranean sub-catchments prone to drought or flooding, using the proposed methodology. The research reported in this paper was fully supported by the Project "Innovative solutions to climate change adaptation and governance in the water management of the Region of Crete - AQUAMAN" funded within the framework of the EEA Financial Mechanism 2009-2014.

  2. Indiana bat summer maternity distribution: effects of current and future climates

    Treesearch

    Susan C. Loeb; Eric A. Winters

    2013-01-01

    Temperate zone bats may be more sensitive to climate change than other groups of mammals because many aspects of their ecology are closely linked to temperature. However, few studies have tried to predict the responses of bats to climate change. The Indiana bat (Myotis sodalis) is a federally listed endangered species that is found in the eastern...

  3. Exploring the Role of Future Perspective in Predicting Turkish University Students' Beliefs about Global Climate Change

    ERIC Educational Resources Information Center

    Ates, Deniz; Teksöz, Gaye; Ertepinar, Hamide

    2017-01-01

    Recent studies indicate that limited understanding about causes and its potential impacts of climate change and fault beliefs by people across different countries of the world including Turkey is a real challenge. Acceptance of climate change as a real threat, believing its existence, and knowing causes and consequences are very significant for…

  4. Methane Feedbacks to the Global Climate System in a Warmer World

    NASA Astrophysics Data System (ADS)

    Dean, Joshua F.; Middelburg, Jack J.; Röckmann, Thomas; Aerts, Rien; Blauw, Luke G.; Egger, Matthias; Jetten, Mike S. M.; de Jong, Anniek E. E.; Meisel, Ove H.; Rasigraf, Olivia; Slomp, Caroline P.; in't Zandt, Michiel H.; Dolman, A. J.

    2018-03-01

    Methane (CH4) is produced in many natural systems that are vulnerable to change under a warming climate, yet current CH4 budgets, as well as future shifts in CH4 emissions, have high uncertainties. Climate change has the potential to increase CH4 emissions from critical systems such as wetlands, marine and freshwater systems, permafrost, and methane hydrates, through shifts in temperature, hydrology, vegetation, landscape disturbance, and sea level rise. Increased CH4 emissions from these systems would in turn induce further climate change, resulting in a positive climate feedback. Here we synthesize biological, geochemical, and physically focused CH4 climate feedback literature, bringing together the key findings of these disciplines. We discuss environment-specific feedback processes, including the microbial, physical, and geochemical interlinkages and the timescales on which they operate, and present the current state of knowledge of CH4 climate feedbacks in the immediate and distant future. The important linkages between microbial activity and climate warming are discussed with the aim to better constrain the sensitivity of the CH4 cycle to future climate predictions. We determine that wetlands will form the majority of the CH4 climate feedback up to 2100. Beyond this timescale, CH4 emissions from marine and freshwater systems and permafrost environments could become more important. Significant CH4 emissions to the atmosphere from the dissociation of methane hydrates are not expected in the near future. Our key findings highlight the importance of quantifying whether CH4 consumption can counterbalance CH4 production under future climate scenarios.

  5. Modelling Bambara Groundnut Yield in Southern Africa: Towards a Climate-Resilient Future

    NASA Technical Reports Server (NTRS)

    Karunaratne, A. S.; Walker, S.; Ruane, A. C.

    2015-01-01

    Current agriculture depends on a few major species grown as monocultures that are supported by global research underpinning current productivity. However, many hundreds of alternative crops have the potential to meet real world challenges by sustaining humanity, diversifying agricultural systems for food and nutritional security, and especially responding to climate change through their resilience to certain climate conditions. Bambara groundnut (Vigna subterranea (L.) Verdc.), an underutilised African legume, is an exemplar crop for climate resilience. Predicted yield performances of Bambara groundnut by AquaCrop (a crop-water productivity model) were evaluated for baseline (1980-2009) and mid-century climates (2040-2069) under 20 downscaled Global Climate Models (CMIP5-RCP8.5), as well as for climate sensitivities (AgMIPC3MP) across 3 locations in Southern Africa (Botswana, South Africa, Namibia). Different land - races of Bambara groundnut originating from various semi-arid African locations showed diverse yield performances with diverse sensitivities to climate. S19 originating from hot-dry conditions in Namibia has greater future yield potential compared to the Swaziland landrace Uniswa Red-UN across study sites. South Africa has the lowest yield under the current climate, indicating positive future yield trends. Namibia reported the highest baseline yield at optimum current temperatures, indicating less yield potential in future climates. Bambara groundnut shows positive yield potential at temperatures of up to 31degC, with further warming pushing yields down. Thus, many regions in Southern Africa can utilize Bambara groundnut successfully in the coming decades. This modelling exercise supports decisions on genotypic suitability for present and future climates at specific locations.

  6. Darcy's law predicts widespread forest mortalityunder climate warming

    NASA Astrophysics Data System (ADS)

    Allen, C. D.; McDowell, N. G.

    2015-12-01

    Drought and heat-induced tree mortality is accelerating in many forest biomes as a consequence of a warming climate, resulting in a threat to global forests unlike any in recorded history. Forests store the majority of terrestrial carbon, thus their loss may have significant and sustained impacts on the global carbon cycle. We used a hydraulic corollary to Darcy's law, a core principle of vascular plant physiology, to predict characteristics of plants that will survive and die during drought under warmer future climates. Plants that are tall with isohydric stomatal regulation, low hydraulic conductance, and high leaf area are most likely to die from future drought stress. Thus, tall trees of old-growth forests are at the greatest risk of loss, which has ominous implications for terrestrial carbon storage. This application of Darcy's law indicates today's forests generally should be replaced by shorter and more xeric plants, owing to future warmer droughts and associated wildfires and pest attacks. The Darcy's corollary also provides a simple, robust framework for informing forest management interventions needed to promote the survival of current forests. There are assumptions and omissions in this theoretical prediction, as well as new evidence supporting its predictions, both of which I will review. Given the robustness of Darcy's law for predictions of vascular plant function, we conclude with high certainty that today's forests are going to be subject to continued increases in mortality rates that will result in substantial reorganization of their structure and carbon storage.

  7. Multi-scale predictions of coniferous forest mortality in the northern hemisphere

    NASA Astrophysics Data System (ADS)

    McDowell, N. G.

    2015-12-01

    Global temperature rise and extremes accompanying drought threaten forests and their associated climatic feedbacks. Our incomplete understanding of the fundamental physiological thresholds of vegetation mortality during drought limits our ability to accurately simulate future vegetation distributions and associated climate feedbacks. Here we integrate experimental evidence with models to show potential widespread loss of needleleaf evergreen trees (NET; ~ conifers) within the Southwest USA by 2100; with rising temperature being the primary cause of mortality. Experimentally, dominant Southwest USA NET species died when they fell below predawn water potential (Ypd) thresholds (April-August mean) beyond which photosynthesis, stomatal and hydraulic conductance, and carbohydrate availability approached zero. Empirical and mechanistic models accurately predicted NET Ypd, and 91% of predictions (10/11) exceeded mortality thresholds within the 21st century due to temperature rise. Completely independent global models predicted >50% loss of northern hemisphere NET by 2100, consistent with the findings for Southwest USA. The global models disagreed with the ecosystem process models in regards to future mortality in Southwest USA, however, highlighting the potential underestimates of future NET mortality as simulated by the global models and signifying the importance of improving regional predictions. Taken together, these results from the validated regional predictions and the global simulations predict global-scale conifer loss in coming decades under projected global warming.

  8. Simulation of future land use change and climate change impacts on hydrological processes in a tropical catchment

    NASA Astrophysics Data System (ADS)

    Marhaento, H.; Booij, M. J.; Hoekstra, A. Y.

    2017-12-01

    Future hydrological processes in the Samin catchment (278 km2) in Java, Indonesia have been simulated using the Soil and Water Assessment Tool (SWAT) model using inputs from predicted land use distributions in the period 2030 - 2050, bias corrected Regional Climate Model (RCM) output and output of six Global Climate Models (GCMs) to include climate model uncertainty. Two land use change scenarios namely a business-as-usual (BAU) scenario, where no measures are taken to control land use change, and a controlled (CON) scenario, where the future land use follows the land use planning, were used in the simulations together with two climate change scenarios namely Representative Concentration Pathway (RCP) 4.5 and 8.5. It was predicted that in 2050 settlement and agriculture area of the study catchment will increase by 33.9% and 3.5%, respectively under the BAU scenario, whereas agriculture area and evergreen forest will increase by 15.2% and 10.2%, respectively under the CON scenario. In comparison to the baseline conditions (1983 - 2005), the predicted mean annual maximum and minimum temperature in 2030 - 2050 will increase by an average of +10C, while changes in the mean annual rainfall range from -20% to +19% under RCP 4.5 and from -25% to +15% under RCP 8.5. The results show that land use change and climate change individually will cause changes in the water balance components, but that more pronounced changes are expected if the drivers are combined, in particular for changes in annual stream flow and surface runoff. It was observed that combination of the RCP 4.5 climate scenario and BAU land use scenario resulted in an increase of the mean annual stream flow from -7% to +64% and surface runoff from +21% to +102%, which is 40% and 60% more than when land use change is acting alone. Furthermore, under the CON scenario the annual stream flow and surface runoff could be potentially reduced by up to 10% and 30%, respectively indicating the effectiveness of applied land use planning. The findings of this study will be useful for the water resource managers to mitigate future risks associated with land use and climate changes in the study catchment. Keywords: land use change, climate change, hydrological impact assessment, Samin catchment

  9. Stream Discharge and Evapotranspiration Responses to Climate Change and Their Associated Uncertainties in a Large Semi-Arid Basin

    NASA Astrophysics Data System (ADS)

    Bassam, S.; Ren, J.

    2017-12-01

    Predicting future water availability in watersheds is very important for proper water resources management, especially in semi-arid regions with scarce water resources. Hydrological models have been considered as powerful tools in predicting future hydrological conditions in watershed systems in the past two decades. Streamflow and evapotranspiration are the two important components in watershed water balance estimation as the former is the most commonly-used indicator of the overall water budget estimation, and the latter is the second biggest component of water budget (biggest outflow from the system). One of the main concerns in watershed scale hydrological modeling is the uncertainties associated with model prediction, which could arise from errors in model parameters and input meteorological data, or errors in model representation of the physics of hydrological processes. Understanding and quantifying these uncertainties are vital to water resources managers for proper decision making based on model predictions. In this study, we evaluated the impacts of different climate change scenarios on the future stream discharge and evapotranspiration, and their associated uncertainties, throughout a large semi-arid basin using a stochastically-calibrated, physically-based, semi-distributed hydrological model. The results of this study could provide valuable insights in applying hydrological models in large scale watersheds, understanding the associated sensitivity and uncertainties in model parameters, and estimating the corresponding impacts on interested hydrological process variables under different climate change scenarios.

  10. Present and Potential Future Distribution of Common Vampire Bats in the Americas and the Associated Risk to Cattle

    PubMed Central

    Lee, Dana N.; Papeş, Monica; Van Den Bussche, Ronald A.

    2012-01-01

    Success of the cattle industry in Latin America is impeded by the common vampire bat, Desmodus rotundus, through decreases in milk production and mass gain and increased risk of secondary infection and rabies. We used ecological niche modeling to predict the current potential distribution of D. rotundus and the future distribution of the species for the years 2030, 2050, and 2080 based on the A2, A1B, and B1 climate scenarios from the Intergovernmental Panel on Climate Change. We then combined the present day potential distribution with cattle density estimates to identify areas where cattle are at higher risk for the negative impacts due to D. rotundus. We evaluated our risk prediction by plotting 17 documented outbreaks of cattle rabies. Our results indicated highly suitable habitat for D. rotundus occurs throughout most of Mexico and Central America as well as portions of Venezuela, Guyana, the Brazilian highlands, western Ecuador, northern Argentina, and east of the Andes in Peru, Bolivia, and Paraguay. With future climate projections suitable habitat for D. rotundus is predicted in these same areas and additional areas in French Guyana, Suriname, Venezuela and Columbia; however D. rotundus are not likely to expand into the U.S. because of inadequate ‘temperature seasonality.’ Areas with large portions of cattle at risk include Mexico, Central America, Paraguay, and Brazil. Twelve of 17 documented cattle rabies outbreaks were represented in regions predicted at risk. Our present day and future predictions can help authorities focus rabies prevention efforts and inform cattle ranchers which areas are at an increased risk of cattle rabies because it has suitable habitat for D. rotundus. PMID:22900023

  11. The impact of climatological model biases in the North Atlantic jet on predicted future circulation change

    NASA Astrophysics Data System (ADS)

    Simpson, I.

    2015-12-01

    A long standing bias among global climate models (GCMs) is their incorrect representation of the wintertime circulation of the North Atlantic region. Specifically models tend to exhibit a North Atlantic jet (and associated storm track) that is too zonal, extending across central Europe, when it should tilt northward toward Scandinavia. GCM's consistently predict substantial changes in the large scale circulation in this region, consisting of a localized anti-cyclonic circulation, centered over the Mediterranean and accompanied by increased aridity there and increased storminess over Northern Europe.Here, we present preliminary results from experiments that are designed to address the question of what the impact of the climatological circulation biases might be on this predicted future response. Climate change experiments will be compared in two versions of the Community Earth System Model: the first is a free running version of the model, as typically used in climate prediction; the second is a bias corrected version of the model in which a seasonally varying cycle of bias correction tendencies are applied to the wind and temperature fields. These bias correction tendencies are designed to account for deficiencies in the fast parameterized processes, with an aim to push the model toward a more realistic climatology.While these experiments come with the caveat that they assume the bias correction tendencies will remain constant with time, they allow for an initial assessment, through controlled experiments, of the impact that biases in the climatological circulation can have on future predictions in this region. They will also motivate future work that can make use of the bias correction tendencies to understand the underlying physical processes responsible for the incorrect tilt of the jet.

  12. Present and potential future distribution of common vampire bats in the Americas and the associated risk to cattle.

    PubMed

    Lee, Dana N; Papeş, Monica; Van den Bussche, Ronald A

    2012-01-01

    Success of the cattle industry in Latin America is impeded by the common vampire bat, Desmodus rotundus, through decreases in milk production and mass gain and increased risk of secondary infection and rabies. We used ecological niche modeling to predict the current potential distribution of D. rotundus and the future distribution of the species for the years 2030, 2050, and 2080 based on the A2, A1B, and B1 climate scenarios from the Intergovernmental Panel on Climate Change. We then combined the present day potential distribution with cattle density estimates to identify areas where cattle are at higher risk for the negative impacts due to D. rotundus. We evaluated our risk prediction by plotting 17 documented outbreaks of cattle rabies. Our results indicated highly suitable habitat for D. rotundus occurs throughout most of Mexico and Central America as well as portions of Venezuela, Guyana, the Brazilian highlands, western Ecuador, northern Argentina, and east of the Andes in Peru, Bolivia, and Paraguay. With future climate projections suitable habitat for D. rotundus is predicted in these same areas and additional areas in French Guyana, Suriname, Venezuela and Columbia; however D. rotundus are not likely to expand into the U.S. because of inadequate 'temperature seasonality.' Areas with large portions of cattle at risk include Mexico, Central America, Paraguay, and Brazil. Twelve of 17 documented cattle rabies outbreaks were represented in regions predicted at risk. Our present day and future predictions can help authorities focus rabies prevention efforts and inform cattle ranchers which areas are at an increased risk of cattle rabies because it has suitable habitat for D. rotundus.

  13. The predicted influence of climate change on lesser prairie-chicken reproductive parameters

    USGS Publications Warehouse

    Grisham, Blake A.; Boal, Clint W.; Haukos, David A.; Davis, D.; Boydston, Kathy K.; Dixon, Charles; Heck, Willard R.

    2013-01-01

    The Southern High Plains is anticipated to experience significant changes in temperature and precipitation due to climate change. These changes may influence the lesser prairie-chicken (Tympanuchus pallidicinctus) in positive or negative ways. We assessed the potential changes in clutch size, incubation start date, and nest survival for lesser prairie-chickens for the years 2050 and 2080 based on modeled predictions of climate change and reproductive data for lesser prairie-chickens from 2001-2011 on the Southern High Plains of Texas and New Mexico. We developed 9 a priori models to assess the relationship between reproductive parameters and biologically relevant weather conditions. We selected weather variable(s) with the most model support and then obtained future predicted values from climatewizard.org. We conducted 1,000 simulations using each reproductive parameter's linear equation obtained from regression calculations, and the future predicted value for each weather variable to predict future reproductive parameter values for lesser prairie-chickens. There was a high degree of model uncertainty for each reproductive value. Winter temperature had the greatest effect size for all three parameters, suggesting a negative relationship between above-average winter temperature and reproductive output. The above-average winter temperatures are correlated to La Nina events, which negatively affect lesser prairie-chickens through resulting drought conditions. By 2050 and 2080, nest survival was predicted to be below levels considered viable for population persistence; however, our assessment did not consider annual survival of adults, chick survival, or the positive benefit of habitat management and conservation, which may ultimately offset the potentially negative effect of drought on nest survival.

  14. The predicted influence of climate change on lesser prairie-chicken reproductive parameters.

    PubMed

    Grisham, Blake A; Boal, Clint W; Haukos, David A; Davis, Dawn M; Boydston, Kathy K; Dixon, Charles; Heck, Willard R

    2013-01-01

    The Southern High Plains is anticipated to experience significant changes in temperature and precipitation due to climate change. These changes may influence the lesser prairie-chicken (Tympanuchus pallidicinctus) in positive or negative ways. We assessed the potential changes in clutch size, incubation start date, and nest survival for lesser prairie-chickens for the years 2050 and 2080 based on modeled predictions of climate change and reproductive data for lesser prairie-chickens from 2001-2011 on the Southern High Plains of Texas and New Mexico. We developed 9 a priori models to assess the relationship between reproductive parameters and biologically relevant weather conditions. We selected weather variable(s) with the most model support and then obtained future predicted values from climatewizard.org. We conducted 1,000 simulations using each reproductive parameter's linear equation obtained from regression calculations, and the future predicted value for each weather variable to predict future reproductive parameter values for lesser prairie-chickens. There was a high degree of model uncertainty for each reproductive value. Winter temperature had the greatest effect size for all three parameters, suggesting a negative relationship between above-average winter temperature and reproductive output. The above-average winter temperatures are correlated to La Niña events, which negatively affect lesser prairie-chickens through resulting drought conditions. By 2050 and 2080, nest survival was predicted to be below levels considered viable for population persistence; however, our assessment did not consider annual survival of adults, chick survival, or the positive benefit of habitat management and conservation, which may ultimately offset the potentially negative effect of drought on nest survival.

  15. Potential impacts of climate change on birds and trees of the eastern United States: newest climate scenarios and species abundance modelling techniques

    Treesearch

    L.R. Iverson; A.M. Prasad; S.N. Matthews; M.P. Peters

    2007-01-01

    Climate change is affecting an increasing number of species the world over, and evidence is mounting that these changes will continue to accelerate. There have been many studies that use a modelling approach to predict the effects of future climatic change on ecological systems, including by us (Iverson et al. 1999, Matthews et al. 2004); this modelling approach uses a...

  16. Predictive models of forest dynamics.

    PubMed

    Purves, Drew; Pacala, Stephen

    2008-06-13

    Dynamic global vegetation models (DGVMs) have shown that forest dynamics could dramatically alter the response of the global climate system to increased atmospheric carbon dioxide over the next century. But there is little agreement between different DGVMs, making forest dynamics one of the greatest sources of uncertainty in predicting future climate. DGVM predictions could be strengthened by integrating the ecological realities of biodiversity and height-structured competition for light, facilitated by recent advances in the mathematics of forest modeling, ecological understanding of diverse forest communities, and the availability of forest inventory data.

  17. Hope for the Forests? Habitat Resiliency Illustrated in the Face of Climate Change Using Fine-Scale Modeling

    NASA Astrophysics Data System (ADS)

    Flint, L. E.; Flint, A. L.; Weiss, S. B.; Micheli, E. R.

    2010-12-01

    In the face of rapid climate change, fine-scale predictions of landscape change are of extreme interest to land managers that endeavor to develop long term adaptive strategies for maintaining biodiversity and ecosystem services. Global climate model (GCM) outputs, which generally focus on estimated increases in air temperature, are increasingly applied to species habitat distribution models. For sensitive species subject to climate change, habitat models predict significant migration (either northward or towards higher elevations), or complete extinction. Current studies typically rely on large spatial scale GCM projections (> 10 km) of changes in precipitation and air temperature: at this scale, these models necessarily neglect subtleties of topographic shading, geomorphic expression of the landscape, and fine-scale differences in soil properties - data that is readily available at meaningful local scales. Recent advances in modeling take advantage of available soils, geology, and topographic data to construct watershed-scale scenarios using GCM inputs and result in improved correlations of vegetation distribution with temperature. For this study, future climate projections were downscaled to 270-m and applied to a physically-based hydrologic model to calculate future changes in recharge, runoff, and climatic water deficit (CWD) for basins draining into the northern San Francisco Bay. CWD was analyzed for mapped vegetation types to evaluate the range of CWD for historic time periods in comparison to future time periods. For several forest communities (including blue oak woodlands, montane hardwoods, douglas-fir, and coast redwood) existing landscape area exhibiting suitable CWD diminishes by up 80 percent in the next century, with a trend towards increased CWD throughout the region. However, no forest community loses all suitable habitat, with islands of potential habitat primarily remaining on north facing slopes and deeper soils. Creation of new suitable habitat is also predicted throughout the region. Results have direct application to management issues of habitat connectivity, forest land protection and acquisition, and active management solutions such as transplanting or assisted migration. Although this analysis considers only one driver of forest habitat distribution, consideration of hydrologic derivatives at a fine scale explains current forest community distributions and provides a far more informed perspective on potential future forest distributions. Results demonstrate the utility of fine-scale modeling and provide landscape managers and conservation agencies valuable management tools in fine-scale future forest scenarios and a framework for evaluating forest resiliency in a changing climate.

  18. Space can substitute for time in predicting climate-change effects on biodiversity

    USGS Publications Warehouse

    Blois, Jessica L.; Williams, John W.; Fitzpatrick, Matthew C.; Jackson, Stephen T.; Ferrier, Simon

    2013-01-01

    “Space-for-time” substitution is widely used in biodiversity modeling to infer past or future trajectories of ecological systems from contemporary spatial patterns. However, the foundational assumption—that drivers of spatial gradients of species composition also drive temporal changes in diversity—rarely is tested. Here, we empirically test the space-for-time assumption by constructing orthogonal datasets of compositional turnover of plant taxa and climatic dissimilarity through time and across space from Late Quaternary pollen records in eastern North America, then modeling climate-driven compositional turnover. Predictions relying on space-for-time substitution were ∼72% as accurate as “time-for-time” predictions. However, space-for-time substitution performed poorly during the Holocene when temporal variation in climate was small relative to spatial variation and required subsampling to match the extent of spatial and temporal climatic gradients. Despite this caution, our results generally support the judicious use of space-for-time substitution in modeling community responses to climate change.

  19. Space can substitute for time in predicting climate-change effects on biodiversity.

    PubMed

    Blois, Jessica L; Williams, John W; Fitzpatrick, Matthew C; Jackson, Stephen T; Ferrier, Simon

    2013-06-04

    "Space-for-time" substitution is widely used in biodiversity modeling to infer past or future trajectories of ecological systems from contemporary spatial patterns. However, the foundational assumption--that drivers of spatial gradients of species composition also drive temporal changes in diversity--rarely is tested. Here, we empirically test the space-for-time assumption by constructing orthogonal datasets of compositional turnover of plant taxa and climatic dissimilarity through time and across space from Late Quaternary pollen records in eastern North America, then modeling climate-driven compositional turnover. Predictions relying on space-for-time substitution were ∼72% as accurate as "time-for-time" predictions. However, space-for-time substitution performed poorly during the Holocene when temporal variation in climate was small relative to spatial variation and required subsampling to match the extent of spatial and temporal climatic gradients. Despite this caution, our results generally support the judicious use of space-for-time substitution in modeling community responses to climate change.

  20. Developing future precipitation events from historic events: An Amsterdam case study.

    NASA Astrophysics Data System (ADS)

    Manola, Iris; van den Hurk, Bart; de Moel, Hans; Aerts, Jeroen

    2016-04-01

    Due to climate change, the frequency and intensity of extreme precipitation events is expected to increase. It is therefore of high importance to develop climate change scenarios tailored towards the local and regional needs of policy makers in order to develop efficient adaptation strategies to reduce the risks from extreme weather events. Current approaches to tailor climate scenarios are often not well adopted in hazard management, since average changes in climate are not a main concern to policy makers, and tailoring climate scenarios to simulate future extremes can be complex. Therefore, a new concept has been introduced recently that uses known historic extreme events as a basis, and modifies the observed data for these events so that the outcome shows how the same event would occur in a warmer climate. This concept is introduced as 'Future Weather', and appeals to the experience of stakeholders and users. This research presents a novel method of projecting a future extreme precipitation event, based on a historic event. The selected precipitation event took place over the broader area of Amsterdam, the Netherlands in the summer of 2014, which resulted in blocked highways, disruption of air transportation, flooded buildings and public facilities. An analysis of rain monitoring stations showed that an event of such intensity has a 5 to 15 years return period. The method of projecting a future event follows a non-linear delta transformation that is applied directly on the observed event assuming a warmer climate to produce an "up-scaled" future precipitation event. The delta transformation is based on the observed behaviour of the precipitation intensity as a function of the dew point temperature during summers. The outcome is then compared to a benchmark method using the HARMONIE numerical weather prediction model, where the boundary conditions of the event from the Ensemble Prediction System of ECMWF (ENS) are perturbed to indicate a warmer climate. The two methodologies are statistically compared and evaluated. The comparison between the historic event generated by the model and the observed event will give information on the realism of the model for this event. The comparison between the delta transformation method and the future simulation will provide information on how the dynamics would affect the precipitation field, as compared to the statistical method.

  1. The Climate Variability & Predictability (CVP) Program at NOAA - Recent Program Advancements

    NASA Astrophysics Data System (ADS)

    Lucas, S. E.; Todd, J. F.

    2015-12-01

    The Climate Variability & Predictability (CVP) Program supports research aimed at providing process-level understanding of the climate system through observation, modeling, analysis, and field studies. This vital knowledge is needed to improve climate models and predictions so that scientists can better anticipate the impacts of future climate variability and change. To achieve its mission, the CVP Program supports research carried out at NOAA and other federal laboratories, NOAA Cooperative Institutes, and academic institutions. The Program also coordinates its sponsored projects with major national and international scientific bodies including the World Climate Research Programme (WCRP), the International and U.S. Climate Variability and Predictability (CLIVAR/US CLIVAR) Program, and the U.S. Global Change Research Program (USGCRP). The CVP program sits within NOAA's Climate Program Office (http://cpo.noaa.gov/CVP). The CVP Program currently supports multiple projects in areas that are aimed at improved representation of physical processes in global models. Some of the topics that are currently funded include: i) Improved Understanding of Intraseasonal Tropical Variability - DYNAMO field campaign and post -field projects, and the new climate model improvement teams focused on MJO processes; ii) Climate Process Teams (CPTs, co-funded with NSF) with projects focused on Cloud macrophysical parameterization and its application to aerosol indirect effects, and Internal-Wave Driven Mixing in Global Ocean Models; iii) Improved Understanding of Tropical Pacific Processes, Biases, and Climatology; iv) Understanding Arctic Sea Ice Mechanism and Predictability;v) AMOC Mechanisms and Decadal Predictability Recent results from CVP-funded projects will be summarized. Additional information can be found at http://cpo.noaa.gov/CVP.

  2. A changing climate: impacts on human exposures to O3 using an integrated modeling methodology

    EPA Science Inventory

    Predicting the impacts of changing climate on human exposure to air pollution requires future scenarios that account for changes in ambient pollutant concentrations, population sizes and distributions, and housing stocks. An integrated methodology to model changes in human exposu...

  3. Mapping the Climate of Puerto Rico, Vieques and Culebra.

    Treesearch

    CHRISTOPHER DALY; E. H. HELMER; MAYA QUINONES

    2003-01-01

    Spatially explicit climate data contribute to watershed resource management, mapping vegetation type with satellite imagery, mapping present and hypothetical future ecological zones, and predicting species distributions. The regression based Parameter-elevation Regressions on Independent Slopes Model (PRISM) uses spatial data sets, a knowledge base and expert...

  4. A synopsis of climate change effects on groundwater recharge

    NASA Astrophysics Data System (ADS)

    Smerdon, Brian D.

    2017-12-01

    Six review articles published between 2011 and 2016 on groundwater and climate change are briefly summarized. This synopsis focuses on aspects related to predicting changes to groundwater recharge conditions, with several common conclusions between the review articles being noted. The uncertainty of distribution and trend in future precipitation from General Circulation Models (GCMs) results in varying predictions of recharge, so much so that modelling studies are often not able to predict the magnitude and direction (increase or decrease) of future recharge conditions. Evolution of modelling approaches has led to the use of multiple GCMs and hydrologic models to create an envelope of future conditions that reflects the probability distribution. The choice of hydrologic model structure and complexity, and the choice of emissions scenario, has been investigated and somewhat resolved; however, recharge results remain sensitive to downscaling methods. To overcome uncertainty and provide practical use in water management, the research community indicates that modelling at a mesoscale, somewhere between watersheds and continents, is likely ideal. Improvements are also suggested for incorporating groundwater processes within GCMs.

  5. Potential ecological and economic consequences of climate-driven agricultural and silvicultural transformations in central Siberia

    NASA Astrophysics Data System (ADS)

    Tchebakova, Nadezhda M.; Zander, Evgeniya V.; Pyzhev, Anton I.; Parfenova, Elena I.; Soja, Amber J.

    2014-05-01

    Increased warming predicted from general circulation models (GCMs) by the end of the century is expected to dramatically impact Siberian forests. Both natural climate-change-caused disturbance (weather, wildfire, infestation) and anthropogenic disturbance (legal/illegal logging) has increased, and their impact on Siberian boreal forest has been mounting over the last three decades. The Siberian BioClimatic Model (SiBCliM) was used to simulate Siberian forests, and the resultant maps show a severely decreased forest that has shifted northwards and a changed composition. Predicted dryer climates would enhance the risks of high fire danger and thawing permafrost, both of which challenge contemporary ecosystems. Our current goal is to evaluate the ecological and economic consequences of climate warming, to optimise economic loss/gain effects in forestry versus agriculture, to question the relative economic value of supporting forestry, agriculture or a mixed agro-forestry at the southern forest border in central Siberia predicted to undergo the most noticeable landcover and landuse changes. We developed and used forest and agricultural bioclimatic models to predict forest shifts; novel tree species and their climatypes are introduced in a warmer climate and/or potential novel agriculture are introduced with a potential variety of crops by the end of the century. We applied two strategies to estimate climate change effects, motivated by forest disturbance. One is a genetic means of assisting trees and forests to be harmonized with a changing climate by developing management strategies for seed transfer to locations that are best ecologically suited to the genotypes in future climates. The second strategy is the establishment of agricultural lands in new forest-steppe and steppe habitats, because the forests would retreat northwards. Currently, food, forage, and biofuel crops primarily reside in the steppe and forest-steppe zones which are known to have favorable climatic and soil resources. During this century, traditional Siberian crops are predicted to gradually shift northwards and new crops, which are currently non-existent but potentially important in a warmer climate, could be introduced in the extreme south. In a future warmer climate, the economic effect of climate change impacts on agriculture was estimated based on a production function approach and the Ricardian model. The production function estimated climate impacts of temperature, precipitation and carbon dioxide levels. The Ricardian model examined climate impacts on the net rent or value of farmland at various regions. The models produced the optimal distribution of agricultural lands between crop, livestock, and forestry sectors to compensate economic losses in forestry in potential landuse areas depending on climatic change.

  6. Climate change can alter predator-prey dynamics and population viability of prey.

    PubMed

    Bastille-Rousseau, Guillaume; Schaefer, James A; Peers, Michael J L; Ellington, E Hance; Mumma, Matthew A; Rayl, Nathaniel D; Mahoney, Shane P; Murray, Dennis L

    2018-01-01

    For many organisms, climate change can directly drive population declines, but it is less clear how such variation may influence populations indirectly through modified biotic interactions. For instance, how will climate change alter complex, multi-species relationships that are modulated by climatic variation and that underlie ecosystem-level processes? Caribou (Rangifer tarandus), a keystone species in Newfoundland, Canada, provides a useful model for unravelling potential and complex long-term implications of climate change on biotic interactions and population change. We measured cause-specific caribou calf predation (1990-2013) in Newfoundland relative to seasonal weather patterns. We show that black bear (Ursus americanus) predation is facilitated by time-lagged higher summer growing degree days, whereas coyote (Canis latrans) predation increases with current precipitation and winter temperature. Based on future climate forecasts for the region, we illustrate that, through time, coyote predation on caribou calves could become increasingly important, whereas the influence of black bear would remain unchanged. From these predictions, demographic projections for caribou suggest long-term population limitation specifically through indirect effects of climate change on calf predation rates by coyotes. While our work assumes limited impact of climate change on other processes, it illustrates the range of impact that climate change can have on predator-prey interactions. We conclude that future efforts to predict potential effects of climate change on populations and ecosystems should include assessment of both direct and indirect effects, including climate-predator interactions.

  7. Assessing environmental attributes and effects of climate change on Sphagnum peatland distributions in North America using single- and multi-species models.

    PubMed

    Oke, Tobi A; Hager, Heather A

    2017-01-01

    The fate of Northern peatlands under climate change is important because of their contribution to global carbon (C) storage. Peatlands are maintained via greater plant productivity (especially of Sphagnum species) than decomposition, and the processes involved are strongly mediated by climate. Although some studies predict that warming will relax constraints on decomposition, leading to decreased C sequestration, others predict increases in productivity and thus increases in C sequestration. We explored the lack of congruence between these predictions using single-species and integrated species distribution models as proxies for understanding the environmental correlates of North American Sphagnum peatland occurrence and how projected changes to the environment might influence these peatlands under climate change. Using Maximum entropy and BIOMOD modelling platforms, we generated single and integrated species distribution models for four common Sphagnum species in North America under current climate and a 2050 climate scenario projected by three general circulation models. We evaluated the environmental correlates of the models and explored the disparities in niche breadth, niche overlap, and climate suitability among current and future models. The models consistently show that Sphagnum peatland distribution is influenced by the balance between soil moisture deficit and temperature of the driest quarter-year. The models identify the east and west coasts of North America as the core climate space for Sphagnum peatland distribution. The models show that, at least in the immediate future, the area of suitable climate for Sphagnum peatland could expand. This result suggests that projected warming would be balanced effectively by the anticipated increase in precipitation, which would increase Sphagnum productivity.

  8. Assessing environmental attributes and effects of climate change on Sphagnum peatland distributions in North America using single- and multi-species models

    PubMed Central

    Oke, Tobi A.; Hager, Heather A.

    2017-01-01

    The fate of Northern peatlands under climate change is important because of their contribution to global carbon (C) storage. Peatlands are maintained via greater plant productivity (especially of Sphagnum species) than decomposition, and the processes involved are strongly mediated by climate. Although some studies predict that warming will relax constraints on decomposition, leading to decreased C sequestration, others predict increases in productivity and thus increases in C sequestration. We explored the lack of congruence between these predictions using single-species and integrated species distribution models as proxies for understanding the environmental correlates of North American Sphagnum peatland occurrence and how projected changes to the environment might influence these peatlands under climate change. Using Maximum entropy and BIOMOD modelling platforms, we generated single and integrated species distribution models for four common Sphagnum species in North America under current climate and a 2050 climate scenario projected by three general circulation models. We evaluated the environmental correlates of the models and explored the disparities in niche breadth, niche overlap, and climate suitability among current and future models. The models consistently show that Sphagnum peatland distribution is influenced by the balance between soil moisture deficit and temperature of the driest quarter-year. The models identify the east and west coasts of North America as the core climate space for Sphagnum peatland distribution. The models show that, at least in the immediate future, the area of suitable climate for Sphagnum peatland could expand. This result suggests that projected warming would be balanced effectively by the anticipated increase in precipitation, which would increase Sphagnum productivity. PMID:28426754

  9. Assessing the impact of extreme air temperature on fruit trees by modeling weather dependent phenology with variety-specific thermal requirements

    NASA Astrophysics Data System (ADS)

    Alfieri, Silvia Maria; De Lorenzi, Francesca; Missere, Daniele; Buscaroli, Claudio; Menenti, Massimo

    2013-04-01

    Extremely high and extremely low temperature may have a terminal impact on the productivity of fruit tree if occurring at critical phases of development. Notorious examples are frost during flowering or extremely high temperature during fruit setting. The dates of occurrence of such critical phenological stages depend on the weather history from the start of the yearly development cycle in late autumn, thus the impact of climate extremes can only be evaluated correctly if the phenological development is modeled taking into account the weather history of the specific year being evaluated. Climate change impact may lead to a shift in timing of phenological stages and change in the duration of vegetative and reproductive phases. A changing climate can also exhibit a greater climatic variability producing quite large changes in the frequency of extreme climatic events. We propose a two-stage approach to evaluate the impact of predicted future climate on the productivity of fruit trees. The phenological development is modeled using phase - specific thermal times and variety specific thermal requirements for several cultivars of pear, apricot and peach. These requirements were estimated using phenological observations over several years in Emilia Romagna region and scientific literature. We calculated the dates of start and end of rest completion, bud swell, flowering, fruit setting and ripening stages , from late autumn through late summer. Then phase-specific minimum and maximum cardinal temperature were evaluated for present and future climate to estimate how frequently they occur during any critically sensitive phenological phase. This analysis has been done for past climate (1961 - 1990) and fifty realizations of a year representative of future climate (2021 - 2050). A delay in rest completion of about 10-20 days has been predicted for future climate for most of the cultivars. On the other hand the predicted rise in air temperature causes an earlier development of crops thus a reduction in the length of the different phenological stages. Despite the earlier timing of phenological phases may expose the crops to frost hazard, the mean increase of air temperature avoids relevant impacts on crops. The frequency of air temperatures higher than the cardinal temperatures is expected to increase by 5% compared with the reference 1961 - 1990 climate. The work was carried out within the Italian national project AGROSCENARI funded by the Ministry for Agricultural, Food and Forest Policies (MIPAAF, D.M. 8608/7303/2008)

  10. Towards estimates of future rainfall erosivity in Europe based on REDES and WorldClim datasets

    NASA Astrophysics Data System (ADS)

    Panagos, Panos; Ballabio, Cristiano; Meusburger, Katrin; Spinoni, Jonathan; Alewell, Christine; Borrelli, Pasquale

    2017-05-01

    The policy requests to develop trends in soil erosion changes can be responded developing modelling scenarios of the two most dynamic factors in soil erosion, i.e. rainfall erosivity and land cover change. The recently developed Rainfall Erosivity Database at European Scale (REDES) and a statistical approach used to spatially interpolate rainfall erosivity data have the potential to become useful knowledge to predict future rainfall erosivity based on climate scenarios. The use of a thorough statistical modelling approach (Gaussian Process Regression), with the selection of the most appropriate covariates (monthly precipitation, temperature datasets and bioclimatic layers), allowed to predict the rainfall erosivity based on climate change scenarios. The mean rainfall erosivity for the European Union and Switzerland is projected to be 857 MJ mm ha-1 h-1 yr-1 till 2050 showing a relative increase of 18% compared to baseline data (2010). The changes are heterogeneous in the European continent depending on the future projections of most erosive months (hot period: April-September). The output results report a pan-European projection of future rainfall erosivity taking into account the uncertainties of the climatic models.

  11. Towards estimates of future rainfall erosivity in Europe based on REDES and WorldClim datasets.

    PubMed

    Panagos, Panos; Ballabio, Cristiano; Meusburger, Katrin; Spinoni, Jonathan; Alewell, Christine; Borrelli, Pasquale

    2017-05-01

    The policy requests to develop trends in soil erosion changes can be responded developing modelling scenarios of the two most dynamic factors in soil erosion, i.e. rainfall erosivity and land cover change. The recently developed Rainfall Erosivity Database at European Scale (REDES) and a statistical approach used to spatially interpolate rainfall erosivity data have the potential to become useful knowledge to predict future rainfall erosivity based on climate scenarios. The use of a thorough statistical modelling approach (Gaussian Process Regression), with the selection of the most appropriate covariates (monthly precipitation, temperature datasets and bioclimatic layers), allowed to predict the rainfall erosivity based on climate change scenarios. The mean rainfall erosivity for the European Union and Switzerland is projected to be 857 MJ mm ha -1  h -1  yr -1 till 2050 showing a relative increase of 18% compared to baseline data (2010). The changes are heterogeneous in the European continent depending on the future projections of most erosive months (hot period: April-September). The output results report a pan-European projection of future rainfall erosivity taking into account the uncertainties of the climatic models.

  12. Effects of modeled tropical sea surface temperature variability on coral reef bleaching predictions

    NASA Astrophysics Data System (ADS)

    Van Hooidonk, R. J.

    2011-12-01

    Future widespread coral bleaching and subsequent mortality has been projected with sea surface temperature (SST) data from global, coupled ocean-atmosphere general circulation models (GCMs). While these models possess fidelity in reproducing many aspects of climate, they vary in their ability to correctly capture such parameters as the tropical ocean seasonal cycle and El Niño Southern Oscillation (ENSO) variability. These model weaknesses likely reduce the skill of coral bleaching predictions, but little attention has been paid to the important issue of understanding potential errors and biases, the interaction of these biases with trends and their propagation in predictions. To analyze the relative importance of various types of model errors and biases on coral reef bleaching predictive skill, various intra- and inter-annual frequency bands of observed SSTs were replaced with those frequencies from GCMs 20th century simulations to be included in the Intergovernmental Panel on Climate Change (IPCC) 5th assessment report. Subsequent thermal stress was calculated and predictions of bleaching were made. These predictions were compared with observations of coral bleaching in the period 1982-2007 to calculate skill using an objective measure of forecast quality, the Peirce Skill Score (PSS). This methodology will identify frequency bands that are important to predicting coral bleaching and it will highlight deficiencies in these bands in models. The methodology we describe can be used to improve future climate model derived predictions of coral reef bleaching and it can be used to better characterize the errors and uncertainty in predictions.

  13. Potential effects of climate change on the growth of fishes from different thermal guilds in Lakes Michigan and Huron

    USGS Publications Warehouse

    Kao, Yu-Chun; Madenjian, Charles P.; Bunnell, David B.; Lofgren, Brent M.; Perroud, Marjorie

    2015-01-01

    We used a bioenergetics modeling approach to investigate potential effects of climate change on the growth of two economically important native fishes: yellow perch (Perca flavescens), a cool-water fish, and lake whitefish (Coregonus clupeaformis), a cold-water fish, in deep and oligotrophic Lakes Michigan and Huron. For assessing potential changes in fish growth, we contrasted simulated fish growth in the projected future climate regime during the period 2043-2070 under different prey availability scenarios with the simulated growth during the baseline (historical reference) period 1964-1993. Results showed that effects of climate change on the growth of these two fishes are jointly controlled by behavioral thermoregulation and prey availability. With the ability of behavioral thermoregulation, temperatures experienced by yellow perch in the projected future climate regime increased more than those experienced by lake whitefish. Thus simulated future growth decreased more for yellow perch than for lake whitefish under scenarios where prey availability remains constant into the future. Under high prey availability scenarios, simulated future growth of these two fishes both increased but yellow perch could not maintain the baseline efficiency of converting prey consumption into body weight. We contended that thermal guild should not be the only factor used to predict effects of climate change on the growth of a fish, and that ecosystem responses to climate change should be also taken into account.

  14. Climate change induces demographic resistance to disease in novel coral assemblages

    PubMed Central

    Yakob, Laith; Mumby, Peter J.

    2011-01-01

    Climate change is reshaping biological communities and has already generated novel ecosystems. The functioning of novel ecosystems could depart markedly from that of existing systems and therefore obscure the impacts of climate change. We illustrate this possibility for coral reefs, which are at the forefront of climatic stress. Disease has been a principal cause of reef degradation and is expected to worsen with increased future thermal stress. However, using a field-tested epizoological model, we show that high population turnover within novel ecosystems enhances coral resistance to epizootics. Thus, disease could become a less important driver of change in the future. We emphasize the need to move away from projections based on historic trends toward predictions that account for novel behavior of ecosystems under climate change. PMID:21245326

  15. Mapping, Bayesian Geostatistical Analysis and Spatial Prediction of Lymphatic Filariasis Prevalence in Africa

    PubMed Central

    Slater, Hannah; Michael, Edwin

    2013-01-01

    There is increasing interest to control or eradicate the major neglected tropical diseases. Accurate modelling of the geographic distributions of parasitic infections will be crucial to this endeavour. We used 664 community level infection prevalence data collated from the published literature in conjunction with eight environmental variables, altitude and population density, and a multivariate Bayesian generalized linear spatial model that allows explicit accounting for spatial autocorrelation and incorporation of uncertainty in input data and model parameters, to construct the first spatially-explicit map describing LF prevalence distribution in Africa. We also ran the best-fit model against predictions made by the HADCM3 and CCCMA climate models for 2050 to predict the likely distributions of LF under future climate and population changes. We show that LF prevalence is strongly influenced by spatial autocorrelation between locations but is only weakly associated with environmental covariates. Infection prevalence, however, is found to be related to variations in population density. All associations with key environmental/demographic variables appear to be complex and non-linear. LF prevalence is predicted to be highly heterogenous across Africa, with high prevalences (>20%) estimated to occur primarily along coastal West and East Africa, and lowest prevalences predicted for the central part of the continent. Error maps, however, indicate a need for further surveys to overcome problems with data scarcity in the latter and other regions. Analysis of future changes in prevalence indicates that population growth rather than climate change per se will represent the dominant factor in the predicted increase/decrease and spread of LF on the continent. We indicate that these results could play an important role in aiding the development of strategies that are best able to achieve the goals of parasite elimination locally and globally in a manner that may also account for the effects of future climate change on parasitic infection. PMID:23951194

  16. THE APPLICATION OF A STATISTICAL DOWNSCALING PROCESS TO DERIVE 21{sup ST} CENTURY RIVER FLOW PREDICTIONS USING A GLOBAL CLIMATE SIMULATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werth, D.; Chen, K. F.

    2013-08-22

    The ability of water managers to maintain adequate supplies in coming decades depends, in part, on future weather conditions, as climate change has the potential to alter river flows from their current values, possibly rendering them unable to meet demand. Reliable climate projections are therefore critical to predicting the future water supply for the United States. These projections cannot be provided solely by global climate models (GCMs), however, as their resolution is too coarse to resolve the small-scale climate changes that can affect hydrology, and hence water supply, at regional to local scales. A process is needed to ‘downscale’ themore » GCM results to the smaller scales and feed this into a surface hydrology model to help determine the ability of rivers to provide adequate flow to meet future needs. We apply a statistical downscaling to GCM projections of precipitation and temperature through the use of a scaling method. This technique involves the correction of the cumulative distribution functions (CDFs) of the GCM-derived temperature and precipitation results for the 20{sup th} century, and the application of the same correction to 21{sup st} century GCM projections. This is done for three meteorological stations located within the Coosa River basin in northern Georgia, and is used to calculate future river flow statistics for the upper Coosa River. Results are compared to the historical Coosa River flow upstream from Georgia Power Company’s Hammond coal-fired power plant and to flows calculated with the original, unscaled GCM results to determine the impact of potential changes in meteorology on future flows.« less

  17. Suspended sediment source areas and future climate impact on soil erosion and sediment yield in a New York City water supply watershed, USA

    NASA Astrophysics Data System (ADS)

    Mukundan, Rajith; Pradhanang, Soni M.; Schneiderman, Elliot M.; Pierson, Donald C.; Anandhi, Aavudai; Zion, Mark S.; Matonse, Adão H.; Lounsbury, David G.; Steenhuis, Tammo S.

    2013-02-01

    High suspended sediment loads and the resulting turbidity can impact the use of surface waters for water supply and other designated uses. Changes in fluvial sediment loads influence material fluxes, aquatic geochemistry, water quality, channel morphology, and aquatic habitats. Therefore, quantifying spatial and temporal patterns in sediment loads is important both for understanding and predicting soil erosion and sediment transport processes as well as watershed-scale management of sediment and associated pollutants. A case study from the 891 km2 Cannonsville watershed, one of the major watersheds in the New York City water supply system is presented. The objective of this study was to apply Soil and Water Assessment Tool-Water Balance (SWAT-WB), a physically based semi-distributed model to identify suspended sediment generating source areas under current conditions and to simulate potential climate change impacts on soil erosion and suspended sediment yield in the study watershed for a set of future climate scenarios representative of the period 2081-2100. Future scenarios developed using nine global climate model (GCM) simulations indicate a sharp increase in the annual rates of soil erosion although a similar result in sediment yield at the watershed outlet was not evident. Future climate related changes in soil erosion and sediment yield appeared more significant in the winter due to a shift in the timing of snowmelt and also due to a decrease in the proportion of precipitation received as snow. Although an increase in future summer precipitation was predicted, soil erosion and sediment yield appeared to decrease owing to an increase in soil moisture deficit and a decrease in water yield due to increased evapotranspiration.

  18. Warm climates of the past—a lesson for the future?

    PubMed Central

    Lunt, D. J.; Elderfield, H.; Pancost, R.; Ridgwell, A.; Foster, G. L.; Haywood, A.; Kiehl, J.; Sagoo, N.; Shields, C.; Stone, E. J.; Valdes, P.

    2013-01-01

    This Discussion Meeting Issue of the Philosophical Transactions A had its genesis in a Discussion Meeting of the Royal Society which took place on 10–11 October 2011. The Discussion Meeting, entitled ‘Warm climates of the past: a lesson for the future?’, brought together 16 eminent international speakers from the field of palaeoclimate, and was attended by over 280 scientists and members of the public. Many of the speakers have contributed to the papers compiled in this Discussion Meeting Issue. The papers summarize the talks at the meeting, and present further or related work. This Discussion Meeting Issue asks to what extent information gleaned from the study of past climates can aid our understanding of future climate change. Climate change is currently an issue at the forefront of environmental science, and also has important sociological and political implications. Most future predictions are carried out by complex numerical models; however, these models cannot be rigorously tested for scenarios outside of the modern, without making use of past climate data. Furthermore, past climate data can inform our understanding of how the Earth system operates, and can provide important contextual information related to environmental change. All past time periods can be useful in this context; here, we focus on past climates that were warmer than the modern climate, as these are likely to be the most similar to the future. This introductory paper is not meant as a comprehensive overview of all work in this field. Instead, it gives an introduction to the important issues therein, using the papers in this Discussion Meeting Issue, and other works from all the Discussion Meeting speakers, as exemplars of the various ways in which past climates can inform projections of future climate. Furthermore, we present new work that uses a palaeo constraint to quantitatively inform projections of future equilibrium ice sheet change. PMID:24043873

  19. Warm climates of the past--a lesson for the future?

    PubMed

    Lunt, D J; Elderfield, H; Pancost, R; Ridgwell, A; Foster, G L; Haywood, A; Kiehl, J; Sagoo, N; Shields, C; Stone, E J; Valdes, P

    2013-10-28

    This Discussion Meeting Issue of the Philosophical Transactions A had its genesis in a Discussion Meeting of the Royal Society which took place on 10-11 October 2011. The Discussion Meeting, entitled 'Warm climates of the past: a lesson for the future?', brought together 16 eminent international speakers from the field of palaeoclimate, and was attended by over 280 scientists and members of the public. Many of the speakers have contributed to the papers compiled in this Discussion Meeting Issue. The papers summarize the talks at the meeting, and present further or related work. This Discussion Meeting Issue asks to what extent information gleaned from the study of past climates can aid our understanding of future climate change. Climate change is currently an issue at the forefront of environmental science, and also has important sociological and political implications. Most future predictions are carried out by complex numerical models; however, these models cannot be rigorously tested for scenarios outside of the modern, without making use of past climate data. Furthermore, past climate data can inform our understanding of how the Earth system operates, and can provide important contextual information related to environmental change. All past time periods can be useful in this context; here, we focus on past climates that were warmer than the modern climate, as these are likely to be the most similar to the future. This introductory paper is not meant as a comprehensive overview of all work in this field. Instead, it gives an introduction to the important issues therein, using the papers in this Discussion Meeting Issue, and other works from all the Discussion Meeting speakers, as exemplars of the various ways in which past climates can inform projections of future climate. Furthermore, we present new work that uses a palaeo constraint to quantitatively inform projections of future equilibrium ice sheet change.

  20. Contrasting effects of climate change on rabbit populations through reproduction.

    PubMed

    Tablado, Zulima; Revilla, Eloy

    2012-01-01

    Climate change is affecting many physical and biological processes worldwide. Anticipating its effects at the level of populations and species is imperative, especially for organisms of conservation or management concern. Previous studies have focused on estimating future species distributions and extinction probabilities directly from current climatic conditions within their geographical ranges. However, relationships between climate and population parameters may be so complex that to make these high-level predictions we need first to understand the underlying biological processes driving population size, as well as their individual response to climatic alterations. Therefore, the objective of this study is to investigate the influence that climate change may have on species population dynamics through altering breeding season. We used a mechanistic model based on drivers of rabbit reproductive physiology together with demographic simulations to show how future climate-driven changes in breeding season result in contrasting rabbit population trends across Europe. In the Iberian Peninsula, where rabbits are a native species of high ecological and economic value, breeding seasons will shorten and become more variable leading to population declines, higher extinction risk, and lower resilience to perturbations. Whereas towards north-eastern countries, rabbit numbers are expected to increase through longer and more stable reproductive periods, which augment the probability of new rabbit invasions in those areas. Our study reveals the type of mechanisms through which climate will cause alterations at the species level and emphasizes the need to focus on them in order to better foresee large-scale complex population trends. This is especially important in species like the European rabbit whose future responses may aggravate even further its dual keystone/pest problematic. Moreover, this approach allows us to predict not only distribution shifts but also future population status and growth, and to identify the demographic parameters on which to focus to mitigate global change effects.

  1. Contrasting Effects of Climate Change on Rabbit Populations through Reproduction

    PubMed Central

    Tablado, Zulima; Revilla, Eloy

    2012-01-01

    Background Climate change is affecting many physical and biological processes worldwide. Anticipating its effects at the level of populations and species is imperative, especially for organisms of conservation or management concern. Previous studies have focused on estimating future species distributions and extinction probabilities directly from current climatic conditions within their geographical ranges. However, relationships between climate and population parameters may be so complex that to make these high-level predictions we need first to understand the underlying biological processes driving population size, as well as their individual response to climatic alterations. Therefore, the objective of this study is to investigate the influence that climate change may have on species population dynamics through altering breeding season. Methodology/Principal Findings We used a mechanistic model based on drivers of rabbit reproductive physiology together with demographic simulations to show how future climate-driven changes in breeding season result in contrasting rabbit population trends across Europe. In the Iberian Peninsula, where rabbits are a native species of high ecological and economic value, breeding seasons will shorten and become more variable leading to population declines, higher extinction risk, and lower resilience to perturbations. Whereas towards north-eastern countries, rabbit numbers are expected to increase through longer and more stable reproductive periods, which augment the probability of new rabbit invasions in those areas. Conclusions/Significance Our study reveals the type of mechanisms through which climate will cause alterations at the species level and emphasizes the need to focus on them in order to better foresee large-scale complex population trends. This is especially important in species like the European rabbit whose future responses may aggravate even further its dual keystone/pest problematic. Moreover, this approach allows us to predict not only distribution shifts but also future population status and growth, and to identify the demographic parameters on which to focus to mitigate global change effects. PMID:23152836

  2. Refining climate change projections for organisms with low dispersal abilities: a case study of the Caspian whip snake.

    PubMed

    Sahlean, Tiberiu C; Gherghel, Iulian; Papeş, Monica; Strugariu, Alexandru; Zamfirescu, Ştefan R

    2014-01-01

    Climate warming is one of the most important threats to biodiversity. Ectothermic organisms such as amphibians and reptiles are especially vulnerable as climatic conditions affect them directly. Ecological niche models (ENMs) are increasingly popular in ecological studies, but several drawbacks exist, including the limited ability to account for the dispersal potential of the species. In this study, we use ENMs to explore the impact of global climate change on the Caspian whip snake (Dolichophis caspius) as model for organisms with low dispersal abilities and to quantify dispersal to novel areas using GIS techniques. Models generated using Maxent 3.3.3 k and GARP for current distribution were projected on future climatic scenarios. A cost-distance analysis was run in ArcGIS 10 using geomorphological features, ecological conditions, and human footprint as "costs" to dispersal of the species to obtain a Maximum Dispersal Range (MDR) estimate. All models developed were statistically significant (P<0.05) and recovered the currently known distribution of D. caspius. Models projected on future climatic conditions using Maxent predicted a doubling of suitable climatic area, while GARP predicted a more conservative expansion. Both models agreed on an expansion of suitable area northwards, with minor decreases at the southern distribution limit. The MDR area calculated using the Maxent model represented a third of the total area of the projected model. The MDR based on GARP models recovered only about 20% of the total area of the projected model. Thus, incorporating measures of species' dispersal abilities greatly reduced estimated area of potential future distributions.

  3. Revisiting historical climatic signals to better explore the future: prospects of water cycle changes in Central Sahel

    NASA Astrophysics Data System (ADS)

    Leauthaud, C.; Demarty, J.; Cappelaere, B.; Grippa, M.; Kergoat, L.; Velluet, C.; Guichard, F.; Mougin, E.; Chelbi, S.; Sultan, B.

    2015-06-01

    Rainfall and climatic conditions are the main drivers of natural and cultivated vegetation productivity in the semiarid region of Central Sahel. In a context of decreasing cultivable area per capita, understanding and predicting changes in the water cycle are crucial. Yet, it remains challenging to project future climatic conditions in West Africa since there is no consensus on the sign of future precipitation changes in simulations coming from climate models. The Sahel region has experienced severe climatic changes in the past 60 years that can provide a first basis to understand the response of the water cycle to non-stationary conditions in this part of the world. The objective of this study was to better understand the response of the water cycle to highly variable climatic regimes in Central Sahel using historical climate records and the coupling of a land surface energy and water model with a vegetation model that, when combined, simulated the Sahelian water, energy and vegetation cycles. To do so, we relied on a reconstructed long-term climate series in Niamey, Republic of Niger, in which three precipitation regimes can be distinguished with a relative deficit exceeding 25% for the driest period compared to the wettest period. Two temperature scenarios (+2 and +4 °C) consistent with future warming scenarios were superimposed to this climatic signal to generate six virtual future 20-year climate time series. Simulations by the two coupled models forced by these virtual scenarios showed a strong response of the water budget and its components to temperature and precipitation changes, including decreases in transpiration, runoff and drainage for all scenarios but those with highest precipitation. Such climatic changes also strongly impacted soil temperature and moisture. This study illustrates the potential of using the strong climatic variations recorded in the past decades to better understand potential future climate variations.

  4. Exploring tree species colonization potentials using a spatially explicit simulation model: implications for four oaks under climate change

    Treesearch

    Anantha M. Prasad; Judith D. Gardiner; Louis R. Iverson; Stephen N. Matthews; Matthew Peters

    2013-01-01

    Climate change impacts tree species differentially by exerting unique pressures and altering their suitable habitats. We previously predicted these changes in suitable habitat for current and future climates using a species habitat model (DISTRIB) in the eastern United States. Based on the accuracy of the model, the species assemblages should eventually reflect the new...

  5. Vegetation productivity responds to sub-annual climate conditions across semiarid biomes

    USDA-ARS?s Scientific Manuscript database

    In the Southwestern United States (SW), the current prolonged warm drought is similar to the predicted future climate change scenarios for the region. This study aimed to determine patterns in vegetation response to the early 21st century drought across multiple biomes. We hypothesized that differen...

  6. Predicting drought in an agricultural watershed given climate variability

    USDA-ARS?s Scientific Manuscript database

    Changes in the future hydrologic cycle due to changes in temperature (T) and precipitation (P) are likely to be associated with increases in hydrologic extremes. This study evaluates the impacts of climate variability on drought using the Soil and Water Assessment Tool (SWAT) in Goodwater Creek Expe...

  7. Working Group on Virtual Data Integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Dean N.

    2016-03-07

    This report is the outcome of a workshop commissioned by the U.S. Department of Energy’s (DOE) Climate and Environmental Sciences Division (CESD) to examine current and future data infrastructure requirements foundational for achieving CESD scientific mission goals in advancing a robust, predictive understanding of Earth’s climate and environmental systems.

  8. Future changes in peak river flows across northern Eurasia as inferred from an ensemble of regional climate projections under the IPCC RCP8.5 scenario

    NASA Astrophysics Data System (ADS)

    Shkolnik, Igor; Pavlova, Tatiana; Efimov, Sergey; Zhuravlev, Sergey

    2018-01-01

    Climate change simulation based on 30-member ensemble of Voeikov Main Geophysical Observatory RCM (resolution 25 km) for northern Eurasia is used to drive hydrological model CaMa-Flood. Using this modeling framework, we evaluate the uncertainties in the future projection of the peak river discharge and flood hazard by 2050-2059 relative to 1990-1999 under IPCC RCP8.5 scenario. Large ensemble size, along with reasonably high modeling resolution, allows one to efficiently sample natural climate variability and increase our ability to predict future changes in the hydrological extremes. It has been shown that the annual maximum river discharge can almost double by the mid-XXI century in the outlets of major Siberian rivers. In the western regions, there is a weak signal in the river discharge and flood hazard, hardly discernible above climate variability. Annual maximum flood area is projected to increase across Siberia mostly by 2-5% relative to the baseline period. A contribution of natural climate variability at different temporal scales to the uncertainty of ensemble prediction is discussed. The analysis shows that there expected considerable changes in the extreme river discharge probability at locations of the key hydropower facilities. This suggests that the extensive impact studies are required to develop recommendations for maintaining regional energy security.

  9. A broad assessment of factors determining Culicoides imicola abundance: modelling the present and forecasting its future in climate change scenarios.

    PubMed

    Acevedo, Pelayo; Ruiz-Fons, Francisco; Estrada, Rosa; Márquez, Ana Luz; Miranda, Miguel Angel; Gortázar, Christian; Lucientes, Javier

    2010-12-06

    Bluetongue (BT) is still present in Europe and the introduction of new serotypes from endemic areas in the African continent is a possible threat. Culicoides imicola remains one of the most relevant BT vectors in Spain and research on the environmental determinants driving its life cycle is key to preventing and controlling BT. Our aim was to improve our understanding of the biotic and abiotic determinants of C. imicola by modelling its present abundance, studying the spatial pattern of predicted abundance in relation to BT outbreaks, and investigating how the predicted current distribution and abundance patterns might change under future (2011-2040) scenarios of climate change according to the Intergovernmental Panel on Climate Change. C. imicola abundance data from the bluetongue national surveillance programme were modelled with spatial, topoclimatic, host and soil factors. The influence of these factors was further assessed by variation partitioning procedures. The predicted abundance of C. imicola was also projected to a future period. Variation partitioning demonstrated that the pure effect of host and topoclimate factors explained a high percentage (>80%) of the variation. The pure effect of soil followed in importance in explaining the abundance of C. imicola. A close link was confirmed between C. imicola abundance and BT outbreaks. To the best of our knowledge, this study is the first to consider wild and domestic hosts in predictive modelling for an arthropod vector. The main findings regarding the near future show that there is no evidence to suggest that there will be an important increase in the distribution range of C. imicola; this contrasts with an expected increase in abundance in the areas where it is already present in mainland Spain. What may be expected regarding the future scenario for orbiviruses in mainland Spain, is that higher predicted C. imicola abundance may significantly change the rate of transmission of orbiviruses.

  10. Assessing Confidence in Pliocene Sea Surface Temperatures to Evaluate Predictive Models

    NASA Technical Reports Server (NTRS)

    Dowsett, Harry J.; Robinson, Marci M.; Haywood, Alan M.; Hill, Daniel J.; Dolan, Aisling. M.; Chan, Wing-Le; Abe-Ouchi, Ayako; Chandler, Mark A.; Rosenbloom, Nan A.; Otto-Bliesner, Bette L.; hide

    2012-01-01

    In light of mounting empirical evidence that planetary warming is well underway, the climate research community looks to palaeoclimate research for a ground-truthing measure with which to test the accuracy of future climate simulations. Model experiments that attempt to simulate climates of the past serve to identify both similarities and differences between two climate states and, when compared with simulations run by other models and with geological data, to identify model-specific biases. Uncertainties associated with both the data and the models must be considered in such an exercise. The most recent period of sustained global warmth similar to what is projected for the near future occurred about 3.33.0 million years ago, during the Pliocene epoch. Here, we present Pliocene sea surface temperature data, newly characterized in terms of level of confidence, along with initial experimental results from four climate models. We conclude that, in terms of sea surface temperature, models are in good agreement with estimates of Pliocene sea surface temperature in most regions except the North Atlantic. Our analysis indicates that the discrepancy between the Pliocene proxy data and model simulations in the mid-latitudes of the North Atlantic, where models underestimate warming shown by our highest-confidence data, may provide a new perspective and insight into the predictive abilities of these models in simulating a past warm interval in Earth history.This is important because the Pliocene has a number of parallels to present predictions of late twenty-first century climate.

  11. Assessing confidence in Pliocene sea surface temperatures to evaluate predictive models

    USGS Publications Warehouse

    Dowsett, Harry J.; Robinson, Marci M.; Haywood, Alan M.; Hill, Daniel J.; Dolan, Aisling M.; Stoll, Danielle K.; Chan, Wing-Le; Abe-Ouchi, Ayako; Chandler, Mark A.; Rosenbloom, Nan A.; Otto-Bliesner, Bette L.; Bragg, Fran J.; Lunt, Daniel J.; Foley, Kevin M.; Riesselman, Christina R.

    2012-01-01

    In light of mounting empirical evidence that planetary warming is well underway, the climate research community looks to palaeoclimate research for a ground-truthing measure with which to test the accuracy of future climate simulations. Model experiments that attempt to simulate climates of the past serve to identify both similarities and differences between two climate states and, when compared with simulations run by other models and with geological data, to identify model-specific biases. Uncertainties associated with both the data and the models must be considered in such an exercise. The most recent period of sustained global warmth similar to what is projected for the near future occurred about 3.3–3.0 million years ago, during the Pliocene epoch. Here, we present Pliocene sea surface temperature data, newly characterized in terms of level of confidence, along with initial experimental results from four climate models. We conclude that, in terms of sea surface temperature, models are in good agreement with estimates of Pliocene sea surface temperature in most regions except the North Atlantic. Our analysis indicates that the discrepancy between the Pliocene proxy data and model simulations in the mid-latitudes of the North Atlantic, where models underestimate warming shown by our highest-confidence data, may provide a new perspective and insight into the predictive abilities of these models in simulating a past warm interval in Earth history. This is important because the Pliocene has a number of parallels to present predictions of late twenty-first century climate.

  12. Implications of between-isolate variation for climate change impact modelling of Haemonchus contortus populations.

    PubMed

    Rose Vineer, H; Steiner, J; Knapp-Lawitzke, F; Bull, K; von Son-de Fernex, E; Bosco, A; Hertzberg, H; Demeler, J; Rinaldi, L; Morrison, A A; Skuce, P; Bartley, D J; Morgan, E R

    2016-10-15

    The impact of climate change on parasites and parasitic diseases is a growing concern and numerous empirical and mechanistic models have been developed to predict climate-driven spatial and temporal changes in the distribution of parasites and disease risk. Variation in parasite phenotype and life-history traits between isolates could undermine the application of such models at broad spatial scales. Seasonal variation in the transmission of the haematophagous gastrointestinal nematode Haemonchus contortus, one of the most pathogenic helminth species infecting sheep and goats worldwide, is primarily determined by the impact of environmental conditions on the free-living stages. To evaluate variability in the development success and mortality of the free-living stages of H. contortus and the impact of this variability on future climate impact modelling, three isolates of diverse origin were cultured at a range of temperatures between 15°C and 37°C to determine their development success compared with simulations using the GLOWORM-FL H. contortus model. No significant difference was observed in the developmental success of the three isolates of H. contortus tested, nor between isolates and model simulations. However, development success of all isolates at 37°C was lower than predicted by the model, suggesting the potential for overestimation of transmission risk at higher temperatures, such as those predicted under some scenarios of climate change. Recommendations are made for future climate impact modelling of gastrointestinal nematodes. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. A multi-model framework for simulating wildlife population response to land-use and climate change

    USGS Publications Warehouse

    McRae, B.H.; Schumaker, N.H.; McKane, R.B.; Busing, R.T.; Solomon, A.M.; Burdick, C.A.

    2008-01-01

    Reliable assessments of how human activities will affect wildlife populations are essential for making scientifically defensible resource management decisions. A principle challenge of predicting effects of proposed management, development, or conservation actions is the need to incorporate multiple biotic and abiotic factors, including land-use and climate change, that interact to affect wildlife habitat and populations through time. Here we demonstrate how models of land-use, climate change, and other dynamic factors can be integrated into a coherent framework for predicting wildlife population trends. Our framework starts with land-use and climate change models developed for a region of interest. Vegetation changes through time under alternative future scenarios are predicted using an individual-based plant community model. These predictions are combined with spatially explicit animal habitat models to map changes in the distribution and quality of wildlife habitat expected under the various scenarios. Animal population responses to habitat changes and other factors are then projected using a flexible, individual-based animal population model. As an example application, we simulated animal population trends under three future land-use scenarios and four climate change scenarios in the Cascade Range of western Oregon. We chose two birds with contrasting habitat preferences for our simulations: winter wrens (Troglodytes troglodytes), which are most abundant in mature conifer forests, and song sparrows (Melospiza melodia), which prefer more open, shrubby habitats. We used climate and land-use predictions from previously published studies, as well as previously published predictions of vegetation responses using FORCLIM, an individual-based forest dynamics simulator. Vegetation predictions were integrated with other factors in PATCH, a spatially explicit, individual-based animal population simulator. Through incorporating effects of landscape history and limited dispersal, our framework predicted population changes that typically exceeded those expected based on changes in mean habitat suitability alone. Although land-use had greater impacts on habitat quality than did climate change in our simulations, we found that small changes in vital rates resulting from climate change or other stressors can have large consequences for population trajectories. The ability to integrate bottom-up demographic processes like these with top-down constraints imposed by climate and land-use in a dynamic modeling environment is a key advantage of our approach. The resulting framework should allow researchers to synthesize existing empirical evidence, and to explore complex interactions that are difficult or impossible to capture through piecemeal modeling approaches. ?? 2008 Elsevier B.V.

  14. Assessing the sensitivity of avian species abundance to land cover and climate

    USGS Publications Warehouse

    LeBrun, Jaymi J.; Thogmartin, Wayne E.; Thompson, Frank R.; Dijak, William D.; Millspaugh, Joshua J.

    2016-01-01

    Climate projections for the Midwestern United States predict southerly climates to shift northward. These shifts in climate could alter distributions of species across North America through changes in climate (i.e., temperature and precipitation), or through climate-induced changes on land cover. Our objective was to determine the relative impacts of land cover and climate on the abundance of five bird species in the Central United States that have habitat requirements ranging from grassland and shrubland to forest. We substituted space for time to examine potential impacts of a changing climate by assessing climate and land cover relationships over a broad latitudinal gradient. We found positive and negative relationships of climate and land cover factors with avian abundances. Habitat variables drove patterns of abundance in migratory and resident species, although climate was also influential in predicting abundance for some species occupying more open habitat (i.e., prairie warbler, blue-winged warbler, and northern bobwhite). Abundance of northern bobwhite increased with winter temperature and was the species exhibiting the most significant effect of climate. Models for birds primarily occupying early successional habitats performed better with a combination of habitat and climate variables whereas models of species found in contiguous forest performed best with land cover alone. These varied species-specific responses present unique challenges to land managers trying to balance species conservation over a variety of land covers. Management activities focused on increasing forest cover may play a role in mitigating effects of future climate by providing habitat refugia to species vulnerable to projected changes. Conservation efforts would be best served focusing on areas with high species abundances and an array of habitats. Future work managing forests for resilience and resistance to climate change could benefit species already susceptible to climate impacts.

  15. Mitigating Future Avian Malaria Threats to Hawaiian Forest Birds from Climate Change.

    PubMed

    Liao, Wei; Atkinson, Carter T; LaPointe, Dennis A; Samuel, Michael D

    2017-01-01

    Avian malaria, transmitted by Culex quinquefasciatus mosquitoes in the Hawaiian Islands, has been a primary contributor to population range limitations, declines, and extinctions for many endemic Hawaiian honeycreepers. Avian malaria is strongly influenced by climate; therefore, predicted future changes are expected to expand transmission into higher elevations and intensify and lengthen existing transmission periods at lower elevations, leading to further population declines and potential extinction of highly susceptible honeycreepers in mid- and high-elevation forests. Based on future climate changes and resulting malaria risk, we evaluated the viability of alternative conservation strategies to preserve endemic Hawaiian birds at mid and high elevations through the 21st century. We linked an epidemiological model with three alternative climatic projections from the Coupled Model Intercomparison Project to predict future malaria risk and bird population dynamics for the coming century. Based on climate change predictions, proposed strategies included mosquito population suppression using modified males, release of genetically modified refractory mosquitoes, competition from other introduced mosquitoes that are not competent vectors, evolved malaria-tolerance in native honeycreepers, feral pig control to reduce mosquito larval habitats, and predator control to improve bird demographics. Transmission rates of malaria are predicted to be higher than currently observed and are likely to have larger impacts in high-elevation forests where current low rates of transmission create a refuge for highly-susceptible birds. As a result, several current and proposed conservation strategies will be insufficient to maintain existing forest bird populations. We concluded that mitigating malaria transmission at high elevations should be a primary conservation goal. Conservation strategies that maintain highly susceptible species like Iiwi (Drepanis coccinea) will likely benefit other threatened and endangered Hawai'i species, especially in high-elevation forests. Our results showed that mosquito control strategies offer potential long-term benefits to high elevation Hawaiian honeycreepers. However, combined strategies will likely be needed to preserve endemic birds at mid elevations. Given the delay required to research, develop, evaluate, and improve several of these currently untested conservation strategies we suggest that planning should begin expeditiously.

  16. Mitigating future avian malaria threats to Hawaiian forest birds from climate change

    USGS Publications Warehouse

    Liao, Wei; Atkinson, Carter T.; LaPointe, Dennis; Samuel, Michael D.

    2017-01-01

    Avian malaria, transmitted by Culex quinquefasciatus mosquitoes in the Hawaiian Islands, has been a primary contributor to population range limitations, declines, and extinctions for many endemic Hawaiian honeycreepers. Avian malaria is strongly influenced by climate; therefore, predicted future changes are expected to expand transmission into higher elevations and intensify and lengthen existing transmission periods at lower elevations, leading to further population declines and potential extinction of highly susceptible honeycreepers in mid- and high-elevation forests. Based on future climate changes and resulting malaria risk, we evaluated the viability of alternative conservation strategies to preserve endemic Hawaiian birds at mid and high elevations through the 21st century. We linked an epidemiological model with three alternative climatic projections from the Coupled Model Intercomparison Project to predict future malaria risk and bird population dynamics for the coming century. Based on climate change predictions, proposed strategies included mosquito population suppression using modified males, release of genetically modified refractory mosquitoes, competition from other introduced mosquitoes that are not competent vectors, evolved malaria-tolerance in native honeycreepers, feral pig control to reduce mosquito larval habitats, and predator control to improve bird demographics. Transmission rates of malaria are predicted to be higher than currently observed and are likely to have larger impacts in high-elevation forests where current low rates of transmission create a refuge for highly-susceptible birds. As a result, several current and proposed conservation strategies will be insufficient to maintain existing forest bird populations. We concluded that mitigating malaria transmission at high elevations should be a primary conservation goal. Conservation strategies that maintain highly susceptible species like Iiwi (Drepanis coccinea) will likely benefit other threatened and endangered Hawai’i species, especially in high-elevation forests. Our results showed that mosquito control strategies offer potential long-term benefits to high elevation Hawaiian honeycreepers. However, combined strategies will likely be needed to preserve endemic birds at mid elevations. Given the delay required to research, develop, evaluate, and improve several of these currently untested conservation strategies we suggest that planning should begin expeditiously.

  17. Assessing spatiotemporal changes in forest carbon turnover times in observational data and models

    NASA Astrophysics Data System (ADS)

    Yu, K.; Smith, W. K.; Trugman, A. T.; van Mantgem, P.; Peng, C.; Condit, R.; Anderegg, W.

    2017-12-01

    Forests influence global carbon and water cycles, biophysical land-atmosphere feedbacks, and atmospheric composition. The capacity of forests to sequester atmospheric CO2 in a changing climate depends not only on the response of carbon uptake (i.e., gross primary productivity) but also on the simultaneous change in carbon residence time. However, changes in carbon residence with climate change are uncertain, impacting the accuracy of predictions of future terrestrial carbon cycle dynamics. Here, we use long-term forest inventory data representative of tropical, temperate, and boreal forests; satellite-based estimates of net primary productivity and vegetation carbon stock; and six models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) to investigate spatiotemporal trends in carbon residence time and its relation to climate. Forest inventory and satellite-based estimates of carbon residence time show a pervasive decreasing trend across global forests. In contrast, the CMIP5 models diverge in predicting historical and future trends in carbon residence time. Divergence across CMIP5 models indicate carbon turnover times are not well constrained by observations, which likely contributes to large variability in future carbon cycle projections.

  18. Cloudy Windows: What GCM Ensembles, Reanalyses and Observations Tell Us About Uncertainty in Greenland's Future Climate and Surface Melting

    NASA Astrophysics Data System (ADS)

    Reusch, D. B.

    2016-12-01

    Any analysis that wants to use a GCM-based scenario of future climate benefits from knowing how much uncertainty the GCM's inherent variability adds to the development of climate change predictions. This is extra relevant in the polar regions due to the potential of global impacts (e.g., sea level rise) from local (ice sheet) climate changes such as more frequent/intense surface melting. High-resolution, regional-scale models using GCMs for boundary/initial conditions in future scenarios inherit a measure of GCM-derived externally-driven uncertainty. We investigate these uncertainties for the Greenland ice sheet using the 30-member CESM1.0-CAM5-BGC Large Ensemble (CESMLE) for recent (1981-2000) and future (2081-2100, RCP 8.5) decades. Recent simulations are skill-tested against the ERA-Interim reanalysis and AWS observations with results informing future scenarios. We focus on key variables influencing surface melting through decadal climatologies, nonlinear analysis of variability with self-organizing maps (SOMs), regional-scale modeling (Polar WRF), and simple melt models. Relative to the ensemble average, spatially averaged climatological July temperature anomalies over a Greenland ice-sheet/ocean domain are mostly between +/- 0.2 °C. The spatial average hides larger local anomalies of up to +/- 2 °C. The ensemble average itself is 2 °C cooler than ERA-Interim. SOMs extend our diagnostics by providing a concise, objective summary of model variability as a set of generalized patterns. For CESMLE, the SOM patterns summarize the variability of multiple realizations of climate. Changes in pattern frequency by ensemble member show the influence of initial conditions. For example, basic statistical analysis of pattern frequency yields interquartile ranges of 2-4% for individual patterns across the ensemble. In climate terms, this tells us about climate state variability through the range of the ensemble, a potentially significant source of melt-prediction uncertainty. SOMs can also capture the different trajectories of climate due to intramodel variability over time. Polar WRF provides higher resolution regional modeling with improved, polar-centric model physics. Simple melt models allow us to characterize impacts of the upstream uncertainties on estimates of surface melting.

  19. Simulation of future stream alkalinity under changing deposition and climate scenarios.

    PubMed

    Welsch, Daniel L; Cosby, B Jack; Hornberger, George M

    2006-08-31

    Models of soil and stream water acidification have typically been applied under scenarios of changing acidic deposition, however, climate change is usually ignored. Soil air CO2 concentrations have potential to increase as climate warms and becomes wetter, thus affecting soil and stream water chemistry by initially increasing stream alkalinity at the expense of reducing base saturation levels on soil exchange sites. We simulate this change by applying a series of physically based coupled models capable of predicting soil air CO2 and stream water chemistry. We predict daily stream water alkalinity for a small catchment in the Virginia Blue Ridge for 60 years into the future given stochastically generated daily climate values. This is done for nine different combinations of climate and deposition. The scenarios for both climate and deposition include a static scenario, a scenario of gradual change, and a scenario of abrupt change. We find that stream water alkalinity continues to decline for all scenarios (average decrease of 14.4 microeq L-1) except where climate is gradually warming and becoming more moist (average increase of 13 microeq L-1). In all other scenarios, base cation removal from catchment soils is responsible for limited alkalinity increase resulting from climate change. This has implications given the extent that acidification models are used to establish policy and legislation concerning deposition and emissions.

  20. Human deforestation outweighs future climate change impacts of sedimentation on coral reefs

    PubMed Central

    Maina, Joseph; de Moel, Hans; Zinke, Jens; Madin, Joshua; McClanahan, Tim; Vermaat, Jan E.

    2013-01-01

    Near-shore coral reef systems are experiencing increased sediment supply due to conversion of forests to other land uses. Counteracting increased sediment loads requires an understanding of the relationship between forest cover and sediment supply, and how this relationship might change in the future. Here we study this relationship by simulating river flow and sediment supply in four watersheds that are adjacent to Madagascar’s major coral reef ecosystems for a range of future climate change projections and land-use change scenarios. We show that by 2090, all four watersheds are predicted to experience temperature increases and/or precipitation declines that, when combined, result in decreases in river flow and sediment load. However, these climate change-driven declines are outweighed by the impact of deforestation. Consequently, our analyses suggest that regional land-use management is more important than mediating climate change for influencing sedimentation of Malagasy coral reefs. PMID:23736941

  1. Human deforestation outweighs future climate change impacts of sedimentation on coral reefs.

    PubMed

    Maina, Joseph; de Moel, Hans; Zinke, Jens; Madin, Joshua; McClanahan, Tim; Vermaat, Jan E

    2013-01-01

    Near-shore coral reef systems are experiencing increased sediment supply due to conversion of forests to other land uses. Counteracting increased sediment loads requires an understanding of the relationship between forest cover and sediment supply, and how this relationship might change in the future. Here we study this relationship by simulating river flow and sediment supply in four watersheds that are adjacent to Madagascar's major coral reef ecosystems for a range of future climate change projections and land-use change scenarios. We show that by 2090, all four watersheds are predicted to experience temperature increases and/or precipitation declines that, when combined, result in decreases in river flow and sediment load. However, these climate change-driven declines are outweighed by the impact of deforestation. Consequently, our analyses suggest that regional land-use management is more important than mediating climate change for influencing sedimentation of Malagasy coral reefs.

  2. Terrestrial Biosphere Dynamics in the Climate System: Past and Future

    NASA Astrophysics Data System (ADS)

    Overpeck, J.; Whitlock, C.; Huntley, B.

    2002-12-01

    The paleoenvironmental record makes it clear that climate change as large as is likely to occur in the next two centuries will drive change in the terrestrial biosphere that is both large and difficult to predict, or plan for. Many species, communities and ecosystems could experience rates of climate change, and "destination climates" that are unprecedented in their time on earth. The paleorecord also makes it clear that a wide range of possible climate system behavior, such as decades-long droughts, increases in large storm and flood frequency, and rapid sea level rise, all occurred repeatedly in the past, and for poorly understood reasons. These types of events, if they were to reoccur in the future, could have especially devastating impacts on biodiversity, both because their timing and spatial extent cannot be anticipated, and because the biota's natural defenses have been compromised by land-use, reductions in genetic flexibility, pollution, excess water utilization, invasive species, and other human influences. Vegetation disturbance (e.g., by disease, pests and fire) will undoubtedly be exacerbated by climate change (stress), but could also speed the rate at which terrestrial biosphere change takes place in the future. The paleoenvironmental record makes it clear that major scientific challenges include an improved ability to model regional biospheric change, both past and future. This in turn will be a prerequisite to obtaining realistic estimates of future biogeochemical and biophysical feedbacks, and thus to obtaining better assessments of future climate change. These steps will help generate the improved understanding of climate variability that is needed to manage global biodiversity. However, the most troubling message from the paleoenvironmental record is that unchecked anthropogenic climate change could make the Earth's 6th major mass extinction unavoidable.

  3. Interactive effects of nocturnal transpiration and climate change on the root hydraulic redistribution and carbon and water budgets of southern United States pine plantations.

    PubMed

    Domec, Jean-Christophe; Ogée, Jérôme; Noormets, Asko; Jouangy, Julien; Gavazzi, Michael; Treasure, Emrys; Sun, Ge; McNulty, Steve G; King, John S

    2012-06-01

    Deep root water uptake and hydraulic redistribution (HR) have been shown to play a major role in forest ecosystems during drought, but little is known about the impact of climate change, fertilization and soil characteristics on HR and its consequences on water and carbon fluxes. Using data from three mid-rotation loblolly pine plantations, and simulations with the process-based model MuSICA, this study indicated that HR can mitigate the effects of soil drying and had important implications for carbon uptake potential and net ecosystem exchange (NEE), especially when N fertilization is considered. At the coastal site (C), characterized by deep organic soil, HR increased dry season tree transpiration (T) by up to 40%, and such an increase affected NEE through major changes in gross primary productivity (GPP). Deep-rooted trees did not necessarily translate into a large volume of HR unless soil texture allowed large water potential gradients to occur, as was the case at the sandy site (S). At the Piedmont site (P) characterized by a shallow clay-loam soil, HR was low but not negligible, representing up to 10% of T. In the absence of HR, it was predicted that at the C, S and P sites, annual GPP would have been diminished by 19, 7 and 9%, respectively. Under future climate conditions HR was predicted to be reduced by up to 25% at the C site, reducing the resilience of trees to precipitation deficits. The effect of HR on T and GPP was predicted to diminish under future conditions by 12 and 6% at the C and P sites, respectively. Under future conditions, T was predicted to stay the same at the P site, but to be marginally reduced at the C site and slightly increased at the S site. Future conditions and N fertilization would decrease T by 25% at the C site, by 15% at the P site and by 8% at the S site. At the C and S sites, GPP was estimated to increase by 18% and by >70% under future conditions, respectively, with little effect of N fertilization. At the P site, future conditions would stimulate GPP by only 12%, but future conditions plus N fertilization would increase GPP by 24%. As a consequence, in all sites, water use efficiency was predicted to improve dramatically with future conditions. Modeling the effect of reduced annual precipitation indicated that limited water availability would decrease all carbon fluxes, including NEE and respiration. Our simulations highlight the interactive effects of nutrients and elevated CO(2), and showed that the effect of N fertilization would be greater under future climate conditions.

  4. Desert grassland responses to climate and soil moisture suggest divergent vulnerabilities across the southwestern US

    USGS Publications Warehouse

    Gremer, Jennifer; Bradford, John B.; Munson, Seth M.; Duniway, Michael C.

    2015-01-01

    Climate change predictions include warming and drying trends, which are expected to be particularly pronounced in the southwestern United States. In this region, grassland dynamics are tightly linked to available moisture, yet it has proven difficult to resolve what aspects of climate drive vegetation change. In part, this is because it is unclear how heterogeneity in soils affects plant responses to climate. Here, we combine climate and soil properties with a mechanistic soil water model to explain temporal fluctuations in perennial grass cover, quantify where and the degree to which incorporating soil water dynamics enhances our ability to understand temporal patterns, and explore the potential consequences of climate change by assessing future trajectories of important climate and soil water variables. Our analyses focused on long-term (20 to 56 years) perennial grass dynamics across the Colorado Plateau, Sonoran, and Chihuahuan Desert regions. Our results suggest that climate variability has negative effects on grass cover, and that precipitation subsidies that extend growing seasons are beneficial. Soil water metrics, including the number of dry days and availability of water from deeper (>30 cm) soil layers, explained additional grass cover variability. While individual climate variables were ranked as more important in explaining grass cover, collectively soil water accounted for 40 to 60% of the total explained variance. Soil water conditions were more useful for understanding the responses of C3 than C4 grass species. Projections of water balance variables under climate change indicate that conditions that currently support perennial grasses will be less common in the future, and these altered conditions will be more pronounced in the Chihuahuan Desert and Colorado Plateau. We conclude that incorporating multiple aspects of climate and accounting for soil variability can improve our ability to understand patterns, identify areas of vulnerability, and predict the future of desert grasslands.

  5. Desert grassland responses to climate and soil moisture suggest divergent vulnerabilities across the southwestern United States.

    PubMed

    Gremer, Jennifer R; Bradford, John B; Munson, Seth M; Duniway, Michael C

    2015-11-01

    Climate change predictions include warming and drying trends, which are expected to be particularly pronounced in the southwestern United States. In this region, grassland dynamics are tightly linked to available moisture, yet it has proven difficult to resolve what aspects of climate drive vegetation change. In part, this is because it is unclear how heterogeneity in soils affects plant responses to climate. Here, we combine climate and soil properties with a mechanistic soil water model to explain temporal fluctuations in perennial grass cover, quantify where and the degree to which incorporating soil water dynamics enhances our ability to understand temporal patterns, and explore the potential consequences of climate change by assessing future trajectories of important climate and soil water variables. Our analyses focused on long-term (20-56 years) perennial grass dynamics across the Colorado Plateau, Sonoran, and Chihuahuan Desert regions. Our results suggest that climate variability has negative effects on grass cover, and that precipitation subsidies that extend growing seasons are beneficial. Soil water metrics, including the number of dry days and availability of water from deeper (>30 cm) soil layers, explained additional grass cover variability. While individual climate variables were ranked as more important in explaining grass cover, collectively soil water accounted for 40-60% of the total explained variance. Soil water conditions were more useful for understanding the responses of C3 than C4 grass species. Projections of water balance variables under climate change indicate that conditions that currently support perennial grasses will be less common in the future, and these altered conditions will be more pronounced in the Chihuahuan Desert and Colorado Plateau. We conclude that incorporating multiple aspects of climate and accounting for soil variability can improve our ability to understand patterns, identify areas of vulnerability, and predict the future of desert grasslands. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  6. Ecological Niche Modelling Predicts Southward Expansion of Lutzomyia (Nyssomyia) flaviscutellata (Diptera: Psychodidae: Phlebotominae), Vector of Leishmania (Leishmania) amazonensis in South America, under Climate Change.

    PubMed

    Carvalho, Bruno M; Rangel, Elizabeth F; Ready, Paul D; Vale, Mariana M

    2015-01-01

    Vector borne diseases are susceptible to climate change because distributions and densities of many vectors are climate driven. The Amazon region is endemic for cutaneous leishmaniasis and is predicted to be severely impacted by climate change. Recent records suggest that the distributions of Lutzomyia (Nyssomyia) flaviscutellata and the parasite it transmits, Leishmania (Leishmania) amazonensis, are expanding southward, possibly due to climate change, and sometimes associated with new human infection cases. We define the vector's climatic niche and explore future projections under climate change scenarios. Vector occurrence records were compiled from the literature, museum collections and Brazilian Health Departments. Six bioclimatic variables were used as predictors in six ecological niche model algorithms (BIOCLIM, DOMAIN, MaxEnt, GARP, logistic regression and Random Forest). Projections for 2050 used 17 general circulation models in two greenhouse gas representative concentration pathways: "stabilization" and "high increase". Ensemble models and consensus maps were produced by overlapping binary predictions. Final model outputs showed good performance and significance. The use of species absence data substantially improved model performance. Currently, L. flaviscutellata is widely distributed in the Amazon region, with records in the Atlantic Forest and savannah regions of Central Brazil. Future projections indicate expansion of the climatically suitable area for the vector in both scenarios, towards higher latitudes and elevations. L. flaviscutellata is likely to find increasingly suitable conditions for its expansion into areas where human population size and density are much larger than they are in its current locations. If environmental conditions change as predicted, the range of the vector is likely to expand to southeastern and central-southern Brazil, eastern Paraguay and further into the Amazonian areas of Bolivia, Peru, Ecuador, Colombia and Venezuela. These areas will only become endemic for L. amazonensis, however, if they have competent reservoir hosts and transmission dynamics matching those in the Amazon region.

  7. Ecological Niche Modelling Predicts Southward Expansion of Lutzomyia (Nyssomyia) flaviscutellata (Diptera: Psychodidae: Phlebotominae), Vector of Leishmania (Leishmania) amazonensis in South America, under Climate Change

    PubMed Central

    Carvalho, Bruno M.; Ready, Paul D.

    2015-01-01

    Vector borne diseases are susceptible to climate change because distributions and densities of many vectors are climate driven. The Amazon region is endemic for cutaneous leishmaniasis and is predicted to be severely impacted by climate change. Recent records suggest that the distributions of Lutzomyia (Nyssomyia) flaviscutellata and the parasite it transmits, Leishmania (Leishmania) amazonensis, are expanding southward, possibly due to climate change, and sometimes associated with new human infection cases. We define the vector’s climatic niche and explore future projections under climate change scenarios. Vector occurrence records were compiled from the literature, museum collections and Brazilian Health Departments. Six bioclimatic variables were used as predictors in six ecological niche model algorithms (BIOCLIM, DOMAIN, MaxEnt, GARP, logistic regression and Random Forest). Projections for 2050 used 17 general circulation models in two greenhouse gas representative concentration pathways: “stabilization” and “high increase”. Ensemble models and consensus maps were produced by overlapping binary predictions. Final model outputs showed good performance and significance. The use of species absence data substantially improved model performance. Currently, L. flaviscutellata is widely distributed in the Amazon region, with records in the Atlantic Forest and savannah regions of Central Brazil. Future projections indicate expansion of the climatically suitable area for the vector in both scenarios, towards higher latitudes and elevations. L. flaviscutellata is likely to find increasingly suitable conditions for its expansion into areas where human population size and density are much larger than they are in its current locations. If environmental conditions change as predicted, the range of the vector is likely to expand to southeastern and central-southern Brazil, eastern Paraguay and further into the Amazonian areas of Bolivia, Peru, Ecuador, Colombia and Venezuela. These areas will only become endemic for L. amazonensis, however, if they have competent reservoir hosts and transmission dynamics matching those in the Amazon region. PMID:26619186

  8. Wintertime urban heat island modified by global climate change over Japan

    NASA Astrophysics Data System (ADS)

    Hara, M.

    2015-12-01

    Urban thermal environment change, especially, surface air temperature (SAT) rise in metropolitan areas, is one of the major recent issues in urban areas. The urban thermal environmental change affects not only human health such as heat stroke, but also increasing infectious disease due to spreading out virus vectors habitat and increase of industry and house energy consumption. The SAT rise is mostly caused by global climate change and urban heat island (hereafter UHI) by urbanization. The population in Tokyo metropolitan area is over 30 millions and the Tokyo metropolitan area is one of the biggest megacities in the world. The temperature rise due to urbanization seems comparable to the global climate change in the major megacities. It is important to project how the urbanization and the global climate change affect to the future change of urban thermal environment to plan the adaptation and mitigation policy. To predict future SAT change in urban scale, we should estimate future UHI modified by the global climate change. This study investigates change in UHI intensity (UHII) of major metropolitan areas in Japan by effects of the global climate change. We performed a series of climate simulations. Present climate simulations with and without urban process are conducted for ten seasons using a high-resolution numerical climate model, the Weather Research and Forecasting (WRF) model. Future climate projections with and without urban process are also conducted. The future projections are performed using the pseudo global warming method, assuming 2050s' initial and boundary conditions estimated by a GCM under the RCP scenario. Simulation results indicated that UHII would be enhanced more than 30% in Tokyo during the night due to the global climate change. The enhancement of urban heat island is mostly caused by change of lower atmospheric stability.

  9. Climate change, agricultural insecticide exposure, and risk for freshwater communities.

    PubMed

    Kattwinkel, Mira; Kühne, Jan-Valentin; Foit, Kaarina; Liess, Matthias

    2011-09-01

    Climate change exerts direct effects on ecosystems but has additional indirect effects due to changes in agricultural practice. These include the increased use of pesticides, changes in the areas that are cultivated, and changes in the crops cultivated. It is well known that pesticides, and in particular insecticides, affect aquatic ecosystems adversely. To implement effective mitigation measures it is necessary to identify areas that are affected currently and those that will be affected in the future. As a consequence, we predicted potential exposure to insecticide (insecticide runoff potential, RP) under current conditions (1990) and under a model scenario of future climate and land use (2090) using a spatially explicit model on a continental scale, with a focus on Europe. Space-for-time substitution was used to predict future levels of insecticide application, intensity of agricultural land use, and cultivated crops. To assess the indirect effects of climate change, evaluation of the risk of insecticide exposure was based on a trait-based, climate-insensitive indicator system (SPEAR, SPEcies At Risk). To this end, RP and landscape characteristics that are relevant for the recovery of affected populations were combined to estimate the ecological risk (ER) of insecticides for freshwater communities. We predicted a strong increase in the application of, and aquatic exposure to, insecticides under the future scenario, especially in central and northern Europe. This, in turn, will result in a severe increase in ER in these regions. Hence, the proportion of stream sites adjacent to arable land that do not meet the requirements for good ecological status as defined by the EU Water Framework Directive will increase (from 33% to 39% for the EU-25 countries), in particular in the Scandinavian and Baltic countries (from 6% to 19%). Such spatially explicit mapping of risk enables the planning of adaptation and mitigation strategies including vegetated buffer strips and nonagricultural recolonization zones along streams.

  10. Predicting the Future Impact of Droughts on Ungulate Populations in Arid and Semi-Arid Environments

    PubMed Central

    Duncan, Clare; Chauvenet, Aliénor L. M.; McRae, Louise M.; Pettorelli, Nathalie

    2012-01-01

    Droughts can have a severe impact on the dynamics of animal populations, particularly in semi-arid and arid environments where herbivore populations are strongly limited by resource availability. Increased drought intensity under projected climate change scenarios can be expected to reduce the viability of such populations, yet this impact has seldom been quantified. In this study, we aim to fill this gap and assess how the predicted worsening of droughts over the 21st century is likely to impact the population dynamics of twelve ungulate species occurring in arid and semi-arid habitats. Our results provide support to the hypotheses that more sedentary, grazing and mixed feeding species will be put at high risk from future increases in drought intensity, suggesting that management intervention under these conditions should be targeted towards species possessing these traits. Predictive population models for all sedentary, grazing or mixed feeding species in our study show that their probability of extinction dramatically increases under future emissions scenarios, and that this extinction risk is greater for smaller populations than larger ones. Our study highlights the importance of quantifying the current and future impacts of increasing extreme natural events on populations and species in order to improve our ability to mitigate predicted biodiversity loss under climate change. PMID:23284700

  11. Losing your edge: climate change and the conservation value of range-edge populations.

    PubMed

    Rehm, Evan M; Olivas, Paulo; Stroud, James; Feeley, Kenneth J

    2015-10-01

    Populations occurring at species' range edges can be locally adapted to unique environmental conditions. From a species' perspective, range-edge environments generally have higher severity and frequency of extreme climatic events relative to the range core. Under future climates, extreme climatic events are predicted to become increasingly important in defining species' distributions. Therefore, range-edge genotypes that are better adapted to extreme climates relative to core populations may be essential to species' persistence during periods of rapid climate change. We use relatively simple conceptual models to highlight the importance of locally adapted range-edge populations (leading and trailing edges) for determining the ability of species to persist under future climates. Using trees as an example, we show how locally adapted populations at species' range edges may expand under future climate change and become more common relative to range-core populations. We also highlight how large-scale habitat destruction occurring in some geographic areas where many species range edge converge, such as biome boundaries and ecotones (e.g., the arc of deforestation along the rainforest-cerrado ecotone in the southern Amazonia), can have major implications for global biodiversity. As climate changes, range-edge populations will play key roles in helping species to maintain or expand their geographic distributions. The loss of these locally adapted range-edge populations through anthropogenic disturbance is therefore hypothesized to reduce the ability of species to persist in the face of rapid future climate change.

  12. Reservoir adaptive operating rules based on both of historical streamflow and future projections

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Liu, Pan; Wang, Hao; Chen, Jie; Lei, Xiaohui; Feng, Maoyuan

    2017-10-01

    Climate change is affecting hydrological variables and consequently is impacting water resources management. Historical strategies are no longer applicable under climate change. Therefore, adaptive management, especially adaptive operating rules for reservoirs, has been developed to mitigate the possible adverse effects of climate change. However, to date, adaptive operating rules are generally based on future projections involving uncertainties under climate change, yet ignoring historical information. To address this, we propose an approach for deriving adaptive operating rules considering both historical information and future projections, namely historical and future operating rules (HAFOR). A robustness index was developed by comparing benefits from HAFOR with benefits from conventional operating rules (COR). For both historical and future streamflow series, maximizations of both average benefits and the robustness index were employed as objectives, and four trade-offs were implemented to solve the multi-objective problem. Based on the integrated objective, the simulation-based optimization method was used to optimize the parameters of HAFOR. Using the Dongwushi Reservoir in China as a case study, HAFOR was demonstrated to be an effective and robust method for developing adaptive operating rules under the uncertain changing environment. Compared with historical or projected future operating rules (HOR or FPOR), HAFOR can reduce the uncertainty and increase the robustness for future projections, especially regarding results of reservoir releases and volumes. HAFOR, therefore, facilitates adaptive management in the context that climate change is difficult to predict accurately.

  13. Comparison of climate envelope models developed using expert-selected variables versus statistical selection

    USGS Publications Warehouse

    Brandt, Laura A.; Benscoter, Allison; Harvey, Rebecca G.; Speroterra, Carolina; Bucklin, David N.; Romañach, Stephanie; Watling, James I.; Mazzotti, Frank J.

    2017-01-01

    Climate envelope models are widely used to describe potential future distribution of species under different climate change scenarios. It is broadly recognized that there are both strengths and limitations to using climate envelope models and that outcomes are sensitive to initial assumptions, inputs, and modeling methods Selection of predictor variables, a central step in modeling, is one of the areas where different techniques can yield varying results. Selection of climate variables to use as predictors is often done using statistical approaches that develop correlations between occurrences and climate data. These approaches have received criticism in that they rely on the statistical properties of the data rather than directly incorporating biological information about species responses to temperature and precipitation. We evaluated and compared models and prediction maps for 15 threatened or endangered species in Florida based on two variable selection techniques: expert opinion and a statistical method. We compared model performance between these two approaches for contemporary predictions, and the spatial correlation, spatial overlap and area predicted for contemporary and future climate predictions. In general, experts identified more variables as being important than the statistical method and there was low overlap in the variable sets (<40%) between the two methods Despite these differences in variable sets (expert versus statistical), models had high performance metrics (>0.9 for area under the curve (AUC) and >0.7 for true skill statistic (TSS). Spatial overlap, which compares the spatial configuration between maps constructed using the different variable selection techniques, was only moderate overall (about 60%), with a great deal of variability across species. Difference in spatial overlap was even greater under future climate projections, indicating additional divergence of model outputs from different variable selection techniques. Our work is in agreement with other studies which have found that for broad-scale species distribution modeling, using statistical methods of variable selection is a useful first step, especially when there is a need to model a large number of species or expert knowledge of the species is limited. Expert input can then be used to refine models that seem unrealistic or for species that experts believe are particularly sensitive to change. It also emphasizes the importance of using multiple models to reduce uncertainty and improve map outputs for conservation planning. Where outputs overlap or show the same direction of change there is greater certainty in the predictions. Areas of disagreement can be used for learning by asking why the models do not agree, and may highlight areas where additional on-the-ground data collection could improve the models.

  14. The influence of current and future climate on the spatial distribution of coccidioidomycosis in the southwestern United States

    NASA Astrophysics Data System (ADS)

    Gorris, M. E.; Hoffman, F. M.; Zender, C. S.; Treseder, K. K.; Randerson, J. T.

    2017-12-01

    Coccidioidomycosis, otherwise known as valley fever, is an infectious fungal disease currently endemic to the southwestern U.S. The magnitude, spatial distribution, and seasonality of valley fever incidence is shaped by variations in regional climate. As such, climate change may cause new communities to become at risk for contracting this disease. Humans contract valley fever by inhaling fungal spores of the genus Coccidioides. Coccidioides grow in the soil as a mycelium, and when stressed, autolyze into spores 2-5 µm in length. Spores can become airborne from any natural or anthropogenic soil disturbance, which can be exacerbated by dry soil conditions. Understanding the relationship between climate and valley fever incidence is critical for future disease risk management. We explored several multivariate techniques to create a predictive model of county-level valley fever incidence throughout the southwestern U.S., including Arizona, California, New Mexico, Nevada, and Utah. We incorporated surface air temperature, precipitation, soil moisture, surface dust concentrations, leaf area index, and the amount of agricultural land, all of which influence valley fever incidence. A log-linear regression model that incorporated surface air temperature, soil moisture, surface dust concentration, and the amount of agricultural land explained 34% of the county-level variance in annual average valley fever incidence. We used this model to predict valley fever incidence for the Representative Concentration Pathway 8.5 using simulation output from the Community Earth System Model. In our analysis, we describe how regional hotspots of valley fever incidence may shift with sustained warming and drying in the southwestern U.S. Our predictive model of valley fever incidence may help mitigate future health impacts of valley fever by informing health officials and policy makers of the climate conditions suitable for disease outbreak.

  15. Modeling and mapping the current and future distribution of Pseudomonas syringae pv. actinidiae under climate change in China.

    PubMed

    Wang, Rulin; Li, Qing; He, Shisong; Liu, Yuan; Wang, Mingtian; Jiang, Gan

    2018-01-01

    Bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae (Psa) is a major threat to the kiwifruit industry throughout the world and accounts for substantial economic losses in China. The aim of the present study was to test and explore the possibility of using MaxEnt (maximum entropy models) to predict and analyze the future large-scale distribution of Psa in China. Based on the current environmental factors, three future climate scenarios, which were suggested by the fifth IPCC report, and the current distribution sites of Psa, MaxEnt combined with ArcGIS was applied to predict the potential suitable areas and the changing trend of Psa in China. The jackknife test and correlation analysis were used to choose dominant climatic factors. The receiver operating characteristic curve (ROC) drawn by MaxEnt was used to evaluate the accuracy of the simulation. The results showed that under current climatic conditions, the area from latitude 25° to 36°N and from longitude 101° to 122°E is the primary potential suitable area of Psa in China. The highly suitable area (with suitability between 66 and 100) was mainly concentrated in Northeast Sichuan, South Shaanxi, most of Chongqing, West Hubei and Southwest Gansu and occupied 4.94% of land in China. Under different future emission scenarios, both the areas and the centers of the suitable areas all showed differences compared with the current situation. Four climatic variables, i.e., maximum April temperature (19%), mean temperature of the coldest quarter (14%), precipitation in May (11.5%) and minimum temperature in October (10.8%), had the largest impact on the distribution of Psa. The MaxEnt model is potentially useful for forecasting the future adaptive distribution of Psa under climate change, and it provides important guidance for comprehensive management.

  16. Losing ground: past history and future fate of Arctic small mammals in a changing climate.

    PubMed

    Prost, Stefan; Guralnick, Robert P; Waltari, Eric; Fedorov, Vadim B; Kuzmina, Elena; Smirnov, Nickolay; van Kolfschoten, Thijs; Hofreiter, Michael; Vrieling, Klaas

    2013-06-01

    According to the IPCC, the global average temperature is likely to increase by 1.4-5.8 °C over the period from 1990 to 2100. In Polar regions, the magnitude of such climatic changes is even larger than in temperate and tropical biomes. This amplified response is particularly worrisome given that the so-far moderate warming is already impacting Arctic ecosystems. Predicting species responses to rapid warming in the near future can be informed by investigating past responses, as, like the rest of the planet, the Arctic experienced recurrent cycles of temperature increase and decrease (glacial-interglacial changes) in the past. In this study, we compare the response of two important prey species of the Arctic ecosystem, the collared lemming and the narrow-skulled vole, to Late Quaternary climate change. Using ancient DNA and Ecological Niche Modeling (ENM), we show that the two species, which occupy similar, but not identical ecological niches, show markedly different responses to climatic and environmental changes within broadly similar habitats. We empirically demonstrate, utilizing coalescent model-testing approaches, that collared lemming populations decreased substantially after the Last Glacial Maximum; a result consistent with distributional loss over the same period based on ENM results. Given this strong association, we projected the current niche onto future climate conditions based on IPCC 4.0 scenarios, and forecast accelerating loss of habitat along southern range boundaries with likely associated demographic consequences. Narrow-skulled vole distribution and demography, by contrast, was only moderately impacted by past climatic changes, but predicted future changes may begin to affect their current western range boundaries. Our work, founded on multiple lines of evidence suggests a future of rapidly geographically shifting Arctic small mammal prey communities, some of whom are on the edge of existence, and whose fate may have ramifications for the whole Arctic food web and ecosystem. © 2013 Blackwell Publishing Ltd.

  17. Impacts of climate extremes on gross primary production under global warming

    DOE PAGES

    Williams, I. N.; Torn, M. S.; Riley, W. J.; ...

    2014-09-24

    The impacts of historical droughts and heat-waves on ecosystems are often considered indicative of future global warming impacts, under the assumption that water stress sets in above a fixed high temperature threshold. Historical and future (RCP8.5) Earth system model (ESM) climate projections were analyzed in this study to illustrate changes in the temperatures for onset of water stress under global warming. The ESMs examined here predict sharp declines in gross primary production (GPP) at warm temperature extremes in historical climates, similar to the observed correlations between GPP and temperature during historical heat-waves and droughts. However, soil moisture increases at themore » warm end of the temperature range, and the temperature at which soil moisture declines with temperature shifts to a higher temperature. The temperature for onset of water stress thus increases under global warming and is associated with a shift in the temperature for maximum GPP to warmer temperatures. Despite the shift in this local temperature optimum, the impacts of warm extremes on GPP are approximately invariant when extremes are defined relative to the optimal temperature within each climate period. The GPP sensitivity to these relative temperature extremes therefore remains similar between future and present climates, suggesting that the heat- and drought-induced GPP reductions seen recently can be expected to be similar in the future, and may be underestimates of future impacts given model projections of increased frequency and persistence of heat-waves and droughts. The local temperature optimum can be understood as the temperature at which the combination of water stress and light limitations is minimized, and this concept gives insights into how GPP responds to climate extremes in both historical and future climate periods. Both cold (temperature and light-limited) and warm (water-limited) relative temperature extremes become more persistent in future climate projections, and the time taken to return to locally optimal climates for GPP following climate extremes increases by more than 25% over many land regions.« less

  18. Impacts of climate extremes on gross primary production under global warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, I. N.; Torn, M. S.; Riley, W. J.

    The impacts of historical droughts and heat-waves on ecosystems are often considered indicative of future global warming impacts, under the assumption that water stress sets in above a fixed high temperature threshold. Historical and future (RCP8.5) Earth system model (ESM) climate projections were analyzed in this study to illustrate changes in the temperatures for onset of water stress under global warming. The ESMs examined here predict sharp declines in gross primary production (GPP) at warm temperature extremes in historical climates, similar to the observed correlations between GPP and temperature during historical heat-waves and droughts. However, soil moisture increases at themore » warm end of the temperature range, and the temperature at which soil moisture declines with temperature shifts to a higher temperature. The temperature for onset of water stress thus increases under global warming and is associated with a shift in the temperature for maximum GPP to warmer temperatures. Despite the shift in this local temperature optimum, the impacts of warm extremes on GPP are approximately invariant when extremes are defined relative to the optimal temperature within each climate period. The GPP sensitivity to these relative temperature extremes therefore remains similar between future and present climates, suggesting that the heat- and drought-induced GPP reductions seen recently can be expected to be similar in the future, and may be underestimates of future impacts given model projections of increased frequency and persistence of heat-waves and droughts. The local temperature optimum can be understood as the temperature at which the combination of water stress and light limitations is minimized, and this concept gives insights into how GPP responds to climate extremes in both historical and future climate periods. Both cold (temperature and light-limited) and warm (water-limited) relative temperature extremes become more persistent in future climate projections, and the time taken to return to locally optimal climates for GPP following climate extremes increases by more than 25% over many land regions.« less

  19. Mesocosms Reveal Ecological Surprises from Climate Change.

    PubMed

    Fordham, Damien A

    2015-12-01

    Understanding, predicting, and mitigating the impacts of climate change on biodiversity poses one of the most crucial challenges this century. Currently, we know more about how future climates are likely to shift across the globe than about how species will respond to these changes. Two recent studies show how mesocosm experiments can hasten understanding of the ecological consequences of climate change on species' extinction risk, community structure, and ecosystem functions. Using a large-scale terrestrial warming experiment, Bestion et al. provide the first direct evidence that future global warming can increase extinction risk for temperate ectotherms. Using aquatic mesocosms, Yvon-Durocher et al. show that human-induced climate change could, in some cases, actually enhance the diversity of local communities, increasing productivity. Blending these theoretical and empirical results with computational models will improve forecasts of biodiversity loss and altered ecosystem processes due to climate change.

  20. Future potential distribution of the emerging amphibian chytrid fungus under anthropogenic climate change.

    PubMed

    Rödder, Dennis; Kielgast, Jos; Lötters, Stefan

    2010-11-01

    Anthropogenic climate change poses a major threat to global biodiversity with a potential to alter biological interactions at all spatial scales. Amphibians are the most threatened vertebrates and have been subject to increasing conservation attention over the past decade. A particular concern is the pandemic emergence of the parasitic chytrid fungus Batrachochytrium dendrobatidis, which has been identified as the cause of extremely rapid large-scale declines and species extinctions. Experimental and observational studies have demonstrated that the host-pathogen system is strongly influenced by climatic parameters and thereby potentially affected by climate change. Herein we project a species distribution model of the pathogen onto future climatic scenarios generated by the IPCC to examine their potential implications on the pandemic. Results suggest that predicted anthropogenic climate change may reduce the geographic range of B. dendrobatidis and its potential influence on amphibian biodiversity.

  1. Wetter subtropics in a warmer world: Contrasting past and future hydrological cycles

    NASA Astrophysics Data System (ADS)

    Burls, Natalie J.; Fedorov, Alexey V.

    2017-12-01

    During the warm Miocene and Pliocene Epochs, vast subtropical regions had enough precipitation to support rich vegetation and fauna. Only with global cooling and the onset of glacial cycles some 3 Mya, toward the end of the Pliocene, did the broad patterns of arid and semiarid subtropical regions become fully developed. However, current projections of future global warming caused by CO2 rise generally suggest the intensification of dry conditions over these subtropical regions, rather than the return to a wetter state. What makes future projections different from these past warm climates? Here, we investigate this question by comparing a typical quadrupling-of-CO2 experiment with a simulation driven by sea-surface temperatures closely resembling available reconstructions for the early Pliocene. Based on these two experiments and a suite of other perturbed climate simulations, we argue that this puzzle is explained by weaker atmospheric circulation in response to the different ocean surface temperature patterns of the Pliocene, specifically reduced meridional and zonal temperature gradients. Thus, our results highlight that accurately predicting the response of the hydrological cycle to global warming requires predicting not only how global mean temperature responds to elevated CO2 forcing (climate sensitivity) but also accurately quantifying how meridional sea-surface temperature patterns will change (structural climate sensitivity).

  2. Fish habitat regression under water scarcity scenarios in the Douro River basin

    NASA Astrophysics Data System (ADS)

    Segurado, Pedro; Jauch, Eduardo; Neves, Ramiro; Ferreira, Teresa

    2015-04-01

    Climate change will predictably alter hydrological patterns and processes at the catchment scale, with impacts on habitat conditions for fish. The main goals of this study are to identify the stream reaches that will undergo more pronounced flow reduction under different climate change scenarios and to assess which fish species will be more affected by the consequent regression of suitable habitats. The interplay between changes in flow and temperature and the presence of transversal artificial obstacles (dams and weirs) is analysed. The results will contribute to river management and impact mitigation actions under climate change. This study was carried out in the Tâmega catchment of the Douro basin. A set of 29 Hydrological, climatic, and hydrogeomorphological variables were modelled using a water modelling system (MOHID), based on meteorological data recorded monthly between 2008 and 2014. The same variables were modelled considering future climate change scenarios. The resulting variables were used in empirical habitat models of a set of key species (brown trout Salmo trutta fario, barbell Barbus bocagei, and nase Pseudochondrostoma duriense) using boosted regression trees. The stream segments between tributaries were used as spatial sampling units. Models were developed for the whole Douro basin using 401 fish sampling sites, although the modelled probabilities of species occurrence for each stream segment were predicted only for the Tâmega catchment. These probabilities of occurrence were used to classify stream segments into suitable and unsuitable habitat for each fish species, considering the future climate change scenario. The stream reaches that were predicted to undergo longer flow interruptions were identified and crossed with the resulting predictive maps of habitat suitability to compute the total area of habitat loss per species. Among the target species, the brown trout was predicted to be the most sensitive to habitat regression due to the interplay of flow reduction, increase of temperature and transversal barriers. This species is therefore a good indicator of climate change impacts in rivers and therefore we recommend using this species as a target of monitoring programs to be implemented in the context of climate change adaptation strategies.

  3. The origins of computer weather prediction and climate modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lynch, Peter

    2008-03-20

    Numerical simulation of an ever-increasing range of geophysical phenomena is adding enormously to our understanding of complex processes in the Earth system. The consequences for mankind of ongoing climate change will be far-reaching. Earth System Models are capable of replicating climate regimes of past millennia and are the best means we have of predicting the future of our climate. The basic ideas of numerical forecasting and climate modeling were developed about a century ago, long before the first electronic computer was constructed. There were several major practical obstacles to be overcome before numerical prediction could be put into practice. Amore » fuller understanding of atmospheric dynamics allowed the development of simplified systems of equations; regular radiosonde observations of the free atmosphere and, later, satellite data, provided the initial conditions; stable finite difference schemes were developed; and powerful electronic computers provided a practical means of carrying out the prodigious calculations required to predict the changes in the weather. Progress in weather forecasting and in climate modeling over the past 50 years has been dramatic. In this presentation, we will trace the history of computer forecasting through the ENIAC integrations to the present day. The useful range of deterministic prediction is increasing by about one day each decade, and our understanding of climate change is growing rapidly as Earth System Models of ever-increasing sophistication are developed.« less

  4. The origins of computer weather prediction and climate modeling

    NASA Astrophysics Data System (ADS)

    Lynch, Peter

    2008-03-01

    Numerical simulation of an ever-increasing range of geophysical phenomena is adding enormously to our understanding of complex processes in the Earth system. The consequences for mankind of ongoing climate change will be far-reaching. Earth System Models are capable of replicating climate regimes of past millennia and are the best means we have of predicting the future of our climate. The basic ideas of numerical forecasting and climate modeling were developed about a century ago, long before the first electronic computer was constructed. There were several major practical obstacles to be overcome before numerical prediction could be put into practice. A fuller understanding of atmospheric dynamics allowed the development of simplified systems of equations; regular radiosonde observations of the free atmosphere and, later, satellite data, provided the initial conditions; stable finite difference schemes were developed; and powerful electronic computers provided a practical means of carrying out the prodigious calculations required to predict the changes in the weather. Progress in weather forecasting and in climate modeling over the past 50 years has been dramatic. In this presentation, we will trace the history of computer forecasting through the ENIAC integrations to the present day. The useful range of deterministic prediction is increasing by about one day each decade, and our understanding of climate change is growing rapidly as Earth System Models of ever-increasing sophistication are developed.

  5. Increased evapotranspiration demand in a Mediterranean climate might cause a decline in fungal yields under global warming.

    PubMed

    Ágreda, Teresa; Águeda, Beatriz; Olano, José M; Vicente-Serrano, Sergio M; Fernández-Toirán, Marina

    2015-09-01

    Wild fungi play a critical role in forest ecosystems, and its recollection is a relevant economic activity. Understanding fungal response to climate is necessary in order to predict future fungal production in Mediterranean forests under climate change scenarios. We used a 15-year data set to model the relationship between climate and epigeous fungal abundance and productivity, for mycorrhizal and saprotrophic guilds in a Mediterranean pine forest. The obtained models were used to predict fungal productivity for the 2021-2080 period by means of regional climate change models. Simple models based on early spring temperature and summer-autumn rainfall could provide accurate estimates for fungal abundance and productivity. Models including rainfall and climatic water balance showed similar results and explanatory power for the analyzed 15-year period. However, their predictions for the 2021-2080 period diverged. Rainfall-based models predicted a maintenance of fungal yield, whereas water balance-based models predicted a steady decrease of fungal productivity under a global warming scenario. Under Mediterranean conditions fungi responded to weather conditions in two distinct periods: early spring and late summer-autumn, suggesting a bimodal pattern of growth. Saprotrophic and mycorrhizal fungi showed differences in the climatic control. Increased atmospheric evaporative demand due to global warming might lead to a drop in fungal yields during the 21st century. © 2015 John Wiley & Sons Ltd.

  6. The Predicted Influence of Climate Change on Lesser Prairie-Chicken Reproductive Parameters

    PubMed Central

    Grisham, Blake A.; Boal, Clint W.; Haukos, David A.; Davis, Dawn M.; Boydston, Kathy K.; Dixon, Charles; Heck, Willard R.

    2013-01-01

    The Southern High Plains is anticipated to experience significant changes in temperature and precipitation due to climate change. These changes may influence the lesser prairie-chicken (Tympanuchus pallidicinctus) in positive or negative ways. We assessed the potential changes in clutch size, incubation start date, and nest survival for lesser prairie-chickens for the years 2050 and 2080 based on modeled predictions of climate change and reproductive data for lesser prairie-chickens from 2001–2011 on the Southern High Plains of Texas and New Mexico. We developed 9 a priori models to assess the relationship between reproductive parameters and biologically relevant weather conditions. We selected weather variable(s) with the most model support and then obtained future predicted values from climatewizard.org. We conducted 1,000 simulations using each reproductive parameter’s linear equation obtained from regression calculations, and the future predicted value for each weather variable to predict future reproductive parameter values for lesser prairie-chickens. There was a high degree of model uncertainty for each reproductive value. Winter temperature had the greatest effect size for all three parameters, suggesting a negative relationship between above-average winter temperature and reproductive output. The above-average winter temperatures are correlated to La Niña events, which negatively affect lesser prairie-chickens through resulting drought conditions. By 2050 and 2080, nest survival was predicted to be below levels considered viable for population persistence; however, our assessment did not consider annual survival of adults, chick survival, or the positive benefit of habitat management and conservation, which may ultimately offset the potentially negative effect of drought on nest survival. PMID:23874549

  7. Advancing decadal-scale climate prediction in the North Atlantic sector.

    PubMed

    Keenlyside, N S; Latif, M; Jungclaus, J; Kornblueh, L; Roeckner, E

    2008-05-01

    The climate of the North Atlantic region exhibits fluctuations on decadal timescales that have large societal consequences. Prominent examples include hurricane activity in the Atlantic, and surface-temperature and rainfall variations over North America, Europe and northern Africa. Although these multidecadal variations are potentially predictable if the current state of the ocean is known, the lack of subsurface ocean observations that constrain this state has been a limiting factor for realizing the full skill potential of such predictions. Here we apply a simple approach-that uses only sea surface temperature (SST) observations-to partly overcome this difficulty and perform retrospective decadal predictions with a climate model. Skill is improved significantly relative to predictions made with incomplete knowledge of the ocean state, particularly in the North Atlantic and tropical Pacific oceans. Thus these results point towards the possibility of routine decadal climate predictions. Using this method, and by considering both internal natural climate variations and projected future anthropogenic forcing, we make the following forecast: over the next decade, the current Atlantic meridional overturning circulation will weaken to its long-term mean; moreover, North Atlantic SST and European and North American surface temperatures will cool slightly, whereas tropical Pacific SST will remain almost unchanged. Our results suggest that global surface temperature may not increase over the next decade, as natural climate variations in the North Atlantic and tropical Pacific temporarily offset the projected anthropogenic warming.

  8. A 15,000 year record of vegetation and climate change from a treeline lake in the Rocky Mountains, Wyoming, USA

    Treesearch

    Scott A. Mensing; John L. Korfmacher; Thomas Minckley; Robert C. Musselman

    2012-01-01

    Future climate projections predict warming at high elevations that will impact treeline species, but complex topographic relief in mountains complicates ecologic response, and we have a limited number of long-term studies examining vegetation change related to climate. In this study, pollen and conifer stomata were analyzed from a 2.3 m sediment core extending to 15,...

  9. Predicting future US water yield and ecosystem productivity by linking an ecohydrological model to WRF dynamically downscaled climate projections

    Treesearch

    S. Sun; Ge Sun; Erika Cohen Mack; Steve McNulty; Peter Caldwell; K. Duan; Y. Zhang

    2015-01-01

    Quantifying the potential impacts of climate change on water yield and ecosystem productivity (i.e., carbon balances) is essential to developing sound watershed restoration plans, and climate change adaptation and mitigation strategies. This study links an ecohydrological model (Water Supply and Stress Index, WaSSI) with WRF (Weather Research and Forecasting Model)...

  10. Population connectivity and genetic diversity of American marten (Martes americana) in the United States northern Rocky Mountains in a climate change context

    Treesearch

    Tzeidle N. Wasserman; Samuel A. Cushman; Jeremy S. Littell; Andrew J. Shirk; Erin L. Landguth

    2013-01-01

    Climate change is likely to alter population connectivity, particularly for species associated with higher elevation environments. The goal of this study is to predict the potential effects of future climate change on population connectivity and genetic diversity of American marten populations across a 30.2 million hectare region of the in the US northern Rocky...

  11. Analysis of climate change impact on rainfall pattern of Sambas district, West Kalimantan

    NASA Astrophysics Data System (ADS)

    Berliana Sipayung, Sinta; Nurlatifah, Amalia; Siswanto, Bambang; Slamet S, Lilik

    2018-05-01

    Climate change is one of the most important issues being discussed globally. It caused by global warming and indirectly affecting the world climate cycle. This research discussed the effect of climate change on rainfall pattern of Sambas District and predicted the future rainfall pattern due to climate change. CRU and TRMM were used and has been validated using in situ data. This research was used Climate Modelling and Prediction using CCAM (Conformal Cubic Atmospheric Model) which also validated by in situ data (correlation= 0.81). The results show that temperature trends in Sambas regency increased to 0.082°C/yr from 1991-2014 according to CRU data. High temperature trigger changes in rainfall patterns. Rainfall pattern in Sambas District has an equatorial type where the peak occurs when the sun is right on the equator. Rainfall in Sambas reaches the maximum in March and September when the equinox occurs. The CCAM model is used to project rainfall in Sambas District in the future. The model results show that rainfall in Sambas District is projected to increase to 0.018 mm/month until 2055 so the flow rate increase 0.006 m3/month and the water balance increase 0.009 mm/month.

  12. Misery loves company: team dissonance and the influence of supervisor-focused interpersonal justice climate on team cohesiveness.

    PubMed

    Stoverink, Adam C; Umphress, Elizabeth E; Gardner, Richard G; Miner, Kathi N

    2014-11-01

    The organizational justice literature has examined the effects of supervisor-focused interpersonal justice climate, or a team's shared perception of the dignity and respect it receives from its supervisor, on a number of important outcomes directed at organizational authorities. Considerably less is known about the potential influence of these shared perceptions on coworker-directed outcomes. In 2 experiments, we predict that a low (unfair) supervisor-focused interpersonal justice climate generates greater team cohesiveness than a high (fair) supervisor-focused interpersonal justice climate. We further examine the process through which this effect occurs. Drawing from cognitive dissonance theory, we predict that low (vs. high) supervisor-focused interpersonal justice climate generates greater team dissonance, or shared psychological discomfort, for team members and that this dissonance serves as an underlying mechanism through which supervisor-focused interpersonal justice climate influences a team's cohesiveness. Our results demonstrate support for these predictions in that low supervisor-focused interpersonal justice climate led to higher levels of both team dissonance and team cohesiveness than did high supervisor-focused interpersonal justice climate, and team dissonance mediated this relationship. Implications and areas for future research are discussed. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  13. Assessment of Human Health Vulnerability to Climate Variability and Change in Cuba

    PubMed Central

    Bultó, Paulo Lázaro Ortíz; Rodríguez, Antonio Pérez; Valencia, Alina Rivero; Vega, Nicolás León; Gonzalez, Manuel Díaz; Carrera, Alina Pérez

    2006-01-01

    In this study we assessed the potential effects of climate variability and change on population health in Cuba. We describe the climate of Cuba as well as the patterns of climate-sensitive diseases of primary concern, particularly dengue fever. Analyses of the associations between climatic anomalies and disease patterns highlight current vulnerability to climate variability. We describe current adaptations, including the application of climate predictions to prevent disease outbreaks. Finally, we present the potential economic costs associated with future impacts due to climate change. The tools used in this study can be useful in the development of appropriate and effective adaptation options to address the increased climate variability associated with climate change. PMID:17185289

  14. Potential effects of climate change on geographic distribution of the Tertiary relict tree species Davidia involucrata in China

    PubMed Central

    Tang, Cindy Q.; Dong, Yi-Fei; Herrando-Moraira, Sonia; Matsui, Tetsuya; Ohashi, Haruka; He, Long-Yuan; Nakao, Katsuhiro; Tanaka, Nobuyuki; Tomita, Mizuki; Li, Xiao-Shuang; Yan, Hai-Zhong; Peng, Ming-Chun; Hu, Jun; Yang, Ruo-Han; Li, Wang-Jun; Yan, Kai; Hou, Xiuli; Zhang, Zhi-Ying; López-Pujol, Jordi

    2017-01-01

    This study, using species distribution modeling (involving a new approach that allows for uncertainty), predicts the distribution of climatically suitable areas prevailing during the mid-Holocene, the Last Glacial Maximum (LGM), and at present, and estimates the potential formation of new habitats in 2070 of the endangered and rare Tertiary relict tree Davidia involucrata Baill. The results regarding the mid-Holocene and the LGM demonstrate that south-central and southwestern China have been long-term stable refugia, and that the current distribution is limited to the prehistoric refugia. Given future distribution under six possible climate scenarios, only some parts of the current range of D. involucrata in the mid-high mountains of south-central and southwestern China would be maintained, while some shift west into higher mountains would occur. Our results show that the predicted suitable area offering high probability (0.5‒1) accounts for an average of only 29.2% among the models predicted for the future (2070), making D. involucrata highly vulnerable. We assess and propose priority protected areas in light of climate change. The information provided will also be relevant in planning conservation of other paleoendemic species having ecological traits and distribution ranges comparable to those of D. involucrata. PMID:28272437

  15. Climate change and the eco-hydrology of fire: Will area burned increase in a warming western USA?

    USGS Publications Warehouse

    McKenzie, Donald; Littell, Jeremy

    2017-01-01

    Wildfire area is predicted to increase with global warming. Empirical statistical models and process-based simulations agree almost universally. The key relationship for this unanimity, observed at multiple spatial and temporal scales, is between drought and fire. Predictive models often focus on ecosystems in which this relationship appears to be particularly strong, such as mesic and arid forests and shrublands with substantial biomass such as chaparral. We examine the drought–fire relationship, specifically the correlations between water-balance deficit and annual area burned, across the full gradient of deficit in the western USA, from temperate rainforest to desert. In the middle of this gradient, conditional on vegetation (fuels), correlations are strong, but outside this range the equivalence hotter and drier equals more fire either breaks down or is contingent on other factors such as previous-year climate. This suggests that the regional drought–fire dynamic will not be stationary in future climate, nor will other more complex contingencies associated with the variation in fire extent. Predictions of future wildfire area therefore need to consider not only vegetation changes, as some dynamic vegetation models now do, but also potential changes in the drought–fire dynamic that will ensue in a warming climate.

  16. Projected Impact of Climate Change on Hydrological Regimes in the Philippines

    PubMed Central

    Kanamaru, Hideki; Keesstra, Saskia; Maroulis, Jerry; David, Carlos Primo C.; Ritsema, Coen J.

    2016-01-01

    The Philippines is one of the most vulnerable countries in the world to the potential impacts of climate change. To fully understand these potential impacts, especially on future hydrological regimes and water resources (2010-2050), 24 river basins located in the major agricultural provinces throughout the Philippines were assessed. Calibrated using existing historical interpolated climate data, the STREAM model was used to assess future river flows derived from three global climate models (BCM2, CNCM3 and MPEH5) under two plausible scenarios (A1B and A2) and then compared with baseline scenarios (20th century). Results predict a general increase in water availability for most parts of the country. For the A1B scenario, CNCM3 and MPEH5 models predict an overall increase in river flows and river flow variability for most basins, with higher flow magnitudes and flow variability, while an increase in peak flow return periods is predicted for the middle and southern parts of the country during the wet season. However, in the north, the prognosis is for an increase in peak flow return periods for both wet and dry seasons. These findings suggest a general increase in water availability for agriculture, however, there is also the increased threat of flooding and enhanced soil erosion throughout the country. PMID:27749908

  17. Climate change and the eco-hydrology of fire: Will area burned increase in a warming western USA?

    PubMed

    McKenzie, Donald; Littell, Jeremy S

    2017-01-01

    Wildfire area is predicted to increase with global warming. Empirical statistical models and process-based simulations agree almost universally. The key relationship for this unanimity, observed at multiple spatial and temporal scales, is between drought and fire. Predictive models often focus on ecosystems in which this relationship appears to be particularly strong, such as mesic and arid forests and shrublands with substantial biomass such as chaparral. We examine the drought-fire relationship, specifically the correlations between water-balance deficit and annual area burned, across the full gradient of deficit in the western USA, from temperate rainforest to desert. In the middle of this gradient, conditional on vegetation (fuels), correlations are strong, but outside this range the equivalence hotter and drier equals more fire either breaks down or is contingent on other factors such as previous-year climate. This suggests that the regional drought-fire dynamic will not be stationary in future climate, nor will other more complex contingencies associated with the variation in fire extent. Predictions of future wildfire area therefore need to consider not only vegetation changes, as some dynamic vegetation models now do, but also potential changes in the drought-fire dynamic that will ensue in a warming climate. © 2016 by the Ecological Society of America.

  18. Time-dependent climate sensitivity and the legacy of anthropogenic greenhouse gas emissions

    PubMed Central

    Zeebe, Richard E.

    2013-01-01

    Climate sensitivity measures the response of Earth’s surface temperature to changes in forcing. The response depends on various climate processes that feed back on the initial forcing on different timescales. Understanding climate sensitivity is fundamental to reconstructing Earth’s climatic history as well as predicting future climate change. On timescales shorter than centuries, only fast climate feedbacks including water vapor, lapse rate, clouds, and snow/sea ice albedo are usually considered. However, on timescales longer than millennia, the generally higher Earth system sensitivity becomes relevant, including changes in ice sheets, vegetation, ocean circulation, biogeochemical cycling, etc. Here, I introduce the time-dependent climate sensitivity, which unifies fast-feedback and Earth system sensitivity. I show that warming projections, which include a time-dependent climate sensitivity, exhibit an enhanced feedback between surface warming and ocean CO2 solubility, which in turn leads to higher atmospheric CO2 levels and further warming. Compared with earlier studies, my results predict a much longer lifetime of human-induced future warming (23,000–165,000 y), which increases the likelihood of large ice sheet melting and major sea level rise. The main point regarding the legacy of anthropogenic greenhouse gas emissions is that, even if the fast-feedback sensitivity is no more than 3 K per CO2 doubling, there will likely be additional long-term warming from slow climate feedbacks. Time-dependent climate sensitivity also helps explaining intense and prolonged warming in response to massive carbon release as documented for past events such as the Paleocene–Eocene Thermal Maximum. PMID:23918402

  19. Time-dependent climate sensitivity and the legacy of anthropogenic greenhouse gas emissions.

    PubMed

    Zeebe, Richard E

    2013-08-20

    Climate sensitivity measures the response of Earth's surface temperature to changes in forcing. The response depends on various climate processes that feed back on the initial forcing on different timescales. Understanding climate sensitivity is fundamental to reconstructing Earth's climatic history as well as predicting future climate change. On timescales shorter than centuries, only fast climate feedbacks including water vapor, lapse rate, clouds, and snow/sea ice albedo are usually considered. However, on timescales longer than millennia, the generally higher Earth system sensitivity becomes relevant, including changes in ice sheets, vegetation, ocean circulation, biogeochemical cycling, etc. Here, I introduce the time-dependent climate sensitivity, which unifies fast-feedback and Earth system sensitivity. I show that warming projections, which include a time-dependent climate sensitivity, exhibit an enhanced feedback between surface warming and ocean CO2 solubility, which in turn leads to higher atmospheric CO2 levels and further warming. Compared with earlier studies, my results predict a much longer lifetime of human-induced future warming (23,000-165,000 y), which increases the likelihood of large ice sheet melting and major sea level rise. The main point regarding the legacy of anthropogenic greenhouse gas emissions is that, even if the fast-feedback sensitivity is no more than 3 K per CO2 doubling, there will likely be additional long-term warming from slow climate feedbacks. Time-dependent climate sensitivity also helps explaining intense and prolonged warming in response to massive carbon release as documented for past events such as the Paleocene-Eocene Thermal Maximum.

  20. Climate change impacts on water availability in the Red River Basin and critical areas for future water conservation

    NASA Astrophysics Data System (ADS)

    Zamani Sabzi, H.; Moreno, H. A.; Neeson, T. M.; Rosendahl, D. H.; Bertrand, D.; Xue, X.; Hong, Y.; Kellog, W.; Mcpherson, R. A.; Hudson, C.; Austin, B. N.

    2017-12-01

    Previous periods of severe drought followed by exceptional flooding in the Red River Basin (RRB) have significantly affected industry, agriculture, and the environment in the region. Therefore, projecting how climate may change in the future and being prepared for potential impacts on the RRB is crucially important. In this study, we investigated the impacts of climate change on water availability across the RRB. We used three down-scaled global climate models and three potential greenhouse gas emission scenarios to assess precipitation, temperature, streamflow and lake levels throughout the RRB from 1961 to 2099 at a spatial resolution of 1/10°. Unit-area runoff and streamflow were obtained using the Variable Infiltration Capacity (VIC) model applied across the entire basin. We found that most models predict less precipitation in the western side of the basin and more in the eastern side. In terms of temperature, the models predict that average temperature could increase as much as 6°C. Most models project slightly more precipitation and streamflow values in the future, specifically in the eastern side of the basin. Finally, we analyzed the projected meteorological and hydrologic parameters alongside regional water demand for different sectors to identify the areas on the RRB that will need water-environmental conservation actions in the future. These hotspots of future low water availability are locations where regional environmental managers, water policy makers, and the agricultural and industrial sectors must proactively prepare to deal with declining water availability over the coming decades.

  1. Effects of climate change on polar bears.

    PubMed

    Wiig, Øystein; Aars, Jon; Born, Erik W

    2008-01-01

    In this article, we review the effects on polar bears of global warming that have already been observed, and try to evaluate what may happen to the polar bears in the future. Many researchers have predicted a wide range of impacts of climate change on polar bear demography and conditions. A predicted major reduction in sea ice habitat will reduce the availability of ice associated seals, the main prey of polar bears, and a loss and fragmentation of polar bear habitat will ultimately lead to large future reductions in most subpopulations. It is likely that polar bears will be lost from many areas where they are common today and also that the total population will change into a few more distinctly isolated populations.

  2. Improving the forecast for biodiversity under climate change.

    PubMed

    Urban, M C; Bocedi, G; Hendry, A P; Mihoub, J-B; Pe'er, G; Singer, A; Bridle, J R; Crozier, L G; De Meester, L; Godsoe, W; Gonzalez, A; Hellmann, J J; Holt, R D; Huth, A; Johst, K; Krug, C B; Leadley, P W; Palmer, S C F; Pantel, J H; Schmitz, A; Zollner, P A; Travis, J M J

    2016-09-09

    New biological models are incorporating the realistic processes underlying biological responses to climate change and other human-caused disturbances. However, these more realistic models require detailed information, which is lacking for most species on Earth. Current monitoring efforts mainly document changes in biodiversity, rather than collecting the mechanistic data needed to predict future changes. We describe and prioritize the biological information needed to inform more realistic projections of species' responses to climate change. We also highlight how trait-based approaches and adaptive modeling can leverage sparse data to make broader predictions. We outline a global effort to collect the data necessary to better understand, anticipate, and reduce the damaging effects of climate change on biodiversity. Copyright © 2016, American Association for the Advancement of Science.

  3. Values and uncertainties in climate prediction, revisited.

    PubMed

    Parker, Wendy

    2014-06-01

    Philosophers continue to debate both the actual and the ideal roles of values in science. Recently, Eric Winsberg has offered a novel, model-based challenge to those who argue that the internal workings of science can and should be kept free from the influence of social values. He contends that model-based assignments of probability to hypotheses about future climate change are unavoidably influenced by social values. I raise two objections to Winsberg's argument, neither of which can wholly undermine its conclusion but each of which suggests that his argument exaggerates the influence of social values on estimates of uncertainty in climate prediction. I then show how a more traditional challenge to the value-free ideal seems tailor-made for the climate context.

  4. Effects of climate change on forest insect and disease outbreaks

    Treesearch

    David W. Williams; Robert P. Long; Philip M. Wargo; Andrew M. Liebhold

    2000-01-01

    General circulation models (GCMs) predict dramatic future changes in climate for the northeastern and north central United States under doubled carbon dioxide (CO2) levels (Hansen et al., 1984; Manabe and Wetherald, 1987; Wilson and Mitchell, 1987; Cubasch and Cess, 1990; Mitchell et al., 1990). January temperatures are projected to rise as much...

  5. Representing climate, disturbance, and vegetation interactions in landscape models

    Treesearch

    Robert E. Keane; Donald McKenzie; Donald A. Falk; Erica A.H. Smithwick; Carol Miller; Lara-Karena B. Kellogg

    2015-01-01

    The prospect of rapidly changing climates over the next century calls for methods to predict their effects on myriad, interactive ecosystem processes. Spatially explicit models that simulate ecosystem dynamics at fine (plant, stand) to coarse (regional, global) scales are indispensable tools for meeting this challenge under a variety of possible futures. A special...

  6. Differential responses of carbon and water vapor fluxes to climate among evergreen needleleaf forests in the USA

    USDA-ARS?s Scientific Manuscript database

    Understanding of differences in carbon and water vapor fluxes of spatially distributed evergreen needle leaf forests (ENFs) is crucial to accurately estimating regional carbon and water budgets and when predicting the responses of ENFs to future climate. We investigated cross-site variability in car...

  7. Responses of dead forest fuel moisture to climate change

    Treesearch

    Yongqiang Liu

    2016-01-01

    Forest fuel moisture is an important factor for wildland fire behavior. Predicting future wildfire trends and controlled burned conditions is essential to effective natural resource management, but the associated effects of forest fuel moisture remain uncertain. This study investigates the responses of dead forest fuel moisture to climate change in the...

  8. Shallow aquifer response to climate change scenarios in a small catchment in the Guarani Aquifer outcrop zone.

    PubMed

    Melo, Davi C D; Wendland, Edson

    2017-05-01

    Water availability restrictions are already a reality in several countries. This issue is likely to worsen due to climate change, predicted for the upcoming decades. This study aims to estimate the impacts of climate change on groundwater system in the Guarani Aquifer outcrop zone. Global Climate Models (GCM) outputs were used as inputs to a water balance model, which produced recharge estimates for the groundwater model. Recharge was estimated across different land use types considering a control period from 2004 to 2014, and a future period from 2081 to 2099. Major changes in monthly rainfall means are expected to take place in dry seasons. Most of the analysed scenarios predict increase of more than 2 ºC in monthly mean temperatures. Comparing the control and future runs, our results showed a mean recharge change among scenarios that ranged from ~-80 to ~+60%, depending on the land use type. As a result of such decrease in recharge rates, the response given by the groundwater model indicates a lowering of the water table under most scenarios.

  9. Modeling the Impacts of Global Climate and Regional Land Use Change on Regional Climate, Air Quality and Public Health in the New York Metropolitan Region

    NASA Astrophysics Data System (ADS)

    Rosenthal, J. E.; Knowlton, K. M.; Kinney, P. L.

    2002-12-01

    There is an imminent need to downscale the global climate models used by international consortiums like the IPCC (Intergovernmental Panel on Climate Change) to predict the future regional impacts of climate change. To meet this need, a "place-based" climate model that makes specific regional projections about future environmental conditions local inhabitants could face is being created by the Mailman School of Public Health at Columbia University, in collaboration with other researchers and universities, for New York City and the 31 surrounding counties. This presentation describes the design and initial results of this modeling study, aimed at simulating the effects of global climate change and regional land use change on climate and air quality over the northeastern United States in order to project the associated public health impacts in the region. Heat waves and elevated concentrations of ozone and fine particles are significant current public health stressors in the New York metropolitan area. The New York Climate and Health Project is linking human dimension and natural sciences models to assess the potential for future public health impacts from heat stress and air quality, and yield improved tools for assessing climate change impacts. The model will be applied to the NY metropolitan east coast region. The following questions will be addressed: 1. What changes in the frequency and severity of extreme heat events are likely to occur over the next 80 years due to a range of possible scenarios of land use and land cover (LU/LC) and climate change in the region? 2. How might the frequency and severity of episodic concentrations of ozone (O3) and airborne particulate matter smaller than 2.5 æm in diameter (PM2.5) change over the next 80 years due to a range of possible scenarios of land use and climate change in the metropolitan region? 3. What is the range of possible human health impacts of these changes in the region? 4. How might projected future human exposures and responses to heat stress and air quality differ as a function of socio-economic status and race/ethnicity across the region? The model systems used for this study are the Goddard Institute for Space Studies (GISS) Global Atmosphere-Ocean Model; the Regional Atmospheric Modeling System (RAMS) and PennState/NCAR MM5 mesoscale meteorological models; the SLEUTH land use model; the Sparse Matrix Operator Kernel Emissions Modeling System (SMOKE); the Community Multiscale Air Quality (CMAQ) and Comprehensive Air Quality Model with Extensions (CAMx) models for simulating regional air quality; and exposure-risk coefficients for assessing population health impacts based on exposure to extreme heat, fine particulates (PM2.5) and ozone. Two different IPCC global emission scenarios and two different regional land use growth scenarios are considered in the simulations, spanning a range of possible futures. In addition to base simulations for selected time periods in the decade 1990 - 2000, the integrated model is used to simulate future scenarios in the 2020s, 2050s, and 2080s. Predictions from both the meteorological models and the air quality models are compared against available observations for the simulations in the 1990s to establish baseline model performance. A series of sensitivity tests will address whether changes in meteorology due to global climate change, changes in regional land use, or changes in emissions have the largest impact on predicted ozone and particulate matter concentrations.

  10. Projections of Future Summertime Ozone over the U.S.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfister, G. G.; Walters, Stacy; Lamarque, J. F.

    This study uses a regional fully coupled chemistry-transport model to assess changes in surface ozone over the summertime U.S. between present and a 2050 future time period at high spatial resolution (12 km grid spacing) under the SRES A2 climate and RCP8.5 anthropogenic pre-cursor emission scenario. The impact of predicted changes in climate and global background ozone is estimated to increase surface ozone over most of the U.S; the 5th - 95th percentile range for daily 8-hour maximum surface ozone increases from 31-79 ppbV to 30-87 ppbV between the present and future time periods. The analysis of a set ofmore » meteorological drivers suggests that these mostly will add to increasing ozone, but the set of simulations conducted does not allow to separate this effect from that through enhanced global background ozone. Statistically the most robust positive feedbacks are through increased temperature, biogenic emissions and solar radiation. Stringent emission controls can counteract these feedbacks and if considered, we estimate large reductions in surface ozone with the 5th-95th percentile reduced to 27-55 ppbV. A comparison of the high-resolution projections to global model projections shows that even though the global model is biased high in surface ozone compared to the regional model and compared to observations, both the global and the regional model predict similar changes in ozone between the present and future time periods. However, on smaller spatial scales, the regional predictions show more pronounced changes between urban and rural regimes that cannot be resolved at the coarse resolution of global model. In addition, the sign of the changes in overall ozone mixing ratios can be different between the global and the regional predictions in certain regions, such as the Western U.S. This study confirms the key role of emission control strategies in future air quality predictions and demonstrates the need for considering degradation of air quality with future climate change in emission policy making. It also illustrates the need for high resolution modeling when the objective is to address regional and local air quality or establish links to human health and society.« less

  11. Assessment of the impact of climate change on the olive flowering in Calabria (southern Italy)

    NASA Astrophysics Data System (ADS)

    Avolio, Elenio; Orlandi, Fabio; Bellecci, Carlo; Fornaciari, Marco; Federico, Stefano

    2012-02-01

    In phenological studies, plant development and its relationship with meteorological conditions are considered in order to investigate the influence of climatic changes on the characteristics of many crop species. In this work, the impact of climate change on the flowering of the olive tree ( Olea europaea L.) in Calabria, southern Italy, has been studied. Olive is one of the most important plant species in the Mediterranean area and, at the same time, Calabria is one of the most representative regions of this area, both geographically and climatically. The work is divided into two main research activities. First, the behaviour of olive tree in Calabria and the influence of temperature on phenological phases of this crop are investigated. An aerobiological method is used to determine the olive flowering dates through the analysis of pollen data collected in three experimental fields for an 11-year study period (1999-2009). Second, the study of climate change in Calabria at high spatial and temporal resolution is performed. A dynamical downscaling procedure is applied for the regionalization of large-scale climate analysis derived from general circulation models for two representative climatic periods (1981-2000 and 2081-2100); the A2 IPCC scenario is used for future climate projections. The final part of this work is the integration of the results of the two research activities to predict the olive flowering variation for the future climatic conditions. In agreement with our previous works, we found a significant correlation between the phenological phases and temperature. For the twenty-first century, an advance of pollen season in Calabria of about 9 days, on average, is expected for each degree of temperature rise. From phenological model results, on the basis of future climate predictions over Calabria, an anticipation of maximum olive flowering between 10 and 34 days is expected, depending on the area. The results of this work are useful for adaptation and mitigation strategies, and for making concrete assessments about biological and environmental changes.

  12. The Copernicus programme and its Climate Change Service (C3S): a European answer to Climate Change

    NASA Astrophysics Data System (ADS)

    Pinty, Bernard; Thepaut, Jean-Noel; Dee, Dick

    2016-07-01

    In November 2014, The European Centre for Medium-range Weather Forecasts (ECMWF) signed an agreement with the European Commission to deliver two of the Copernicus Earth Observation Programme Services on the Commission's behalf. The ECMWF delivered services - the Copernicus Climate Change Service (C3S) and Atmosphere Monitoring Service (CAMS) - will bring a consistent standard to how we measure and predict atmospheric conditions and climate change. They will maximise the potential of past, current and future earth observations - ground, ocean, airborne, satellite - and analyse these to monitor and predict atmospheric conditions and in the future, climate change. With the wealth of free and open data that the services provide, they will help business users to assess the impact of their business decisions and make informed choices, delivering a more energy efficient and climate aware economy. These sound investment decisions now will not only stimulate growth in the short term, but reduce the impact of climate change on the economy and society in the future. C3S is in its proof of concept phase and through its climate data store will provide global and regional climate data reanalyses; multi-model seasonal forecasts; customisable visual data to enable examination of wide range of scenarios and model the impact of changes; access to all the underlying data, including climate data records from various satellite and in-situ observations. In addition, C3S will provide key indicators on climate change drivers (such as carbon dioxide) and impacts (such as reducing glaciers). The aim of these indicators will be to support European adaptation and mitigation policies in a number of economic sectors. The presentation will provide an overview of this newly created Service, its various components and activities, and a roadmap towards achieving a fully operational European Climate Service at the horizon 2019-2020. It will focus on the requirements for quality-assured Observation Gridded Products to establish an operational delivery of a series of gridded long-term Climate Data Records (CDRs) of Essential Climate Variables (ECVs), along with associated input data and uncertainty estimation.

  13. Future climate change is predicted to shift long-term persistence zones in the cold-temperate kelp Laminaria hyperborea.

    PubMed

    Assis, Jorge; Lucas, Ana Vaz; Bárbara, Ignacio; Serrão, Ester Álvares

    2016-02-01

    Global climate change is shifting species distributions worldwide. At rear edges (warmer, low latitude range margins), the consequences of small variations in environmental conditions can be magnified, producing large negative effects on species ranges. A major outcome of shifts in distributions that only recently received attention is the potential to reduce the levels of intra-specific diversity and consequently the global evolutionary and adaptive capacity of species to face novel disturbances. This is particularly important for low dispersal marine species, such as kelps, that generally retain high and unique genetic diversity at rear ranges resulting from long-term persistence, while ranges shifts during climatic glacial/interglacial cycles. Using ecological niche modelling, we (1) infer the major environmental forces shaping the distribution of a cold-temperate kelp, Laminaria hyperborea (Gunnerus) Foslie, and we (2) predict the effect of past climate changes in shaping regions of long-term persistence (i.e., climatic refugia), where this species might hypothetically harbour higher genetic diversity given the absence of bottlenecks and local extinctions over the long term. We further (3) assessed the consequences of future climate for the fate of L. hyperborea using different scenarios of greenhouse gas emissions (RCP 2.6 and RCP 8.5). Results show NW Iberia, SW Ireland and W English Channel, Faroe Islands and S Iceland, as regions where L. hyperborea may have persisted during past climate extremes until present day. All predictions for the future showed expansions to northern territories coupled with the significant loss of suitable habitats at low latitude range margins, where long-term persistence was inferred (e.g., NW Iberia). This pattern was particularly evident in the most agressive scenario of climate change (RCP 8.5), likely driving major biodiversity loss, changes in ecosystem functioning and the impoverishment of the global gene pool of L. hyperborea. Because no genetic baseline is currently available for this species, our results may represent a first step in informing conservation and mitigation strategies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Quantifying the historic and future distribution of fire in Alaskan tundra ecosystems

    NASA Astrophysics Data System (ADS)

    Young, A. M.; Higuera, P. E.; Duffy, P. A.

    2012-12-01

    During the past 60 years fire has been relatively rare and small in size within tundra ecosystems. However, historical observations and paleoecological evidence indicates that fire regimes vary widely across Alaskan tundra, in both space and time. These lines of evidence suggest that fire occupies a highly specified niche or ecological space in Alaskan tundra, which may change significantly with future climate warming. The objective of this research was to quantify the relationships between fire occurrence and different seasonal climate variables, and to begin to make inferences about future distributions of fire across the tundra landscape. The results of this research will ultimately contribute to the goal of summarizing the linkages that exist among climate, vegetation, and fire in the historical record, and for making predictions concerning fire disturbance in tundra ecosystems throughout the next century. Historic tundra fires occurred non-randomly across space, and a relationship exists between fire occurrence and warm, dry climates. We quantified this relationship with generalized boosting models (GBM) using datasets of downscaled temperature and precipitation (2 km, 1971-2000), and historic records of tundra area burned (1950-2010). The GBM used six seasonal climate variables, focused on growing season temperature and precipitation, to predict the probability of fire occurrence over the 1950-2010 time period. To understand implications of these historic relationships given ongoing climate warming, we constructed future climatologies of temperature and precipitation for the five GCMs which performed best in Alaska under the IPCC AR4 A1B (middle-of-the-road) emissions scenario for the time period 2021-2050. The GBM performed well predicting the observed spatial distribution of tundra area burned, capturing key regions which experienced the most fire activity from 1950-2010. The mean temperature of the warmest month (MeanMaxTemp) was the most influential variable in the GBM, and partial dependence plots revealed a strong non-linear relationship between the probability of fire and MeanMaxTemp, with a distinct temperature threshold of approximately 12.0 oC. Climate projections in Alaskan tundra (2021-2050) from the five GCMs was on average 2.1 oC warmer (SD = 0.3 oC) than the 1971-2000 mean. During the 1971-2000 period, 62% of tundra existed above the 12.0 oC threshold. In contrast, four of the five GCMs predicted more tundra area will exist above this same temperature threshold during the 2021-2050 period (mean=77%, min=48%, max=93%), with large increases occurring on the North Slope. Ongoing work includes applying this GBM to future climate conditions to provide quantitative estimates of future tundra burning. Our results suggest that the ecological space that currently supports tundra burning will become more common during the next century. A more flammable tundra landscape could contribute to increased land surface temperatures through feedbacks between fire, increased carbon flux from the soil to atmosphere, and decreased albedo through vegetation succession. Given the rapid environmental changes projected for the Arctic throughout the next century, it is imperative that we understand when and where fire regimes are changing, not only across Alaskan tundra but across the global tundra biome as well.

  15. Prediction of future subsurface temperatures in Korea

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Kim, S. K.; Jeong, J.; SHIN, E.

    2017-12-01

    The importance of climate change has been increasingly recognized because it has had the huge amount of impact on social, economic, and environmental aspect. For the reason, paleoclimate change has been studied intensively using different geological tools including borehole temperatures and future surface air temperatures (SATs) have been predicted for the local areas and the globe. Future subsurface temperatures can have also enormous impact on various areas and be predicted by an analytical method or a numerical simulation using measured and predicted SATs, and thermal diffusivity data of rocks. SATs have been measured at 73 meteorological observatories since 1907 in Korea and predicted at same locations up to the year of 2100. Measured SATs at the Seoul meteorological observatory increased by about 3.0 K from the year of 1907 to the present. Predicted SATs have 4 different scenarios depending on mainly CO2 concentration and national action plan on climate change in the future. The hottest scenario shows that SATs in Korea will increase by about 5.0 K from the present to the year of 2100. In addition, thermal diffusivity values have been measured on 2,903 rock samples collected from entire Korea. Data pretreatment based on autocorrelation analysis was conducted to control high frequency noise in thermal diffusivity data. Finally, future subsurface temperatures in Korea were predicted up to the year of 2100 by a FEM simulation code (COMSOL Multiphysics) using measured and predicted SATs, and thermal diffusivity data in Korea. At Seoul, the results of predictions show that subsurface temperatures will increase by about 5.4 K, 3.0 K, 1.5 K, and 0.2 K from the present to 2050 and then by about 7.9 K, 4.8 K, 2.5 K, and 0.5 K to 2100 at the depths of 10 m, 50 m, 100 m, and 200 m, respectively. We are now proceeding numerical simulations for subsurface temperature predictions for 73 locations in Korea.

  16. Functional Group, Biomass, and Climate Change Effects on Ecological Drought in Semiarid Grasslands

    NASA Astrophysics Data System (ADS)

    Wilson, S. D.; Schlaepfer, D. R.; Bradford, J. B.; Lauenroth, W. K.; Duniway, M. C.; Hall, S. A.; Jamiyansharav, K.; Jia, G.; Lkhagva, A.; Munson, S. M.; Pyke, D. A.; Tietjen, B.

    2018-03-01

    Water relations in plant communities are influenced both by contrasting functional groups (grasses and shrubs) and by climate change via complex effects on interception, uptake, and transpiration. We modeled the effects of functional group replacement and biomass increase, both of which can be outcomes of invasion and vegetation management, and climate change on ecological drought (soil water potential below which photosynthesis stops) in 340 semiarid grassland sites over 30 year periods. Relative to control vegetation (climate and site-determined mixes of functional groups), the frequency and duration of drought were increased by shrubs and decreased by annual grasses. The rankings of shrubs, control vegetation, and annual grasses in terms of drought effects were generally consistent in current and future climates, suggesting that current differences among functional groups on drought effects predict future differences. Climate change accompanied by experimentally increased biomass (i.e., the effects of invasions that increase community biomass or management that increases productivity through fertilization or respite from grazing) increased drought frequency and duration and advanced drought onset. Our results suggest that the replacement of perennial temperate semiarid grasslands by shrubs, or increased biomass, can increase ecological drought in both current and future climates.

  17. Functional group, biomass, and climate change effects on ecological drought in semiarid grasslands

    USGS Publications Warehouse

    Wilson, Scott D.; Schlaepfer, Daniel R.; Bradford, John B.; Lauenroth, William K.; Duniway, Michael C.; Hall, Sonia A.; Jamiyansharav, Khishigbayar; Jia, Gensuo; Lkhagva, Ariuntsetseg; Munson, Seth M.; Pyke, David A.; Tietjen, Britta

    2018-01-01

    Water relations in plant communities are influenced both by contrasting functional groups (grasses, shrubs) and by climate change via complex effects on interception, uptake and transpiration. We modelled the effects of functional group replacement and biomass increase, both of which can be outcomes of invasion and vegetation management, and climate change on ecological drought (soil water potential below which photosynthesis stops) in 340 semiarid grassland sites over 30‐year periods. Relative to control vegetation (climate and site‐determined mixes of functional groups), the frequency and duration of drought were increased by shrubs and decreased by annual grasses. The rankings of shrubs, control vegetation, and annual grasses in terms of drought effects were generally consistent in current and future climates, suggesting that current differences among functional groups on drought effects predict future differences. Climate change accompanied by experimentally‐increased biomass (i.e. the effects of invasions that increase community biomass, or management that increases productivity through fertilization or respite from grazing) increased drought frequency and duration, and advanced drought onset. Our results suggest that the replacement of perennial temperate semiarid grasslands by shrubs, or increased biomass, can increase ecological drought both in current and future climates.

  18. Global-change vulnerability of a key plant resource, the African palms.

    PubMed

    Blach-Overgaard, Anne; Balslev, Henrik; Dransfield, John; Normand, Signe; Svenning, Jens-Christian

    2015-07-27

    Palms are keystone species in tropical ecosystems and provide essential ecosystem services to rural people worldwide. However, many palm species are threatened by habitat loss and over-exploitation. Furthermore, palms are sensitive to climate and thus vulnerable to future climate changes. Here, we provide a first quantitative assessment of the future risks to the African palm flora, finding that African palm species on average may experience a decline in climatic suitability in >70% of their current ranges by 2080. This suitability loss may, however, be almost halved if migration to nearby climatically suitable sites succeeds. Worryingly, 42% of the areas with 80-100% of species losing climate suitability are also characterized by high human population density (HPD). By 2080, >90% of all African palm species' ranges will likely occur at HPDs leading to increased risks of habitat loss and overexploitation. Additionally, up to 87% of all species are predicted to lose climatic suitability within current protected areas (PAs) by 2080. In summary, a major plant component of tropical ecosystems and provider of ecosystem services to rural populations will face strongly increased pressures from climate change and human populations in the near future.

  19. Climate change and maize yield in Iowa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Hong; Twine, Tracy E.; Girvetz, Evan

    Climate is changing across the world, including the major maize-growing state of Iowa in the USA. To maintain crop yields, farmers will need a suite of adaptation strategies, and choice of strategy will depend on how the local to regional climate is expected to change. Here we predict how maize yield might change through the 21 st century as compared with late 20 th century yields across Iowa, USA, a region representing ideal climate and soils for maize production that contributes substantially to the global maize economy. To account for climate model uncertainty, we drive a dynamic ecosystem model withmore » output from six climate models and two future climate forcing scenarios. Despite a wide range in the predicted amount of warming and change to summer precipitation, all simulations predict a decrease in maize yields from late 20 th century to middle and late 21 st century ranging from 15% to 50%. Linear regression of all models predicts a 6% state-averaged yield decrease for every 1°C increase in warm season average air temperature. When the influence of moisture stress on crop growth is removed from the model, yield decreases either remain the same or are reduced, depending on predicted changes in warm season precipitation. Lastly, our results suggest that even if maize were to receive all the water it needed, under the strongest climate forcing scenario yields will decline by 10-20% by the end of the 21 st century.« less

  20. Climate change and maize yield in Iowa

    DOE PAGES

    Xu, Hong; Twine, Tracy E.; Girvetz, Evan

    2016-05-24

    Climate is changing across the world, including the major maize-growing state of Iowa in the USA. To maintain crop yields, farmers will need a suite of adaptation strategies, and choice of strategy will depend on how the local to regional climate is expected to change. Here we predict how maize yield might change through the 21 st century as compared with late 20 th century yields across Iowa, USA, a region representing ideal climate and soils for maize production that contributes substantially to the global maize economy. To account for climate model uncertainty, we drive a dynamic ecosystem model withmore » output from six climate models and two future climate forcing scenarios. Despite a wide range in the predicted amount of warming and change to summer precipitation, all simulations predict a decrease in maize yields from late 20 th century to middle and late 21 st century ranging from 15% to 50%. Linear regression of all models predicts a 6% state-averaged yield decrease for every 1°C increase in warm season average air temperature. When the influence of moisture stress on crop growth is removed from the model, yield decreases either remain the same or are reduced, depending on predicted changes in warm season precipitation. Lastly, our results suggest that even if maize were to receive all the water it needed, under the strongest climate forcing scenario yields will decline by 10-20% by the end of the 21 st century.« less

Top