Science.gov

Sample records for predicting future duration

  1. Predicting the Future as Bayesian Inference: People Combine Prior Knowledge with Observations when Estimating Duration and Extent

    ERIC Educational Resources Information Center

    Griffiths, Thomas L.; Tenenbaum, Joshua B.

    2011-01-01

    Predicting the future is a basic problem that people have to solve every day and a component of planning, decision making, memory, and causal reasoning. In this article, we present 5 experiments testing a Bayesian model of predicting the duration or extent of phenomena from their current state. This Bayesian model indicates how people should…

  2. Predicting Future Citation Behavior.

    ERIC Educational Resources Information Center

    Burrell, Quentin L.

    2003-01-01

    Develops the theory for a stochastic model for the citation process in the presence of obsolescence to predict the future citation pattern of individual papers in a collection. Shows that the expected number of future citations is a linear function of the current number, interpreted as an example of a success-breeds-success phenomenon. (Author/LRW)

  3. Predicting the earth's future

    NASA Technical Reports Server (NTRS)

    Dutton, J. A.

    1986-01-01

    The development of earth system models that will simulate the past and present and provide predictions of future conditions is essential now that human activities have the potential to induce changes in the planetary environment. Critical aspects of global change include its pervasiveness and ubiquity, its distribution in several distinct time-scale bands, and the interactions between the atmosphere, ocean, land surface, and the terrestrial and marine biospheres. A model of the earth system on the scale of decades to centuries, developed by the Earth System Science Committee (NASA) with the strategy of dividing by time scale rather than discipline, is presented and the requirements for observations to support the implementation of the model are reviewed.

  4. Shortened Sleep Duration does not Predict Obesity in Adolescents

    PubMed Central

    Calamaro, Christina J.; Park, Sunhee; Mason, Thornton B. A.; Marcus, Carole L.; Weaver, Terri E.; Pack, Allan; Ratcliffe, Sarah J.

    2010-01-01

    Obesity continues to be a major public health issue. In adolescents, there are limited studies on the relationship between obesity and sleep duration. We hypothesied that average sleep duration of less than 6 hours in adolescents was associated with obesity. Data was from the National Longitudinal Study of Adolescent Health (ADD Health); survey of 90,000 youths, ages 12 – 18 years; surveyed in several waves. The sample population for our study was 13,568. Weighted multiple logistic regression was used to identify relationship between obesity at Wave II and sleep duration, having adjusted for skipping breakfast ≥ 2/week; race, gender, parental income, TV ≥ 2hrs/day, depression, and obesity at Wave I. At Wave I, mean age 15.96±0.11 yrs; mean sleep hours 7.91±0.04. 10.6% and 11.2% of adolescents were obese at Waves I and II, respectively. Adjusted analyses suggest that effect of shortened sleep duration in Wave I was not significantly predictive of obesity in Wave II (p<0.218).Longitudinally, depression and TV ≥ 2hrs/day at Wave I was associated with higher risk of obesity at Wave II in adjusted analyses. Depressed adolescents were almost twice as likely to be obese (OR=1.84, 95% CI=1.25–2.72); adolescents who watched TV ≥ 2hrs/day were 37% more likely to be obese (OR=1.37, 95% CI=1.09–1.72).Environmental factors including TV ≥ 2hrs/day and depression were significantly associated with obesity; shortened sleep duration was not. Future longitudinal studies in adolescents are needed to determine whether timing of television watching directly influences sleep patterns, and ultimately obesity. PMID:20545836

  5. Correcting Memory Improves Accuracy of Predicted Task Duration

    ERIC Educational Resources Information Center

    Roy, Michael M.; Mitten, Scott T.; Christenfeld, Nicholas J. S.

    2008-01-01

    People are often inaccurate in predicting task duration. The memory bias explanation holds that this error is due to people having incorrect memories of how long previous tasks have taken, and these biased memories cause biased predictions. Therefore, the authors examined the effect on increasing predictive accuracy of correcting memory through…

  6. Space mechanisms needs for future NASA long duration space missions

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    1991-01-01

    Future NASA long duration missions will require high performance, reliable, long lived mechanical moving systems. In order to develop these systems, high technology components, such as bearings, gears, seals, lubricants, etc., will need to be utilized. There has been concern in the NASA community that the current technology level in these mechanical component/tribology areas may not be adequate to meet the goals of long duration NASA mission such as Space Exploration Initiative (SEI). To resolve this concern, NASA-Lewis sent a questionnaire to government and industry workers (who have been involved in space mechanism research, design, and implementation) to ask their opinion if the current space mechanisms technology (mechanical components/tribology) is adequate to meet future NASA Mission needs and goals. In addition, a working group consisting of members from each NASA Center, DoD, and DOE was established to study the technology status. The results of the survey and conclusions of the working group are summarized.

  7. Comparison and validation of statistical methods for predicting power outage durations in the event of hurricanes.

    PubMed

    Nateghi, Roshanak; Guikema, Seth D; Quiring, Steven M

    2011-12-01

    This article compares statistical methods for modeling power outage durations during hurricanes and examines the predictive accuracy of these methods. Being able to make accurate predictions of power outage durations is valuable because the information can be used by utility companies to plan their restoration efforts more efficiently. This information can also help inform customers and public agencies of the expected outage times, enabling better collective response planning, and coordination of restoration efforts for other critical infrastructures that depend on electricity. In the long run, outage duration estimates for future storm scenarios may help utilities and public agencies better allocate risk management resources to balance the disruption from hurricanes with the cost of hardening power systems. We compare the out-of-sample predictive accuracy of five distinct statistical models for estimating power outage duration times caused by Hurricane Ivan in 2004. The methods compared include both regression models (accelerated failure time (AFT) and Cox proportional hazard models (Cox PH)) and data mining techniques (regression trees, Bayesian additive regression trees (BART), and multivariate additive regression splines). We then validate our models against two other hurricanes. Our results indicate that BART yields the best prediction accuracy and that it is possible to predict outage durations with reasonable accuracy.

  8. Sleep Duration Predicts Cardiometabolic Risk in Obese Adolescents

    PubMed Central

    IglayReger, Heidi B.; Peterson, Mark D.; Liu, Dongmei; Parker, Christine A.; Woolford, Susan J.; (Sallinen) Gafka, Bethany J.; Hassan, Fauziya; Gordon, Paul M.

    2014-01-01

    Objective To examine the independent contributions of objectively measured sleep duration and fragmentation on cardiometabolic risk accumulation in free-living obese adolescents. Study design Characteristics of metabolic syndrome (waist circumference, mean arterial pressure, fasting high-density lipoprotein cholesterol, triglycerides, glucose) were measured in obese adolescents and standardized residuals(z-scores) were summed (inverse high-density lipoprotein cholesterol) to create a continuous cardiometabolic risk score (cMetScore), adjusted for age, sex, and race. Sleep and physical activity were objectively measured in habitual, free-living conditions for 7 days (SenseWear Pro3, BodyMedia, Pittsburgh, Pennsylvania; n = 37; 54% female, ages 11–17 years). Associations between sleep duration and cMetScore were assessed via multiple linear regression. Results Body mass index, total sleep time, and sleep session length were each correlated with cMetScore (P < .05 all). Total sleep time was inversely and independently associated with cMetScore (r = −0.535, P = .001) and was the best independent predictor of metabolic risk. Conclusions Sleep duration inversely predicts cardiometabolic risk in obese adolescents, even when we controlled for various measures of physical activity, anthropometry, and adiposity. Further research should investigate the biological mechanism of this relationship and the potential treatment effect of sleep intervention in decreasing cardiometabolic risk in this population. PMID:24612904

  9. Projected Duration of the Sea-Ice-Free Season in the Future Alaskan Arctic

    NASA Astrophysics Data System (ADS)

    Wang, M.; Overland, J. E.

    2014-12-01

    The change in the Arctic climate is fast and broad. Among many changes that have been observed, the reduction of sea ice coverage has been one of the most significant factors. Continued reduction in sea ice cover will probably result in longer open water duration, which is important for the shipping industry, marine mammals as well as other component of the local ecosystem. In this study we are to assess future sea ice conditions, particularly the length of open water duration in the Alaskan Arctic over the next few decades using the latest coupled climate models (CMIP5). The Alaskan Arctic, including the Chukchi and the Beaufort Sea, has been a major region of summer sea ice retreat since 2007. Based on the mean of 12 climate models, for the region north of the Bering Strait (70° N), future open-water duration may extend from a current 3-4 months to around five months by 2050. It is about one month shorter along the same latitude over the Beaufort Sea. The difference in the length of ice-free season between the north and the south will remain, but will be smaller in the 21st century compared with current condition. Open-water duration in the Alaskan Arctic expands quickly in these models over the next decades, in contrast to model under-predictions of sea ice loss for the summer minimum over the Arctic wide domain. Uncertainty is generally ±one month estimated from the range of model results. Continued increases in open-water duration over the next two decades will impact regional economic access and potentially alter ecosystems, yet we need to keep in mind that from December through May most of the northern Alaskan Arctic will remain sea ice covered into the second half of the century.

  10. Prediction and validation of hemodialysis duration in acute methanol poisoning.

    PubMed

    Lachance, Philippe; Mac-Way, Fabrice; Desmeules, Simon; De Serres, Sacha A; Julien, Anne-Sophie; Douville, Pierre; Ghannoum, Marc; Agharazii, Mohsen

    2015-11-01

    The duration of hemodialysis (HD) in methanol poisoning (MP) is dependent on the methanol concentration, the operational parameters used during HD, and the presence and severity of metabolic acidosis. However, methanol assays are not easily available, potentially leading to undue extension or premature termination of treatment. Here we provide a prediction model for the duration of high-efficiency HD in MP. In a retrospective cohort study, we identified 71 episodes of MP in 55 individuals who were treated with alcohol dehydrogenase inhibition and HD. Four patients had residual visual abnormality at discharge and only one patient died. In 46 unique episodes of MP with high-efficiency HD the mean methanol elimination half-life (T1/2) during HD was 108 min in women, significantly different from the 129 min in men. In a training set of 28 patients with MP, using the 90th percentile of gender-specific elimination T1/2 (147 min in men and 141 min in women) and a target methanol concentration of 4 mmol/l allowed all cases to reach a safe methanol of under 6 mmol/l. The prediction model was confirmed in a validation set of 18 patients with MP. High-efficiency HD time in hours can be estimated using 3.390 × (Ln (MCi/4)) for women and 3.534 × (Ln (MCi/4)) for men, where MCi is the initial methanol concentration in mmol/l, provided that metabolic acidosis is corrected.

  11. Radiation exposure predictions for short-duration stay Mars missions.

    PubMed

    Striepe, S A; Nealy, J E; Simonsen, L C

    1992-01-01

    The human radiation environment for several short-duration stay manned Mars missions is predicted using the Mission Radiation Calculation (MIRACAL) program, which was developed at NASA Langley Research Center. This program provides dose estimates for galactic cosmic rays (GCR) and large and ordinary solar proton flare events for various amounts of effective spacecraft shielding (both operational and storm shelter thicknesses) and a given time history of the spacecraft's heliocentric position. The results of this study show that most of the missions can survive the most recent large flares (if they were to occur at the missions' perihelion) if a 25 g/cm2 storm shelter is assumed. The dose predictions show that missions during solar minima (when solar flare activity is the lowest) are not necessarily the minimum dose cases, due to increased GCR contribution during this time period. The direct transfer mission studied has slightly lower doses than the outbound Venus swingby mission [on the order of 10-20 centi-Sieverts (cSv) lower], with the greatest dose differences for the assumed worst case scenario (when the large flares occur at perihelion). The GCR dose for a mission can be reduced by having the crew spend some fraction of its day nominally in the storm shelter (other than during flare events).

  12. Radiation exposure predictions for short-duration stay Mars missions.

    PubMed

    Striepe, S A; Nealy, J E; Simonsen, L C

    1992-01-01

    The human radiation environment for several short-duration stay manned Mars missions is predicted using the Mission Radiation Calculation (MIRACAL) program, which was developed at NASA Langley Research Center. This program provides dose estimates for galactic cosmic rays (GCR) and large and ordinary solar proton flare events for various amounts of effective spacecraft shielding (both operational and storm shelter thicknesses) and a given time history of the spacecraft's heliocentric position. The results of this study show that most of the missions can survive the most recent large flares (if they were to occur at the missions' perihelion) if a 25 g/cm2 storm shelter is assumed. The dose predictions show that missions during solar minima (when solar flare activity is the lowest) are not necessarily the minimum dose cases, due to increased GCR contribution during this time period. The direct transfer mission studied has slightly lower doses than the outbound Venus swingby mission [on the order of 10-20 centi-Sieverts (cSv) lower], with the greatest dose differences for the assumed worst case scenario (when the large flares occur at perihelion). The GCR dose for a mission can be reduced by having the crew spend some fraction of its day nominally in the storm shelter (other than during flare events). PMID:11538210

  13. Initial symptom burden predicts duration of symptoms after concussion★

    PubMed Central

    Meehan, William P.; O’Brien, Michael J.; Geminiani, Ellen; Mannix, Rebekah

    2016-01-01

    Objectives To determine which variables predict prolonged (>28 days) duration of symptoms after a concussion. Design We conducted a prospective cohort study of adult (>18yo) patients cared for in a specialty concussion clinic. Methods Symptoms were assessed using the Post-Concussion Symptom Scale (PCSS) developed at the 3rd International Conference on Concussion in Sports. Possible predictors including age, sex, loss of consciousness, amnesia, history of prior concussion, prior treatment for headaches, history of migraines, and family history of concussions, were measured by self-report. We recorded a PCSS score at each clinical visit and defined time to symptom resolution as the number of days between the date of injury and date of last symptoms. Results Of 64 adult patients included in the study, 53.3% were male; 20.3% reported experiencing a loss of consciousness at the time of injury while 23.4% reported amnesia. Patients ranged in age from 18 to 27 years (mean 21 ± 2 years). Most concussions (92.2%) occurred during sports. The mean initial PCSS score for those suffering symptoms for longer than 28 days was significantly higher than those who symptoms resolved within 28 days (42.5 vs. 19.2, p < 0.01). Of all potential predictor variables, only the initial PCSS score was independently associated with the odds of symptoms lasting longer than 28 days (aOR 1.037; 95% CI 1.011, 1.063). Conclusions Among adult patients with concussions, those with a higher symptom burden after injury have an increased odds of suffering from prolonged symptoms. Other potential predictor variables are not associated with the risk of prolonged recovery. PMID:26718812

  14. A combined M5P tree and hazard-based duration model for predicting urban freeway traffic accident durations.

    PubMed

    Lin, Lei; Wang, Qian; Sadek, Adel W

    2016-06-01

    The duration of freeway traffic accidents duration is an important factor, which affects traffic congestion, environmental pollution, and secondary accidents. Among previous studies, the M5P algorithm has been shown to be an effective tool for predicting incident duration. M5P builds a tree-based model, like the traditional classification and regression tree (CART) method, but with multiple linear regression models as its leaves. The problem with M5P for accident duration prediction, however, is that whereas linear regression assumes that the conditional distribution of accident durations is normally distributed, the distribution for a "time-to-an-event" is almost certainly nonsymmetrical. A hazard-based duration model (HBDM) is a better choice for this kind of a "time-to-event" modeling scenario, and given this, HBDMs have been previously applied to analyze and predict traffic accidents duration. Previous research, however, has not yet applied HBDMs for accident duration prediction, in association with clustering or classification of the dataset to minimize data heterogeneity. The current paper proposes a novel approach for accident duration prediction, which improves on the original M5P tree algorithm through the construction of a M5P-HBDM model, in which the leaves of the M5P tree model are HBDMs instead of linear regression models. Such a model offers the advantage of minimizing data heterogeneity through dataset classification, and avoids the need for the incorrect assumption of normality for traffic accident durations. The proposed model was then tested on two freeway accident datasets. For each dataset, the first 500 records were used to train the following three models: (1) an M5P tree; (2) a HBDM; and (3) the proposed M5P-HBDM, and the remainder of data were used for testing. The results show that the proposed M5P-HBDM managed to identify more significant and meaningful variables than either M5P or HBDMs. Moreover, the M5P-HBDM had the lowest overall mean

  15. Predicting the Future of ESL.

    ERIC Educational Resources Information Center

    Ashworth, Mary

    Influences in the classroom of English as a second language (ESL) are briefly reviewed as a preface to a discussion of the past, present, and future of ESL instruction in Canada. Ten influences on ESL's past are examined in terms of their effects on ESL teachers: international, national, social, political, economic, commercial, media,…

  16. Improving Prediction of Surgery Duration using Operational and Temporal Factors

    PubMed Central

    Kayis, Enis; Wang, Haiyan; Patel, Meghna; Gonzalez, Tere; Jain, Shelen; Ramamurthi, RJ; Santos, Cipriano; Singhal, Sharad; Suermondt, Jaap; Sylvester, Karl

    2012-01-01

    Inherent uncertainties in surgery durations impact many critical metrics about the performance of an operating room (OR) environment. OR schedules that are robust to natural variability in surgery durations require surgery duration estimates that are unbiased, with high accuracy, and with few cases with large absolute errors. Earlier studies have shown that factors such as patient severity, personnel, and procedure type greatly affect the accuracy of such estimations. In this paper we investigate whether operational and temporal factors can be used to improve these estimates further. We present an adjustment method based on a combination of these operational and temporal factors. We validate our method with two years of detailed operational data from an electronic medical record. We conclude that while improving estimates of surgery durations is possible, the inherent variability in such estimates remains high, necessitating caution in their use when optimizing OR schedules. PMID:23304316

  17. Prediction of future asset prices

    NASA Astrophysics Data System (ADS)

    Seong, Ng Yew; Hin, Pooi Ah; Ching, Soo Huei

    2014-12-01

    This paper attempts to incorporate trading volumes as an additional predictor for predicting asset prices. Denoting r(t) as the vector consisting of the time-t values of the trading volume and price of a given asset, we model the time-(t+1) asset price to be dependent on the present and l-1 past values r(t), r(t-1), ....., r(t-1+1) via a conditional distribution which is derived from a (2l+1)-dimensional power-normal distribution. A prediction interval based on the 100(α/2)% and 100(1-α/2)% points of the conditional distribution is then obtained. By examining the average lengths of the prediction intervals found by using the composite indices of the Malaysia stock market for the period 2008 to 2013, we found that the value 2 appears to be a good choice for l. With the omission of the trading volume in the vector r(t), the corresponding prediction interval exhibits a slightly longer average length, showing that it might be desirable to keep trading volume as a predictor. From the above conditional distribution, the probability that the time-(t+1) asset price will be larger than the time-t asset price is next computed. When the probability differs from 0 (or 1) by less than 0.03, the observed time-(t+1) increase in price tends to be negative (or positive). Thus the above probability has a good potential of being used as a market indicator in technical analysis.

  18. The distribution of first-passage times and durations in FOREX and future markets

    NASA Astrophysics Data System (ADS)

    Sazuka, Naoya; Inoue, Jun-ichi; Scalas, Enrico

    2009-07-01

    Possible distributions are discussed for intertrade durations and first-passage processes in financial markets. The view-point of renewal theory is assumed. In order to represent market data with relatively long durations, two types of distributions are used, namely a distribution derived from the Mittag-Leffler survival function and the Weibull distribution. For the Mittag-Leffler type distribution, the average waiting time (residual life time) is strongly dependent on the choice of a cut-off parameter tmax, whereas the results based on the Weibull distribution do not depend on such a cut-off. Therefore, a Weibull distribution is more convenient than a Mittag-Leffler type if one wishes to evaluate relevant statistics such as average waiting time in financial markets with long durations. On the other hand, we find that the Gini index is rather independent of the cut-off parameter. Based on the above considerations, we propose a good candidate for describing the distribution of first-passage time in a market: The Weibull distribution with a power-law tail. This distribution compensates the gap between theoretical and empirical results more efficiently than a simple Weibull distribution. It should be stressed that a Weibull distribution with a power-law tail is more flexible than the Mittag-Leffler distribution, which itself can be approximated by a Weibull distribution and a power-law. Indeed, the key point is that in the former case there is freedom of choice for the exponent of the power-law attached to the Weibull distribution, which can exceed 1 in order to reproduce decays faster than possible with a Mittag-Leffler distribution. We also give a useful formula to determine an optimal crossover point minimizing the difference between the empirical average waiting time and the one predicted from renewal theory. Moreover, we discuss the limitation of our distributions by applying our distribution to the analysis of the BTP future and calculating the average waiting

  19. Stress and sleep duration predict headache severity in chronic headache sufferers.

    PubMed

    Houle, Timothy T; Butschek, Ross A; Turner, Dana P; Smitherman, Todd A; Rains, Jeanetta C; Penzien, Donald B

    2012-12-01

    The objective of this study was to evaluate the time-series relationships between stress, sleep duration, and headache pain among patients with chronic headaches. Sleep and stress have long been recognized as potential triggers of episodic headache (<15 headache days/month), though prospective evidence is inconsistent and absent in patients diagnosed with chronic headaches (≥15 days/month). We reanalyzed data from a 28-day observational study of chronic migraine (n=33) and chronic tension-type headache (n=22) sufferers. Patients completed the Daily Stress Inventory and recorded headache and sleep variables using a daily sleep/headache diary. Stress ratings, duration of previous nights' sleep, and headache severity were modeled using a series of linear mixed models with random effects to account for individual differences in observed associations. Models were displayed using contour plots. Two consecutive days of either high stress or low sleep were strongly predictive of headache, whereas 2 days of low stress or adequate sleep were protective. When patterns of stress or sleep were divergent across days, headache risk was increased only when the earlier day was characterized by high stress or poor sleep. As predicted, headache activity in the combined model was highest when high stress and low sleep occurred concurrently during the prior 2 days, denoting an additive effect. Future research is needed to expand on current findings among chronic headache patients and to develop individualized models that account for multiple simultaneous influences of headache trigger factors.

  20. Radiation exposure predictions for long-duration-stay Mars missions

    SciTech Connect

    Striepe, S.A.; Simonsen, L.C.; Nealy, J.E.

    1994-04-01

    In this study, the ionizing radiation environment is estimated, using the Mission Radiation Calculation (MIRACAL) program, for several long-duration-stay Mars missions proposed for early in the 21(sup st) century. Both minimum energy and fast transfer missions are evaluated and their 30-day maximum, annual maximum, and total slab skin and blood-forming organ (BFO) doses are compared. When large flares were included while the astronauts were on the surface, the delivered dose did not significantly contribute to the total dose (less than 4 cSv BFO dose, or 8 percent of the guideline annual limit, for the most energetic event simulated) due to the substantial protection provided by the Martian atmosphere. However, dose delivered by large flares during transit is dependent on vehicle shielding and distance from the Sun. All of the fast transfer missions studied had lower total and annual maximum doses than the corresponding minimum energy transfer missions (on average, 30% less for missions having no large flares and the shielding thicknesses evaluated in this study). For all the missions studied, having the astronauts spend one-third of their day during transit in a 10 g/sq cm storm shelter resulted in an approximate 10% reduction in the total mission dose. 18 refs.

  1. Memory, Imagination, and Predicting the Future

    PubMed Central

    Mullally, Sinéad L.

    2014-01-01

    On the face of it, memory, imagination, and prediction seem to be distinct cognitive functions. However, metacognitive, cognitive, neuropsychological, and neuroimaging evidence is emerging that they are not, suggesting intimate links in their underlying processes. Here, we explore these empirical findings and the evolving theoretical frameworks that seek to explain how a common neural system supports our recollection of times past, imagination, and our attempts to predict the future. PMID:23846418

  2. Tracking the Mind during Reading: The Influence of Past, Present, and Future Words on Fixation Durations

    ERIC Educational Resources Information Center

    Kliegl, Reinhold; Nuthmann, Antje; Engbert, Ralf

    2006-01-01

    Reading requires the orchestration of visual, attentional, language-related, and oculomotor processing constraints. This study replicates previous effects of frequency, predictability, and length of fixated words on fixation durations in natural reading and demonstrates new effects of these variables related to 144 sentences. Such evidence for…

  3. Projected future duration of the sea-ice-free season in the Alaskan Arctic

    NASA Astrophysics Data System (ADS)

    Wang, Muyin; Overland, James E.

    2015-08-01

    Global warming and continued reduction in sea ice cover will result in longer open water duration in the Arctic, which is important for the shipping industry, marine mammals, and other components of the regional ecosystem. In this study we assess the length of open water duration in the Alaskan Arctic over the next few decades using the set of latest coupled climate models (CMIP5). The Alaskan Arctic, including the Chukchi and the Beaufort Sea, has been a major region of summer sea ice retreat since 2007. Thirty five climate models from CMIP5 are evaluated and twelve are selected for composite projections based on their historical simulation performance. In the regions north of the Bering Strait (north of 70° N), future open-water duration shifts from a current 3-4 months to a projected near 5 months by 2040 based on the mean of the twelve selected climate models. There is considerable north-south gradient in projected durations. Open water duration is about 1 month shorter along the same latitudes in the Beaufort Sea compared with that in the Chukchi Sea. Uncertainty is generally ±1 month estimated from the range of model results. Open-water duration in the Alaskan Arctic expands quickly in these models over the next decades which will impact regional economic access and potentially alter ecosystems. Yet the northern Alaskan Arctic from January through May will remain sea ice covered into the second half of the century due to normal lack of sunlight.

  4. Predicting prolonged duration of fever in children: a cohort study in primary care

    PubMed Central

    Elshout, Gijs; Kool, Marijke; Bohnen, Arthur M; Koes, Bart W; Moll, Henriëtte A; Berger, Marjolein Y

    2015-01-01

    Background Fever in children in primary care is commonly caused by benign infections, but often worries parents. Information about the duration of fever and its predictors may help in reassuring parents, leading to diminished consultation of health care. Aim To determine which signs and symptoms predict a prolonged duration of fever in febrile children in primary care and evaluate whether C-reactive protein (CRP) measurement has an additive predictive value for these symptoms. Design and setting A prospective cohort study at a GPs’ cooperative (GPC) out-of-hours service. Method Children (aged 3 months to 6 years) presenting with fever as stated by the parents were included. Exclusion criteria were no communication in Dutch possible, previous enrolment in the study within 2 weeks, referral to the hospital directly after visiting the GPC, or no informed consent. The main outcome measure was prolonged duration of fever (>3 days) after initial contact. Results Four-hundred and eighty children were analysed, and the overall risk of prolonged duration was 13% (63/480). Multivariate analysis combined model of patient history and physical examination showed that ‘sore throat’ (OR 2.8; 95% CI = 1.30 to 6.01) and ‘lymph nodes palpable’ (OR 1.87; 95% CI = 1.01 to 3.49) are predictive for prolonged duration of fever. The discriminative value of the model was low (AUC 0.64). CRP had no additive value in the prediction of prolonged duration of fever (OR 1.00; 95% CI = 0.99 to 1.01). Conclusion The derived prediction model indicates that only a few signs and symptoms are related to prolonged duration of fever. CRP has no additional value in this model. Overall, because the discriminative value of the model was low, the duration of fever cannot be accurately predicted. PMID:26324494

  5. Plasma predictions: past, present and future

    NASA Astrophysics Data System (ADS)

    Lowke, J. J.

    2013-04-01

    Tools for predictions of plasma properties in the last 50 years have evolved from largely analytic representations, for example using Bessel functions, to the present methods, which extensively use computers. Furthermore, there is a marked unification of predictive capabilities, spanning the use of basic atomic and molecular data such as electron-atom cross-sections, leading to the calculation of transport coefficients such as thermal and electrical conductivities and finally to detailed predictions of plasma processing, e.g. the influence of fluxes on weld profiles in arc welding. Present calculations in the range of different directions are outlined, all likely to lead to new developments in the future. The examples are (1) predictions spanning collisionless to collision-dominated plasmas—such as are required for understanding the role of cathode voltages of non-thermionic cathodes. (2) Plasma chemistry predictions—such as are required to understand electrical breakdown in air to include the role of nitrogen metastables. (3) Predictions of the interactions of ion flow and insulating surfaces—such as could explain the existence of ball lightning. Finally, (4) the greater consideration of magnetic forces on astrophysical plasmas, which may explain the regular properties of the solar system.

  6. Predictive Models of Duration of Ground Delay Programs in New York Area Airports

    NASA Technical Reports Server (NTRS)

    Kulkarni, Deepak

    2011-01-01

    Initially planned GDP duration often turns out to be an underestimate or an overestimate of the actual GDP duration. This, in turn, results in avoidable airborne or ground delays in the system. Therefore, better models of actual duration have the potential of reducing delays in the system. The overall objective of this study is to develop such models based on logs of GDPs. In a previous report, we described descriptive models of Ground Delay Programs. These models were defined in terms of initial planned duration and in terms of categorical variables. These descriptive models are good at characterizing the historical errors in planned GDP durations. This paper focuses on developing predictive models of GDP duration. Traffic Management Initiatives (TMI) are logged by Air Traffic Control facilities with The National Traffic Management Log (NTML) which is a single system for automated recoding, coordination, and distribution of relevant information about TMIs throughout the National Airspace System. (Brickman, 2004 Yuditsky, 2007) We use 2008-2009 GDP data from the NTML database for the study reported in this paper. NTML information about a GDP includes the initial specification, possibly one or more revisions, and the cancellation. In the next section, we describe general characteristics of Ground Delay Programs. In the third section, we develop models of actual duration. In the fourth section, we compare predictive performance of these models. The final section is a conclusion.

  7. Surgical Duration Estimation via Data Mining and Predictive Modeling: A Case Study

    PubMed Central

    Hosseini, N.; Sir, M.Y.; Jankowski, C.J.; Pasupathy, K.S.

    2015-01-01

    Operating rooms (ORs) are one of the most expensive and profitable resources within a hospital system. OR managers strive to utilize these resources in the best possible manner. Traditionally, surgery durations are estimated using a moving average adjusted by the scheduler (adjusted system prediction or ASP). Other methods based on distributions, regression and data mining have also been proposed. To overcome difficulties with numerous procedure types and lack of sufficient sample size, and avoid distributional assumptions, the main objective is to develop a hybrid method of duration prediction and demonstrate using a case study. PMID:26958199

  8. Predictable patterns in planetary transit timing variations and transit duration variations due to exomoons

    NASA Astrophysics Data System (ADS)

    Heller, René; Hippke, Michael; Placek, Ben; Angerhausen, Daniel; Agol, Eric

    2016-06-01

    We present new ways to identify single and multiple moons around extrasolar planets using planetary transit timing variations (TTVs) and transit duration variations (TDVs). For planets with one moon, measurements from successive transits exhibit a hitherto undescribed pattern in the TTV-TDV diagram, originating from the stroboscopic sampling of the planet's orbit around the planet-moon barycenter. This pattern is fully determined and analytically predictable after three consecutive transits. The more measurements become available, the more the TTV-TDV diagram approaches an ellipse. For planets with multiple moons in orbital mean motion resonance (MMR), like the Galilean moon system, the pattern is much more complex and addressed numerically in this report. Exomoons in MMR can also form closed, predictable TTV-TDV figures, as long as the drift of the moons' pericenters is sufficiently slow. We find that MMR exomoons produce loops in the TTV-TDV diagram and that the number of these loops is equal to the order of the MMR, or the largest integer in the MMR ratio. We use a Bayesian model and Monte Carlo simulations to test the discoverability of exomoons using TTV-TDV diagrams with current and near-future technology. In a blind test, two of us (BP, DA) successfully retrieved a large moon from simulated TTV-TDV by co-authors MH and RH, which resembled data from a known Kepler planet candidate. Single exomoons with a 10% moon-to-planet mass ratio, like to Pluto-Charon binary, can be detectable in the archival data of the Kepler primary mission. Multi-exomoon systems, however, require either larger telescopes or brighter target stars. Complementary detection methods invoking a moon's own photometric transit or its orbital sampling effect can be used for validation or falsification. A combination of TESS, CHEOPS, and PLATO data would offer a compelling opportunity for an exomoon discovery around a bright star.

  9. Predictable Patterns in Planetary Transit Timing Variations and Transit Duration Variations Due to Exomoons

    NASA Technical Reports Server (NTRS)

    Heller, Rene; Hippke, Michael; Placek, Ben; Angerhausen, Daniel; Agol, Eric

    2016-01-01

    We present new ways to identify single and multiple moons around extrasolar planets using planetary transit timing variations (TTVs) and transit duration variations (TDVs). For planets with one moon, measurements from successive transits exhibit a hitherto undescribed pattern in the TTV-TDV diagram, originating from the stroboscopic sampling of the planet's orbit around the planet-moon barycenter. This pattern is fully determined and analytically predictable after three consecutive transits. The more measurements become available, the more the TTV-TDV diagram approaches an ellipse. For planets with multiple moons in orbital mean motion resonance (MMR), like the Galilean moon system, the pattern is much more complex and addressed numerically in this report. Exomoons in MMR can also form closed, predictable TTV-TDV figures, as long as the drift of the moons' pericenters is suciently slow.We find that MMR exomoons produce loops in the TTV-TDV diagram and that the number of these loops is equal to the order of the MMR, or the largest integer in the MMR ratio.We use a Bayesian model and Monte Carlo simulations to test the discoverability of exomoons using TTV-TDV diagrams with current and near-future technology. In a blind test, two of us (BP, DA) successfully retrieved a large moon from simulated TTV-TDV by co-authors MH and RH, which resembled data from a known Kepler planet candidate. Single exomoons with a 10 percent moon-to-planet mass ratio, like to Pluto-Charon binary, can be detectable in the archival data of the Kepler primary mission. Multi-exomoon systems, however, require either larger telescopes or brighter target stars. Complementary detection methods invoking a moon's own photometric transit or its orbital sampling effect can be used for validation or falsification. A combination of TESS, CHEOPS, and PLATO data would offer a compelling opportunity for an exomoon discovery around a bright star.

  10. Salient in space, salient in time: Fixation probability predicts fixation duration during natural scene viewing.

    PubMed

    Einhäuser, Wolfgang; Nuthmann, Antje

    2016-09-01

    During natural scene viewing, humans typically attend and fixate selected locations for about 200-400 ms. Two variables characterize such "overt" attention: the probability of a location being fixated, and the fixation's duration. Both variables have been widely researched, but little is known about their relation. We use a two-step approach to investigate the relation between fixation probability and duration. In the first step, we use a large corpus of fixation data. We demonstrate that fixation probability (empirical salience) predicts fixation duration across different observers and tasks. Linear mixed-effects modeling shows that this relation is explained neither by joint dependencies on simple image features (luminance, contrast, edge density) nor by spatial biases (central bias). In the second step, we experimentally manipulate some of these features. We find that fixation probability from the corpus data still predicts fixation duration for this new set of experimental data. This holds even if stimuli are deprived of low-level images features, as long as higher level scene structure remains intact. Together, this shows a robust relation between fixation duration and probability, which does not depend on simple image features. Moreover, the study exemplifies the combination of empirical research on a large corpus of data with targeted experimental manipulations. PMID:27627736

  11. Effects of movement distance, duration, velocity, and type on action prediction in 12-month-olds.

    PubMed

    Daum, Moritz M; Gampe, Anja; Wronski, Caroline; Attig, Manja

    2016-05-01

    The goal of the present study was to test the influence of the spatial and temporal dynamics of observed manual actions on infants' action prediction. Twelve-month-old infants were presented with reach-and-transport actions performed by a human agent. Movement distance, duration, and - resulting from the two - movement velocity were systematically varied. Action prediction was measured via the latency of gaze arrival at target in relation to agent's hand. The results showed a general effect of all parameters on the infants' perception of goal-directed actions: Infants were more likely to predict the action goal the longer the movement distance was, the longer the movement duration was, and the slower the movement velocity was. In addition, they were more likely to predict the goal of a reaching than a transport action. The present findings extent previous findings by showing that infants are not only sensitive to differences in distances, durations, and velocities at early age but that these factors have a strong impact on the prediction of the goal of observed actions.

  12. Helicopter Rotor Noise Prediction: Background, Current Status, and Future Direction

    NASA Technical Reports Server (NTRS)

    Brentner, Kenneth S.

    1997-01-01

    Helicopter noise prediction is increasingly important. The purpose of this viewgraph presentation is to: 1) Put into perspective the recent progress; 2) Outline current prediction capabilities; 3) Forecast direction of future prediction research; 4) Identify rotorcraft noise prediction needs. The presentation includes an historical perspective, a description of governing equations, and the current status of source noise prediction.

  13. Predictability Effects on Durations of Content and Function Words in Conversational English

    SciTech Connect

    Bell, Alan; Brenier, Jason; Gregory, Michelle L.; girand, cynthia; Jurafsky, Daniel

    2009-01-01

    Content and function word duration are affected differently by their frequency and predictability. Regression analyses of conversational speech show that content words are shorter when they are more frequent, but function words are not. Repeated content words are shorter, but function words are not. Furthermore, function words have shorter pronunciations, after controlling for frequency and predictability. both content and function words are strongly affected by predictability from the word following them, and only very frequent function words show sensitivity to predictability from the preceding word. The results support the view that content and function words are accessed by different production mechanisms. We argue that words’ form differences due to frequency or repetition stem from their faster or slower lexical access, mediated by a general mechanism that coordinates the pace of higher-level planning and the execution of the articulatory plan.

  14. Modelling snow cover duration improves predictions of functional and taxonomic diversity for alpine plant communities

    PubMed Central

    Carlson, Bradley Z.; Choler, Philippe; Renaud, Julien; Dedieu, Jean-Pierre; Thuiller, Wilfried

    2015-01-01

    Background and Aims Quantifying relationships between snow cover duration and plant community properties remains an important challenge in alpine ecology. This study develops a method to estimate spatial variation in energy availability in the context of a topographically complex, high-elevation watershed, which was used to test the explanatory power of environmental gradients both with and without snow cover in relation to taxonomic and functional plant diversity. Methods Snow cover in the French Alps was mapped at 15-m resolution using Landsat imagery for five recent years, and a generalized additive model (GAM) was fitted for each year linking snow to time and topography. Predicted snow cover maps were combined with air temperature and solar radiation data at daily resolution, summed for each year and averaged across years. Equivalent growing season energy gradients were also estimated without accounting for snow cover duration. Relationships were tested between environmental gradients and diversity metrics measured for 100 plots, including species richness, community-weighted mean traits, functional diversity and hyperspectral estimates of canopy chlorophyll content. Key Results Accounting for snow cover in environmental variables consistently led to improved predictive power as well as more ecologically meaningful characterizations of plant diversity. Model parameters differed significantly when fitted with and without snow cover. Filtering solar radiation with snow as compared without led to an average gain in R2 of 0·26 and reversed slope direction to more intuitive relationships for several diversity metrics. Conclusions The results show that in alpine environments high-resolution data on snow cover duration are pivotal for capturing the spatial heterogeneity of both taxonomic and functional diversity. The use of climate variables without consideration of snow cover can lead to erroneous predictions of plant diversity. The results further indicate that

  15. Hematuria duration does not predict kidney function at 1 year in ANCA-associated glomerulonephritis

    PubMed Central

    Chen, Teresa K.; Murakami, Christine; Manno, Rebecca L.; Geetha, Duvuru

    2015-01-01

    Objectives Hematuria is considered a marker of active renal disease in ANCA-associated glomerulonephritis (ANCA-GN) with induction immunosuppression often continued until hematuria has resolved. We aim to determine whether longer hematuria duration is associated with lower estimated glomerular filtration rate (eGFR) at 1 year. Methods We conducted a retrospective study of 55 patients with biopsy-proven ANCA-GN. Linear regression models were constructed to determine predictors of eGFR at 1 year. The primary exposure was hematuria (>5 rbc/hpf) duration, defined as <90 days vs. ≥90 days following renal biopsy. Covariates included age, gender, ANCA type, baseline eGFR, and baseline proteinuria. Results Mean age at diagnosis was 58 years (53% male, 80% Caucasian, 38% PR3-ANCA, and 45% MPO-ANCA). At baseline, all patients had hematuria, 95% had proteinuria, and mean serum creatinine was 3.1 [standard deviation (SD) = 2.3] mg/dL. Overall, 93% were treated with steroids in combination with either cyclophosphamide or rituximab. Mean hematuria duration was 92 (SD = 77) days with 34 (62%) patients having hematuria resolution within 90 days. Older age and lower baseline eGFR were associated with lower eGFR at 1 year (p = 0.03 and p < 0.001, respectively). Hematuria resolution (<90 days vs. ≥90 days) was not predictive of eGFR at 1 year (p = 0.93). Conclusions In ANCA-GN, hematuria duration does not predict eGFR at 1 year. Our findings provide support that among individuals who are otherwise considered to be in clinical remission, the persistence of hematuria should not delay transition from induction to maintenance immunosuppression. PMID:24775913

  16. Vividness of the future self predicts delinquency.

    PubMed

    van Gelder, Jean-Louis; Hershfield, Hal E; Nordgren, Loran F

    2013-06-01

    The tendency to live in the here and now, and the failure to think through the delayed consequences of behavior, is one of the strongest individual-level correlates of delinquency. We tested the hypothesis that this correlation results from a limited ability to imagine one's self in the future, which leads to opting for immediate gratification. Strengthening the vividness of the future self should therefore reduce involvement in delinquency. We tested and found support for this hypothesis in two studies. In Study 1, compared with participants in a control condition, those who wrote a letter to their future self were less inclined to make delinquent choices. In Study 2, participants who interacted with a realistic digital version of their future, age-progressed self in a virtual environment were less likely than control participants to cheat on a subsequent task.

  17. Predicting Future Reading Attainment from the WPPSI.

    ERIC Educational Resources Information Center

    Yule, William; Rigley, Leslie V.

    1982-01-01

    Findings suggest that modestly good predictions can be made between IQ as measured by the Wechsler intelligence scales for children at age five and one-half and scores on group reading tests administered at ages seven and eight years. (FL)

  18. Comparing flow duration curve and rainfall-runoff modelling for predicting daily runoff in ungauged catchments

    NASA Astrophysics Data System (ADS)

    Zhang, Yongqiang; Vaze, Jai; Chiew, Francis H. S.; Li, Ming

    2015-06-01

    Predicting daily runoff time series in ungauged catchments is both important and challenging. For the last few decades, the rainfall-runoff (RR) modelling approach has been the method of choice. There have been very few studies reported in literature which attempt to use flow duration curve (FDC) to predict daily runoff time series. This study comprehensively compares the two approaches using an extensive dataset (228 catchments) for a large region of south-eastern Australia and provides guidelines for choosing the suitable method. For each approach we used the nearest neighbour method and two weightings - a 5-donor simple mathematical average (SA) and a 5-donor inverse-distance weighting (5-IDW) - to predict daily runoff time series. The results show that 5-IDW was noticeably better than a single donor to predict daily runoff time series, especially for the FDC approach. The RR modelling approach calibrated against daily runoff outperformed the FDC approach for predicting high flows. The FDC approach was better at predicting medium to low flows in traditional calibration against the Nash-Sutcliffe-Efficiency or Root Mean Square Error, but when calibrated against a low flow objective function, both the FDC and rainfall-runoff models performed equally well in simulating the low flows. These results indicate that both methods can be further improved to simulate daily hydrographs describing the range of flow metrics in ungauged catchments. Further studies should be carried out for improving the accuracy of predicted FDC in ungauged catchments, including improving the FDC model structure and parameter fitting.

  19. Forest tree seedlings may suffer from predicted future winters

    NASA Astrophysics Data System (ADS)

    Domisch, Timo; Repo, Tapani; Martz, Françoise; Rautio, Pasi

    2016-04-01

    Future climate scenarios predict increased precipitation and air temperatures, particularly at high latitudes, and especially so during winter, spring and autumn. However, soil temperatures are more difficult to predict, since they depend strongly on the insulating snow cover. Warm periods during winter can lead to thaw-freeze cycles and flooding, which again can result in the formation of ice layers, affecting soil properties, soil gas concentrations and the survival of tree seedlings. We conducted two laboratory experiments of 20 weeks duration each, simulating winter, spring and early summer, and imposed Scots pine (Pinus sylvestris L.) or downy birch (Betula pubescens Ehrh.) seedlings to four different winter scenarios: (1) ambient snow cover, (2) compressed snow and ice encasement, (3) frozen flood and (4) no snow. We estimated the stress that the seedlings experienced by means of gas exchange, chlorophyll fluorescence and determining above- and belowground biomass and carbohydrate contents, as well as measuring soil oxygen and carbon dioxide concentrations. The seedlings in the snow and compressed snow treatments survived until the end of the experiments, although only those covered with an ambient snow cover showed normal height growth and typical carbohydrate contents. The seedlings in the other treatments showed symptoms of dieback already during early spring and had almost completely died at the end of the experiment. Our results suggest the crucial significance of the protective snow cover, and that a missing soil cover or soil hypoxia and anoxia during winter can be lethal for seedlings, and that respiratory losses and winter desiccation of aboveground organs can further lead to the death of tree seedlings.

  20. Predicting the Future at Yucca Mountain

    SciTech Connect

    J. R. Wilson

    1999-07-01

    This paper summarizes a climate-prediction model funded by the DOE for the Yucca Mountain nuclear waste repository. Several articles in the open literature attest to the effects of the Global Ocean Conveyor upon paleoclimate, specifically entrance and exit from the ice age. The data shows that these millennial-scale effects are duplicated on the microscale of years to decades. This work also identifies how man may have influenced the Conveyor, affecting global cooling and warming for 2,000 years.

  1. The UT 7/8 February 2013 Sila-Nunam Mutual Event and Future Predictions

    NASA Technical Reports Server (NTRS)

    Benecchi, S. D.; Noll, K. S.; Thirouin, A.; Ryan, E.; Grundy, W. M.; Verbiscer, A.; Doressoundiram, A.; Hestroffer, D.; Beaton, R.; Rabinowitz, D.; Chanover, N.

    2013-01-01

    A superior mutual event of the Kuiper Belt binary system (79360) Sila-Nunam was observed over 15.47 h on UT 7/8 February 2013 by a coordinated effort at four different telescope facilities; it started approximately 1.5 h earlier than anticipated, the duration was approximately 9.5 h (about 10% longer than predicted), and was slightly less deep than predicted. It is the first full event observed for a comparably sized binary Kuiper Belt object. We provide predictions for future events refined by this and other partial mutual event observations obtained since the mutual event season began.

  2. Predicting onset and duration of airborne allergenic pollen season in the United States

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Bielory, Leonard; Cai, Ting; Mi, Zhongyuan; Georgopoulos, Panos

    2015-02-01

    Allergenic pollen is one of the main triggers of Allergic Airway Disease (AAD) affecting 5%-30% of the population in industrialized countries. A modeling framework has been developed using correlation and collinearity analyses, simulated annealing, and stepwise regression based on nationwide observations of airborne pollen counts and climatic factors to predict the onsets and durations of allergenic pollen seasons of representative trees, weeds and grass in the contiguous United States. Main factors considered are monthly, seasonal and annual mean temperatures and accumulative precipitations, latitude, elevation, Growing Degree Day (GDD), Frost Free Day (FFD), Start Date (SD) and Season Length (SL) in the previous year. The estimated mean SD and SL for birch (Betula), oak (Quercus), ragweed (Ambrosia), mugwort (Artemisia) and grass (Poaceae) pollen season in 1994-2010 are mostly within 0-6 days of the corresponding observations for the majority of the National Allergy Bureau (NAB) monitoring stations across the contiguous US. The simulated spatially resolved maps for onset and duration of allergenic pollen season in the contiguous US are consistent with the long term observations.

  3. Predicting Onset and Duration of Airborne Allergenic Pollen Season in the United States

    PubMed Central

    Zhang, Yong; Bielory, Leonard; Cai, Ting; Mi, Zhongyuan; Georgopoulos, Panos

    2014-01-01

    Allergenic pollen is one of the main triggers of Allergic Airway Disease (AAD) affecting 5% to 30% of the population in industrialized countries. A modeling framework has been developed using correlation and collinearity analyses, simulated annealing, and stepwise regression based on nationwide observations of airborne pollen counts and climatic factors to predict the onsets and durations of allergenic pollen seasons of representative trees, weeds and grass in the contiguous United States. Main factors considered are monthly, seasonal and annual mean temperatures and accumulative precipitations, latitude, elevation, Growing Degree Day (GDD), Frost Free Day (FFD), Start Date (SD) and Season Length (SL) in the previous year. The estimated mean SD and SL for birch (Betula), oak (Quercus), ragweed (Ambrosia), mugwort (Artemisia) and grass (Poaceae) pollen season in 1994–2010 are mostly within 0 to 6 days of the corresponding observations for the majority of the National Allergy Bureau (NAB) monitoring stations across the contiguous US. The simulated spatially resolved maps for onset and duration of allergenic pollen season in the contiguous US are consistent with the long term observations. PMID:25620875

  4. Predicting UV sky for future UV missions

    NASA Astrophysics Data System (ADS)

    Safonova, M.; Mohan, R.; Sreejith, A. G.; Murthy, Jayant

    2013-02-01

    Software simulators are now widely used in all areas of science, especially in application to astronomical missions: from instrument design to mission planning, and to data interpretation. We present a simulator to model the diffuse ultraviolet sky, where the different contributors are separately calculated and added together to produce a sky image of the size specified by the instrument requirements. Each of the contributors to the background, instrumental dark current, airglow, zodiacal light and diffuse Galactic light, depends on different factors. Airglow is dependent on the time of day; zodiacal light depends on the time of year, angle from the Sun and from the ecliptic; diffuse UV emission depends on the line of sight. To provide a full description of the sky along any line of sight, we have also added stars. The UV background light can dominate in many areas of the sky and severely limit viewing directions due to overbrightness. The simulator, available as a downloadable package and as a web-based tool, can be applied to preparation of real space missions and instruments. For demonstration, we present the example use for the two near-future UV missions: UVIT instrument on the Indian Astrosat mission and a new proposed wide-field (∼1000 square degrees) transient explorer satellite.

  5. Predicting future discoveries from current scientific literature.

    PubMed

    Petrič, Ingrid; Cestnik, Bojan

    2014-01-01

    Knowledge discovery in biomedicine is a time-consuming process starting from the basic research, through preclinical testing, towards possible clinical applications. Crossing of conceptual boundaries is often needed for groundbreaking biomedical research that generates highly inventive discoveries. We demonstrate the ability of a creative literature mining method to advance valuable new discoveries based on rare ideas from existing literature. When emerging ideas from scientific literature are put together as fragments of knowledge in a systematic way, they may lead to original, sometimes surprising, research findings. If enough scientific evidence is already published for the association of such findings, they can be considered as scientific hypotheses. In this chapter, we describe a method for the computer-aided generation of such hypotheses based on the existing scientific literature. Our literature-based discovery of NF-kappaB with its possible connections to autism was recently approved by scientific community, which confirms the ability of our literature mining methodology to accelerate future discoveries based on rare ideas from existing literature. PMID:24788267

  6. Predicting Future Suicide Attempts Among Adolescent and Emerging Adult Psychiatric Emergency Patients.

    PubMed

    Horwitz, Adam G; Czyz, Ewa K; King, Cheryl A

    2015-01-01

    The purpose of this study was to longitudinally examine specific characteristics of suicidal ideation in combination with histories of suicide attempts and non-suicidal self-injury (NSSI) to best evaluate risk for a future attempt among high-risk adolescents and emerging adults. Participants in this retrospective medical record review study were 473 (53% female; 69% Caucasian) consecutive patients, ages 15 to 24 years (M=19.4 years) who presented for psychiatric emergency services during a 9-month period. These patients' medical records, including a clinician-administered Columbia-Suicide Severity Rating Scale, were coded at the index visit and at future visits occurring within the next 18 months. Logistic regression models were used to predict suicide attempts during this period. Socioeconomic status, suicidal ideation severity (i.e., intent, method), suicidal ideation intensity (i.e., frequency, controllability), a lifetime history of suicide attempt, and a lifetime history of NSSI were significant independent predictors of a future suicide attempt. Suicidal ideation added incremental validity to the prediction of future suicide attempts above and beyond the influence of a past suicide attempt, whereas a lifetime history of NSSI did not. Sex moderated the relationship between the duration of suicidal thoughts and future attempts (predictive for male patients but not female). Results suggest value in incorporating both past behaviors and current thoughts into suicide risk formulation. Furthermore, suicidal ideation duration warrants additional examination as a potential critical factor for screening assessments evaluating suicide risk among high-risk samples, particularly for male patients.

  7. Development of Response Spectral Ground Motion Prediction Equations from Empirical Models for Fourier Spectra and Duration of Ground Motion

    NASA Astrophysics Data System (ADS)

    Bora, S. S.; Scherbaum, F.; Kuehn, N. M.; Stafford, P.; Edwards, B.

    2014-12-01

    In a probabilistic seismic hazard assessment (PSHA) framework, it still remains a challenge to adjust ground motion prediction equations (GMPEs) for application in different seismological environments. In this context, this study presents a complete framework for the development of a response spectral GMPE easily adjustable to different seismological conditions; and which does not suffer from the technical problems associated with the adjustment in response spectral domain. Essentially, the approach consists of an empirical FAS (Fourier Amplitude Spectrum) model and a duration model for ground motion which are combined within the random vibration theory (RVT) framework to obtain the full response spectral ordinates. Additionally, FAS corresponding to individual acceleration records are extrapolated beyond the frequency range defined by the data using the stochastic FAS model, obtained by inversion as described in Edwards & Faeh, (2013). To that end, an empirical model for a duration, which is tuned to optimize the fit between RVT based and observed response spectral ordinate, at each oscillator frequency is derived. Although, the main motive of the presented approach was to address the adjustability issues of response spectral GMPEs; comparison, of median predicted response spectra with the other regional models indicate that presented approach can also be used as a stand-alone model. Besides that, a significantly lower aleatory variability (σ<0.5 in log units) in comparison to other regional models, at shorter periods brands it to a potentially viable alternative to the classical regression (on response spectral ordinates) based GMPEs for seismic hazard studies in the near future. The dataset used for the presented analysis is a subset of the recently compiled database RESORCE-2012 across Europe, Middle East and the Mediterranean region.

  8. Using Human Capital Planning to Predict Future Talent Needs

    ERIC Educational Resources Information Center

    Ruse, Donald; Jansen, Karen

    2008-01-01

    Human capital planning is an important tool in predicting future talent needs and sustaining organizational excellence over the long term. This article examines the concept of human capital planning and outlines how institutions can use HCP to identify the type and number of talent needed both now and in the future, recognize and prioritize talent…

  9. Pre-operative function, motivation and duration of symptoms predict sporting participation after total hip replacement.

    PubMed

    Ollivier, M; Frey, S; Parratte, S; Flecher, X; Argenson, J N

    2014-08-01

    There is little in the literature on the level of participation in sports which patients undertake after total hip replacement (THR). Our aims in this study were to determine first, the level of sporting activity, second, the predictive factors for returning to sporting activity, and third, the correlation between participation in sports and satisfaction after THR. We retrospectively identified 815 patients who had undergone THR between 1995 and 2005. All were asked to complete a self-administered questionnaire regarding their sporting activity. A total of 571 patients (71%) met the inclusion criteria and completed the evaluation. At a mean follow-up of 9.8 years (sd 2.9), 366 patients (64%) returned to sporting activity as defined by a University of California at Los Angeles (UCLA) score of > 5. The main reasons that patients had for refraining from sports were fear of dislocation (65; 31.6%), avoiding wear (52; 25.4%), and the recommendation of the surgeon (34; 16.6%). There was a significant relationship between higher post-operative participation in sport in those patients with a higher pre-operative Harris hip score (HHS) (p = 0.0074), motivation to participate in sporting activities (p = 0.00022) and a shorter duration of symptoms (p = 0.0034). Finally, there was a correlation between age (p = 0.00013), UCLA score (p = 0.012) and pre-operative HHS (p = 0.00091) and satisfaction. In conclusion, we found that most patients participate in sporting activity after THR, regardless of the advice of their surgeon, and that there is a correlation between the level of participation and pre-operative function, motivation, duration of symptoms and post-operative satisfaction.

  10. Predicting the duration of antiviral treatment needed to suppress plasma HIV-1 RNA

    PubMed Central

    Rizzardi, G. Paolo; De Boer, Rob J.; Hoover, Shelley; Tambussi, Giuseppe; Chapuis, Aude; Halkic, Nermin; Bart, Pierre-Alexandre; Miller, Veronica; Staszewski, Schlomo; Notermans, Daan W.; Perrin, Luc; Fox, Cecil H.; Lange, Joep M.A.; Lazzarin, Adriano; Pantaleo, Giuseppe

    2000-01-01

    Effective therapeutic interventions and clinical care of adults infected with HIV-1 require an understanding of factors that influence time of response to antiretroviral therapy. We have studied a cohort of 118 HIV-1–infected subjects naive to antiretroviral therapy and have correlated the time of response to treatment with a series of virological and immunological measures, including levels of viral load in blood and lymph node, percent of CD4 T cells in lymph nodes, and CD4 T-cell count in blood at study entry. Suppression of viremia below the limit of detection, 50 HIV-1 RNA copies/mL of plasma, served as a benchmark for a successful virological response. We employed these correlations to predict the length of treatment required to attain a virological response in each patient. Baseline plasma viremia emerged as the factor most tightly correlated with the duration of treatment required, allowing us to estimate the required time as a function of this one measure. PMID:10727446

  11. Helicopter noise prediction - The current status and future direction

    NASA Technical Reports Server (NTRS)

    Brentner, Kenneth S.; Farassat, F.

    1992-01-01

    The paper takes stock of the progress, assesses the current prediction capabilities, and forecasts the direction of future helicopter noise prediction research. The acoustic analogy approach, specifically, theories based on the Ffowcs Williams-Hawkings equations, are the most widely used for deterministic noise sources. Thickness and loading noise can be routinely predicted given good plane motion and blade loading inputs. Blade-vortex interaction noise can also be predicted well with measured input data, but prediction of airloads with the high spatial and temporal resolution required for BVI is still difficult. Current semiempirical broadband noise predictions are useful and reasonably accurate. New prediction methods based on a Kirchhoff formula and direct computation appear to be very promising, but are currently very demanding computationally.

  12. Lowering social security's duration-of-marriage requirement: distributional effects for future female retirees.

    PubMed

    Tamborini, Christopher R; Whitman, Kevin

    2010-01-01

    A number of alternatives to Social Security's auxiliary benefit system have been proposed in the context of changes in American family and work patterns. This article focuses on one modification therein-lowering the 10-year duration-of-marriage requirement for divorced spouses. Using a powerful microsimulation model (MINT), we examine the distributional effects of extending spouse and survivor benefit eligibility to 5- and 7-year marriages ending in divorce among female retirees in 2030, a population largely comprised of baby boomers. Results show that the options would increase benefits for a small share of female retirees, around 2 to 4%, and would not affect the vast majority of low-income divorced older women. However, of those affected, the options would substantially increase benefits and lower incidence of poverty and near poor. Low-income divorced retirees with marriages between 5 and 9 years in length and a deceased former spouse face the greatest potential gains.

  13. [Sleep duration and metabolism].

    PubMed

    Viot-Blanc, V

    2015-12-01

    Sleep duration has gradually diminished during the last decade while obesity and type 2 diabetes have become epidemics. Experimental sleep curtailment leads to increased appetite, hormonal disturbances and, especially, insulin resistance. Numerous epidemiological studies have therefore examined whether habitual short sleep is associated with obesity and type 2 diabetes. A large majority of cross-sectional studies have confirmed an association between short, and also long sleep duration and obesity in adults more than in the elderly. Short sleep is strongly associated to obesity in children and adolescents. Prospective studies, including studies in children, are not conclusive with regard to the effect of short sleep on the incidence of obesity. Both short and long sleep durations are associated with diabetes, but only short sleep duration seems predictive of future diabetes. Insomnia seems to be a strong contributor to short sleep duration but the association of insomnia with obesity is not clear. Insomnia is associated with type 2 diabetes and also predictive of a higher incidence. Other studies have shown that short sleep duration and insomnia are associated with, and sometime predictive of, other components of the metabolic syndrome, especially hypertension and the risk of coronary disease. The treatment of short sleep duration and insomnia with regard to their effects on the metabolic syndrome merits further study. PMID:26603959

  14. Predicting the future trend of popularity by network diffusion.

    PubMed

    Zeng, An; Yeung, Chi Ho

    2016-06-01

    Conventional approaches to predict the future popularity of products are mainly based on extrapolation of their current popularity, which overlooks the hidden microscopic information under the macroscopic trend. Here, we study diffusion processes on consumer-product and citation networks to exploit the hidden microscopic information and connect consumers to their potential purchase, publications to their potential citers to obtain a prediction for future item popularity. By using the data obtained from the largest online retailers including Netflix and Amazon as well as the American Physical Society citation networks, we found that our method outperforms the accurate short-term extrapolation and identifies the potentially popular items long before they become prominent.

  15. Predicting the future trend of popularity by network diffusion

    NASA Astrophysics Data System (ADS)

    Zeng, An; Yeung, Chi Ho

    2016-06-01

    Conventional approaches to predict the future popularity of products are mainly based on extrapolation of their current popularity, which overlooks the hidden microscopic information under the macroscopic trend. Here, we study diffusion processes on consumer-product and citation networks to exploit the hidden microscopic information and connect consumers to their potential purchase, publications to their potential citers to obtain a prediction for future item popularity. By using the data obtained from the largest online retailers including Netflix and Amazon as well as the American Physical Society citation networks, we found that our method outperforms the accurate short-term extrapolation and identifies the potentially popular items long before they become prominent.

  16. Cerebellar sequencing: a trick for predicting the future.

    PubMed

    Leggio, M; Molinari, M

    2015-02-01

    "Looking into the future" well depicts one of the most significant concepts in cognitive neuroscience: the brain is constantly predicting future events. Such directedness toward the future has been recognized to be relevant to and beneficial for many aspects of information processing in humans, such as perception, motor and cognitive control, decision-making, theory of mind, and other cognitive processes. Because one of the most adaptive characteristics of the brain is to correct errors, the ability to look into the future represents the best chance to avoid repeating errors. Within the structures that constitute the "predictive brain," the cerebellum has been proposed to have a central function, based on its ability to generate internal models. We suggested that "sequence detection" is the operational mode of the cerebellum in predictive processing. According to this hypothesis, the cerebellum detects and simulates repetitive patterns of temporally or spatially structured events and generates internal models that can be used to make predictions. Consequently, we demonstrate that the cerebellum recognizes serial events as a sequence, detects a sequence violation, and successfully reconstructs the correct sequence of events. Thus, we hypothesize that pattern detection and prediction and processing of anticipation are cerebellum-specific functions within the brain and that the sequence detection hypothesis links the multifarious impairments that are reported in patients with cerebellar damage. We propose that this cerebellar operational mode can advance our understanding of the pathophysiological mechanisms in various clinical conditions, such as schizophrenia and autism.

  17. Cerebellar sequencing: a trick for predicting the future.

    PubMed

    Leggio, M; Molinari, M

    2015-02-01

    "Looking into the future" well depicts one of the most significant concepts in cognitive neuroscience: the brain is constantly predicting future events. Such directedness toward the future has been recognized to be relevant to and beneficial for many aspects of information processing in humans, such as perception, motor and cognitive control, decision-making, theory of mind, and other cognitive processes. Because one of the most adaptive characteristics of the brain is to correct errors, the ability to look into the future represents the best chance to avoid repeating errors. Within the structures that constitute the "predictive brain," the cerebellum has been proposed to have a central function, based on its ability to generate internal models. We suggested that "sequence detection" is the operational mode of the cerebellum in predictive processing. According to this hypothesis, the cerebellum detects and simulates repetitive patterns of temporally or spatially structured events and generates internal models that can be used to make predictions. Consequently, we demonstrate that the cerebellum recognizes serial events as a sequence, detects a sequence violation, and successfully reconstructs the correct sequence of events. Thus, we hypothesize that pattern detection and prediction and processing of anticipation are cerebellum-specific functions within the brain and that the sequence detection hypothesis links the multifarious impairments that are reported in patients with cerebellar damage. We propose that this cerebellar operational mode can advance our understanding of the pathophysiological mechanisms in various clinical conditions, such as schizophrenia and autism. PMID:25331541

  18. Underestimating the Duration of Future Events: Memory Incorrectly Used or Memory Bias?

    ERIC Educational Resources Information Center

    Roy, Michael M.; Christenfeld, Nicholas J. S.; McKenzie, Craig R. M.

    2005-01-01

    People frequently underestimate how long it will take them to complete a task. The prevailing view is that during the prediction process, people incorrectly use their memories of how long similar tasks have taken in the past because they take an overly optimistic outlook. A variety of evidence is reviewed in this article that points to a…

  19. The Future of Seizure Prediction and Intervention: Closing the loop

    PubMed Central

    Nagaraj, Vivek; Lee, Steven; Krook-Magnuson, Esther; Soltesz, Ivan; Benquet, Pascal; Irazoqui, Pedro; Netoff, Theoden

    2014-01-01

    The ultimate goal of epilepsy therapies is to provide seizure control for all patients while eliminating side effects. Improved specificity of intervention through on-demand approaches may overcome many of the limitations of current intervention strategies. This article reviews progress in seizure prediction and detection, potential new therapies to provide improved specificity, and devices to achieve these ends. Specifically, we discuss 1) potential signal modalities and algorithms for seizure detection and prediction, 2) closed-loop intervention approaches, and 3) hardware for implementing these algorithms and interventions. Seizure prediction and therapies maximize efficacy while minimizing side-effects through improved specificity may represent the future of epilepsy treatments. PMID:26035672

  20. Future of seizure prediction and intervention: closing the loop.

    PubMed

    Nagaraj, Vivek; Lee, Steven T; Krook-Magnuson, Esther; Soltesz, Ivan; Benquet, Pascal; Irazoqui, Pedro P; Netoff, Theoden I

    2015-06-01

    The ultimate goal of epilepsy therapies is to provide seizure control for all patients while eliminating side effects. Improved specificity of intervention through on-demand approaches may overcome many of the limitations of current intervention strategies. This article reviews the progress in seizure prediction and detection, potential new therapies to provide improved specificity, and devices to achieve these ends. Specifically, we discuss (1) potential signal modalities and algorithms for seizure detection and prediction, (2) closed-loop intervention approaches, and (3) hardware for implementing these algorithms and interventions. Seizure prediction and therapies maximize efficacy, whereas minimizing side effects through improved specificity may represent the future of epilepsy treatments. PMID:26035672

  1. Speech Technology II: Future Software and Hardware Predictions.

    ERIC Educational Resources Information Center

    Wetzel, Keith

    1991-01-01

    This continuation of an earlier article that described computer-based speech recognition products focuses on future hardware and software predictions. Highlights include effects that speech input/output could have on teaching language arts in elementary and secondary schools; changes in thought processing factors; use by the physically…

  2. Space Shuttle Launch Probability Analysis: Understanding History so We Can Predict the Future

    NASA Technical Reports Server (NTRS)

    Cates, Grant R.

    2014-01-01

    The Space Shuttle was launched 135 times and nearly half of those launches required 2 or more launch attempts. The Space Shuttle launch countdown historical data of 250 launch attempts provides a wealth of data that is important to analyze for strictly historical purposes as well as for use in predicting future launch vehicle launch countdown performance. This paper provides a statistical analysis of all Space Shuttle launch attempts including the empirical probability of launch on any given attempt and the cumulative probability of launch relative to the planned launch date at the start of the initial launch countdown. This information can be used to facilitate launch probability predictions of future launch vehicles such as NASA's Space Shuttle derived SLS. Understanding the cumulative probability of launch is particularly important for missions to Mars since the launch opportunities are relatively short in duration and one must wait for 2 years before a subsequent attempt can begin.

  3. Duration of oral contraceptive use predicts women's initial and subsequent subjective responses to sexual stimuli.

    PubMed

    Renfro, Kaytlin J; Rupp, Heather; Wallen, Kim

    2015-09-01

    Recent work suggests that a woman's hormonal state when first exposed to visual sexual stimuli (VSS) modulates her initial and subsequent responses to VSS. The present study investigated whether women's initial hormonal state was related to their subjective ratings of VSS, and whether this relationship differed with VSS content. We reanalyzed previously collected data from 14 naturally cycling (NC) women and 14 women taking oral contraceptives (OCs), who subjectively rated VSS at three hormonal time-points. NC women's ratings of 216 unique sexual images were collected during the menstrual, periovulatory, and luteal phases of their menstrual cycles, and OC women's ratings were collected at comparable time-points across their pill-cycles. NC women's initial hormonal state was not related to their ratings of VSS. OC women's initial hormonal state predicted their ratings of VSS with minimal contextual information and of images depicting female-to-male oral sex. Specifically, women who entered the study in the third week of their pill-cycle (OC-3 women) rated such images as less attractive at all testing sessions than did all other women. OC-3 women were also the only women to rate decontextualized VSS as unattractive at all testing sessions. These results corroborate previous studies in which women's initial hormonal state was found to predict subsequent interest in sexual stimuli. Future work, with larger samples, should more directly investigate whether OC-3 women's negative assessment of specific types of VSS reflects a reaction to the laboratory environment or a broader mechanism, wherein OC women's sexual interests decrease late in their pill-cycle.

  4. Saving for the future self: neural measures of future self-continuity predict temporal discounting.

    PubMed

    Ersner-Hershfield, Hal; Wimmer, G Elliott; Knutson, Brian

    2009-03-01

    Despite increases in the human life span, people have not increased their rate of saving. In a phenomenon known as 'temporal discounting', people value immediate gains over future gains. According to a future self-continuity hypothesis, individuals perceive and treat the future self differently from the present self, and so might fail to save for their future. Neuroimaging offers a novel means of testing this hypothesis, since previous research indicates that self- vs other-judgments elicit activation in the rostral anterior cingulate (rACC). Using event-related functional magnetic resonance imaging, we predicted and found not only individual differences in rACC activation while rating the current vs future self, but also that individual differences in current vs future self activation predicted temporal discounting assessed behaviorally a week after scanning. In addition to supporting the future self-continuity hypothesis, these findings hold implications for significant financial decisions, such as choosing whether to save for the future or spend in the present.

  5. Predicting the future trend of popularity by network diffusion.

    PubMed

    Zeng, An; Yeung, Chi Ho

    2016-06-01

    Conventional approaches to predict the future popularity of products are mainly based on extrapolation of their current popularity, which overlooks the hidden microscopic information under the macroscopic trend. Here, we study diffusion processes on consumer-product and citation networks to exploit the hidden microscopic information and connect consumers to their potential purchase, publications to their potential citers to obtain a prediction for future item popularity. By using the data obtained from the largest online retailers including Netflix and Amazon as well as the American Physical Society citation networks, we found that our method outperforms the accurate short-term extrapolation and identifies the potentially popular items long before they become prominent. PMID:27368767

  6. Predicting future uncertainty constraints on global warming projections.

    PubMed

    Shiogama, H; Stone, D; Emori, S; Takahashi, K; Mori, S; Maeda, A; Ishizaki, Y; Allen, M R

    2016-01-11

    Projections of global mean temperature changes (ΔT) in the future are associated with intrinsic uncertainties. Much climate policy discourse has been guided by "current knowledge" of the ΔTs uncertainty, ignoring the likely future reductions of the uncertainty, because a mechanism for predicting these reductions is lacking. By using simulations of Global Climate Models from the Coupled Model Intercomparison Project Phase 5 ensemble as pseudo past and future observations, we estimate how fast and in what way the uncertainties of ΔT can decline when the current observation network of surface air temperature is maintained. At least in the world of pseudo observations under the Representative Concentration Pathways (RCPs), we can drastically reduce more than 50% of the ΔTs uncertainty in the 2040 s by 2029, and more than 60% of the ΔTs uncertainty in the 2090 s by 2049. Under the highest forcing scenario of RCPs, we can predict the true timing of passing the 2 °C (3 °C) warming threshold 20 (30) years in advance with errors less than 10 years. These results demonstrate potential for sequential decision-making strategies to take advantage of future progress in understanding of anthropogenic climate change.

  7. Predicting future uncertainty constraints on global warming projections

    NASA Astrophysics Data System (ADS)

    Shiogama, H.; Stone, D.; Emori, S.; Takahashi, K.; Mori, S.; Maeda, A.; Ishizaki, Y.; Allen, M. R.

    2016-01-01

    Projections of global mean temperature changes (ΔT) in the future are associated with intrinsic uncertainties. Much climate policy discourse has been guided by “current knowledge” of the ΔTs uncertainty, ignoring the likely future reductions of the uncertainty, because a mechanism for predicting these reductions is lacking. By using simulations of Global Climate Models from the Coupled Model Intercomparison Project Phase 5 ensemble as pseudo past and future observations, we estimate how fast and in what way the uncertainties of ΔT can decline when the current observation network of surface air temperature is maintained. At least in the world of pseudo observations under the Representative Concentration Pathways (RCPs), we can drastically reduce more than 50% of the ΔTs uncertainty in the 2040 s by 2029, and more than 60% of the ΔTs uncertainty in the 2090 s by 2049. Under the highest forcing scenario of RCPs, we can predict the true timing of passing the 2 °C (3 °C) warming threshold 20 (30) years in advance with errors less than 10 years. These results demonstrate potential for sequential decision-making strategies to take advantage of future progress in understanding of anthropogenic climate change.

  8. Predicting future uncertainty constraints on global warming projections.

    PubMed

    Shiogama, H; Stone, D; Emori, S; Takahashi, K; Mori, S; Maeda, A; Ishizaki, Y; Allen, M R

    2016-01-01

    Projections of global mean temperature changes (ΔT) in the future are associated with intrinsic uncertainties. Much climate policy discourse has been guided by "current knowledge" of the ΔTs uncertainty, ignoring the likely future reductions of the uncertainty, because a mechanism for predicting these reductions is lacking. By using simulations of Global Climate Models from the Coupled Model Intercomparison Project Phase 5 ensemble as pseudo past and future observations, we estimate how fast and in what way the uncertainties of ΔT can decline when the current observation network of surface air temperature is maintained. At least in the world of pseudo observations under the Representative Concentration Pathways (RCPs), we can drastically reduce more than 50% of the ΔTs uncertainty in the 2040 s by 2029, and more than 60% of the ΔTs uncertainty in the 2090 s by 2049. Under the highest forcing scenario of RCPs, we can predict the true timing of passing the 2 °C (3 °C) warming threshold 20 (30) years in advance with errors less than 10 years. These results demonstrate potential for sequential decision-making strategies to take advantage of future progress in understanding of anthropogenic climate change. PMID:26750491

  9. Advancing the Oxygen Generation Assembly Design to Increase Reliability and Reduce Costs for a Future Long Duration Mission

    NASA Technical Reports Server (NTRS)

    Takada, Kevin C.; Ghariani, Ahmed E.; Van Keuren,

    2015-01-01

    The state-of-the-art Oxygen Generation Assembly (OGA) has been reliably producing breathing oxygen for the crew aboard the International Space Station (ISS) for over eight years. Lessons learned from operating the ISS OGA have led to proposing incremental improvements to advance the baseline design for use in a future long duration mission. These improvements are intended to reduce system weight, crew maintenance time and resupply mass from Earth while increasing reliability. The proposed improvements include replacing the cell stack membrane material, deleting the nitrogen purge equipment, replacing the hydrogen sensors, deleting the wastewater interface, replacing the hydrogen dome and redesigning the cell stack power supply. The development work to date will be discussed and forward work will be outlined. Additionally, a redesigned system architecture will be proposed.

  10. Antarctic Exploration Parallels for Future Human Planetary Exploration: The Role and Utility of Long Range, Long Duration Traverses

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J. (Editor); Voels, Stephen A. (Editor)

    2012-01-01

    Topics covered include: Antarctic Exploration Parallels for Future Human Planetary Exploration: Science Operations Lessons Learned, Planning, and Equipment Capabilities for Long Range, Long Duration Traverses; Parallels Between Antarctic Travel in 1950 and Planetary Travel in 2050 (to Accompany Notes on "The Norwegian British-Swedish Antarctic Expedition 1949-52"); My IGY in Antarctica; Short Trips and a Traverse; Geologic Traverse Planning for Apollo Missions; Desert Research and Technology Studies (DRATS) Traverse Planning; Science Traverses in the Canadian High Arctic; NOR-USA Scientific Traverse of East Antarctica: Science and Logistics on a Three-Month Expedition Across Antarctica's Farthest Frontier; A Notional Example of Understanding Human Exploration Traverses on the Lunar Surface; and The Princess Elisabeth Station.

  11. Evolving networks-Using past structure to predict the future

    NASA Astrophysics Data System (ADS)

    Shang, Ke-ke; Yan, Wei-sheng; Small, Michael

    2016-08-01

    Many previous studies on link prediction have focused on using common neighbors to predict the existence of links between pairs of nodes. More broadly, research into the structural properties of evolving temporal networks and temporal link prediction methods have recently attracted increasing attention. In this study, for the first time, we examine the use of links between a pair of nodes to predict their common neighbors and analyze the relationship between the weight and the structure in static networks, evolving networks, and in the corresponding randomized networks. We propose both new unweighted and weighted prediction methods and use six kinds of real networks to test our algorithms. In unweighted networks, we find that if a pair of nodes connect to each other in the current network, they will have a higher probability to connect common nodes both in the current and the future networks-and the probability will decrease with the increase of the number of neighbors. Furthermore, we find that the original networks have their particular structure and statistical characteristics which benefit link prediction. In weighted networks, the prediction algorithm performance of networks which are dominated by human factors decrease with the decrease of weight and are in general better in static networks. Furthermore, we find that geographical position and link weight both have significant influence on the transport network. Moreover, the evolving financial network has the lowest predictability. In addition, we find that the structure of non-social networks has more robustness than social networks. The structure of engineering networks has both best predictability and also robustness.

  12. Predicting Flow Breakdown Probability and Duration in Stochastic Network Models: Impact on Travel Time Reliability

    SciTech Connect

    Dong, Jing; Mahmassani, Hani S.

    2011-01-01

    This paper proposes a methodology to produce random flow breakdown endogenously in a mesoscopic operational model, by capturing breakdown probability and duration. Based on previous research findings that probability of flow breakdown can be represented as a function of flow rate and the duration can be characterized by a hazard model. By generating random flow breakdown at various levels and capturing the traffic characteristics at the onset of the breakdown, the stochastic network simulation model provides a tool for evaluating travel time variability. The proposed model can be used for (1) providing reliability related traveler information; (2) designing ITS (intelligent transportation systems) strategies to improve reliability; and (3) evaluating reliability-related performance measures of the system.

  13. Differences in Motor Imagery Time when Predicting Task Duration in Alpine Skiers and Equestrian Riders

    ERIC Educational Resources Information Center

    Louis, Magali; Collet, Christian; Champely, Stephane; Guillot, Aymeric

    2012-01-01

    Athletes' ability to use motor imagery (MI) to predict the speed at which they could perform a motor sequence has received little attention. In this study, 21 alpine skiers and 16 equestrian riders performed MI based on a prediction of actual performance time (a) after the course inspection, (b) before the start, and (c) after the actual…

  14. NAQ's 40th Birthday Nursing: Predictions From the Past; Predictions for the Future, Parts I & II.

    PubMed

    McClure, Margaret L; Batcheller, Joyce

    2016-01-01

    The following two articles relate to Nursing's past and future, described through a series of predictions made by one of Nursing's great leaders Margaret L. McClure (Maggie McClure). It is reprinted from NAQ Fall 2000, Volume 25, Issue 1. The second article, by another great leader, Joyce Batcheller, DNP, RN, NEA-BC, FAAN, is a follow up on those predictions, reflecting on Nursing today and tommorow. PMID:27584886

  15. NAQ's 40th Birthday Nursing: Predictions From the Past; Predictions for the Future, Parts I & II.

    PubMed

    McClure, Margaret L; Batcheller, Joyce

    2016-01-01

    The following two articles relate to Nursing's past and future, described through a series of predictions made by one of Nursing's great leaders Margaret L. McClure (Maggie McClure). It is reprinted from NAQ Fall 2000, Volume 25, Issue 1. The second article, by another great leader, Joyce Batcheller, DNP, RN, NEA-BC, FAAN, is a follow up on those predictions, reflecting on Nursing today and tommorow.

  16. Pelagic larval duration predicts extinction risk in a freshwater fish clade.

    PubMed

    Douglas, Morgan; Keck, Benjamin P; Ruble, Crystal; Petty, Melissa; Shute, J R; Rakes, Patrick; Hulsey, C Darrin

    2013-01-01

    Pelagic larval duration (PLD) can influence evolutionary processes ranging from dispersal to extinction in aquatic organisms. Using estimates of PLD obtained from species of North American darters (Percidae: Etheostomatinae), we demonstrate that this freshwater fish clade exhibits surprising variation in PLD. Comparative analyses provide some evidence that higher stream gradients favour the evolution of shorter PLD. Additionally, similar to patterns in the marine fossil record in which lower PLD is associated with greater extinction probability, we found a reduced PLD in darter lineages was evolutionarily associated with extinction risk. Understanding the causes and consequences of PLD length could lead to better management and conservation of organisms in our increasingly imperiled aquatic environments.

  17. Characteristics of suicidal ideation that predict the transition to future suicide attempts in adolescents

    PubMed Central

    Miranda, Regina; Ortin, Ana; Scott, Michelle; Shaffer, David

    2014-01-01

    Background The present study sought to examine characteristics of suicidal ideation (SI) that predict a future suicide attempt (SA), beyond psychiatric diagnosis and previous SA history. Methods Participants were 506 adolescents (307 female) who completed the Columbia Suicide Screen (CSS) and selected modules from the Diagnostic Interview Schedule for Children (C-DISC 2.3) as part of a 2-stage high-school screening and who were followed up 4-6 years later to assess for a SA since baseline. At baseline, participants who endorsed SI on the CSS responded to four questions regarding currency, frequency, seriousness, and duration of their SI. A subsample of 122 adolescents that endorsed SI at baseline also completed a detailed interview about their most recent SI. Results Thinking about suicide often (OR = 3.5, 95% CI = 1.7-7.2), seriously (OR = 3.1, 95% CI = 1.4-6.7), and for a long time (OR = 2.3, 95% CI = 1.1-5.2) were associated with a future SA, adjusting for sex, the presence of a mood, anxiety, and substance use diagnosis, and baseline SA history. However, only SI frequency was significantly associated with higher odds of a future SA (OR = 3.6, 95% CI = 1.4-9.1) when also adjusting for currency, seriousness, and duration. Among ideators interviewed further about their most recent SI, ideating 1 hour or more (vs. less than 1 hour) was associated with a future SA (OR = 3.6, 95% CI = 1.0-12.7), adjusting for sex, depressive symptoms, previous SA history, and other baseline SI characteristics, and it was also associated with making a future SA earlier. Conclusions Assessments of SI in adolescents should take special care to inquire about frequency of their SI, along with length of their most recent SI. PMID:24827817

  18. Predicting current and future global distributions of whale sharks.

    PubMed

    Sequeira, Ana M M; Mellin, Camille; Fordham, Damien A; Meekan, Mark G; Bradshaw, Corey J A

    2014-03-01

    The Vulnerable (IUCN) whale shark spans warm and temperate waters around the globe. However, their present-day and possible future global distribution has never been predicted. Using 30 years (1980-2010) of whale shark observations recorded by tuna purse-seiners fishing in the Atlantic, Indian and Pacific Oceans, we applied generalized linear mixed-effects models to test the hypothesis that similar environmental covariates predict whale shark occurrence in all major ocean basins. We derived global predictors from satellite images for chlorophyll a and sea surface temperature, and bathymetric charts for depth, bottom slope and distance to shore. We randomly generated pseudo-absences within the area covered by the fisheries, and included fishing effort as an offset to account for potential sampling bias. We predicted sea surface temperatures for 2070 using an ensemble of five global circulation models under a no climate-policy reference scenario, and used these to predict changes in distribution. The full model (excluding standard deviation of sea surface temperature) had the highest relative statistical support (wAICc  = 0.99) and explained ca. 60% of the deviance. Habitat suitability was mainly driven by spatial variation in bathymetry and sea surface temperature among oceans, although these effects differed slightly among oceans. Predicted changes in sea surface temperature resulted in a slight shift of suitable habitat towards the poles in both the Atlantic and Indian Oceans (ca. 5°N and 3-8°S, respectively) accompanied by an overall range contraction (2.5-7.4% and 1.1-6.3%, respectively). Predicted changes in the Pacific Ocean were small. Assuming that whale shark environmental requirements and human disturbances (i.e. no stabilization of greenhouse gas emissions) remain similar, we show that warming sea surface temperatures might promote a net retreat from current aggregation areas and an overall redistribution of the species. PMID:23907987

  19. Predicting current and future global distributions of whale sharks.

    PubMed

    Sequeira, Ana M M; Mellin, Camille; Fordham, Damien A; Meekan, Mark G; Bradshaw, Corey J A

    2014-03-01

    The Vulnerable (IUCN) whale shark spans warm and temperate waters around the globe. However, their present-day and possible future global distribution has never been predicted. Using 30 years (1980-2010) of whale shark observations recorded by tuna purse-seiners fishing in the Atlantic, Indian and Pacific Oceans, we applied generalized linear mixed-effects models to test the hypothesis that similar environmental covariates predict whale shark occurrence in all major ocean basins. We derived global predictors from satellite images for chlorophyll a and sea surface temperature, and bathymetric charts for depth, bottom slope and distance to shore. We randomly generated pseudo-absences within the area covered by the fisheries, and included fishing effort as an offset to account for potential sampling bias. We predicted sea surface temperatures for 2070 using an ensemble of five global circulation models under a no climate-policy reference scenario, and used these to predict changes in distribution. The full model (excluding standard deviation of sea surface temperature) had the highest relative statistical support (wAICc  = 0.99) and explained ca. 60% of the deviance. Habitat suitability was mainly driven by spatial variation in bathymetry and sea surface temperature among oceans, although these effects differed slightly among oceans. Predicted changes in sea surface temperature resulted in a slight shift of suitable habitat towards the poles in both the Atlantic and Indian Oceans (ca. 5°N and 3-8°S, respectively) accompanied by an overall range contraction (2.5-7.4% and 1.1-6.3%, respectively). Predicted changes in the Pacific Ocean were small. Assuming that whale shark environmental requirements and human disturbances (i.e. no stabilization of greenhouse gas emissions) remain similar, we show that warming sea surface temperatures might promote a net retreat from current aggregation areas and an overall redistribution of the species.

  20. The closed spiracle phase of discontinuous gas exchange predicts diving duration in the grasshopper Paracinema tricolor.

    PubMed

    Gudowska, Agnieszka; Boardman, Leigh; Terblanche, John S

    2016-08-15

    The discontinuous gas exchange (DGE) pattern of respiration shown by many arthropods includes periods of spiracle closure (C-phase) and is largely thought to serve as a physiological adaptation to restrict water loss in terrestrial environments. One major challenge to this hypothesis is to explain the presence of DGE in insects in moist environments. Here, we show a novel ecological correlate of the C-phase, namely, diving behaviour in mesic Paracinema tricolor grasshoppers. Notably, maximal dive duration is positively correlated with C-phase length, even after accounting for mass scaling and absolute metabolic rate. Here, we propose that an additional advantage of DGE may be conferred by allowing the tracheal system to act as a sealed underwater oxygen reservoir. Spiracle closure may facilitate underwater submersion, which, in turn, may contribute to predator avoidance, the survival of accidental immersion or periodic flooding and the exploitation of underwater resources. PMID:27296045

  1. Tryptophan Predicts the Risk for Future Type 2 Diabetes.

    PubMed

    Chen, Tianlu; Zheng, Xiaojiao; Ma, Xiaojing; Bao, Yuqian; Ni, Yan; Hu, Cheng; Rajani, Cynthia; Huang, Fengjie; Zhao, Aihua; Jia, Weiping; Jia, Wei

    2016-01-01

    Recently, 5 amino acids were identified and verified as important metabolites highly associated with type 2 diabetes (T2D) development. This report aims to assess the association of tryptophan with the development of T2D and to evaluate its performance with existing amino acid markers. A total of 213 participants selected from a ten-year longitudinal Shanghai Diabetes Study (SHDS) were examined in two ways: 1) 51 subjects who developed diabetes and 162 individuals who remained metabolically healthy in 10 years; 2) the same 51 future diabetes and 23 strictly matched ones selected from the 162 healthy individuals. Baseline fasting serum tryptophan concentrations were quantitatively measured using ultra-performance liquid chromatography triple quadruple mass spectrometry. First, serum tryptophan level was found significantly higher in future T2D and was positively and independently associated with diabetes onset risk. Patients with higher tryptophan level tended to present higher degree of insulin resistance and secretion, triglyceride and blood pressure. Second, the prediction potential of tryptophan is non-inferior to the 5 existing amino acids. The predictive performance of the combined score improved after taking tryptophan into account. Our findings unveiled the potential of tryptophan as a new marker associated with diabetes risk in Chinese populations. The addition of tryptophan provided complementary value to the existing amino acid predictors. PMID:27598004

  2. Tryptophan Predicts the Risk for Future Type 2 Diabetes

    PubMed Central

    Chen, Tianlu; Zheng, Xiaojiao; Ma, Xiaojing; Bao, Yuqian; Ni, Yan; Hu, Cheng; Rajani, Cynthia; Huang, Fengjie; Zhao, Aihua; Jia, Weiping; Jia, Wei

    2016-01-01

    Recently, 5 amino acids were identified and verified as important metabolites highly associated with type 2 diabetes (T2D) development. This report aims to assess the association of tryptophan with the development of T2D and to evaluate its performance with existing amino acid markers. A total of 213 participants selected from a ten-year longitudinal Shanghai Diabetes Study (SHDS) were examined in two ways: 1) 51 subjects who developed diabetes and 162 individuals who remained metabolically healthy in 10 years; 2) the same 51 future diabetes and 23 strictly matched ones selected from the 162 healthy individuals. Baseline fasting serum tryptophan concentrations were quantitatively measured using ultra-performance liquid chromatography triple quadruple mass spectrometry. First, serum tryptophan level was found significantly higher in future T2D and was positively and independently associated with diabetes onset risk. Patients with higher tryptophan level tended to present higher degree of insulin resistance and secretion, triglyceride and blood pressure. Second, the prediction potential of tryptophan is non-inferior to the 5 existing amino acids. The predictive performance of the combined score improved after taking tryptophan into account. Our findings unveiled the potential of tryptophan as a new marker associated with diabetes risk in Chinese populations. The addition of tryptophan provided complementary value to the existing amino acid predictors. PMID:27598004

  3. Using unknown knowns to predict coastal response to future climate

    NASA Astrophysics Data System (ADS)

    Plant, N. G.; Lentz, E. E.; Gutierrez, B.; Thieler, E. R.; Passeri, D. L.

    2015-12-01

    The coastal zone, including its bathymetry, topography, ecosystem, and communities, depends on and responds to a wide array of natural and engineered processes associated with climate variability. Climate affects the frequency of coastal storms, which are only resolved probabilistically for future conditions, as well as setting the pace for persistent processes (e.g., waves driving daily alongshore transport; beach nourishment). It is not clear whether persistent processes or extreme events contribute most to the integrated evolution of the coast. Yet, observations of coastal change record the integration of persistent and extreme processes. When these observations span a large spatial domain and/or temporal range they may reflect a wide range of forcing and boundary conditions that include different levels of sea-level rise, storminess, sediment input, engineering activities, and elevation distributions. We have been using a statistical approach to characterize the interrelationships between oceanographic, ecological, and geomorphic processes—including the role played by human activities via coastal protection, beach nourishment, and other forms of coastal management. The statistical approach, Bayesian networks, incorporates existing information to establish underlying prior expectations for the distributions and inter-correlations of variables most relevant to coastal geomorphic evolution. This underlying information can then be used to make predictions. We demonstrate several examples of the utility of this approach using data as constraints and then propagating the constraints and uncertainty to make predictions of unobserved variables that include changes in shorelines, dunes, and overwash deposits. We draw on data from the Gulf and Atlantic Coasts of the United States, resolving time scales of years to a century. The examples include both short-term storm impacts and long-term evolution associated with sea-level rise. We show that the Bayesian network can

  4. Identifying Future Scientists: Predicting Persistence into Research Training

    PubMed Central

    2007-01-01

    This study used semistructured interviews and grounded theory to look for characteristics among college undergraduates that predicted persistence into Ph.D. and M.D./Ph.D. training. Participants in the summer undergraduate and postbaccalaureate research programs at the Mayo Clinic College of Medicine were interviewed at the start, near the end, and 8–12 months after their research experience. Of more than 200 themes considered, five characteristics predicted those students who went on to Ph.D. and M.D./Ph.D. training or to M.D. training intending to do research: 1) Curiosity to discover the unknown, 2) Enjoyment of problem solving, 3) A high level of independence, 4) The desire to help others indirectly through research, and 5) A flexible, minimally structured approach to the future. Web-based surveys with different students confirmed the high frequency of curiosity and/or problem solving as the primary reason students planned research careers. No evidence was found for differences among men, women, and minority and nonminority students. Although these results seem logical compared with successful scientists, their constancy, predictive capabilities, and sharp contrast to students who chose clinical medicine were striking. These results provide important insights into selection and motivation of potential biomedical scientists and the early experiences that will motivate them toward research careers. PMID:18056303

  5. Short Sleep Duration Is Associated with Risk of Future Diabetes but Not Cardiovascular Disease: a Prospective Study and Meta-Analysis

    PubMed Central

    Holliday, Elizabeth G.; Magee, Christopher A.; Kritharides, Leonard; Banks, Emily; Attia, John

    2013-01-01

    Epidemiologic studies have observed association between short sleep duration and both cardiovascular disease (CVD) and type 2 diabetes, although these results may reflect confounding by pre-existing illness. This study aimed to determine whether short sleep duration predicts future CVD or type 2 diabetes after accounting for baseline health. Baseline data for 241,949 adults were collected through the 45 and Up Study, an Australian prospective cohort study, with health outcomes identified via electronic database linkage. Cox proportional hazards models were used to estimate hazard ratios (HR) and 95% confidence intervals. Compared to 7h sleep, <6h sleep was associated with incident CVD in participants reporting ill-health at baseline (HR=1·38 [95% CI: 1·12-1·70]), but not after excluding those with baseline illness and adjusting for baseline health status (1·03 [0·88-1·21]). In contrast, the risk of incident type 2 diabetes was significantly increased in those with <6h versus 7h sleep, even after excluding those with baseline illness and adjusting for baseline health (HR=1·29 [1·08-1·53], P=0.004). This suggests the association is valid and does not simply reflect confounding or reverse causation. Meta-analysis of ten prospective studies including 447,124 participants also confirmed an association between short sleep and incident diabetes (1·33 [1·20-1·48]). Obtaining less than 6 hours of sleep each night (compared to 7 hours) may increase type 2 diabetes risk by approximately 30%. PMID:24282622

  6. Should we believe model predictions of future climate change? (Invited)

    NASA Astrophysics Data System (ADS)

    Knutti, R.

    2009-12-01

    As computers get faster and our understanding of the climate system improves, climate models to predict the future are getting more complex by including more and more processes, and they are run at higher and higher resolution to resolve more of the small scale processes. As a result, some of the simulated features and structures, e.g. ocean eddies or tropical cyclones look surprisingly real. But are these deceptive? A pattern can look perfectly real but be in the wrong place. So can the current global models really provide the kind of information on local scales and on the quantities (e.g. extreme events) that the decision maker would need to know to invest for example in adaptation? A closer look indicates that evaluating skill of climate models and quantifying uncertainties in predictions is very difficult. This presentation shows that while models are improving in simulating the climate features we observe (e.g. the present day mean state, or the El Nino Southern Oscillation), the spread from multiple models in predicting future changes is often not decreasing. The main problem is that (unlike with weather forecasts for example) we cannot evaluate the model on a prediction (for example for the year 2100) and we have to use the present, or past changes as metrics of skills. But there are infinite ways of testing a model, and many metrics used to test models do not clearly relate to the prediction. Therefore there is little agreement in the community on metrics to separate ‘good’ and ‘bad’ models, and there is a concern that model development, evaluation and posterior weighting or ranking of models are all using the same datasets. While models are continuously improving in representing what we believe to be the key processes, many models also share ideas, parameterizations or even pieces of model code. The current models can therefore not be considered independent. Robustness of a model simulated result is often interpreted as increasing the confidence

  7. Duration of Diabetes Predicts Aortic Pulse Wave Velocity and Vascular Events in Alström Syndrome

    PubMed Central

    Smith, Jamie; Carey, Catherine; Barrett, Timothy; Campbell, Fiona; Maffei, Pietro; Marshall, Jan D.; Paisey, Christopher; Steeds, Richard P.; Edwards, Nicola C.; Bunce, Susan; Geberhiwot, Tarekegn

    2015-01-01

    Context: Alström syndrome is characterized by increased risk of cardiovascular disease from childhood. Objective: To explore the association between risk factors for cardiovascular disease, aortic pulse wave velocity, and vascular events in Alström syndrome. Design: Cross-sectional analyses with 5-year follow-up. Setting: The UK NHS nationally commissioned specialist clinics for Alström syndrome. Patients: Thirty-one Alström patients undertook vascular risk assessment, cardiac studies, and aortic pulse wave velocity measurement. Subsequent clinical outcomes were recorded. Interventions: Insulin resistance was treated with lifestyle intervention and metformin, and diabetes with the addition of glitazones, glucagon-like peptide 1 agonists, and/or insulin. Thyroid and T deficiencies were corrected. Dyslipidemia was treated with statins and nicotinic acid derivatives. Cardiomyopathy was treated with standard therapy as required. Main Outcome Measures: The associations of age, gender, and risk factors for cardiovascular disease with aortic pulse wave velocity were assessed and correlated with the effects of reduction in left ventricular function. Vascular events were monitored for 5 years. Results: Aortic pulse wave velocity was positively associated with the duration of diabetes (P = .001) and inversely with left ventricular ejection fraction (P = .036). Five of the cohort with cardiovascular events had higher aortic pulse wave velocity (P = .0247), and all had long duration of diabetes. Conclusions: Duration of diabetes predicted aortic pulse wave velocity in Alström syndrome, which in turn predicted cardiovascular events. This offers hope of secondary prevention because type 2 diabetes can be delayed or reversed by lifestyle interventions. PMID:26066530

  8. Information-bearing acoustic change outperforms duration in predicting intelligibility of full-spectrum and noise-vocoded sentences.

    PubMed

    Stilp, Christian E

    2014-03-01

    Recent research has demonstrated a strong relationship between information-bearing acoustic changes in the speech signal and speech intelligibility. The availability of information-bearing acoustic changes reliably predicts intelligibility of full-spectrum [Stilp and Kluender (2010). Proc. Natl. Acad. Sci. U.S.A. 107(27), 12387-12392] and noise-vocoded sentences amid noise interruption [Stilp et al. (2013). J. Acoust. Soc. Am. 133(2), EL136-EL141]. However, other research reports that proportion of signal duration preserved also predicts intelligibility of noise-interrupted speech. These factors have only ever been investigated independently, obscuring whether one better explains speech perception. The present experiments manipulated both factors to answer this question. A broad range of sentence durations (160-480 ms) containing high or low information-bearing acoustic changes were replaced by speech-shaped noise in noise-vocoded (Experiment 1) and full-spectrum sentences (Experiment 2). Sentence intelligibility worsened with increasing noise replacement, but in both experiments, information-bearing acoustic change was a statistically superior predictor of performance. Perception relied more heavily on information-bearing acoustic changes in poorer listening conditions (in spectrally degraded sentences and amid increasing noise replacement). Highly linear relationships between measures of information and performance suggest that exploiting information-bearing acoustic change is a shared principle underlying perception of acoustically rich and degraded speech. Results demonstrate the explanatory power of information-theoretic approaches for speech perception.

  9. Self-Fitting Hearing Aids: Status Quo and Future Predictions.

    PubMed

    Keidser, Gitte; Convery, Elizabeth

    2016-04-12

    A self-contained, self-fitting hearing aid (SFHA) is a device that enables the user to perform both threshold measurements leading to a prescribed hearing aid setting and fine-tuning, without the need for audiological support or access to other equipment. The SFHA has been proposed as a potential solution to address unmet hearing health care in developing countries and remote locations in the developed world and is considered a means to lower cost and increase uptake of hearing aids in developed countries. This article reviews the status of the SFHA and the evidence for its feasibility and challenges and predicts where it is heading. Devices that can be considered partly or fully self-fitting without audiological support were identified in the direct-to-consumer market. None of these devices are considered self-contained as they require access to other hardware such as a proprietary interface, computer, smartphone, or tablet for manipulation. While there is evidence that self-administered fitting processes can provide valid and reliable results, their success relies on user-friendly device designs and interfaces and easy-to-interpret instructions. Until these issues have been sufficiently addressed, optional assistance with the self-fitting process and on-going use of SFHAs is recommended. Affordability and a sustainable delivery system remain additional challenges for the SFHA in developing countries. Future predictions include a growth in self-fitting products, with most future SFHAs consisting of earpieces that connect wirelessly with a smartphone and providers offering assistance through a telehealth infrastructure, and the integration of SFHAs into the traditional hearing health-care model.

  10. Surgery Duration Predicts Urinary Retention after Inguinal Herniorraphy: A Single Institution Review

    PubMed Central

    Hudak, Kevin E.; Frelich, Matthew J.; Rettenmaier, Chris R.; Xiang, Qun; Wallace, James R.; Kastenmeier, Andrew S.; Gould, Jon C.; Goldblatt, Matthew I.

    2016-01-01

    Background Inguinal hernia repair, laparoscopic or open, is one of the most frequently performed operations in general surgery. Postoperative urinary retention (POUR) can occur in 0.2–35% of patients after inguinal hernia repair. The primary objective of this study was to determine the incidence of POUR after inguinal hernia repair. As a secondary goal, we sought to determine if perioperative and patient factors predicted urinary retention. Methods This study is a retrospective review of patients who underwent inguinal hernia repair with synthetic mesh at the Medical College of Wisconsin from January 2007 to June 2012. Procedures were performed by four surgeons. Clinical information and perioperative outcomes were collected up to hospital discharge. Urinary retention was defined as need for urinary catheterization post-operatively. Results A total of 192 patients were included in the study (88 bilateral, 46%) and (104 unilateral, 54%). The majority of subjects (76%) underwent laparoscopic repair. The overall POUR rate was 13%, with 25 of 192 patients requiring a Foley catheter prior to discharge POUR was significantly associated with bilateral hernia repairs (p=0.04), BMI≥35kg/m2 (p=0.05) and longer operative times (p=0.03). Based on odds ratio estimates, for every 10-minute increase in operative time, an 11% increase in the odds of urinary retention is expected (OR 1.11, CI 1.004 – 1.223; p=0.04). For every 10-minute increase in operative time, an 11% increase in POUR is expected. Conclusions Bilateral hernia repairs, BMI ≥ 35kg/m2, and operative time are significant predictors of POUR. These factors are important to determine potential risk to patients and interventions such as strict fluid administration, use of catheters, and potential premedication. PMID:25612548

  11. Interglacial Durations

    NASA Astrophysics Data System (ADS)

    Mangili, Clara; McManus, Jerry F.; Raynaud, Dominique

    2014-05-01

    In the context of future global warming induced by human activities, it is essential to assess the role of natural climatic variations. Precise knowledge of the duration of past interglacial periods is fundamental to the understanding of the potential future evolution of the Holocene. Past ice age cycles provide a natural laboratory for exploring the progression and duration of interglacial climate. Palaeorecords from ice, land and oceans extend over the last 800 ka, revealing eight glacial-interglacial cycles, with a range of insolation and greenhouse gas influences. The interglacials display a correspondingly large variety of intensity and duration, thus providing an opportunity for major insights into the mechanisms involved in the behaviour of interglacial climates. A comparison of the duration of these interglacials, however, is often difficult, as the definition of an interglacial depends on the archive that is considered. Therefore, to compare interglacial length and climate conditions from different archives, a consistent definition of interglacial conditions is required, ideally one that is not bound to the method nor to the archive under consideration. Here we present a method to identify interglacials and to calculate their length by mean of a simple statistical approach. We based our method on ~ 400 ka windows of time to determine mean climatic conditions while allowing for the possibility of long term evolution of the climatic baseline. For our study of interglacials of the past 800 ka, we used two windows that largely align with the pre- (800-430 ka ago) and post- (430-0 ka ago) mid-Brunhes event (MBE), although the resulting conclusions are not sensitive to this particular division. We applied this method to the last 800 ka of a few palaeoclimate records: the deuterium ice core (EDC) record as a climatic proxy, the benthic δ18O stack (LR04) as a proxy for sea level/ice volume, ice core (Vostok, EDC) atmospheric CO2 and additional records. Although

  12. Ensemble predictions of future streamflow drought in Europe

    NASA Astrophysics Data System (ADS)

    Forzieri, Giovanni; Feyen, Luc; Rojas, Rodrigo

    2013-04-01

    Recent developments in climate modeling suggest that global warming and growing human water use are likely to favor conditions for the development of streamflow droughts in several parts of Europe by the end of this century. In this study, we quantify how future drought hazard in Europe may develop in view of these drivers by comparing low-flow predictions of the LISFLOOD hydrological model coupled to a water consumption module and driven by an ensemble of climate projections. This ensemble consists of 12 bias-corrected climate simulations conducted within the ENSEMBLES project, forced by the A1B emission scenario for the period 1961-2100. For time slices of 30 years, low-flow characteristics - quantified in terms of minimum flows, environmental flows and deficits - are derived from the simulated streamflow series and further analyzed using extreme value theory. Changes in extreme river conditions are then analyzed with respect to the 1961-1990 control period. Two main domains with opposite signal of change in drought characteristics can be identified in Europe, as well as a transition zone between them. Southern parts of Europe - from the Iberian to Balkan Peninsula- but also France, Belgium and British Isles are expected to be more prone to severe and persistent low-flow conditions. In contrast, the Scandinavia Peninsula and Northeast Europe show a robust decrease in future drought hazard. In a transition zone between these two regions, climate-induced changes are projected to be marginal. Water use under an A1B-consistent scenario will further aggravate drought conditions in the south as well as in the transition zone. In the regions with a clear pattern of change in streamflow drought, indices derived from the hydrological simulations for different climate experiments are highly consistent, whereas in the transition zone between North and South Europe the consistency in changes amongst the ensemble members is lower.

  13. Predicting Bone Mechanical State During Recovery After Long-Duration Skeletal Unloading Using QCT and Finite Element Modeling

    NASA Technical Reports Server (NTRS)

    Chang, Katarina L.; Pennline, James A.

    2013-01-01

    During long-duration missions at the International Space Station, astronauts experience weightlessness leading to skeletal unloading. Unloading causes a lack of a mechanical stimulus that triggers bone cellular units to remove mass from the skeleton. A mathematical system of the cellular dynamics predicts theoretical changes to volume fractions and ash fraction in response to temporal variations in skeletal loading. No current model uses image technology to gather information about a skeletal site s initial properties to calculate bone remodeling changes and then to compare predicted bone strengths with the initial strength. The goal of this study is to use quantitative computed tomography (QCT) in conjunction with a computational model of the bone remodeling process to establish initial bone properties to predict changes in bone mechanics during bone loss and recovery with finite element (FE) modeling. Input parameters for the remodeling model include bone volume fraction and ash fraction, which are both computed from the QCT images. A non-destructive approach to measure ash fraction is also derived. Voxel-based finite element models (FEM) created from QCTs provide initial evaluation of bone strength. Bone volume fraction and ash fraction outputs from the computational model predict changes to the elastic modulus of bone via a two-parameter equation. The modulus captures the effect of bone remodeling and functions as the key to evaluate of changes in strength. Application of this time-dependent modulus to FEMs and composite beam theory enables an assessment of bone mechanics during recovery. Prediction of bone strength is not only important for astronauts, but is also pertinent to millions of patients with osteoporosis and low bone density.

  14. Ensemble Streamflow Prediction in Korea: Past and Future 5 Years

    NASA Astrophysics Data System (ADS)

    Jeong, D.; Kim, Y.; Lee, J.

    2005-05-01

    forecast information: (1) the Monthly Industrial Meteorology Information Magazine (MIMIM) of the Korea Meteorological Administration (2) the Global Data Assimilation Prediction System (GDAPS), and (3) the US National Centers for Environmental Prediction (NCEP). Each of these forecasts is issued in a unique format: (1) MIMIM is a most-probable-event forecast, (2) GDAPS is a single series of deterministic forecasts, and (3) NCEP is an ensemble of deterministic forecasts. Other minor issues include how long the initial conditions influences the ESP accuracy, and how many ESP scenarios are needed to obtain the best accuracy. This presentation also addresses some future research that is needed for ESP in Korea.

  15. Predicting environmental risk: A road map for the future.

    PubMed

    Jager, Tjalling

    2016-01-01

    Frameworks for environmental risk assessment (ERA) focus on comparing results from separate exposure and effect assessments. Exposure assessment generally relies on mechanistic fate models, whereas the effects assessment is anchored in standard test protocols and descriptive statistics. This discrepancy prevents a useful link between these two pillars of ERA, and jeopardizes the realism and efficacy of the entire process. Similar to exposure assessment, effects assessment requires a mechanistic approach to translate the output of fate models into predictions for impacts on populations and food webs. The aim of this study was to discuss (1) the central importance of the individual level, (2) different strategies of dealing with biological complexity, and (3) the role that toxicokinetic-toxicodynamic (TKTD) models, energy budgets, and molecular biology play in a mechanistic revision of the ERA framework. Consequently, an outline for a risk assessment paradigm was developed that incorporates a mechanistic effects assessment in a consistent manner, and a "roadmap for the future." Such a roadmap may play a critical role to eventually arrive at a more scientific and efficient ERA process, and needs to be used to shape our long-term research agendas. PMID:27484139

  16. Modelling Monsoons: Understanding and Predicting Current and Future Behaviour

    SciTech Connect

    Turner, A; Sperber, K R; Slingo, J M; Meehl, G A; Mechoso, C R; Kimoto, M; Giannini, A

    2008-09-16

    including, but not limited to, the Mei-Yu/Baiu sudden onset and withdrawal, low-level jet orientation and variability, and orographic forced rainfall. Under anthropogenic climate change many competing factors complicate making robust projections of monsoon changes. Without aerosol effects, increased land-sea temperature contrast suggests strengthened monsoon circulation due to climate change. However, increased aerosol emissions will reflect more solar radiation back to space, which may temper or even reduce the strength of monsoon circulations compared to the present day. A more comprehensive assessment is needed of the impact of black carbon aerosols, which may modulate that of other anthropogenic greenhouse gases. Precipitation may behave independently from the circulation under warming conditions in which an increased atmospheric moisture loading, based purely on thermodynamic considerations, could result in increased monsoon rainfall under climate change. The challenge to improve model parameterizations and include more complex processes and feedbacks pushes computing resources to their limit, thus requiring continuous upgrades of computational infrastructure to ensure progress in understanding and predicting the current and future behavior of monsoons.

  17. Monolayer cultivation of osteoprogenitors shortens duration of the embryonic stem cell test while reliably predicting developmental osteotoxicity.

    PubMed

    zur Nieden, Nicole I; Davis, Lesley A; Rancourt, Derrick E

    2010-11-01

    Osteotoxic compounds administered during pregnancy can initiate skeletal congenital anomalies in the embryo. In vitro, developmental osteotoxicity of a compound can be predicted with the embryonic stem cell test (EST), the only in vitro embryotoxicity model identified to date that entirely abrogates the use of animals. Although the previously identified endpoint osteocalcin mRNA expression robustly predicts developmental osteotoxicity, it can only be assayed after 5 weeks of in vitro culture with existing embryoid body (EB)-based differentiation protocols. Therefore, the goal of this study was to characterize novel earlier endpoints of developmental osteotoxicity for the EST. The currently used EB-based differentiation protocol was modified so that a monolayer culture of pre-differentiated cells was inoculated. The expression profile of five bone-specific mRNAs, including osteocalcin, over the course of 30 differentiation days suggested an acceleration of pre-osteoblast specification in the monolayer over the EB-based protocol. Similarly, calcification was already visible after 14 days of culture in monolayer cultures. Employing image and absorption-based techniques to measure the degree of mineralization in these cells after compound treatment, the three compounds Penicillin G, 5-fluorouracil (5-FU) and all-trans retinoic acid (RA) were then tested after 14 days in monolayer cultures and compared to embryoid body-based differentiations at day 30. By modifying the culture the three test substances were classified correctly into non- or strong osteotoxic. Moreover, we were successful in shortening the assay duration from 30 to 14 days.

  18. Pre-attentive sensitivity to vowel duration reveals native phonology and predicts learning of second-language sounds.

    PubMed

    Chládková, Kateřina; Escudero, Paola; Lipski, Silvia C

    2013-09-01

    In some languages (e.g. Czech), changes in vowel duration affect word meaning, while in others (e.g. Spanish) they do not. Yet for other languages (e.g. Dutch), the linguistic role of vowel duration remains unclear. To reveal whether Dutch represents vowel length in its phonology, we compared auditory pre-attentive duration processing in native and non-native vowels across Dutch, Czech, and Spanish. Dutch duration sensitivity patterned with Czech but was larger than Spanish in the native vowel, while it was smaller than Czech and Spanish in the non-native vowel. An interpretation of these findings suggests that in Dutch, duration is used phonemically but it might be relevant for the identity of certain native vowels only. Furthermore, the finding that Spanish listeners are more sensitive to duration in non-native than in native vowels indicates that a lack of duration differences in one's native language could be beneficial for second-language learning.

  19. Calculating flux to predict future cave radon concentrations.

    PubMed

    Rowberry, Matt D; Martí, Xavi; Frontera, Carlos; Van De Wiel, Marco J; Briestenský, Miloš

    2016-06-01

    Cave radon concentration measurements reflect the outcome of a perpetual competition which pitches flux against ventilation and radioactive decay. The mass balance equations used to model changes in radon concentration through time routinely treat flux as a constant. This mathematical simplification is acceptable as a first order approximation despite the fact that it sidesteps an intrinsic geological problem: the majority of radon entering a cavity is exhaled as a result of advection along crustal discontinuities whose motions are inhomogeneous in both time and space. In this paper the dynamic nature of flux is investigated and the results are used to predict cave radon concentration for successive iterations. The first part of our numerical modelling procedure focuses on calculating cave air flow velocity while the second part isolates flux in a mass balance equation to simulate real time dependence among the variables. It is then possible to use this information to deliver an expression for computing cave radon concentration for successive iterations. The dynamic variables in the numerical model are represented by the outer temperature, the inner temperature, and the radon concentration while the static variables are represented by the radioactive decay constant and a range of parameters related to geometry of the cavity. Input data were recorded at Driny Cave in the Little Carpathians Mountains of western Slovakia. Here the cave passages have developed along splays of the NE-SW striking Smolenice Fault and a series of transverse faults striking NW-SE. Independent experimental observations of fault slip are provided by three permanently installed mechanical extensometers. Our numerical modelling has revealed four important flux anomalies between January 2010 and August 2011. Each of these flux anomalies was preceded by conspicuous fault slip anomalies. The mathematical procedure outlined in this paper will help to improve our understanding of radon migration

  20. The Future of Learning Technology: Some Tentative Predictions

    ERIC Educational Resources Information Center

    Rushby, Nick

    2013-01-01

    This paper is a snapshot of an evolving vision of what the future may hold for learning technology. It offers three personal visions of the future and raises many questions that need to be explored if learning technology is to realise its full potential.

  1. Sensor-derived physical activity parameters can predict future falls in people with dementia

    PubMed Central

    Schwenk, Michael; Hauer, Klaus; Zieschang, Tania; Englert, Stefan; Mohler, Jane; Najafi, Bijan

    2014-01-01

    Background There is a need for simple clinical tools that can objectively assess fall risk in people with dementia. Wearable sensors seem to have potential for fall prediction, however, there has been limited work performed in this important area. Objective To explore the validity of sensor-derived physical activity (PA) parameters for predicting future falls in people with dementia. To compare sensor-based fall risk assessment with conventional fall risk measures. Methods A cohort study of people with confirmed dementia discharged from a geriatric rehabilitation ward. PA was quantified using 24-hour motion-sensor monitoring at the beginning of the study. PA parameters (percentage of walking, standing, sitting, lying; duration of single walking, standing, and sitting bouts) were extracted using specific algorithms. Conventional assessment included performance-based tests (Timed-up-and-go test, Performance-Oriented-Mobility-Assessment, 5-chair stand) and questionnaires (cognition, ADL-status, fear of falling, depression, previous faller). Outcome measures were fallers (at least one fall in the 3-month follow-up period) versus non-fallers. Results Seventy-seven people were included in the study (age 81.8 ± 6.3; community dwelling 88%, institutionalized 12%). Surprisingly, fallers and non-fallers did not differ on any conventional assessment (p= 0.069–0.991), except for ‘previous faller’ (p= 0.006). Interestingly, several PA parameters discriminated between groups. The ‘walking bouts average duration’, ‘longest walking bout duration’ and ‘walking bouts duration variability’ were lower in fallers, compared to non-fallers (p= 0.008–0.027). The ‘standing bouts average duration’ was higher in fallers (p= 0.050). Two variables, ‘walking bouts average duration’ [odds ratio (OR) 0.79, p= 0.012] and ‘previous faller’ [OR 4.44, p= 0.007] were identified as independent predictors for falls. The OR for a ‘walking bouts average duration’ of

  2. Anticipating the future: Automatic prediction failures in schizophrenia

    PubMed Central

    Ford, Judith M.; Mathalon, Daniel H.

    2011-01-01

    People with schizophrenia often misperceive sensations and misinterpret experiences, perhaps contributing to psychotic symptoms. These misperceptions and misinterpretations might result from an inability to make valid predictions about expected sensations and experiences. Healthy normal people take advantage of neural mechanisms that allow them to make predictions unconsciously, facilitating processing of expected sensations and distinguishing the expected from the unexpected. In this paper, we focus on two types of automatic, unconscious mechanisms that allow us to predict our perceptions. The first involves predictions made via innate mechanisms basic to all species in the animal kingdom—the efference copy and corollary discharge mechanisms. They accompany our voluntary movements and allow us to suppress sensations resulting from our actions. We study this during talking, and show that auditory cortical response to the speech sounds during talking is reduced compared to when they are played back. This suppression is reduced in schizophrenia, suggesting a failure to predict the sensations resulting from talking. The second mechanism involves implicitly learning what to expect from the current context of events. We study this by observing the brain's response to an unexpected repetition of an event, when a change would have been predicted. That patients have a reduced response suggests they failed to predict that it was time for a change. Both types of predictions should happen automatically and effortlessly, allowing for economic processing of expected events and orientation to unexpected ones. These prediction failures characterize the diagnosis of schizophrenia rather than reflecting specific symptoms. PMID:21959054

  3. Anticipating Their Future: Adolescent Values for the Future Predict Adult Behaviors

    ERIC Educational Resources Information Center

    Finlay, Andrea K.; Wray-Lake, Laura; Warren, Michael; Maggs, Jennifer

    2015-01-01

    Adolescent future values--beliefs about what will matter to them in the future--may shape their adult behavior. Utilizing a national longitudinal British sample, this study examined whether adolescent future values in six domains (i.e., family responsibility, full-time job, personal responsibility, autonomy, civic responsibility, and hedonistic…

  4. Constructing positive futures: modeling the relationship between adolescents' hopeful future expectations and intentional self regulation in predicting positive youth development.

    PubMed

    Schmid, Kristina L; Phelps, Erin; Lerner, Richard M

    2011-12-01

    Intentional self regulation and hopeful expectations for the future are theoretically-related constructs shown to lead to positive youth development (PYD). However, the nature of their relationship over time has not been tested. Therefore, this study explored the associations between hopeful future expectations and intentional self regulation in predicting positive developmental outcomes. Participants were in Grades 7, 8, and 9 of the 4-H Study of PYD (N = 1311), a longitudinal study involving U.S. adolescents. A cross-lagged panel analysis using Structural Equation Modeling assessed the relations among hopeful future expectations and intentional self regulation across time in predicting PYD. Results indicated that earlier hopeful expectations for the future may be influential for later intentional self-regulation abilities, although both constructs were strong predictors of PYD in middle adolescence. We discuss implications for research and practice of hopeful expectations in adolescents' constructions of their positive futures.

  5. Predicting Future Trends in Adult Fitness Using the Delphi Approach.

    ERIC Educational Resources Information Center

    Murray, William F.; Jarman, Boyd O.

    1987-01-01

    This study examines the future of adult fitness from the perspective of experts. The Delphi Technique was used as a measurement tool. Findings revealed that the experts most relied on increased awareness of health and fitness among the elderly as a significant predictor variable. (Author/CB)

  6. Visions: Reflections on the Past, Predictions of the Future

    ERIC Educational Resources Information Center

    Connection: The Journal of the New England Board of Higher Education, 2005

    2005-01-01

    To mark New England Board of Higher Education's (NEBHE) 50th anniversary year, "Connection" invited a small group of visionary commentators to submit short "statements" on the future of New England's economic and civic development, tomorrow's technologies and the changing shape of higher education. This article includes the following "statements":…

  7. Rolling Bearing Life Prediction-Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Zaretsky, E V; Poplawski, J. V.; Miller, C. R.

    2000-01-01

    Comparisons were made between the life prediction formulas of Lundberg and Palmgren, Ioannides and Harris, and Zaretsky and full-scale ball and roller bearing life data. The effect of Weibull slope on bearing life prediction was determined. Life factors are proposed to adjust the respective life formulas to the normalized statistical life distribution of each bearing type. The Lundberg-Palmgren method resulted in the most conservative life predictions compared to Ioannides and Harris, and Zaretsky methods which produced statistically similar results. Roller profile can have significant effects on bearing life prediction results. Roller edge loading can reduce life by as much as 98 percent. The resultant predicted life not only depends on the life equation used but on the Weibull slope assumed, the least variation occurring with the Zaretsky equation. The load-life exponent p of 10/3 used in the American National Standards Institute (ANSI)/American Bearing Manufacturers Association (ABMA)/International Organization for Standardization (ISO) standards is inconsistent with the majority roller bearings designed and used today.

  8. Predicting Future Reconviction in Offenders with Intellectual Disabilities: The Predictive Efficacy of VRAG, PCL-SV, and the HCR-20

    ERIC Educational Resources Information Center

    Gray, Nicola S.; Fitzgerald, Suzanne; Taylor, John; MacCulloch, Malcolm J.; Snowden, Robert J.

    2007-01-01

    Accurate predictions of future reconviction, including those for violent crimes, have been shown to be greatly aided by the use of formal risk assessment instruments. However, it is unclear as to whether these instruments would also be predictive in a sample of offenders with intellectual disabilities. In this study, the authors have shown that…

  9. A Regionalized Flow Duration Curve Method to Predict Streamflow for Ungauaged Basins: A Case Study of the Rappahannock Watershed in Virginia, USA

    EPA Science Inventory

    A method to predict streamflow for ungauged basins of the Mid-Atlantic Region, USA was applied to the Rappahannock watershed in Virginia, USA. The method separates streamflow time series into magnitude and time sequence components. It uses the regionalized flow duration curve (RF...

  10. Rational Emotive Behavior Therapy after Ellis: Predictions for the Future.

    ERIC Educational Resources Information Center

    Weinrach, Stephen G.; Ellis, Albert; DiGiuseppe, Raymond; Bernard, Michael E.; Dryden, Windy; Kassinove, Howard; Morris, G. Barry; Vernon, Ann; Wolfe, Janet

    1995-01-01

    Nine members of the institute for Rational-Emotive Therapy's (REBT) International Training Standards and Review Committee predicted the status of REBT 25 to 50 years after the death of Albert Ellis. Will REBT continue to exist in its own right or be incorporated into newer forms of cognitive behavior therapy? (EMK)

  11. Predicting the Future: Studies on the Growth of the Intellect.

    ERIC Educational Resources Information Center

    Educational Testing Service, Princeton, NJ.

    This illustrated booklet describes research procedures in the Infant Laboratory of the Educational Testing Service to investigate measurable factors in infant behavior which can predict intellectual potential. The research is currently focusing on attending, the manner in which infants respond to various stimuli presented to them during their…

  12. Predicting future coexistence in a North American ant community

    PubMed Central

    Bewick, Sharon; Stuble, Katharine L; Lessard, Jean-Phillipe; Dunn, Robert R; Adler, Frederick R; Sanders, Nathan J

    2014-01-01

    Global climate change will remodel ecological communities worldwide. However, as a consequence of biotic interactions, communities may respond to climate change in idiosyncratic ways. This makes predictive models that incorporate biotic interactions necessary. We show how such models can be constructed based on empirical studies in combination with predictions or assumptions regarding the abiotic consequences of climate change. Specifically, we consider a well-studied ant community in North America. First, we use historical data to parameterize a basic model for species coexistence. Using this model, we determine the importance of various factors, including thermal niches, food discovery rates, and food removal rates, to historical species coexistence. We then extend the model to predict how the community will restructure in response to several climate-related changes, such as increased temperature, shifts in species phenology, and altered resource availability. Interestingly, our mechanistic model suggests that increased temperature and shifts in species phenology can have contrasting effects. Nevertheless, for almost all scenarios considered, we find that the most subordinate ant species suffers most as a result of climate change. More generally, our analysis shows that community composition can respond to climate warming in nonintuitive ways. For example, in the context of a community, it is not necessarily the most heat-sensitive species that are most at risk. Our results demonstrate how models that account for niche partitioning and interspecific trade-offs among species can be used to predict the likely idiosyncratic responses of local communities to climate change. PMID:24963378

  13. Adolescent Suicide Attempters: What Predicts Future Suicidal Acts?

    ERIC Educational Resources Information Center

    Groholt, Berit; Ekeberg, Oivind; Haldorsen, Tor

    2006-01-01

    Predictors for repetition of suicide attempts were evaluated among 92 adolescent suicide attempters 9 years after an index suicide attempt (90% females). Five were dead, two by suicide. Thirty-one (42%) of 73 had repeated a suicide attempt. In multiple Cox regression analysis, four factors had an independent predictive effect: comorbid disorders,…

  14. Prediction of Research Self-Efficacy and Future Research Involvement.

    ERIC Educational Resources Information Center

    Bishop, Rosean M.; And Others

    Although graduate programs hope that their students will be committed to research in their careers, most students express ambivalence towards research. Identifying the variables that predict involvement in research thus seems crucial. In this study 136 doctoral students from a wide range of disciplines completed the Research Self-Efficacy Scale…

  15. Trait Impressions as Heuristics for Predicting Future Behavior.

    ERIC Educational Resources Information Center

    Newman, Leonard S.

    1996-01-01

    The dispositionist bias manifests itself when behavior is overattributed to dispositions, and when contextual factors are underused when predicting behavior. Psychological processes underlying the former bias have been most thoroughly examined. Three studies support the hypothesis that trait implications of past behavior function as heuristics…

  16. Future missions studies: Combining Schatten's solar activity prediction model with a chaotic prediction model

    NASA Technical Reports Server (NTRS)

    Ashrafi, S.

    1991-01-01

    K. Schatten (1991) recently developed a method for combining his prediction model with our chaotic model. The philosophy behind this combined model and his method of combination is explained. Because the Schatten solar prediction model (KS) uses a dynamo to mimic solar dynamics, accurate prediction is limited to long-term solar behavior (10 to 20 years). The Chaotic prediction model (SA) uses the recently developed techniques of nonlinear dynamics to predict solar activity. It can be used to predict activity only up to the horizon. In theory, the chaotic prediction should be several orders of magnitude better than statistical predictions up to that horizon; beyond the horizon, chaotic predictions would theoretically be just as good as statistical predictions. Therefore, chaos theory puts a fundamental limit on predictability.

  17. Predictive, preventive, personalized and participatory medicine: back to the future

    PubMed Central

    2010-01-01

    The pioneering work of Jean Dausset on the HLA system established several principles that were later reflected in the Human Genome Project and contributed to the foundations of predictive, preventive, personalized and participatory (P4) medicine. To effectively develop systems medicine, we should take advantage of the lessons of the HLA saga, emphasizing the importance of exploring a fascinating but mysterious biology, now using systems principles, pioneering new technology developments and creating shared biological and information resources. PMID:20804580

  18. Foreshocks Are Not Predictive of Future Earthquake Size

    NASA Astrophysics Data System (ADS)

    Page, M. T.; Felzer, K. R.; Michael, A. J.

    2014-12-01

    The standard model for the origin of foreshocks is that they are earthquakes that trigger aftershocks larger than themselves (Reasenberg and Jones, 1989). This can be formally expressed in terms of a cascade model. In this model, aftershock magnitudes follow the Gutenberg-Richter magnitude-frequency distribution, regardless of the size of the triggering earthquake, and aftershock timing and productivity follow Omori-Utsu scaling. An alternative hypothesis is that foreshocks are triggered incidentally by a nucleation process, such as pre-slip, that scales with mainshock size. If this were the case, foreshocks would potentially have predictive power of the mainshock magnitude. A number of predictions can be made from the cascade model, including the fraction of earthquakes that are foreshocks to larger events, the distribution of differences between foreshock and mainshock magnitudes, and the distribution of time lags between foreshocks and mainshocks. The last should follow the inverse Omori law, which will cause the appearance of an accelerating seismicity rate if multiple foreshock sequences are stacked (Helmstetter and Sornette, 2003). All of these predictions are consistent with observations (Helmstetter and Sornette, 2003; Felzer et al. 2004). If foreshocks were to scale with mainshock size, this would be strong evidence against the cascade model. Recently, Bouchon et al. (2013) claimed that the expected acceleration in stacked foreshock sequences before interplate earthquakes is higher prior to M≥6.5 mainshocks than smaller mainshocks. Our re-analysis fails to support the statistical significance of their results. In particular, we find that their catalogs are not complete to the level assumed, and their ETAS model underestimates inverse Omori behavior. To conclude, seismicity data to date is consistent with the hypothesis that the nucleation process is the same for earthquakes of all sizes.

  19. Working Memory-Related Neural Activity Predicts Future Smoking Relapse

    PubMed Central

    Loughead, James; Wileyto, E Paul; Ruparel, Kosha; Falcone, Mary; Hopson, Ryan; Gur, Ruben; Lerman, Caryn

    2015-01-01

    Brief abstinence from smoking impairs cognition, particularly executive function, and this has a role in relapse to smoking. This study examined whether working memory-related brain activity predicts subsequent smoking relapse above and beyond standard clinical and behavioral measures. Eighty treatment-seeking smokers completed two functional magnetic resonance imaging sessions (smoking satiety vs 24 h abstinence challenge) during performance of a visual N-back task. Brief counseling and a short-term quit attempt followed. Relapse during the first 7 days was biochemically confirmed by the presence of the nicotine metabolite cotinine. Mean percent blood oxygen level-dependent (BOLD) signal change was extracted from a priori regions of interest: bilateral dorsolateral prefrontal cortex (DLPFC), medial frontal/cingulate gyrus, posterior cingulate cortex (PCC), and ventromedial prefrontal cortex. Signal from these brain regions and additional clinical measures were used to model outcome status, which was then validated with resampling techniques. Relapse to smoking was predicted by increased withdrawal symptoms, decreased left DLPFC and increased PCC BOLD percent signal change (abstinence vs smoking satiety). Receiver operating characteristic analysis demonstrated 81% area under the curve using these predictors, a significant improvement over the model with clinical variables only. The combination of abstinence-induced decreases in left DLPFC activation and reduced suppression of PCC may be a prognostic marker for poor outcome, specifically early smoking relapse. PMID:25469682

  20. Prediction of flow induced sound: Past, present, and future

    NASA Astrophysics Data System (ADS)

    Blake, William; Zawadzki, Irek

    2002-05-01

    The prediction of flow-induced vibration and sound has developed into a refined analysis technology. At its genesis the capability to provide engineering evaluations of flow-driven surfaces was crude and semi-empirical. The ability to provide acoustic estimations of fidelity depended on empiricism, similitude, and engineering experience. Very little was known of the physics of flow-structure interaction to permit otherwise. Currently, capabilities to make high-fidelity engineering predictions have benefitted from continual advances in three major areas. Our knowledge of the physics of flow sources has matured to understand acoustically-relevant flow structures and the interaction of flows with surfaces. Our ability to computationally model structural response and acoustic Green's functions has evolved because of parallel advances in structural acoustics. Computational fluid dynamics has developed into a refined tool for simulating flow over complex geometries. It is continuing to evolve as we learn how to model acoustically relevant subsonic flow structures with large eddy simulation and direct numerical simulation. Once principally a technology available only to military application, these tools are becoming more commonplace in industrial applications. This lecture will trace some of these developments, show some examples, and indicate promising areas of advancement.

  1. Can Global Weed Assemblages Be Used to Predict Future Weeds?

    PubMed Central

    Morin, Louise; Paini, Dean R.; Randall, Roderick P.

    2013-01-01

    Predicting which plant taxa are more likely to become weeds in a region presents significant challenges to both researchers and government agencies. Often it is done in a qualitative or semi-quantitative way. In this study, we explored the potential of using the quantitative self-organising map (SOM) approach to analyse global weed assemblages and estimate likelihoods of plant taxa becoming weeds before and after they have been moved to a new region. The SOM approach examines plant taxa associations by analysing where a taxon is recorded as a weed and what other taxa are recorded as weeds in those regions. The dataset analysed was extracted from a pre-existing, extensive worldwide database of plant taxa recorded as weeds or other related status and, following reformatting, included 187 regions and 6690 plant taxa. To assess the value of the SOM approach we selected Australia as a case study. We found that the key and most important limitation in using such analytical approach lies with the dataset used. The classification of a taxon as a weed in the literature is not often based on actual data that document the economic, environmental and/or social impact of the taxon, but mostly based on human perceptions that the taxon is troublesome or simply not wanted in a particular situation. The adoption of consistent and objective criteria that incorporate a standardized approach for impact assessment of plant taxa will be necessary to develop a new global database suitable to make predictions regarding weediness using methods like SOM. It may however, be more realistic to opt for a classification system that focuses on the invasive characteristics of plant taxa without any inference to impacts, which to be defined would require some level of research to avoid bias from human perceptions and value systems. PMID:23393591

  2. Intelligent robot trends and predictions for the .net future

    NASA Astrophysics Data System (ADS)

    Hall, Ernest L.

    2001-10-01

    An intelligent robot is a remarkably useful combination of a manipulator, sensors and controls. The use of these machines in factory automation can improve productivity, increase product quality and improve competitiveness. This paper presents a discussion of recent and future technical and economic trends. During the past twenty years the use of industrial robots that are equipped not only with precise motion control systems but also with sensors such as cameras, laser scanners, or tactile sensors that permit adaptation to a changing environment has increased dramatically. Intelligent robot products have been developed in many cases for factory automation and for some hospital and home applications. To reach an even higher degree of applications, the addition of learning may be required. Recently, learning theories such as the adaptive critic have been proposed. In this type of learning, a critic provides a grade to the controller of an action module such as a robot. The adaptive critic is a good model for human learning. In general, the critic may be considered to be the human with the teach pendant, plant manager, line supervisor, quality inspector or the consumer. If the ultimate critic is the consumer, then the quality inspector must model the consumer's decision-making process and use this model in the design and manufacturing operations. Can the adaptive critic be used to advance intelligent robots? Intelligent robots have historically taken decades to be developed and reduced to practice. Methods for speeding this development include technology such as rapid prototyping and product development and government, industry and university cooperation.

  3. Predictive animal models of mania: hits, misses and future directions

    PubMed Central

    Young, Jared W; Henry, Brook L; Geyer, Mark A

    2011-01-01

    Mania has long been recognized as aberrant behaviour indicative of mental illness. Manic states include a variety of complex and multifaceted symptoms that challenge clear clinical distinctions. Symptoms include over-activity, hypersexuality, irritability and reduced need for sleep, with cognitive deficits recently linked to functional outcome. Current treatments have arisen through serendipity or from other disorders. Hence, treatments are not efficacious for all patients, and there is an urgent need to develop targeted therapeutics. Part of the drug discovery process is the assessment of therapeutics in animal models. Here we review pharmacological, environmental and genetic manipulations developed to test the efficacy of therapeutics in animal models of mania. The merits of these models are discussed in terms of the manipulation used and the facet of mania measured. Moreover, the predictive validity of these models is discussed in the context of differentiating drugs that succeed or fail to meet criteria as approved mania treatments. The multifaceted symptomatology of mania has not been reflected in the majority of animal models, where locomotor activity remains the primary measure. This approach has resulted in numerous false positives for putative treatments. Recent work highlights the need to utilize multivariate strategies to enable comprehensive assessment of affective and cognitive dysfunction. Advances in therapeutic treatment may depend on novel models developed with an integrated approach that includes: (i) a comprehensive battery of tests for different aspects of mania, (ii) utilization of genetic information to establish aetiological validity and (iii) objective quantification of patient behaviour with translational cross-species paradigms. LINKED ARTICLES This article is part of a themed issue on Translational Neuropharmacology. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2011.164.issue-4 PMID:21410454

  4. Statistical interference prediction for ground stations from orbiting satellites. I - Simulation of interference duration and analytical approach for the determination of protection ratios

    NASA Technical Reports Server (NTRS)

    Gevargiz, John M.; Nguyen, Tien M.; Bishop, Dennis F.

    1990-01-01

    The authors describe simulation and analytical techniques for predicting the interference durations and protection ratios for deep-space ground stations from satellites in circular orbits. The simulation approach employs the characteristics of the ground station receivers in addition to the satellite specifications to calculate the daily statistics of the interference duration. On the other hand, the analytical method employs the ground station specifications to statistically predict the protection ratios as a function of the number of interference satellites and their associated probabilities. The results presented here can be used for both planning the missions and designing satellite communication links. The results can be also be used by spectrum managers and operations personnel to minimize the risk of harmful interference from satellites in low earth orbit to the deep space frequency band.

  5. A thermal heat summation model to predict the duration of the gonotrophic cycle of Culiseta melanura in nature.

    PubMed

    Mahmood, F; Crans, W J

    1997-03-01

    This study determined the effect of temperature on the gonotrophic cycle of Culiseta melanura and developed a thermal heat summation model to calculate its duration under field conditions. A colony of Cs. melanura was used from New Jersey (F13-F17 generation) and the length of the gonotrophic cycle was observed at 2, 10, 16, 22, 28, 32 and 34 degrees C. None of the mosquitos survived at 2 degrees C or 34 degrees C and none laid fertile eggs at 32 degrees C. A linear regression analysis on the data showed that the thermal minimum for ovarian development was 6.4 degrees C and 95.87 degree days were required above 6.4 degrees C to complete one gonotrophic cycle. A thermal heat summation model is presented to allow calculation of the duration of the gonotrophic cycle under field conditions when average temperatures are known.

  6. THE FUTURE OF COMPUTER-BASED TOXICITY PREDICTION: MECHANISM-BASED MODELS VS. INFORMATION MINING APPROACHES

    EPA Science Inventory


    The Future of Computer-Based Toxicity Prediction:
    Mechanism-Based Models vs. Information Mining Approaches

    When we speak of computer-based toxicity prediction, we are generally referring to a broad array of approaches which rely primarily upon chemical structure ...

  7. Predicting violent behavior: The role of violence exposure and future educational aspirations during adolescence.

    PubMed

    Stoddard, Sarah A; Heinze, Justin E; Choe, Daniel Ewon; Zimmerman, Marc A

    2015-10-01

    Few researchers have explored future educational aspirations as a promotive factor against exposure to community violence in relation to adolescents' violent behavior over time. The present study examined the direct and indirect effect of exposure to community violence prior to 9th grade on attitudes about violence and violent behavior in 12th grade, and violent behavior at age 22 via 9th grade future educational aspirations in a sample of urban African American youth (n = 681; 49% male). Multi-group SEM was used to test the moderating effect of gender. Exposure to violence was associated with lower future educational aspirations. For boys, attitudes about violence directly predicted violent behavior at age 22. For boys, future educational aspirations indirectly predicted less violent behavior at age 22. Implications of the findings and suggestions for future research are discussed.

  8. Predicting violent behavior: The role of violence exposure and future educational aspirations during adolescence.

    PubMed

    Stoddard, Sarah A; Heinze, Justin E; Choe, Daniel Ewon; Zimmerman, Marc A

    2015-10-01

    Few researchers have explored future educational aspirations as a promotive factor against exposure to community violence in relation to adolescents' violent behavior over time. The present study examined the direct and indirect effect of exposure to community violence prior to 9th grade on attitudes about violence and violent behavior in 12th grade, and violent behavior at age 22 via 9th grade future educational aspirations in a sample of urban African American youth (n = 681; 49% male). Multi-group SEM was used to test the moderating effect of gender. Exposure to violence was associated with lower future educational aspirations. For boys, attitudes about violence directly predicted violent behavior at age 22. For boys, future educational aspirations indirectly predicted less violent behavior at age 22. Implications of the findings and suggestions for future research are discussed. PMID:26282242

  9. Predicting violent behavior: The role of violence exposure and future educational aspirations during adolescence

    PubMed Central

    Stoddard, Sarah A.; Heinze, Justin E.; Choe, Daniel Ewon; Zimmerman, Marc A.

    2015-01-01

    Few researchers have explored future educational aspirations as a promotive factor against exposure to community violence in relation to adolescents’ violent behavior over time. The present study examined the direct and indirect effect of exposure to community violence prior to 9th grade on attitudes about violence and violent behavior in 12th grade, and violent behavior at age 22 via 9th grade future educational aspirations in a sample of urban African American youth (n = 681; 49% male). Multi-group SEM was used to test the moderating effect of gender. Exposure to violence was associated with lower future educational aspirations. For boys, attitudes about violence directly predicted violent behavior at age 22. For boys, future educational aspirations indirectly predicted less violent behavior at age 22. Implications of the findings and suggestions for future research are discussed. PMID:26282242

  10. Predicting future changes in Muskegon River Watershed game fish distributions under future land cover alteration and climate change scenarios

    USGS Publications Warehouse

    Steen, Paul J.; Wiley, Michael J.; Schaeffer, Jeffrey S.

    2010-01-01

    Future alterations in land cover and climate are likely to cause substantial changes in the ranges of fish species. Predictive distribution models are an important tool for assessing the probability that these changes will cause increases or decreases in or the extirpation of species. Classification tree models that predict the probability of game fish presence were applied to the streams of the Muskegon River watershed, Michigan. The models were used to study three potential future scenarios: (1) land cover change only, (2) land cover change and a 3°C increase in air temperature by 2100, and (3) land cover change and a 5°C increase in air temperature by 2100. The analysis indicated that the expected change in air temperature and subsequent change in water temperatures would result in the decline of coldwater fish in the Muskegon watershed by the end of the 21st century while cool- and warmwater species would significantly increase their ranges. The greatest decline detected was a 90% reduction in the probability that brook trout Salvelinus fontinalis would occur in Bigelow Creek. The greatest increase was a 276% increase in the probability that northern pike Esox lucius would occur in the Middle Branch River. Changes in land cover are expected to cause large changes in a few fish species, such as walleye Sander vitreus and Chinook salmon Oncorhynchus tshawytscha, but not to drive major changes in species composition. Managers can alter stream environmental conditions to maximize the probability that species will reside in particular stream reaches through application of the classification tree models. Such models represent a good way to predict future changes, as they give quantitative estimates of the n-dimensional niches for particular species.

  11. Lessons Learned and Future Goals of the High Lift Prediction Workshops

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.; Lee-Rausch, Elizabeth; Slotnick, Jeffrey P.

    2016-01-01

    The American Institute of Aeronautics and Astronautics (AIAA) High Lift Prediction Workshop series is described. Two workshops have been held to date. Major conclusions are summarized, and plans for future workshops are outlined. A compilation of lessons learned from the first two workshops is provided. This compilation includes a summary of needs for future high-lift experiments that are intended for computational fluid dynamics (CFD) validation.

  12. Temporal Effects in Trend Prediction: Identifying the Most Popular Nodes in the Future

    PubMed Central

    Zhou, Yanbo; Zeng, An; Wang, Wei-Hong

    2015-01-01

    Prediction is an important problem in different science domains. In this paper, we focus on trend prediction in complex networks, i.e. to identify the most popular nodes in the future. Due to the preferential attachment mechanism in real systems, nodes’ recent degree and cumulative degree have been successfully applied to design trend prediction methods. Here we took into account more detailed information about the network evolution and proposed a temporal-based predictor (TBP). The TBP predicts the future trend by the node strength in the weighted network with the link weight equal to its exponential aging. Three data sets with time information are used to test the performance of the new method. We find that TBP have high general accuracy in predicting the future most popular nodes. More importantly, it can identify many potential objects with low popularity in the past but high popularity in the future. The effect of the decay speed in the exponential aging on the results is discussed in detail. PMID:25806810

  13. Reward Region Responsivity Predicts Future Weight Gain and Moderating Effects of the TaqIA Allele

    PubMed Central

    Burger, Kyle S.; Yokum, Sonja

    2015-01-01

    Because no large prospective study has investigated neural vulnerability factors that predict future weight gain, we tested whether neural response to receipt and anticipated receipt of palatable food and monetary reward predicted body fat gain over a 3-year follow-up in healthy-weight adolescent humans and whether the TaqIA polymorphism moderates these relations. A total of 153 adolescents completed fMRI paradigms assessing response to these events; body fat was assessed annually over follow-up. Elevated orbitofrontal cortex response to cues signaling impending milkshake receipt predicted future body fat gain (r = 0.32), which is a novel finding that provides support for the incentive sensitization theory of obesity. Neural response to receipt and anticipated receipt of monetary reward did not predict body fat gain, which has not been tested previously. Replicating an earlier finding (Stice et al., 2008a), elevated caudate response to milkshake receipt predicted body fat gain for adolescents with a genetic propensity for greater dopamine signaling by virtue of possessing the TaqIA A2/A2 allele, but lower caudate response predicted body fat gain for adolescents with a genetic propensity for less dopamine signaling by virtue of possessing a TaqIA A1 allele, though this interaction was only marginal [p-value <0.05 corrected using voxel-level familywise error rate (pFWE) = 0.06]. Parental obesity, which correlated with TaqIA allele status (odds ratio = 2.7), similarly moderated the relation of caudate response to milkshake receipt to future body fat gain, which is another novel finding. The former interaction implies that too much or too little dopamine signaling and reward region responsivity increases risk for overeating, suggesting qualitatively distinct reward surfeit and reward deficit pathways to obesity. SIGNIFICANCE STATEMENT Because no large prospective study has investigated neural vulnerability factors that predict future weight gain we tested whether

  14. Prediction of spatially explicit rainfall intensity-duration thresholds for post-fire debris-flow generation in the western United States

    NASA Astrophysics Data System (ADS)

    Staley, Dennis; Negri, Jacquelyn; Kean, Jason

    2016-04-01

    burned areas. Our approach synthesizes the two methods by incorporating measured rainfall intensity into each model variable (based on measures of topographic steepness, burn severity and surface properties) within the logistic regression equation. This approach provides a more realistic representation of the relation between rainfall intensity and debris-flow likelihood, as likelihood values asymptotically approach zero when rainfall intensity approaches 0 mm/h, and increase with more intense rainfall. Model performance was evaluated by comparing predictions to several existing regional thresholds. The model, based upon training data collected in southern California, USA, has proven to accurately predict rainfall intensity-duration thresholds for other areas in the western United States not included in the original training dataset. In addition, the improved logistic regression model shows promise for emergency planning purposes and real-time, site-specific early warning. With further validation, this model may permit the prediction of spatially-explicit intensity-duration thresholds for debris-flow generation in areas where empirically derived regional thresholds do not exist. This improvement would permit the expansion of the early-warning system into other regions susceptible to post-fire debris flow.

  15. Predicting uncertainty in future marine ice sheet volume using Bayesian statistical methods

    NASA Astrophysics Data System (ADS)

    Davis, A. D.

    2015-12-01

    The marine ice instability can trigger rapid retreat of marine ice streams. Recent observations suggest that marine ice systems in West Antarctica have begun retreating. However, unknown ice dynamics, computationally intensive mathematical models, and uncertain parameters in these models make predicting retreat rate and ice volume difficult. In this work, we fuse current observational data with ice stream/shelf models to develop probabilistic predictions of future grounded ice sheet volume. Given observational data (e.g., thickness, surface elevation, and velocity) and a forward model that relates uncertain parameters (e.g., basal friction and basal topography) to these observations, we use a Bayesian framework to define a posterior distribution over the parameters. A stochastic predictive model then propagates uncertainties in these parameters to uncertainty in a particular quantity of interest (QoI)---here, the volume of grounded ice at a specified future time. While the Bayesian approach can in principle characterize the posterior predictive distribution of the QoI, the computational cost of both the forward and predictive models makes this effort prohibitively expensive. To tackle this challenge, we introduce a new Markov chain Monte Carlo method that constructs convergent approximations of the QoI target density in an online fashion, yielding accurate characterizations of future ice sheet volume at significantly reduced computational cost.Our second goal is to attribute uncertainty in these Bayesian predictions to uncertainties in particular parameters. Doing so can help target data collection, for the purpose of constraining the parameters that contribute most strongly to uncertainty in the future volume of grounded ice. For instance, smaller uncertainties in parameters to which the QoI is highly sensitive may account for more variability in the prediction than larger uncertainties in parameters to which the QoI is less sensitive. We use global sensitivity

  16. Cetacean range and climate in the eastern North Atlantic: future predictions and implications for conservation.

    PubMed

    Lambert, Emily; Pierce, Graham J; Hall, Karen; Brereton, Tom; Dunn, Timothy E; Wall, Dave; Jepson, Paul D; Deaville, Rob; MacLeod, Colin D

    2014-06-01

    There is increasing evidence that the distributions of a large number of species are shifting with global climate change as they track changing surface temperatures that define their thermal niche. Modelling efforts to predict species distributions under future climates have increased with concern about the overall impact of these distribution shifts on species ecology, and especially where barriers to dispersal exist. Here we apply a bio-climatic envelope modelling technique to investigate the impacts of climate change on the geographic range of ten cetacean species in the eastern North Atlantic and to assess how such modelling can be used to inform conservation and management. The modelling process integrates elements of a species' habitat and thermal niche, and employs "hindcasting" of historical distribution changes in order to verify the accuracy of the modelled relationship between temperature and species range. If this ability is not verified, there is a risk that inappropriate or inaccurate models will be used to make future predictions of species distributions. Of the ten species investigated, we found that while the models for nine could successfully explain current spatial distribution, only four had a good ability to predict distribution changes over time in response to changes in water temperature. Applied to future climate scenarios, the four species-specific models with good predictive abilities indicated range expansion in one species and range contraction in three others, including the potential loss of up to 80% of suitable white-beaked dolphin habitat. Model predictions allow identification of affected areas and the likely time-scales over which impacts will occur. Thus, this work provides important information on both our ability to predict how individual species will respond to future climate change and the applicability of predictive distribution models as a tool to help construct viable conservation and management strategies.

  17. Cetacean range and climate in the eastern North Atlantic: future predictions and implications for conservation.

    PubMed

    Lambert, Emily; Pierce, Graham J; Hall, Karen; Brereton, Tom; Dunn, Timothy E; Wall, Dave; Jepson, Paul D; Deaville, Rob; MacLeod, Colin D

    2014-06-01

    There is increasing evidence that the distributions of a large number of species are shifting with global climate change as they track changing surface temperatures that define their thermal niche. Modelling efforts to predict species distributions under future climates have increased with concern about the overall impact of these distribution shifts on species ecology, and especially where barriers to dispersal exist. Here we apply a bio-climatic envelope modelling technique to investigate the impacts of climate change on the geographic range of ten cetacean species in the eastern North Atlantic and to assess how such modelling can be used to inform conservation and management. The modelling process integrates elements of a species' habitat and thermal niche, and employs "hindcasting" of historical distribution changes in order to verify the accuracy of the modelled relationship between temperature and species range. If this ability is not verified, there is a risk that inappropriate or inaccurate models will be used to make future predictions of species distributions. Of the ten species investigated, we found that while the models for nine could successfully explain current spatial distribution, only four had a good ability to predict distribution changes over time in response to changes in water temperature. Applied to future climate scenarios, the four species-specific models with good predictive abilities indicated range expansion in one species and range contraction in three others, including the potential loss of up to 80% of suitable white-beaked dolphin habitat. Model predictions allow identification of affected areas and the likely time-scales over which impacts will occur. Thus, this work provides important information on both our ability to predict how individual species will respond to future climate change and the applicability of predictive distribution models as a tool to help construct viable conservation and management strategies. PMID:24677422

  18. Twenty Predictions about the Future of Residential Services in Mental Retardation

    ERIC Educational Resources Information Center

    Wolfensberger, Wolf

    2011-01-01

    Twenty predictions about the future of residential services to the mentally retarded are presented. These changes imply: (1) an entirely new model of residential services; (2) increasing continuity between residential and nonresidential services; and (3) increasing acceptance of cost-benefit rationales in the decision to offer residential or other…

  19. FORUM - FutureTox II: In vitro Data and In Silico Models for Predictive Toxicology

    EPA Science Inventory

    FutureTox II, a Society of Toxicology Contemporary Concepts in Toxicology workshop, was held in January, 2014. The meeting goals were to review and discuss the state of the science in toxicology in the context of implementing the NRC 21st century vision of predicting in vivo resp...

  20. Response surface models to predict potato tuber infection by Fusarium sambucinum from duration of wetness and temperature, and dry rot lesion expansion from storage time and temperature.

    PubMed

    Lui, L H; Kushalappa, A C

    2002-06-01

    Dry rot (Fusarium sambucinum) of potatoes causes significant yield loss in storage and may also produce mycotoxins. Disease dynamics of dry rot development in potato tubers after harvest was studied and modeled. Potato tubers were surface sterilized, wounded, inoculated with a spore suspension of F. sambucinum and incubated in mist chambers placed in growth chambers at 4, 8, 12, 16 or 20 degrees C. After 0, 3, 6, 12, 24 and 48 h of incubation five tubers from each treatment were removed, dried and stored at 16 degrees C and 95% RH for 15 days. Inoculated tubers were also maintained in mist chambers for 24 h at 16 degrees C for the establishment of initial infections, dried, and stored at 4, 8, 12, or 16 degrees C for up to 90 days at 95% RH. At 15 days intervals, tubers were sliced, diameters and depths of diseased area measured, and data transformed to proportion of maximum volume diseased (PVD). The amount of infection was least at the lowest temperature tested and at the end of a 3-h wet period, but infection increased with an increase in wetness duration and temperature. At a storage temperature of 16 degrees C, lesions expanded rapidly reaching maxima in about 45 days of storage. A cubic regression model to predict infection potential from incubation temperature and duration of wetness explained 94.2% of the variation in PVD. A cubic regression model to predict lesion expansion potential as a function of storage temperature and duration explained 99.7% of the variation in PVD. These models could be used to manage potato dry rot, after validation under commercial conditions.

  1. KPG Index versus OPG Measurements: A Comparison between 3D and 2D Methods in Predicting Treatment Duration and Difficulty Level for Patients with Impacted Maxillary Canines

    PubMed Central

    Visconti, Luca

    2014-01-01

    Aim. The aim of this study was to test the agreement between orthopantomography (OPG) based 2D measurements and the KPG index, a new index based on 3D Cone Beam Computed Tomography (CBCT) images, in predicting orthodontic treatment duration and difficulty level of impacted maxillary canines. Materials and Methods. OPG and CBCT images of 105 impacted canines were independently scored by three orthodontists at t0 and after 1 month (t1), using the KPG index and the following 2D methods: distance from cusp tip and occlusal plane, cusp tip position in relation to the lateral incisor, and canine inclination. Pearson's coefficients were used to evaluate the degree of agreement and the χ2 with Yates correction test was used to assess the independence between them. Results. Inter- and intrarater reliability were higher with KPG compared to 2D methods. Pearson's coefficients showed a statistically significant association between all the indexes, while the χ2 with Yates correction test resulted in a statistically significant rejection of independency only for one 2D index. Conclusions. 2D indexes for predicting impacted maxillary canines treatment duration and difficulty sometimes are discordant; a 3D index like the KPG index could be useful in solving these conflicts. PMID:25126566

  2. Predicting climate change impacts on the amount and duration of autumn colors in a New England forest.

    PubMed

    Archetti, Marco; Richardson, Andrew D; O'Keefe, John; Delpierre, Nicolas

    2013-01-01

    Climate change affects the phenology of many species. As temperature and precipitation are thought to control autumn color change in temperate deciduous trees, it is possible that climate change might also affect the phenology of autumn colors. Using long-term data for eight tree species in a New England hardwood forest, we show that the timing and cumulative amount of autumn color are correlated with variation in temperature and precipitation at specific times of the year. A phenological model driven by accumulated cold degree-days and photoperiod reproduces most of the interspecific and interannual variability in the timing of autumn colors. We use this process-oriented model to predict changes in the phenology of autumn colors to 2099, showing that, while responses vary among species, climate change under standard IPCC projections will lead to an overall increase in the amount of autumn colors for most species.

  3. Utilizing Traveler Demand Modeling to Predict Future Commercial Flight Schedules in the NAS

    NASA Technical Reports Server (NTRS)

    Viken, Jeff; Dollyhigh, Samuel; Smith, Jeremy; Trani, Antonio; Baik, Hojong; Hinze, Nicholas; Ashiabor, Senanu

    2006-01-01

    The current work incorporates the Transportation Systems Analysis Model (TSAM) to predict the future demand for airline travel. TSAM is a multi-mode, national model that predicts the demand for all long distance travel at a county level based upon population and demographics. The model conducts a mode choice analysis to compute the demand for commercial airline travel based upon the traveler s purpose of the trip, value of time, cost and time of the trip,. The county demand for airline travel is then aggregated (or distributed) to the airport level, and the enplanement demand at commercial airports is modeled. With the growth in flight demand, and utilizing current airline flight schedules, the Fratar algorithm is used to develop future flight schedules in the NAS. The projected flights can then be flown through air transportation simulators to quantify the ability of the NAS to meet future demand. A major strength of the TSAM analysis is that scenario planning can be conducted to quantify capacity requirements at individual airports, based upon different future scenarios. Different demographic scenarios can be analyzed to model the demand sensitivity to them. Also, it is fairly well know, but not well modeled at the airport level, that the demand for travel is highly dependent on the cost of travel, or the fare yield of the airline industry. The FAA projects the fare yield (in constant year dollars) to keep decreasing into the future. The magnitude and/or direction of these projections can be suspect in light of the general lack of airline profits and the large rises in airline fuel cost. Also, changes in travel time and convenience have an influence on the demand for air travel, especially for business travel. Future planners cannot easily conduct sensitivity studies of future demand with the FAA TAF data, nor with the Boeing or Airbus projections. In TSAM many factors can be parameterized and various demand sensitivities can be predicted for future travel. These

  4. Positive thinking about the future in newspaper reports and presidential addresses predicts economic downturn.

    PubMed

    Sevincer, A Timur; Wagner, Greta; Kalvelage, Johanna; Oettingen, Gabriele

    2014-04-01

    Previous research has shown that positive thinking, in the form of fantasies about an idealized future, predicts low effort and poor performance. In the studies reported here, we used computerized content analysis of historical documents to investigate the relation between positive thinking about the future and economic development. During the financial crisis from 2007 to 2009, the more weekly newspaper articles in the economy page of USA Today contained positive thinking about the future, the more the Dow Jones Industrial Average declined in the subsequent week and 1 month later. In addition, between the New Deal era and the present time, the more presidential inaugural addresses contained positive thinking about the future, the more the gross domestic product and the employment rate declined in the presidents' subsequent tenures. These counterintuitive findings may help reveal the psychological processes that contribute to an economic crisis.

  5. Predicting future suicide attempts among depressed suicide ideators: a 10-year longitudinal study.

    PubMed

    May, Alexis M; Klonsky, E David; Klein, Daniel N

    2012-07-01

    Suicidal ideation and attempts are a major public health problem. Research has identified many risk factors for suicidality; however, most fail to identify which suicide ideators are at greatest risk of progressing to a suicide attempt. Thus, the present study identified predictors of future suicide attempts in a sample of psychiatric patients reporting suicidal ideation. The sample comprised 49 individuals who met full DSM-IV criteria for major depressive disorder and/or dysthymic disorder and reported suicidal ideation at baseline. Participants were followed for 10 years. Demographic, psychological, personality, and psychosocial risk factors were assessed using validated questionnaires and structured interviews. Phi coefficients and point-biserial correlations were used to identify prospective predictors of attempts, and logistic regressions were used to identify which variables predicted future attempts over and above past suicide attempts. Six significant predictors of future suicide attempts were identified - cluster A personality disorder, cluster B personality disorder, lifetime substance abuse, baseline anxiety disorder, poor maternal relationship, and poor social adjustment. Finally, exploratory logistic regressions were used to examine the unique contribution of each significant predictor controlling for the others. Comorbid cluster B personality disorder emerged as the only robust, unique predictor of future suicide attempts among depressed suicide ideators. Future research should continue to identify variables that predict transition from suicidal thoughts to suicide attempts, as such work will enhance clinical assessment of suicide risk as well as theoretical models of suicide. PMID:22575331

  6. Fixed Future and Uncertain Past: Theorems Explain Why It Is Often More Difficult to Reconstruct the Past Than to Predict the Future

    NASA Technical Reports Server (NTRS)

    Alefeld, Goetz; Koshelev, Misha; Mayer, Guenter

    1997-01-01

    At first glance. it may seem that reconstructing the past is, in general, easier than predicting the future, because the past has already occurred and it has already left its traces, while the future is still yet to come, and so no traces of the future are available. However, in many real life situations, including problems from geophysics and celestial mechanics, reconstructing the past is much more computationally difficult than predicting the future. In this paper, we give an explanation of this difficulty. This explanation is given both on a formal level (as a theorem) and on the informal level (as a more intuitive explanation).

  7. Predictions of future dangerousness in capital murder trials: is it time to "disinvent the wheel"?

    PubMed

    Edens, John F; Buffington-Vollum, Jacqueline K; Keilen, Andrea; Roskamp, Phillip; Anthony, Christine

    2005-02-01

    Although recent U.S. Supreme Court decisions regarding the death penalty (e.g., Atkins v. Virginia, 2002) have renewed interest in mental health issues, one topic that has not received much attention recently is the ongoing use of expert testimony to support claims that defendants represent a "continuing threat to society." In this article, we (a) review prior research relevant to determining the accuracy of clinical predictions that capital defendants will commit future acts of criminal violence; (b) summarize new data from current and former death row inmates in Texas that bolster the claim that such predictions are gross overestimates of risk; and (c) review extant research addressing the potential utility of various risk assessment instruments that increasingly are being used to reinforce clinical predictions in capital trials. Despite significant recent advances in the field of risk assessment, clinical assertions that a defendant is likely to commit future violent acts appear to be highly inaccurate and ethically questionable at best. Moreover, available research offers little support for the claim that the accuracy of these predictions will be appreciably improved by relying on more structured risk assessment measures that have some demonstrated predictive validity in other contexts.

  8. Predictions of space physics are difficult, especially when they are about the future

    NASA Astrophysics Data System (ADS)

    Cassak, P.

    2015-12-01

    This talk is about the future of space physics, the broad field of study addressing how the sun works, its interaction with Earth and other planets via the solar wind and solar eruptions, and the region of interplanetary space out to the edge of the solar system. It is the chief field feeding into the development of tools for space weather prediction. Space physics is at an exciting - yet critical - time in its evolution. Scientifically, the capabilities afforded by new ground- and space-based observations and the rapidly increasing speed of supercomputing resources are leading to unprecedented progress in the field. Recently launched missions such as the Van Allen Probes and the Magnetospheric MultiScale (MMS) mission, and upcoming missions such as Solar Probe Plus and Solar Orbiter, will open doors to science not previously accessible through observations. Predicting the future of space physics is difficult; this talk will offer thoughts on the road forward.

  9. Brain activity in valuation regions while thinking about the future predicts individual discount rates.

    PubMed

    Cooper, Nicole; Kable, Joseph W; Kim, B Kyu; Zauberman, Gal

    2013-08-01

    People vary widely in how much they discount delayed rewards, yet little is known about the sources of these differences. Here we demonstrate that neural activity in ventromedial prefrontal cortex (VMPFC) and ventral striatum (VS) when human subjects are asked to merely think about the future--specifically, to judge the subjective length of future time intervals--predicts delay discounting. High discounters showed lower activity for longer time delays, while low discounters showed the opposite pattern. Our results demonstrate that the correlation between VMPFC and VS activity and discounting occurs even in the absence of choices about future rewards, and does not depend on a person explicitly evaluating future outcomes or judging their self-relevance. This suggests a link between discounting and basic processes involved in thinking about the future, such as temporal perception. Our results also suggest that reducing impatience requires not suppression of VMPFC and VS activity altogether, but rather modulation of how these regions respond to the present versus the future.

  10. Brain activity in valuation regions while thinking about the future predicts individual discount rates.

    PubMed

    Cooper, Nicole; Kable, Joseph W; Kim, B Kyu; Zauberman, Gal

    2013-08-01

    People vary widely in how much they discount delayed rewards, yet little is known about the sources of these differences. Here we demonstrate that neural activity in ventromedial prefrontal cortex (VMPFC) and ventral striatum (VS) when human subjects are asked to merely think about the future--specifically, to judge the subjective length of future time intervals--predicts delay discounting. High discounters showed lower activity for longer time delays, while low discounters showed the opposite pattern. Our results demonstrate that the correlation between VMPFC and VS activity and discounting occurs even in the absence of choices about future rewards, and does not depend on a person explicitly evaluating future outcomes or judging their self-relevance. This suggests a link between discounting and basic processes involved in thinking about the future, such as temporal perception. Our results also suggest that reducing impatience requires not suppression of VMPFC and VS activity altogether, but rather modulation of how these regions respond to the present versus the future. PMID:23926268

  11. Mathematical Modeling of Bacterial Kinetics to Predict the Impact of Antibiotic Colonic Exposure and Treatment Duration on the Amount of Resistant Enterobacteria Excreted

    PubMed Central

    Nguyen, Thu Thuy; Guedj, Jeremie; Chachaty, Elisabeth; de Gunzburg, Jean; Andremont, Antoine; Mentré, France

    2014-01-01

    Fecal excretion of antibiotics and resistant bacteria in the environment are major public health threats associated with extensive farming and modern medical care. Innovative strategies that can reduce the intestinal antibiotic concentrations during treatments are in development. However, the effect of lower exposure on the amount of resistant enterobacteria excreted has not been quantified, making it difficult to anticipate the impact of these strategies. Here, we introduce a bacterial kinetic model to capture the complex relationships between drug exposure, loss of susceptible enterobacteria and growth of resistant strains in the feces of piglets receiving placebo, 1.5 or 15 mg/kg/day ciprofloxacin, a fluoroquinolone, for 5 days. The model could well describe the kinetics of drug susceptible and resistant enterobacteria observed during treatment, and up to 22 days after treatment cessation. Next, the model was used to predict the expected amount of resistant enterobacteria excreted over an average piglet's lifetime (150 days) when varying drug exposure and treatment duration. For the clinically relevant dose of 15 mg/kg/day for 5 days, the total amount of resistant enterobacteria excreted was predicted to be reduced by 75% and 98% when reducing treatment duration to 3 and 1 day treatment, respectively. Alternatively, for a fixed 5-days treatment, the level of resistance excreted could be reduced by 18%, 33%, 57.5% and 97% if 3, 5, 10 and 30 times lower levels of colonic drug concentrations were achieved, respectively. This characterization on in vivo data of the dynamics of resistance to antibiotics in the colonic flora could provide new insights into the mechanism of dissemination of resistance and can be used to design strategies aiming to reduce it. PMID:25210849

  12. Forming Attitudes That Predict Future Behavior: A Meta-Analysis of the Attitude–Behavior Relation

    PubMed Central

    Glasman, Laura R.; Albarracín, Dolores

    2016-01-01

    A meta-analysis (k of conditions = 128; N = 4,598) examined the influence of factors present at the time an attitude is formed on the degree to which this attitude guides future behavior. The findings indicated that attitudes correlated with a future behavior more strongly when they were easy to recall (accessible) and stable over time. Because of increased accessibility, attitudes more strongly predicted future behavior when participants had direct experience with the attitude object and reported their attitudes frequently. Because of the resulting attitude stability, the attitude–behavior association was strongest when attitudes were confident, when participants formed their attitude on the basis of behavior-relevant information, and when they received or were induced to think about one- rather than two-sided information about the attitude object. PMID:16910754

  13. Forming attitudes that predict future behavior: a meta-analysis of the attitude-behavior relation.

    PubMed

    Glasman, Laura R; Albarracín, Dolores

    2006-09-01

    A meta-analysis (k of conditions = 128; N = 4,598) examined the influence of factors present at the time an attitude is formed on the degree to which this attitude guides future behavior. The findings indicated that attitudes correlated with a future behavior more strongly when they were easy to recall (accessible) and stable over time. Because of increased accessibility, attitudes more strongly predicted future behavior when participants had direct experience with the attitude object and reported their attitudes frequently. Because of the resulting attitude stability, the attitude-behavior association was strongest when attitudes were confident, when participants formed their attitude on the basis of behavior-relevant information, and when they received or were induced to think about one- rather than two-sided information about the attitude object.

  14. Predicting the Future Impact of Droughts on Ungulate Populations in Arid and Semi-Arid Environments

    PubMed Central

    Duncan, Clare; Chauvenet, Aliénor L. M.; McRae, Louise M.; Pettorelli, Nathalie

    2012-01-01

    Droughts can have a severe impact on the dynamics of animal populations, particularly in semi-arid and arid environments where herbivore populations are strongly limited by resource availability. Increased drought intensity under projected climate change scenarios can be expected to reduce the viability of such populations, yet this impact has seldom been quantified. In this study, we aim to fill this gap and assess how the predicted worsening of droughts over the 21st century is likely to impact the population dynamics of twelve ungulate species occurring in arid and semi-arid habitats. Our results provide support to the hypotheses that more sedentary, grazing and mixed feeding species will be put at high risk from future increases in drought intensity, suggesting that management intervention under these conditions should be targeted towards species possessing these traits. Predictive population models for all sedentary, grazing or mixed feeding species in our study show that their probability of extinction dramatically increases under future emissions scenarios, and that this extinction risk is greater for smaller populations than larger ones. Our study highlights the importance of quantifying the current and future impacts of increasing extreme natural events on populations and species in order to improve our ability to mitigate predicted biodiversity loss under climate change. PMID:23284700

  15. FutureTox II: in vitro data and in silico models for predictive toxicology.

    PubMed

    Knudsen, Thomas B; Keller, Douglas A; Sander, Miriam; Carney, Edward W; Doerrer, Nancy G; Eaton, David L; Fitzpatrick, Suzanne Compton; Hastings, Kenneth L; Mendrick, Donna L; Tice, Raymond R; Watkins, Paul B; Whelan, Maurice

    2015-02-01

    FutureTox II, a Society of Toxicology Contemporary Concepts in Toxicology workshop, was held in January, 2014. The meeting goals were to review and discuss the state of the science in toxicology in the context of implementing the NRC 21st century vision of predicting in vivo responses from in vitro and in silico data, and to define the goals for the future. Presentations and discussions were held on priority concerns such as predicting and modeling of metabolism, cell growth and differentiation, effects on sensitive subpopulations, and integrating data into risk assessment. Emerging trends in technologies such as stem cell-derived human cells, 3D organotypic culture models, mathematical modeling of cellular processes and morphogenesis, adverse outcome pathway development, and high-content imaging of in vivo systems were discussed. Although advances in moving towards an in vitro/in silico based risk assessment paradigm were apparent, knowledge gaps in these areas and limitations of technologies were identified. Specific recommendations were made for future directions and research needs in the areas of hepatotoxicity, cancer prediction, developmental toxicity, and regulatory toxicology. PMID:25628403

  16. FutureTox II: In vitro Data and In Silico Models for Predictive Toxicology

    PubMed Central

    Knudsen, Thomas B.; Keller, Douglas A.; Sander, Miriam; Carney, Edward W.; Doerrer, Nancy G.; Eaton, David L.; Fitzpatrick, Suzanne Compton; Hastings, Kenneth L.; Mendrick, Donna L.; Tice, Raymond R.; Watkins, Paul B.; Whelan, Maurice

    2015-01-01

    FutureTox II, a Society of Toxicology Contemporary Concepts in Toxicology workshop, was held in January, 2014. The meeting goals were to review and discuss the state of the science in toxicology in the context of implementing the NRC 21st century vision of predicting in vivo responses from in vitro and in silico data, and to define the goals for the future. Presentations and discussions were held on priority concerns such as predicting and modeling of metabolism, cell growth and differentiation, effects on sensitive subpopulations, and integrating data into risk assessment. Emerging trends in technologies such as stem cell-derived human cells, 3D organotypic culture models, mathematical modeling of cellular processes and morphogenesis, adverse outcome pathway development, and high-content imaging of in vivo systems were discussed. Although advances in moving towards an in vitro/in silico based risk assessment paradigm were apparent, knowledge gaps in these areas and limitations of technologies were identified. Specific recommendations were made for future directions and research needs in the areas of hepatotoxicity, cancer prediction, developmental toxicity, and regulatory toxicology. PMID:25628403

  17. What should we want to know about our future? A Kantian view on predictive genetic testing.

    PubMed

    Heinrichs, Bert

    2005-01-01

    Recent advances in genomic research have led to the development of new diagnostic tools, including tests which make it possible to predict the future occurrence of monogenetic diseases (e.g. Chorea Huntington) or to determine increased susceptibilities to the future development of more complex diseases (e.g. breast cancer). The use of such tests raises a number of ethical, legal and social issues which are usually discussed in terms of rights. However, in the context of predictive genetic tests a key question arises which lies beyond the concept of rights, namely, What should we want to know about our future? In the following I shall discuss this question against the background of Kant's Doctrine of Virtue. It will be demonstrated that the system of duties of virtue that Kant elaborates in the second part of his Metaphysics of Morals offers a theoretical framework for addressing the question of a proper scope of future knowledge as provided by genetic tests. This approach can serve as a source of moral guidance complementary to a justice perspective. It does, however, not rest on the-rather problematic--claim to be able to define what the "good life" is. PMID:15906937

  18. What should we want to know about our future? A Kantian view on predictive genetic testing.

    PubMed

    Heinrichs, Bert

    2005-01-01

    Recent advances in genomic research have led to the development of new diagnostic tools, including tests which make it possible to predict the future occurrence of monogenetic diseases (e.g. Chorea Huntington) or to determine increased susceptibilities to the future development of more complex diseases (e.g. breast cancer). The use of such tests raises a number of ethical, legal and social issues which are usually discussed in terms of rights. However, in the context of predictive genetic tests a key question arises which lies beyond the concept of rights, namely, What should we want to know about our future? In the following I shall discuss this question against the background of Kant's Doctrine of Virtue. It will be demonstrated that the system of duties of virtue that Kant elaborates in the second part of his Metaphysics of Morals offers a theoretical framework for addressing the question of a proper scope of future knowledge as provided by genetic tests. This approach can serve as a source of moral guidance complementary to a justice perspective. It does, however, not rest on the-rather problematic--claim to be able to define what the "good life" is.

  19. Predictions of future ephemeral springtime waterbird stopover habitat availability under global change

    USGS Publications Warehouse

    Uden, Daniel R.; Allen, Craig R.; Bishop, Andrew A.; Grosse, Roger; Jorgensen, Christopher F.; LaGrange, Theodore G.; Stutheit, Randy G.; Vrtiska, Mark P.

    2015-01-01

    In the present period of rapid, worldwide change in climate and landuse (i.e., global change), successful biodiversity conservation warrants proactive management responses, especially for long-distance migratory species. However, the development and implementation of management strategies can be impeded by high levels of uncertainty and low levels of control over potentially impactful future events and their effects. Scenario planning and modeling are useful tools for expanding perspectives and informing decisions under these conditions. We coupled scenario planning and statistical modeling to explain and predict playa wetland inundation (i.e., presence/absence of water) and ponded area (i.e., extent of water) in the Rainwater Basin, an anthropogenically altered landscape that provides critical stopover habitat for migratory waterbirds. Inundation and ponded area models for total wetlands, those embedded in rowcrop fields, and those not embedded in rowcrop fields were trained and tested with wetland ponding data from 2004 and 2006–2009, and then used to make additional predictions under two alternative climate change scenarios for the year 2050, yielding a total of six predictive models and 18 prediction sets. Model performance ranged from moderate to good, with inundation models outperforming ponded area models, and models for non-rowcrop-embedded wetlands outperforming models for total wetlands and rowcrop-embedded wetlands. Model predictions indicate that if the temperature and precipitation changes assumed under our climate change scenarios occur, wetland stopover habitat availability in the Rainwater Basin could decrease in the future. The results of this and similar studies could be aggregated to increase knowledge about the potential spatial and temporal distributions of future stopover habitat along migration corridors, and to develop and prioritize multi-scale management actions aimed at mitigating the detrimental effects of global change on migratory

  20. Predicting the future from the past: An old problem from a modern perspective

    NASA Astrophysics Data System (ADS)

    Cecconi, F.; Cencini, M.; Falcioni, M.; Vulpiani, A.

    2012-11-01

    The idea of predicting the future from the knowledge of the past is quite natural, even when dealing with systems whose equations of motion are not known. This long-standing issue is revisited in the light of modern ergodic theory of dynamical systems and becomes particularly interesting from a pedagogical perspective due to its close link with Poincaré's recurrence. Using such a connection, a very general result of ergodic theory—Kac's lemma—can be used to establish the intrinsic limitations to the possibility of predicting the future from the past. In spite of a naive expectation, predictability is hindered more by the effective number of degrees of freedom of a system than by the presence of chaos. If the effective number of degrees of freedom becomes large enough, whether the system is chaotic or not, predictions turn out to be practically impossible. The discussion of these issues is illustrated with the help of the numerical study of simple models.

  1. The Current and Future Use of Ridge Regression for Prediction in Quantitative Genetics.

    PubMed

    de Vlaming, Ronald; Groenen, Patrick J F

    2015-01-01

    In recent years, there has been a considerable amount of research on the use of regularization methods for inference and prediction in quantitative genetics. Such research mostly focuses on selection of markers and shrinkage of their effects. In this review paper, the use of ridge regression for prediction in quantitative genetics using single-nucleotide polymorphism data is discussed. In particular, we consider (i) the theoretical foundations of ridge regression, (ii) its link to commonly used methods in animal breeding, (iii) the computational feasibility, and (iv) the scope for constructing prediction models with nonlinear effects (e.g., dominance and epistasis). Based on a simulation study we gauge the current and future potential of ridge regression for prediction of human traits using genome-wide SNP data. We conclude that, for outcomes with a relatively simple genetic architecture, given current sample sizes in most cohorts (i.e., N < 10,000) the predictive accuracy of ridge regression is slightly higher than the classical genome-wide association study approach of repeated simple regression (i.e., one regression per SNP). However, both capture only a small proportion of the heritability. Nevertheless, we find evidence that for large-scale initiatives, such as biobanks, sample sizes can be achieved where ridge regression compared to the classical approach improves predictive accuracy substantially.

  2. Predicting married and cohabiting couples' futures from their descriptions of stepfamily life.

    PubMed

    Slattery, Maddy E; Bruce, Vanessa; Halford, W Kim; Nicholson, Jan M

    2011-08-01

    Stepfamily couples experience specific challenges early in their relationships, (e.g., reaching agreement on the role of the stepparent in parenting). The Oral History Interview for Stepfamilies (OHI-S) was developed to assess spouses' cognitive representations of their adaptation to these challenges. It was hypothesized that their responses would predict future relationship satisfaction and stability. One-hundred and 22 stepfamily couples completed the OHI-S and were assessed on relationship satisfaction and stability at Time 1 and 2.5 years later (Time 2). Time 2 relationship satisfaction and stability were both predicted by the OHI-S at Time 1. Couples' perceptions of the stepfamily and couple relationship predict separation, and suggest there is an opportunity for early intervention to enhance stepfamily couple relationships.

  3. Brain Activity in Valuation Regions while Thinking about the Future Predicts Individual Discount Rates

    PubMed Central

    Cooper, Nicole; Kim, B. Kyu; Zauberman, Gal

    2013-01-01

    People vary widely in how much they discount delayed rewards, yet little is known about the sources of these differences. Here we demonstrate that neural activity in ventromedial prefrontal cortex (VMPFC) and ventral striatum (VS) when human subjects are asked to merely think about the future—specifically, to judge the subjective length of future time intervals—predicts delay discounting. High discounters showed lower activity for longer time delays, while low discounters showed the opposite pattern. Our results demonstrate that the correlation between VMPFC and VS activity and discounting occurs even in the absence of choices about future rewards, and does not depend on a person explicitly evaluating future outcomes or judging their self-relevance. This suggests a link between discounting and basic processes involved in thinking about the future, such as temporal perception. Our results also suggest that reducing impatience requires not suppression of VMPFC and VS activity altogether, but rather modulation of how these regions respond to the present versus the future. PMID:23926268

  4. Behavioral forecasts do not improve the prediction of future behavior: a prospective study of self-injury.

    PubMed

    Janis, Irene Belle; Nock, Matthew K

    2008-10-01

    Clinicians are routinely encouraged to use multimodal assessments incorporating information from multiple sources when determining an individual's risk of dangerous or self-injurious behavior; however, some sources of information may not improve prediction models and so should not be relied on in such assessments. The authors examined whether individuals' prediction of their own future behavior improves prediction over using history of self-injurious thoughts and behaviors (SITB) alone. Sixty-four adolescents with a history of SITB were interviewed regarding their past year history of SITB, asked about the likelihood that they would engage in future SITB, and followed over a 6-month period. Individuals' forecasts of their future behavior were related to subsequent SITB, but did not improve prediction beyond the use of SITB history. In contrast, history of SITB improved prediction of subsequent SITB beyond individuals' behavioral forecasts. Clinicians should rely more on past history of a behavior than individuals' forecasts of future behavior in predicting SITB.

  5. Prediction of future hydrological regimes in poorly gauged high altitude basins: the case study of the upper Indus, Pakistan

    NASA Astrophysics Data System (ADS)

    Bocchiola, D.; Diolaiuti, G.; Soncini, A.; Mihalcea, C.; D'Agata, C.; Mayer, C.; Lambrecht, A.; Rosso, R.; Smiraglia, C.

    2011-04-01

    In the mountain regions of the Hindu Kush, Karakoram and Himalaya (HKH) the "third polar ice cap" of our planet, glaciers play the role of "water towers" by providing significant amount of melt water, especially in the dry season, essential for agriculture, drinking purposes, and hydropower production. Recently, most glaciers in the HKH have been retreating and losing mass, mainly due to significant regional warming, thus calling for assessment of future water resources availability for populations down slope. However, hydrology of these high altitude catchments is poorly studied and little understood. Most such catchments are poorly gauged, thus posing major issues in flow prediction therein, and representing in facts typical grounds of application of PUB concepts, where simple and portable hydrological modeling based upon scarce data amount is necessary for water budget estimation, and prediction under climate change conditions. In this preliminarily study, future (2060) hydrological flows in a particular watershed (Shigar river at Shigar, ca. 7000 km2), nested within the upper Indus basin and fed by seasonal melt from major glaciers, are investigated. The study is carried out under the umbrella of the SHARE-Paprika project, aiming at evaluating the impact of climate change upon hydrology of the upper Indus river. We set up a minimal hydrological model, tuned against a short series of observed ground climatic data from a number of stations in the area, in situ measured ice ablation data, and remotely sensed snow cover data. The future, locally adjusted, precipitation and temperature fields for the reference decade 2050-2059 from CCSM3 model, available within the IPCC's panel, are then fed to the hydrological model. We adopt four different glaciers' cover scenarios, to test sensitivity to decreased glacierized areas. The projected flow duration curves, and some selected flow descriptors are evaluated. The uncertainty of the results is then addressed, and use of

  6. Prediction of future hydrological regimes in poorly gauged high altitude basins: the case study of the upper Indus, Pakistan

    NASA Astrophysics Data System (ADS)

    Bocchiola, D.; Diolaiuti, G.; Soncini, A.; Mihalcea, C.; D'Agata, C.; Mayer, C.; Lambrecht, A.; Rosso, R.; Smiraglia, C.

    2011-07-01

    In the mountain regions of the Hindu Kush, Karakoram and Himalaya (HKH) the "third polar ice cap" of our planet, glaciers play the role of "water towers" by providing significant amount of melt water, especially in the dry season, essential for agriculture, drinking purposes, and hydropower production. Recently, most glaciers in the HKH have been retreating and losing mass, mainly due to significant regional warming, thus calling for assessment of future water resources availability for populations down slope. However, hydrology of these high altitude catchments is poorly studied and little understood. Most such catchments are poorly gauged, thus posing major issues in flow prediction therein, and representing in fact typical grounds of application of PUB concepts, where simple and portable hydrological modeling based upon scarce data amount is necessary for water budget estimation, and prediction under climate change conditions. In this preliminarily study, future (2060) hydrological flows in a particular watershed (Shigar river at Shigar, ca. 7000 km2), nested within the upper Indus basin and fed by seasonal melt from major glaciers, are investigated. The study is carried out under the umbrella of the SHARE-Paprika project, aiming at evaluating the impact of climate change upon hydrology of the upper Indus river. We set up a minimal hydrological model, tuned against a short series of observed ground climatic data from a number of stations in the area, in situ measured ice ablation data, and remotely sensed snow cover data. The future, locally adjusted, precipitation and temperature fields for the reference decade 2050-2059 from CCSM3 model, available within the IPCC's panel, are then fed to the hydrological model. We adopt four different glaciers' cover scenarios, to test sensitivity to decreased glacierized areas. The projected flow duration curves, and some selected flow descriptors are evaluated. The uncertainty of the results is then addressed, and use of the

  7. Predicting Future Space-Based Slitless Spectroscopic Surveys Using the WFC3 Infrared Spectroscopic Parallels (WISP)

    NASA Astrophysics Data System (ADS)

    Colbert, James W.; Teplitz, H.; Malkan, M.; Atek, H.; Ross, N.; Siana, B.; Henry, A.; McCarthy, P.; Bunker, A.; Scarlata, C.

    2012-01-01

    Future space telescopes are likely to make extensive use of slitless grism spectroscopy in the near-IR over large areas of sky. Both ESA's recently selected Euclid mission and the WFIRST mission being studied by NASA plan slitless spectroscopic surveys to obtain redshifts over thousands of square degrees. The HST WFC3 camera has two near-infrared grisms, G102 and G141, covering 0.8-1.6 microns, making it perfect the perfect laboratory for predicting what these future missions will find. We present results from the WFC3 Infrared Spectroscopic Parallels (WISP) program, which has been taking deep WFC3 observations using both grisms at random locations across the sky in parallel with primary COS observations. The WISP survey presently consists of more than 150 fields, covering 700 square arcminutes, reaching fluxes of 5 x 10-17 ergs/s/cm2. We will present completeness corrected number counts, luminosity functions, and predicted counts for the proposed future missions. We will also discuss the issue of line identification of the emission lines, particularly H-alpha and [OIII]5007 which often have similar fluxes and equivalent widths.

  8. Predicting the future by explaining the past: constraining carbon-climate feedback using contemporary observations

    NASA Astrophysics Data System (ADS)

    Denning, S.

    2014-12-01

    The carbon-climate community has an historic opportunity to make a step-function improvement in climate prediction by using regional constraints to improve mechanistic model representation of carbon cycle processes. Interactions among atmospheric CO2, global biogeochemistry, and physical climate constitute leading sources of uncertainty in future climate. First-order differences among leading models of these processes produce differences in climate as large as differences in aerosol-cloud-radiation interactions and fossil fuel combustion. Emergent constraints based on global observations of interannual variations provide powerful constraints on model parameterizations. Additional constraints can be defined at regional scales. Organized intercomparison experiments have shown that uncertainties in future carbon-climate feedback arise primarily from model representations of the dependence of photosynthesis on CO2 and drought stress and the dependence of decomposition on temperature. Just as representations of net carbon fluxes have benefited from eddy flux, ecosystem manipulations, and atmospheric CO2, component carbon fluxes (photosynthesis, respiration, decomposition, disturbance) can be constrained at regional scales using new observations. Examples include biogeochemical tracers such as isotopes and carbonyl sulfide as well as remotely-sensed parameters such as chlorophyll fluorescence and biomass. Innovative model evaluation experiments will be needed to leverage the information content of new observations to improve process representations as well as to provide accurate initial conditions for coupled climate model simulations. Successful implementation of a comprehensive benchmarking program could have a huge impact on understanding and predicting future climate change.

  9. Feather and faecal corticosterone concentrations predict future reproductive decisions in harlequin ducks (Histrionicus histrionicus).

    PubMed

    Hansen, Warren K; Bate, Lisa J; Landry, Devin W; Chastel, Olivier; Parenteau, Charline; Breuner, Creagh W

    2016-01-01

    Understanding sources of reproductive variation can inform management and conservation decisions, population ecology and life-history theory. Annual reproductive variation can drive population growth rate and can be influenced by factors from across the annual cycle (known as carry-over effects). The majority of studies, however, focus solely on the role of current environmental events. Past events often influence future reproductive decisions and success but can be logistically difficult to collect and quantify, especially in migratory species. Recent work indicates that glucocorticoids may prove good indicators to evaluate carry-over effects across life-history transitions. Here, we evaluated three different measures of glucocorticoid physiology (feathers, faeces and plasma) to evaluate the predictability of future breeding decision in the harlequin duck (Histrionicus histrionicus). We collected tail and back feathers, plasma and faeces for glucocorticoid analysis, and fitted female harlequin ducks with very high-frequency transmitters to track their breeding decisions. Both back feathers (moulted immediately before the current season) and faecal glucocorticoid metabolites were identified as important predictive factors of reproductive decisions; high concentrations of glucocorticoid metabolites in back feathers and faeces predicted a higher likelihood of reproductive deferral for the year. Although back and tail feather corticosterone concentrations were correlated, tail feathers (moulted at the end of the previous breeding season) did not predict breeding decisions. Plasma corticosterone concentrations were collected over too broad a time range after capture to be useful in this study. This study demonstrates the utility of non-invasive corticosterone metrics in predicting breeding decisions and supports the use of feathers to measure carry-over effects in migratory birds. With this technique, we identified the prenuptial moult as an important life

  10. Feather and faecal corticosterone concentrations predict future reproductive decisions in harlequin ducks (Histrionicus histrionicus)

    PubMed Central

    Hansen, Warren K.; Bate, Lisa J.; Landry, Devin W.; Chastel, Olivier; Parenteau, Charline; Breuner, Creagh W.

    2016-01-01

    Understanding sources of reproductive variation can inform management and conservation decisions, population ecology and life-history theory. Annual reproductive variation can drive population growth rate and can be influenced by factors from across the annual cycle (known as carry-over effects). The majority of studies, however, focus solely on the role of current environmental events. Past events often influence future reproductive decisions and success but can be logistically difficult to collect and quantify, especially in migratory species. Recent work indicates that glucocorticoids may prove good indicators to evaluate carry-over effects across life-history transitions. Here, we evaluated three different measures of glucocorticoid physiology (feathers, faeces and plasma) to evaluate the predictability of future breeding decision in the harlequin duck (Histrionicus histrionicus). We collected tail and back feathers, plasma and faeces for glucocorticoid analysis, and fitted female harlequin ducks with very high-frequency transmitters to track their breeding decisions. Both back feathers (moulted immediately before the current season) and faecal glucocorticoid metabolites were identified as important predictive factors of reproductive decisions; high concentrations of glucocorticoid metabolites in back feathers and faeces predicted a higher likelihood of reproductive deferral for the year. Although back and tail feather corticosterone concentrations were correlated, tail feathers (moulted at the end of the previous breeding season) did not predict breeding decisions. Plasma corticosterone concentrations were collected over too broad a time range after capture to be useful in this study. This study demonstrates the utility of non-invasive corticosterone metrics in predicting breeding decisions and supports the use of feathers to measure carry-over effects in migratory birds. With this technique, we identified the prenuptial moult as an important life

  11. Radiation Transport Modeling and Assessment to Better Predict Radiation Exposure, Dose, and Toxicological Effects to Human Organs on Long Duration Space Flights

    NASA Technical Reports Server (NTRS)

    Denkins, Pamela; Badhwar, Gautam; Obot, Victor

    2000-01-01

    NASA's long-range plans include possible human exploratory missions to the moon and Mars within the next quarter century. Such missions beyond low Earth orbit will expose crews to transient radiation from solar particle events which include high-energy galactic cosmic rays and high-energy protons. Because the radiation levels in space are high and the missions long, adequate shielding is needed to minimize the deleterious health effects of exposure to radiation. The focus of this study is radiation exposure to the blood-forming organs of the NASA astronauts. NASA/JSC developed the Phantom Torso Experiment for Organ Dose Measurements which housed active and passive dosimeters that would monitor and record absorbed radiation levels at vital organ locations. This experiment was conducted during the STS-9 I mission in May '98 and provided the necessary space radiation data for correlation to results obtained from the current analytical models used to predict exposure to the blood-forming organs. Numerous models (i.e., BRYNTRN and HZETRN) have been developed and used to predict radiation exposure. However, new models are continually being developed and evaluated. The Space Environment Information Systems (SPENVIS) modeling program, developed by the Belgian Institute for Space Aeronomy, is to be used and evaluated as a part of the research activity. It is the intent of this research effort to compare the modeled data to the findings from the STS-9 I mission; assess the accuracy and efficiency of this model; and to determine its usefulness for predicting radiation exposure and developing better guidelines for shielding requirements for long duration manned missions.

  12. Neural mechanisms to predict subjective level of fatigue in the future: a magnetoencephalography study

    PubMed Central

    Ishii, Akira; Tanaka, Masaaki; Watanabe, Yasuyoshi

    2016-01-01

    Fatigue is a major contributor to workplace accidents, morbidity, and mortality. To prevent the disruption of homeostasis and to concurrently accomplish an assigned workload, it is essential to control the level of workload based on the subjective estimation of the level of fatigue that will be experienced in the near future. In this study, we aimed to clarify the neural mechanisms related to predicting subjective levels of fatigue that would be experienced 60 min later, using magnetoencephalography. Sixteen healthy male volunteers participated in this study. In relation to the prediction, a decrease of alpha band power in the right Brodmann’s area (BA) 40 and BA 9 at 1200 to 1350 ms and that in the right BA 9 at 1350 to 1500 ms, and a decrease of gamma band power in the right BA 10 at 1500 to 1650 ms were observed. In addition, the decreased level of alpha band power in BA 9 at 1200 to 1350 ms was positively associated with the daily level of fatigue. These findings may help increase our understanding of the neural mechanisms activated to indicate the need to take a rest based on the prediction of the subjective fatigue in the future. PMID:27112115

  13. Elevated Reward Region Responsivity Predicts Future Substance Use Onset But Not Overweight/Obesity Onset

    PubMed Central

    Stice, Eric; Yokum, Sonja; Burger, Kyle S.

    2013-01-01

    Background We tested the hypotheses that adolescents who show elevated reward region responsivity are at increased risk for initial onset of overweight/obesity and substance use, which is important because there have been no such prospective tests of the reward surfeit model of these motivated behaviors. Methods One hundred sixty-two adolescents (mean age = 15.3 ± 1.06 years) with healthy weights (mean body mass index = 20.8 ± 1.90) completed functional magnetic resonance imaging paradigms that assessed neural activation in response to receipt and anticipated receipt of palatable food and monetary reward; body fat and substance use were assessed at baseline and 1-year follow-up. Results Elevated caudate (r = .31, p < .001) and putamen (r = .28, p < .001) response to monetary reward predicted substance use onset over 1-year follow-up, but reward circuitry responsivity did not predict future overweight/obesity onset. Adolescents who reported substance use versus abstinence at baseline also showed less caudate (r = –.31, p < .001) response to monetary reward. Discussion Results show that hyper-responsivity of reward circuitry increases risk for future substance use onset, providing novel support for the reward surfeit model. Results also imply that even a limited substance use history was associated with reduced reward region responsivity, extending results from studies that compared substance-dependent individuals with healthy control subjects and suggesting that substance use downregulates reward circuitry. However, aberrant reward region responsivity did not predict initial unhealthy weight gain. PMID:23312561

  14. Walking ability to predict future cognitive decline in old adults: A scoping review.

    PubMed

    Kikkert, Lisette H J; Vuillerme, Nicolas; van Campen, Jos P; Hortobágyi, Tibor; Lamoth, Claudine J

    2016-05-01

    Early identification of individuals at risk for cognitive decline may facilitate the selection of those who benefit most from interventions. Current models predicting cognitive decline include neuropsychological and/or biological markers. Additional markers based on walking ability might improve accuracy and specificity of these models because motor and cognitive functions share neuroanatomical structures and psychological processes. We reviewed the relationship between walking ability at one point of (mid) life and cognitive decline at follow-up. A systematic literature search identified 20 longitudinal studies. The average follow-up time was 4.5 years. Gait speed quantified walking ability in most studies (n=18). Additional gait measures (n=4) were step frequency, variability and step-length. Despite methodological weaknesses, results revealed that gait slowing (0.68-1.1 m/sec) preceded cognitive decline and the presence of dementia syndromes (maximal odds and hazard ratios of 10.4 and 11.1, respectively). The results indicate that measures of walking ability could serve as additional markers to predict cognitive decline. However, gait speed alone might lack specificity. We recommend gait analysis, including dynamic gait parameters, in clinical evaluations of patients with suspected cognitive decline. Future studies should focus on examining the specificity and accuracy of various gait characteristics to predict future cognitive decline. PMID:26861693

  15. Predicting current and future peatmoss drought stress: Impact of hydrological complexity

    NASA Astrophysics Data System (ADS)

    Nijp, Jelmer; Metselaar, Klaas; Limpens, Juul; Teutschbein, Claudia; Peichl, Matthias; Nilsson, Mats; Berendse, Frank; van der Zee, Sjoerd

    2016-04-01

    Northern peatlands sequester enormous amounts of carbon and therefore represent a carbon store of global importance. The vegetation in northern peatlands is dominated by peat-forming bryophytes of the genus Sphagnum. The growth of this carbon fixer, and hence its carbon uptake, strongly depends on the moisture availability in the living moss layer, which is a function of both water table and rewetting by rain. Peatland hydrology models are used to predict how changes in climate may modify the future water balance of peatmoss carpets and influence associated carbon and energy balances. These models, however, differ considerably in the number and type of processes included, which will have yet unknown consequences for peatland drought predictions in a future climate. Here, we assessed the importance of rainwater storage and peat volume change for predicting peatmoss drought projections in northern peatlands using an ensemble of downscaled, bias-corrected climate scenarios for current (1991 - 2020) and future (2061 - 2090) climate. Peatmoss drought projections were compared among four model variants with or without rainwater storage in the peatmoss carpet and peat volume change, which are considered as two important hydrological feedbacks controlling moss moisture availability. The performance of the four model variants was assessed using field data from a site in northern Sweden (Degerö Stormyr, 64°N 19°E). Our results show that adding rainwater storage in the moss layer as well as peat volume change significantly improved model performance; the most complex model had best model performance. Compared to the reference model, including both model extensions reduced the predicted drought frequency experienced by peatmoss with around 50%. Moreover, projected climate change is expected to reduce predicted peatmoss drought stress with about 20% for the studied site. In conclusion, this study shows that including rainwater storage in the peatmoss layer and/or peat volume

  16. The future of satellite remote sensing: A worldwide assessment and prediction

    NASA Technical Reports Server (NTRS)

    Spann, G. W.

    1984-01-01

    A frame-work in which to assess and predict the future prospects for satellite remote sensing markets is provided. The scope of the analysis is the satellite-related market for data, equipment, and services. It encompasses both domestic and international markets and contains an examination of the various market characteristics by market segment (e.g., Federal Government, State and Local Governments, Academic Organizations, Industrial Companies, and Individuals) and primary applications areas (e.g., Geology, Forestry, Land Resource Management, Agriculture and Cartography). The forecasts are derived from an analysis of both U.S. and foreign market data. The evolution and current status of U.S. and Foreign markets to arrive at market growth rates is evaluated. Circumstances and events which are likely to affect the future market development are examined. A market growth scenario is presented that is consistent with past data sales trends and takes into account the dynamic nature of the future satellite remote sensing market. Several areas of current and future business opportunities available in this market are discussed. Specific worldwide forecasts are presented in three market sectors for the period 1980 to 1990.

  17. Superpartners at LHC and future colliders: predictions from constrained compactified M-theory

    NASA Astrophysics Data System (ADS)

    Ellis, Sebastian A. R.; Kane, Gordon L.; Zheng, Bob

    2015-07-01

    We study a realistic top-down M-theory compactification with low-scale effective Supersymmetry, consistent with phenomenological constraints. A combination of top-down and generic phenomenological constraints fix the spectrum. Three and only three superpartner channels, , χ {2/0} χ {1/±} and χ {1/+} χ {1/-} (where χ {2/0} , χ {1/±} are Wino-like), are expected to be observable at LHC-14. We also investigate the prospects of finding heavy squarks and Higgsinos at future colliders. Gluino-stop-top, gluino-sbottom-bottom associated production and first generation squark associated production should be observable at a 100 TeV collider, along with direct production of heavy Higgsinos. Within this framework the discovery of a single sparticle is sufficient to determine uniquely the SUSY spectrum, yielding a number of concrete testable predictions for LHC-14 and future colliders, and determination of M 3/2 and thereby other fundamental quantities.

  18. Modeling microbial communities: current, developing, and future technologies for predicting microbial community interaction.

    PubMed

    Larsen, Peter; Hamada, Yuki; Gilbert, Jack

    2012-07-31

    Never has there been a greater opportunity for investigating microbial communities. Not only are the profound effects of microbial ecology on every aspect of Earth's geochemical cycles beginning to be understood, but also the analytical and computational tools for investigating microbial Earth are undergoing a rapid revolution. This environmental microbial interactome, the system of interactions between the microbiome and the environment, has shaped the planet's past and will undoubtedly continue to do so in the future. We review recent approaches for modeling microbial community structures and the interactions of microbial populations with their environments. Different modeling approaches consider the environmental microbial interactome from different aspects, and each provides insights to different facets of microbial ecology. We discuss the challenges and opportunities for the future of microbial modeling and describe recent advances in microbial community modeling that are extending current descriptive technologies into a predictive science.

  19. Predicting and mitigating future biodiversity loss using long-term ecological proxies

    NASA Astrophysics Data System (ADS)

    Fordham, Damien A.; Akçakaya, H. Resit; Alroy, John; Saltré, Frédérik; Wigley, Tom M. L.; Brook, Barry W.

    2016-10-01

    Uses of long-term ecological proxies in strategies for mitigating future biodiversity loss are too limited in scope. Recent advances in geochronological dating, palaeoclimate reconstructions and molecular techniques for inferring population dynamics offer exciting new prospects for using retrospective knowledge to better forecast and manage ecological outcomes in the face of global change. Opportunities include using fossils, genes and computational models to identify ecological traits that caused species to be differentially prone to regional and range-wide extinction, test if threatened-species assessment approaches work and locate habitats that support stable ecosystems in the face of shifting climates. These long-term retrospective analyses will improve efforts to predict the likely effects of future climate and other environmental change on biodiversity, and target conservation management resources most effectively.

  20. Modeling microbial communities: current, developing, and future technologies for predicting microbial community interaction.

    PubMed

    Larsen, Peter; Hamada, Yuki; Gilbert, Jack

    2012-07-31

    Never has there been a greater opportunity for investigating microbial communities. Not only are the profound effects of microbial ecology on every aspect of Earth's geochemical cycles beginning to be understood, but also the analytical and computational tools for investigating microbial Earth are undergoing a rapid revolution. This environmental microbial interactome, the system of interactions between the microbiome and the environment, has shaped the planet's past and will undoubtedly continue to do so in the future. We review recent approaches for modeling microbial community structures and the interactions of microbial populations with their environments. Different modeling approaches consider the environmental microbial interactome from different aspects, and each provides insights to different facets of microbial ecology. We discuss the challenges and opportunities for the future of microbial modeling and describe recent advances in microbial community modeling that are extending current descriptive technologies into a predictive science. PMID:22465599

  1. Does Emotional Intelligence at Medical School Admission Predict Future Academic Performance?

    PubMed Central

    Leddy, John J.; Wood, Timothy J.; Puddester, Derek; Moineau, Geneviève

    2014-01-01

    Purpose Medical school admissions committees are increasingly considering noncognitive measures like emotional intelligence (EI) in evaluating potential applicants. This study explored whether scores on an EI abilities test at admissions predicted future academic performance in medical school to determine whether EI could be used in making admissions decisions. Method The authors invited all University of Ottawa medical school applicants offered an interview in 2006 and 2007 to complete the Mayer–Salovey–Caruso EI Test (MSCEIT) at the time of their interview (105 and 101, respectively), then again at matriculation (120 and 106, respectively). To determine predictive validity, they correlated MSCEIT scores to scores on written examinations and objective structured clinical examinations (OSCEs) administered during the four-year program. They also correlated MSCEIT scores to the number of nominations for excellence in clinical performance and failures recorded over the four years. Results The authors found no significant correlations between MSCEIT scores and written examination scores or number of failures. The correlations between MSCEIT scores and total OSCE scores ranged from 0.01 to 0.35; only MSCEIT scores at matriculation and OSCE year 4 scores for the 2007 cohort were significantly correlated. Correlations between MSCEIT scores and clinical nominations were low (range 0.12–0.28); only the correlation between MSCEIT scores at matriculation and number of clinical nominations for the 2007 cohort were statistically significant. Conclusions EI, as measured by an abilities test at admissions, does not appear to reliably predict future academic performance. Future studies should define the role of EI in admissions decisions. PMID:24556771

  2. The assessment of dangerousness and predictions of violence: recent research and future prospects.

    PubMed

    Litwack, T R; Kirschner, S M; Wack, R C

    1993-01-01

    Recent research on clinical and actuarial assessments of dangerousness leaves many important questions unanswered regarding the relative validity and utility of such assessments. Moreover, the focus that has existed on determining the false-positive and false-negative rates of predictions of violence may be fundamentally misplaced. Clinical evaluations of dangerousness should be viewed as assessments of risk rather than as predictions of violence; and future research should focus on understanding and evaluating how clinical assessments of dangerousness-regarding truly representative types of possibly dangerous patients--are (or should be) made. In the meantime, the research to date on clinical assessments of dangerousness cannot properly be taken to conflict with the Supreme Court's recent affirmations of the admissibility of such assessments in courtroom proceedings.

  3. Prediction of future development of cardiovascular disease with an equation to estimate apolipoprotein B

    PubMed Central

    Hwang, You-Cheol; Park, Cheol-Young; Ahn, Hong-Yup; Cho, Nam H.

    2016-01-01

    Abstract Apolipoprotein B (apoB) has additional benefits over conventional lipid measurements in predicting future cardiovascular disease (CVD). We aimed to validate the clinical relevance of our equation to estimate apoB in a large-scale, prospective, community-based cohort study (Ansung-Ansan cohort study). A total of 9001 Korean subjects were assessed. We excluded subjects with history of CVD (n = 228), taking lipid-lowering medications (n = 51), and those whose outcome data were not available (n = 33). Finally, a total of 8713 subjects (4126 men and 4587 women) with a mean age of 52.2 years were enrolled and followed up biannually for a mean 8.1 years. At baseline, 24.9% of subjects were current smokers, 12.5% had diabetes, and 22.2% had hypertension. Incident case of CVD occurred in 600 of the study subjects (493 ischemic heart disease and 424 stroke). Independent variables included in the models were age, sex, waist circumference, current smoking, and presence of diabetes and hypertension. Both non-HDL cholesterol (HR per 1-SD [95% CI]; 1.13 [1.05–1.23], P = 0.002) and estimated apoB (HR per 1-SD [95% CI]; 1.14 [1.05–1.24], P = 0.001) were independently associated with the development of CVD; however, the LDL cholesterol level was not predictive of future CVD (HR per 1-SD [95% CI]; 1.07 [0.99–1.16], P = 0.08). Both non-HDL cholesterol and estimated apoB level were independently associated with the development of CVD. Because LDL cholesterol has limited value to predict incident CVD, we recommend calculating non-HDL cholesterol or apoB with our equation to predict risk of incident CVD in the general Korean population. PMID:27310947

  4. Bigger data, collaborative tools and the future of predictive drug discovery.

    PubMed

    Ekins, Sean; Clark, Alex M; Swamidass, S Joshua; Litterman, Nadia; Williams, Antony J

    2014-10-01

    Over the past decade we have seen a growth in the provision of chemistry data and cheminformatics tools as either free websites or software as a service commercial offerings. These have transformed how we find molecule-related data and use such tools in our research. There have also been efforts to improve collaboration between researchers either openly or through secure transactions using commercial tools. A major challenge in the future will be how such databases and software approaches handle larger amounts of data as it accumulates from high throughput screening and enables the user to draw insights, enable predictions and move projects forward. We now discuss how information from some drug discovery datasets can be made more accessible and how privacy of data should not overwhelm the desire to share it at an appropriate time with collaborators. We also discuss additional software tools that could be made available and provide our thoughts on the future of predictive drug discovery in this age of big data. We use some examples from our own research on neglected diseases, collaborations, mobile apps and algorithm development to illustrate these ideas. PMID:24943138

  5. Bigger Data, Collaborative Tools and the Future of Predictive Drug Discovery

    PubMed Central

    Clark, Alex M.; Swamidass, S. Joshua; Litterman, Nadia; Williams, Antony J.

    2014-01-01

    Over the past decade we have seen a growth in the provision of chemistry data and cheminformatics tools as either free websites or software as a service (SaaS) commercial offerings. These have transformed how we find molecule-related data and use such tools in our research. There have also been efforts to improve collaboration between researchers either openly or through secure transactions using commercial tools. A major challenge in the future will be how such databases and software approaches handle larger amounts of data as it accumulates from high throughput screening and enables the user to draw insights, enable predictions and move projects forward. We now discuss how information from some drug discovery datasets can be made more accessible and how privacy of data should not overwhelm the desire to share it at an appropriate time with collaborators. We also discuss additional software tools that could be made available and provide our thoughts on the future of predictive drug discovery in this age of big data. We use some examples from our own research on neglected diseases, collaborations, mobile apps and algorithm development to illustrate these ideas. PMID:24943138

  6. Striatal dynamics explain duration judgments

    PubMed Central

    Gouvêa, Thiago S; Monteiro, Tiago; Motiwala, Asma; Soares, Sofia; Machens, Christian; Paton, Joseph J

    2015-01-01

    The striatum is an input structure of the basal ganglia implicated in several time-dependent functions including reinforcement learning, decision making, and interval timing. To determine whether striatal ensembles drive subjects' judgments of duration, we manipulated and recorded from striatal neurons in rats performing a duration categorization psychophysical task. We found that the dynamics of striatal neurons predicted duration judgments, and that simultaneously recorded ensembles could judge duration as well as the animal. Furthermore, striatal neurons were necessary for duration judgments, as muscimol infusions produced a specific impairment in animals' duration sensitivity. Lastly, we show that time as encoded by striatal populations ran faster or slower when rats judged a duration as longer or shorter, respectively. These results demonstrate that the speed with which striatal population state changes supports the fundamental ability of animals to judge the passage of time. DOI: http://dx.doi.org/10.7554/eLife.11386.001 PMID:26641377

  7. Constructing Positive Futures: Modeling the Relationship between Adolescents' Hopeful Future Expectations and Intentional Self Regulation in Predicting Positive Youth Development

    ERIC Educational Resources Information Center

    Schmid, Kristina L.; Phelps, Erin; Lerner, Richard M.

    2011-01-01

    Intentional self regulation and hopeful expectations for the future are theoretically-related constructs shown to lead to positive youth development (PYD). However, the nature of their relationship over time has not been tested. Therefore, this study explored the associations between hopeful future expectations and intentional self regulation in…

  8. Predicting the distribution of commercially important invertebrate stocks under future climate.

    PubMed

    Russell, Bayden D; Connell, Sean D; Mellin, Camille; Brook, Barry W; Burnell, Owen W; Fordham, Damien A

    2012-01-01

    The future management of commercially exploited species is challenging because techniques used to predict the future distribution of stocks under climate change are currently inadequate. We projected the future distribution and abundance of two commercially harvested abalone species (blacklip abalone, Haliotis rubra and greenlip abalone, H. laevigata) inhabiting coastal South Australia, using multiple species distribution models (SDM) and for decadal time slices through to 2100. Projections are based on two contrasting global greenhouse gas emissions scenarios. The SDMs identified August (winter) Sea Surface Temperature (SST) as the best descriptor of abundance and forecast that warming of winter temperatures under both scenarios may be beneficial to both species by allowing increased abundance and expansion into previously uninhabited coasts. This range expansion is unlikely to be realised, however, as projected warming of March SST is projected to exceed temperatures which cause up to 10-fold increases in juvenile mortality. By linking fine-resolution forecasts of sea surface temperature under different climate change scenarios to SDMs and physiological experiments, we provide a practical first approximation of the potential impact of climate-induced change on two species of marine invertebrates in the same fishery. PMID:23251326

  9. Predicting the future relapse of alcohol-dependent patients from structural and functional brain images.

    PubMed

    Seo, Sambu; Mohr, Johannes; Beck, Anne; Wüstenberg, Torsten; Heinz, Andreas; Obermayer, Klaus

    2015-11-01

    In alcohol dependence, individual prediction of treatment outcome based on neuroimaging endophenotypes can help to tailor individual therapeutic offers to patients depending on their relapse risk. We built a prediction model for prospective relapse of alcohol-dependent patients that combines structural and functional brain images derived from an experiment in which 46 subjects were exposed to alcohol-related cues. The patient group had been subdivided post hoc regarding relapse behavior defined as a consumption of more than 60 g alcohol for male or more than 40 g alcohol for female patients on one occasion during the 3-month assessment period (16 abstainers and 30 relapsers). Naïve Bayes, support vector machines and learning vector quantization were used to infer prediction models for relapse based on the mean and maximum values of gray matter volume and brain responses on alcohol-related cues within a priori defined regions of interest. Model performance was estimated by leave-one-out cross-validation. Learning vector quantization yielded the model with the highest balanced accuracy (79.4 percent, p < 0.0001; 90 percent sensitivity, 68.8 percent specificity). The most informative individual predictors were functional brain activation features in the right and left ventral tegmental areas and the right ventral striatum, as well as gray matter volume features in left orbitofrontal cortex and right medial prefrontal cortex. In contrast, the best pure clinical model reached only chance-level accuracy (61.3 percent). Our results indicate that an individual prediction of future relapse from imaging measurement outperforms prediction from clinical measurements. The approach may help to target specific interventions at different risk groups.

  10. Can phenological models predict tree phenology accurately in the future? The unrevealed hurdle of endodormancy break.

    PubMed

    Chuine, Isabelle; Bonhomme, Marc; Legave, Jean-Michel; García de Cortázar-Atauri, Iñaki; Charrier, Guillaume; Lacointe, André; Améglio, Thierry

    2016-10-01

    The onset of the growing season of trees has been earlier by 2.3 days per decade during the last 40 years in temperate Europe because of global warming. The effect of temperature on plant phenology is, however, not linear because temperature has a dual effect on bud development. On one hand, low temperatures are necessary to break bud endodormancy, and, on the other hand, higher temperatures are necessary to promote bud cell growth afterward. Different process-based models have been developed in the last decades to predict the date of budbreak of woody species. They predict that global warming should delay or compromise endodormancy break at the species equatorward range limits leading to a delay or even impossibility to flower or set new leaves. These models are classically parameterized with flowering or budbreak dates only, with no information on the endodormancy break date because this information is very scarce. Here, we evaluated the efficiency of a set of phenological models to accurately predict the endodormancy break dates of three fruit trees. Our results show that models calibrated solely with budbreak dates usually do not accurately predict the endodormancy break date. Providing endodormancy break date for the model parameterization results in much more accurate prediction of this latter, with, however, a higher error than that on budbreak dates. Most importantly, we show that models not calibrated with endodormancy break dates can generate large discrepancies in forecasted budbreak dates when using climate scenarios as compared to models calibrated with endodormancy break dates. This discrepancy increases with mean annual temperature and is therefore the strongest after 2050 in the southernmost regions. Our results claim for the urgent need of massive measurements of endodormancy break dates in forest and fruit trees to yield more robust projections of phenological changes in a near future. PMID:27272707

  11. Can phenological models predict tree phenology accurately in the future? The unrevealed hurdle of endodormancy break.

    PubMed

    Chuine, Isabelle; Bonhomme, Marc; Legave, Jean-Michel; García de Cortázar-Atauri, Iñaki; Charrier, Guillaume; Lacointe, André; Améglio, Thierry

    2016-10-01

    The onset of the growing season of trees has been earlier by 2.3 days per decade during the last 40 years in temperate Europe because of global warming. The effect of temperature on plant phenology is, however, not linear because temperature has a dual effect on bud development. On one hand, low temperatures are necessary to break bud endodormancy, and, on the other hand, higher temperatures are necessary to promote bud cell growth afterward. Different process-based models have been developed in the last decades to predict the date of budbreak of woody species. They predict that global warming should delay or compromise endodormancy break at the species equatorward range limits leading to a delay or even impossibility to flower or set new leaves. These models are classically parameterized with flowering or budbreak dates only, with no information on the endodormancy break date because this information is very scarce. Here, we evaluated the efficiency of a set of phenological models to accurately predict the endodormancy break dates of three fruit trees. Our results show that models calibrated solely with budbreak dates usually do not accurately predict the endodormancy break date. Providing endodormancy break date for the model parameterization results in much more accurate prediction of this latter, with, however, a higher error than that on budbreak dates. Most importantly, we show that models not calibrated with endodormancy break dates can generate large discrepancies in forecasted budbreak dates when using climate scenarios as compared to models calibrated with endodormancy break dates. This discrepancy increases with mean annual temperature and is therefore the strongest after 2050 in the southernmost regions. Our results claim for the urgent need of massive measurements of endodormancy break dates in forest and fruit trees to yield more robust projections of phenological changes in a near future.

  12. Modeling Spatial Recharge in the Arid Southern Okanagan Basin and Impacts of Future Predicted Climate Change

    NASA Astrophysics Data System (ADS)

    Allen, D. M.; Toews, M. W.

    2007-12-01

    Groundwater systems in arid regions will be particularly sensitive to climate change owing to the strong dependence of evapotranspiration rates on temperature, and potential shifts in the precipitation amounts and timing. In this study, future predicted climate change from three GCMs (CGCM1 GHG+A, CGCM3.1 A2, and HadCM3 A2) are used to evaluate the sensitivity of recharge in the Oliver region of the Okanagan Valley, south- central British Columbia, where annual precipitation is approximately 300~mm. Temperature data were downscaled using Statistical Downscaling Model (SDSM), while precipitation and solar radiation changes were estimated directly from the GCM data. Results for the region suggest that temperature will increase up to 4°C by the end of the century. Precipitation is expected to decrease in the spring, and increase in the fall. Solar radiation may decrease in the late summer. Shifts in climate, from present to future-predicted, were applied to the LARS-WG stochastic weather generator to generate daily stochastic weather series. Recharge was modeled spatially using output from the HELP hydrologic model applied to one-dimensional soil columns. An extensive valley-bottom soil database was used to determine both the spatial variation and vertical assemblage of soil horizons in the Oliver region. Soil hydraulic parameters were estimated from soil descriptions using pedotransfer functions through the ROSETTA program. Leaf area index (LAI) was estimated from ground-truthed Landsat 5 TM imagery, and surface slope was estimated from a digital elevation model. Irrigation application rates were modified for each climate scenario based on estimates of seasonal crop water demand. Daily irrigation was added to precipitation in irrigation districts using proportions of crop types along with daily climate and evapotranspiration data from LARS-WG. The two dominant crop classes are orchard (including peaches, cherries and apples) and vineyards (grapes). Recharge in

  13. Predicting future conflict between team-members with parameter-free models of social networks

    NASA Astrophysics Data System (ADS)

    Rovira-Asenjo, Núria; Gumí, Tània; Sales-Pardo, Marta; Guimerà, Roger

    2013-06-01

    Despite the well-documented benefits of working in teams, teamwork also results in communication, coordination and management costs, and may lead to personal conflict between team members. In a context where teams play an increasingly important role, it is of major importance to understand conflict and to develop diagnostic tools to avert it. Here, we investigate empirically whether it is possible to quantitatively predict future conflict in small teams using parameter-free models of social network structure. We analyze data of conflict appearance and resolution between 86 team members in 16 small teams, all working in a real project for nine consecutive months. We find that group-based models of complex networks successfully anticipate conflict in small teams whereas micro-based models of structural balance, which have been traditionally used to model conflict, do not.

  14. The future is in the numbers: the power of predictive analysis in the biomedical educational environment

    PubMed Central

    Gullo, Charles A.

    2016-01-01

    Biomedical programs have a potential treasure trove of data they can mine to assist admissions committees in identification of students who are likely to do well and help educational committees in the identification of students who are likely to do poorly on standardized national exams and who may need remediation. In this article, we provide a step-by-step approach that schools can utilize to generate data that are useful when predicting the future performance of current students in any given program. We discuss the use of linear regression analysis as the means of generating that data and highlight some of the limitations. Finally, we lament on how the combination of these institution-specific data sets are not being fully utilized at the national level where these data could greatly assist programs at large. PMID:27374246

  15. Resistance to sunitinib in renal cell carcinoma: From molecular mechanisms to predictive markers and future perspectives.

    PubMed

    Joosten, S C; Hamming, L; Soetekouw, P M; Aarts, M J; Veeck, J; van Engeland, M; Tjan-Heijnen, V C

    2015-01-01

    The introduction of agents that inhibit tumor angiogenesis by targeting vascular endothelial growth factor (VEGF) signaling has made a significant impact on the survival of patients with metastasized renal cell carcinoma (RCC). Sunitinib, a tyrosine kinase inhibitor of the VEGF receptor, has become the mainstay of treatment for these patients. Although treatment with sunitinib substantially improved patient outcome, the initial success is overshadowed by the occurrence of resistance. The mechanisms of resistance are poorly understood. Insight into the molecular mechanisms of resistance will help to better understand the biology of RCC and can ultimately aid the development of more effective therapies for patients with this infaust disease. In this review we comprehensively discuss molecular mechanisms of resistance to sunitinib and the involved biological processes, summarize potential biomarkers that predict response and resistance to treatment with sunitinib, and elaborate on future perspectives in the treatment of metastasized RCC. PMID:25446042

  16. Salivary testosterone change following monetary wins and losses predicts future financial risk-taking.

    PubMed

    Apicella, Coren L; Dreber, Anna; Mollerstrom, Johanna

    2014-01-01

    While baseline testosterone has recently been implicated in risk-taking in men, less is known about the effects of changing levels of testosterone on financial risk. Here we attempt to influence testosterone in men by having them win or lose money in a chance-based competition against another male opponent. We employ two treatments where we vary the amount of money at stake so that we can directly compare winners to losers who earn the same amount, thereby abstracting from income effects. We find that men who experience a greater increase in bioactive testosterone take on more risk, an association that remains when controlling for whether the participant won the competition. In fact, whether subjects won the competition did not predict future risk. These results suggest that testosterone change, and thus individual differences in testosterone reactivity, rather than the act of winning or losing, influence financial risk-taking. PMID:24275004

  17. The UT 8 February 2013 Sila-Nunam Mutual Event & Future Predictions

    NASA Astrophysics Data System (ADS)

    Benecchi, Susan D.; Noll, K.; Thirouin, A.; Ryan, E.; Grundy, W.; Verbiscer, A.; Doressoundiram, A.; Hestroffer, D.; Beaton, R.; Rabinowitz, D.; Chanover, N.

    2013-10-01

    A mutual event of the Kuiper Belt binary system (79360) Sila-Nunam was observed over 15.47 hours on UT 8 February 2013 by a coordinated effort at four telescopes: Telescopio Nationale Galileo in the Canary Islands, the du Pont telescope at Las Campanas Observatory, ARC at Apache Point Observatory and the IRTF on Mauna Kea. It is the first full event observed from start to finish for this binary system. The lightcurve is consistent with two objects of similar, but perhaps not identical, size and albedo. We will present the results from this event and predictions for future events which have been refined by this and other mutual event observations obtained since the events began.

  18. Evaluating the uncertainty of predicting future climate time series at the hourly time scale

    NASA Astrophysics Data System (ADS)

    Caporali, E.; Fatichi, S.; Ivanov, V. Y.

    2011-12-01

    A stochastic downscaling methodology is developed to generate hourly, point-scale time series for several meteorological variables, such as precipitation, cloud cover, shortwave radiation, air temperature, relative humidity, wind speed, and atmospheric pressure. The methodology uses multi-model General Circulation Model (GCM) realizations and an hourly weather generator, AWE-GEN. Probabilistic descriptions of factors of change (a measure of climate change with respect to historic conditions) are computed for several climate statistics and different aggregation times using a Bayesian approach that weights the individual GCM contributions. The Monte Carlo method is applied to sample the factors of change from their respective distributions thereby permitting the generation of time series in an ensemble fashion, which reflects the uncertainty of climate projections of future as well as the uncertainty of the downscaling procedure. Applications of the methodology and probabilistic expressions of certainty in reproducing future climates for the periods, 2000 - 2009, 2046 - 2065 and 2081 - 2100, using the 1962 - 1992 period as the baseline, are discussed for the location of Firenze (Italy). The climate predictions for the period of 2000 - 2009 are tested against observations permitting to assess the reliability and uncertainties of the methodology in reproducing statistics of meteorological variables at different time scales.

  19. Predicting Impacts of Future Climate Change on the Distribution of the Widespread Conifer Platycladus orientalis.

    PubMed

    Hu, Xian-Ge; Jin, Yuqing; Wang, Xiao-Ru; Mao, Jian-Feng; Li, Yue

    2015-01-01

    Chinese thuja (Platycladus orientalis) has a wide but fragmented distribution in China. It is an important conifer tree in reforestation and plays important roles in ecological restoration in the arid mountains of northern China. Based on high-resolution environmental data for current and future scenarios, we modeled the present and future suitable habitat for P. orientalis, evaluated the importance of environmental factors in shaping the species' distribution, and identified regions of high risk under climate change scenarios. The niche models showed that P. orientalis has suitable habitat of ca. 4.2×106 km2 across most of eastern China and identified annual temperature, monthly minimum and maximum ultraviolet-B radiation and wet-day frequency as the critical factors shaping habitat availability for P. orientalis. Under the low concentration greenhouse gas emissions scenario, the range of the species may increase as global warming intensifies; however, under the higher concentrations of emissions scenario, we predicted a slight expansion followed by contraction in distribution. Overall, the range shift to higher latitudes and elevations would become gradually more significant. The information gained from this study should be an useful reference for implementing long-term conservation and management strategies for the species. PMID:26132163

  20. Uric acid levels predict future blood pressure and new onset hypertension in the general Japanese population.

    PubMed

    Takase, H; Kimura, G; Dohi, Y

    2014-09-01

    We tested the hypothesis that uric acid levels predict new-onset hypertension in the Japanese general population. Normotensive individuals who visited our hospital for a yearly health checkup (n=8157, men=61.0% and age=50.7±12.2 years) were enrolled in the present study. After baseline evaluation, participants were followed up for a median of 48.3 months (range 4.9-101.0 months), with the endpoint being the development of hypertension, defined as systolic blood pressure (BP) > or = 140 mm Hg, diastolic BP > or = 90 mm Hg or the use of antihypertensive medication. The impact of uric acid and other cardiovascular risk factors at baseline on future BP and development of hypertension was assessed. During follow-up, 19.0% of women (n=605) and 29.5% of men (n=1469) participants developed hypertension. Incident hypertension was increased across the quartiles for baseline uric acid levels (P<0.0001), and multivariate Cox proportional hazards analysis revealed a significant and independent association between the uric acid level and the onset of hypertension in both men and women participants (P<0.05). Furthermore, uric acid was independently and positively correlated with future BP (P<0.05). Thus, uric acid is an independent predictor of new-onset hypertension in both women and men.

  1. Methane, microbes and models: fundamental understanding of the soil methane cycle for future predictions.

    PubMed

    Nazaries, Loïc; Murrell, J Colin; Millard, Pete; Baggs, Liz; Singh, Brajesh K

    2013-09-01

    Methane is an important greenhouse gas and microbes in the environment play major roles in both global methane emissions and terrestrial sinks. However, a full mechanistic understanding of the response of the methane cycle to global change is lacking. Recent studies suggest that a number of biological and environmental processes can influence the net flux of methane from soils to the atmosphere but the magnitude and direction of their impact are still debated. Here, we synthesize recent knowledge on soil microbial and biogeochemical process and the impacts of climate change factors on the soil methane cycle. We focus on (i) identification of the source and magnitude of methane flux and the global factors that may change the flux rate and magnitude in the future, (ii) the microbial communities responsible for methane production and terrestrial sinks, and (iii) how they will respond to future climatic scenarios and the consequences for feedback responses at a global scale. We also identify the research gaps in each of the topics identified above, provide evidence which can be used to demonstrate microbial regulation of methane cycle and suggest that incorporation of microbial data from emerging -omic technologies could be harnessed to increase the predictive power of simulation models. PMID:23718889

  2. Predicting the Uncertain Future of Aptamer-Based Diagnostics and Therapeutics.

    PubMed

    Bruno, John G

    2015-01-01

    Despite the great promise of nucleic acid aptamers in the areas of diagnostics and therapeutics for their facile in vitro development, lack of immunogenicity and other desirable properties, few truly successful aptamer-based products exist in the clinical or other markets. Core reasons for these commercial deficiencies probably stem from industrial commitment to antibodies including a huge financial investment in humanized monoclonal antibodies and a general ignorance about aptamers and their performance among the research and development community. Given the early failures of some strong commercial efforts to gain government approval and bring aptamer-based products to market, it may seem that aptamers are doomed to take a backseat to antibodies forever. However, the key advantages of aptamers over antibodies coupled with niche market needs that only aptamers can fill and more recent published data still point to a bright commercial future for aptamers in areas such as infectious disease and cancer diagnostics and therapeutics. As more researchers and entrepreneurs become familiar with aptamers, it seems inevitable that aptamers will at least be considered for expanded roles in diagnostics and therapeutics. This review also examines new aptamer modifications and attempts to predict new aptamer applications that could revolutionize biomedical technology in the future and lead to marketed products. PMID:25913927

  3. Future Weather Forecasting in the Year 2020-Investing in Technology Today: Improving Weather and Environmental Predictions

    NASA Technical Reports Server (NTRS)

    Anthes, Richard; Schoeberl, Mark

    2000-01-01

    Fast-forward twenty years to the nightly simultaneous TV/webcast. Accurate 8-14 day regional forecasts will be available as will be a whole host of linked products including economic impact, travel, energy usage, etc. On-demand, personalized street-level forecasts will be downloaded into your PDA. Your home system will automatically update the products of interest to you (e.g. severe storm forecasts, hurricane predictions, etc). Short and long range climate forecasts will be used by your "Quicken 2020" to make suggest changes in your "futures" investment portfolio. Through a lively and informative multi-media presentation, leading Space-Earth Science Researchers and Technologists will share their vision for the year 2020, offering a possible futuristic forecast enabled through the application of new technologies under development today. Copies of the 'broadcast' will be available on Beta Tape for your own future use. If sufficient interest exists, the program may also be made available for broadcasters wishing to do stand-ups with roll-ins from the San Francisco meeting for their viewers back home.

  4. Predicting Impacts of Future Climate Change on the Distribution of the Widespread Conifer Platycladus orientalis

    PubMed Central

    Hu, Xian-Ge; Jin, Yuqing; Wang, Xiao-Ru; Mao, Jian-Feng; Li, Yue

    2015-01-01

    Chinese thuja (Platycladus orientalis) has a wide but fragmented distribution in China. It is an important conifer tree in reforestation and plays important roles in ecological restoration in the arid mountains of northern China. Based on high-resolution environmental data for current and future scenarios, we modeled the present and future suitable habitat for P. orientalis, evaluated the importance of environmental factors in shaping the species´ distribution, and identified regions of high risk under climate change scenarios. The niche models showed that P. orientalis has suitable habitat of ca. 4.2×106 km2 across most of eastern China and identified annual temperature, monthly minimum and maximum ultraviolet-B radiation and wet-day frequency as the critical factors shaping habitat availability for P. orientalis. Under the low concentration greenhouse gas emissions scenario, the range of the species may increase as global warming intensifies; however, under the higher concentrations of emissions scenario, we predicted a slight expansion followed by contraction in distribution. Overall, the range shift to higher latitudes and elevations would become gradually more significant. The information gained from this study should be an useful reference for implementing long-term conservation and management strategies for the species. PMID:26132163

  5. Use of Electrocardiography to Predict Future Development of Hypertension in the General Population

    PubMed Central

    Takase, Hiroyuki; Sugiura, Tomonori; Murai, Shunsuke; Yamashita, Sumiyo; Ohte, Nobuyuki; Dohi, Yasuaki

    2016-01-01

    Abstract Cardiac muscle responds to increased afterload by developing hypertrophy. During the early stages of hypertension, the heart can be transiently, but frequently, exposed to increased afterload. This study was designed to test the hypothesis that left ventricular hypertrophy (LVH) assessed by electrocardiography (ECG) can be used to predict future development of hypertension. Sokolow–Lyon voltage and Cornell product were calculated using ECG in 5770 normotensive participants who visited our hospital for a physical checkup (age 52.7 ± 11.3 years). LVH was defined as a Sokolow–Lyon voltage of >3.8 mV or a Cornell product of >2440 mm × ms. After baseline examination, participants were followed up with the endpoint being the development of hypertension. During the median follow-up period of 1089 days (15,789 person-years), hypertension developed in 1029 participants (65.2/1000 person-years). A Kaplan–Meier analysis demonstrated a significantly higher incidence of hypertension in participants with LVH than in those without LVH as assessed by Sokolow–Lyon voltage or Cornell product (P < 0.0001 for both). The hazard ratios for incident hypertension in participants with LVH defined by Sokolow–Lyon voltage and Cornell product were 1.49 (95% confidence interval [CI] 1.16–1.90, P < 0.01) and 1.34 (95% CI 1.09–1.65, P < 0.01), respectively, after adjustment for possible risk factors. Furthermore, in multivariable Cox hazard analysis, where Sokolow–Lyon voltage and Cornell product were taken as continuous variables, both indices were independent predictors of future hypertension (P < 0.0001). Both Sokolow–Lyon voltage and Cornell product are novel predictors of future development of hypertension in the general population. PMID:27124047

  6. You'll change more than I will: Adults' predictions about their own and others' future preferences.

    PubMed

    Renoult, Louis; Kopp, Leia; Davidson, Patrick S R; Taler, Vanessa; Atance, Cristina M

    2016-01-01

    It has been argued that adults underestimate the extent to which their preferences will change over time. We sought to determine whether such mispredictions are the result of a difficulty imagining that one's own current and future preferences may differ or whether it also characterizes our predictions about the future preferences of others. We used a perspective-taking task in which we asked young people how much they liked stereotypically young-person items (e.g., Top 40 music, adventure vacations) and stereotypically old-person items (e.g., jazz, playing bridge) now, and how much they would like them in the distant future (i.e., when they are 70 years old). Participants also made these same predictions for a generic same-age, same-sex peer. In a third condition, participants predicted how much a generic older (i.e., age 70) same-sex adult would like items from both categories today. Participants predicted less change between their own current and future preferences than between the current and future preferences of a peer. However, participants estimated that, compared to a current older adult today, their peer would like stereotypically young items more in the future and stereotypically old items less. The fact that peers' distant-future estimated preferences were different from the ones they made for "current" older adults suggests that even though underestimation of change of preferences over time is attenuated when thinking about others, a bias still exists. PMID:26211536

  7. Future Cognitive Ability: US IQ Prediction until 2060 Based on NAEP

    PubMed Central

    2015-01-01

    The US National Assessment of Educational Progress (NAEP) measures cognitive competences in reading and mathematics of US students (last 2012 survey N = 50,000). The long-term development based on results from 1971 to 2012 allows a prediction of future cognitive trends. For predicting US averages also demographic trends have to be considered. The largest groups’ (White) average of 1978/80 was set at M = 100 and SD = 15 and was used as a benchmark. Based on two past NAEP development periods for 17-year-old students, 1978/80 to 2012 (more optimistic) and 1992 to 2012 (more pessimistic), and demographic projections from the US Census Bureau, cognitive trends until 2060 for the entire age cohort and ethnic groups were estimated. Estimated population averages for 2060 are 103 (optimistic) or 102 (pessimistic). The average rise per decade is dec = 0.76 or 0.45 IQ points. White-Black and White-Hispanic gaps are declining by half, Asian-White gaps treble. The catch-up of minorities (their faster ability growth) contributes around 2 IQ to the general rise of 3 IQ; however, their larger demographic increase reduces the general rise at about the similar amount (-1.4 IQ). Because minorities with faster ability growth also rise in their population proportion the interactive term is positive (around 1 IQ). Consequences for economic and societal development are discussed. PMID:26460731

  8. Anthelmintics: The best way to predict the future is to create it.

    PubMed

    Martin, Richard J; Verma, Saurabh; Choudhary, Shivani; Kashyap, Sudhanva; Abongwa, Melanie; Zheng, Fudan; Robertson, Alan P

    2015-08-15

    'The best way to predict the future is to create it.' When we look at drugs that are used to control parasites, we see that new knowledge has been created (discovered) about their modes of action. This knowledge will allow us to predict combinations of drugs which can be used together rationally to increase the spectrum of action and to slow the development of anthelmintic resistance. In this paper we comment on some recent observations of ours on the modes of action of emodepside, diethylcarbamazine and tribendimidine. Emodepside increases the activation of a SLO-1 K(+) current inhibiting movement, and diethylcarbamazine has a synergistic effect on the effect of emodepside on the SLO-1 K(+) current, increasing the size of the response. The combination may be considered for further testing for therapeutic use. Tribendimidine is a selective cholinergic nematode B-subtype nAChR agonist, producing muscle depolarization and contraction. It has different subtype selectivity to levamisole and may be effective in the presence of some types of levamisole resistance. The new information about the modes of action may aid the design of rational drug combinations designed to slow the development of resistance or increase the spectrum of action.

  9. ANTHELMINTICS: THE BEST WAY TO PREDICT THE FUTURE IS TO CREATE IT

    PubMed Central

    Martin, Richard J.; Verma, Saurabh.; Choudhary, Shivani; Kashyap, Sudhanva; Zheng, Melanie Abongwa Fudan; Robertson, Alan P.

    2015-01-01

    ‘The best way to predict the future is to create it.’ When we look at drugs that are used to control parasites, we see that new knowledge has been created (discovered) about their modes of action. This knowledge will allow us to predict combinations of drugs which can be used together rationally to increase the spectrum of action and to slow the development of anthelmintic resistance. In this paper we comment on some recent observations of ours on the modes of action of emodepside, diethylcarbamazine and tribendimidine. Emodepside increases the activation of a SLO-1 K+ current inhibiting movement, and diethylcarbamazine has a synergistic effect on the effect of emodepside on the SLO-1 K+ current, increasing the size of the response. The combination may be considered for further testing for therapeutic use. Tribendimidine is a selective cholinergic nematode B-subtype nAChR agonist, producing muscle depolarization and contraction. It has different subtype selectivity to levamisole and may be effective in the presence of some types of levamisole resistance. The new information about the modes of action may aid the design of rational drug combinations designed to slow the development of resistance or increase the spectrum of action. PMID:26138153

  10. Polar predictability: exploring the influence of GCM and regional model uncertainty on future ice sheet climates

    NASA Astrophysics Data System (ADS)

    Reusch, D. B.

    2015-12-01

    Evaluating uncertainty in GCMs and regional-scale forecast models is an essential step in the development of climate change predictions. Polar-region skill is particularly important due to the potential for changes affecting both local (ice sheet) and global (sea level) environments through more frequent/intense surface melting and changes in precipitation type/amount. High-resolution, regional-scale models also use GCMs as a source of boundary/initial conditions in future scenarios, thus inheriting a measure of GCM-derived externally-driven uncertainty. We examine inter- and intramodel uncertainty through statistics from decadal climatologies and analyses of variability based on self-organizing maps (SOMs), a nonlinear data analysis tool. We evaluate a 19-member CMIP5 subset and the 30-member CESM1.0-CAM5-BGC Large Ensemble (CESMLE) during polar melt seasons (boreal/austral summer) for recent (1981-2000) and future (2081-2100, RCP 8.5) decades. Regional-model uncertainty is examined with a subset of these GCMs driving Polar WRF simulations. Decadal climatologies relative to a reference (recent: the ERA-Interim reanalysis; future: a skillful modern GCM) identify model uncertainty in bulk, e.g., BNU-ESM is too warm, CMCC-CM too cold. While quite useful for model screening, diagnostic benefit is often indirect. SOMs extend our diagnostics by providing a concise, objective summary of model variability as a set of generalized patterns. Joint analysis of reference and test models summarizes the variability of multiple realizations of climate (all the models), benchmarks each model versus the reference (frequency analysis helps identify the patterns behind GCM bias), and places each GCM in a common context. Joint SOM analysis of CESMLE members shows how initial conditions contribute to differences in modeled climates, providing useful information about internal variability, such as contributions from each member to overall uncertainty using pattern frequencies. In the

  11. Predicting potential responses to future climate in an alpine ungulate: interspecific interactions exceed climate effects.

    PubMed

    Mason, Tom H E; Stephens, Philip A; Apollonio, Marco; Willis, Stephen G

    2014-12-01

    The altitudinal shifts of many montane populations are lagging behind climate change. Understanding habitual, daily behavioural rhythms, and their climatic and environmental influences, could shed light on the constraints on long-term upslope range-shifts. In addition, behavioural rhythms can be affected by interspecific interactions, which can ameliorate or exacerbate climate-driven effects on ecology. Here, we investigate the relative influences of ambient temperature and an interaction with domestic sheep (Ovis aries) on the altitude use and activity budgets of a mountain ungulate, the Alpine chamois (Rupicapra rupicapra). Chamois moved upslope when it was hotter but this effect was modest compared to that of the presence of sheep, to which they reacted by moving 89-103 m upslope, into an entirely novel altitudinal range. Across the European Alps, a range-shift of this magnitude corresponds to a 46% decrease in the availability of suitable foraging habitat. This highlights the importance of understanding how factors such as competition and disturbance shape a given species' realised niche when predicting potential future responses to change. Furthermore, it exposes the potential for manipulations of species interactions to ameliorate the impacts of climate change, in this case by the careful management of livestock. Such manipulations could be particularly appropriate for species where competition or disturbance already strongly restricts their available niche. Our results also reveal the potential role of behavioural flexibility in responses to climate change. Chamois reduced their activity when it was warmer, which could explain their modest altitudinal migrations. Considering this behavioural flexibility, our model predicts a small 15-30 m upslope shift by 2100 in response to climate change, less than 4% of the altitudinal shift that would be predicted using a traditional species distribution model-type approach (SDM), which assumes that species' behaviour

  12. Adolescents’ fMRI Activation to a Response Inhibition Task Predicts Future Substance Use

    PubMed Central

    Mahmood, O.M.; Goldenberg, D.; Thayer, R.; Migliorini, R.; Simmons, A.N.; Tapert, S.F.

    2012-01-01

    Background Deficient behavioral regulation may be a risk factor for substance use disorders in adolescents. Abnormalities in brain regions critical to cognitive control have been linked to more intense and problematic future substance use (e.g., (Durazzo, Gazdzinski, Mon, & Meyerhoff, 2010; Falk, Berkman, Whalen, & Lieberman, 2011; Paulus, Tapert, & Schuckit, 2005). The goal of this study was to examine the degree to which brain response to an inhibition task measured in mid-adolescence can predict substance use 18 months later. Method Adolescents aged 16–19 (N=80) performed a go/no-go response inhibition task during fMRI at project baseline, and were followed 18 months later with a detailed interview on substance use and dependence symptoms. Participants were 39 high frequency users and 41 demographically similar low frequency users (458 versus 2 average lifetime drug use occasions at baseline, respectively). Results Across all subjects, no-go trials produced significant increases in neural response in the ventromedial prefrontal cortex and a region including the left angular and supramarginal gyri (p(FWE)<.01, cluster threshold ≥30 voxels). Less ventromedial prefrontal activation but more left angular gyrus activation predicted higher levels of substance use and dependence symptoms in the following 18 months, particularly for those who were high frequency users in mid-adolescence (p<.05). Conclusions These findings are consistent with studies showing that impairments in cognitive control have strong associations with substance use. We found a predictive relationship between atypical activation patterns at baseline and substance use behavior 18 months later, particularly among adolescents with histories of previous heavy use. PMID:23006248

  13. Climate-driven range extension of Amphistegina (protista, foraminiferida): models of current and predicted future ranges.

    PubMed

    Langer, Martin R; Weinmann, Anna E; Lötters, Stefan; Bernhard, Joan M; Rödder, Dennis

    2013-01-01

    Species-range expansions are a predicted and realized consequence of global climate change. Climate warming and the poleward widening of the tropical belt have induced range shifts in a variety of marine and terrestrial species. Range expansions may have broad implications on native biota and ecosystem functioning as shifting species may perturb recipient communities. Larger symbiont-bearing foraminifera constitute ubiquitous and prominent components of shallow water ecosystems, and range shifts of these important protists are likely to trigger changes in ecosystem functioning. We have used historical and newly acquired occurrence records to compute current range shifts of Amphistegina spp., a larger symbiont-bearing foraminifera, along the eastern coastline of Africa and compare them to analogous range shifts currently observed in the Mediterranean Sea. The study provides new evidence that amphisteginid foraminifera are rapidly progressing southwestward, closely approaching Port Edward (South Africa) at 31°S. To project future species distributions, we applied a species distribution model (SDM) based on ecological niche constraints of current distribution ranges. Our model indicates that further warming is likely to cause a continued range extension, and predicts dispersal along nearly the entire southeastern coast of Africa. The average rates of amphisteginid range shift were computed between 8 and 2.7 km year(-1), and are projected to lead to a total southward range expansion of 267 km, or 2.4° latitude, in the year 2100. Our results corroborate findings from the fossil record that some larger symbiont-bearing foraminifera cope well with rising water temperatures and are beneficiaries of global climate change.

  14. Climate-Driven Range Extension of Amphistegina (Protista, Foraminiferida): Models of Current and Predicted Future Ranges

    PubMed Central

    Langer, Martin R.; Weinmann, Anna E.; Lötters, Stefan; Bernhard, Joan M.; Rödder, Dennis

    2013-01-01

    Species-range expansions are a predicted and realized consequence of global climate change. Climate warming and the poleward widening of the tropical belt have induced range shifts in a variety of marine and terrestrial species. Range expansions may have broad implications on native biota and ecosystem functioning as shifting species may perturb recipient communities. Larger symbiont-bearing foraminifera constitute ubiquitous and prominent components of shallow water ecosystems, and range shifts of these important protists are likely to trigger changes in ecosystem functioning. We have used historical and newly acquired occurrence records to compute current range shifts of Amphistegina spp., a larger symbiont-bearing foraminifera, along the eastern coastline of Africa and compare them to analogous range shifts currently observed in the Mediterranean Sea. The study provides new evidence that amphisteginid foraminifera are rapidly progressing southwestward, closely approaching Port Edward (South Africa) at 31°S. To project future species distributions, we applied a species distribution model (SDM) based on ecological niche constraints of current distribution ranges. Our model indicates that further warming is likely to cause a continued range extension, and predicts dispersal along nearly the entire southeastern coast of Africa. The average rates of amphisteginid range shift were computed between 8 and 2.7 km year−1, and are projected to lead to a total southward range expansion of 267 km, or 2.4° latitude, in the year 2100. Our results corroborate findings from the fossil record that some larger symbiont-bearing foraminifera cope well with rising water temperatures and are beneficiaries of global climate change. PMID:23405081

  15. Antarctic Exploration Parallels for Future Human Planetary Exploration: Science Operations Lessons Learned, Planning, and Equipment Capabilities for Long Range, Long Duration Traverses

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J.

    2012-01-01

    The purpose for this workshop can be summed up by the question: Are there relevant analogs to planetary (meaning the Moon and Mars) to be found in polar exploration on Earth? The answer in my opinion is yes or else there would be no reason for this workshop. However, I think some background information would be useful to provide a context for my opinion on this matter. As all of you are probably aware, NASA has been set on a path that, in its current form, will eventually lead to putting human crews on the surface of the Moon and Mars for extended (months to years) in duration. For the past 50 V 60 years, starting not long after the end of World War II, exploration of the Antarctic has accumulated a significant body of experience that is highly analogous to our anticipated activities on the Moon and Mars. This relevant experience base includes: h Long duration (1 year and 2 year) continuous deployments by single crews, h Established a substantial outpost with a single deployment event to support these crews, h Carried out long distance (100 to 1000 kilometer) traverses, with and without intermediate support h Equipment and processes evolved based on lessons learned h International cooperative missions This is not a new or original thought; many people within NASA, including the most recent two NASA Administrators, have commented on the recognizable parallels between exploration in the Antarctic and on the Moon or Mars. But given that level of recognition, relatively little has been done, that I am aware of, to encourage these two exploration communities to collaborate in a significant way. [Slide 4] I will return to NASA s plans and the parallels with Antarctic traverses in a moment, but I want to spend a moment to explain the objective of this workshop and the anticipated products. We have two full days set aside for this workshop. This first day will be taken up with a series of presentations prepared by individuals with experience that extends back as far as the

  16. Ability of matrix models to explain the past and predict the future of plant populations.

    PubMed

    Crone, Elizabeth E; Ellis, Martha M; Morris, William F; Stanley, Amanda; Bell, Timothy; Bierzychudek, Paulette; Ehrlén, Johan; Kaye, Thomas N; Knight, Tiffany M; Lesica, Peter; Oostermeijer, Gerard; Quintana-Ascencio, Pedro F; Ticktin, Tamara; Valverde, Teresa; Williams, Jennifer L; Doak, Daniel F; Ganesan, Rengaian; McEachern, Kathyrn; Thorpe, Andrea S; Menges, Eric S

    2013-10-01

    Uncertainty associated with ecological forecasts has long been recognized, but forecast accuracy is rarely quantified. We evaluated how well data on 82 populations of 20 species of plants spanning 3 continents explained and predicted plant population dynamics. We parameterized stage-based matrix models with demographic data from individually marked plants and determined how well these models forecast population sizes observed at least 5 years into the future. Simple demographic models forecasted population dynamics poorly; only 40% of observed population sizes fell within our forecasts' 95% confidence limits. However, these models explained population dynamics during the years in which data were collected; observed changes in population size during the data-collection period were strongly positively correlated with population growth rate. Thus, these models are at least a sound way to quantify population status. Poor forecasts were not associated with the number of individual plants or years of data. We tested whether vital rates were density dependent and found both positive and negative density dependence. However, density dependence was not associated with forecast error. Forecast error was significantly associated with environmental differences between the data collection and forecast periods. To forecast population fates, more detailed models, such as those that project how environments are likely to change and how these changes will affect population dynamics, may be needed. Such detailed models are not always feasible. Thus, it may be wiser to make risk-averse decisions than to expect precise forecasts from models. PMID:23565966

  17. Nitrogen oxides emissions from thermal power plants in china: current status and future predictions.

    PubMed

    Tian, Hezhong; Liu, Kaiyun; Hao, Jiming; Wang, Yan; Gao, Jiajia; Qiu, Peipei; Zhu, Chuanyong

    2013-10-01

    Increasing emissions of nitrogen oxides (NOx) over the Chinese mainland have been of great concern due to their adverse impacts on regional air quality and public health. To explore and obtain the temporal and spatial characteristics of NOx emissions from thermal power plants in China, a unit-based method is developed. The method assesses NOx emissions based on detailed information on unit capacity, boiler and burner patterns, feed fuel types, emission control technologies, and geographical locations. The national total NOx emissions in 2010 are estimated at 7801.6 kt, of which 5495.8 kt is released from coal-fired power plant units of considerable size between 300 and 1000 MW. The top provincial emitter is Shandong where plants are densely concentrated. The average NOx-intensity is estimated at 2.28 g/kWh, markedly higher than that of developed countries, mainly owing to the inadequate application of high-efficiency denitrification devices such as selective catalytic reduction (SCR). Future NOx emissions are predicted by applying scenario analysis, indicating that a reduction of about 40% by the year 2020 can be achieved compared with emissions in 2010. These results suggest that NOx emissions from Chinese thermal power plants could be substantially mitigated within 10 years if reasonable control measures were implemented effectively.

  18. Ability of matrix models to explain the past and predict the future of plant populations.

    USGS Publications Warehouse

    McEachern, Kathryn; Crone, Elizabeth E.; Ellis, Martha M.; Morris, William F.; Stanley, Amanda; Bell, Timothy; Bierzychudek, Paulette; Ehrlen, Johan; Kaye, Thomas N.; Knight, Tiffany M.; Lesica, Peter; Oostermeijer, Gerard; Quintana-Ascencio, Pedro F.; Ticktin, Tamara; Valverde, Teresa; Williams, Jennifer I.; Doak, Daniel F.; Ganesan, Rengaian; Thorpe, Andrea S.; Menges, Eric S.

    2013-01-01

    Uncertainty associated with ecological forecasts has long been recognized, but forecast accuracy is rarely quantified. We evaluated how well data on 82 populations of 20 species of plants spanning 3 continents explained and predicted plant population dynamics. We parameterized stage-based matrix models with demographic data from individually marked plants and determined how well these models forecast population sizes observed at least 5 years into the future. Simple demographic models forecasted population dynamics poorly; only 40% of observed population sizes fell within our forecasts' 95% confidence limits. However, these models explained population dynamics during the years in which data were collected; observed changes in population size during the data-collection period were strongly positively correlated with population growth rate. Thus, these models are at least a sound way to quantify population status. Poor forecasts were not associated with the number of individual plants or years of data. We tested whether vital rates were density dependent and found both positive and negative density dependence. However, density dependence was not associated with forecast error. Forecast error was significantly associated with environmental differences between the data collection and forecast periods. To forecast population fates, more detailed models, such as those that project how environments are likely to change and how these changes will affect population dynamics, may be needed. Such detailed models are not always feasible. Thus, it may be wiser to make risk-averse decisions than to expect precise forecasts from models.

  19. Strongly lensed neutral hydrogen emission: detection predictions with current and future radio interferometers

    NASA Astrophysics Data System (ADS)

    Deane, R. P.; Obreschkow, D.; Heywood, I.

    2015-09-01

    Strong gravitational lensing provides some of the deepest views of the Universe, enabling studies of high-redshift galaxies only possible with next-generation facilities without the lensing phenomenon. To date, 21-cm radio emission from neutral hydrogen has only been detected directly out to z ˜ 0.2, limited by the sensitivity and instantaneous bandwidth of current radio telescopes. We discuss how current and future radio interferometers such as the Square Kilometre Array (SKA) will detect lensed H I emission in individual galaxies at high redshift. Our calculations rely on a semi-analytic galaxy simulation with realistic H I discs (by size, density profile and rotation), in a cosmological context, combined with general relativistic ray tracing. Wide-field, blind H I surveys with the SKA are predicted to be efficient at discovering lensed H I systems, increasingly so at z ≳ 2. This will be enabled by the combination of the magnification boosts, the steepness of the H I luminosity function at the high-mass end, and the fact that the H I spectral line is relatively isolated in frequency. These surveys will simultaneously provide a new technique for foreground lens selection and yield the highest redshift H I emission detections. More near term (and existing) cm-wave facilities will push the high-redshift H I envelope through targeted surveys of known lenses.

  20. Prediction of future disposal of end-of-life refrigerators containing CFC-11.

    PubMed

    Yazici, Burcu; Can, Zehra S; Calli, Baris

    2014-01-01

    The objective of this study was to predict the number of refrigerators containing CFC-11 blown isolation foam and the amount of CFC-11 banked in these refrigerators. By using a Weibull-based survival function, the number of CFC-11 containing and still-functioning refrigerators was estimated to be approximately 1.6 million in 2013 in Turkey. In order to determine the amount of CFC-11 in the isolation foam of these refrigerators, polyurethane (PU) foam samples were taken from a refrigerator manufactured in 1993 and the quantity of CFC-11 was analyzed by a GC-MS. It was determined that 113-195 mg CFC-11/g PU remains in the PU foam depending on the location such as door, sides, top and bottom. Knowing that a mid-sized refrigerator contains 4 kg PU on average, the total amount of PU foam to be disposed of is 6344 tons when the CFC-11 containing refrigerators in Turkey become obsolete in the near future. Furthermore, 717-1237 tons of CFC-11 are expected to be banked in the PU foam of these refrigerators which will exert an equivalent amount of ozone depleting potential (ODP). In addition, the global warming potential will vary between 3.4 and 5.9 million tons of CO2. PMID:24112854

  1. Ability of matrix models to explain the past and predict the future of plant populations.

    PubMed

    Crone, Elizabeth E; Ellis, Martha M; Morris, William F; Stanley, Amanda; Bell, Timothy; Bierzychudek, Paulette; Ehrlén, Johan; Kaye, Thomas N; Knight, Tiffany M; Lesica, Peter; Oostermeijer, Gerard; Quintana-Ascencio, Pedro F; Ticktin, Tamara; Valverde, Teresa; Williams, Jennifer L; Doak, Daniel F; Ganesan, Rengaian; McEachern, Kathyrn; Thorpe, Andrea S; Menges, Eric S

    2013-10-01

    Uncertainty associated with ecological forecasts has long been recognized, but forecast accuracy is rarely quantified. We evaluated how well data on 82 populations of 20 species of plants spanning 3 continents explained and predicted plant population dynamics. We parameterized stage-based matrix models with demographic data from individually marked plants and determined how well these models forecast population sizes observed at least 5 years into the future. Simple demographic models forecasted population dynamics poorly; only 40% of observed population sizes fell within our forecasts' 95% confidence limits. However, these models explained population dynamics during the years in which data were collected; observed changes in population size during the data-collection period were strongly positively correlated with population growth rate. Thus, these models are at least a sound way to quantify population status. Poor forecasts were not associated with the number of individual plants or years of data. We tested whether vital rates were density dependent and found both positive and negative density dependence. However, density dependence was not associated with forecast error. Forecast error was significantly associated with environmental differences between the data collection and forecast periods. To forecast population fates, more detailed models, such as those that project how environments are likely to change and how these changes will affect population dynamics, may be needed. Such detailed models are not always feasible. Thus, it may be wiser to make risk-averse decisions than to expect precise forecasts from models.

  2. Model and Scenario Variations in Predicted Number of Generations of Spodoptera litura Fab. on Peanut during Future Climate Change Scenario

    PubMed Central

    Srinivasa Rao, Mathukumalli; Swathi, Pettem; Rama Rao, Chitiprolu Anantha; Rao, K. V.; Raju, B. M. K.; Srinivas, Karlapudi; Manimanjari, Dammu; Maheswari, Mandapaka

    2015-01-01

    The present study features the estimation of number of generations of tobacco caterpillar, Spodoptera litura. Fab. on peanut crop at six locations in India using MarkSim, which provides General Circulation Model (GCM) of future data on daily maximum (T.max), minimum (T.min) air temperatures from six models viz., BCCR-BCM2.0, CNRM-CM3, CSIRO-Mk3.5, ECHams5, INCM-CM3.0 and MIROC3.2 along with an ensemble of the six from three emission scenarios (A2, A1B and B1). This data was used to predict the future pest scenarios following the growing degree days approach in four different climate periods viz., Baseline-1975, Near future (NF) -2020, Distant future (DF)-2050 and Very Distant future (VDF)—2080. It is predicted that more generations would occur during the three future climate periods with significant variation among scenarios and models. Among the seven models, 1–2 additional generations were predicted during DF and VDF due to higher future temperatures in CNRM-CM3, ECHams5 & CSIRO-Mk3.5 models. The temperature projections of these models indicated that the generation time would decrease by 18–22% over baseline. Analysis of variance (ANOVA) was used to partition the variation in the predicted number of generations and generation time of S. litura on peanut during crop season. Geographical location explained 34% of the total variation in number of generations, followed by time period (26%), model (1.74%) and scenario (0.74%). The remaining 14% of the variation was explained by interactions. Increased number of generations and reduction of generation time across the six peanut growing locations of India suggest that the incidence of S. litura may increase due to projected increase in temperatures in future climate change periods. PMID:25671564

  3. Model and scenario variations in predicted number of generations of Spodoptera litura Fab. on peanut during future climate change scenario.

    PubMed

    Rao, Mathukumalli Srinivasa; Swathi, Pettem; Rao, Chitiprolu Anantha Rama; Rao, K V; Raju, B M K; Srinivas, Karlapudi; Manimanjari, Dammu; Maheswari, Mandapaka

    2015-01-01

    The present study features the estimation of number of generations of tobacco caterpillar, Spodoptera litura. Fab. on peanut crop at six locations in India using MarkSim, which provides General Circulation Model (GCM) of future data on daily maximum (T.max), minimum (T.min) air temperatures from six models viz., BCCR-BCM2.0, CNRM-CM3, CSIRO-Mk3.5, ECHams5, INCM-CM3.0 and MIROC3.2 along with an ensemble of the six from three emission scenarios (A2, A1B and B1). This data was used to predict the future pest scenarios following the growing degree days approach in four different climate periods viz., Baseline-1975, Near future (NF) -2020, Distant future (DF)-2050 and Very Distant future (VDF)-2080. It is predicted that more generations would occur during the three future climate periods with significant variation among scenarios and models. Among the seven models, 1-2 additional generations were predicted during DF and VDF due to higher future temperatures in CNRM-CM3, ECHams5 & CSIRO-Mk3.5 models. The temperature projections of these models indicated that the generation time would decrease by 18-22% over baseline. Analysis of variance (ANOVA) was used to partition the variation in the predicted number of generations and generation time of S. litura on peanut during crop season. Geographical location explained 34% of the total variation in number of generations, followed by time period (26%), model (1.74%) and scenario (0.74%). The remaining 14% of the variation was explained by interactions. Increased number of generations and reduction of generation time across the six peanut growing locations of India suggest that the incidence of S. litura may increase due to projected increase in temperatures in future climate change periods.

  4. Predictability and Market Efficiency in Agricultural Futures Markets: a Perspective from Price-Volume Correlation Based on Wavelet Coherency Analysis

    NASA Astrophysics Data System (ADS)

    He, Ling-Yun; Wen, Xing-Chun

    2015-12-01

    In this paper, we use a time-frequency domain technique, namely, wavelet squared coherency, to examine the associations between the trading volumes of three agricultural futures and three different forms of these futures' daily closing prices, i.e. prices, returns and volatilities, over the past several years. These agricultural futures markets are selected from China as a typical case of the emerging countries, and from the US as a representative of the developed economies. We investigate correlations and lead-lag relationships between the trading volumes and the prices to detect the predictability and efficiency of these futures markets. The results suggest that the information contained in the trading volumes of the three agricultural futures markets in China can be applied to predict the prices or returns, while that in US has extremely weak predictive power for prices or returns. We also conduct the wavelet analysis on the relationships between the volumes and returns or volatilities to examine the existence of the two "stylized facts" proposed by Karpoff [J. M. Karpoff, The relation between price changes and trading volume: A survey, J. Financ. Quant. Anal.22(1) (1987) 109-126]. Different markets in the two countries perform differently in reproducing the two stylized facts. As the wavelet tools can decode nonlinear regularities and hidden patterns behind price-volume relationship in time-frequency space, different from the conventional econometric framework, this paper offers a new perspective into the market predictability and efficiency.

  5. Recall of vegetable eating affects future predicted enjoyment and choice of vegetables in British University undergraduate students.

    PubMed

    Robinson, Eric; Blissett, Jackie; Higgs, Suzanne

    2011-10-01

    Predictions about enjoyment of future experiences are influenced by recalling similar past experiences. However, little is known about the relationship between hedonic memories of past eating episodes and future eating behavior. We investigated recall of previous experiences of eating vegetables and the effect of recall on future predicted liking for and consumption of vegetables. British University undergraduate students were asked to retrieve memories of previous occasions when they ate vegetables and were asked to rate how enjoyable those experiences were (Study 1, n=54). The effect of different types of memory recall (including vegetable eating recall) and visualization of someone else eating vegetables (to control for priming effects) on predicted likelihood of choosing vegetables and predicted enjoyment of eating vegetables was examined (Study 2, n=95). Finally, the effect of recalling vegetable eating memories on actual food choice from a buffet was assessed (Study 3, n=63). It is reported that people recall positive memories of past vegetable consumption (P<0.05) and that reminding people of these experiences results in higher predicted future liking for vegetables (P<0.05) and choice of a larger portion size of vegetables (P<0.05) compared with recall of a personal nonfood memory, a nonvegetable food memory, or visualization of someone else enjoying eating vegetables (increase of approximately 70% in vegetable portion size compared to controls). The results suggest that recall of previous eating experiences could be a potential strategy for altering food choices.

  6. On predicting future economic losses from tropical cyclones: Comparing damage functions for the Eastern USA

    NASA Astrophysics Data System (ADS)

    Geiger, Tobias; Levermann, Anders; Frieler, Katja

    2015-04-01

    Recent years have seen an intense scientific debate of what to expect from future tropical cyclone activity under climate change [1,2]. Besides the projection of cyclones' genesis points and trajectories it is the cyclone's impact on future societies that needs to be quantified. In our present work, where we focus on the Eastern USA, we start out with a comprehensive comparison of a variety of presently available and novel functional relationships that are used to link cyclones' physical properties with their damage caused on the ground. These so-called damage functions make use of high quality data sets consisting of gridded population data, exposed capital at risk, and information on the cyclone's extension and its translational and locally resolved maximum wind speed. Based on a cross-validation ansatz we train a multitude of damage functions on a large variety of data sets in order to evaluate their performance on an equally sized test sample. Although different damage analyses have been conducted in the literature [3,4,5,6], the efforts have so far primarily been focused on determining fit parameters for individual data sets. As our analysis consists of a wide range of damage functions implemented on identical data sets, we can rigorously evaluate which (type of) damage function (for which set of parameters) does best in reproducing damages and should therefore be used for future loss analysis with highest certainty. We find that the benefits of using locally resolved data input tend to be outweighed by the large uncertainties that accompany the data. More coarse and generalized data input therefore captures the diversity of cyclonic features better. Furthermore, our analysis shows that a non-linear relation between wind speed and damage outperforms the linear as well as the exponential relationship discussed in the literature. In a second step, the damage function with the highest predictive quality is implemented to predict potential future cyclone losses

  7. Interfacing models of wildlife habitat and human development to predict the future distribution of puma habitat

    USGS Publications Warehouse

    Burdett, Christopher L.; Crooks, Kevin R.; Theobald, David M.; Wilson, Kenneth R.; Boydston, Erin E.; Lyren, Lisa A.; Fisher, Robert N.; Vickers, T. Winston; Morrison, Scott A.; Boyce, Walter M.

    2010-01-01

    The impact of human land uses on ecological systems typically differ relative to how extensively natural conditions are modified. Exurban development is intermediate-intensity residential development that often occurs in natural landscapes. Most species-habitat models do not evaluate the effects of such intermediate levels of human development and even fewer predict how future development patterns might affect the amount and configuration of habitat. We addressed these deficiencies by interfacing a habitat model with a spatially-explicit housing-density model to study the effect of human land uses on the habitat of pumas (Puma concolor) in southern California. We studied the response of pumas to natural and anthropogenic features within their home ranges and how mortality risk varied across a gradient of human development. We also used our housing-density model to estimate past and future housing densities and model the distribution of puma habitat in 1970, 2000, and 2030. The natural landscape for pumas in our study area consisted of riparian areas, oak woodlands, and open, conifer forests embedded in a chaparral matrix. Pumas rarely incorporated suburban or urban development into their home ranges, which is consistent with the hypothesis that the behavioral decisions of individuals can be collectively manifested as population-limiting factors at broader spatial scales. Pumas incorporated rural and exurban development into their home ranges, apparently perceiving these areas as modified, rather than non-habitat. Overall, pumas used exurban areas less than expected and showed a neutral response to rural areas. However, individual pumas that selected for or showed a neutral response to exurban areas had a higher risk of mortality than pumas that selected against exurban habitat. Exurban areas are likely hotspots for puma-human conflict in southern California. Approximately 10% of our study area will transform from exurban, rural, or undeveloped areas to suburban or

  8. Analysis of Regional Climate Changes adjusted Future Urban Growth Scenarios and possibility of the future air quality prediction in Seoul Metropolitan Area (SMA), Korea

    NASA Astrophysics Data System (ADS)

    Kim, H.; Kim, Y.; Jeong, J.

    2012-12-01

    Land-use changes give effects to physical properties such as albedo, moisture availability and roughness length in the atmosphere, but future urban growth has not been considered widely to predict the future regional climate change because it is hard to predict the future land-use changes. In this study, we used the urban growth model called SLEUTH (Slope, Land-use, Excluded, Urban, Transportation, Hill-shade) based on Cellular Automata (CA) technique to predict the future land-use (especially, urban growth) changes. Seoul Metropolitan Area (SMA), the research area in this study, is the most explosively developed region in the Korean peninsula due to the continuous industrialization since 1970s. SLEUTH was calibrated to know the pattern and process of the urban growth and expansion in SMA with historical data for 35 years (1975-2000) provided from WAter Management Information System (WAMIS) in Korea and then future urban growth was projected out to 2050 assuming three different scenarios: (1) historical trends of urban growth (SC1), (2) future urban policy and plan (SC2), (3) ecological protection and growth (SC3). We used the FNL data of NCEP/NCAR for one month, Oct. in 2005 to evaluate the performance of the WRF on the long-term climate simulation and compared results of WRF with the ASOS/AWS (Automated Surface Observing Systems and Automated Weather System) observation data of the Korea Meteorology Administration. Based on the accuracy of the model, we performed various numerical experiments by the urban growth scenarios using the 6 hourly data of ECHAM5/OM-1 A1B scenarios generated by Max-Plank Institute for Meteorology in Hamburg, Germany on Oct. for 5 years (2046-2050), respectively. The difference of urban ratio under various urban growth scenarios in SMA consequently caused the spatial distributions of temperature to change, the average temperature to increase in the urban area. PBL height with a maximum of about 200m also appeared locally in newly

  9. The Dorsal Visual System Predicts Future and Remembers Past Eye Position

    PubMed Central

    Morris, Adam P.; Bremmer, Frank; Krekelberg, Bart

    2016-01-01

    Eye movements are essential to primate vision but introduce potentially disruptive displacements of the retinal image. To maintain stable vision, the brain is thought to rely on neurons that carry both visual signals and information about the current direction of gaze in their firing rates. We have shown previously that these neurons provide an accurate representation of eye position during fixation, but whether they are updated fast enough during saccadic eye movements to support real-time vision remains controversial. Here we show that not only do these neurons carry a fast and accurate eye-position signal, but also that they support in parallel a range of time-lagged variants, including predictive and post dictive signals. We recorded extracellular activity in four areas of the macaque dorsal visual cortex during a saccade task, including the lateral and ventral intraparietal areas (LIP, VIP), and the middle temporal (MT) and medial superior temporal (MST) areas. As reported previously, neurons showed tonic eye-position-related activity during fixation. In addition, they showed a variety of transient changes in activity around the time of saccades, including relative suppression, enhancement, and pre-saccadic bursts for one saccade direction over another. We show that a hypothetical neuron that pools this rich population activity through a weighted sum can produce an output that mimics the true spatiotemporal dynamics of the eye. Further, with different pooling weights, this downstream eye position signal (EPS) could be updated long before (<100 ms) or after (<200 ms) an eye movement. The results suggest a flexible coding scheme in which downstream computations have access to past, current, and future eye positions simultaneously, providing a basis for visual stability and delay-free visually-guided behavior. PMID:26941617

  10. Host response to cuckoo song is predicted by the future risk of brood parasitism

    PubMed Central

    2013-01-01

    Introduction Risk assessment occurs over different temporal and spatial scales and is selected for when individuals show an adaptive response to a threat. Here, we test if birds respond to the threat of brood parasitism using the acoustical cues of brood parasites in the absence of visual stimuli. We broadcast the playback of song of three brood parasites (Chalcites cuckoo species) and a sympatric non-parasite (striated thornbill, Acanthiza lineata) in the territories of superb fairy-wrens (Malurus cyaneus) during the peak breeding period and opportunistic breeding period. The three cuckoo species differ in brood parasite prevalence and the probability of detection by the host, which we used to rank the risk of parasitism (high risk, moderate risk, low risk). Results Host birds showed the strongest response to the threat of cuckoo parasitism in accordance with the risk of parasitism. Resident wrens had many alarm calls and close and rapid approach to the playback speaker that was broadcasting song of the high risk brood parasite (Horsfield’s bronze-cuckoo, C. basalis) across the year (peak and opportunistic breeding period), some response to the moderate risk brood parasite (shining bronze-cuckoo, C. lucidus) during the peak breeding period, and the weakest response to the low risk brood parasite (little bronze-cuckoo, C. minutillus). Playback of the familiar control stimulus in wren territories evoked the least response. Conclusion Host response to the threat of cuckoo parasitism was assessed using vocal cues of the cuckoo and was predicted by the risk of future parasitism. PMID:23692969

  11. An Integrated and Interdisciplinary Model for Predicting the Risk of Injury and Death in Future Earthquakes

    PubMed Central

    Shapira, Stav; Novack, Lena; Bar-Dayan, Yaron; Aharonson-Daniel, Limor

    2016-01-01

    Background A comprehensive technique for earthquake-related casualty estimation remains an unmet challenge. This study aims to integrate risk factors related to characteristics of the exposed population and to the built environment in order to improve communities’ preparedness and response capabilities and to mitigate future consequences. Methods An innovative model was formulated based on a widely used loss estimation model (HAZUS) by integrating four human-related risk factors (age, gender, physical disability and socioeconomic status) that were identified through a systematic review and meta-analysis of epidemiological data. The common effect measures of these factors were calculated and entered to the existing model’s algorithm using logistic regression equations. Sensitivity analysis was performed by conducting a casualty estimation simulation in a high-vulnerability risk area in Israel. Results the integrated model outcomes indicated an increase in the total number of casualties compared with the prediction of the traditional model; with regard to specific injury levels an increase was demonstrated in the number of expected fatalities and in the severely and moderately injured, and a decrease was noted in the lightly injured. Urban areas with higher populations at risk rates were found more vulnerable in this regard. Conclusion The proposed model offers a novel approach that allows quantification of the combined impact of human-related and structural factors on the results of earthquake casualty modelling. Investing efforts in reducing human vulnerability and increasing resilience prior to an occurrence of an earthquake could lead to a possible decrease in the expected number of casualties. PMID:26959647

  12. Remote science support during MARS2013: testing a map-based system of data processing and utilization for future long-duration planetary missions.

    PubMed

    Losiak, Anna; Gołębiowska, Izabela; Orgel, Csilla; Moser, Linda; MacArthur, Jane; Boyd, Andrea; Hettrich, Sebastian; Jones, Natalie; Groemer, Gernot

    2014-05-01

    MARS2013 was an integrated Mars analog field simulation in eastern Morocco performed by the Austrian Space Forum between February 1 and 28, 2013. The purpose of this paper is to discuss the system of data processing and utilization adopted by the Remote Science Support (RSS) team during this mission. The RSS team procedures were designed to optimize operational efficiency of the Flightplan, field crew, and RSS teams during a long-term analog mission with an introduced 10 min time delay in communication between "Mars" and Earth. The RSS workflow was centered on a single-file, easy-to-use, spatially referenced database that included all the basic information about the conditions at the site of study, as well as all previous and planned activities. This database was prepared in Google Earth software. The lessons learned from MARS2013 RSS team operations are as follows: (1) using a spatially referenced database is an efficient way of data processing and data utilization in a long-term analog mission with a large amount of data to be handled, (2) mission planning based on iterations can be efficiently supported by preparing suitability maps, (3) the process of designing cartographical products should start early in the planning stages of a mission and involve representatives of all teams, (4) all team members should be trained in usage of cartographical products, (5) technical problems (e.g., usage of a geological map while wearing a space suit) should be taken into account when planning a work flow for geological exploration, (6) a system that helps the astronauts to efficiently orient themselves in the field should be designed as part of future analog studies.

  13. Remote science support during MARS2013: testing a map-based system of data processing and utilization for future long-duration planetary missions.

    PubMed

    Losiak, Anna; Gołębiowska, Izabela; Orgel, Csilla; Moser, Linda; MacArthur, Jane; Boyd, Andrea; Hettrich, Sebastian; Jones, Natalie; Groemer, Gernot

    2014-05-01

    MARS2013 was an integrated Mars analog field simulation in eastern Morocco performed by the Austrian Space Forum between February 1 and 28, 2013. The purpose of this paper is to discuss the system of data processing and utilization adopted by the Remote Science Support (RSS) team during this mission. The RSS team procedures were designed to optimize operational efficiency of the Flightplan, field crew, and RSS teams during a long-term analog mission with an introduced 10 min time delay in communication between "Mars" and Earth. The RSS workflow was centered on a single-file, easy-to-use, spatially referenced database that included all the basic information about the conditions at the site of study, as well as all previous and planned activities. This database was prepared in Google Earth software. The lessons learned from MARS2013 RSS team operations are as follows: (1) using a spatially referenced database is an efficient way of data processing and data utilization in a long-term analog mission with a large amount of data to be handled, (2) mission planning based on iterations can be efficiently supported by preparing suitability maps, (3) the process of designing cartographical products should start early in the planning stages of a mission and involve representatives of all teams, (4) all team members should be trained in usage of cartographical products, (5) technical problems (e.g., usage of a geological map while wearing a space suit) should be taken into account when planning a work flow for geological exploration, (6) a system that helps the astronauts to efficiently orient themselves in the field should be designed as part of future analog studies. PMID:24788035

  14. Temperament and Parenting during the First Year of Life Predict Future Child Conduct Problems

    ERIC Educational Resources Information Center

    Lahey, Benjamin B.; Van Hulle, Carol A.; Keenan, Kate; Rathouz, Paul J.; D'Onofrio, Brian M.; Rodgers, Joseph Lee; Waldman, Irwin D.

    2008-01-01

    Predictive associations between parenting and temperament during the first year of life and child conduct problems were assessed longitudinally in 1,863 offspring of a representative sample of women. Maternal ratings of infant fussiness, activity level, predictability, and positive affect each independently predicted maternal ratings of conduct…

  15. Prediction of temperature and precipitation in Sudan and South Sudan by using LARS-WG in future

    NASA Astrophysics Data System (ADS)

    Chen, Hua; Guo, Jiali; Zhang, Zengxin; Xu, Chong-Yu

    2013-08-01

    Global warming has brought great pressure on the environment and livelihood conditions in Sudan and South Sudan. It is desirable to analyze and predict the change of critical climatic variables, such as temperature and precipitation, which will provide valuable reference results for future water resources planning and management in the region. The aims of this study are to test the applicability of the Long Ashton Research Station Weather Generator (LARS-WG) model in downscaling daily precipitation and daily maximum (Tmax) and daily minimum (Tmin) temperatures in Sudan and South Sudan and use it to predict future changes of precipitation; Tmin and Tmax for nine stations in Sudan and South Sudan are based on the SRA2 scenario of seven General Circulation Models (GCMs) outputs for the periods of 2011-2030, 2046-2065, and 2080-2099. The results showed that (1) the LARS-WG model produces good performance in downscaling daily precipitation and excellent performance in downscaling Tmax and Tmin in the study region; (2) downscaled precipitation from the prediction of seven GCMs showed great inconsistency in these two regions, which illustrates the great uncertainty in GCMs' results in the regions; (3) predicted precipitation in rainy season JJA (June, July, and August) based on the ensemble mean of seven GCMs showed a decreasing trend in the periods of 2011-2030, 2046-2065, and 2080-2099 in Sudan; however, an increasing trend can be found in SON (September, October, and November) in the future; (4) precipitation in South Sudan has an increasing trend in most seasons in the future except in MAM (March, April, and May) season in 2011-2030; and (5) predictions from seven GCMs showed a similar and continuous increasing trend for Tmax and Tmin in all three future periods, which will bring severe negative influence on improving livelihoods and reducing poverty in Sudan and South Sudan.

  16. What Do Children Know about Their Futures: Do Children's Expectations Predict Outcomes in Middle Age?

    ERIC Educational Resources Information Center

    Hallerod, Bjorn

    2011-01-01

    Are children's statements about their futures related to outcomes in middle age? In 1966 almost 13,500 children ages 12-13 were asked whether they thought their futures would be worse, similar or better as compared to others of their own age. It was shown that children with low, and surprisingly high, expectations did suffer from increased…

  17. Predicting Premeditation: Future Behavior Is Seen as More Intentional than Past Behavior

    ERIC Educational Resources Information Center

    Burns, Zachary C.; Caruso, Eugene M.; Bartels, Daniel M.

    2012-01-01

    People's intuitions about the underlying causes of past and future actions might not be the same. In 3 studies, we demonstrate that people judge the same behavior as more intentional when it will be performed in the future than when it has been performed in the past. We found this temporal asymmetry in perceptions of both the strength of an…

  18. The Future Is Bright and Predictable: The Development of Prospective Life Stories across Childhood and Adolescence

    ERIC Educational Resources Information Center

    Bohn, Annette; Berntsen, Dorthe

    2013-01-01

    When do children develop the ability to imagine their future lives in terms of a coherent prospective life story? We investigated whether this ability develops in parallel with the ability to construct a life story for the past and narratives about single autobiographical events in the past and future. Four groups of school children aged 9 to 15…

  19. Forming Attitudes that Predict Future Behavior: A Meta-Analysis of the Attitude-Behavior Relation

    ERIC Educational Resources Information Center

    Glasman, Laura R.; Albarracin, Dolores

    2006-01-01

    A meta-analysis (k of conditions = 128; N = 4,598) examined the influence of factors present at the time an attitude is formed on the degree to which this attitude guides future behavior. The findings indicated that attitudes correlated with a future behavior more strongly when they were easy to recall (accessible) and stable over time. Because of…

  20. Modelling the influence of predicted future climate change on the risk of wind damage within New Zealand's planted forests.

    PubMed

    Moore, John R; Watt, Michael S

    2015-08-01

    Wind is the major abiotic disturbance in New Zealand's planted forests, but little is known about how the risk of wind damage may be affected by future climate change. We linked a mechanistic wind damage model (ForestGALES) to an empirical growth model for radiata pine (Pinus radiata D. Don) and a process-based growth model (cenw) to predict the risk of wind damage under different future emissions scenarios and assumptions about the future wind climate. The cenw model was used to estimate site productivity for constant CO2 concentration at 1990 values and for assumed increases in CO2 concentration from current values to those expected during 2040 and 2090 under the B1 (low), A1B (mid-range) and A2 (high) emission scenarios. Stand development was modelled for different levels of site productivity, contrasting silvicultural regimes and sites across New Zealand. The risk of wind damage was predicted for each regime and emission scenario combination using the ForestGALES model. The sensitivity to changes in the intensity of the future wind climate was also examined. Results showed that increased tree growth rates under the different emissions scenarios had the greatest impact on the risk of wind damage. The increase in risk was greatest for stands growing at high stand density under the A2 emissions scenario with increased CO2 concentration. The increased productivity under this scenario resulted in increased tree height, without a corresponding increase in diameter, leading to more slender trees that were predicted to be at greater risk from wind damage. The risk of wind damage was further increased by the modest increases in the extreme wind climate that are predicted to occur. These results have implications for the development of silvicultural regimes that are resilient to climate change and also indicate that future productivity gains may be offset by greater losses from disturbances.

  1. Long Duration Sorbent Testbed

    NASA Technical Reports Server (NTRS)

    Howard, David F.; Knox, James C.; Long, David A.; Miller, Lee; Cmaric, Gregory; Thomas, John

    2016-01-01

    The Long Duration Sorbent Testbed (LDST) is a flight experiment demonstration designed to expose current and future candidate carbon dioxide removal system sorbents to an actual crewed space cabin environment to assess and compare sorption working capacity degradation resulting from long term operation. An analysis of sorbent materials returned to Earth after approximately one year of operation in the International Space Station's (ISS) Carbon Dioxide Removal Assembly (CDRA) indicated as much as a 70% loss of working capacity of the silica gel desiccant material at the extreme system inlet location, with a gradient of capacity loss down the bed. The primary science objective is to assess the degradation of potential sorbents for exploration class missions and ISS upgrades when operated in a true crewed space cabin environment. A secondary objective is to compare degradation of flight test to a ground test unit with contaminant dosing to determine applicability of ground testing.

  2. THE FUTURE OF TOXICOLOGY-PREDICTIVE TOXICOLOGY: AN EXPANDED VIEW OF CHEMICAL TOXICITY

    EPA Science Inventory

    A chemistry approach to predictive toxicology relies on structure−activity relationship (SAR) modeling to predict biological activity from chemical structure. Such approaches have proven capabilities when applied to well-defined toxicity end points or regions of chemical space. T...

  3. Internal and Predictive Validity of the French Health of the Nation Outcome Scales: Need for Future Directions

    PubMed Central

    Golay, Philippe; Basterrechea, Louis; Conus, Philippe; Bonsack, Charles

    2016-01-01

    The Health of the Nation Outcome Scales (HoNOS) is a widely used measure of health and social functioning of people with mental illness. The goals of this study were to verify the internal validity of the one factor and several four-factor scoring structures and to evaluate the predictive validity of HoNOS items with regards to duration of hospitalization, probability of readmission in the following year and time before readmission. 6175 hospital stays at the department of psychiatry of Lausanne University Hospital were screened and the first HoNOS of each patient was taken into account (N = 2722). Data were analyzed through Confirmatory Factor Analysis (CFA) and the predictive validity of HoNOS items was evaluated with two approaches: item level regressions and latent class analysis (LCA). CFA indicated that the suggested factor structures were not supported by the data. Predictive validity of the 12 items was weak but LCA revealed five distinct and meaningful profiles that were related to length of stay or readmission. HoNOS may be more adapted to the evaluation of patients case-mix rather than to the individual level and concepts such as predictive validity may be more appropriate than internal validity to guide its use. PMID:27483015

  4. Predicted Megafire Locations under Future Climate Scenarios in the Contiguous United States

    NASA Astrophysics Data System (ADS)

    Lorentz, K. A.; Drury, S.; Raffuse, S. M.; Larkin, N. K.

    2014-12-01

    Over the past several years, large high-intensity wildfires, or "megafires," have set records for the greatest burn area and most costly fires in several U.S. states. Megafires can release many tons of fine particles and other pollutants that are hazardous to human health over a short period of time. Under future climate scenarios, megafires may increase in some regions. The danger of smoke exposure from megafires in the future depends on several spatial factors, including the likelihood of megafire occurrence, emission rates, air transport patterns, and population density. We combined climatological transport modeling, smoke emission rates, and population density to determine the areas within the U.S. where a megafire would result in the greatest human exposure to smoke. Coupled with a synthesis of recent studies on the likelihood of megafire occurrence under future climate scenarios, these results provide a view of future smoke management and emergency response needs.

  5. Computation of canonical correlation and best predictable aspect of future for time series

    NASA Technical Reports Server (NTRS)

    Pourahmadi, Mohsen; Miamee, A. G.

    1989-01-01

    The canonical correlation between the (infinite) past and future of a stationary time series is shown to be the limit of the canonical correlation between the (infinite) past and (finite) future, and computation of the latter is reduced to a (generalized) eigenvalue problem involving (finite) matrices. This provides a convenient and essentially, finite-dimensional algorithm for computing canonical correlations and components of a time series. An upper bound is conjectured for the largest canonical correlation.

  6. Global Air Quality Predictions of Particulate Matter in the Middle East and Sensitivity to Future Emissions Scenarios

    NASA Astrophysics Data System (ADS)

    Couzo, E. A.; Holmes, C. D.; Paltsev, S.; Alawad, A.; Selin, N. E.

    2014-12-01

    We examine the influence of natural and anthropogenic drivers of future PM in the Middle East region using two future emissions scenarios to drive the GEOS-Chem atmospheric chemistry model. The Arabian Peninsula is a major source of windblown dust as well as anthropogenic aerosols. Future emissions - driven jointly and individually by climate change and anthropogenic emissions from this rapidly growing region - will play an important role in both climate forcing and human health impacts from particulate matter. We use two scenarios to compare their climate and air quality implications. First, we use the Intergovernmental Panel on Climate Change Representative Concentration Pathways (RCPs) for four radiative forcing cases. Second, we develop a consistent future greenhouse gas and conventional pollutant emission inventory using the MIT Emissions Prediction and Policy Analysis (EPPA) model, which is a general equilibrium model of the global economy that calculates how economic growth and anthropogenic emissions change as a result of policies and other stressors. With EPPA, we examine three emissions cases, a business-as-usual case and two stabilization cases leading to anthropogenic radiative forcings of 3.7 W/m2 and 4.5 W/m2. We use these scenarios to drive GEOS-Chem for present and future climate, assessing changes in chemical composition of aerosol and drivers, both natural and anthropogenic, out to 2050. We find that projected anthropogenic emissions are strong determinants of future particulate matter air quality in the Middle East region.

  7. The current status and future applicability of quantitative structure-activity relationships (QSARs) in predicting toxicity.

    PubMed

    Cronin, Mark T D

    2002-12-01

    The current status of quantitative structure-activity relationships (QSARs) in predicting toxicity is assessed. Widespread use of these methods to predict toxicity from chemical structure is possible, both by industry to develop new compounds, and also by regulatory agencies. The current use of QSARs is restricted by the lack of suitable toxicity data available for modelling, the suitability of simplistic modelling approaches for the prediction of certain endpoints, and the poor definition and utilisation of the applicability domain of models. Suggestions to resolve these issues are made.

  8. Predictive Value of National Football League Scouting Combine on Future Performance of Running Backs and Wide Receivers.

    PubMed

    Teramoto, Masaru; Cross, Chad L; Willick, Stuart E

    2016-05-01

    The National Football League (NFL) Scouting Combine is held each year before the NFL Draft to measure athletic abilities and football skills of college football players. Although the NFL Scouting Combine can provide the NFL teams with an opportunity to evaluate college players for the upcoming NFL Draft, its value for predicting future success of players has been questioned. This study examined whether the NFL Combine measures can predict future performance of running backs (RBs) and wide receivers (WRs) in the NFL. We analyzed the 2000-09 Combine data of RBs (N = 276) and WRs (N = 447) and their on-field performance for the first 3 years after the draft and over their entire careers in the NFL, using correlation and regression analyses, along with a principal component analysis (PCA). The results of the analyses showed that, after accounting for the number of games played, draft position, height (HT), and weight (WT), the time on 10-yard dash was the most important predictor of rushing yards per attempt of the first 3 years (p = 0.002) and of the careers (p < 0.001) in RBs. For WRs, vertical jump was found to be significantly associated with receiving yards per reception of the first 3 years (p = 0.001) and of the careers (p = 0.004) in the NFL, after adjusting for the covariates above. Furthermore, HT was most important in predicting future performance of WRs. The analyses also revealed that the 8 athletic drills in the Combine seemed to have construct validity. It seems that the NFL Scouting Combine has some value for predicting future performance of RBs and WRs in the NFL. PMID:27100168

  9. Predictive Value of National Football League Scouting Combine on Future Performance of Running Backs and Wide Receivers.

    PubMed

    Teramoto, Masaru; Cross, Chad L; Willick, Stuart E

    2016-05-01

    The National Football League (NFL) Scouting Combine is held each year before the NFL Draft to measure athletic abilities and football skills of college football players. Although the NFL Scouting Combine can provide the NFL teams with an opportunity to evaluate college players for the upcoming NFL Draft, its value for predicting future success of players has been questioned. This study examined whether the NFL Combine measures can predict future performance of running backs (RBs) and wide receivers (WRs) in the NFL. We analyzed the 2000-09 Combine data of RBs (N = 276) and WRs (N = 447) and their on-field performance for the first 3 years after the draft and over their entire careers in the NFL, using correlation and regression analyses, along with a principal component analysis (PCA). The results of the analyses showed that, after accounting for the number of games played, draft position, height (HT), and weight (WT), the time on 10-yard dash was the most important predictor of rushing yards per attempt of the first 3 years (p = 0.002) and of the careers (p < 0.001) in RBs. For WRs, vertical jump was found to be significantly associated with receiving yards per reception of the first 3 years (p = 0.001) and of the careers (p = 0.004) in the NFL, after adjusting for the covariates above. Furthermore, HT was most important in predicting future performance of WRs. The analyses also revealed that the 8 athletic drills in the Combine seemed to have construct validity. It seems that the NFL Scouting Combine has some value for predicting future performance of RBs and WRs in the NFL.

  10. Validating health impact assessment: Prediction is difficult (especially about the future)

    SciTech Connect

    Petticrew, Mark . E-mail: mark@msoc.mrc.gla.ac.uk; Cummins, Steven; Sparks, Leigh; Findlay, Anne

    2007-01-15

    Health impact assessment (HIA) has been recommended as a means of estimating how policies, programmes and projects may impact on public health and on health inequalities. This paper considers the difference between predicting health impacts and measuring those impacts. It draws upon a case study of the building of a new hypermarket in a deprived area of Glasgow, which offered an opportunity to reflect on the issue of the predictive validity of HIA, and to consider the difference between potential and actual impacts. We found that the actual impacts of the new hypermarket on diet differed from that which would have been predicted based on previous studies. Furthermore, they challenge current received wisdom about the impact of food retail outlets in poorer areas. These results are relevant to the validity of HIA as a process and emphasise the importance of further research on the predictive validity of HIA, which should help improve its value to decision-makers.

  11. It is hard to predict the future: the evolving nature of threats and vulnerabilities.

    PubMed

    Ackerman, G A

    2006-04-01

    This paper describes the evolving nature of threats and vulnerabilities associated with biological disasters with animal origins, and introduces some of the pitfalls and opportunities associated with anticipating future threats. Evolving threats and vulnerabilities include continued deforestation and encroachment on virgin habitats, the effects of globalisation on trade and transportation, the increased interdependence and social vulnerability of modern society, the commingling of intensive agriculture and traditional farming methods, the periodic appearance of pandemics and epizootics, and indications that numerous human actors are displaying an increasing interest in and capability of using biological agents as weapons. These developments must be viewed in the context of various impediments to accurately gauging future threats, such as the appearance of new elements that depart from current trends and the inherent difficulty in anticipating human, and especially terrorist, behaviour. The paper concludes with some broad recommendations for structuring a policy response to the threat in an environment of uncertainty about the future.

  12. Prediction of future labour market outcome in a cohort of long-term sick- listed Danes

    PubMed Central

    2014-01-01

    Background Targeted interventions for the long-term sick-listed may prevent permanent exclusion from the labour force. We aimed to develop a prediction method for identifying high risk groups for continued or recurrent long-term sickness absence, unemployment, or disability among persons on long-term sick leave. Methods We obtained individual characteristics and follow-up data from the Danish Register of Sickness Absence Compensation Benefits and Social Transfer Payments (RSS) during 2004 to 2010 for 189,279 Danes who experienced a period of long-term sickness absence (4+ weeks). In a learning data set, statistical prediction methods were built using logistic regression and a discrete event simulation approach for a one year prediction horizon. Personalized risk profiles were obtained for five outcomes: employment, unemployment, recurrent sickness absence, continuous long-term sickness absence, and early retirement from the labour market. Predictor variables included gender, age, socio-economic position, job type, chronic disease status, history of sickness absence, and prior history of unemployment. Separate models were built for times of economic growth (2005–2007) and times of recession (2008–2010). The accuracy of the prediction models was assessed with analyses of Receiver Operating Characteristic (ROC) curves and the Brier score in an independent validation data set. Results In comparison with a null model which ignored the predictor variables, logistic regression achieved only moderate prediction accuracy for the five outcome states. Results obtained with discrete event simulation were comparable with logistic regression. Conclusions Only moderate prediction accuracy could be achieved using the selected information from the Danish register RSS. Other variables need to be included in order to establish a prediction method which provides more accurate risk profiles for long-term sick-listed persons. PMID:24885866

  13. Enduring Risk? Old Criminal Records and Predictions of Future Criminal Involvement

    ERIC Educational Resources Information Center

    Kurlychek, Megan C.; Brame, Robert; Bushway, Shawn D.

    2007-01-01

    It is well accepted that criminal records impose collateral consequences on offenders. Such records affect access to public housing, student financial aid, welfare benefits, and voting rights. An axiom of these policies is that individuals with criminal records--even old criminal records--exhibit significantly higher risk of future criminal…

  14. Use of Social Emotional Learning Skills to Predict Future Academic Success and Progress toward Graduation

    ERIC Educational Resources Information Center

    Davis, Alan; Solberg, V. Scott; de Baca, Christine; Gore, Taryn Hargrove

    2014-01-01

    This study evaluated the degree to which a range of social emotional learning skills--academic self-efficacy, academic motivation, social connections, importance of school, and managing psychological and emotional distress and academic stress--could be used as an indicator of future academic outcomes. Using a sample of 4,797 from a large urban…

  15. The Crystal Ball Project: Predicting the Future of Composition and the Preparation of Composition Teachers

    ERIC Educational Resources Information Center

    Hill, Crag; Ericsson, Patricia Freitag

    2014-01-01

    In this article the authors peer into current elementary classrooms and college composition courses in 2020 to envision what K-12 and composition curricula can do now to ensure today's students are prepared for those future composition classes. The authors interviewed veteran (20 or more years) K-6 teachers in a small university town and…

  16. Numerical simulation of a Trombe wall to predict the energy storage rate and time duration of room heating during the non-sunny periods

    NASA Astrophysics Data System (ADS)

    Rabani, Mehran; Kalantar, Vali; Faghih, Ahmadreza K.; Rabani, Mehrdad; Rabani, Ramin

    2013-10-01

    In this paper, 2D numerical simulation of the Trombe wall performance and indoor air environment under unsteady state condition for a room located in Yazd, Iran are studied. The governing equations involve mass, momentum and energy conservation, which are discretized by the finite volume method after non-dimensionalization. The SIMPLER algorithm is used for coupling the velocity and pressure. The average absorbed solar radiation on the Trombe wall has been defined for different hours of the coldest period of the year (21 January-19 February) in Yazd. All equations have been solved together using a FORTAN code. The main aim of this research is to investigate the time duration of room heating during the non-sunny periods. The stored energy of the wall being delivered to the inside room was defined for different materials of the Trombe wall. The results show that the Trombe wall made of paraffin wax can keep the room warmer in comparison with other materials for about 9 h.

  17. A motion-energy model predicts the direction discrimination and MAE duration of two-stroke apparent motion at high and low retinal illuminance.

    PubMed

    Challinor, Kirsten L; Mather, George

    2010-06-11

    Two-stroke apparent motion offers a challenge to current theoretical models of motion processing and is thus a useful tool for investigating motion sensor input. The stimulus involves repeated presentation of two pattern frames containing a spatial displacement, with a blank inter-stimulus interval (ISI) at one of the two-frame transitions. The resulting impression of continuous motion was measured here using both direction discrimination and motion after-effect duration in order to assess the extent to which data using the two measures can be explained by a computational model without reference to attentive tracking mechanisms. The motion-energy model was found to offer a very good account of the psychophysical data using similar parameters for both tasks. The experiment was run under both photopic and scotopic retinal illumination. Data revealed that the optimum ISI for perceiving two-stroke apparent motion shifts to longer ISIs under scotopic conditions, providing evidence for a biphasic impulse response at low luminance. Best-fitting model parameters indicate that motion sensors receive inputs from temporal filters whose central temporal frequency shifts from 2.5 to 3.0Hz at high retinal illuminance to 1.0-1.5Hz at low retinal illuminance.

  18. Deep Patient: An Unsupervised Representation to Predict the Future of Patients from the Electronic Health Records

    PubMed Central

    Miotto, Riccardo; Li, Li; Kidd, Brian A.; Dudley, Joel T.

    2016-01-01

    Secondary use of electronic health records (EHRs) promises to advance clinical research and better inform clinical decision making. Challenges in summarizing and representing patient data prevent widespread practice of predictive modeling using EHRs. Here we present a novel unsupervised deep feature learning method to derive a general-purpose patient representation from EHR data that facilitates clinical predictive modeling. In particular, a three-layer stack of denoising autoencoders was used to capture hierarchical regularities and dependencies in the aggregated EHRs of about 700,000 patients from the Mount Sinai data warehouse. The result is a representation we name “deep patient”. We evaluated this representation as broadly predictive of health states by assessing the probability of patients to develop various diseases. We performed evaluation using 76,214 test patients comprising 78 diseases from diverse clinical domains and temporal windows. Our results significantly outperformed those achieved using representations based on raw EHR data and alternative feature learning strategies. Prediction performance for severe diabetes, schizophrenia, and various cancers were among the top performing. These findings indicate that deep learning applied to EHRs can derive patient representations that offer improved clinical predictions, and could provide a machine learning framework for augmenting clinical decision systems. PMID:27185194

  19. Deep Patient: An Unsupervised Representation to Predict the Future of Patients from the Electronic Health Records.

    PubMed

    Miotto, Riccardo; Li, Li; Kidd, Brian A; Dudley, Joel T

    2016-01-01

    Secondary use of electronic health records (EHRs) promises to advance clinical research and better inform clinical decision making. Challenges in summarizing and representing patient data prevent widespread practice of predictive modeling using EHRs. Here we present a novel unsupervised deep feature learning method to derive a general-purpose patient representation from EHR data that facilitates clinical predictive modeling. In particular, a three-layer stack of denoising autoencoders was used to capture hierarchical regularities and dependencies in the aggregated EHRs of about 700,000 patients from the Mount Sinai data warehouse. The result is a representation we name "deep patient". We evaluated this representation as broadly predictive of health states by assessing the probability of patients to develop various diseases. We performed evaluation using 76,214 test patients comprising 78 diseases from diverse clinical domains and temporal windows. Our results significantly outperformed those achieved using representations based on raw EHR data and alternative feature learning strategies. Prediction performance for severe diabetes, schizophrenia, and various cancers were among the top performing. These findings indicate that deep learning applied to EHRs can derive patient representations that offer improved clinical predictions, and could provide a machine learning framework for augmenting clinical decision systems. PMID:27185194

  20. Past and predicted future changes in the land cover of the Upper Mississippi River floodplain, USA

    USGS Publications Warehouse

    De Jager, N. R.; Rohweder, J.J.; Nelson, J.C.

    2013-01-01

    This study provides one historical and two alternative future contexts for evaluating land cover modifications within the Upper Mississippi River (UMR) floodplain. Given previously documented changes in land use, river engineering, restoration efforts and hydro-climatic changes within the UMR basin and floodplain, we wanted to know which of these changes are the most important determinants of current and projected future floodplain land cover. We used Geographic Information System data covering approximately 37% of the UMR floodplain (3232 km2) for ca 1890 (pre-lock and dam) and three contemporary periods (1975, 1989 and 2000) across which river restoration actions have increased and hydro-climatic changes have occurred. We further developed two 50-year future scenarios from the spatially dependent land cover transitions that occurred from 1975 to 1989 (scenario A) and from 1989 to 2000 (scenario B) using Markov models.Land cover composition of the UMR did not change significantly from 1975 to 2000, indicating that current land cover continues to reflect historical modifications that support agricultural production and commercial navigation despite some floodplain restoration efforts and variation in river discharge. Projected future land cover composition based on scenario A was not significantly different from the land cover for 1975, 1989 or 2000 but was different from the land cover of scenario B, which was also different from all other periods. Scenario B forecasts transition of some forest and marsh habitat to open water by the year 2050 for some portions of the northern river and projects that some agricultural lands will transition to open water in the southern portion of the river. Future floodplain management and restoration planning efforts in the UMR should consider the potential consequences of continued shifts in hydro-climatic conditions that may occur as a result of climate change and the potential effects on floodplain land cover.

  1. Future global and regional climate change: From near-term prediction to long-term projections (Invited)

    NASA Astrophysics Data System (ADS)

    Knutti, R.; Collins, M.; Power, S.; Kirtman, B. P.; Christensen, J. H.; Krishna Kumar, K.

    2013-12-01

    The IPCC AR5 assessed results from a hierarchy of different climate models on how climate might change in the future from decades to millennia. The projections are based on a series of new climate models and for new scenarios. They are very consistent with projections in AR4 and confirm widespread changes in the atmosphere, ocean, sea ice and land under emission scenarios without mitigation. In the late 21st century and beyond, the warming is dominated by the total emissions of CO2, and many changes will persist for centuries even if emissions were stopped. Stabilization of global temperature at 2°C above the preindustrial value for example, requires strong emission reductions over the 21st century. In the near term and locally however, interannual and decadal climate variability remains a large and mostly irreducible component of the uncertainty in projections. Improving the quality of information on regional climate change and improving the ability of the scientific community to perform near-term climate predictions are key challenges for the future. The development of a consensus in the climate science community on (i) the major directions for future model development and (ii) the scope of future coordinated model experiments will help serve the needs of both future IPCC assessments and the wider research community.

  2. The importance of considering shifts in seasonal changes in discharges when predicting future phosphorus loads in streams

    USGS Publications Warehouse

    LaBeau, Meredith B.; Mayer, Alex S.; Griffis, Veronica; Watkins, David Jr.; Robertson, Dale; Gyawali, Rabi

    2015-01-01

    In this work, we hypothesize that phosphorus (P) concentrations in streams vary seasonally and with streamflow and that it is important to incorporate this variation when predicting changes in P loading associated with climate change. Our study area includes 14 watersheds with a range of land uses throughout the U.S. Great Lakes Basin. We develop annual seasonal load-discharge regression models for each watershed and apply these models with simulated discharges generated for future climate scenarios to simulate future P loading patterns for two periods: 2046–2065 and 2081–2100. We utilize output from the Coupled Model Intercomparison Project phase 3 downscaled climate change projections that are input into the Large Basin Runoff Model to generate future discharge scenarios, which are in turn used as inputs to the seasonal P load regression models. In almost all cases, the seasonal load-discharge models match observed loads better than the annual models. Results using the seasonal models show that the concurrence of nonlinearity in the load-discharge model and changes in high discharges in the spring months leads to the most significant changes in P loading for selected tributaries under future climate projections. These results emphasize the importance of using seasonal models to understand the effects of future climate change on nutrient loads.

  3. Future time perspective and awareness of age-related change: Examining their role in predicting psychological well-being.

    PubMed

    Brothers, Allyson; Gabrian, Martina; Wahl, Hans-Werner; Diehl, Manfred

    2016-09-01

    This study examined how 2 distinct facets of perceived personal lifetime-future time perspective (FTP) and awareness of age-related change (AARC)-are associated with another, and how they may interact to predict psychological well-being. To better understand associations among subjective perceptions of lifetime, aging, and well-being, we tested a series of models to investigate questions of directionality, indirect effects, and conditional processes among FTP, AARC-Gains, AARC-Losses, and psychological well-being. In all models, we tested for differences between middle-aged and older adults, and between adults from the United States and Germany. Analyses were conducted within a structural equation modeling framework on a cross-national, 2.5-year longitudinal sample of 537 community-residing adults (age 40-98 years). Awareness of age-related losses (AARC-Losses) at Time 1 predicted FTP at Time 2, but FTP did not predict AARC-Gains or AARC-Losses. Furthermore, future time perspective mediated the association between AARC-Losses and well-being. Moderation analyses revealed a buffering effect of awareness of age-related gains (AARC-Gains) in which perceptions of more age-related gains diminished the negative effect of a limited future time perspective on well-being. Effects were robust across age groups and countries. Taken together, these findings suggest that perceived age-related loss experiences may sensitize individuals to perceive a more limited future lifetime which may then lead to lower psychological well-being. In contrast, perceived age-related gains may function as a resource to preserve psychological well-being, in particular when time is perceived as running out. (PsycINFO Database Record

  4. Whatever next? Predictive brains, situated agents, and the future of cognitive science.

    PubMed

    Clark, Andy

    2013-06-01

    Brains, it has recently been argued, are essentially prediction machines. They are bundles of cells that support perception and action by constantly attempting to match incoming sensory inputs with top-down expectations or predictions. This is achieved using a hierarchical generative model that aims to minimize prediction error within a bidirectional cascade of cortical processing. Such accounts offer a unifying model of perception and action, illuminate the functional role of attention, and may neatly capture the special contribution of cortical processing to adaptive success. This target article critically examines this "hierarchical prediction machine" approach, concluding that it offers the best clue yet to the shape of a unified science of mind and action. Sections 1 and 2 lay out the key elements and implications of the approach. Section 3 explores a variety of pitfalls and challenges, spanning the evidential, the methodological, and the more properly conceptual. The paper ends (sections 4 and 5) by asking how such approaches might impact our more general vision of mind, experience, and agency.

  5. Predicting Future Antisocial Personality Disorder in Males from a Clinical Assessment in Childhood

    ERIC Educational Resources Information Center

    Lahey, Benjamin B.; Loeber, Rolf; Burke, Jeffrey D.; Applegate, Brooks

    2005-01-01

    It is essential to identify childhood predictors of adult antisocial personality disorder (APD) to target early prevention. It has variously been hypothesized that APD is predicted by childhood conduct disorder (CD), attention-deficit/hyperactivity disorder (ADHD), or both disorders. To test these competing hypotheses, the authors used data from a…

  6. Combining Expressed Vocational Choice and Measures of Career Development to Predict Future Occupational Field.

    ERIC Educational Resources Information Center

    Noeth, Richard J.

    A study was designed to test predictability of actual occupation from expressed vocational choice when combined separately with measures of career development. Subjects were 1,994 members of a national study of high school career development who were working more than half-time three years later (1976). Expressed vocational choice and measures of…

  7. Multivariate Radiological-Based Models for the Prediction of Future Knee Pain: Data from the OAI.

    PubMed

    Galván-Tejada, Jorge I; Celaya-Padilla, José M; Treviño, Victor; Tamez-Peña, José G

    2015-01-01

    In this work, the potential of X-ray based multivariate prognostic models to predict the onset of chronic knee pain is presented. Using X-rays quantitative image assessments of joint-space-width (JSW) and paired semiquantitative central X-ray scores from the Osteoarthritis Initiative (OAI), a case-control study is presented. The pain assessments of the right knee at the baseline and the 60-month visits were used to screen for case/control subjects. Scores were analyzed at the time of pain incidence (T-0), the year prior incidence (T-1), and two years before pain incidence (T-2). Multivariate models were created by a cross validated elastic-net regularized generalized linear models feature selection tool. Univariate differences between cases and controls were reported by AUC, C-statistics, and ODDs ratios. Univariate analysis indicated that the medial osteophytes were significantly more prevalent in cases than controls: C-stat 0.62, 0.62, and 0.61, at T-0, T-1, and T-2, respectively. The multivariate JSW models significantly predicted pain: AUC = 0.695, 0.623, and 0.620, at T-0, T-1, and T-2, respectively. Semiquantitative multivariate models predicted paint with C-stat = 0.671, 0.648, and 0.645 at T-0, T-1, and T-2, respectively. Multivariate models derived from plain X-ray radiography assessments may be used to predict subjects that are at risk of developing knee pain.

  8. Self-harm reasons, goal achievement, and prediction of future self-harm intent.

    PubMed

    Lewis, Stephen P; Santor, Darcy A

    2010-05-01

    Self-harm may have several reasons, and these reasons may have corresponding implied goals. The current study examined reasons for self-harm and whether the a priori goals intended by these reasons were achieved. Fifty-seven individuals with a history of self-harm were recruited online and volunteered their time to complete a series of online questionnaires assessing past self-harm frequency, self-harm reasons, whether the goal associated with these reasons was achieved, and future self-harm intent. Reasons to reduce tension and dissociation associated with more past self-harm, a higher intent to self-harm again, and it was reported that the goals associated with reasons were achieved (i.e., these internal states were extinguished). Achievement of these goals (i.e., reported reductions in tension and dissociation) mediated the relation between corresponding self-harm reasons and intent to self-harm in the future. Findings support the view that self-harm is a maladaptive coping strategy and the reinforcement component of the experiential avoidance model of self-harm. Results have clinical implications and heuristic value for future research, which are discussed.

  9. Flooding in the future--predicting climate change, risks and responses in urban areas.

    PubMed

    Ashley, R M; Balmforth, D J; Saul, A J; Blanskby, J D

    2005-01-01

    Engineering infrastructure is provided at high cost and is expected to have a useful operational life of decades. However, it is clear that the future is uncertain. Traditional approaches to designing and operating urban storm drainage assets have relied on past performance of natural systems and the ability to extrapolate this performance, together with that of the assets across the usable lifetime. Whether or not climate change is going to significantly alter future weather patterns in Europe, it is clear that it is now incumbent on designers and operators of storm drainage systems to prepare for greater uncertainty in the effectiveness of storm drainage systems. A recent U.K. Government study considered the potential effects of climate and socio-economic change in the U.K. in terms of four future scenarios and what the implications are for the performance of existing storm drainage facilities. In this paper the modelling that was undertaken to try to quantify the changes in risk, together with the effectiveness of responses in managing that risk, are described. It shows that flood risks may increase by a factor of almost 30 times and that traditional engineering measures alone are unlikely to be able to provide protection.

  10. Reconstruction of past and prediction of future erythemal UV-radiation at two sites in Austria

    NASA Astrophysics Data System (ADS)

    Weihs, Philipp; Rieder, Harald; Wagner, Jochen; Simic, Stana; Dameris, Martin

    2010-05-01

    Since the discovery of anthropogenic ozone depletion more than 30 year ago, the scientific community has shown an increasing interest in UV-B radiation and started to monitor UV-radiation. However, difficulties involved in the routine operation and maintenance of the instruments have limited the length of reliable data records to about two decades. Further the number of places where they were measured, result in a set of observations too short and too sparse for a good understanding of past UV changes. Moreover state of the art climate models do not calculate future scenarios of UV-doses. Therefore detailed information about past and future UV-trends are lacking. Reconstruction techniques are indispensable to derive long-term time series of UV-radiation and fill this gap. Apart from the astronomical parameters, like solar zenith angle and sun-earth-distance, UV radiation is strongly influenced by clouds, ozone and surface albedo. We developed and evaluated a reconstruction technique for UV-doses (from regional climate model output) that first calculates the UV-doses under clear-sky condition and afterwards applies corrections in order to take cloud effects into account. Since the input parameters cloud cover, total ozone column and surface albedo are available from the Regional Climate Models REMO and E39/C (DLR-model), we applied our reconstruction technique for the past and for future scenarios using REMO and E39/C data as input. Hence we simulated a seamless UV long-term time series from the past to the future. Our method was applied for the high alpine station Hoher Sonnblick (3106m) situated in the Austrian Alps and for Vienna (170m) in the Eastern part of the Austrian territory. We first analyse the accuracy of the obtained backward reconstruction and intercompare the modelled and measured input parameters ozone, cloud modification factor, and ground albedo. Several approaches to improve the accuracy of the reconstruction are presented. Then we present the

  11. Modeling of steroid estrogen contamination in UK and South Australian rivers predicts modest increases in concentrations in the future.

    PubMed

    Green, Christopher; Williams, Richard; Kanda, Rakesh; Churchley, John; He, Ying; Thomas, Shaun; Goonan, Peter; Kumar, Anu; Jobling, Susan

    2013-07-01

    The prediction of risks posed by pharmaceuticals and personal care products in the aquatic environment now and in the future is one of the top 20 research questions regarding these contaminants following growing concern for their biological effects on fish and other animals. To this end it is important that areas experiencing the greatest risk are identified, particularly in countries experiencing water stress, where dilution of pollutants entering river networks is more limited. This study is the first to use hydrological models to estimate concentrations of pharmaceutical and natural steroid estrogens in a water stressed catchment in South Australia alongside a UK catchment and to forecast their concentrations in 2050 based on demographic and climate change predictions. The results show that despite their differing climates and demographics, modeled concentrations of steroid estrogens in effluents from Australian sewage treatment works and a receiving river were predicted (simulated) to be similar to those observed in the UK and Europe, exceeding the combined estradiol equivalent's predicted no effect concentration for feminization in wild fish. Furthermore, by 2050 a moderate increase in estrogenic contamination and the potential risk to wildlife was predicted with up to a 2-fold rise in concentrations.

  12. Foraging habitat for shorebirds in southeastern Missouri and its predicted future availability

    USGS Publications Warehouse

    Twedt, Daniel J.

    2013-01-01

    Water management to protect agriculture in alluvial floodplains often conflicts with wildlife use of seasonal floodwater. Such is the case along the Mississippi River in southeastern Missouri where migrating shorebirds forage in shallow-flooded fields. I estimated the current availability of habitat for foraging shorebirds within the New Madrid and St. Johns Basins based on daily river elevations (1943–2009), under assumptions that shorebirds forage in open habitat with water depth <15 cm and use mudflats for 3 days after exposure. The area of shorebird foraging habitat, based on replicated 50-year random samples, averaged 975 ha per day during spring and 33 ha per day during fall. Adjustments to account for habitat quality associated with different water depths, duration of mudflat exposure, intra-seasonal availability, and state of agricultural crops, indicated the equivalent of 494 ha daily of optimal habitat during spring and 11 ha during fall. Proposed levees and pumps to protect cropland would reduce shorebird foraging habitat by 80 %: to 211 ha (108 optimal ha) per day during spring and 9 ha (<3 optimal ha) per day during fall. Alternative water management that allows natural flooding below a prescribed elevation would retain nearly all existing shorebird foraging habitat during fall and about 60 % of extant habitat during spring.

  13. Will the future lie in multitude? A critical appraisal of biomarker panel studies on prediction of diabetic kidney disease progression.

    PubMed

    Schutte, Elise; Gansevoort, Ron T; Benner, Jacqueline; Lutgers, Helen L; Lambers Heerspink, Hiddo J

    2015-08-01

    Diabetic kidney disease is diagnosed and staged by albuminuria and estimated glomerular filtration rate. Although albuminuria has strong predictive power for renal function decline, there is still variability in the rate of renal disease progression across individuals that are not fully captured by the level of albuminuria. Therefore, research focuses on discovering and validating additional biomarkers that improve risk stratification for future renal function decline and end-stage renal disease in patients with diabetes, on top of established biomarkers. Most studies address the value of single biomarkers to predict progressive renal disease and aim to understand the mechanisms that underlie accelerated renal function decline. Since diabetic kidney disease is a disease encompassing several pathophysiological processes, a combination of biomarkers may be more likely to improve risk prediction than a single biomarker. In this review, we provide an overview of studies on the use of multiple biomarkers and biomarker panels, appraise their study design, discuss methodological pitfalls and make recommendations for future biomarker panel studies.

  14. GMS-based"Future Time" Rainfall Data Assimilation for Mesoscale Weather Prediction over Korean Peninsula and Future Prospects with GPM Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Ou, Mi-Lim

    2004-01-01

    This study examines the use of satellite-derived nowcasted (short-term forecasted) rainfall over 3-hour time periods to gain an equivalent time increment in initializing a nonhydrostatic mesoscale model used for predicting convective rainfall events over the Korean peninsula. Infrared (IR) window measurements from the Japanese Geostationary Meteorological Satellite (GMS) are used to specify latent heating for a spinup period of the model - but in future time -- thus initializing in advance of actual time in the framework of a prediction scenario. The main scientific objective of the study is to investigate the strengths and weaknesses of this approach insofar as data assimilation, in which the nowcasted assimilation data are derived independently of the prognostic model itself. Although there have been various recent improvements in formulating the dynamics, thermodynamics, and microphysics of mesoscale models, as well as computer advances which allow the use of high resolution cloud-resolving grids and explicit latent heating over regional domains, spinup remains at the forefront of unresolved mesoscale modeling problems. In general, non-realistic spinup limits the skill in predicting the spatial-temporal distribution of convection and precipitation, primarily in the early hours of a. forecast, stemming from standard prognostic variables not representing the initial diabatic heating field produced by the ambient convection and cloud fields. The long-term goal of this research is to improve short-range (12-hour) quantitative precipitation forecasting (QPF) over the Korean peninsula through the use of innovative data assimilation methods based on geosynchronous satellite measurements. As a step in ths direction, a non-standard data assimilation experiment in conjunction with GMS-retrieved nowcasted rainfall information introduced to the mesoscale model is conducted. The 3-hourly precipitation forecast information is assimilated through nudging the associated

  15. Validation of Afterbody Aeroheating Predictions for Planetary Probes: Status and Future Work

    NASA Technical Reports Server (NTRS)

    Wright, Michael J.; Brown, James L.; Sinha, Krishnendu; Candler, Graham V.; Milos, Frank S.; Prabhu, DInesh K.

    2005-01-01

    A review of the relevant flight conditions and physical models for planetary probe afterbody aeroheating calculations is given. Readily available sources of afterbody flight data and published attempts to computationally simulate those flights are summarized. A current status of the application of turbulence models to afterbody flows is presented. Finally, recommendations for additional analysis and testing that would reduce our uncertainties in our ability to accurately predict base heating levels are given.

  16. Lookup Tables for Predicting CHF and Film-Boiling Heat Transfer: Past, Present, and Future

    SciTech Connect

    Groeneveld, D.C.; Leung, L.K. H.; Guo, Y.; Vasic, A.; El Nakla, M.; Peng, S.W.; Yang, J.; Cheng, S.C.

    2005-10-15

    Lookup tables (LUTs) have been used widely for the prediction of critical heat flux (CHF) and film-boiling heat transfer for water-cooled tubes. LUTs are basically normalized data banks. They eliminate the need to choose between the many different CHF and film-boiling heat transfer prediction methods available.The LUTs have many advantages; e.g., (a) they are simple to use, (b) there is no iteration required, (c) they have a wide range of applications, (d) they may be applied to nonaqueous fluids using fluid-to-fluid modeling relationships, and (e) they are based on a very large database. Concerns associated with the use of LUTs include (a) there are fluctuations in the value of the CHF or film-boiling heat transfer coefficient (HTC) with pressure, mass flux, and quality, (b) there are large variations in the CHF or the film-boiling HTC between the adjacent table entries, and (c) there is a lack or scarcity of data at certain flow conditions.Work on the LUTs is continuing. This will resolve the aforementioned concerns and improve the LUT prediction capability. This work concentrates on better smoothing of the LUT entries, increasing the database, and improving models at conditions where data are sparse or absent.

  17. Print-Speech Convergence Predicts Future Reading Outcomes in Early Readers.

    PubMed

    Preston, Jonathan L; Molfese, Peter J; Frost, Stephen J; Mencl, W Einar; Fulbright, Robert K; Hoeft, Fumiko; Landi, Nicole; Shankweiler, Donald; Pugh, Kenneth R

    2016-01-01

    Becoming a skilled reader requires building a functional neurocircuitry for printed-language processing that integrates with spoken-language-processing networks. In this longitudinal study, functional MRI (fMRI) was used to examine convergent activation for printed and spoken language (print-speech coactivation) in selected regions implicated in printed-language processing (the reading network). We found that print-speech coactivation across the left-hemisphere reading network in beginning readers predicted reading achievement 2 years later beyond the effects of brain activity for either modality alone; moreover, coactivation effects accounted for variance in later reading after controlling for initial reading performance. Within the reading network, effects of coactivation were significant in bilateral inferior frontal gyrus (IFG) and left inferior parietal cortex and fusiform gyrus. The contribution of left and right IFG differed, with more coactivation in left IFG predicting better achievement but more coactivation in right IFG predicting poorer achievement. Findings point to the centrality of print-speech convergence in building an efficient reading circuitry in children. PMID:26589242

  18. Predicting responses to sunitinib using single nucleotide polymorphisms: Progress and recommendations for future trials.

    PubMed

    Ganapathi, Ram N; Bukowski, Ronald M

    2011-12-30

    Targeted therapy with tyrosine kinase inhibitors has led to a substantial improvement in the standard of care for patients with advanced or metastatic clear cell renal cell carcinoma. Because the mechanism of action, metabolism and transport of tyrosine kinase inhibitors can affect outcome and toxicity, several investigators have pursued the identification of single nucleotide polymorphisms (SNPs) in genes associated with these actions. We discuss SNPs associated with outcome and toxicity following sunitinib therapy and provide recommendations for future trials to facilitate the use of SNPs in personalized therapy for this disease.

  19. The importance of vegetation change in the prediction of future tropical cyclone flood statistics

    NASA Astrophysics Data System (ADS)

    Irish, J. L.; Resio, D.; Bilskie, M. V.; Hagen, S. C.; Weiss, R.

    2015-12-01

    Global sea level rise is a near certainty over the next century (e.g., Stocker et al. 2013 [IPCC] and references therein). With sea level rise, coastal topography and land cover (hereafter "landscape") is expected to change and tropical cyclone flood hazard is expected to accelerate (e.g., Irish et al. 2010 [Ocean Eng], Woodruff et al. 2013 [Nature], Bilskie et al. 2014 [Geophys Res Lett], Ferreira et al. 2014 [Coast Eng], Passeri et al. 2015 [Nat Hazards]). Yet, the relative importance of sea-level rise induced landscape change on future tropical cyclone flood hazard assessment is not known. In this paper, idealized scenarios are used to evaluate the relative impact of one class of landscape change on future tropical cyclone extreme-value statistics in back-barrier regions: sea level rise induced vegetation migration and loss. The joint probability method with optimal sampling (JPM-OS) (Resio et al. 2009 [Nat Hazards]) with idealized surge response functions (e.g., Irish et al. 2009 [Nat Hazards]) is used to quantify the present-day and future flood hazard under various sea level rise scenarios. Results are evaluated in terms of their impact on the flood statistics (a) when projected flood elevations are included directly in the JPM analysis (Figure 1) and (b) when represented as additional uncertainty within the JPM integral (Resio et al. 2013 [Nat Hazards]), i.e., as random error. Findings are expected to aid in determining the level of effort required to reasonably account for future landscape change in hazard assessments, namely in determining when such processes are sufficiently captured by added uncertainty and when sea level rise induced vegetation changes must be considered dynamically, via detailed modeling initiatives. Acknowledgements: This material is based upon work supported by the National Science Foundation under Grant No. CMMI-1206271 and by the National Sea Grant College Program of the U.S. Department of Commerce's National Oceanic and

  20. Productivity in Physical and Chemical Science Predicts the Future Economic Growth of Developing Countries Better than Other Popular Indices

    PubMed Central

    Jaffe, Klaus; Caicedo, Mario; Manzanares, Marcos; Gil, Mario; Rios, Alfredo; Florez, Astrid; Montoreano, Claudia; Davila, Vicente

    2013-01-01

    Scientific productivity of middle income countries correlates stronger with present and future wealth than indices reflecting its financial, social, economic or technological sophistication. We identify the contribution of the relative productivity of different scientific disciplines in predicting the future economic growth of a nation. Results show that rich and poor countries differ in the relative proportion of their scientific output in the different disciplines: countries with higher relative productivity in basic sciences such as physics and chemistry had the highest economic growth in the following five years compared to countries with a higher relative productivity in applied sciences such as medicine and pharmacy. Results suggest that the economies of middle income countries that focus their academic efforts in selected areas of applied knowledge grow slower than countries which invest in general basic sciences. PMID:23776640

  1. Productivity in physical and chemical science predicts the future economic growth of developing countries better than other popular indices.

    PubMed

    Jaffe, Klaus; Caicedo, Mario; Manzanares, Marcos; Gil, Mario; Rios, Alfredo; Florez, Astrid; Montoreano, Claudia; Davila, Vicente

    2013-01-01

    Scientific productivity of middle income countries correlates stronger with present and future wealth than indices reflecting its financial, social, economic or technological sophistication. We identify the contribution of the relative productivity of different scientific disciplines in predicting the future economic growth of a nation. Results show that rich and poor countries differ in the relative proportion of their scientific output in the different disciplines: countries with higher relative productivity in basic sciences such as physics and chemistry had the highest economic growth in the following five years compared to countries with a higher relative productivity in applied sciences such as medicine and pharmacy. Results suggest that the economies of middle income countries that focus their academic efforts in selected areas of applied knowledge grow slower than countries which invest in general basic sciences.

  2. Anger-induced T-wave alternans predicts future ventricular arrhythmias in patients with implantable cardioverter-defibrillators

    PubMed Central

    Lampert, Rachel; Shusterman, Vladimir; Burg, Matthew; McPherson, Craig; Batsford, William; Goldberg, Anna; Soufer, Robert

    2014-01-01

    Objective To determine whether T-wave alternans (TWA) induced by anger in a laboratory setting predicts future ventricular arrhythmias (VT/VF) in patients with implantable cardioverter-defibrillators (ICDs). Background Anger can precipitate spontaneous VT/VF, and induce TWA. Whether anger-induced TWA predicts future arrhythmias is unknown. Methods Sixty-two patients with ICDs underwent ambulatory ECG during a mental stress protocol, three months post-implant. TWA was analyzed using time-domain methods. After ≥ 1 year follow-up, ICD stored data was reviewed to determine incidence of ICD-terminated VT/VF. Results Patients with ICD-terminated arrhythmias during follow-up (N=10) had higher TWA induced by anger, 13.2uV (iqr 9.3-16), compared to 9.3uV (7.5-11.5) (p<0.01). Patients in the highest quartile of anger-induced TWA (>11.9uV, N=15) were more likely to experience arrhythmias by one year than those in the lower quartiles, (33% versus 4%), and during extended follow-up (40% versus 9%, p<0.01 for both.) In multivariable regression controlling for ejection fraction, prior clinical arrhythmia, and wide QRS, anger-induced TWA remained a significant predictor of arrhythmia, with likelihood in the top quartile 10.8 times that of other patients (CI 1.6-113, p<0.05.) Conclusion Anger-induced TWA predicts future ventricular arrhythmias in patients with ICDs, suggesting that emotion-induced repolarization instability may be one mechanism linking stress and sudden death. Whether there is a clinical role for anger-induced TWA testing requires further study. PMID:19245968

  3. Changes in mangrove species assemblages and future prediction of the Bangladesh Sundarbans using Markov chain model and cellular automata.

    PubMed

    Mukhopadhyay, Anirban; Mondal, Parimal; Barik, Jyotiskona; Chowdhury, S M; Ghosh, Tuhin; Hazra, Sugata

    2015-06-01

    The composition and assemblage of mangroves in the Bangladesh Sundarbans are changing systematically in response to several environmental factors. In order to understand the impact of the changing environmental conditions on the mangrove forest, species composition maps for the years 1985, 1995 and 2005 were studied. In the present study, 1985 and 1995 species zonation maps were considered as base data and the cellular automata-Markov chain model was run to predict the species zonation for the year 2005. The model output was validated against the actual dataset for 2005 and calibrated. Finally, using the model, mangrove species zonation maps for the years 2025, 2055 and 2105 have been prepared. The model was run with the assumption that the continuation of the current tempo and mode of drivers of environmental factors (temperature, rainfall, salinity change) of the last two decades will remain the same in the next few decades. Present findings show that the area distribution of the following species assemblages like Goran (Ceriops), Sundari (Heritiera), Passur (Xylocarpus), and Baen (Avicennia) would decrease in the descending order, whereas the area distribution of Gewa (Excoecaria), Keora (Sonneratia) and Kankra (Bruguiera) dominated assemblages would increase. The spatial distribution of projected mangrove species assemblages shows that more salt tolerant species will dominate in the future; which may be used as a proxy to predict the increase of salinity and its spatial variation in Sundarbans. Considering the present rate of loss of forest land, 17% of the total mangrove cover is predicted to be lost by the year 2105 with a significant loss of fresh water loving mangroves and related ecosystem services. This paper describes a unique approach to assess future changes in species composition and future forest zonation in mangroves under the 'business as usual' scenario of climate change. PMID:25719448

  4. Predicting the Current and Future Potential Distributions of Lymphatic Filariasis in Africa Using Maximum Entropy Ecological Niche Modelling

    PubMed Central

    Slater, Hannah; Michael, Edwin

    2012-01-01

    Modelling the spatial distributions of human parasite species is crucial to understanding the environmental determinants of infection as well as for guiding the planning of control programmes. Here, we use ecological niche modelling to map the current potential distribution of the macroparasitic disease, lymphatic filariasis (LF), in Africa, and to estimate how future changes in climate and population could affect its spread and burden across the continent. We used 508 community-specific infection presence data collated from the published literature in conjunction with five predictive environmental/climatic and demographic variables, and a maximum entropy niche modelling method to construct the first ecological niche maps describing potential distribution and burden of LF in Africa. We also ran the best-fit model against climate projections made by the HADCM3 and CCCMA models for 2050 under A2a and B2a scenarios to simulate the likely distribution of LF under future climate and population changes. We predict a broad geographic distribution of LF in Africa extending from the west to the east across the middle region of the continent, with high probabilities of occurrence in the Western Africa compared to large areas of medium probability interspersed with smaller areas of high probability in Central and Eastern Africa and in Madagascar. We uncovered complex relationships between predictor ecological niche variables and the probability of LF occurrence. We show for the first time that predicted climate change and population growth will expand both the range and risk of LF infection (and ultimately disease) in an endemic region. We estimate that populations at risk to LF may range from 543 and 804 million currently, and that this could rise to between 1.65 to 1.86 billion in the future depending on the climate scenario used and thresholds applied to signify infection presence. PMID:22359670

  5. Changes in mangrove species assemblages and future prediction of the Bangladesh Sundarbans using Markov chain model and cellular automata.

    PubMed

    Mukhopadhyay, Anirban; Mondal, Parimal; Barik, Jyotiskona; Chowdhury, S M; Ghosh, Tuhin; Hazra, Sugata

    2015-06-01

    The composition and assemblage of mangroves in the Bangladesh Sundarbans are changing systematically in response to several environmental factors. In order to understand the impact of the changing environmental conditions on the mangrove forest, species composition maps for the years 1985, 1995 and 2005 were studied. In the present study, 1985 and 1995 species zonation maps were considered as base data and the cellular automata-Markov chain model was run to predict the species zonation for the year 2005. The model output was validated against the actual dataset for 2005 and calibrated. Finally, using the model, mangrove species zonation maps for the years 2025, 2055 and 2105 have been prepared. The model was run with the assumption that the continuation of the current tempo and mode of drivers of environmental factors (temperature, rainfall, salinity change) of the last two decades will remain the same in the next few decades. Present findings show that the area distribution of the following species assemblages like Goran (Ceriops), Sundari (Heritiera), Passur (Xylocarpus), and Baen (Avicennia) would decrease in the descending order, whereas the area distribution of Gewa (Excoecaria), Keora (Sonneratia) and Kankra (Bruguiera) dominated assemblages would increase. The spatial distribution of projected mangrove species assemblages shows that more salt tolerant species will dominate in the future; which may be used as a proxy to predict the increase of salinity and its spatial variation in Sundarbans. Considering the present rate of loss of forest land, 17% of the total mangrove cover is predicted to be lost by the year 2105 with a significant loss of fresh water loving mangroves and related ecosystem services. This paper describes a unique approach to assess future changes in species composition and future forest zonation in mangroves under the 'business as usual' scenario of climate change.

  6. Predicting Future Hourly Residential Electrical Consumption: A Machine Learning Case Study

    SciTech Connect

    Edwards, Richard E; New, Joshua Ryan; Parker, Lynne Edwards

    2012-01-01

    Whole building input models for energy simulation programs are frequently created in order to evaluate specific energy savings potentials. They are also often utilized to maximize cost-effective retrofits for existing buildings as well as to estimate the impact of policy changes toward meeting energy savings goals. Traditional energy modeling suffers from several factors, including the large number of inputs required to characterize the building, the specificity required to accurately model building materials and components, simplifying assumptions made by underlying simulation algorithms, and the gap between the as-designed and as-built building. Prior works have attempted to mitigate these concerns by using sensor-based machine learning approaches to model energy consumption. However, a majority of these prior works focus only on commercial buildings. The works that focus on modeling residential buildings primarily predict monthly electrical consumption, while commercial models predict hourly consumption. This means there is not a clear indicator of which techniques best model residential consumption, since these methods are only evaluated using low-resolution data. We address this issue by testing seven different machine learning algorithms on a unique residential data set, which contains 140 different sensors measurements, collected every 15 minutes. In addition, we validate each learner's correctness on the ASHRAE Great Energy Prediction Shootout, using the original competition metrics. Our validation results confirm existing conclusions that Neural Network-based methods perform best on commercial buildings. However, the results from testing our residential data set show that Feed Forward Neural Networks, Support Vector Regression (SVR), and Linear Regression methods perform poorly, and that Hierarchical Mixture of Experts (HME) with Least Squares Support Vector Machines (LS-SVM) performs best - a technique not previously applied to this domain.

  7. Role of Climate Change in Global Predictions of Future Tropospheric Ozone and Aerosols

    NASA Technical Reports Server (NTRS)

    Liao, Hong; Chen, Wei-Ting; Seinfeld, John H.

    2006-01-01

    A unified tropospheric chemistry-aerosol model within the Goddard Institute for Space Studies general circulation model II is applied to simulate an equilibrium CO2-forced climate in the year 2100 to examine the effects of climate change on global distributions of tropospheric ozone and sulfate, nitrate, ammonium, black carbon, primary organic carbon, secondary organic carbon, sea salt, and mineral dust aerosols. The year 2100 CO2 concentration as well as the anthropogenic emissions of ozone precursors and aerosols/aerosol precursors are based on the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (SRES) A2. Year 2100 global O3 and aerosol burdens predicted with changes in both climate and emissions are generally 5-20% lower than those simulated with changes in emissions alone; as exceptions, the nitrate burden is 38% lower, and the secondary organic aerosol burden is 17% higher. Although the CO2-driven climate change alone is predicted to reduce the global O3 concentrations over or near populated and biomass burning areas because of slower transport, enhanced biogenic hydrocarbon emissions, decomposition of peroxyacetyl nitrate at higher temperatures, and the increase of O3 production by increased water vapor at high NOx levels. The warmer climate influences aerosol burdens by increasing aerosol wet deposition, altering climate-sensitive emissions, and shifting aerosol thermodynamic equilibrium. Climate change affects the estimates of the year 2100 direct radiative forcing as a result of the climate-induced changes in burdens and different climatological conditions; with full gas-aerosol coupling and accounting for ozone and direct radiative forcings by the O2, sulfate, nitrate, black carbon, and organic carbon are predicted to be +0.93, -0.72, -1.0, +1.26, and -0.56 W m(exp -2), respectively, using present-day climate and year 2100 emissions, while they are predicted to be +0.76, -0.72, 0.74, +0.97, and -0.58 W m(exp -2

  8. Titration of IgG antibodies against varicella zoster virus before bone marrow transplantation is not predictive of future zoster.

    PubMed

    Webster, A; Grint, P; Brenner, M K; Prentice, H G; Griffiths, P D

    1989-02-01

    Serum antibodies to varicella zoster virus (VZV) were measured in 77 patients about to undergo allogeneic bone marrow transplantation, and in 65 of their donors. Ten patients developed zoster within the first 6 months following transplant. There was no significant difference in the mean pretransplant antibody titre between those patients who did or did not subsequently develop zoster. Likewise, the level of antibody to VZV amongst donors had no effect on the subsequent development of zoster. We conclude that the pretransplant level of antibody to VZV is not predictive of subsequent zoster infection, and would not be helpful in identifying patients for trials of antiviral prophylaxis. These results contrast with those previously found for another herpesvirus, herpes simplex (HSV), where antibody level pretransplant is predictive of future HSV recurrence.

  9. Predicting future space near-IR grism surveys using the WFC3 infrared spectroscopic parallels survey

    SciTech Connect

    Colbert, James W.; Atek, Hakim; Teplitz, Harry; Rafelski, Marc; Bunker, Andrew; Ross, Nathaniel; Malkan, Matt; Scarlata, Claudia; Bedregal, Alejandro G.; Dominguez, Alberto; Masters, Dan; Siana, Brian; Dressler, Alan; McCarthy, Patrick; Henry, Alaina; Martin, Crystal L.

    2013-12-10

    We present near-infrared emission line counts and luminosity functions from the Hubble Space Telescope Wide Field Camera 3 Infrared Spectroscopic Parallels (WISP) program for 29 fields (0.037 deg{sup 2}) observed using both the G102 and G141 grism. Altogether we identify 1048 emission line galaxies with observed equivalent widths greater than 40 Å, 467 of which have multiple detected emission lines. We use simulations to correct for significant (>20%) incompleteness introduced in part by the non-dithered, non-rotated nature of the grism parallels. The WISP survey is sensitive to fainter flux levels ((3-5) × 10{sup –17} erg s{sup –1} cm{sup –2}) than the future space near-infrared grism missions aimed at baryonic acoustic oscillation cosmology ((1-4) × 10{sup –16} erg s{sup –1} cm{sup –2}), allowing us to probe the fainter emission line galaxies that the shallower future surveys may miss. Cumulative number counts of 0.7 < z < 1.5 galaxies reach 10,000 deg{sup –2} above an Hα flux of 2 × 10{sup –16} erg s{sup –1} cm{sup –2}. Hα-emitting galaxies with comparable [O III] flux are roughly five times less common than galaxies with just Hα emission at those flux levels. Galaxies with low Hα/[O III] ratios are very rare at the brighter fluxes that future near-infrared grism surveys will probe; our survey finds no galaxies with Hα/[O III] < 0.95 that have Hα flux greater than 3 × 10{sup –16} erg s{sup –1} cm{sup –2}. Our Hα luminosity function contains a comparable number density of faint line emitters to that found by the Near IR Camera and Multi-Object Spectrometer near-infrared grism surveys, but significantly fewer (factors of 3-4 less) high-luminosity emitters. We also find that our high-redshift (z = 0.9-1.5) counts are in agreement with the high-redshift (z = 1.47) narrowband Hα survey of HiZELS (Sobral et al.), while our lower redshift luminosity function (z = 0.3-0.9) falls slightly below their z = 0.84 result. The evolution

  10. Predicting Future Space Near-IR Grism Surveys Using the WFC3 Infrared Spectroscopic Parallels Survey

    NASA Astrophysics Data System (ADS)

    Colbert, James W.; Teplitz, Harry; Atek, Hakim; Bunker, Andrew; Rafelski, Marc; Ross, Nathaniel; Scarlata, Claudia; Bedregal, Alejandro G.; Dominguez, Alberto; Dressler, Alan; Henry, Alaina; Malkan, Matt; Martin, Crystal L.; Masters, Dan; McCarthy, Patrick; Siana, Brian

    2013-12-01

    We present near-infrared emission line counts and luminosity functions from the Hubble Space Telescope Wide Field Camera 3 Infrared Spectroscopic Parallels (WISP) program for 29 fields (0.037 deg2) observed using both the G102 and G141 grism. Altogether we identify 1048 emission line galaxies with observed equivalent widths greater than 40 Å, 467 of which have multiple detected emission lines. We use simulations to correct for significant (>20%) incompleteness introduced in part by the non-dithered, non-rotated nature of the grism parallels. The WISP survey is sensitive to fainter flux levels ((3-5) × 10-17 erg s-1 cm-2) than the future space near-infrared grism missions aimed at baryonic acoustic oscillation cosmology ((1-4) × 10-16 erg s-1 cm-2), allowing us to probe the fainter emission line galaxies that the shallower future surveys may miss. Cumulative number counts of 0.7 < z < 1.5 galaxies reach 10,000 deg-2 above an Hα flux of 2 × 10-16 erg s-1 cm-2. Hα-emitting galaxies with comparable [O III] flux are roughly five times less common than galaxies with just Hα emission at those flux levels. Galaxies with low Hα/[O III] ratios are very rare at the brighter fluxes that future near-infrared grism surveys will probe; our survey finds no galaxies with Hα/[O III] < 0.95 that have Hα flux greater than 3 × 10-16 erg s-1 cm-2. Our Hα luminosity function contains a comparable number density of faint line emitters to that found by the Near IR Camera and Multi-Object Spectrometer near-infrared grism surveys, but significantly fewer (factors of 3-4 less) high-luminosity emitters. We also find that our high-redshift (z = 0.9-1.5) counts are in agreement with the high-redshift (z = 1.47) narrowband Hα survey of HiZELS (Sobral et al.), while our lower redshift luminosity function (z = 0.3-0.9) falls slightly below their z = 0.84 result. The evolution in both the Hα luminosity function from z = 0.3-1.5 and the [O III] luminosity function from z = 0.7-2.3 is

  11. Talking and learning physics: Predicting future grades from network measures and Force Concept Inventory pretest scores

    NASA Astrophysics Data System (ADS)

    Bruun, Jesper; Brewe, Eric

    2013-12-01

    The role of student interactions in learning situations is a foundation of sociocultural learning theory, and social network analysis can be used to quantify student relations. We discuss how self-reported student interactions can be viewed as processes of meaning making and use this to understand how quantitative measures that describe the position in a network, called centrality measures, can be understood in terms of interactions that happen in the context of a university physics course. We apply this discussion to an empirical data set of self-reported student interactions. In a weekly administered survey, first year university students enrolled in an introductory physics course at a Danish university indicated with whom they remembered having communicated within different interaction categories. For three categories pertaining to (1) communication about how to solve physics problems in the course (called the PS category), (2) communications about the nature of physics concepts (called the CD category), and (3) social interactions that are not strictly related to the content of the physics classes (called the ICS category) in the introductory mechanics course, we use the survey data to create networks of student interaction. For each of these networks, we calculate centrality measures for each student and correlate these measures with grades from the introductory course, grades from two subsequent courses, and the pretest Force Concept Inventory (FCI) scores. We find highly significant correlations (p<0.001) between network centrality measures and grades in all networks. We find the highest correlations between network centrality measures and future grades. In the network composed of interactions regarding problem solving (the PS network), the centrality measures hide and PageRank show the highest correlations (r=-0.32 and r=0.33, respectively) with future grades. In the CD network, the network measure target entropy shows the highest correlation (r=0.45) with

  12. Future Predictions of U.S. East Coast Winter Storms and Associated Impacts

    NASA Astrophysics Data System (ADS)

    Colle, B.; Zhang, Z.; Roberts, K.

    2014-12-01

    The Northeast U.S. is particularly vulnerable to extreme weather from winter cyclones (heavy precipitation, wind, and storm surge). This presentation will highlight the future changes (up to year 2098) of cool season (November through March) extratropical cyclones over the Northeast U.S. using the Coupled Intercomparison Modeling Project (CMIP5) as well as an ensemble of Weather Research and Forecasting (WRF) members down to 20-km grid spacing downscaled using NCEP reanalysis and a few CMIP5 models. The 6-h output from CFSR (Climate Forecast System Reanalysis) and CMIP5 models was used to provide initial and boundary conditions for the historical and future WRF runs, respectively. Some processes responsible for the model differences and future cyclone changes in cyclone intensity along the U.S. East coast were diagnosed using storm-relative composites of temperature, winds, precipitation, etc… within a 20 x 20 degrees box around each cyclone center. For example, during 2069-2098 (for RCP8.5), there is a significant increase in cyclone-relative precipitation, especially over continent at middle and high latitudes (20-40% by the later 21st century). This precipitation increase is mainly for the strong and moderate cyclones, which get more intense in several models, therefore suggesting the importance of latent heating with the additional moisture in a warmer climate. Since many of the CMIP5 models do a realistic job with extratropical cyclones, we developed a generalized parametric downscaling technique to create a point-based storm surge time series for the cool season using 6-h CMIP5 data. The statistical model for New York City is trained and evaluated using Oct-March 10-m wind and mean sea level pressure from the NARR renanalysis between 1979-2012. Overall, there is a significant decrease in the ensemble mean number of >= 1.0 m surge events. However, if one includes a sea-level rise of at least 0.5 m during the next several decades, all models have a

  13. Predicting global invasion risks: a management tool to prevent future introductions

    PubMed Central

    Fletcher, D. H.; Gillingham, P. K.; Britton, J. R.; Blanchet, S.; Gozlan, R. E.

    2016-01-01

    Predicting regions at risk from introductions of non-native species and the subsequent invasions is a fundamental aspect of horizon scanning activities that enable the development of more effective preventative actions and planning of management measures. The Asian cyprinid fish topmouth gudgeon Pseudorasbora parva has proved highly invasive across Europe since its introduction in the 1960s. In addition to direct negative impacts on native fish populations, P. parva has potential for further damage through transmission of an emergent infectious disease, known to cause mortality in other species. To quantify its invasion risk, in regions where it has yet to be introduced, we trained 900 ecological niche models and constructed an Ensemble Model predicting suitability, then integrated a proxy for introduction likelihood. This revealed high potential for P. parva to invade regions well beyond its current invasive range. These included areas in all modelled continents, with several hotspots of climatic suitability and risk of introduction. We believe that these methods are easily adapted for a variety of other invasive species and that such risk maps could be used by policy-makers and managers in hotspots to formulate increased surveillance and early-warning systems that aim to prevent introductions and subsequent invasions. PMID:27199300

  14. Dynamically downscaling predictions for deciduous tree leaf emergence in California under current and future climate

    NASA Astrophysics Data System (ADS)

    Medvigy, David; Kim, Seung Hee; Kim, Jinwon; Kafatos, Menas C.

    2016-07-01

    Models that predict the timing of deciduous tree leaf emergence are typically very sensitive to temperature. However, many temperature data products, including those from climate models, have been developed at a very coarse spatial resolution. Such coarse-resolution temperature products can lead to highly biased predictions of leaf emergence. This study investigates how dynamical downscaling of climate models impacts simulations of deciduous tree leaf emergence in California. Models for leaf emergence are forced with temperatures simulated by a general circulation model (GCM) at ~200-km resolution for 1981-2000 and 2031-2050 conditions. GCM simulations are then dynamically downscaled to 32- and 8-km resolution, and leaf emergence is again simulated. For 1981-2000, the regional average leaf emergence date is 30.8 days earlier in 32-km simulations than in ~200-km simulations. Differences between the 32 and 8 km simulations are small and mostly local. The impact of downscaling from 200 to 8 km is ~15 % smaller in 2031-2050 than in 1981-2000, indicating that the impacts of downscaling are unlikely to be stationary.

  15. Dynamically downscaling predictions for deciduous tree leaf emergence in California under current and future climate.

    PubMed

    Medvigy, David; Kim, Seung Hee; Kim, Jinwon; Kafatos, Menas C

    2016-07-01

    Models that predict the timing of deciduous tree leaf emergence are typically very sensitive to temperature. However, many temperature data products, including those from climate models, have been developed at a very coarse spatial resolution. Such coarse-resolution temperature products can lead to highly biased predictions of leaf emergence. This study investigates how dynamical downscaling of climate models impacts simulations of deciduous tree leaf emergence in California. Models for leaf emergence are forced with temperatures simulated by a general circulation model (GCM) at ~200-km resolution for 1981-2000 and 2031-2050 conditions. GCM simulations are then dynamically downscaled to 32- and 8-km resolution, and leaf emergence is again simulated. For 1981-2000, the regional average leaf emergence date is 30.8 days earlier in 32-km simulations than in ~200-km simulations. Differences between the 32 and 8 km simulations are small and mostly local. The impact of downscaling from 200 to 8 km is ~15 % smaller in 2031-2050 than in 1981-2000, indicating that the impacts of downscaling are unlikely to be stationary. PMID:26489417

  16. Exploring the applicability of future air quality predictions based on synoptic system forecasts.

    PubMed

    Yuval; Broday, David M; Alpert, Pinhas

    2012-07-01

    For a given emissions inventory, the general levels of air pollutants and the spatial distribution of their concentrations are determined by the physiochemical state of the atmosphere. Apart from the trivial seasonal and daily cycles, most of the variability is associated with the atmospheric synoptic scale. A simple methodology for assessing future levels of air pollutants' concentrations based on synoptic forecasts is presented. At short time scales the methodology is comparable and slightly better than persistence and seasonal forecasts at categorical classification of pollution levels. It's utility is shown for air quality studies at the long time scale of a changing climate scenario, where seasonality and persistence cannot be used. It is demonstrated that the air quality variability due to changes in the pollution emissions can be expected to be much larger than that associated with the effects of climatic changes.

  17. Bremsstrahlung X-ray spectra of Jupiter and Saturn - Predictions for future planetary spacecraft

    NASA Astrophysics Data System (ADS)

    Barbosa, D. D.

    1990-07-01

    Calculations of X-ray spectra due to bremsstrahlung from precipitating auroral electrons of Jupiter and Saturn are presented. The model assumes that a field-aligned potential drop accelerates a primary beam of electrons into the atmosphere where a population of secondary electrons having a power law energy dependence is generated. The spectrum at Jupiter is normalized to the soft X-ray observations of Metzger et al. (1983) at the low-energy end and constrained at the high-energy end by UV auroral energy requirements. The spectrum at Saturn is constructed by analogy to the Jovian case allowing for variation of the beam energy, energy flux, and scale size of the Saturnian aurora. The results indicate that a significant flux of X-rays is emanating from both planets which may serve as a basis for conducting planetary X-ray astronomy as a part of future spacecraft missions to the planets.

  18. Retrospective analyses and future predictions of snowmelt-induced acidification: example from a heavily impacted stream in the Czech Republic.

    PubMed

    Laudon, H; Hruska, J; Köhler, S; Krám, P

    2005-05-01

    We have combined a long-term hydrochemistry model (MAGIC) with a model that predicts short-term transient changes in hydrochemistry (pBDM) during hydrological events in order to improve the temporal resolution of retrospective analyses and future predictions of streamwater acidification. The model has been applied to a heavily impacted catchment in the Czech Republic. Spring flood acid-neutralizing capacity (ANC), pH, and inorganic monomeric aluminum (Ali(n+)) were simulated for the years of 1860, 1900, 1930, 1950, 1965, and 1985, measured in 1999, and predicted for 2030 using two different emission control scenarios. If the emission reduction according to the current legislation scenario is implemented, the model predicts that the spring flood pH, ANC, and Ali(n+) will recover close to the level of the 1950s by 2030. This will occur despite the annual average chemistry being farfrom having recovered to that level. The results suggest that the recovery of spring flood events is faster then the recovery of annual average chemistry and that much of what is won by further emission reduction will not be fully realized on an annual time scale.

  19. Predicting the efficacy of trastuzumab-based therapy in breast cancer: current standards and future strategies.

    PubMed

    Singer, Christian F; Köstler, Wolfgang J; Hudelist, Gernot

    2008-12-01

    Breast cancer is the most common female malignancy in many industrialized countries. Approximately one fourth of all women diagnosed with early breast cancer present with tumors that are characterized by erbB2 amplification. While the associated Her-2/neu receptor overexpression results in a high risk of relapse and poor prognosis, these tumors also represent a target for a selective monoclonal antibody therapy with trastuzumab (Herceptin). The combination of trastuzumab with chemotherapy has led to a considerable reduction of recurrences and to a significant reduction in breast cancer mortality both in the adjuvant and metastatic setting. Unfortunately, despite Her-2/neu overexpression, not all patients equally benefit from trastuzumab treatment, and almost all women with metastatic breast cancer eventually progress during antibody therapy. Moreover, trastuzumab is burdened with cardiotoxicity, thus increasing the risk of symptomatic congestive heart failure. In addition, the marginal costs for a 1 year therapy of trastuzumab-based therapy, which is currently considered to be the most effective treatment regimen in the adjuvant setting, may amount for up to US$ 40.000. Testing for erbB2 oncogene amplification by fluorescence in situ hybridization (FISH) and chromogenic in situ hybridization (CISH), respectively, and staining for Her-2/neu receptor overexpression by immunohistochemistry (IHC) represent the current standard for determining patient eligibility for trastuzumab-based therapy. However, while the negative predictive value of these assays for predicting the absence of benefit from trastuzumab-based therapy is sufficiently high, their positive predictive value remains insufficient, i.e. only a proportion of patients selected by these tests substantially benefit from trastuzumab-containing regimen. Accordingly, over the last years a number of biomarkers have been evaluated in their potential to predict response to trastuzumab-based therapies. These include

  20. The influence of HBV model calibration on flood predictions for future climate

    NASA Astrophysics Data System (ADS)

    Osuch, Marzena; Romanowicz, Renata

    2014-05-01

    The temporal variability of HBV rainfall-runoff model parameters was tested to address the influence of climate characteristics on the values of model optimal parameters. HBV is a conceptual model with a physically-based structure that takes into account soil moisture, snow-melt and dynamic runoff components. The model parameters were optimized by the DEGL method (Differential Evolution with Global and Local neighbours) for a set of catchments located in Poland. The methodology consisted of the calibration and cross-validation of the HBV models on a series of five-year periods within a moving window. The optimal parameter values show large temporal variability and dependence on climatic conditions described by the mean and standard deviation of precipitation, air temperature and PET. Derived regressions models between parameters and climatic indices were statistically significant at the 0.05 level. The set of model optimal values was applied to simulate future flows in a changed climate. We used the precipitation and temperature series from 6 RCM/GCM models for 2071-2100 following the A1B climate change scenario. The climatic variables were obtained from the KLIMADA project. The resulting flow series for the future climate scenario were used to derive flow indices, including the flood quantiles. Results indicate a large influence of climatic variability on flow indices. This work was partly supported by the project "Stochastic flood forecasting system (The River Vistula reach from Zawichost to Warsaw)" carried out by the Institute of Geophysics, Polish Academy of Sciences by order of the National Science Centre (contract No. 2011/01/B/ST10/06866). The rainfall and flow data were provided by the Institute of Meteorology and Water Management (IMGW), Poland.

  1. Radiation transport modeling and assessment to better predict radiation exposure, dose, and toxicological effects to human organs on long duration space flights.

    PubMed

    Denkins, P; Badhwar, G; Obot, V; Wilson, B; Jejelewo, O

    2001-01-01

    NASA is very interested in improving its ability to monitor and forecast the radiation levels that pose a health risk to space-walking astronauts as they construct the International Space Station and astronauts that will participate in long-term and deep-space missions. Human exploratory missions to the moon and Mars within the next quarter century, will expose crews to transient radiation from solar particle events which include high-energy galactic cosmic rays and high-energy protons. Because the radiation levels in space are high and solar activity is presently unpredictable, adequate shielding is needed to minimize the deleterious health effects of exposure to radiation. Today, numerous models have been developed and used to predict radiation exposure. Such a model is the Space Environment Information Systems (SPENVIS) modeling program, developed by the Belgian Institute for Space Aeronautics. SPENVIS, which has been assessed to be an excellent tool in characterizing the radiation environment for microelectronics and investigating orbital debris, is being evaluated for its usefulness with determining the dose and dose-equivalent for human exposure. Thus far. the calculations for dose-depth relations under varying shielding conditions have been in agreement with calculations done using HZETRN and PDOSE, which are well-known and widely used models for characterizing the environments for human exploratory missions. There is disagreement when assessing the impact of secondary radiation particles since SPENVIS does a crude estimation of the secondary radiation particles when calculating LET versus Flux. SPENVIS was used to model dose-depth relations for the blood-forming organs. Radiation sickness and cancer are life-threatening consequences resulting from radiation exposure. In space. exposure to radiation generally includes all of the critical organs. Biological and toxicological impacts have been included for discussion along with alternative risk mitigation

  2. Radiation transport modeling and assessment to better predict radiation exposure, dose, and toxicological effects to human organs on long duration space flights

    NASA Technical Reports Server (NTRS)

    Denkins, P.; Badhwar, G.; Obot, V.; Wilson, B.; Jejelewo, O.

    2001-01-01

    NASA is very interested in improving its ability to monitor and forecast the radiation levels that pose a health risk to space-walking astronauts as they construct the International Space Station and astronauts that will participate in long-term and deep-space missions. Human exploratory missions to the moon and Mars within the next quarter century, will expose crews to transient radiation from solar particle events which include high-energy galactic cosmic rays and high-energy protons. Because the radiation levels in space are high and solar activity is presently unpredictable, adequate shielding is needed to minimize the deleterious health effects of exposure to radiation. Today, numerous models have been developed and used to predict radiation exposure. Such a model is the Space Environment Information Systems (SPENVIS) modeling program, developed by the Belgian Institute for Space Aeronautics. SPENVIS, which has been assessed to be an excellent tool in characterizing the radiation environment for microelectronics and investigating orbital debris, is being evaluated for its usefulness with determining the dose and dose-equivalent for human exposure. Thus far. the calculations for dose-depth relations under varying shielding conditions have been in agreement with calculations done using HZETRN and PDOSE, which are well-known and widely used models for characterizing the environments for human exploratory missions. There is disagreement when assessing the impact of secondary radiation particles since SPENVIS does a crude estimation of the secondary radiation particles when calculating LET versus Flux. SPENVIS was used to model dose-depth relations for the blood-forming organs. Radiation sickness and cancer are life-threatening consequences resulting from radiation exposure. In space. exposure to radiation generally includes all of the critical organs. Biological and toxicological impacts have been included for discussion along with alternative risk mitigation

  3. Radiation transport modeling and assessment to better predict radiation exposure, dose, and toxicological effects to human organs on long duration space flights.

    PubMed

    Denkins, P; Badhwar, G; Obot, V; Wilson, B; Jejelewo, O

    2001-01-01

    NASA is very interested in improving its ability to monitor and forecast the radiation levels that pose a health risk to space-walking astronauts as they construct the International Space Station and astronauts that will participate in long-term and deep-space missions. Human exploratory missions to the moon and Mars within the next quarter century, will expose crews to transient radiation from solar particle events which include high-energy galactic cosmic rays and high-energy protons. Because the radiation levels in space are high and solar activity is presently unpredictable, adequate shielding is needed to minimize the deleterious health effects of exposure to radiation. Today, numerous models have been developed and used to predict radiation exposure. Such a model is the Space Environment Information Systems (SPENVIS) modeling program, developed by the Belgian Institute for Space Aeronautics. SPENVIS, which has been assessed to be an excellent tool in characterizing the radiation environment for microelectronics and investigating orbital debris, is being evaluated for its usefulness with determining the dose and dose-equivalent for human exposure. Thus far. the calculations for dose-depth relations under varying shielding conditions have been in agreement with calculations done using HZETRN and PDOSE, which are well-known and widely used models for characterizing the environments for human exploratory missions. There is disagreement when assessing the impact of secondary radiation particles since SPENVIS does a crude estimation of the secondary radiation particles when calculating LET versus Flux. SPENVIS was used to model dose-depth relations for the blood-forming organs. Radiation sickness and cancer are life-threatening consequences resulting from radiation exposure. In space. exposure to radiation generally includes all of the critical organs. Biological and toxicological impacts have been included for discussion along with alternative risk mitigation

  4. Radiation transport modeling and assessment to better predict radiation exposure, dose, and toxicological effects to human organs on long duration space flights

    NASA Astrophysics Data System (ADS)

    Denkins, Pamela; Badhwar, Gautam; Obot, Victor; Wilson, Bobby; Jejelewo, Olufisayo

    2001-08-01

    NASA is very interested in improving its ability to monitor and forecast the radiation levels that pose a health risk to space-walking astronauts as they construct the International Space Station and astronauts that will participate in long-term and deep-space missions. Human exploratory missions to the moon and Mars within the next quarter century, will expose crews to transient radiation from solar particle events which include high-energy galactic cosmic rays and high-energy protons. Because the radiation levels in space are high and solar activity is presently unpredictable, adequate shielding is needed to minimize the deleterious health effects of exposure to radiation. Today, numerous models have been developed and used to predict radiation exposure. Such a model is the Space Environment Information Systems (SPENVIS) modeling program, developed by the Belgian Institute for Space Aeronautics. SPENVIS, which has been assessed to be an excellent tool in characterizing the radiation environment for microelectronics and investigating orbital debris, is being evaluated for its usefulness with determining the dose and dose-equivalent for human exposure. Thus far, the calculations for dose-depth relations under varying shielding conditions have been in agreement with calculations done using HZETRN and PDOSE, which are well-known and widely used models for characterizing the environments for human exploratory missions. There is disagreement when assessing the impact of secondary radiation particles since SPENVIS does a crude estimation of the secondary radiation particles when calculating LET versus Flux. SPENVIS was used to model dose-depth relations for the blood-forming organs. Radiation sickness and cancer are life-threatening consequences resulting from radiation exposure. In space, exposure to radiation generally includes all of the critical organs. Biological and toxicological impacts have been included for discussion along with alternative risk mitigation

  5. Nonlinear filtering techniques for noisy geophysical data: Using big data to predict the future

    NASA Astrophysics Data System (ADS)

    Moore, J. M.

    2014-12-01

    Chaos is ubiquitous in physical systems. Within the Earth sciences it is readily evident in seismology, groundwater flows and drilling data. Models and workflows have been applied successfully to understand and even to predict chaotic systems in other scientific fields, including electrical engineering, neurology and oceanography. Unfortunately, the high levels of noise characteristic of our planet's chaotic processes often render these frameworks ineffective. This contribution presents techniques for the reduction of noise associated with measurements of nonlinear systems. Our ultimate aim is to develop data assimilation techniques for forward models that describe chaotic observations, such as episodic tremor and slip (ETS) events in fault zones. A series of nonlinear filters are presented and evaluated using classical chaotic systems. To investigate whether the filters can successfully mitigate the effect of noise typical of Earth science, they are applied to sunspot data. The filtered data can be used successfully to forecast sunspot evolution for up to eight years (see figure).

  6. Using Sickness Absence Records to Predict Future Depression in a Working Population: Prospective Findings From the GAZEL Cohort

    PubMed Central

    Ferrie, Jane E.; Alexanderson, Kristina; Goldberg, Marcel; Kivimaki, Mika; Singh-Manoux, Archana; Vahtera, Jussi; Westerlund, Hugo; Zins, Marie; Head, Jenny

    2009-01-01

    Objectives. We tested the hypothesis that sickness absence from work predicts workers' risk of later depression. Methods. Study participants (n = 7391) belonged to the French GAZEL cohort of employees of the national gas and electricity company. Sickness absence data (1996–1999) were obtained from company records. Participants' depression in 1996 and 1999 was assessed with the Center for Epidemiologic Studies–Depression (CES-D) scale. The analyses were controlled for baseline age, gender, marital status, occupational grade, tobacco smoking status, alcohol consumption, subthreshold depressive symptoms, and work stress. Results. Among workers who were free of depression in 1996, 13% had depression in 1999. Compared with workers with no sickness absence during the study period, those with sickness absence were more likely to be depressed at follow-up (for 1 period of sickness absence, fully adjusted odds ratio [OR] = 1.53, 95% confidence interval [CI] = 1.28, 1.82; for 2 or more periods, fully adjusted OR = 1.95, 95% CI = 1.61, 2.36). Future depression was predicted both by psychiatric and nonpsychiatric sickness absence (fully adjusted OR = 3.79 [95% CI = 2.81, 5.10] and 1.41 [95% CI = 1.21, 1.65], respectively). Conclusions. Sickness absence records may help identify workers vulnerable to future depression. PMID:19542039

  7. Looking Back and Looking Forward: Reprising the Promise and Predicting the Future of Formation Flying and Spaceborne GPS Navigation Systems

    NASA Technical Reports Server (NTRS)

    Bauer, Frank H.; Dennehy, Neil

    2015-01-01

    A retrospective consideration of two 15-year old Guidance, Navigation and Control (GN&C) technology 'vision' predictions will be the focus of this paper. A look back analysis and critique of these late 1990s technology roadmaps out-lining the future vision, for two then nascent, but rapidly emerging, GN&C technologies will be performed. Specifically, these two GN&C technologies were: 1) multi-spacecraft formation flying and 2) the spaceborne use and exploitation of global positioning system (GPS) signals to enable formation flying. This paper reprises the promise of formation flying and spaceborne GPS as depicted in the cited 1999 and 1998 papers. It will discuss what happened to cause that promise to be mostly unfulfilled and the reasons why the envisioned formation flying dream has yet to become a reality. The recent technology trends over the past few years will then be identified and a renewed government interest in spacecraft formation flying/cluster flight will be highlighted. The authors will conclude with a reality-tempered perspective, 15 years after the initial technology roadmaps were published, predicting a promising future of spacecraft formation flying technology development over the next decade.

  8. The Impact of Current and Future Polar Orbiting Satellite Data on Numerical Weather Prediction at NASA/GSFC

    NASA Technical Reports Server (NTRS)

    Atlas, Robert

    2004-01-01

    The lack of adequate observational data continues to be recognized as a major factor limiting both atmospheric research and numerical prediction on a variety of temporal and spatial scales. Since the advent of meteorological satellites in the 1960's, a considerable research effort has been directed toward the design of space-borne meteorological sensors, the development of optimal methods for the utilization of these data, (and an assessment of the influence of existing satellite data and the potential influence of future satellite observations on numerical weather prediction. This has included both Observing System Experiments (OSEs) and Observing System Simulation Experiments (OSSEs). OSEs are conducted to evaluate the impact of specific observations or classes of observations on analyses and forecasts. While OSEs are performed with existing data, OSSEs are conducted to evaluate the potential for future observing systems to improve-NWP, as well as to evaluate trade-offs in observing system design, and to develop and test improved methods for data assimilation. At the conference, results from OSEs to evaluate satellite data sets that have recently become available to the global observing system, such as AIRS and Seawinds, and results from OSSEs to determine the potential impact of space-based lidar winds will be presented.

  9. An optimization principle for determining movement duration.

    PubMed

    Tanaka, Hirokazu; Krakauer, John W; Qian, Ning

    2006-06-01

    Movement duration is an integral component of motor control, but nearly all extant optimization models of motor planning prefix duration instead of explaining it. Here we propose a new optimization principle that predicts movement duration. The model assumes that the brain attempts to minimize movement duration under the constraint of meeting an accuracy criterion. The criterion is task and context dependent but is fixed for a given task and context. The model determines a unique duration as a trade-off between speed (time optimality) and accuracy (acceptable endpoint scatter). We analyzed the model for a linear motor plant, and obtained a closed-form equation for determining movement duration. By solving the equation numerically with specific plant parameters for the eye and arm, we found that the model can reproduce saccade duration as a function of amplitude (the main sequence), and arm-movement duration as a function of the ratio of target distance to size (Fitts's law). In addition, it explains the dependency of peak saccadic speed on amplitude and the dependency of saccadic duration on initial eye position. Furthermore, for arm movements, the model predicts a scaling relationship between peak velocity and distance and a reduction in movement duration with a moderate increase in viscosity. Finally, for a linear plant, our model predicts a neural control signal identical to that of the minimum-variance model set to the same movement duration. This control signal is a smooth function of time (except at the endpoint), in contrast to the discontinuous bang-bang control found in the time-optimal control literature. We suggest that one aspect of movement planning, as revealed by movement duration, may be to assign an endpoint accuracy criterion for a given task and context. PMID:16571740

  10. The prevention of silicosis and prediction of its future prevalence in China.

    PubMed Central

    Lou, J Z; Zhou, C

    1989-01-01

    We studied the effects of preventive and therapeutic interventions on the 18-year cumulative incidence of silicosis of 26,603 dust-exposed workers in seven Chinese mines and industrial plants. Cumulative silicosis incidence decreased from 36.1 percent in workers employed before 1950 to 1.5 percent in workers employed after 1960. From the 1950s to 1970s, eight-year cumulative incidence of tuberculosis decreased from 54.7 percent to 16.7 percent and case fatality of silicosis patients dropped from 53.9 percent to 18.3 percent. From 1950s to 1980s, the average age at the detection of silicosis increased from 41.3 to 52.7 and the average survival time of silicosis patients prolonged from 2.0 to 12.2 years. Workers over age 40 who began exposure to dust before 1960 will be the main source of new silicosis patients in future. Most expected new cases of silicosis will occur within the next 15 years. The silicosis population will remain unchanged for the next 20 years and will decrease dramatically after 25 years. There will be few silicosis patients in 30 years and new cases of silicosis will be difficult to find in 45 years. These results show that the preventive and therapeutic actions against silicosis in China have been effective. PMID:2817188

  11. Predicting Ecological Responses of the Florida Everglades to Possible Future Climate Scenarios: Introduction

    NASA Astrophysics Data System (ADS)

    Aumen, Nicholas G.; Havens, Karl E.; Best, G. Ronnie; Berry, Leonard

    2015-04-01

    Florida's Everglades stretch from the headwaters of the Kissimmee River near Orlando to Florida Bay. Under natural conditions in this flat landscape, water flowed slowly downstream as broad, shallow sheet flow. The ecosystem is markedly different now, altered by nutrient pollution and construction of canals, levees, and water control structures designed for flood control and water supply. These alterations have resulted in a 50 % reduction of the ecosystem's spatial extent and significant changes in ecological function in the remaining portion. One of the world's largest restoration programs is underway to restore some of the historic hydrologic and ecological functions of the Everglades, via a multi-billion dollar Comprehensive Everglades Restoration Plan. This plan, finalized in 2000, did not explicitly consider climate change effects, yet today we realize that sea level rise and future changes in rainfall (RF), temperature, and evapotranspiration (ET) may have system-wide impacts. This series of papers describes results of a workshop where a regional hydrologic model was used to simulate the hydrology expected in 2060 with climate changes including increased temperature, ET, and sea level, and either an increase or decrease in RF. Ecologists with expertise in various areas of the ecosystem evaluated the hydrologic outputs, drew conclusions about potential ecosystem responses, and identified research needs where projections of response had high uncertainty. Resource managers participated in the workshop, and they present lessons learned regarding how the new information might be used to guide Everglades restoration in the context of climate change.

  12. Predicting ecological responses of the Florida Everglades to possible future climate scenarios: introduction.

    PubMed

    Aumen, Nicholas G; Havens, Karl E; Best, G Ronnie; Berry, Leonard

    2015-04-01

    Florida's Everglades stretch from the headwaters of the Kissimmee River near Orlando to Florida Bay. Under natural conditions in this flat landscape, water flowed slowly downstream as broad, shallow sheet flow. The ecosystem is markedly different now, altered by nutrient pollution and construction of canals, levees, and water control structures designed for flood control and water supply. These alterations have resulted in a 50% reduction of the ecosystem's spatial extent and significant changes in ecological function in the remaining portion. One of the world's largest restoration programs is underway to restore some of the historic hydrologic and ecological functions of the Everglades, via a multi-billion dollar Comprehensive Everglades Restoration Plan. This plan, finalized in 2000, did not explicitly consider climate change effects, yet today we realize that sea level rise and future changes in rainfall (RF), temperature, and evapotranspiration (ET) may have system-wide impacts. This series of papers describes results of a workshop where a regional hydrologic model was used to simulate the hydrology expected in 2060 with climate changes including increased temperature, ET, and sea level, and either an increase or decrease in RF. Ecologists with expertise in various areas of the ecosystem evaluated the hydrologic outputs, drew conclusions about potential ecosystem responses, and identified research needs where projections of response had high uncertainty. Resource managers participated in the workshop, and they present lessons learned regarding how the new information might be used to guide Everglades restoration in the context of climate change.

  13. Predicting ecological responses of the Florida Everglades to possible future climate scenarios: introduction.

    PubMed

    Aumen, Nicholas G; Havens, Karl E; Best, G Ronnie; Berry, Leonard

    2015-04-01

    Florida's Everglades stretch from the headwaters of the Kissimmee River near Orlando to Florida Bay. Under natural conditions in this flat landscape, water flowed slowly downstream as broad, shallow sheet flow. The ecosystem is markedly different now, altered by nutrient pollution and construction of canals, levees, and water control structures designed for flood control and water supply. These alterations have resulted in a 50% reduction of the ecosystem's spatial extent and significant changes in ecological function in the remaining portion. One of the world's largest restoration programs is underway to restore some of the historic hydrologic and ecological functions of the Everglades, via a multi-billion dollar Comprehensive Everglades Restoration Plan. This plan, finalized in 2000, did not explicitly consider climate change effects, yet today we realize that sea level rise and future changes in rainfall (RF), temperature, and evapotranspiration (ET) may have system-wide impacts. This series of papers describes results of a workshop where a regional hydrologic model was used to simulate the hydrology expected in 2060 with climate changes including increased temperature, ET, and sea level, and either an increase or decrease in RF. Ecologists with expertise in various areas of the ecosystem evaluated the hydrologic outputs, drew conclusions about potential ecosystem responses, and identified research needs where projections of response had high uncertainty. Resource managers participated in the workshop, and they present lessons learned regarding how the new information might be used to guide Everglades restoration in the context of climate change. PMID:25743272

  14. Increased involvement of the parahippocampal gyri in a sad mood predicts future depressive symptoms

    PubMed Central

    Huffziger, Silke; Ebner-Priemer, Ulrich; Kuehner, Christine; Kirsch, Peter

    2014-01-01

    Behavioral studies suggest a relationship between autobiographical memory, rumination and depression. The objective of this study was to determine whether remitted depressed patients show alterations in connectivity of the posterior cingulate cortex (PCC, a node in the default mode network) with the parahippocampal gyri (PHG, a region associated with autobiographical memory) while intensively recalling negative memories and whether this is related to daily life symptoms and to the further course of depression. Sad mood was induced with keywords of personal negative life events in participants with remitted depression (n = 29) and matched healthy controls (n = 29) during functional magnetic resonance imaging. Additionally, daily life assessments of mood and rumination and a 6-month follow-up were conducted. Remitted depressed participants showed greater connectivity than healthy controls of the PCC with the PHG, which was even stronger in patients with more previous episodes. Furthermore, patients with increased PCC–PHG connectivity showed a sadder mood and more rumination in daily life and a worsening of rumination and depression scores during follow-up. A relationship of negative autobiographical memory processing, rumination, sad mood and depression on a neural level seems likely. The identified increased connectivity probably indicates a ‘scar’ of recurrent depression and may represent a prognostic factor for future depression. PMID:24493842

  15. Can routine information from electronic patient records predict a future diagnosis of alcohol use disorder?

    PubMed Central

    Lid, Torgeir Gilje; Eide, Geir Egil; Dalen, Ingvild; Meland, Eivind

    2016-01-01

    Objective To explore whether information regarding potentially alcohol-related health incidents recorded in electronic patient records might aid in earlier identification of alcohol use disorders. Design We extracted potentially alcohol-related information in electronic patient records and tested if alcohol-related diagnoses, prescriptions of codeine, tramadol, ethylmorphine, and benzodiazepines; elevated levels of gamma-glutamyl-transferase (GGT), and mean cell volume (MCV); and new sick leave certificates predicted specific alcohol use disorder. Setting Nine general practitioner surgeries with varying size and stability. Subjects Totally 20,764 patients with active electronic patient record until data gathering and with a history of at least four years without a specific alcohol use disorder after turning 18 years of age. Methods The Cox proportional hazard analysis with time-dependent covariates of potential accumulated risks over the previous four years. Main outcome measures Time from inclusion until the first specific alcohol use disorder, defined by either an alcohol specific diagnostic code or a text fragment documenting an alcohol problem. Results In the unadjusted and adjusted Cox-regression with time-dependent covariates all variables were highly significant with adjusted hazard ratios ranging from 1.25 to 3.50. Addictive drugs, sick leaves, GGT, MCV and International Classification for Primary Care version 2 (ICPC-2), and International Classification of Diseases version 10 (ICD-10) diagnoses were analyzed. Elevated GGT and MCV, ICD-10-diagnoses, and gender demonstrated the highest hazard ratios. Conclusions Many frequent health problems are potential predictors of an increased risk or vulnerability for alcohol use disorders. However, due to the modest hazard ratios, we were unable to establish a clinically useful tool. Key Points Alcohol is potentially relevant for many health problems, but current strategies for identification and intervention in

  16. The Impact of Climate Change on Indigenous Arabica Coffee (Coffea arabica): Predicting Future Trends and Identifying Priorities

    PubMed Central

    Gole, Tadesse Woldemariam; Baena, Susana

    2012-01-01

    Precise modelling of the influence of climate change on Arabica coffee is limited; there are no data available for indigenous populations of this species. In this study we model the present and future predicted distribution of indigenous Arabica, and identify priorities in order to facilitate appropriate decision making for conservation, monitoring and future research. Using distribution data we perform bioclimatic modelling and examine future distribution with the HadCM3 climate model for three emission scenarios (A1B, A2A, B2A) over three time intervals (2020, 2050, 2080). The models show a profoundly negative influence on indigenous Arabica. In a locality analysis the most favourable outcome is a c. 65% reduction in the number of pre-existing bioclimatically suitable localities, and at worst an almost 100% reduction, by 2080. In an area analysis the most favourable outcome is a 38% reduction in suitable bioclimatic space, and the least favourable a c. 90% reduction, by 2080. Based on known occurrences and ecological tolerances of Arabica, bioclimatic unsuitability would place populations in peril, leading to severe stress and a high risk of extinction. This study establishes a fundamental baseline for assessing the consequences of climate change on wild populations of Arabica coffee. Specifically, it: (1) identifies and categorizes localities and areas that are predicted to be under threat from climate change now and in the short- to medium-term (2020–2050), representing assessment priorities for ex situ conservation; (2) identifies ‘core localities’ that could have the potential to withstand climate change until at least 2080, and therefore serve as long-term in situ storehouses for coffee genetic resources; (3) provides the location and characterization of target locations (populations) for on-the-ground monitoring of climate change influence. Arabica coffee is confimed as a climate sensitivite species, supporting data and inference that existing

  17. The impact of climate change on indigenous Arabica coffee (Coffea arabica): predicting future trends and identifying priorities.

    PubMed

    Davis, Aaron P; Gole, Tadesse Woldemariam; Baena, Susana; Moat, Justin

    2012-01-01

    Precise modelling of the influence of climate change on Arabica coffee is limited; there are no data available for indigenous populations of this species. In this study we model the present and future predicted distribution of indigenous Arabica, and identify priorities in order to facilitate appropriate decision making for conservation, monitoring and future research. Using distribution data we perform bioclimatic modelling and examine future distribution with the HadCM3 climate model for three emission scenarios (A1B, A2A, B2A) over three time intervals (2020, 2050, 2080). The models show a profoundly negative influence on indigenous Arabica. In a locality analysis the most favourable outcome is a c. 65% reduction in the number of pre-existing bioclimatically suitable localities, and at worst an almost 100% reduction, by 2080. In an area analysis the most favourable outcome is a 38% reduction in suitable bioclimatic space, and the least favourable a c. 90% reduction, by 2080. Based on known occurrences and ecological tolerances of Arabica, bioclimatic unsuitability would place populations in peril, leading to severe stress and a high risk of extinction. This study establishes a fundamental baseline for assessing the consequences of climate change on wild populations of Arabica coffee. Specifically, it: (1) identifies and categorizes localities and areas that are predicted to be under threat from climate change now and in the short- to medium-term (2020-2050), representing assessment priorities for ex situ conservation; (2) identifies 'core localities' that could have the potential to withstand climate change until at least 2080, and therefore serve as long-term in situ storehouses for coffee genetic resources; (3) provides the location and characterization of target locations (populations) for on-the-ground monitoring of climate change influence. Arabica coffee is confimed as a climate sensitivite species, supporting data and inference that existing plantations

  18. Midlife blood pressure predicts future diastolic dysfunction independently of blood pressure

    PubMed Central

    Ghosh, Arjun Kumar; Hughes, Alun David; Francis, Darrel; Chaturvedi, Nishi; Pellerin, Denis; Deanfield, John; Kuh, Diana; Mayet, Jamil; Hardy, Rebecca

    2016-01-01

    Objectives High blood pressure (BP) is associated with diastolic dysfunction, but the consequence of elevated BP over the adult life course on diastolic function is unknown. We hypothesised that high BP in earlier adulthood would be associated with impaired diastolic function independent of current BP. Methods Participants in the Medical Research Council National Survey of Health and Development birth cohort (n=1653) underwent investigations including echocardiography at age 60–64 years. The relationships between adult BP, antihypertensive treatment (HTT) and echocardiographic measures of diastolic function were assessed using adjusted regression models. Results Increased systolic BP (SBP) at ages 36, 43 and 53 years was predictive of increased E/e′ and increased left atrial volume. These effects were only partially explained by SBP at 60–64 years and increased left ventricular mass. HTT was also associated with poorer diastolic function after adjustment for SBP at 60–64 years. Faster rates of increase in SBP in midlife were also associated with increased poorer diastolic function. Conclusions High SBP in midlife is associated with poorer diastolic function at age 60–64 years. Early identification of individuals with high BP or rapid rises in BP may be important for prevention of impaired cardiac function in later life. PMID:27056972

  19. Predictions of the Impacts of Future Marcellus Shale Natural Gas Development on Regional Ozone

    NASA Astrophysics Data System (ADS)

    Roy, A.; Adams, P. J.; Robinson, A. L.

    2012-12-01

    Recent discovery of shale gas reserves, combined with advances in drilling and fracturing technology, are leading to extensive development of natural gas in the Marcellus Shale formation which underlies parts of Pennsylvania, West Virginia, Ohio and New York. To assess the impacts of this development on regional air quality, we have constructed a VOC, NOx and PM2.5 emissions inventory for the development and production of gas from the Marcellus formation. In 2020, we estimate that Marcellus activities will contribute about 12% to both regional NOx and VOC emissions. These numbers were obtained as a best estimate (mean) from a distribution obtained through several Monte Carlo runs. We speciated these emissions for use in a 3-D chemical transport model (PMCAMx) to simulate their effects on regional ozone. The projected Marcellus emissions for 2020 were added to a 2007 base inventory developed from the NEI. We have performed multiple simulations to investigate the effects of Marcellus development on regional air quality. The model predicts significant ozone changes in the Marcellus region with a uniform increase of few ppb across a wide region of the Northeast. Sensitivity studies are being performed to investigate the effects of emissions controls and sensitivity to VOC and NOx emissions.

  20. Epigenetics in Kidney Transplantation: Current Evidence, Predictions, and Future Research Directions.

    PubMed

    Mas, Valeria R; Le, Thu H; Maluf, Daniel G

    2016-01-01

    Epigenetic modifications are changes to the genome that occur without any alteration in DNA sequence. These changes include cytosine methylation of DNA at cytosine-phosphate diester-guanine dinucleotides, histone modifications, microRNA interactions, and chromatin remodeling complexes. Epigenetic modifications may exert their effect independently or complementary to genetic variants and have the potential to modify gene expression. These modifications are dynamic, potentially heritable, and can be induced by environmental stimuli or drugs. There is emerging evidence that epigenetics play an important role in health and disease. However, the impact of epigenetic modifications on the outcomes of kidney transplantation is currently poorly understood and deserves further exploration. Kidney transplantation is the best treatment option for end-stage renal disease, but allograft loss remains a significant challenge that leads to increased morbidity and return to dialysis. Epigenetic modifications may influence the activation, proliferation, and differentiation of the immune cells, and therefore may have a critical role in the host immune response to the allograft and its outcome. The epigenome of the donor may also impact kidney graft survival, especially those epigenetic modifications associated with early transplant stressors (e.g., cold ischemia time) and donor aging. In the present review, we discuss evidence supporting the role of epigenetic modifications in ischemia-reperfusion injury, host immune response to the graft, and graft response to injury as potential new tools for the diagnosis and prediction of graft function, and new therapeutic targets for improving outcomes of kidney transplantation.

  1. Patterns of Hydrologic Sensitivity to Climate in the Western US: Implications for Future Predictions

    NASA Astrophysics Data System (ADS)

    Safeeq, M.; Grant, G.

    2015-12-01

    A key challenge for resource and land managers is predicting the consequences of climate warming on streamflow and water resources. During the last century in the western United States, significant reductions in snowpack and earlier snowmelt have led to an increase in the fraction of annual streamflow during winter and a decline in the summer. However, this increase and decrease in streamflow is mediated by the climate and landscape. Here we explore key landscape and climate metrics for interpreting hydrologic sensitivity to climate using observed flow from a range of watersheds across the western United States. Our results indicate that the recession constant and fraction of precipitation falling as snow are the two primary controls on hydrologic sensitivity to climate in this region. Dry season flows in watersheds that drain slowly from deep groundwater and receive precipitation as snow are most sensitive to climate warming. In terms of peak flow, watersheds are most sensitivity to the consistency (i.e. signal-to-noise ratio) in fraction of precipitation falling as snow. Our results also indicate that not all trends in western United States are associated with changes in snowpack dynamics; we observe declining flow in late fall and winter in rain-dominated watersheds as well. These empirical findings support both theory and hydrologic modeling and have implications for how hydrologic sensitivity to climate change is evaluated and interpreted across broad regions.

  2. Future clinical uses of neurophysiological biomarkers to predict and monitor treatment response for schizophrenia.

    PubMed

    Light, Gregory A; Swerdlow, Neal R

    2015-05-01

    Advances in psychiatric neuroscience have transformed our understanding of impaired and spared brain functions in psychotic illnesses. Despite substantial progress, few (if any) laboratory tests have graduated to clinics to inform diagnoses, guide treatments, and monitor treatment response. Providers must rely on careful behavioral observation and interview techniques to make inferences about patients' inner experiences and then secondary deductions about impacted neural systems. Development of more effective treatments has also been hindered by a lack of translational quantitative biomarkers that can span the brain-behavior treatment knowledge gap. Here, we describe an example of a simple, low-cost, and translatable electroencephalography (EEG) measure that offers promise for improving our understanding and treatment of psychotic illnesses: mismatch negativity (MMN). MMN is sensitive to and/or predicts response to some pharmacologic and nonpharmacologic interventions and accounts for substantial portions of variance in clinical, cognitive, and psychosocial functioning in schizophrenia (SZ). This measure has recently been validated for use in large-scale multisite clinical studies of SZ. Finally, MMN greatly improves our ability to forecast which individuals at high clinical risk actually develop a psychotic illness. These attributes suggest that MMN can contribute to personalized biomarker-guided treatment strategies aimed at ameliorating or even preventing the onset of psychosis. PMID:25752648

  3. DNA methylation age of blood predicts future onset of lung cancer in the women's health initiative.

    PubMed

    Levine, Morgan E; Hosgood, H Dean; Chen, Brian; Absher, Devin; Assimes, Themistocles; Horvath, Steve

    2015-09-01

    Lung cancer is considered an age-associated disease, whose progression is in part due to accumulation of genomic instability as well as age-related decline in system integrity and function. Thus even among individuals exposed to high levels of genotoxic carcinogens, such as those found in cigarette smoke, lung cancer susceptibility may vary as a function of individual differences in the rate of biological aging. We recently developed a highly accurate candidate biomarker of aging based on DNA methylation (DNAm) levels, which may prove useful in assessing risk of aging-related diseases, such as lung cancer. Using data on 2,029 females from the Women's Health Initiative, we examined whether baseline measures of "intrinsic epigenetic age acceleration" (IEAA) predicted subsequent lung cancer incidence. We observed 43 lung cancer cases over the nearly twenty years of follow-up. Results showed that standardized measures of IEAA were significantly associated with lung cancer incidence (HR: 1.50, P=3.4x10-3). Furthermore, stratified Cox proportional hazard models suggested that the association may be even stronger among older individuals (70 years or above) or those who are current smokers. Overall, our results suggest that IEAA may be a useful biomarker for evaluating lung cancer susceptibility from a biological aging perspective. PMID:26411804

  4. Learning impairments identified early in life are predictive of future impairments associated with aging

    PubMed Central

    Hullinger, Rikki; Burger, Corinna

    2016-01-01

    The Morris water maze (MWM) behavioral paradigm is commonly used to measure spatial learning and memory in rodents. It is widely accepted that performance in the MWM declines with age. However, young rats ubiquitously perform very well on established versions of the water maze, suggesting that more challenging tasks may be required to reveal subtle differences in young animals. Therefore, we have used a one-day water maze and novel object recognition to test whether more sensitive paradigms of memory in young animals could identify subtle cognitive impairments early in life that might become accentuated later with senescence. We have found that these two tasks reliably separate young rats into inferior and superior learners, are highly correlated, and that performance on these tasks early in life is predictive of performance at 12 months of age. Furthermore, we have found that repeated training in this task selectively improves the performance of inferior learners, suggesting that behavioral training from an early age may provide a buffer against age-related cognitive decline. PMID:26283528

  5. Preschool impairments in auditory processing and speech perception uniquely predict future reading problems.

    PubMed

    Boets, Bart; Vandermosten, Maaike; Poelmans, Hanne; Luts, Heleen; Wouters, Jan; Ghesquière, Pol

    2011-01-01

    Developmental dyslexia is characterized by severe reading and spelling difficulties that are persistent and resistant to the usual didactic measures and remedial efforts. It is well established that a major cause of these problems lies in poorly specified phonological representations. Many individuals with dyslexia also present impairments in auditory temporal processing and speech perception, but it remains debated whether these more basic perceptual impairments play a role in causing the reading problem. Longitudinal studies may help clarifying this issue by assessing preschool children before they receive reading instruction and by following them up through literacy development. The current longitudinal study shows impairments in auditory frequency modulation (FM) detection, speech perception and phonological awareness in kindergarten and in grade 1 in children who receive a dyslexia diagnosis in grade 3. FM sensitivity and speech-in-noise perception in kindergarten uniquely contribute to growth in reading ability, even after controlling for letter knowledge and phonological awareness. These findings indicate that impairments in auditory processing and speech perception are not merely an epiphenomenon of reading failure. Although no specific directional relations were observed between auditory processing, speech perception and phonological awareness, the highly significant concurrent and predictive correlations between all these variables suggest a reciprocal association and corroborate the evidence for the auditory deficit theory of dyslexia. PMID:21236633

  6. Application of current and future satellite missions to hydrologic prediction in transboundary rivers

    NASA Astrophysics Data System (ADS)

    Biancamaria, S.; Clark, E.; Lettenmaier, D. P.

    2010-12-01

    temporal repeat (10 days for current satellites) and to gaps in the water mask, water volume estimates are meaningful only at the monthly scale. Furthermore, this information is limited to channels with wider than 250-500 m. The future Surface Water and Ocean Topography (SWOT) mission, which is intended to be launched in 2020, will provide global maps of water elevations, with a spatial resolution of 100 m and errors on the water elevation equal to or below 10 cm. The SWOT Ka band interferometric Synthetic Aperture Radar (SAR), will not be affected by cloud cover (aside from infrequent heavy rain); therefore, estimation of the water volume change on the Ganges and on the Brahmaputra upstream to the Bangladesh provided by SWOT should be much more accurate in space and time than can currently be achieved. We discuss the implications of future SWOT observations in the context of our preliminary work on the Ganges-Brahmaputra Rivers using current generation satellite data.

  7. Coherent neural oscillations predict future motor and language improvement after stroke.

    PubMed

    Nicolo, Pierre; Rizk, Sviatlana; Magnin, Cécile; Pietro, Marie Di; Schnider, Armin; Guggisberg, Adrian G

    2015-10-01

    Recent findings have demonstrated that stroke lesions affect neural communication in the entire brain. However, it is less clear whether network interactions are also relevant for plasticity and repair. This study investigated whether the coherence of neural oscillations at language or motor nodes is associated with future clinical improvement. Twenty-four stroke patients underwent high-density EEG recordings and standardized motor and language tests at 2-3 weeks (T0) and 3 months (T1) after stroke onset. In addition, EEG and motor assessments were obtained from a second population of 18 stroke patients. The graph theoretical measure of weighted node degree at language and motor areas was computed as the sum of absolute imaginary coherence with all other brain regions and compared to the amount of clinical improvement from T0 to T1. At T0, beta-band weighted node degree at the ipsilesional motor cortex was linearly correlated with better subsequent motor improvement, while beta-band weighted node degree at Broca's area was correlated with better language improvement. Clinical recovery was further associated with contralesional theta-band weighted node degree. These correlations were each specific to the corresponding brain area and independent of initial clinical severity, age, and lesion size. Findings were reproduced in the second stroke group. Conversely, later coherence increases occurring between T0 and T1 were associated with less clinical improvement. Improvement of language and motor functions after stroke is therefore associated with inter-regional synchronization of neural oscillations in the first weeks after stroke. A better understanding of network mechanisms of plasticity may lead to new prognostic biomarkers and therapeutic targets.See Ward (doi:10.1093/brain/awv265) for a scientific commentary on this article. PMID:26163304

  8. Human Reliability Assessments: Using the Past (Shuttle) to Predict the Future (ORION)

    NASA Technical Reports Server (NTRS)

    Mott, Diana L.; Bigler, Mark A.

    2017-01-01

    NASA uses two HRA assessment methodologies. The first is a simplified method which is based on how much time is available to complete the action, with consideration included for environmental and personal factors that could influence the human's reliability. This method is expected to provide a conservative value or placeholder as a preliminary estimate. This preliminary estimate is used to determine which placeholder needs a more detailed assessment. The second methodology is used to develop a more detailed human reliability assessment on the performance of critical human actions. This assessment needs to consider more than the time available, this would include factors such as: the importance of the action, the context, environmental factors, potential human stresses, previous experience, training, physical design interfaces, available procedures/checklists and internal human stresses. The more detailed assessment is still expected to be more realistic than that based primarily on time available. When performing an HRA on a system or process that has an operational history, we have information specific to the task based on this history and experience. In the case of a PRA model that is based on a new design and has no operational history, providing a "reasonable" assessment of potential crew actions becomes more problematic. In order to determine what is expected of future operational parameters, the experience from individuals who had relevant experience and were familiar with the system and process previously implemented by NASA was used to provide the "best" available data. Personnel from Flight Operations, Flight Directors, Launch Test Directors, Control Room Console Operators and Astronauts were all interviewed to provide a comprehensive picture of previous NASA operations. Verification of the assumptions and expectations expressed in the assessments will be needed when the procedures, flight rules and operational requirements are developed and then

  9. Human Reliability Assessments: Using the Past (Shuttle) to Predict the Future (Orion)

    NASA Technical Reports Server (NTRS)

    DeMott, Diana L.; Bigler, Mark A.

    2017-01-01

    NASA (National Aeronautics and Space Administration) Johnson Space Center (JSC) Safety and Mission Assurance (S&MA) uses two human reliability analysis (HRA) methodologies. The first is a simplified method which is based on how much time is available to complete the action, with consideration included for environmental and personal factors that could influence the human's reliability. This method is expected to provide a conservative value or placeholder as a preliminary estimate. This preliminary estimate or screening value is used to determine which placeholder needs a more detailed assessment. The second methodology is used to develop a more detailed human reliability assessment on the performance of critical human actions. This assessment needs to consider more than the time available, this would include factors such as: the importance of the action, the context, environmental factors, potential human stresses, previous experience, training, physical design interfaces, available procedures/checklists and internal human stresses. The more detailed assessment is expected to be more realistic than that based primarily on time available. When performing an HRA on a system or process that has an operational history, we have information specific to the task based on this history and experience. In the case of a Probabilistic Risk Assessment (PRA) that is based on a new design and has no operational history, providing a "reasonable" assessment of potential crew actions becomes more challenging. To determine what is expected of future operational parameters, the experience from individuals who had relevant experience and were familiar with the system and process previously implemented by NASA was used to provide the "best" available data. Personnel from Flight Operations, Flight Directors, Launch Test Directors, Control Room Console Operators, and Astronauts were all interviewed to provide a comprehensive picture of previous NASA operations. Verification of the

  10. A stochastic simulation model to predict future air quality in protected areas

    NASA Astrophysics Data System (ADS)

    Stavros, E.; McKenzie, D.; Larkin, N.; Strand, T.; Lamb, B. K.

    2010-12-01

    It is widely accepted in both scientific and political communities such as the Intergovernmental Panel on Climate Change (IPCC) and the Environmental Protection Agency (EPA), that climate is changing. Previous studies have shown that expected changes in climate will increase the severity of wild fire. It is necessary to assess the impact of global climate change on wildfire and consequent effects on air quality in order to meet existing air quality regulations such as the Regional Haze Rule, which regulates visibility in Class 1 or “pristine areas”, and the National Ambient Air Quality Standards (NAAQS). The challenge in such an assessment lies in not only integrating disciplines (climatology, fire ecology, air chemistry), but also in bridging knowledge across temporal (hourly to decadal) and spatial scales (local to global). In response to this challenge, we are integrating a stochastic model to simulate fire events, the Fire Scenario Builder (FSB), and the BlueSky Modeling Framework, which has a strong record of successfully linking wildfire emissions to air quality. FSB integrates fuel information and meteorological data to estimate regional fire season summary statistics such as total area burned and number of fire starts. The Blue Sky Modeling Framework then simulates total fuel consumption and smoke emissions both in local air sheds and downwind. Emissions are then fed into the Community Multiscale Air Quality (CMAQ) model through Sparse Matrix Operator Kernel Emissions Modeling System (SMOKE). The goal of this research is threefold: 1) to compare emission results from the FSB-Blue Sky integration for current vs. future decades; 2) to assess model uncertainty, by comparing model output to observations, analyzing parameter sensitivity, and verifying the theoretical basis of FSB model structure; and, 3) prepare data files for analysis on air quality.

  11. Can Dermatoglyphics Be Used as a Marker for Predicting Future Malocclusions?

    PubMed Central

    Eslami, Neda; Jahanbin, Arezoo; Ezzati, Atefeh; Banihashemi, Elham; Kianifar, Hamidreza

    2016-01-01

    Introduction Dermal ridges and craniofacial structures form from the same embryonic tissues during the same embryonic period. Thus, this might indicate a possible association between dermatoglyphics and facial skeletal disorders, such as malocclusions. Early diagnosis of skeletal malocclusions sometimes can prevent future surgical procedures. The aim of this study was to compare the dermatoglyphic characteristics of different malocclusions. Methods In this cross-sectional study, 323 patients who were referred to Orthodontic Department of Mashhad Dental School were recruited. The participants were classified into three groups according to Angle’s classification, i.e., Skeletal Class 1 (n = 163), Skeletal Class 2 (n = 111), and Skeletal Class 3 (n = 49). For all participants, we recorded the total ridge counts of each finger (TRC), atd angles, a–b ridge counts, and types of fingerprint patterns. Right- and left-hand asymmetry scores were calculated. The chi-squared test was used to compare the dissimilarity of the types of patterns for each finger. Asymmetry of other parameters was analyzed statistically using the ANOVA or Kruskal-Wallis tests. P-values greater than 0.05 were considered to be significant. Results A significant difference was determined between Class I and Class III patients in terms of left a–b ridge count (p=0.049). Loop was the most frequent pattern in the three groups, whereas the arch pattern occurred with the lowest frequency. No significant difference was found in the other parameters that were studied. Conclusion Although there were some slight differences in dermatoglyphic peculiarities of different skeletal malocclusions, most of the palm and fingerprint characteristics failed to indicate any significant differences. PMID:27054000

  12. Perceptions of Second-hand Smoke Risks Predict Future Adolescent Smoking Initiation

    PubMed Central

    Song, Anna V.; Glantz, Stanton A.; Halpern-Felsher, Bonnie L.

    2010-01-01

    Purpose To directly test whether perceptions of second-hand smoke risks deter adolescent smoking initiation. Methods A longitudinal survey design was utilized in this study. Baseline surveys measuring perceptions of tobacco-related risks and smoking behaviors were administered to 395 high school students, with three follow-up assessments every 6 months. Results Perceptions of personal second-hand smoke risks and parental second-hand smoke risks significantly deterred adolescent smoking initiation. Perceptions of personal second-hand smoke risks reduced the odds of smoking by a factor of 0.63 (95% confidence interval [CI] = 0.42–0.94) for each quartile increase in perceptions of personal second-hand smoke risks. Adolescents who provided the highest estimates of risks for personal second-hand smoke were 0.25 as likely to smoke as adolescents who provided the lowest estimates of risk. Perceptions of parental second-hand smoke risks reduced the odds of smoking by a factor of 0.64 (95% CI = 0.43–0.93) for each quartile increase. Adolescents who perceived the highest estimates of risks associated with parental second-hand smoke were 0.26 as likely to smoke in the future compared to adolescents who provided the lowest estimates of risk. These effects are over three times as large as a smoking peer’s influence on a nonsmoking adolescents’ risk for smoking initiation, odds ratio [OR] = 1.18 (95% CI = 1.02–1.35). Conclusions Adolescent perceptions of risks of second-hand smoke are strongly associated with smoking initiation. Encouraging adolescents to express their objections to second-hand smoke, as well as encouraging parents to create smoke-free homes, may be powerful tobacco control strategies against adolescent smoking. PMID:19931835

  13. Human Reliability Assessments: Using the Past (Shuttle) to Predict the Future (Orion)

    NASA Technical Reports Server (NTRS)

    DeMott, Diana; Bigler, Mark

    2016-01-01

    NASA (National Aeronautics and Space Administration) Johnson Space Center (JSC) Safety and Mission Assurance (S&MA) uses two human reliability analysis (HRA) methodologies. The first is a simplified method which is based on how much time is available to complete the action, with consideration included for environmental and personal factors that could influence the human's reliability. This method is expected to provide a conservative value or placeholder as a preliminary estimate. This preliminary estimate or screening value is used to determine which placeholder needs a more detailed assessment. The second methodology is used to develop a more detailed human reliability assessment on the performance of critical human actions. This assessment needs to consider more than the time available, this would include factors such as: the importance of the action, the context, environmental factors, potential human stresses, previous experience, training, physical design interfaces, available procedures/checklists and internal human stresses. The more detailed assessment is expected to be more realistic than that based primarily on time available. When performing an HRA on a system or process that has an operational history, we have information specific to the task based on this history and experience. In the case of a Probabilistic Risk Assessment (PRA) that is based on a new design and has no operational history, providing a "reasonable" assessment of potential crew actions becomes more challenging. In order to determine what is expected of future operational parameters, the experience from individuals who had relevant experience and were familiar with the system and process previously implemented by NASA was used to provide the "best" available data. Personnel from Flight Operations, Flight Directors, Launch Test Directors, Control Room Console Operators and Astronauts were all interviewed to provide a comprehensive picture of previous NASA operations. Verification of the

  14. An eco-evolutionary IBM improves predictions of future geneticconnectivity for American Pikas (Ochotona princeps) in Crater Lake National Park, Oregon

    EPA Science Inventory

    In the face of rapid, contemporary climate change, conservationbiologists are relying heavily on species distribution models (SDMs)to predict shifting occupancy and distribution patterns in responseto future conditions. These models are critical tools for assessingvulnerability t...

  15. Causes of Titan's Lake and Cloud Distributions and Predictions of Future Changes

    NASA Astrophysics Data System (ADS)

    Graves, S.; Schneider, T.; Schaller, E. L.; Brown, M. E.

    2010-12-01

    Saturn’s moon Titan has a methane cycle akin to Earth’s water cycle, with methane evaporating from lakes, condensing in clouds, and precipitating as rain. Titan has been observed in detail for a decade, from its southern summer solstice through vernal equinox. In this time, key observations include methane clouds in southern middle and high latitudes, dry and dune-covered low latitudes, and lakes in polar regions, preferentially in the north. No model has fully explained these features. Here we use a three-dimensional general circulation model (GCM) that includes a methane surface reservoir to show that the atmospheric circulation and its annual cycle can account for the observed methane cloud and lake distributions. Deep convective clouds form in the summer hemisphere—at the pole and in mid-latitudes—in rising branches of the mean meridional circulation. Lakes form in polar regions because methane transported toward the summer pole is cold-trapped there; more lakes form in the north because northern summer is colder than southern summer owing to Saturn’s orbital eccentricity. In southern hemisphere late summer, south polar lakes in the GCM experience a net evaporative methane loss (the difference between evaporation and precipitation rates) of ˜0.5 m/yr (1 yr referring to 1 Earth year). This is of the same magnitude as the drop in south polar lake levels observed between 2005 and 2009 [1]. The GCM predicts changes that will soon be observable: prominent cloud formation will begin in the northern middle and high latitudes within ~3 years, and lake levels near the north pole will rise over the next ~15 years. [1] Hayes, A. et al. Transient surface liquid in Titan’s polar regions from Cassini. Icarus (in press).

  16. Predicting hypothetical willingness to participate (WTP) in a future phase III HIV vaccine trial among high-risk adolescents.

    PubMed

    Giocos, Georgina; Kagee, Ashraf; Swartz, Leslie

    2008-11-01

    The present study sought to determine whether the Theory of Planned Behaviour predicted stated hypothetical willingness to participate (WTP) in future Phase III HIV vaccine trials among South African adolescents. Hierarchical logistic regression analyses showed that The Theory of Planned Behaviour (TPB) significantly predicted WTP. Of all the predictors, Subjective norms significantly predicted WTP (OR = 1.19, 95% C.I. = 1.06-1.34). A stepwise logistic regression analysis revealed that Subjective Norms (OR = 1.19, 95% C.I. = 1.07-1.34) and Attitude towards participation in an HIV vaccine trial (OR = 1.32, 95% C.I. = 1.00-1.74) were significant predictors of WTP. The addition of Knowledge of HIV vaccines and HIV vaccine trials, Perceived self-risk of HIV infection, Health-promoting behaviours and Attitudes towards HIV/AIDS yielded non-significant results. These findings provide support for the Theory of Reasoned Action (TRA) and suggest that psychosocial factors may play an important role in WTP in Phase III HIV vaccine trials among adolescents.

  17. Using tuberculosis patient characteristics to predict future cases with matching genotype results.

    PubMed

    Oeltmann, J E; Click, E S; Moonan, P K

    2014-03-21

    Contexte : Etats-Unis.Cadre : On ne sait pas si les caractéristiques d'un cas de tuberculose (TB) ou du patient permettent de prévoir la probabilité de contamination dans l'avenir.Objectif : Estimer la probabilité de cas présentant un génotype similaire dans le même conté et dans une période de 2 ans suivant le cas index.Schéma : Nous avons étudié tous les cas de TB avec génotypage déclarés aux Etats-Unis entre 2004 et 2010. Les scores prédictifs ont été calculés en fonction des caractéristiques du patient en divisant le nombre de patients qui n'étaient pas le dernier cas d'un groupement de génotypes au niveau d'un conté par le nombre total de patients.Résultats : Le risque global de nouveau cas lié à un autre cas était de 30,8% pendant les 2 années suivant l'année de déclaration de tout nouveau cas. Ces contaminations ont été détectées dans 34,7% des circonstances après diagnostic d'un cas à frottis positif, 51,9%, après diagnostic d'un patient sans domicile fixe et 45,2%, après diagnostic d'un patient toxicomane. Les scores prédictifs variaient en fonction de l'ethnie (Blancs 13,9% ; Amérindiens/Hawaïens 43,8%), l'âge (>65 ans 13,1% ; 0–4 ans 43%) et étaient plus élevé chez les patients nés aux Etats-Unis.Conclusion: Les facteurs comportementaux et socio-démographiques peuvent contribuer à prévoir la probabilité d'infection de cas dans le futur et peuvent servir à prioriser les recherches de sujets contacts.

  18. A Model for Predicting the Future Risk of Incident Erosive Esophagitis in an Asymptomatic Population Undergoing Regular Check-ups.

    PubMed

    Kang, Soo Hoon; Lim, Yaeji; Lee, Hyuk; Kim, Joungyoun; Chi, Sangah; Min, Yang Won; Min, Byung-Hoon; Lee, Jun Haeng; Son, Hee Jung; Ryu, Seungho; Rhee, Poong-Lyul; Kim, Jae J

    2016-01-01

    Erosive esophagitis is a major risk factor for Barrett esophagus and esophageal adenocarcinoma. Information regarding the putative risk factors for developing erosive esophagitis is considerably heterogeneous; thus, a risk model is required to clinically predict the incidence of erosive esophagitis. This study was to derive and validate a predictive model for the incidence of developing erosive esophagitis after negative index endoscopy in a population subjected to routine health check-ups. This retrospective cohort study of health check-ups included 11,535 patients who underwent repeated screening endoscopy after >3 years from a negative index endoscopy. We used logistic regression analysis to predict the incidence of erosive esophagitis, and a Simple Prediction of Erosive Esophagitis Development score for risk assessment was developed and internally validated using the split-sample approach. The development and validation cohorts included 5765 patients (675 with erosive esophagitis [11.7%]) and 5770 patients (670 with erosive esophagitis [11.6%]), respectively. The final model included sex, smoking behavior, body mass index, hypertension, and the triglyceride level as variables. This model predicted 667 cases of erosive esophagitis, yielding an expected-to-observed ratio of 1.00 (95% confidence interval [CI], 0.92-1.07). A simplified 5-item risk scoring system based on coefficients was developed, with a risk of erosive esophagitis of 6.2% (95% CI, 5.2-7.1) for the low-risk group (score ≤2), 15.1% (95% CI, 13.5-16.6) for the intermediate-risk group (score ≤3, 4), and 18.2% (95% CI, 15.2-21.3) for the high-risk group (score ≥5). The discriminative performance of the risk-prediction score was consistent in the derivation cohort and validation cohort (c-statistics 0.68 and 0.64, respectively); the calibration was good (Brier score 0.099 and 0.1, respectively). In conclusion, a simple risk-scoring model using putative risk factors can predict the future

  19. A Model for Predicting the Future Risk of Incident Erosive Esophagitis in an Asymptomatic Population Undergoing Regular Check-ups.

    PubMed

    Kang, Soo Hoon; Lim, Yaeji; Lee, Hyuk; Kim, Joungyoun; Chi, Sangah; Min, Yang Won; Min, Byung-Hoon; Lee, Jun Haeng; Son, Hee Jung; Ryu, Seungho; Rhee, Poong-Lyul; Kim, Jae J

    2016-01-01

    Erosive esophagitis is a major risk factor for Barrett esophagus and esophageal adenocarcinoma. Information regarding the putative risk factors for developing erosive esophagitis is considerably heterogeneous; thus, a risk model is required to clinically predict the incidence of erosive esophagitis. This study was to derive and validate a predictive model for the incidence of developing erosive esophagitis after negative index endoscopy in a population subjected to routine health check-ups. This retrospective cohort study of health check-ups included 11,535 patients who underwent repeated screening endoscopy after >3 years from a negative index endoscopy. We used logistic regression analysis to predict the incidence of erosive esophagitis, and a Simple Prediction of Erosive Esophagitis Development score for risk assessment was developed and internally validated using the split-sample approach. The development and validation cohorts included 5765 patients (675 with erosive esophagitis [11.7%]) and 5770 patients (670 with erosive esophagitis [11.6%]), respectively. The final model included sex, smoking behavior, body mass index, hypertension, and the triglyceride level as variables. This model predicted 667 cases of erosive esophagitis, yielding an expected-to-observed ratio of 1.00 (95% confidence interval [CI], 0.92-1.07). A simplified 5-item risk scoring system based on coefficients was developed, with a risk of erosive esophagitis of 6.2% (95% CI, 5.2-7.1) for the low-risk group (score ≤2), 15.1% (95% CI, 13.5-16.6) for the intermediate-risk group (score ≤3, 4), and 18.2% (95% CI, 15.2-21.3) for the high-risk group (score ≥5). The discriminative performance of the risk-prediction score was consistent in the derivation cohort and validation cohort (c-statistics 0.68 and 0.64, respectively); the calibration was good (Brier score 0.099 and 0.1, respectively). In conclusion, a simple risk-scoring model using putative risk factors can predict the future

  20. Predicting future thermal habitat suitability of competing native and invasive fish species: from metabolic scope to oceanographic modelling.

    PubMed

    Marras, Stefano; Cucco, Andrea; Antognarelli, Fabio; Azzurro, Ernesto; Milazzo, Marco; Bariche, Michel; Butenschön, Momme; Kay, Susan; Di Bitetto, Massimiliano; Quattrocchi, Giovanni; Sinerchia, Matteo; Domenici, Paolo

    2015-01-01

    Global increase in sea temperatures has been suggested to facilitate the incoming and spread of tropical invaders. The increasing success of these species may be related to their higher physiological performance compared with indigenous ones. Here, we determined the effect of temperature on the aerobic metabolic scope (MS) of two herbivorous fish species that occupy a similar ecological niche in the Mediterranean Sea: the native salema (Sarpa salpa) and the invasive marbled spinefoot (Siganus rivulatus). Our results demonstrate a large difference in the optimal temperature for aerobic scope between the salema (21.8°C) and the marbled spinefoot (29.1°C), highlighting the importance of temperature in determining the energy availability and, potentially, the distribution patterns of the two species. A modelling approach based on a present-day projection and a future scenario for oceanographic conditions was used to make predictions about the thermal habitat suitability (THS, an index based on the relationship between MS and temperature) of the two species, both at the basin level (the whole Mediterranean Sea) and at the regional level (the Sicilian Channel, a key area for the inflow of invasive species from the Eastern to the Western Mediterranean Sea). For the present-day projection, our basin-scale model shows higher THS of the marbled spinefoot than the salema in the Eastern compared with the Western Mediterranean Sea. However, by 2050, the THS of the marbled spinefoot is predicted to increase throughout the whole Mediterranean Sea, causing its westward expansion. Nevertheless, the regional-scale model suggests that the future thermal conditions of Western Sicily will remain relatively unsuitable for the invasive species and could act as a barrier for its spread westward. We suggest that metabolic scope can be used as a tool to evaluate the potential invasiveness of alien species and the resilience to global warming of native species.

  1. Effects of large volcanic eruptions on Eurasian climate and societies: unravelling past evidence to predict future impacts

    NASA Astrophysics Data System (ADS)

    Churakova Sidorova, Olga; Guillet, Sébastien; Corona, Christophe; Khodri, Myriam; Vaganov, Eugene; Siegwolf, Rolf; Bryukhanova, Marina; Naumova, Oksana; Kirdyanov, Aleksander; Myglan, Vladimir; Sviderskaya, Irina; Pyzhev, Anton; Grachev, Alexei; Saurer, Matthias; Beniston, Martin; Stoffel, Markus

    2016-04-01

    Substantial evidence exists for the sulphur deposition in ice cores of Greenland and Antarctica after major volcanic eruptions but their impacts have not been documented with sufficient detail so far. This is true for temperature, of which the cooling induced by eruptions has been vividly debated in recent years, but even more so for precipitation. In the Era.Net RUS Plus ELVECS, we are currently quantifying climate disturbance induced by major Common Era eruptions, the persistence of changes and their impact on short- to mid-term temperature and precipitation anomalies by using an unprecedented dataset of tree-ring records across Eurasia and a large body of recently unearthed historical archives. We will compile a comprehensive database of tree-ring proxies and historical archives; quantify temperature and precipitation impacts of large eruptions; simulate on a case-by-case basis volcanic microphysical processes and radiative forcing induced by the eruptions as well as evaluate results against tree-ring records; quantify impacts of large volcanic eruptions on atmospheric and oceanic circulations and feedbacks; and assess impacts of possible future eruptions. The new and diversified proxy data sources and more sophisticated modelling are expected to reduce discrepancies and uncertainties related to climatic responses to some of the largest eruptions. We expect to capture persistence of anomalies correctly by climate models, even more so if they are evaluated against highly resolved proxy data of past events. This will increase our confidence in the overall reliability of climate models and help to correctly capture, and therefore predict, the cooling and precipitation anomalies of possible future, large eruptions. These predictions of climatic anomalies will then be used to quantify their likely impacts on major economy and society, including food security, migration and air traffic. Acknowledgements: Era.Net RUS Plus ELVECS project № 122

  2. Predicting future thermal habitat suitability of competing native and invasive fish species: from metabolic scope to oceanographic modelling

    PubMed Central

    Marras, Stefano; Cucco, Andrea; Antognarelli, Fabio; Azzurro, Ernesto; Milazzo, Marco; Bariche, Michel; Butenschön, Momme; Kay, Susan; Di Bitetto, Massimiliano; Quattrocchi, Giovanni; Sinerchia, Matteo; Domenici, Paolo

    2015-01-01

    Global increase in sea temperatures has been suggested to facilitate the incoming and spread of tropical invaders. The increasing success of these species may be related to their higher physiological performance compared with indigenous ones. Here, we determined the effect of temperature on the aerobic metabolic scope (MS) of two herbivorous fish species that occupy a similar ecological niche in the Mediterranean Sea: the native salema (Sarpa salpa) and the invasive marbled spinefoot (Siganus rivulatus). Our results demonstrate a large difference in the optimal temperature for aerobic scope between the salema (21.8°C) and the marbled spinefoot (29.1°C), highlighting the importance of temperature in determining the energy availability and, potentially, the distribution patterns of the two species. A modelling approach based on a present-day projection and a future scenario for oceanographic conditions was used to make predictions about the thermal habitat suitability (THS, an index based on the relationship between MS and temperature) of the two species, both at the basin level (the whole Mediterranean Sea) and at the regional level (the Sicilian Channel, a key area for the inflow of invasive species from the Eastern to the Western Mediterranean Sea). For the present-day projection, our basin-scale model shows higher THS of the marbled spinefoot than the salema in the Eastern compared with the Western Mediterranean Sea. However, by 2050, the THS of the marbled spinefoot is predicted to increase throughout the whole Mediterranean Sea, causing its westward expansion. Nevertheless, the regional-scale model suggests that the future thermal conditions of Western Sicily will remain relatively unsuitable for the invasive species and could act as a barrier for its spread westward. We suggest that metabolic scope can be used as a tool to evaluate the potential invasiveness of alien species and the resilience to global warming of native species. PMID:27293680

  3. A statistical rain attenuation prediction model with application to the advanced communication technology satellite project. Part 2: Theoretical development of a dynamic model and application to rain fade durations and tolerable control delays for fade countermeasures

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    1987-01-01

    A dynamic rain attenuation prediction model is developed for use in obtaining the temporal characteristics, on time scales of minutes or hours, of satellite communication link availability. Analagous to the associated static rain attenuation model, which yields yearly attenuation predictions, this dynamic model is applicable at any location in the world that is characterized by the static rain attenuation statistics peculiar to the geometry of the satellite link and the rain statistics of the location. Such statistics are calculated by employing the formalism of Part I of this report. In fact, the dynamic model presented here is an extension of the static model and reduces to the static model in the appropriate limit. By assuming that rain attenuation is dynamically described by a first-order stochastic differential equation in time and that this random attenuation process is a Markov process, an expression for the associated transition probability is obtained by solving the related forward Kolmogorov equation. This transition probability is then used to obtain such temporal rain attenuation statistics as attenuation durations and allowable attenuation margins versus control system delay.

  4. A glimpse into the past and predictions for the future: the molecular evolution of the tuberculosis agent.

    PubMed

    Boritsch, Eva C; Supply, Philip; Honoré, Nadine; Seemann, Torsten; Seeman, Torsten; Stinear, Timothy P; Brosch, Roland

    2014-09-01

    Recent advances in genomics and molecular biology are providing an excellent opportunity to get a glimpse into the past, to examine the present, and to predict the future evolution of pathogenic mycobacteria, and in particular that of Mycobacterium tuberculosis, the agent of human tuberculosis. The recent availability of genome sequences of several Mycobacterium canettii strains, representing evolutionary early-branching tubercle bacilli, has allowed the genomic and molecular features of the putative ancestor of the M. tuberculosis complex (MTBC) to be reconstituted. Analyses have identified extensive lateral gene transfer and recombination events in M. canettii and/or the MTBC, leading to suggestions of a past environmental reservoir where the ancestor(s) of the tubercle bacilli might have adapted to an intracellular lifestyle. The daily increases in M. tuberculosis genome data and the remaining urgent Public Health problem of tuberculosis make it more important than ever to try and understand the origins and the future evolution of the MTBC. Here we critically discuss a series of questions on gene-loss, acquisition, recombination, mutation and conservation that have recently arisen and which are key to better understand the outstanding evolutionary success of one of the most widespread and most deadly bacterial pathogens in the history of humankind.

  5. Two decades of historical phenology observations of African tropical tree species: exploring the past to predict the futur

    NASA Astrophysics Data System (ADS)

    Hufkens, K.; Kosmala, M.; Ewango, C.; Richardson, A. D.; Beeckman, H.

    2015-12-01

    African tropical forests cover ~630 million ha, store up to 66 Pg of carbon and represent a significant carbon sink (0.34Pg C yr-1 ). As such African tropical forests provide an important negative feedback to the global carbon cycle. Unlike temperate forests, tropical forests lack sharp temperature and photoperiod cues to constrain phenology and growth. Therefore, events such as seasonal leaf abscission and reproductive life cycles are often driven by changes in water availability. With future climate predictions expecting a warmer, and especially drier tropical Africa, it is likely we will see concomitant changes in tree growth and phenology.As tropical trees show a high degree of phenological plasticity depending on the severity of the dry season, intermittent water stress or the location of an individual in the canopy structure. As such, frequent and long term observations are key to characterize tropical tree phenology. Here I use two long term historical phenology records of weekly observations, some digitized within the context of a citizen science project (http://junglerhythms.org/), to explore differences in tree phenology between two sites (Luki and Yangambi, DR Congo) with contrasting climate regimes within the Congo basin. I describe variation in leaf, flower and fruit phenology across similar species at both locations in relation to complementary historical climatological observations. I further discuss the potential implications of changing phenology under future climate conditions as phenological changes could alter both ecosystem demography and growing season length providing important feedbacks to the climate system.

  6. Cardio-Pulmonary Parasitic Nematodes Affecting Cats in Europe: Unraveling the Past, Depicting the Present, and Predicting the Future

    PubMed Central

    Traversa, Donato; Di Cesare, Angela

    2014-01-01

    Various cardio-pulmonary parasitic nematodes infecting cats have recently been fascinating and stimulating the attention of the Academia, pharmaceutical companies, and veterinary practitioners. This is the case of the metastrongyloids: Aelurostrongylus abstrusus and Troglostrongylus brevior, the trichuroid: Capillaria aerophila (syn. Eucoleus aerophilus), and the filarioid: Dirofilaria immitis. Apparently, these parasites have been emerging in several European countries, thus, gaining an important role in feline parasitology and clinical practice. Under a practical standpoint, a sound knowledge of the biological, epidemiological, and clinical impact of cardio-respiratory parasitoses affecting cats, in addition to a potential risk of introduction, establishment, and spreading of “new” parasites in Europe is mandatory in order to understand the present and future impact for feline medicine and to address new strategies of control and treatment. The purpose of the present article is to review the current knowledge of heartworm and lungworm infections in cats, discussing and comparing past and present issues, and predicting possible future scenarios. PMID:26664917

  7. SEURAT: Safety Evaluation Ultimately Replacing Animal Testing--recommendations for future research in the field of predictive toxicology.

    PubMed

    Daston, George; Knight, Derek J; Schwarz, Michael; Gocht, Tilman; Thomas, Russell S; Mahony, Catherine; Whelan, Maurice

    2015-01-01

    The development of non-animal methodology to evaluate the potential for a chemical to cause systemic toxicity is one of the grand challenges of modern science. The European research programme SEURAT is active in this field and will conclude its first phase, SEURAT-1, in December 2015. Drawing on the experience gained in SEURAT-1 and appreciating international advancement in both basic and regulatory science, we reflect here on how SEURAT should evolve and propose that further research and development should be directed along two complementary and interconnecting work streams. The first work stream would focus on developing new 'paradigm' approaches for regulatory science. The goal here is the identification of 'critical biological targets' relevant for toxicity and to test their suitability to be used as anchors for predicting toxicity. The second work stream would focus on integration and application of new approach methods for hazard (and risk) assessment within the current regulatory 'paradigm', aiming for acceptance of animal-free testing strategies by regulatory authorities (i.e. translating scientific achievements into regulation). Components for both work streams are discussed and may provide a structure for a future research programme in the field of predictive toxicology.

  8. PULSE DURATION LENGTHENER

    DOEpatents

    Aiken, W.R.

    1958-02-01

    This patent pertains to pulse modifying apparatus and, more particularly, describes a device to provide a rise time and time base expander for signal pulses having a very short duration. The basic element of the device is a vacuum tube comprising a charged particie beam, grid control means, an accelerating electrode, a drift tube, and a collector electrode. As the short duration input pulse modulates the particle beam through the grid control means, the voltage between the drift tube and accelerating electrode is caused to vary, whereby the output signal from the collector is a pulse having longer rise time, expanded duration and proportionate characteristics of the original pulse. The invention is particuiarly useful where subsequent pulse circultry does not have the frequency bandwidth to handle the short duration pulse without distorting it.

  9. Research on determinants of breastfeeding duration: suggestions for biocultural studies.

    PubMed

    Allen, L H; Pelto, G H

    1985-01-01

    The main purpose of this paper is to suggest directions for future intra-cultural research on the factors that affect breastfeeding duration, especially policy-oriented research. A 2nd purpose is to call for a reexamination of the theoretical construct, biocultural determinants, with respect to infant feeding. The study compares determinants in 4 multivariate studies. One was carried out in Connecticut, 1 in a working class community in Scotland, another in England and the 4th in Sweden. Almost no biological factors are strongly associated with breastfeeding duration in any of the population studied. Of the external factors, those relating to social support and advice were the most consistent predictors. Socioeconomic status, income, and work outside the home were not good predictors. Maternal attitudes and experience are of great importance in predicting feeding duration. The general picture that emerged from all the studies is that if a mother wants to breastfeed, she can. Mothers breastfeed longer if they desire to breastfeed; they intend to do it for a longer period of time; they feel comfortable feeding in public; they are informed about breastfeeding; and they are not anxious about the process. There is also fairly strong evidence linking a number of biocultural factors to feeding duration. Whether the linkage is biological or behavioral has significant policy implications: if it is biological, successful intervention would require a change in hospital practices to earlier 1st feeding; if the linkage is behavioral, the problem might be resolved through improved maternal education. PMID:3836324

  10. Effect of winter cold duration on spring phenology of the orange tip butterfly, Anthocharis cardamines.

    PubMed

    Stålhandske, Sandra; Lehmann, Philipp; Pruisscher, Peter; Leimar, Olof

    2015-12-01

    The effect of spring temperature on spring phenology is well understood in a wide range of taxa. However, studies on how winter conditions may affect spring phenology are underrepresented. Previous work on Anthocharis cardamines (orange tip butterfly) has shown population-specific reaction norms of spring development in relation to spring temperature and a speeding up of post-winter development with longer winter durations. In this experiment, we examined the effects of a greater and ecologically relevant range of winter durations on post-winter pupal development of A. cardamines of two populations from the United Kingdom and two from Sweden. By analyzing pupal weight loss and metabolic rate, we were able to separate the overall post-winter pupal development into diapause duration and post-diapause development. We found differences in the duration of cold needed to break diapause among populations, with the southern UK population requiring a shorter duration than the other populations. We also found that the overall post-winter pupal development time, following removal from winter cold, was negatively related to cold duration, through a combined effect of cold duration on diapause duration and on post-diapause development time. Longer cold durations also lead to higher population synchrony in hatching. For current winter durations in the field, the A. cardamines population of southern UK could have a reduced development rate and lower synchrony in emergence because of short winters. With future climate change, this might become an issue also for other populations. Differences in winter conditions in the field among these four populations are large enough to have driven local adaptation of characteristics controlling spring phenology in response to winter duration. The observed phenology of these populations depends on a combination of winter and spring temperatures; thus, both must be taken into account for accurate predictions of phenology. PMID:27069602

  11. Predicting the impact of future land-use and climate change on the groundwater system, Kleine Nete basin, Belgium

    NASA Astrophysics Data System (ADS)

    Salvadore, E.; Dams, J.; Batelaan, O.; van Daele, T.

    2009-04-01

    atmospheric circulation pattern and the global temperature change as driving force, a group of four climate scenarios have been generated: moderate temperature change (with and without air circulation) and warm temperature change (with and without air circulation). Considering the combined effect of rainfall and potential reference evapotranspiration three additional scenarios have been simulated: high, mean and low based on the expected hydrological impacts. Several future land-use change scenarios have been investigated, every scenario consists of a package of policy measures of which the combined effect is calculated. In the aggregation of the policy packages comparable global costs were aspired. The policy measures interact in a direct or indirect way with the three controlling factors for nature and biodiversity: available space, environmental quality and land-use management. Using the calibrated WetSpa and MODFLOW models, the different land-use and climate predictions have been simulated to evaluate the impact on the groundwater system and to compare future scenarios with the "current" condition. The results show that wetter winters and drier summers, predicted by several climate scenarios, will produce a moderate increase in monthly average groundwater level and a change in the seasonal variability; more extreme changes have been found when the air circulation was considered in the simulations. Model results also indicated that the groundwater discharge area of the "Olensbroek" wetland will appreciably increase.

  12. Evaluation of geostationary satellite observations and the development of a 1-2 h prediction model for future storm intensity

    NASA Astrophysics Data System (ADS)

    Mecikalski, John R.; Rosenfeld, Daniel; Manzato, Agostino

    2016-06-01

    A study was conducted to gain insights into the use of geostationary satellite-based indicators for characterizing and identifying growing cumulus clouds that evolve into severe weather producing convective storms. Eleven convective initiation (CI), 41 cloud top temperature-effective radius (T-re), and 9 additional fields were formed for 340 growing cumulus clouds that were manually tracked for 2 h and checked for association with severe weather to 2-3 h into the future. The geostationary satellite data were at 5 min resolution from Meteosat-8 on six convectively active days in 2010, 2012, and 2013. The study's goals were to determine which satellite fields are useful to forecasting severe storms and to form a simple model for predicting future storm intensity. The CI fields were applied on 3 × 3 pixel regions, and the T-re fields were analyzed on 9 × 9 and 51 × 51 pixel domains (needed when forming T-re vertical profiles). Of the 340 growing cumulus clouds examined, 34 were later associated with severe weather (using European Severe Weather Database reports), with the remaining being nonsevere storms. Using a multivariate analysis, transforming predictors into their empirical posterior probability, and maximizing the Peirce skill score, the best predictors were T1451 (51 × 51 pixel T, where re exceeds 14 µm), TG9 (9 × 9 pixel glaciation T surrounding a growing cloud), and ReBRTG51 (51 × 51 pixel re at the breakpoint T in the T-re profile). Rapid cloud growth prior to severe storm formation leads to delayed particle growth, colder temperatures of the first 14 µm particles, and lower TG values.

  13. Estimating magnitude and duration of incident delays

    SciTech Connect

    Garib, A.; Radwan, A.E.; Al-Deek, H.

    1997-11-01

    Traffic congestion is a major operational problem on urban freeways. In the case of recurring congestion, travelers can plan their trips according to the expected occurrence and severity of recurring congestion. However, nonrecurring congestion cannot be managed without real-time prediction. Evaluating the efficiency of intelligent transportation systems (ITS) technologies in reducing incident effects requires developing models that can accurately predict incident duration along with the magnitude of nonrecurring congestion. This paper provides two statistical models for estimating incident delay and a model for predicting incident duration. The incident delay models showed that up to 85% of variation in incident delay can be explained by incident duration, number of lanes affected, number of vehicles involved, and traffic demand before the incident. The incident duration prediction model showed that 81% of variation in incident duration can be predicted by number of lanes affected, number of vehicles involved, truck involvement, time of day, police response time, and weather condition. These findings have implications for on-line applications within the context of advanced traveler information systems (ATIS).

  14. Future climate change is predicted to shift long-term persistence zones in the cold-temperate kelp Laminaria hyperborea.

    PubMed

    Assis, Jorge; Lucas, Ana Vaz; Bárbara, Ignacio; Serrão, Ester Álvares

    2016-02-01

    Global climate change is shifting species distributions worldwide. At rear edges (warmer, low latitude range margins), the consequences of small variations in environmental conditions can be magnified, producing large negative effects on species ranges. A major outcome of shifts in distributions that only recently received attention is the potential to reduce the levels of intra-specific diversity and consequently the global evolutionary and adaptive capacity of species to face novel disturbances. This is particularly important for low dispersal marine species, such as kelps, that generally retain high and unique genetic diversity at rear ranges resulting from long-term persistence, while ranges shifts during climatic glacial/interglacial cycles. Using ecological niche modelling, we (1) infer the major environmental forces shaping the distribution of a cold-temperate kelp, Laminaria hyperborea (Gunnerus) Foslie, and we (2) predict the effect of past climate changes in shaping regions of long-term persistence (i.e., climatic refugia), where this species might hypothetically harbour higher genetic diversity given the absence of bottlenecks and local extinctions over the long term. We further (3) assessed the consequences of future climate for the fate of L. hyperborea using different scenarios of greenhouse gas emissions (RCP 2.6 and RCP 8.5). Results show NW Iberia, SW Ireland and W English Channel, Faroe Islands and S Iceland, as regions where L. hyperborea may have persisted during past climate extremes until present day. All predictions for the future showed expansions to northern territories coupled with the significant loss of suitable habitats at low latitude range margins, where long-term persistence was inferred (e.g., NW Iberia). This pattern was particularly evident in the most agressive scenario of climate change (RCP 8.5), likely driving major biodiversity loss, changes in ecosystem functioning and the impoverishment of the global gene pool of L

  15. Future climate change is predicted to shift long-term persistence zones in the cold-temperate kelp Laminaria hyperborea.

    PubMed

    Assis, Jorge; Lucas, Ana Vaz; Bárbara, Ignacio; Serrão, Ester Álvares

    2016-02-01

    Global climate change is shifting species distributions worldwide. At rear edges (warmer, low latitude range margins), the consequences of small variations in environmental conditions can be magnified, producing large negative effects on species ranges. A major outcome of shifts in distributions that only recently received attention is the potential to reduce the levels of intra-specific diversity and consequently the global evolutionary and adaptive capacity of species to face novel disturbances. This is particularly important for low dispersal marine species, such as kelps, that generally retain high and unique genetic diversity at rear ranges resulting from long-term persistence, while ranges shifts during climatic glacial/interglacial cycles. Using ecological niche modelling, we (1) infer the major environmental forces shaping the distribution of a cold-temperate kelp, Laminaria hyperborea (Gunnerus) Foslie, and we (2) predict the effect of past climate changes in shaping regions of long-term persistence (i.e., climatic refugia), where this species might hypothetically harbour higher genetic diversity given the absence of bottlenecks and local extinctions over the long term. We further (3) assessed the consequences of future climate for the fate of L. hyperborea using different scenarios of greenhouse gas emissions (RCP 2.6 and RCP 8.5). Results show NW Iberia, SW Ireland and W English Channel, Faroe Islands and S Iceland, as regions where L. hyperborea may have persisted during past climate extremes until present day. All predictions for the future showed expansions to northern territories coupled with the significant loss of suitable habitats at low latitude range margins, where long-term persistence was inferred (e.g., NW Iberia). This pattern was particularly evident in the most agressive scenario of climate change (RCP 8.5), likely driving major biodiversity loss, changes in ecosystem functioning and the impoverishment of the global gene pool of L

  16. Expected endings and judged duration.

    PubMed

    Jones, M R; Boltz, M G; Klein, J M

    1993-09-01

    In four experiments, the predictions of an expectancy/contrast model (Jones & Boltz, 1989) for judged duration were evaluated. In Experiments 1 and 2, listeners estimated the relative durations of auditory pattern pairs that varied in contextual phrasing and temporal contrast. The results showed that when the second pattern of a pair either seems to (Experiments 1 and 2) or actually does (Experiment 2) end earlier (later) than the first, subjects judge it as being relatively shorter (longer). In Experiment 3, listeners heard single patterns in which notes immediately preceding the final one were omitted. Timing of the final (target) tone was varied such that it was one beat early, on time, or one beat late. Listeners' ratings of target tones revealed systematic effects of phrasing and target timing. In Experiment 4, listeners temporally completed (extrapolated) sequences of Experiment 3 that were modified to exclude the target tone. The results again showed that phrase context systematically influenced expectancies about "when" sequences should end. As a set, these studies demonstrate the effects of event structure and anticipatory attending upon experienced duration and are discussed in terms of the expectancy/contrast model.

  17. Level of incongruence during cardiac rehabilitation and prediction of future CVD-related hospitalizations plus all-cause mortality.

    PubMed

    Meyer, Fiorenza A; Stauber, Stefanie; Wilhelm, Matthias; Znoj, Hansjörg; von Känel, Roland

    2015-01-01

    Independent of traditional risk factors, psychosocial risk factors increase the risk of cardiovascular disease (CVD). Studies in the field of psychotherapy have shown that the construct of incongruence (meaning a discrepancy between desired and achieved goals) affects the outcome of therapy. We prospectively measured the impact of incongruence in patients after undergoing a cardiac rehabilitation program. We examined 198 CVD patients enrolled in a 8-12 week comprehensive cardiac rehabilitation program. Patients completed the German short version of the Incongruence Questionnaire and the SF-36 Health Questionnaire to measure quality of life (QoL) at discharge of rehabilitation. Endpoints at follow-up were CVD-related hospitalizations plus all-cause mortality. During a mean follow-up period of 54.3 months, 29 patients experienced a CVD-related hospitalization and 3 patients died. Incongruence at discharge of rehabilitation was independent of traditional risk factors a significant predictor for CVD-related hospitalizations plus all-cause mortality (HR 2.03, 95% CI 1.29-3.20, p = .002). We also found a significant interaction of incongruence with mental QoL (HR .96, 95% CI .92-.99, p = .027), i.e. incongruence predicted poor prognosis if QoL was low (p = .017), but not if QoL was high (p = .74). Incongruence at discharge predicted future CVD-related hospitalizations plus all-cause mortality and mental QoL moderated this relationship. Therefore, incongruence should be considered for effective treatment planning and outcome measurement.

  18. The Predicted Growth of the Low Earth Orbit Space Debris Environment: An Assessment of Future Risk for Spacecraft

    NASA Technical Reports Server (NTRS)

    Krisko, Paula H.

    2007-01-01

    Space debris is a worldwide-recognized issue concerning the safety of commercial, military, and exploration spacecraft. The space debris environment includes both naturally occuring meteoroids and objects in Earth orbit that are generated by human activity, termed orbital debris. Space agencies around the world are addressing the dangers of debris collisions to both crewed and robotic spacecraft. In the United States, the Orbital Debris Program Office at the NASA Johnson Space Center leads the effort to categorize debris, predict its growth, and formulate mitigation policy for the environment from low Earth orbit (LEO) through geosynchronous orbit (GEO). This paper presents recent results derived from the NASA long-term debris environment model, LEGEND. It includes the revised NASA sodium potassium droplet model, newly corrected for a factor of two over-estimation of the droplet population. The study indicates a LEO environment that is already highly collisionally active among orbital debris larger than 1 cm in size. Most of the modeled collision events are non-catastrophic (i.e., They lead to a cratering of the target, but no large scale fragmentation.). But they are potentially mission-ending, and take place between impactors smaller than 10 cm and targets larger than 10 cm. Given the small size of the impactor these events would likely be undetectable by present-day measurement means. The activity continues into the future as would be expected. Impact rates of about four per year are predicted by the current study within the next 30 years, with the majority of targets being abandoned intacts (spent upper stages and spacecraft). Still, operational spacecraft do show a small collisional activity, one that increases over time as the small fragment population increases.

  19. Prognostic significance of QRS duration and morphology.

    PubMed

    Brenyo, Andrew; Zaręba, Wojciech

    2011-01-01

    QRS duration and morphology, evaluated via a standard 12-lead electrocardiogram (ECG), represent an opportunity to derive useful prognostic information regarding the risk of subsequent cardiac events or therapeutic outcomes. Prolonged QRS duration, and the presence of intraventricular conduction abnormalities, usually indicate the presence of changes in the myocardium due to underlying heart disease. Prolonged QRS duration is often associated with depressed ejection fraction or enlarged left ventricular volumes, but several studies have demonstrated that this simple ECG measure provides independent prognostic value, after adjusting for relevant clinical covariates. Post-infarction patients with prolonged QRS duration have a significantly increased risk of mortality, although data associating QRS prolongation specifically with sudden death is less supportive. In non-ischemic cardiomyopathy, there is no evidence that QRS duration has prognostic significance in predicting mortality or sudden death. Prolonged QRS duration, and especially presence of left bundle branch block, seems to predict a benefit from cardiac resynchronization therapy in both ischemic and non-ischemic cardiomyopathy patients. Therefore, QRS duration and morphology should not only be considered a predictor of death or sudden death in patients after myocardial infarction, and in those suspected of coronary artery disease, but also as a predictor of benefit from cardiac resynchronization therapy in patients with heart failure, whether of an ischemic or non-ischemic origin. PMID:21305480

  20. Predictions of future methane ebullition in subarctic lakes using long-term climate data and energy proxies

    NASA Astrophysics Data System (ADS)

    Thornton, B. F.; Wik, M.; Crill, P. M.

    2014-12-01

    Correlations between seasonal energy input and methane (CH4) bubbling (ebullition) in northern lakes suggest that energy proxies might provide a constraint on the magnitude of future CH4 emissions. Ebullition is a major pathway for transporting anaerobically produced CH4 from lake sediments to the atmosphere, and represents a difficult to quantify CH4 source. In post-glacial arctic lakes during the ice-free season, solar shortwave energy input can constrain CH4 productivity via control of sediment temperature. Utilizing long-term temperature trends we calculate CH4 ebullition from three subarctic lakes in northern Sweden over the period of 1916-2079. Using observed energy trends, the average lake emission is estimated at 1128 mg m-2 yr-1 for 1916-1926; we predict an approximately 2000 mg m-2 yr-1 in the 2040-2079 period. Our study lakes and our measured CH4 ebullition rates are typical for the pan-Arctic, suggesting that such increases in CH4 ebullition might be widespread.

  1. Word Durations in Non-Native English

    PubMed Central

    Baker, Rachel E.; Baese-Berk, Melissa; Bonnasse-Gahot, Laurent; Kim, Midam; Van Engen, Kristin J.; Bradlow, Ann R.

    2010-01-01

    In this study, we compare the effects of English lexical features on word duration for native and non-native English speakers and for non-native speakers with different L1s and a range of L2 experience. We also examine whether non-native word durations lead to judgments of a stronger foreign accent. We measured word durations in English paragraphs read by 12 American English (AE), 20 Korean, and 20 Chinese speakers. We also had AE listeners rate the `accentedness' of these non-native speakers. AE speech had shorter durations, greater within-speaker word duration variance, greater reduction of function words, and less between-speaker variance than non-native speech. However, both AE and non-native speakers showed sensitivity to lexical predictability by reducing second mentions and high frequency words. Non-native speakers with more native-like word durations, greater within-speaker word duration variance, and greater function word reduction were perceived as less accented. Overall, these findings identify word duration as an important and complex feature of foreign-accented English. PMID:21516172

  2. Repetition enhancement and memory effects for duration.

    PubMed

    Wiener, Martin; Thompson, James C

    2015-06-01

    A remarkable aspect of conscious perception is that moments carryover from one to the next, also known as temporal continuity. This ability is thus crucial for detecting regularities, such as in speech and music, and may rely on an accurate perception of time. Investigations of human time perception have detailed two electroencephalographic (EEG) components associated with timing, the contingent negative variation (CNV) and late positive component of timing (LPCt); however, the precise roles of these components in timing remain elusive. Recently, we demonstrated that the perception of duration is influenced by durations presented on prior trials, which we explained by the creation of an implicit memory standard that adapts to local changes in sequence presentation. Here, we turn to the neural basis of this effect. Human participants performed a temporal bisection task in which they were required to classify the duration of auditory stimuli into short and long duration categories; crucially, the presentation order was first-order counterbalanced, allowing us to measure the effect of each presented duration on the next. EEG recordings revealed that the CNV and LPCt signals both covaried with the duration presented on the current trial, with CNV predicting reaction time and LPCt predicting choice. Additionally, both signals covaried with the duration presented in the prior trial but in different ways, with the CNV amplitude reflecting the change in the memory standard and the LPCt reflecting decision uncertainty. Furthermore, we observed a repetition enhancement effect of duration only for the CNV, suggesting that this signal additionally indexes the similarity of successive durations. These findings demonstrate dissociable roles for the CNV and LPCt, and demonstrate that both signals are continuously updated on a trial-by-trial basis that reflects shifts in temporal decisions. PMID:25818689

  3. Repetition enhancement and memory effects for duration.

    PubMed

    Wiener, Martin; Thompson, James C

    2015-06-01

    A remarkable aspect of conscious perception is that moments carryover from one to the next, also known as temporal continuity. This ability is thus crucial for detecting regularities, such as in speech and music, and may rely on an accurate perception of time. Investigations of human time perception have detailed two electroencephalographic (EEG) components associated with timing, the contingent negative variation (CNV) and late positive component of timing (LPCt); however, the precise roles of these components in timing remain elusive. Recently, we demonstrated that the perception of duration is influenced by durations presented on prior trials, which we explained by the creation of an implicit memory standard that adapts to local changes in sequence presentation. Here, we turn to the neural basis of this effect. Human participants performed a temporal bisection task in which they were required to classify the duration of auditory stimuli into short and long duration categories; crucially, the presentation order was first-order counterbalanced, allowing us to measure the effect of each presented duration on the next. EEG recordings revealed that the CNV and LPCt signals both covaried with the duration presented on the current trial, with CNV predicting reaction time and LPCt predicting choice. Additionally, both signals covaried with the duration presented in the prior trial but in different ways, with the CNV amplitude reflecting the change in the memory standard and the LPCt reflecting decision uncertainty. Furthermore, we observed a repetition enhancement effect of duration only for the CNV, suggesting that this signal additionally indexes the similarity of successive durations. These findings demonstrate dissociable roles for the CNV and LPCt, and demonstrate that both signals are continuously updated on a trial-by-trial basis that reflects shifts in temporal decisions.

  4. Late Holocene land- and sea-level changes in the British Isles: implications for future sea-level predictions

    NASA Astrophysics Data System (ADS)

    Gehrels, W. Roland

    2010-07-01

    Four decades of palaeosea-level research in the British Isles have produced a large dataset of age-altitude curves of postglacial sea-level changes. Patterns of late Holocene relative sea-level change reveal the persistent influence of the British/Irish Ice Sheet and the larger Scandinavian Ice Sheet on contemporary rates of vertical land movements. The Shennan and Horton (2002) map of late Holocene relative land movements has been used in future sea-level rise predictions by the United Kingdom Climate Impact Programme in their 2002 assessment (UKCIP02), but has been mistaken for a map of absolute land movements. In this paper, land-motion data for Britain are extracted from the Shennan and Horton (2002) relative sea-level data, and a new map of crustal land movements is presented which also includes Ireland. This procedure takes into account the regional 20th century sea-level rise (˜0.14 m) and the process of ocean syphoning ( i.e. a global fall in sea level of ˜0.3 mm/yr due to GIA induced ocean-floor lowering and re-distribution of ocean mass). The calculated land-motion rates also depend on the global late Holocene ice-equivalent sea-level change, given by the Intergovernmental Panel on Climate Change as 0.0-0.2 mm/yr. Accounting for these processes reduces the misfit between geological observations of vertical land motion and those independently derived from gravity-aligned Global Positioning System (AG GPS) measurements and shows that UKCIP02 has underestimated land subsidence in southern Britain and over-estimated land uplift in Scotland, both by 0.1-0.2 mm/yr. A best fit between GPS and geological estimates of land movements in Britain is achieved for a global long-term eustatic sea-level fall of ca 0.2 mm/yr, suggesting some global ice expansion in the late Holocene, rather than melt. If this is correct, uplift rates in Scotland would be lower and subsidence rates in southern Britain would be faster (by 0.4-0.5 mm/yr) than estimated by UKCIP02. More

  5. A Framework Predicting Water Availability in a Rapidly Growing, Semi-Arid Region under Future Climate Change

    NASA Astrophysics Data System (ADS)

    Han, B.; Benner, S. G.; Glenn, N. F.; Lindquist, E.; Dahal, K. R.; Bolte, J.; Vache, K. B.; Flores, A. N.

    2014-12-01

    Climate change can lead to dramatic variations in hydrologic regime, affecting both surface water and groundwater supply. This effect is most significant in populated semi-arid regions where water availability are highly sensitive to climate-induced outcomes. However, predicting water availability at regional scales, while resolving some of the key internal variability and structure in semi-arid regions is difficult due to the highly non-linearity relationship between rainfall and runoff. In this study, we describe the development of a modeling framework to evaluate future water availability that captures elements of the coupled response of the biophysical system to climate change and human systems. The framework is built under the Envision multi-agent simulation tool, characterizing the spatial patterns of water demand in the semi-arid Treasure Valley area of Southwest Idaho - a rapidly developing socio-ecological system where urban growth is displacing agricultural production. The semi-conceptual HBV model, a population growth and allocation model (Target), a vegetation state and transition model (SSTM), and a statistically based fire disturbance model (SpatialAllocator) are integrated to simulate hydrology, population and land use. Six alternative scenarios are composed by combining two climate change scenarios (RCP4.5 and RCP8.5) with three population growth and allocation scenarios (Status Quo, Managed Growth, and Unconstrained Growth). Five-year calibration and validation performances are assessed with Nash-Sutcliffe efficiency. Irrigation activities are simulated using local water rights. Results show that in all scenarios, annual mean stream flow decreases as the projected rainfall increases because the projected warmer climate also enhances water losses to evapotranspiration. Seasonal maximum stream flow tends to occur earlier than in current conditions due to the earlier peak of snow melting. The aridity index and water deficit generally increase in the

  6. ASAS Centennial Paper: Impact of animal science research on United States goat production and predictions for the future.

    PubMed

    Sahlu, T; Dawson, L J; Gipson, T A; Hart, S P; Merkel, R C; Puchala, R; Wang, Z; Zeng, S; Goetsch, A L

    2009-01-01

    Goat research in the United States has increased but at a rate less than that in production. Research on goat meat includes nutritional quality, packaging, color, sensory characteristics, and preslaughter management. Goat skins have value for leather, but quality of goat leather has not been extensively studied. Research in the production, quality, antibiotic residues, and sensory characteristics of goat milk and its products has aided development of the US dairy goat industry. Limited progress has been made in genetic improvement of milk or meat production. There is need to explore applications of genomics and proteomics and improve consistency in texture and functionality of goat cheeses. New goat meat and milk products are needed to increase demand and meet the diverse tastes of the American public. Despite research progress in control of mohair and cashmere growth, erratic prices and sale of raw materials have contributed to further declines in US production. Innovative and cooperative ventures are needed for profit sharing up to the consumer level. Internal parasites pose the greatest challenge to goat production in humid areas largely because of anthelmintic resistance. Study of alternative controls is required, including immunity enhancement via nutrition, vaccination, pasture management such as co-grazing with cattle, and genetic resistance. Similarly, the importance of health management is increasing related in part to a lack of effective vaccines for many diseases. Nutrition research should address requirements for vitamins and minerals, efficiencies of protein utilization, adjusting energy requirements for nutritional plane, acclimatization, and grazing conditions, feed intake prediction, and management practices for rapid-growth production systems. Moreover, efficient technology transfer methods are needed to disseminate current knowledge and that gained in future research.

  7. Primary air pollutant emissions of coal-fired power plants in China: Current status and future prediction

    NASA Astrophysics Data System (ADS)

    Zhao, Yu; Wang, Shuxiao; Duan, Lei; Lei, Yu; Cao, Pengfei; Hao, Jiming

    To explore the atmospheric emissions of coal-fired power sector in China, a unit-based method was developed based on detailed information of unit type, fuel quality, emission control technology, and geographical location. During 2000-2005, the period when power sector developed fastest in the past 20 years, SO 2, NO x and PM emissions of coal-fired power plants increased by 1.5, 1.7 and 1.2 times, respectively. The SO 2, emission of coal-fired power sector was estimated to be 16 097 kt in 2005, and would decrease to 11 801 kt in 2010, attributed mainly to the wide application of the flue gas desulfurization (FGD) technology. The NO x emission, however, would increase from 6965 kt in 2005 to 9680 kt in 2010, since few NO x control measures would be taken during the five years. The TSP, PM 10, and PM 2.5 emissions in 2005 were estimated to be 2774, 1842 and 994 kt, and the values would be 2540, 1824 and 1090 kt in 2010 respectively. The wet FGD would play an important role on dust emission removal. Through faithful implementation of closing small units and emission control policies in the acid rain and sulfur dioxide control zones, approximately 33%, 6% and 25% of SO 2, NO x, and TSP emissions respectively could be further reduced in 2010. Emissions in 2015 and 2020 of coal-fired power plants were predicted applying scenario analysis. For SO 2 and TSP, optimistic situation can be achieved through reasonable control policies; in contrast, NO x would probably be a more serious issue in future.

  8. Assessing the Effectiveness of Statistical Classification Techniques in Predicting Future Employment of Participants in the Temporary Assistance for Needy Families Program

    ERIC Educational Resources Information Center

    Montoya, Isaac D.

    2008-01-01

    Three classification techniques (Chi-square Automatic Interaction Detection [CHAID], Classification and Regression Tree [CART], and discriminant analysis) were tested to determine their accuracy in predicting Temporary Assistance for Needy Families program recipients' future employment. Technique evaluation was based on proportion of correctly…

  9. Validation and future predictions based on a new Non-Point Source Assessment Toolbox, applied to the Central Valley, California

    NASA Astrophysics Data System (ADS)

    Kourakos, G.; Harter, T.

    2011-12-01

    GIS platform and can be used for efficient scenario evaluations without the need to repeat groundwater model simulations. This method is applied to the southern third part of the Central Valley Aquifer, California, which is an intensively farmed semi-arid area, where the local communities rely heavily on groundwater. To obtain a detailed velocity field, the Central Valley Hydrologic Model (CVHM) developed by the USGS was used as the coarse solution, split and refined into a large number of sub-domains. The CVHM resolution is 1 sq mi, with the stresses applied to the center of each cell. In our refined model the well stresses are spatially distributed to a large number of hypothetical wells, where the pumping rates, well depths and screen lengths are obtained from empirical probability distributions, derived from real data. The NPSAT generates a time-dependent water quality probability distribution, which express the time-dependent probability for a discharge surface (e.g., well) to exceed a threshold level of contamination across at a specific time. The model result is compared against real historic nitrate data, and used for future predictions with different scenario evaluations.

  10. Slow Wave Sleep and Long Duration Spaceflight

    NASA Technical Reports Server (NTRS)

    Orr, M.; Whitmire, A.; Arias, D.; Leveton, L.

    2011-01-01

    To review the literature on slow wave sleep (SWS) in long duration space flight, and place this within the context of the broader literature on SWS particularly with respect to analogous environments such as the Antarctic. Explore how SWS could be measured within the International Space Station (ISS) context with the aim to utilize the ISS as an analog for future extra-orbital long duration missions. Discuss the potential use of emergent minimally intrusive wireless technologies like ZEO for integrated prelaunch, flight, and return to Earth analysis and optimization of SWS (and general quality of sleep).

  11. Meeting Report: FutureTox II: Contemporary Concepts in Toxicology “Pathways to Prediction: In Vitro and In Silico Models for Predictive Toxicology”

    EPA Science Inventory

    The Society of Toxicology (SOT) held avery successful FutureTox II Contemporary Concepts in Toxicology (CCT) Conference in Chapel Hill, North Carolina, on January 16th and 17th, 2014. There were over 291 attendees representing industry, government and academia; the sessions were ...

  12. Fluctuation behaviors of financial return volatility duration

    NASA Astrophysics Data System (ADS)

    Niu, Hongli; Wang, Jun; Lu, Yunfan

    2016-04-01

    It is of significantly crucial to understand the return volatility of financial markets because it helps to quantify the investment risk, optimize the portfolio, and provide a key input of option pricing models. The characteristics of isolated high volatility events above certain threshold in price fluctuations and the distributions of return intervals between these events arouse great interest in financial research. In the present work, we introduce a new concept of daily return volatility duration, which is defined as the shortest passage time when the future volatility intensity is above or below the current volatility intensity (without predefining a threshold). The statistical properties of the daily return volatility durations for seven representative stock indices from the world financial markets are investigated. Some useful and interesting empirical results of these volatility duration series about the probability distributions, memory effects and multifractal properties are obtained. These results also show that the proposed stock volatility series analysis is a meaningful and beneficial trial.

  13. Can Perceptuo-Motor Skills Assessment Outcomes in Young Table Tennis Players (7-11 years) Predict Future Competition Participation and Performance? An Observational Prospective Study.

    PubMed

    Faber, Irene R; Elferink-Gemser, Marije T; Faber, Niels R; Oosterveld, Frits G J; Nijhuis-Van der Sanden, Maria W G

    2016-01-01

    Forecasting future performance in youth table tennis players based on current performance is complex due to, among other things, differences between youth players in growth, development, maturity, context and table tennis experience. Talent development programmes might benefit from an assessment of underlying perceptuo-motor skills for table tennis, which is hypothesized to determine the players' potential concerning the perceptuo-motor domain. The Dutch perceptuo-motor skills assessment intends to measure the perceptuo-motor potential for table tennis in youth players by assessing the underlying skills crucial for developing technical and tactical qualities. Untrained perceptuo-motor tasks are used as these are suggested to represent a player's future potential better than specific sport skills themselves as the latter depend on exposure to the sport itself. This study evaluated the value of the perceptuo-motor skills assessment for a talent developmental programme by evaluating its predictive validity for competition participation and performance in 48 young table tennis players (7-11 years). Players were tested on their perceptuo-motor skills once during a regional talent day, and the subsequent competition results were recorded half-yearly over a period of 2.5 years. Logistic regression analysis showed that test scores did not predict future competition participation (p >0.05). Yet, the Generalized Estimating Equations analysis, including the test items 'aiming at target', 'throwing a ball', and 'eye-hand coordination' in the best fitting model, revealed that the outcomes of the perceptuo-motor skills assessment were significant predictors for future competition results (R2 = 51%). Since the test age influences the perceptuo-motor skills assessment's outcome, another multivariable model was proposed including test age as a covariate (R2 = 53%). This evaluation demonstrates promising prospects for the perceptuo-motor skills assessment to be included in a talent

  14. Can Perceptuo-Motor Skills Assessment Outcomes in Young Table Tennis Players (7-11 years) Predict Future Competition Participation and Performance? An Observational Prospective Study.

    PubMed

    Faber, Irene R; Elferink-Gemser, Marije T; Faber, Niels R; Oosterveld, Frits G J; Nijhuis-Van der Sanden, Maria W G

    2016-01-01

    Forecasting future performance in youth table tennis players based on current performance is complex due to, among other things, differences between youth players in growth, development, maturity, context and table tennis experience. Talent development programmes might benefit from an assessment of underlying perceptuo-motor skills for table tennis, which is hypothesized to determine the players' potential concerning the perceptuo-motor domain. The Dutch perceptuo-motor skills assessment intends to measure the perceptuo-motor potential for table tennis in youth players by assessing the underlying skills crucial for developing technical and tactical qualities. Untrained perceptuo-motor tasks are used as these are suggested to represent a player's future potential better than specific sport skills themselves as the latter depend on exposure to the sport itself. This study evaluated the value of the perceptuo-motor skills assessment for a talent developmental programme by evaluating its predictive validity for competition participation and performance in 48 young table tennis players (7-11 years). Players were tested on their perceptuo-motor skills once during a regional talent day, and the subsequent competition results were recorded half-yearly over a period of 2.5 years. Logistic regression analysis showed that test scores did not predict future competition participation (p >0.05). Yet, the Generalized Estimating Equations analysis, including the test items 'aiming at target', 'throwing a ball', and 'eye-hand coordination' in the best fitting model, revealed that the outcomes of the perceptuo-motor skills assessment were significant predictors for future competition results (R2 = 51%). Since the test age influences the perceptuo-motor skills assessment's outcome, another multivariable model was proposed including test age as a covariate (R2 = 53%). This evaluation demonstrates promising prospects for the perceptuo-motor skills assessment to be included in a talent

  15. Climate-driven range shifts explain the distribution of extant gene pools and predict future loss of unique lineages in a marine brown alga.

    PubMed

    Assis, J; Serrão, E A; Claro, B; Perrin, C; Pearson, G A

    2014-06-01

    The climate-driven dynamics of species ranges is a critical research question in evolutionary ecology. We ask whether present intraspecific diversity is determined by the imprint of past climate. This is an ongoing debate requiring interdisciplinary examination of population genetic pools and persistence patterns across global ranges. Previously, contrasting inferences and predictions have resulted from distinct genomic coverage and/or geographical information. We aim to describe and explain the causes of geographical contrasts in genetic diversity and their consequences for the future baseline of the global genetic pool, by comparing present geographical distribution of genetic diversity and differentiation with predictive species distribution modelling (SDM) during past extremes, present time and future climate scenarios for a brown alga, Fucus vesiculosus. SDM showed that both atmospheric and oceanic variables shape the global distribution of intertidal species, revealing regions of persistence, extinction and expansion during glacial and postglacial periods. These explained the distribution and structure of present genetic diversity, consisting of differentiated genetic pools with maximal diversity in areas of long-term persistence. Most of the present species range comprises postglacial expansion zones and, in contrast to highly dispersive marine organisms, expansions involved only local fronts, leaving distinct genetic pools at rear edges. Besides unravelling a complex phylogeographical history and showing congruence between genetic diversity and persistent distribution zones, supporting the hypothesis of niche conservatism, range shifts and loss of unique genetic diversity at the rear edge were predicted for future climate scenarios, impoverishing the global gene pool. PMID:24766057

  16. An N-terminal truncated carboxypeptidase E splice isoform induces tumor growth and is a biomarker for predicting future metastasis in human cancers

    PubMed Central

    Lee, Terence K.; Murthy, Saravana R.K.; Cawley, Niamh X.; Dhanvantari, Savita; Hewitt, Stephen M.; Lou, Hong; Lau, Tracy; Ma, Stephanie; Huynh, Thanh; Wesley, Robert A.; Ng, Irene O.; Pacak, Karel; Poon, Ronnie T.; Loh, Y. Peng

    2011-01-01

    Metastasis is a major cause of mortality in cancer patients. However, the mechanisms governing the metastatic process remain elusive, and few accurate biomarkers exist for predicting whether metastasis will occur, something that would be invaluable for guiding therapy. We report here that the carboxypeptidase E gene (CPE) is alternatively spliced in human tumors to yield an N-terminal truncated protein (CPE-ΔN) that drives metastasis. mRNA encoding CPE-ΔN was found to be elevated in human metastatic colon, breast, and hepatocellular carcinoma (HCC) cell lines. In HCC cells, cytosolic CPE-ΔN was translocated to the nucleus and interacted with histone deacetylase 1/2 to upregulate expression of the gene encoding neural precursor cell expressed, developmentally downregulated gene 9 (Nedd9) — which has been shown to promote melanoma metastasis. Nedd9 upregulation resulted in enhanced in vitro proliferation and invasion. Quantification of mRNA encoding CPE-ΔN in HCC patient samples predicted intrahepatic metastasis with high sensitivity and specificity, independent of cancer stage. Similarly, high CPE-ΔN mRNA copy numbers in resected pheochromocytomas/paragangliomas (PHEOs/PGLs), rare neuroendocrine tumors, accurately predicted future metastasis or recurrence. Thus, CPE-ΔN induces tumor metastasis and should be investigated as a potentially powerful biomarker for predicting future metastasis and recurrence in HCC and PHEO/PGL patients. PMID:21285511

  17. The influence of coarse-scale environmental features on current and predicted future distributions of narrow-range endemic crayfish populations

    USGS Publications Warehouse

    Dyer, Joseph J.; Brewer, Shannon K.; Worthington, Thomas A.; Bergey, Elizabeth A.

    2013-01-01

    1.A major limitation to effective management of narrow-range crayfish populations is the paucity of information on the spatial distribution of crayfish species and a general understanding of the interacting environmental variables that drive current and future potential distributional patterns. 2.Maximum Entropy Species Distribution Modeling Software (MaxEnt) was used to predict the current and future potential distributions of four endemic crayfish species in the Ouachita Mountains. Current distributions were modelled using climate, geology, soils, land use, landform and flow variables thought to be important to lotic crayfish. Potential changes in the distribution were forecast by using models trained on current conditions and projecting onto the landscape predicted under climate-change scenarios. 3.The modelled distribution of the four species closely resembled the perceived distribution of each species but also predicted populations in streams and catchments where they had not previously been collected. Soils, elevation and winter precipitation and temperature most strongly related to current distributions and represented 6587% of the predictive power of the models. Model accuracy was high for all models, and model predictions of new populations were verified through additional field sampling. 4.Current models created using two spatial resolutions (1 and 4.5km2) showed that fine-resolution data more accurately represented current distributions. For three of the four species, the 1-km2 resolution models resulted in more conservative predictions. However, the modelled distributional extent of Orconectes leptogonopodus was similar regardless of data resolution. Field validations indicated 1-km2 resolution models were more accurate than 4.5-km2 resolution models. 5.Future projected (4.5-km2 resolution models) model distributions indicated three of the four endemic species would have truncated ranges with low occurrence probabilities under the low-emission scenario

  18. Long duration ash probe

    DOEpatents

    Hurley, J.P.; McCollor, D.P.; Selle, S.J.

    1994-07-26

    A long duration ash probe includes a pressure shell connected to a port in a combustor with a sample coupon mounted on a retractable carriage so as to retract the sample coupon within the pressure shell during soot blowing operation of the combustor. A valve mounted at the forward end of the pressure shell is selectively closeable to seal the sample coupon within the shell, and a heating element in the shell is operable to maintain the desired temperature of the sample coupon while retracted within the shell. The carriage is operably mounted on a pair of rails within the shell for longitudinal movement within the shell. A hollow carrier tube connects the hollow cylindrical sample coupon to the carriage, and extends through the carriage and out the rearward end thereof. Air lines are connected to the rearward end of the carrier tube and are operable to permit coolant to pass through the air lines and thence through the carrier tube to the sample coupon so as to cool the sample coupon. 8 figs.

  19. Long duration ash probe

    DOEpatents

    Hurley, John P.; McCollor, Don P.; Selle, Stanley J.

    1994-01-01

    A long duration ash probe includes a pressure shell connected to a port in a combustor with a sample coupon mounted on a retractable carriage so as to retract the sample coupon within the pressure shell during sootblowing operation of the combustor. A valve mounted at the forward end of the pressure shell is selectively closeable to seal the sample coupon within the shell, and a heating element in the shell is operable to maintain the desired temperature of the sample coupon while retracted within the shell. The carriage is operably mounted on a pair of rails within the shell for longitudinal movement within the shell. A hollow carrier tube connects the hollow cylindrical sample coupon to the carriage, and extends through the carriage and out the rearward end thereof. Air lines are connected to the rearward end of the carrier tube and are operable to permit coolant to pass through the air lines and thence through the carrier tube to the sample coupon so as to cool the sample coupon.

  20. Do College Students Make Better Predictions of Their Future Income than Young Adults in the Labor Force?

    ERIC Educational Resources Information Center

    Jerrim, John

    2015-01-01

    Several studies have considered whether American college students' hold "realistic" wage expectations. The consensus is that they do not--overestimation of future earnings is in the region of 40-50%. But is it just college students who overestimate the success they will have in the labor market, or is this something common to all…

  1. A quantitative assessment of the influence of grid resolution on predictions of future-year air quality in North Carolina, USA

    NASA Astrophysics Data System (ADS)

    Arunachalam, Saravanan; Holland, Andrew; Do, Bebhinn; Abraczinskas, Michael

    Increased focus has been directed at fine-scale modeling for improving the ability of air quality modeling systems to capture local phenomena. While numerous studies have investigated model performance at finer resolution (4-5 km), there is relatively limited information available for choosing the optimum grid resolution for predicting future air quality in attainment demonstration studies. We demonstrate an evaluation of the MM5-SMOKE-MAQSIP modeling system for four 8-h ozone episodes in the summers of 1995, 1996 and 1997 in North Carolina using a one-way nested 36/12/4-km application. After establishing acceptable base-case model performance for ozone predictions during each episode, we developed future-year emissions control scenarios for 2007 and 2012, and finally computed relative reduction factors (RRFs) using model outputs from each of the three grid resolutions. Our analyses, based upon qualitative as well as quantitative approaches like the Student's t-test, indicate that RRFs computed at specific monitoring locations—and hence predicted future-year air quality—are not very different between the 4- and 12-km results, while the differences are slightly larger between the 4- and 36-km results. The results imply that grid resolution contributes to a variability of about 1-3 ppb in the projected future-year design values; this variability needs to be incorporated into policy-relevant decision-making. Since this assessment was performed for four different episodes under diverse meteorological, physical and chemical regimes, one can generalize the results from this study. They are also relevant for regional modeling applications that are currently ongoing for studying PM 2.5 nonattainment issues, where the need for annual base-year and future-year simulations for demonstrating attainment may place a large demand on computing resources. Based upon the results from this study, future studies may consider using results from 12-km modeling to address future

  2. Once is too much: Conditioned aversion develops immediately and predicts future cocaine self-administration behavior in rats

    PubMed Central

    Colechio, Elizabeth M.; Imperio, Caesar G.; Grigson, Patricia S.

    2014-01-01

    Rats emit aversive taste reactivity (TR) behavior (i.e., gapes) following intraoral delivery of a cocaine-paired taste cue and greater conditioned aversive TR at the end of training predicts greater drug-seeking and taking. Here, we examined the development of this conditioned aversive TR behavior on a trial by trial basis in an effort to determine when the change in behavior occurs and whether early changes in this behavior can be used to predict later drug-taking. The results show that conditioned aversive TR to a cocaine-paired cue occurs very early in training (i.e., following as few as 1 – 2 taste-drug pairings) and, importantly, that it can be used to predict later drug-seeking and drug-taking in rats. PMID:24773440

  3. Ethnic identity trajectories among Mexican-origin girls during early and middle adolescence: Predicting future psychosocial adjustment.

    PubMed

    Gonzales-Backen, Melinda A; Bámaca-Colbert, Mayra Y; Allen, Kimberly

    2016-05-01

    We examined trajectories of ethnic identity exploration, resolution, and affirmation and their associations with depressive symptoms and self-esteem 3.5 years later among early and middle adolescent Mexican-origin girls (N = 338). Findings indicated that exploration, resolution, and affirmation increased over time for both cohorts. Among early adolescents, growth in exploration was associated with more depressive symptoms during middle adolescence, whereas higher initial levels and greater rates of change of affirmation predicted fewer subsequent depressive symptoms. Among middle adolescents, higher baseline levels of exploration and affirmation predicted fewer depressive symptoms in late adolescence. Higher initial levels and greater change in affirmation predicted higher self-esteem among both cohorts. Findings highlight the developmental and multifaceted quality of ethnic identity and that associations between ethnic identity and adjustment may vary by adolescent developmental stage. (PsycINFO Database Record PMID:26986228

  4. Ethnic identity trajectories among Mexican-origin girls during early and middle adolescence: Predicting future psychosocial adjustment.

    PubMed

    Gonzales-Backen, Melinda A; Bámaca-Colbert, Mayra Y; Allen, Kimberly

    2016-05-01

    We examined trajectories of ethnic identity exploration, resolution, and affirmation and their associations with depressive symptoms and self-esteem 3.5 years later among early and middle adolescent Mexican-origin girls (N = 338). Findings indicated that exploration, resolution, and affirmation increased over time for both cohorts. Among early adolescents, growth in exploration was associated with more depressive symptoms during middle adolescence, whereas higher initial levels and greater rates of change of affirmation predicted fewer subsequent depressive symptoms. Among middle adolescents, higher baseline levels of exploration and affirmation predicted fewer depressive symptoms in late adolescence. Higher initial levels and greater change in affirmation predicted higher self-esteem among both cohorts. Findings highlight the developmental and multifaceted quality of ethnic identity and that associations between ethnic identity and adjustment may vary by adolescent developmental stage. (PsycINFO Database Record

  5. Mechanistic variables can enhance predictive models of endotherm distributions: The American pika under current, past, and future climates

    USGS Publications Warehouse

    Mathewson, Paul; Moyer-Horner, Lucas; Beever, Erik; Briscoe, Natalie; Kearney, Michael T; Yahn, Jeremiah; Porter, Warren P.

    2016-01-01

    How climate constrains species’ distributions through time and space is an important question in the context of conservation planning for climate change. Despite increasing awareness of the need to incorporate mechanism into species distribution models (SDMs), mechanistic modeling of endotherm distributions remains limited in this literature. Using the American pika (Ochotona princeps) as an example, we present a framework whereby mechanism can be incorporated into endotherm SDMs. Pika distribution has repeatedly been found to be constrained by warm temperatures, so we used Niche Mapper, a mechanistic heat-balance model, to convert macroclimate data to pika-specific surface activity time in summer across the western United States. We then explored the difference between using a macroclimate predictor (summer temperature) and using a mechanistic predictor (predicted surface activity time) in SDMs. Both approaches accurately predicted pika presences in current and past climate regimes. However, the activity models predicted 8–19% less habitat loss in response to annual temperature increases of ~3–5 °C predicted in the region by 2070, suggesting that pikas may be able to buffer some climate change effects through behavioral thermoregulation that can be captured by mechanistic modeling. Incorporating mechanism added value to the modeling by providing increased confidence in areas where different modeling approaches agreed and providing a range of outcomes in areas of disagreement. It also provided a more proximate variable relating animal distribution to climate, allowing investigations into how unique habitat characteristics and intraspecific phenotypic variation may allow pikas to exist in areas outside those predicted by generic SDMs. Only a small number of easily obtainable data are required to parameterize this mechanistic model for any endotherm, and its use can improve SDM predictions by explicitly modeling a widely applicable direct physiological effect

  6. Prediction of residual stress and distortion of ferrous and non-ferrous metals: Current status and future developments

    NASA Astrophysics Data System (ADS)

    Denis, Sabine; Archambault, Pierre; Gautier, Elisabeth; Simon, André; Beck, Gérard

    2002-02-01

    The quantitative prediction of the consequences of a heat treatment, in terms of microstructure and hardness, residual stresses and distortions, implies a thorough knowledge of the coupled thermal, metallurgical, and mechanical phenomena that occur during the treatment and their modeling. Recent progress made in that field for metallic alloys (steels, aluminum alloys, and titanium alloys) is reviewed through different examples.

  7. Current and future perspectives on the development, evaluation and application of in silico approaches for predicting toxicity

    EPA Science Inventory

    Safety-related problems continue to be one of the major reasons of attrition in drug development. Non-testing approaches to predict toxicity could form part of the solution. This review provides a perspective of current status of non-testing approaches available for the predictio...

  8. Prediction of Future High Caries Increments for Children in a School Dental Service and in Private Practice.

    ERIC Educational Resources Information Center

    Imfeld, Thomas N.; And Others

    1995-01-01

    A method for predicting high dental caries increments for children, based on previous research, is presented. Three clinical findings were identified as predictors: number of sound primary molars, number of discolored pits/fissures on first permanent molars, and number of buccal and lingual smooth surfaces of first permanent molars with white…

  9. Aerobic vs. anaerobic scope: sibling species of fish indicate that temperature dependence of hypoxia tolerance can predict future survival.

    PubMed

    Sørensen, Christina; Munday, Philip L; Nilsson, Göran E

    2014-03-01

    The temperature dependence of aerobic scope has been suggested to be a major determinant of how marine animals will cope with future rises in environmental temperature. Here, we present data suggesting that in some animals, the temperature dependence of anaerobic scope (i.e., the capacity for surviving severe hypoxia) may determine present-day latitudinal distributions and potential for persistence in a warmer future. As a model for investigating the role of anaerobic scope, we studied two sibling species of coral-dwelling gobies, Gobiodon histrio, and G. erythrospilus, with different latitudinal distributions, but which overlap in equal abundance at Lizard Island (14°40'S) on the Great Barrier Reef. These species did not differ in the temperature dependence of resting oxygen consumption or critical oxygen concentration (the lowest oxygen level where resting oxygen consumption can be maintained). In contrast, the more equatorial species (G. histrio) had a better capacity to endure anaerobic conditions at oxygen levels below the critical oxygen concentration at the high temperatures (32-33 °C) more likely to occur near the equator, or in a warmer future. These results suggest that anaerobic scope, in addition to aerobic scope, could be important in determining the impacts of global warming on some marine animals.

  10. Climatic changes and flooding durations in relation with public health

    NASA Astrophysics Data System (ADS)

    Sandoz, A.; Roumieux, C.; Trouillet, A.

    2009-04-01

    Climatic Changes, and more generaly Global Changes, play a major role in environmental modifications in relation with public health. Modifications of temperatures, precipitations... influence ecological habitats. These habitats can be adapted for some animals species, responsable of certain pandemics. Mosquitoes and birds represent for certain pandemics the essential elements of virus transmission. Abundance of mosquitoes and birds species, is heavily conditioned by flooded areas extent and specific habitats and their variations. The study we carried, has been done in South of France. We show present status of ecological habitats and flooded durations and future previsions. We reach environment impact for certain virus like West Nile virus. This virus affects bird, horse and sometimes man. Presence of the virus is conditioned by different factors, primarily including vector distribution (mosquitoes). We show how it's possible to localise favorable areas for the virus and to predict its future expansion areas. We present maps of the possibilities for future concerning previsions of bioclimatic steps variations. Thanks to the latest remote sensing and spatial analysis techniques. Our maps may be used as precious tools to help decision makers when faced with mosquito related problems.

  11. Long Duration Sorbent Testbed

    NASA Technical Reports Server (NTRS)

    Knox, James; Long, David; Miller, Lee; Thomas, John; Cmarik, Greg; Howard, David

    2016-01-01

    The LDST is a flight experiment demonstration designed to expose current and future candidate carbon dioxide removal system sorbents to an actual crewed space cabin environment to assess and compare sorption working capacity degradation resulting from long term operation. An analysis of sorbent materials returned to earth after approximately one year of operation in the International Space Station's (ISS) Carbon Dioxide Removal Assembly (CDRA) indicated as much as a 70% loss of working capacity of the silica gel desiccant material at the extreme system inlet location, with a gradient of capacity loss down the bed. The primary science objective is to assess the degradation of potential sorbents for exploration class missions and ISS upgrades when operated in a true crewed space cabin environment. A secondary objective is to compare degradation of flight test to a ground test unit with contaminant dosing to determine applicability of ground testing.

  12. Evaluation of Non-Laboratory and Laboratory Prediction Models for Current and Future Diabetes Mellitus: A Cross-Sectional and Retrospective Cohort Study

    PubMed Central

    Hahn, Seokyung; Moon, Min Kyong; Park, Kyong Soo; Cho, Young Min

    2016-01-01

    Background Various diabetes risk scores composed of non-laboratory parameters have been developed, but only a few studies performed cross-validation of these scores and a comparison with laboratory parameters. We evaluated the performance of diabetes risk scores composed of non-laboratory parameters, including a recently published Korean risk score (KRS), and compared them with laboratory parameters. Methods The data of 26,675 individuals who visited the Seoul National University Hospital Healthcare System Gangnam Center for a health screening program were reviewed for cross-sectional validation. The data of 3,029 individuals with a mean of 6.2 years of follow-up were reviewed for longitudinal validation. The KRS and 16 other risk scores were evaluated and compared with a laboratory prediction model developed by logistic regression analysis. Results For the screening of undiagnosed diabetes, the KRS exhibited a sensitivity of 81%, a specificity of 58%, and an area under the receiver operating characteristic curve (AROC) of 0.754. Other scores showed AROCs that ranged from 0.697 to 0.782. For the prediction of future diabetes, the KRS exhibited a sensitivity of 74%, a specificity of 54%, and an AROC of 0.696. Other scores had AROCs ranging from 0.630 to 0.721. The laboratory prediction model composed of fasting plasma glucose and hemoglobin A1c levels showed a significantly higher AROC (0.838, P < 0.001) than the KRS. The addition of the KRS to the laboratory prediction model increased the AROC (0.849, P = 0.016) without a significant improvement in the risk classification (net reclassification index: 4.6%, P = 0.264). Conclusions The non-laboratory risk scores, including KRS, are useful to estimate the risk of undiagnosed diabetes but are inferior to the laboratory parameters for predicting future diabetes. PMID:27214034

  13. Sleep Duration and Obesity in Adults: What Are the Connections?

    PubMed

    Theorell-Haglöw, Jenny; Lindberg, Eva

    2016-09-01

    Collectively, cross-sectional and longitudinal studies on self-reported sleep duration and obesity do not show a clear pattern of association with some showing a negative linear relationship, some showing a U-shaped relationship, and some showing no relationship. Associations between sleep duration and obesity seem stronger in younger adults. Cross-sectional studies using objectively measured sleep duration (actigraphy or polysomnography (PSG)) also show this mixed pattern whereas all longitudinal studies to date using actigraphy or PSG have failed to show a relationship with obesity/weight gain. It is still too early and a too easy solution to suggest that changing the sleep duration will cure the obesity epidemic. Given novel results on emotional stress and poor sleep as mediating factors in the relationship between sleep duration and obesity, detection and management of these should become the target of future clinical efforts as well as future research. PMID:27372108

  14. Predicting future wind power generation and power demand in France using statistical downscaling methods developed for hydropower applications

    NASA Astrophysics Data System (ADS)

    Najac, Julien

    2014-05-01

    For many applications in the energy sector, it is crucial to dispose of downscaling methods that enable to conserve space-time dependences at very fine spatial and temporal scales between variables affecting electricity production and consumption. For climate change impact studies, this is an extremely difficult task, particularly as reliable climate information is usually found at regional and monthly scales at best, although many industry oriented applications need further refined information (hydropower production model, wind energy production model, power demand model, power balance model…). Here we thus propose to investigate the question of how to predict and quantify the influence of climate change on climate-related energies and the energy demand. To do so, statistical downscaling methods originally developed for studying climate change impacts on hydrological cycles in France (and which have been used to compute hydropower production in France), have been applied for predicting wind power generation in France and an air temperature indicator commonly used for predicting power demand in France. We show that those methods provide satisfactory results over the recent past and apply this methodology to several climate model runs from the ENSEMBLES project.

  15. Predicting future US water yield and ecosystem productivity by linking an ecohydrological model to WRF dynamically downscaled climate projections

    NASA Astrophysics Data System (ADS)

    Sun, S.; Sun, G.; Cohen, E.; McNulty, S. G.; Caldwell, P.; Duan, K.; Zhang, Y.

    2015-12-01

    Quantifying the potential impacts of climate change on water yield and ecosystem productivity (i.e., carbon balances) is essential to developing sound watershed restoration plans, and climate change adaptation and mitigation strategies. This study links an ecohydrological model (Water Supply and Stress Index, WaSSI) with WRF (Weather Research and Forecasting Model) dynamically downscaled climate projections of the HadCM3 model under the IPCC SRES A2 emission scenario. We evaluated the future (2031-2060) changes in evapotranspiration (ET), water yield (Q) and gross primary productivity (GPP) from the baseline period of 1979-2007 across the 82 773 watersheds (12 digit Hydrologic Unit Code level) in the conterminous US (CONUS), and evaluated the future annual and monthly changes of hydrology and ecosystem productivity for the 18 Water Resource Regions (WRRs) or 2-digit HUCs. Across the CONUS, the future multi-year means show increases in annual precipitation (P) of 45 mm yr-1 (6 %), 1.8 °C increase in temperature (T), 37 mm yr-1 (7 %) increase in ET, 9 mm yr-1 (3 %) increase in Q, and 106 g C m-2 yr-1 (9 %) increase in GPP. Response to climate change was highly variable across the 82, 773 watersheds, but in general, the majority would see consistent increases in all variables evaluated. Over half of the 82 773 watersheds, mostly found in the northeast and the southern part of the southwest would have an increase in annual Q (>100 mm yr-1 or 20 %). This study provides an integrated method and example for comprehensive assessment of the potential impacts of climate change on watershed water balances and ecosystem productivity at high spatial and temporal resolutions. Results will be useful for policy-makers and land managers in formulating appropriate watershed-specific strategies for sustaining water and carbon sources in the face of climate change.

  16. Strategic aspects of higher education reform to cultivate specialists in diagnostic and biopharma industry as applicable to Predictive, Preventive and Personalized Medicine as the Medicine of the Future.

    PubMed

    Studneva, М; Mandrik, M; Song, Sh; Tretyak, E; Krasnyuk, I; Yamada, Y; Tukavin, A; Ansari, A; Kozlov, I; Reading, C; Ma, Y; Krapfenbauer, K; Svistunov, A; Suchkov, S

    2015-01-01

    Predictive, Preventive and Personalized Medicine as the Medicine of the Future represents an innovative model for advanced healthcare and robust platform for relevant industrial branches for diagnostics and pharmaceutics. However, rapid market penetration of new medicines and technologies demands the implementation of reforms not only in the spheres of biopharmaceutical industries and healthcare, but also in education. Therefore, the problem of the fundamental, modern preparation of specialists in bioengineering and affiliated fields is becoming particularly urgent, and it requires significant revision of training programs of higher education practice into current medical universities. Modernization and integration of widely accepted medical and teaching standards require consolidation of both the natural sciences and medical sciences that may become the conceptual basis for a university medical education. The main goal of this training is not simply to achieve advanced training and expansion of technological skills, but to provide development of novel multifaceted approaches to build academic schools for future generations.

  17. The Southern Megalopolis: Using the Past to Predict the Future of Urban Sprawl in the Southeast U.S

    PubMed Central

    Terando, Adam J.; Costanza, Jennifer; Belyea, Curtis; Dunn, Robert R.; McKerrow, Alexa; Collazo, Jaime A.

    2014-01-01

    The future health of ecosystems is arguably as dependent on urban sprawl as it is on human-caused climatic warming. Urban sprawl strongly impacts the urban ecosystems it creates and the natural and agro-ecosystems that it displaces and fragments. Here, we project urban sprawl changes for the next 50 years for the fast-growing Southeast U.S. Previous studies have focused on modeling population density, but the urban extent is arguably as important as population density per se in terms of its ecological and conservation impacts. We develop simulations using the SLEUTH urban growth model that complement population-driven models but focus on spatial pattern and extent. To better capture the reach of low-density suburban development, we extend the capabilities of SLEUTH by incorporating street-network information. Our simulations point to a future in which the extent of urbanization in the Southeast is projected to increase by 101% to 192%. Our results highlight areas where ecosystem fragmentation is likely, and serve as a benchmark to explore the challenging tradeoffs between ecosystem health, economic growth and cultural desires. PMID:25054329

  18. The southern megalopolis: using the past to predict the future of urban sprawl in the Southeast U.S.

    USGS Publications Warehouse

    Terando, Adam; Costanza, Jennifer; Belyea, Curtis; Dunn, Robert R.; McKerrow, Alexa; Collazo, Jaime

    2014-01-01

    The future health of ecosystems is arguably as dependent on urban sprawl as it is on human-caused climatic warming. Urban sprawl strongly impacts the urban ecosystems it creates and the natural and agro-ecosystems that it displaces and fragments. Here, we project urban sprawl changes for the next 50 years for the fast-growing Southeast U.S. Previous studies have focused on modeling population density, but the urban extent is arguably as important as population density per se in terms of its ecological and conservation impacts. We develop simulations using the SLEUTH urban growth model that complement population-driven models but focus on spatial pattern and extent. To better capture the reach of low-density suburban development, we extend the capabilities of SLEUTH by incorporating street-network information. Our simulations point to a future in which the extent of urbanization in the Southeast is projected to increase by 101% to 192%. Our results highlight areas where ecosystem fragmentation is likely, and serve as a benchmark to explore the challenging tradeoffs between ecosystem health, economic growth and cultural desires.

  19. The southern megalopolis: using the past to predict the future of urban sprawl in the Southeast U.S.

    PubMed

    Terando, Adam J; Costanza, Jennifer; Belyea, Curtis; Dunn, Robert R; McKerrow, Alexa; Collazo, Jaime A

    2014-01-01

    The future health of ecosystems is arguably as dependent on urban sprawl as it is on human-caused climatic warming. Urban sprawl strongly impacts the urban ecosystems it creates and the natural and agro-ecosystems that it displaces and fragments. Here, we project urban sprawl changes for the next 50 years for the fast-growing Southeast U.S. Previous studies have focused on modeling population density, but the urban extent is arguably as important as population density per se in terms of its ecological and conservation impacts. We develop simulations using the SLEUTH urban growth model that complement population-driven models but focus on spatial pattern and extent. To better capture the reach of low-density suburban development, we extend the capabilities of SLEUTH by incorporating street-network information. Our simulations point to a future in which the extent of urbanization in the Southeast is projected to increase by 101% to 192%. Our results highlight areas where ecosystem fragmentation is likely, and serve as a benchmark to explore the challenging tradeoffs between ecosystem health, economic growth and cultural desires. PMID:25054329

  20. Sleep Duration and Waist Circumference in Adults: A Meta-Analysis

    PubMed Central

    Sperry, Susan D.; Scully, Iiona D.; Gramzow, Richard H.; Jorgensen, Randall S.

    2015-01-01

    Background: Previous research has demonstrated a relation between insufficient sleep and overall obesity. Waist circumference (WC), a measure of central adiposity, has been demonstrated to improve prediction of health risk. However, recent research on the relation of insufficient sleep duration to WC in adults has yielded inconsistent findings. Objectives: To assess the magnitude and the consistency of the relation of insufficient sleep and WC Methods: A systematic search of Internet and research databases using Google Scholar, Medline, PubMed, and PsycINFO through July 2013 was conducted. All articles in English with adult human subjects that included measurements of WC and sleep duration were reviewed. A random effects meta-analysis and regression analyses were performed. Heterogeneity and publication bias were checked. Results are expressed as Pearson correlations (r; 95% confidence interval). Results: Of 1,376 articles, 30 met inclusion criteria and 21 studies (22 samples for a total of 56,259 participants) provided sufficient data for meta-analysis. Results showed a significant negative relation between sleep duration and WC (r = −0.10, P < 0.0001) with significant heterogeneity related to sleep comparison method. Potential moderators of the relation between sleep duration and WC were not significant. Funnel plots showed no indication of publication bias. In addition, a fail-safe N calculation indicated that 418 studies with null effects would be necessary to bring the overall mean effect size to a trivial value of r = −0.005. Conclusions: Internationally, cross-sectional studies demonstrate a significant negative relation between sleep duration and waist circumference, indicating shorter sleep durations covary with central adiposity. Future research should include prospective studies. Citation: Sperry SD, Scully ID, Gramzow RH, Jorgensen RS. Sleep duration and waist circumference in adults: a meta-analysis. SLEEP 2015;38(8):1269–1276. PMID:25581918

  1. Can Perceptuo-Motor Skills Assessment Outcomes in Young Table Tennis Players (7–11 years) Predict Future Competition Participation and Performance? An Observational Prospective Study

    PubMed Central

    2016-01-01

    Forecasting future performance in youth table tennis players based on current performance is complex due to, among other things, differences between youth players in growth, development, maturity, context and table tennis experience. Talent development programmes might benefit from an assessment of underlying perceptuo-motor skills for table tennis, which is hypothesized to determine the players’ potential concerning the perceptuo-motor domain. The Dutch perceptuo-motor skills assessment intends to measure the perceptuo-motor potential for table tennis in youth players by assessing the underlying skills crucial for developing technical and tactical qualities. Untrained perceptuo-motor tasks are used as these are suggested to represent a player’s future potential better than specific sport skills themselves as the latter depend on exposure to the sport itself. This study evaluated the value of the perceptuo-motor skills assessment for a talent developmental programme by evaluating its predictive validity for competition participation and performance in 48 young table tennis players (7–11 years). Players were tested on their perceptuo-motor skills once during a regional talent day, and the subsequent competition results were recorded half-yearly over a period of 2.5 years. Logistic regression analysis showed that test scores did not predict future competition participation (p >0.05). Yet, the Generalized Estimating Equations analysis, including the test items ‘aiming at target’, ‘throwing a ball’, and ‘eye-hand coordination’ in the best fitting model, revealed that the outcomes of the perceptuo-motor skills assessment were significant predictors for future competition results (R2 = 51%). Since the test age influences the perceptuo-motor skills assessment’s outcome, another multivariable model was proposed including test age as a covariate (R2 = 53%). This evaluation demonstrates promising prospects for the perceptuo-motor skills assessment to be

  2. Single-Event Effects Ground Testing and On-Orbit Rate Prediction Methods: The Past, Present and Future

    NASA Technical Reports Server (NTRS)

    Reed, Robert A.; Kinnison, Jim; Pickel, Jim; Buchner, Stephen; Marshall, Paul W.; Kniffin, Scott; LaBel, Kenneth A.

    2003-01-01

    Over the past 27 years, or so, increased concern over single event effects in spacecraft systems has resulted in research, development and engineering activities centered around a better understanding of the space radiation environment, single event effects predictive methods, ground test protocols, and test facility developments. This research has led to fairly well developed methods for assessing the impact of the space radiation environment on systems that contain SEE sensitive devices and the development of mitigation strategies either at the system or device level.

  3. Summer rains and dry seasons in the upper Blue Nile Basin: the predictability of half a century of past and future spatiotemporal patterns.

    PubMed

    Mellander, Per-Erik; Gebrehiwot, Solomon G; Gärdenäs, Annemieke I; Bewket, Woldeamlak; Bishop, Kevin

    2013-01-01

    During the last 100 years the Ethiopian upper Blue Nile Basin (BNB) has undergone major changes in land use, and is now potentially facing changes in climate. Rainfall over BNB supplies over two-thirds of the water to the Nile and supports a large local population living mainly on subsistence agriculture. Regional food security is sensitive to both the amount and timing of rain and is already an important political challenge that will be further complicated if scenarios of climate change are realized. In this study a simple spatial model of the timing and duration of summer rains (Kiremt) and dry season (Bega), and annual rain over the upper BNB was established from observed data between 1952 and 2004. The model was used to explore potential impacts of climate change on these rains, using a down-scaled ECHAM5/MP1-OM scenario between 2050 and 2100. Over the observed period the amount, onset and duration of Kiremt rains and rain-free Bega days have exhibited a consistent spatial pattern. The spatially averaged annual rainfall was 1490 mm of which 93% was Kiremt rain. The average Kiremt rain and number of rainy days was higher in the southwest (322 days) and decreased towards the north (136 days). Under the 2050-2100 scenario, the annual mean rainfall is predicted to increase by 6% and maintain the same spatial pattern as in the past. A larger change in annual rainfall is expected in the southwest (ca. +130 mm) with a gradually smaller change towards the north (ca. +70 mm). Results highlight the need to account for the characteristic spatiotemporal zonation when planning water management and climate adaptation within the upper BNB. The presented simple spatial resolved models of the presence of Kiremt and annual total rainfall could be used as a baseline for such long-term planning.

  4. The Past is a Guide to the Future? Comparing Middle Pliocene Vegetation With Predicted Biome Distributions for the 21st Century

    NASA Astrophysics Data System (ADS)

    Salzmann, U.; Haywood, A. M.; Lunt, D. J.

    2007-12-01

    The Middle Pliocene geological stage, ca. 3.6 to 2.6 million years ago, represents an interval of time in which Earth experienced greater global warmth. In order to evaluate the degree to which the Middle Pliocene can be used as a 'test bed' for future warming, we compare a newly developed Middle Pliocene biome reconstruction with simulated global biome distributions for the mid and late 21st century. The Middle Pliocene biome reconstruction is based on an internally consistent dataset of 202 palaeobotanical sites and predictions from a state-of-the-art coupled climate-vegetation model (HadAM3-TRIFFID-BIOME4), the output of which is used to provide biome estimates for data sparse regions. For the Middle Pliocene, both the vegetation reconstruction and model predictions indicate a generally warmer and moister climate than today. Evergreen taiga as well as temperate forest and grasslands shifted northward resulting in a significantly reduced area of tundra vegetation. Warm-temperate forests (with subtropical taxa) spread in Middle and Eastern Europe and tropical savannas and woodland expanded in Africa and Australia at the expense of deserts. Middle Pliocene biome distributions are compared (globally and on a regional scale) with two new predictions of equilibrium vegetation conditions for the early 21st Century (around 2020, ~ 400ppmv CO2 in the atmosphere) and end of the 21st Century (~ 560ppmv CO2 in the atmosphere), to examine similarities and discrepancies in biome distributions. Our comparison between reconstruction and prediction will contribute to a better understanding of the past and future impact of increased atmospheric CO2 on vegetation and climate.

  5. Predicting the Future: Opportunities and Challenges for the Chemical Industry to Apply 21st-Century Toxicity Testing

    PubMed Central

    Settivari, Raja S; Ball, Nicholas; Murphy, Lynea; Rasoulpour, Reza; Boverhof, Darrell R; Carney, Edward W

    2015-01-01

    Interest in applying 21st-century toxicity testing tools for safety assessment of industrial chemicals is growing. Whereas conventional toxicology uses mainly animal-based, descriptive methods, a paradigm shift is emerging in which computational approaches, systems biology, high-throughput in vitro toxicity assays, and high-throughput exposure assessments are beginning to be applied to mechanism-based risk assessments in a time- and resource-efficient fashion. Here we describe recent advances in predictive safety assessment, with a focus on their strategic application to meet the changing demands of the chemical industry and its stakeholders. The opportunities to apply these new approaches is extensive and include screening of new chemicals, informing the design of safer and more sustainable chemical alternatives, filling information gaps on data-poor chemicals already in commerce, strengthening read-across methodology for categories of chemicals sharing similar modes of action, and optimizing the design of reduced-risk product formulations. Finally, we discuss how these predictive approaches dovetail with in vivo integrated testing strategies within repeated-dose regulatory toxicity studies, which are in line with 3Rs principles to refine, reduce, and replace animal testing. Strategic application of these tools is the foundation for informed and efficient safety assessment testing strategies that can be applied at all stages of the product-development process. PMID:25836969

  6. Observational consistency and future predictions for a 3.5 keV ALP to photon line

    SciTech Connect

    Alvarez, Pedro D.; Conlon, Joseph P.; Day, Francesca V.; Marsh, M.C. David; Rummel, Markus

    2015-04-09

    Motivated by the possibility of explaining the 3.5 keV line through dark matter decaying to axion-like particles that subsequently convert to photons, we study ALP-photon conversion for sightlines passing within 50 pc of the galactic centre. Conversion depends on the galactic centre magnetic field which is highly uncertain. For fields at low or mid-range of observational estimates (10–100 μG), no observable signal is possible. For fields at the high range of observational estimates (a pervasive poloidal mG field over the central 150 pc) it is possible to generate sufficient signal to explain recent observations of a 3.5 keV line in the galactic centre. In this scenario, the galactic centre line signal comes predominantly from the region with z>20pc, reconciling the results from the Chandra and XMM-Newton X-ray telescopes. The dark matter to ALP to photon scenario also naturally predicts the non-observation of the 3.5 keV line in stacked galaxy spectra. We further explore predictions for the line flux in galaxies and suggest a set of galaxies that is optimised for observing the 3.5 keV line in this model.

  7. Invited commentary: use of arsenical skin lesions to predict risk of internal cancer: implications for prevention and future research.

    PubMed

    Ahsan, Habibul; Steinmaus, Craig

    2013-02-01

    Arsenic exposure affects millions of people worldwide, causing substantial mortality and morbidity from cancers and cardiovascular and respiratory diseases. An article in the current issue (Am J Epidemiol. 2013;177(3):202-212) reports that classic dermatological manifestations, typically associated with chronic arsenic exposure, are predictive of internal cancers among Taiwanese decades after the cessation of exposure. Specifically, the risk of lung and urothelial cancers was elevated, which was evident regardless of arsenic dose, smoking, and age. There was also an unexpected elevated risk of prostate cancer. Despite some methodological limitations, these findings underscore the need for assessing whether dermatological manifestations are also predictive of cardiovascular, respiratory, and other arsenic-related, long-term health consequences. Given the emerging evidence of arsenic exposure from dietary sources beyond contaminated drinking water and occupational and environmental settings, and also because the vast majority of diseases and deaths among exposed populations do not show classic dermatological manifestations, larger and more comprehensive investigations of the health effects of arsenic exposure, especially at lower doses, are needed. In parallel, because the risk of known arsenic-related health outcomes remains elevated decades after exposure cessation, research toward identification of early clinical and biological markers of long-term risk as well as avenues for prevention, in addition to policy actions for exposure reductions, is warranted. PMID:23299696

  8. Invited Commentary: Use of Arsenical Skin Lesions to Predict Risk of Internal Cancer—Implications for Prevention and Future Research

    PubMed Central

    Ahsan, Habibul; Steinmaus, Craig

    2013-01-01

    Arsenic exposure affects millions of people worldwide, causing substantial mortality and morbidity from cancers and cardiovascular and respiratory diseases. An article in the current issue (Am J Epidemiol. 2013;177(3):202–212) reports that classic dermatological manifestations, typically associated with chronic arsenic exposure, are predictive of internal cancers among Taiwanese decades after the cessation of exposure. Specifically, the risk of lung and urothelial cancers was elevated, which was evident regardless of arsenic dose, smoking, and age. There was also an unexpected elevated risk of prostate cancer. Despite some methodological limitations, these findings underscore the need for assessing whether dermatological manifestations are also predictive of cardiovascular, respiratory, and other arsenic-related, long-term health consequences. Given the emerging evidence of arsenic exposure from dietary sources beyond contaminated drinking water and occupational and environmental settings, and also because the vast majority of diseases and deaths among exposed populations do not show classic dermatological manifestations, larger and more comprehensive investigations of the health effects of arsenic exposure, especially at lower doses, are needed. In parallel, because the risk of known arsenic-related health outcomes remains elevated decades after exposure cessation, research toward identification of early clinical and biological markers of long-term risk as well as avenues for prevention, in addition to policy actions for exposure reductions, is warranted. PMID:23299696

  9. Evaluation of an ARPS-based canopy flow modeling system for use in future operational smoke prediction efforts

    NASA Astrophysics Data System (ADS)

    Kiefer, M. T.; Zhong, S.; Heilman, W. E.; Charney, J. J.; Bian, X.

    2013-06-01

    Efforts to develop a canopy flow modeling system based on the Advanced Regional Prediction System (ARPS) model are discussed. The standard version of ARPS is modified to account for the effect of drag forces on mean and turbulent flow through a vegetation canopy, via production and sink terms in the momentum and subgrid-scale turbulent kinetic energy (TKE) equations. Additionally, a downward decaying net radiation profile inside the canopy is used to account for the attenuation of net radiation by vegetation elements. As a critical step in the model development process, simulations performed with the new canopy model, termed ARPS-CANOPY, are examined and compared to observations from the Canopy Horizontal Array Turbulence Study (CHATS) experiment. Comparisons of mean and turbulent flow properties in a statistically homogeneous atmosphere are presented for two cases, one when the trees are dormant without leaves and another when the trees are full of mature leaves. The model is shown to reproduce the shape of the vertical profiles of mean wind, temperature, and TKE observed during the CHATS experiment, with errors generally smaller in the afternoon and in the case with stronger mean flow. Sensitivity experiments with relatively coarse (90 m) horizontal grid spacing retain the overall mean profile shapes and diurnal trends seen in the finer-resolution simulations. The work described herein is part of a larger effort to develop predictive tools for close-range (on the order of 1 km from the source) smoke dispersion from low-intensity fires within forested areas.

  10. Invited commentary: use of arsenical skin lesions to predict risk of internal cancer: implications for prevention and future research.

    PubMed

    Ahsan, Habibul; Steinmaus, Craig

    2013-02-01

    Arsenic exposure affects millions of people worldwide, causing substantial mortality and morbidity from cancers and cardiovascular and respiratory diseases. An article in the current issue (Am J Epidemiol. 2013;177(3):202-212) reports that classic dermatological manifestations, typically associated with chronic arsenic exposure, are predictive of internal cancers among Taiwanese decades after the cessation of exposure. Specifically, the risk of lung and urothelial cancers was elevated, which was evident regardless of arsenic dose, smoking, and age. There was also an unexpected elevated risk of prostate cancer. Despite some methodological limitations, these findings underscore the need for assessing whether dermatological manifestations are also predictive of cardiovascular, respiratory, and other arsenic-related, long-term health consequences. Given the emerging evidence of arsenic exposure from dietary sources beyond contaminated drinking water and occupational and environmental settings, and also because the vast majority of diseases and deaths among exposed populations do not show classic dermatological manifestations, larger and more comprehensive investigations of the health effects of arsenic exposure, especially at lower doses, are needed. In parallel, because the risk of known arsenic-related health outcomes remains elevated decades after exposure cessation, research toward identification of early clinical and biological markers of long-term risk as well as avenues for prevention, in addition to policy actions for exposure reductions, is warranted.

  11. Predicting the future: opportunities and challenges for the chemical industry to apply 21st-century toxicity testing.

    PubMed

    Settivari, Raja S; Ball, Nicholas; Murphy, Lynea; Rasoulpour, Reza; Boverhof, Darrell R; Carney, Edward W

    2015-03-01

    Interest in applying 21st-century toxicity testing tools for safety assessment of industrial chemicals is growing. Whereas conventional toxicology uses mainly animal-based, descriptive methods, a paradigm shift is emerging in which computational approaches, systems biology, high-throughput in vitro toxicity assays, and high-throughput exposure assessments are beginning to be applied to mechanism-based risk assessments in a time- and resource-efficient fashion. Here we describe recent advances in predictive safety assessment, with a focus on their strategic application to meet the changing demands of the chemical industry and its stakeholders. The opportunities to apply these new approaches is extensive and include screening of new chemicals, informing the design of safer and more sustainable chemical alternatives, filling information gaps on data-poor chemicals already in commerce, strengthening read-across methodology for categories of chemicals sharing similar modes of action, and optimizing the design of reduced-risk product formulations. Finally, we discuss how these predictive approaches dovetail with in vivo integrated testing strategies within repeated-dose regulatory toxicity studies, which are in line with 3Rs principles to refine, reduce, and replace animal testing. Strategic application of these tools is the foundation for informed and efficient safety assessment testing strategies that can be applied at all stages of the product-development process.

  12. Can the Theory of Planned Behavior predict dietary intention and future dieting in an ethnically diverse sample of overweight and obese veterans attending medical clinics?

    PubMed

    Lash, Denise N; Smith, Jane Ellen; Rinehart, Jenny K

    2016-04-01

    Obesity has become a world-wide epidemic; in the United States (U.S.) approximately two-thirds of adults are classified as overweight or obese. Military veterans' numbers are even higher, with 77% of retired or discharged U.S. veterans falling in these weight categories. One of the most common methods of changing one's weight is through dieting, yet little is known regarding the factors that facilitate successful dieting behavior. The current investigation tested the Theory of Planned Behavior's (TPB) ability to predict dietary intention and future dieting in a sample of 84 overweight and obese patients attending medical clinics at a Veterans Affairs Hospital in the southwestern part of the U.S. Participants primarily were male (92%) and ethnic/racial minorities (58%). Perceived need and anticipated regret were added to the standard TPB model. While the TPB predicted dietary intention, it did not significantly account for improved dietary behaviors. Anticipated regret significantly enhanced the basic TPB's ability to predict intention to diet, while perceived need did not. These findings highlight the difficulty in predicting sustained change in a complex behavior such as dieting to lose weight. The need for more work with older, overweight/obese medical patients attending veterans' facilities is stressed, as is the need for such work with male patients and ethnic minorities in particular. PMID:26792774

  13. Predicting future weight status from measurements made in early childhood: a novel longitudinal approach applied to Millennium Cohort Study data

    PubMed Central

    Mead, E; Batterham, A M; Atkinson, G; Ells, L J

    2016-01-01

    Background/Objective: There are reports that childhood obesity tracks into later life. Nevertheless, some tracking statistics such as correlations do not quantify individual agreement, whereas others such as diagnostic test statistics can be difficult to translate into practice. We aimed to employ a novel analytic approach, based on ordinal logistic regression, to predict weight status of 11-year-old children from measurements at age 5 years. Subjects/Methods: The UK 1990 growth references were used to generate clinical weight status categories of 12 076 children enrolled in the Millennium Cohort Study. Using ordinal regression, we derived the predicted probability (percent chances) of 11-year-old children becoming underweight, normal weight, overweight, obese and severely obese from their weight status category at age 5 years. Results: The chances of becoming obese (including severely obese) at age 11 years were 5.7% (95% confidence interval: 5.2 to 6.2%) for a normal-weight 5-year-old child and 32.3% (29.8 to 34.8%) for an overweight 5-year-old child. An obese 5-year-old child had a 68.1% (63.8 to 72.5%) chance of remaining obese at 11 years. Severely obese 5-year-old children had a 50.3% (43.1 to 57.4%) chance of remaining severely obese. There were no substantial differences between sexes. Nondeprived obese 5-year-old boys had a lower probability of remaining obese than deprived obese boys: −21.8% (−40.4 to −3.2%). This association was not observed in obese 5-year-old girls, in whom the nondeprived group had a probability of remaining obese 7% higher (−15.2 to 29.2%). The sex difference in this interaction of deprivation and baseline weight status was therefore −28.8% (−59.3 to 1.6%). Conclusions: We have demonstrated that ordinal logistic regression can be an informative approach to predict the chances of a child changing to, or from, an unhealthy weight status. This approach is easy to interpret and could be applied to any longitudinal data set

  14. Relating spatial perspective taking to the perception of other's affordances: providing a foundation for predicting the future behavior of others

    PubMed Central

    Creem-Regehr, Sarah H.; Gagnon, Kyle T.; Geuss, Michael N.; Stefanucci, Jeanine K.

    2013-01-01

    Understanding what another agent can see relates functionally to the understanding of what they can do. We propose that spatial perspective taking and perceiving other's affordances, while two separate spatial processes, together share the common social function of predicting the behavior of others. Perceiving the action capabilities of others allows for a common understanding of how agents may act together. The ability to take another's perspective focuses an understanding of action goals so that more precise understanding of intentions may result. This review presents an analysis of these complementary abilities, both in terms of the frames of reference and the proposed sensorimotor mechanisms involved. Together, we argue for the importance of reconsidering the role of basic spatial processes to explain more complex behaviors. PMID:24068992

  15. Understanding the Effects of Sampling on Healthcare Risk Modeling for the Prediction of Future High-Cost Patients

    NASA Astrophysics Data System (ADS)

    Moturu, Sai T.; Liu, Huan; Johnson, William G.

    Rapidly rising healthcare costs represent one of the major issues plaguing the healthcare system. Data from the Arizona Health Care Cost Containment System, Arizona's Medicaid program provide a unique opportunity to exploit state-of-the-art machine learning and data mining algorithms to analyze data and provide actionable findings that can aid cost containment. Our work addresses specific challenges in this real-life healthcare application with respect to data imbalance in the process of building predictive risk models for forecasting high-cost patients. We survey the literature and propose novel data mining approaches customized for this compelling application with specific focus on non-random sampling. Our empirical study indicates that the proposed approach is highly effective and can benefit further research on cost containment in the healthcare industry.

  16. Model Atmospheres for Massive Gas Giants with Thick Clouds: Application to the HR 8799 Planets and Predictions for Future Detections

    NASA Astrophysics Data System (ADS)

    Madhusudhan, Nikku; Burrows, Adam; Currie, Thayne

    2011-08-01

    We have generated an extensive new suite of massive giant planet atmosphere models and used it to obtain fits to photometric data for the planets HR 8799b, c, and d. We consider a wide range of cloudy and cloud-free models. The cloudy models incorporate different geometrical and optical thicknesses, modal particle sizes, and metallicities. For each planet and set of cloud parameters, we explore grids in gravity and effective temperature, with which we determine constraints on the planet's mass and age. Our new models yield statistically significant fits to the data, and conclusively confirm that the HR 8799 planets have much thicker clouds than those required to explain data for typical L and T dwarfs. Both models with (1) physically thick forsterite clouds and a 60 μm modal particle size and (2) clouds made of 1 μm sized pure iron droplets and 1% supersaturation fit the data. Current data are insufficient to accurately constrain the microscopic cloud properties, such as composition and particle size. The range of best-estimated masses for HR 8799b, HR 8799c, and HR 8799d conservatively span 2-12 MJ , 6-13 MJ , and 3-11 MJ , respectively, and imply coeval ages between ~10 and ~150 Myr, consistent with previously reported stellar ages. The best-fit temperatures and gravities are slightly lower than values obtained by Currie et al. using even thicker cloud models. Finally, we use these models to predict the near-to-mid-IR colors of soon-to-be imaged planets. Our models predict that planet-mass objects follow a locus in some near-to-mid-IR color-magnitude diagrams that is clearly separable from the standard L/T dwarf locus for field brown dwarfs.

  17. MODEL ATMOSPHERES FOR MASSIVE GAS GIANTS WITH THICK CLOUDS: APPLICATION TO THE HR 8799 PLANETS AND PREDICTIONS FOR FUTURE DETECTIONS

    SciTech Connect

    Madhusudhan, Nikku; Burrows, Adam; Currie, Thayne E-mail: burrows@astro.princeton.edu

    2011-08-10

    We have generated an extensive new suite of massive giant planet atmosphere models and used it to obtain fits to photometric data for the planets HR 8799b, c, and d. We consider a wide range of cloudy and cloud-free models. The cloudy models incorporate different geometrical and optical thicknesses, modal particle sizes, and metallicities. For each planet and set of cloud parameters, we explore grids in gravity and effective temperature, with which we determine constraints on the planet's mass and age. Our new models yield statistically significant fits to the data, and conclusively confirm that the HR 8799 planets have much thicker clouds than those required to explain data for typical L and T dwarfs. Both models with (1) physically thick forsterite clouds and a 60 {mu}m modal particle size and (2) clouds made of 1 {mu}m sized pure iron droplets and 1% supersaturation fit the data. Current data are insufficient to accurately constrain the microscopic cloud properties, such as composition and particle size. The range of best-estimated masses for HR 8799b, HR 8799c, and HR 8799d conservatively span 2-12 M{sub J} , 6-13 M{sub J} , and 3-11 M{sub J} , respectively, and imply coeval ages between {approx}10 and {approx}150 Myr, consistent with previously reported stellar ages. The best-fit temperatures and gravities are slightly lower than values obtained by Currie et al. using even thicker cloud models. Finally, we use these models to predict the near-to-mid-IR colors of soon-to-be imaged planets. Our models predict that planet-mass objects follow a locus in some near-to-mid-IR color-magnitude diagrams that is clearly separable from the standard L/T dwarf locus for field brown dwarfs.

  18. Predicting population survival under future climate change: density dependence, drought and extraction in an insular bighorn sheep.

    PubMed

    Colchero, Fernando; Medellin, Rodrigo A; Clark, James S; Lee, Raymond; Katul, Gabriel G

    2009-05-01

    1. Our understanding of the interplay between density dependence, climatic perturbations, and conservation practices on the dynamics of small populations is still limited. This can result in uninformed strategies that put endangered populations at risk. Moreover, the data available for a large number of populations in such circumstances are sparse and mined with missing data. Under the current climate change scenarios, it is essential to develop appropriate inferential methods that can make use of such data sets. 2. We studied a population of desert bighorn sheep introduced to Tiburon Island, Mexico in 1975 and subjected to irregular extractions for the last 10 years. The unique attributes of this population are absence of predation and disease, thereby permitting us to explore the combined effect of density dependence, environmental variability and extraction in a 'controlled setting.' Using a combination of nonlinear discrete models with long-term field data, we constructed three basic Bayesian state space models with increasing density dependence (DD), and the same three models with the addition of summer drought effects. 3. We subsequently used Monte Carlo simulations to evaluate the combined effect of drought, DD, and increasing extractions on the probability of population survival under two climate change scenarios (based on the Intergovernmental Panel on Climate Change predictions): (i) increase in drought variability; and (ii) increase in mean drought severity. 4. The population grew from 16 individuals introduced in 1975 to close to 700 by 1993. Our results show that the population's growth was dominated by DD, with drought having a secondary but still relevant effect on its dynamics. 5. Our predictions suggest that under climate change scenario (i), extraction dominates the fate of the population, while for scenario (ii), an increase in mean drought affects the population's probability of survival in an equivalent magnitude as extractions. Thus, for the

  19. The past is a guide to the future? Comparing Middle Pliocene vegetation with predicted biome distributions for the twenty-first century.

    PubMed

    Salzmann, U; Haywood, A M; Lunt, D J

    2009-01-13

    During the Middle Pliocene, the Earth experienced greater global warmth compared with today, coupled with higher atmospheric CO2 concentrations. To determine the extent to which the Middle Pliocene can be used as a 'test bed' for future warming, we compare data and model-based Middle Pliocene vegetation with simulated global biome distributions for the mid- and late twenty-first century. The best agreement is found when a Middle Pliocene biome reconstruction is compared with a future scenario using 560 ppmv atmospheric CO2. In accordance with palaeobotanical data, all model simulations indicate a generally warmer and wetter climate, resulting in a northward shift of the taiga-tundra boundary and a spread of tropical savannah and woodland in Africa and Australia at the expense of deserts. Our data-model comparison reveals differences in the distribution of polar vegetation, which indicate that the high latitudes during the Middle Pliocene were still warmer than its predicted modern analogue by several degrees. However, our future scenarios do not consider multipliers associated with 'long-term' climate sensitivity. Changes in global temperature, and thus biome distributions, at higher atmospheric CO2 levels will not have reached an equilibrium state (as is the case for the Middle Pliocene) by the end of this century.

  20. Prediction of future methane emission from irrigated rice paddies in central Thailand under different water management practices.

    PubMed

    Minamikawa, Kazunori; Fumoto, Tamon; Iizumi, Toshichika; Cha-Un, Nittaya; Pimple, Uday; Nishimori, Motoki; Ishigooka, Yasushi; Kuwagata, Tsuneo

    2016-10-01

    There is concern about positive feedbacks between climate change and methane (CH4) emission from rice paddies. However, appropriate water management may mitigate the problem. We tested this hypothesis at six field sites in central Thailand, where the irrigated area is rapidly increasing. We used DNDC-Rice, a process-based biogeochemistry model adjusted based on rice growth data at each site to simulate CH4 emission from a rice-rice double cropping system from 2001 to 2060. Future climate change scenarios consisting of four representative concentration pathways (RCPs) and seven global climate models were generated by statistical downscaling. We then simulated CH4 emission in three water management practices: continuous flooding (CF), single aeration (SA), and multiple aeration (MA). The adjusted model reproduced the observed rice yield and CH4 emission well at each site. The simulated CH4 emissions in CF from 2051 to 2060 were 5.3 to 7.8%, 9.6 to 16.0%, 7.3 to 18.0%, and 13.6 to 19.0% higher than those from 2001 to 2010 in RCPs 2.6, 4.5, 6.0, and 8.5, respectively, at the six sites. Regionally, SA and MA mitigated CH4 emission by 21.9 to 22.9% and 53.5 to 55.2%, respectively, relative to CF among the four RCPs. These mitigation potentials by SA and MA were comparable to those from 2001 to 2010. Our results indicate that climate change in the next several decades will not attenuate the quantitative effect of water management practices on mitigating CH4 emission from irrigated rice paddies in central Thailand.

  1. Climate change scenarios experiments predict a future reduction in small pelagic fish recruitment in the Humboldt Current system.

    PubMed

    Brochier, Timothée; Echevin, Vincent; Tam, Jorge; Chaigneau, Alexis; Goubanova, Katerina; Bertrand, Arnaud

    2013-06-01

    The Humboldt Current System (HCS) sustains the world's largest small pelagic fishery. While a cooling of this system has been observed during recent decades, there is debate about the potential impacts of rising atmospheric CO2 concentrations on upwelling dynamics and productivity. Recent studies suggest that under increased atmospheric CO2 scenarios the oceanic stratification may strongly increase and upwelling-favorable winds may remain nearly constant off Peru and increase off Chile. Here we investigate the impact of such climatic conditions on egg and larval dispersal phases, a key stage of small pelagic fish reproduction. We used larval retention rate in a predefined nursery area to provide a proxy for the recruitment level. Numerical experiments are based on hydrodynamics downscaled to the HCS from global simulations forced by pre-industrial (PI), 2 × CO2 and 4 × CO2 scenarios. A biogeochemical model is applied to the PI and 4 × CO2 scenarios to define a time-variable nursery area where larval survival is optimum. We test two distinct values of the oxycline depth that limits larval vertical distribution: One corresponding to the present-day situation and the other corresponding to a shallower oxycline potentially produced by climate change. It appeared that larval retention over the continental shelf increases with enhanced stratification due to regional warming. However, this increase in retention is largely compensated for by a decrease of the nursery area and the shoaling of the oxycline. The underlying dynamics are explained by a combination of stratification effects and mesoscale activity changes. Our results therefore show that future climate change may significantly reduce fish capacity in the HCS with strong ecological, economic and social consequences. PMID:23554213

  2. Prediction of future methane emission from irrigated rice paddies in central Thailand under different water management practices.

    PubMed

    Minamikawa, Kazunori; Fumoto, Tamon; Iizumi, Toshichika; Cha-Un, Nittaya; Pimple, Uday; Nishimori, Motoki; Ishigooka, Yasushi; Kuwagata, Tsuneo

    2016-10-01

    There is concern about positive feedbacks between climate change and methane (CH4) emission from rice paddies. However, appropriate water management may mitigate the problem. We tested this hypothesis at six field sites in central Thailand, where the irrigated area is rapidly increasing. We used DNDC-Rice, a process-based biogeochemistry model adjusted based on rice growth data at each site to simulate CH4 emission from a rice-rice double cropping system from 2001 to 2060. Future climate change scenarios consisting of four representative concentration pathways (RCPs) and seven global climate models were generated by statistical downscaling. We then simulated CH4 emission in three water management practices: continuous flooding (CF), single aeration (SA), and multiple aeration (MA). The adjusted model reproduced the observed rice yield and CH4 emission well at each site. The simulated CH4 emissions in CF from 2051 to 2060 were 5.3 to 7.8%, 9.6 to 16.0%, 7.3 to 18.0%, and 13.6 to 19.0% higher than those from 2001 to 2010 in RCPs 2.6, 4.5, 6.0, and 8.5, respectively, at the six sites. Regionally, SA and MA mitigated CH4 emission by 21.9 to 22.9% and 53.5 to 55.2%, respectively, relative to CF among the four RCPs. These mitigation potentials by SA and MA were comparable to those from 2001 to 2010. Our results indicate that climate change in the next several decades will not attenuate the quantitative effect of water management practices on mitigating CH4 emission from irrigated rice paddies in central Thailand. PMID:27239710

  3. Does visual working memory represent the predicted locations of future target objects? An event-related brain potential study.

    PubMed

    Grubert, Anna; Eimer, Martin

    2015-11-11

    During the maintenance of task-relevant objects in visual working memory, the contralateral delay activity (CDA) is elicited over the hemisphere opposite to the visual field where these objects are presented. The presence of this lateralised CDA component demonstrates the existence of position-dependent object representations in working memory. We employed a change detection task to investigate whether the represented object locations in visual working memory are shifted in preparation for the known location of upcoming comparison stimuli. On each trial, bilateral memory displays were followed after a delay period by bilateral test displays. Participants had to encode and maintain three visual objects on one side of the memory display, and to judge whether they were identical or different to three objects in the test display. Task-relevant memory and test stimuli were located in the same visual hemifield in the no-shift task, and on opposite sides in the horizontal shift task. CDA components of similar size were triggered contralateral to the memorized objects in both tasks. The absence of a polarity reversal of the CDA in the horizontal shift task demonstrated that there was no preparatory shift of memorized object location towards the side of the upcoming comparison stimuli. These results suggest that visual working memory represents the locations of visual objects during encoding, and that the matching of memorized and test objects at different locations is based on a comparison process that can bridge spatial translations between these objects. This article is part of a Special Issue entitled SI: Prediction and Attention.

  4. Does visual working memory represent the predicted locations of future target objects? An event-related brain potential study.

    PubMed

    Grubert, Anna; Eimer, Martin

    2015-11-11

    During the maintenance of task-relevant objects in visual working memory, the contralateral delay activity (CDA) is elicited over the hemisphere opposite to the visual field where these objects are presented. The presence of this lateralised CDA component demonstrates the existence of position-dependent object representations in working memory. We employed a change detection task to investigate whether the represented object locations in visual working memory are shifted in preparation for the known location of upcoming comparison stimuli. On each trial, bilateral memory displays were followed after a delay period by bilateral test displays. Participants had to encode and maintain three visual objects on one side of the memory display, and to judge whether they were identical or different to three objects in the test display. Task-relevant memory and test stimuli were located in the same visual hemifield in the no-shift task, and on opposite sides in the horizontal shift task. CDA components of similar size were triggered contralateral to the memorized objects in both tasks. The absence of a polarity reversal of the CDA in the horizontal shift task demonstrated that there was no preparatory shift of memorized object location towards the side of the upcoming comparison stimuli. These results suggest that visual working memory represents the locations of visual objects during encoding, and that the matching of memorized and test objects at different locations is based on a comparison process that can bridge spatial translations between these objects. This article is part of a Special Issue entitled SI: Prediction and Attention. PMID:25445999

  5. Metacognitive deficits predict future levels of negative symptoms in schizophrenia controlling for neurocognition, affect recognition, and self-expectation of goal attainment.

    PubMed

    Lysaker, Paul H; Kukla, Marina; Dubreucq, Julien; Gumley, Andrew; McLeod, Hamish; Vohs, Jenifer L; Buck, Kelly D; Minor, Kyle S; Luther, Lauren; Leonhardt, Bethany L; Belanger, Elizabeth A; Popolo, Raffaele; Dimaggio, Giancarlo

    2015-10-01

    The recalcitrance of negative symptoms in the face of pharmacologic treatment has spurred interest in understanding the psychological factors that contribute to their formation and persistence. Accordingly, this study investigated whether deficits in metacognition, or the ability to form integrated ideas about oneself, others, and the world, prospectively predicted levels of negative symptoms independent of deficits in neurocognition, affect recognition and defeatist beliefs. Participants were 53 adults with a schizophrenia spectrum disorder. Prior to entry into a rehabilitation program, all participants completed concurrent assessments of metacognition with the Metacognitive Assessment Scale-Abbreviated, negative symptoms with the Positive and Negative Syndrome Scale, neurocognition with the MATRICS battery, affect recognition with the Bell Lysaker Emotion Recognition Task, and one form of defeatist beliefs with the Recovery Assessment Scale. Negative symptoms were then reassessed one week, 9weeks, and 17weeks after entry into the program. A mixed effects regression model revealed that after controlling for baseline negative symptoms, a general index of neurocognition, defeatist beliefs and capacity for affect recognition, lower levels of metacognition predicted higher levels of negative symptoms across all subsequent time points. Poorer metacognition was able to predict later levels of elevated negative symptoms even after controlling for initial levels of negative symptoms. Results may suggest that metacognitive deficits are a risk factor for elevated levels of negative symptoms in the future. Clinical implications are also discussed. PMID:26164820

  6. Metacognitive deficits predict future levels of negative symptoms in schizophrenia controlling for neurocognition, affect recognition, and self-expectation of goal attainment.

    PubMed

    Lysaker, Paul H; Kukla, Marina; Dubreucq, Julien; Gumley, Andrew; McLeod, Hamish; Vohs, Jenifer L; Buck, Kelly D; Minor, Kyle S; Luther, Lauren; Leonhardt, Bethany L; Belanger, Elizabeth A; Popolo, Raffaele; Dimaggio, Giancarlo

    2015-10-01

    The recalcitrance of negative symptoms in the face of pharmacologic treatment has spurred interest in understanding the psychological factors that contribute to their formation and persistence. Accordingly, this study investigated whether deficits in metacognition, or the ability to form integrated ideas about oneself, others, and the world, prospectively predicted levels of negative symptoms independent of deficits in neurocognition, affect recognition and defeatist beliefs. Participants were 53 adults with a schizophrenia spectrum disorder. Prior to entry into a rehabilitation program, all participants completed concurrent assessments of metacognition with the Metacognitive Assessment Scale-Abbreviated, negative symptoms with the Positive and Negative Syndrome Scale, neurocognition with the MATRICS battery, affect recognition with the Bell Lysaker Emotion Recognition Task, and one form of defeatist beliefs with the Recovery Assessment Scale. Negative symptoms were then reassessed one week, 9weeks, and 17weeks after entry into the program. A mixed effects regression model revealed that after controlling for baseline negative symptoms, a general index of neurocognition, defeatist beliefs and capacity for affect recognition, lower levels of metacognition predicted higher levels of negative symptoms across all subsequent time points. Poorer metacognition was able to predict later levels of elevated negative symptoms even after controlling for initial levels of negative symptoms. Results may suggest that metacognitive deficits are a risk factor for elevated levels of negative symptoms in the future. Clinical implications are also discussed.

  7. Forecasting sagebrush ecosystem components and greater sage-grouse habitat for 2050: learning from past climate patterns and Landsat imagery to predict the future

    USGS Publications Warehouse

    Homer, Collin G.; Xian, George Z.; Aldridge, Cameron L.; Meyer, Debra K.; Loveland, Thomas R.; O'Donnell, Michael S.

    2015-01-01

    Sagebrush (Artemisia spp.) ecosystems constitute the largest single North American shrub ecosystem and provide vital ecological, hydrological, biological, agricultural, and recreational ecosystem services. Disturbances have altered and reduced this ecosystem historically, but climate change may ultimately represent the greatest future risk. Improved ways to quantify, monitor, and predict climate-driven gradual change in this ecosystem is vital to its future management. We examined the annual change of Daymet precipitation (daily gridded climate data) and five remote sensing ecosystem sagebrush vegetation and soil components (bare ground, herbaceous, litter, sagebrush, and shrub) from 1984 to 2011 in southwestern Wyoming. Bare ground displayed an increasing trend in abundance over time, and herbaceous, litter, shrub, and sagebrush showed a decreasing trend. Total precipitation amounts show a downward trend during the same period. We established statistically significant correlations between each sagebrush component and historical precipitation records using a simple least squares linear regression. Using the historical relationship between sagebrush component abundance and precipitation in a linear model, we forecasted the abundance of the sagebrush components in 2050 using Intergovernmental Panel on Climate Change (IPCC) precipitation scenarios A1B and A2. Bare ground was the only component that increased under both future scenarios, with a net increase of 48.98 km2 (1.1%) across the study area under the A1B scenario and 41.15 km2 (0.9%) under the A2 scenario. The remaining components decreased under both future scenarios: litter had the highest net reductions with 49.82 km2 (4.1%) under A1B and 50.8 km2 (4.2%) under A2, and herbaceous had the smallest net reductions with 39.95 km2 (3.8%) under A1B and 40.59 km2 (3.3%) under A2. We applied the 2050 forecast sagebrush component values to contemporary (circa 2006) greater sage-grouse (Centrocercus

  8. Childhood Sleep Duration and Lifelong Mortality Risk

    PubMed Central

    Duggan, Katherine A.; Reynolds, Chandra A.; Kern, Margaret L.; Friedman, Howard S.

    2014-01-01

    Objective Sleep duration is known to significantly affect health in adults and children, but little is understood about long-term associations. This prospective cohort study is the first to examine whether childhood sleep duration is associated with lifelong mortality risk. Methods Data from childhood were refined and mortality data collected for 1,145 participants from the Terman Life Cycle Study. Participants were born between 1904 and 1915, lived to at least 1940, and had complete age, bedtime, and waketime data at initial data collection (1917–1926). Homogeneity of the cohort sample (intelligent, mostly white) limits generality but provides natural control of common confounds. Through 2009, 1,039 participants had confirmed deaths. Sleep duration was calculated as the difference between each child’s bed and wake times. Age-adjusted sleep (deviation from that predicted by age) was computed. Cox proportional hazards survival models evaluated childhood sleep duration as a predictor of mortality separately by sex, controlling for baseline age. Results For males, a quadratic relation emerged: male children who under-slept or over-slept compared to peers were at increased risk of lifelong all-cause mortality (HR = 1.15, CI = 1.05 – 1.27). Effect sizes were smaller and non-significant in females (HR = 1.02, CI = 0.91 – 1.14). Conclusions Male children with shorter or longer sleep durations than expected for their age were at increased risk of death at any given age in adulthood. The findings suggest that sleep may be a core biobehavioral trait, with implications for new models of sleep and health throughout the entire lifespan. PMID:24588628

  9. Model of medical supply and astronaut health for long-duration human space flight

    NASA Astrophysics Data System (ADS)

    Assad, Albert; de Weck, Olivier L.

    2015-01-01

    Planning a safe and productive human space exploration mission involves a dual approach addressing both the health of the vehicle and the crew. The goal of this study was to develop a quantitative model of astronaut health during long-duration space flight and a medical supply demand model in support of such missions. The model provides two outputs, Alphah and Mass of Medical Consumables (MMC), for each set of input parameters. Alphah is an estimate of total crew health and is displayed as a percentage. MMC is a measure of medical consumables expended during the mission and is displayed in units of kilograms. We have demonstrated that Alphah is a function of three scaling parameters, the type of mission, duration of mission, and gender mix of the crew. The type of mission and gender of crew are linked to radiation fatality data published by NASA. Mission duration is incorporated into the model with predicted incidence of illness and injury data published on US Navy submarine crews. MMC increases non-linearly with the number of crew, the duration of the mission and the distance of the mission away from Earth. This article describes the relationships between these parameters and discusses implications for future crewed space missions.

  10. Past performance of assisted reproduction technologies as a model to predict future progress: a proposed addendum to Moore's law.

    PubMed

    Cohen, Jacques; Alikani, Mina; Bisignano, Alexander

    2012-12-01

    can be traced back to 1985 even though statistical analysis could only be applied to the implantation data from 2003-2010. We expect that this annual incline is partly technology driven. This is an intriguing effect also seen in the computer industry where there has been a doubling of computer speed and memory for the past 47 years, a phenomenon anticipated by Moore's law. We predict that the annual increase in implantation will also continue as new technologies become available. Based on current trends, the length of time for 100% implantation rates was calculated. Time to achieving 100% implantation varied between 43 years (AD 2053) for the youngest age group (<35 years old) to 294 years for women 41-42 years old. Some clinics may report a perfect success earlier than others. However, implantation does not guarantee birth.

  11. Forecasting the duration of volcanic eruptions: an empirical probabilistic model

    NASA Astrophysics Data System (ADS)

    Gunn, L. S.; Blake, S.; Jones, M. C.; Rymer, H.

    2014-01-01

    The ability to forecast future volcanic eruption durations would greatly benefit emergency response planning prior to and during a volcanic crises. This paper introduces a probabilistic model to forecast the duration of future and on-going eruptions. The model fits theoretical distributions to observed duration data and relies on past eruptions being a good indicator of future activity. A dataset of historical Mt. Etna flank eruptions is presented and used to demonstrate the model. The data have been compiled through critical examination of existing literature along with careful consideration of uncertainties on reported eruption start and end dates between the years 1300 AD and 2010. Data following 1600 is considered to be reliable and free of reporting biases. The distribution of eruption duration between the years 1600 and 1669 is found to be statistically different from that following it and the forecasting model is run on two datasets of Mt. Etna flank eruption durations: 1600-2010 and 1670-2010. Each dataset is modelled using a log-logistic distribution with parameter values found by maximum likelihood estimation. Survivor function statistics are applied to the model distributions to forecast (a) the probability of an eruption exceeding a given duration, (b) the probability of an eruption that has already lasted a particular number of days exceeding a given total duration and (c) the duration with a given probability of being exceeded. Results show that excluding the 1600-1670 data has little effect on the forecasting model result, especially where short durations are involved. By assigning the terms `likely' and `unlikely' to probabilities of 66 % or more and 33 % or less, respectively, the forecasting model based on the 1600-2010 dataset indicates that a future flank eruption on Mt. Etna would be likely to exceed 20 days (± 7 days) but unlikely to exceed 86 days (± 29 days). This approach can easily be adapted for use on other highly active, well

  12. Performance of HIV-1 Drug Resistance Testing at Low-Level Viremia and Its Ability to Predict Future Virologic Outcomes and Viral Evolution in Treatment-Naive Individuals

    PubMed Central

    Gonzalez-Serna, A.; Min, J. E.; Woods, C.; Chan, D.; Lima, V. D.; Montaner, J. S. G.; Harrigan, P. R.; Swenson, L. C.

    2014-01-01

    Background. Low-level viremia (LLV; human immunodeficiency virus [HIV-1] RNA 50–999 copies/mL) occurs frequently in patients receiving antiretroviral therapy (ART), but there are few or no data available demonstrating that HIV-1 drug resistance testing at a plasma viral load (pVL) <1000 copies/mL provides potentially clinically useful information. Here, we assess the ability to perform resistance testing by genotyping at LLV and whether it is predictive of future virologic outcomes in patients beginning ART. Methods. Resistance testing by genotyping at LLV was attempted on 4915 plasma samples from 2492 patients. A subset of previously ART-naive patients was analyzed who achieved undetectable pVL and subsequently rebounded with LLV (n = 212). A genotypic sensitivity score (GSS) was calculated based on therapy and resistance testing results by genotyping, and stratified according to number of active drugs. Results. Eighty-eight percent of LLV resistance assays produced useable sequences, with higher success at higher pVL. Overall, 16 of 212 (8%) patients had pretherapy resistance. Thirty-eight of 196 (19%) patients without pretherapy resistance evolved resistance to 1 or more drug classes, primarily the nucleoside reverse transcriptase (14%) and/or nonnucleoside reverse transcriptase (9%) inhibitors. Patients with resistance at LLV (GSS <3) had a 2.1-fold higher risk of virologic failure (95% confidence interval, 1.2- to 3.7-fold) than those without resistance (P = .007). Progressively lower GSS scores at LLV were associated with a higher increase in pVL over time (P < .001). Acquisition of additional resistance mutations to a new class of antiretroviral drugs during LLV was not found in a subset of patients. Conclusions. Routine HIV-1 genotyping of LLV samples can be performed with a reasonably high success rate, and the results appear predictive of future virologic outcomes. PMID:24429436

  13. Prevalence and future prediction of type 2 diabetes mellitus in the Kingdom of Saudi Arabia: A systematic review of published studies.

    PubMed

    Meo, Sultan Ayoub

    2016-06-01

    To highlight the prevalence and future projections of type 2 diabetes mellitus in the Kingdom of Saudi Arabia. The systematic analytic study was conducted in the Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia, from Dec 2014 to April 2015. Systematic bibliographic search of scientific databases including ISI-web of science, PubMed and Google Scholar was conducted with key words of "diabetes mellitus" "prevalence", "incidence". Total 46 peer reviewed papers were selected and examined. All the experimental and epidemiologic studies reporting the prevalence of diabetes in Saudi Arabia were included. There was no restriction on publication prestige and language of the publication. Finally, we included 21 publications and remaining 25 papers were excluded. The future predicted prevalence of type 2 diabetes was calculated on the results of the published studies by regressing the 33 years (1982-2015) of prevalence rate of diabetes against the time period. The prevalence of type 2 diabetes in Saudi Arabia is 32.8%. However, the predicted prevalence will be 35.37% in 2020; 40.37% in 2025 and 45.36% in the year 2030. The coefficient on time factor indicated that prevalence rate has increased during 1982-2015. Saudi Arabia has a highest prevalence (32.8%) of type 2 diabetes mellitus. We forecast that the incidence of type 2 diabetes will increase from 32.8% in 2015 to 45.36% in 2030. Saudi Arabia should include diabetes preventive measures on a war footing basis in their national health policy to minimize the burden of the disease.

  14. Prediction and Mitigation of the Effects of Catastrophic Fire on Water Supplies: Science for Risk Reduction and Planning for Future Scenarios

    NASA Astrophysics Data System (ADS)

    Martin, D. A.; Tindall, J.

    2008-12-01

    Precipitation falling on forests and grasslands provides much of the water to communities across the United States. The U.S. Forest Service estimates that over 3,400 communities are served by water draining land under its jurisdiction alone. Much of this land is subject to wildland fires, which have been increasing in size and severity in the western United States in response to climatic forcing and increased ignitions from human sources. Runoff from burned landscapes can present a significant risk to municipal and agricultural water supplies from ash, sediment, contaminants from burned structures, and fire-fighting chemicals. Several municipalities, including Denver, Colorado, have experienced both short-term and long-term degradation of their water supplies in the aftermath of fires in watersheds upstream from drinking water reservoirs. Scientific efforts to predict and mitigate the effects of catastrophic fire on water supplies have focused on three areas. The first consists of data collection and carefully designed experiments to understand the change of the hydrologic behavior of burned watersheds in response to rain with different intensities, durations, and trajectories as the watersheds recover. Results from these studies are used to validate models that predict watershed response under different initial conditions constrained by remotely-sensed burn severity, topography, rainfall-intensity recurrence probabilities and other factors. These predictions are the basis for rehabilitation measures applied to the landscape to minimize post-fire runoff and erosion. Efforts are under way to incorporate the chemical effects of ash and fire-fighting compounds in decision-support tools. A second area of scientific focus is the characterization of the chemical and physical properties of ash from wildland fire, including ash from structures consumed by fire. The ash chemistry is correlated to remotely- sensed data, type of vegetation that burned, and the underlying

  15. Pre-Transplant CDKN2A Expression in Kidney Biopsies Predicts Renal Function and Is a Future Component of Donor Scoring Criteria

    PubMed Central

    Gingell-Littlejohn, Marc; McGuinness, Dagmara; McGlynn, Liane M.; Kingsmore, David; Stevenson, Karen S.; Koppelstaetter, Christian; Clancy, Marc J.; Shiels, Paul G.

    2013-01-01

    CDKN2A is a proven and validated biomarker of ageing which acts as an off switch for cell proliferation. We have demonstrated previously that CDKN2A is the most robust and the strongest pre-transplant predictor of post- transplant serum creatinine when compared to “Gold Standard” clinical factors, such as cold ischaemic time and donor chronological age. This report shows that CDKN2A is better than telomere length, the most celebrated biomarker of ageing, as a predictor of post-transplant renal function. It also shows that CDKN2A is as strong a determinant of post-transplant organ function when compared to extended criteria (ECD) kidneys. A multivariate analysis model was able to predict up to 27.1% of eGFR at one year post-transplant (p = 0.008). Significantly, CDKN2A was also able to strongly predict delayed graft function. A pre-transplant donor risk classification system based on CDKN2A and ECD criteria is shown to be feasible and commendable for implementation in the near future. PMID:23861858

  16. Building a Shared Definitional Model of Long Duration Human Spaceflight

    NASA Technical Reports Server (NTRS)

    Arias, Diana; Orr, Martin; Whitmire, Alexandra; Leveton, Lauren; Sandoval, Luis

    2012-01-01

    Objective: To establish the need for a shared definitional model of long duration human spaceflight, that would provide a framework and vision to facilitate communication, research and practice In 1956, on the eve of human space travel, Hubertus Strughold first proposed a "simple classification of the present and future stages of manned flight" that identified key factors, risks and developmental stages for the evolutionary journey ahead. As we look to new destinations, we need a current shared working definitional model of long duration human space flight to help guide our path. Here we describe our preliminary findings and outline potential approaches for the future development of a definition and broader classification system

  17. Development of a framework for a high-resolution, three-dimensional regional air quality simulation and its application to predicting future air quality over Japan

    NASA Astrophysics Data System (ADS)

    Chatani, Satoru; Morikawa, Tazuko; Nakatsuka, Seiji; Matsunaga, Sou; Minoura, Hiroaki

    2011-03-01

    We have developed a framework for a three-dimensional regional air quality simulation that is applicable to various air quality studies over Japan. The framework consists of the following simulation model systems: the Weather Research and Forecasting (WRF) model to simulate meteorological fields; the Community Multi-scale Air Quality (CMAQ) modeling system to simulate pollutant concentrations; emissions estimate models; and emission databases. Motor vehicle emissions in Japan are estimated using the Japan Auto-Oil Program (JATOP) vehicle emissions estimate model; anthropogenic emissions from sources other than motor vehicles in Japan are estimated using the Georeference-Based Emission Activity Modeling System (G-BEAMS); and biogenic emissions are estimated using the Model of Emissions of Gases and Aerosols from Nature (MEGAN). The Regional Emission inventory in Asia (REAS) is used for emissions in Asian countries except for Japan. The most prominent feature of our framework is its ability to simulate multi-scale air quality. The framework allows for the simulation of emissions and the dynamic transport of pollutants in heavily polluted urban areas with a maximum resolution of 1 × 1 km, and the long-range transport of pollutants is also taken into account. This framework is used to analyze the impact of future emissions from anthropogenic sources on air quality over the Tokyo metropolitan area. NOx, NMVOC and primary PM2.5 emissions over the Tokyo metropolitan area are estimated to be reduced by 44.5%, 18.1% and 41.7%, respectively, from 2005 to 2020. The simulation predicts that concentrations of NO2 and PM2.5 over the Tokyo metropolitan area will decrease by approximately 30-40% and 15-20%, respectively, during the above period. O3 concentrations significantly increase in winter due to decreased titration by NO, whereas no significant variations are observed in spring and summer. In addition, we analyzed the impact of future long-range transport projected under

  18. Extended Duration Orbiter Medical Project

    NASA Technical Reports Server (NTRS)

    Leach, C. S.; Pool, S. L.; Sawin, C. F.; Nicogossian, A. E.

    1990-01-01

    The Extended Duration Orbiter (EDO) program addresses a need for more time to perform experiments and other tasks during Space Shuttle missions. As a part of this program, the Extended Duration Orbiter Medical Project (EDOMP) has been instituted to obtain information about physiologic effects of extending mission duration and the effectiveness of countermeasures against factors that might compromise crew health, safety, or performance on extended-duration missions. Only those investigations that address and characterize operational problems, develop countermeasures, or evaluate the effectiveness of countermeasures will be pursued. The EDOMP investigations will include flight-associated Detailed Supplementary Objectives as well as ground-based studies simulating the influence of microgravity. Investigator teams have been formed in the following areas: biomedical physiology, cardiovascular and fluid/electrolyte physiology, environmental health, muscle and exercise physiology, and neurophysiology. Major operational questions must be answered in each of these areas, and investigations have been designed to answer them. The EDO program will proceed only after countermeasures have been shown to be effective in preventing or mitigating the adverse changes they have been designed to attenuate. The program is underway and will continue on each Shuttle flight as the manifest builds toward a 16-day orbital flight.

  19. Duration of an Elastic Collision

    ERIC Educational Resources Information Center

    de Izarra, Charles

    2012-01-01

    With a pedagogical goal, this paper deals with a study of the duration of an elastic collision of an inflatable spherical ball on a planar surface suitable for undergraduate studies. First, the force generated by the deformed spherical ball is obtained under assumptions that are discussed. The study of the motion of the spherical ball colliding…

  20. Architectural considerations for lunar long duration habitat

    NASA Astrophysics Data System (ADS)

    Bahrami, Payam

    The future of space exploration science and technology is expected to move toward long duration missions. During this long duration missions the most important factor to success will be the habitation system, the place that crew will live and work. The broad range of future space exploration, new advances in technology and increasing demand for space travel and space tourism will create great opportunities for architects to use their special abilities and skills in the realm of space. The lunar habitat is defined as a multidisciplinary task and cannot be considered an independent project from the main module. Therefore, habitability will become the most important aspect of future human exploration. A successful design strategy should integrate architecture, structure and other disciplines and should bring in elements such as psychological and physiological factors, human interfaces, and privacy. The current research provides "Habitat Architectural Design System (HADS)" in order to evaluate lunar habitat concepts based on habitability, functional optimization, and human factors. HADS helps to promote parametric studied and evaluation of habitat concepts. It will provide a guideline dependent upon mission objectives to standardize architectural needs within the engineering applications and scientific demands. The significance of this research is the process of developing lunar habitat concepts using an architectural system to evaluate the quality of each concept via habitability aspects. This process can be employed during the early stage of design development and is flexible enough to be adjusted by different parameters according to the objectives of lunar mission, limitations, and cost. It also emphasizes the importance of architecture involvement in space projects, especially habitats.

  1. Updated postlicensure surveillance of the meningococcal C conjugate vaccine in England and Wales: effectiveness, validation of serological correlates of protection, and modeling predictions of the duration of herd immunity.

    PubMed

    Campbell, Helen; Andrews, Nick; Borrow, Ray; Trotter, Caroline; Miller, Elizabeth

    2010-05-01

    Meningococcal serogroup C conjugate (MCC) vaccines were licensed in the United Kingdom more than 10 years ago based on correlates of protection that had previously been established for serogroup C-containing polysaccharide vaccines by using the serum bactericidal antibody (SBA) assay. These correlates of protection were subsequently validated against postlicensure estimates of observed vaccine effectiveness up to 7 to 9 months after the administration of the MCC vaccine. Vaccine effectiveness was, however, shown to fall significantly more than 1 year after the administration of a 3-dose course in infancy. Despite this finding, the marked impact on serogroup C disease has been sustained, with the lowest recorded incidence (0.02 case per 100,000 population) in the 2008-2009 epidemiological year, mainly due to the indirect herd immunity effect of the vaccine in reducing carriage. Updated estimates of vaccine effectiveness through 30 June 2009 confirmed high short-term protection after vaccination in infancy, at 97% (95% confidence interval [CI], 91% to 99%), falling to 68% (95% CI, -63% to 90%) more than a year after vaccination. The observed vaccine effectiveness more than 12 months postvaccination was consistent with measured declining SBA levels, but confidence intervals were imprecise; vaccine effectiveness estimates were consistent with SBA titers of 1:4 or 1:8 as correlates of long-term protection after a primary course in infants. Modeling suggested that protection against carriage persists for at least 3 years and predicted the stabilization of serogroup C disease at low levels (fewer than 50 cases per year) up to 2015-2016.

  2. Predicted Shifts in Small Mammal Distributions and Biodiversity in the Altered Future Environment of Alaska: An Open Access Data and Machine Learning Perspective.

    PubMed

    Baltensperger, A P; Huettmann, F

    2015-01-01

    Climate change is acting to reallocate biomes, shift the distribution of species, and alter community assemblages in Alaska. Predictions regarding how these changes will affect the biodiversity and interspecific relationships of small mammals are necessary to pro-actively inform conservation planning. We used a set of online occurrence records and machine learning methods to create bioclimatic envelope models for 17 species of small mammals (rodents and shrews) across Alaska. Models formed the basis for sets of species-specific distribution maps for 2010 and were projected forward using the IPCC (Intergovernmental Panel on Climate Change) A2 scenario to predict distributions of the same species for 2100. We found that distributions of cold-climate, northern, and interior small mammal species experienced large decreases in area while shifting northward, upward in elevation, and inland across the state. In contrast, many southern and continental species expanded throughout Alaska, and also moved down-slope and toward the coast. Statewide community assemblages remained constant for 15 of the 17 species, but distributional shifts resulted in novel species assemblages in several regions. Overall biodiversity patterns were similar for both time frames, but followed general species distribution movement trends. Biodiversity losses occurred in the Yukon-Kuskokwim Delta and Seward Peninsula while the Beaufort Coastal Plain and western Brooks Range experienced modest gains in species richness as distributions shifted to form novel assemblages. Quantitative species distribution and biodiversity change projections should help land managers to develop adaptive strategies for conserving dispersal corridors, small mammal biodiversity, and ecosystem functionality into the future.

  3. Modeling present hydrological conditions as a key to predict the future - results from a case study of a periglacial catchment in Greenland

    NASA Astrophysics Data System (ADS)

    Johansson, E.; Lindborg, T.; Berglund, S.

    2015-12-01

    The routing of water through periglacial landscapes is closely connected to the presence of permafrost, and freezing and thawing processes. To predict responses in the landscape to climate driven changes, we need to better understand the present day hydrology. The present hydrological processes, and the uncertainties in the data used to describe them, must be investigated and understood before we can develop models describing possible future conditions. In this work we have studied the hydrology of a catchment in the Kangerlussuaq region, Greenland. Johansson et al. (2015) presented a hydrological model of the catchment based on a new hydrological and meteorological data set from the catchment area. The present water balance was quantified, and the spatial and seasonal dynamics of the main hydrological fluxes were presented. It was shown that the model was able to reproduce the measured lake level dynamics and the measured components of the water balance. Based on this work we have used the numerical model to investigate the sensitivity in hydrological responses to different meteorological, geological and geometrical model input data. The aim with this study is to investigate the importance of the use of local data, but also to highlight the importance of present day site understanding when developing and applying the model for predicting responses to a changing climate. The results show that the site specific model is highly sensitive to the meteorological input data. Driving the model with precipitation data from a meteorological station only 30 km away from the catchment instead of local data from the studied catchment, or using local precipitation data not corrected for wind and adhesion losses, resulted in large discrepancies between measured and calculated lake levels. The modelled intra-annual dynamics of the active layer groundwater was shown to be sensitive both to the applied soil temperatures but also to the active layer depth and sediment stratigraphy.

  4. Sensitivity analyses of MAGIC modelled predictions of future impacts of whole-tree harvest on soil calcium supply and stream acid neutralizing capacity.

    PubMed

    Zetterberg, Therese; Köhler, Stephan J; Löfgren, Stefan

    2014-10-01

    Forest biofuel is a main provider of energy in Sweden and the market is expected to grow even further in the future. Removal of logging residues via harvest can lead to short-term acidification but the long-term effects are largely unknown. The objectives of this study were to 1) model the long-term effect of whole-tree harvest (WTH) on soil and stream water acidity and 2) perform sensitivity analyses by varying the amounts of logging residues, calcium (Ca(2+)) concentrations in tree biomass and site productivity in nine alternate scenarios. Data from three Swedish forested catchments and the Model of Acidification of Groundwater in Catchments (MAGIC) were used to simulate changes in forest soil exchangeable Ca(2+) pools and stream water acid neutralizing capacity (ANC) at Gammtratten, Kindla and Aneboda. Large depletions in soil Ca(2+) supply and a reversal of the positive trend in stream ANC were predicted for all three sites after WTH. However, the magnitude of impact on stream ANC varied depending on site and the concentration of mobile strong acid anions. Contrary to common beliefs, the largest decrease in modelled ANC was observed at the well-buffered site Gammtratten. The effects at Kindla and Aneboda were much more limited and not large enough to offset the general recovery from acidification. Varying the tree biomass Ca(2+) concentrations exerted the largest impact on modelled outcome. Site productivity was the second most important variable whereas changing biomass amounts left on site only marginally affected the results. The outcome from the sensitivity analyses pointed in the same direction of change as in the base scenario, except for Kindla where soil Ca(2+) pools were predicted to be replenished under a given set of input data. The reliability of modelled outcome would increase by using site-specific Ca(2+) concentrations in tree biomass and field determined identification of site productivity. PMID:25046610

  5. Predicted Shifts in Small Mammal Distributions and Biodiversity in the Altered Future Environment of Alaska: An Open Access Data and Machine Learning Perspective

    PubMed Central

    Baltensperger, A. P.; Huettmann, F.

    2015-01-01

    Climate change is acting to reallocate biomes, shift the distribution of species, and alter community assemblages in Alaska. Predictions regarding how these changes will affect the biodiversity and interspecific relationships of small mammals are necessary to pro-actively inform conservation planning. We used a set of online occurrence records and machine learning methods to create bioclimatic envelope models for 17 species of small mammals (rodents and shrews) across Alaska. Models formed the basis for sets of species-specific distribution maps for 2010 and were projected forward using the IPCC (Intergovernmental Panel on Climate Change) A2 scenario to predict distributions of the same species for 2100. We found that distributions of cold-climate, northern, and interior small mammal species experienced large decreases in area while shifting northward, upward in elevation, and inland across the state. In contrast, many southern and continental species expanded throughout Alaska, and also moved down-slope and toward the coast. Statewide community assemblages remained constant for 15 of the 17 species, but distributional shifts resulted in novel species assemblages in several regions. Overall biodiversity patterns were similar for both time frames, but followed general species distribution movement trends. Biodiversity losses occurred in the Yukon-Kuskokwim Delta and Seward Peninsula while the Beaufort Coastal Plain and western Brooks Range experienced modest gains in species richness as distributions shifted to form novel assemblages. Quantitative species distribution and biodiversity change projections should help land managers to develop adaptive strategies for conserving dispersal corridors, small mammal biodiversity, and ecosystem functionality into the future. PMID:26207828

  6. Predicted Shifts in Small Mammal Distributions and Biodiversity in the Altered Future Environment of Alaska: An Open Access Data and Machine Learning Perspective.

    PubMed

    Baltensperger, A P; Huettmann, F

    2015-01-01

    Climate change is acting to reallocate biomes, shift the distribution of species, and alter community assemblages in Alaska. Predictions regarding how these changes will affect the biodiversity and interspecific relationships of small mammals are necessary to pro-actively inform conservation planning. We used a set of online occurrence records and machine learning methods to create bioclimatic envelope models for 17 species of small mammals (rodents and shrews) across Alaska. Models formed the basis for sets of species-specific distribution maps for 2010 and were projected forward using the IPCC (Intergovernmental Panel on Climate Change) A2 scenario to predict distributions of the same species for 2100. We found that distributions of cold-climate, northern, and interior small mammal species experienced large decreases in area while shifting northward, upward in elevation, and inland across the state. In contrast, many southern and continental species expanded throughout Alaska, and also moved down-slope and toward the coast. Statewide community assemblages remained constant for 15 of the 17 species, but distributional shifts resulted in novel species assemblages in several regions. Overall biodiversity patterns were similar for both time frames, but followed general species distribution movement trends. Biodiversity losses occurred in the Yukon-Kuskokwim Delta and Seward Peninsula while the Beaufort Coastal Plain and western Brooks Range experienced modest gains in species richness as distributions shifted to form novel assemblages. Quantitative species distribution and biodiversity change projections should help land managers to develop adaptive strategies for conserving dispersal corridors, small mammal biodiversity, and ecosystem functionality into the future. PMID:26207828

  7. Contrast and stimulus duration dependence of perceptual surround suppression in older adults.

    PubMed

    Karas, Renee; McKendrick, Allison M

    2015-05-01

    Most natural visual tasks involve the extraction of visual features from suprathreshold contrast backgrounds, hence an understanding of how ageing impacts on contrast mechanisms is essential to understand elderly visual function. Previous studies have revealed increased perceptual surround suppression of contrast in older adults. We aimed to determine whether such age-related effects depend on the centre or surround stimulus contrast as the neurophysiological mechanisms underpinning contrast-contrast suppression depend on such contrast relationships. We also measured surround suppression of contrast for longer duration and shorter duration stimuli to explore for effects of surround adaptation Fifteen younger and 15 older adults performed a centre-surround contrast discrimination task for a variety of centre-surround contrast combinations (20%, 40% and 80% contrast). Stimulus duration was 500ms. The 40% centre, 80% surround condition was also presented for 100ms duration. Relative to younger adults, perceptual surround suppression was increased for the older group for low, but clearly suprathreshold, central contrasts (20% contrast), whilst both groups performed similarly for stimuli with high centre contrasts. Data was best fit by a model with both increased inhibitory and excitatory weightings in the older group. Reduced stimulus duration increased perceptual surround suppression for both groups consistent with reduced adaptation to the surround, and did not explain the difference in suppression magnitude between groups. Understanding the stimulus parameters that elicit increased surround suppression in older adults is key to directing future work exploring underlying neural substrates, in addition to potentially being useful for predicting performance on more complicated natural visual tasks such as object and scene perception.

  8. Space immunology - Past, present and future

    NASA Technical Reports Server (NTRS)

    Coulter, Gary R.; Taylor, Gerald R.; Sonnenfeld, Gerald

    1989-01-01

    Research results on the causes and mechanisms of change in immune systems during spaceflight are briefly reviewed. The most reliable conclusion from the sparse existing data is that postflight crew members exhibit a transient neutrophilia, eosinopenia, monocytopenia, reduced numbers of circulating T cells, and an often pronounced decrease in the ability of their T cells to respond to mitogen stimulation. Clinically, no direct predictive relationship between any of these measurements and increased health risk or disease has been established. Future areas of research are suggested in light of NASA's emerging requirements to support long-duration missions.

  9. Use DNA to learn from the past: how modern and ancient DNA studies may help reveal the past and predict the future distribution of species

    NASA Astrophysics Data System (ADS)

    Edwards, M. E.; Alsos, I. G.; Sjögren, P.; Coissac, E.; Gielly, L.; Yoccoz, N.; Føreid, M. K.; Taberlet, P.

    2015-12-01

    Knowledge of how climate change affected species distribution in the past may help us predict the effect of ongoing environmental changes. We explore how the use of modern (AFLP fingerprinting techniques) and ancient DNA (metabarcoding P6 loop of chloroplast DNA) help to reveal past distribution of vascular plant species, dispersal processes, and effect of species traits. Based on studies of modern DNA combined with species distribution models, we show the dispersal routes and barriers to dispersal throughout the circumarctic/circumboreal region, likely dispersal vectors, the cost of dispersal in term of loss of genetic diversity, and how these relates to species traits, dispersal distance, and size of colonized region. We also estimate the expected future distribution and loss of genetic diversity and show how this relates to life form and adaptations to dispersal. To gain more knowledge on time lags in past range change events, we rely on palaeorecords. Current data on past distribution are limited by the taxonomic and time resolution of macrofossil and pollen records. We show how this may be improved by studying ancient DNA of lake sediments. DNA of lake sediments recorded about half of the flora surrounding the lake. Compared to macrofossil, the taxonomic resolution is similar but the detection rate is considerable improved. By taking into account main determinants of founder effect, dispersal vectors, and dispersal lags, we may improve our ability to forecast effects of climate change, whereas more studies on ancient DNA may provide us with knowledge on distribution time lags.

  10. Prediction equations for corrosion rates of a A-537 and A-516 steels in Double Shell Slurry, Future PUREX, and Hanford Facilities Wastes

    SciTech Connect

    Divine, J.R.; Bowen, W.M.; Mackey, D.B.; Bates, D.J.; Pool, K.H.

    1985-06-01

    Even though the interest in the corrosion of radwaste tanks goes back to the mid-1940's when waste storage was begun, and a fair amount of corrosion work has been done since then, the changes in processes and waste types have outpaced the development of new data pertinent to the new double shell tanks. As a consequence, Pacific Northwest Laboratory (PNL) began a development of corrosion data on a broad base of waste compositions in 1980. The objective of the program was to provide operations personnel with corrosion rate data as a function of waste temperature and composition. The work performed in this program examined A-537 tank steel in Double Shell Slurry and Future PUREX Wastes, at temperatures between 40 and 180/sup 0/C as well as in Hanford Facilities Waste at 25 and 50/sup 0/C. In general, the corrosion rates were less than 1 mpy (0.001 in./y) and usually less than 0.5 mpy. Excessive corrosion rates (>1 mpy) were only found in dilute waste compositions or in concentrated caustic compositions at temperatures above 140/sup 0/C. Stress corrosion cracking was only observed under similar conditions. The results are presented as polynomial prediction equations with examples of the output of existing computer codes. The codes are not provided in the text but are available from the authors. 12 refs., 5 figs., 19 tabs.

  11. Development and application of generalized-least-squares regression models to estimate low-flow duration discharges in Massachusetts

    USGS Publications Warehouse

    Ries, Kernell G.

    1994-01-01

    Physically based mathematical models were developed by use of generalized-least-squares regression analyses to estimate long-term 95-, 98-, and 99-percent duration discharges for ungaged streams in Massachusetts. Duration discharges for 61 sites were used in the recession analyses; 37 sites were streamflow-gaging stations and 24 sites were low-flow partial-record stations. The duration discharges were related to basin chacteristics measured from digital data bases, by use of geographic information systems computer software. Significant chacterisfics used in the models were drainage area, area underlain by stratified-drift deposits per unit of stream length in the basin, and a surrogate for the effective head on the aquifer in the stratified-drift deposits, computed by subtracting the minimum basin elevation from the mean basin elevation. Standard errors of prediction were 57.5, 85.6, and 98.5 percent for models for the 95-, 98-, and 99-percent duration discharges, respectively. Model error variances were about 10 times the sampling error variances, indicating that the precision of future models are likely to be improved more by obtaining better measurements of basin characteristics or by adding new sites to the analyses than by collecting more streamflow data at the sites presently used in the analyses. The models were used to predict duration discharges for 35 selected sites in the Concord River, Noah Coastal, South Coastal, Narragansett and Tenmile River Basins. Ninety-perrcent prediction intervals were computed for the estimates at each of the sites, except at sites where values of the independent variables were outside the ranges of those for the sites used in the regression analyses.

  12. Feeding the Astronauts During Long Duration Missions

    NASA Technical Reports Server (NTRS)

    Perchonok, Michele

    2010-01-01

    This slide presentation reviews the issues surrounding feeding astronauts during long duration missions. There is a brief history from the food and food packaging available during Project Mercury through the current food requirements. It shows the packaging and the requirements that have been used. The current food system includes thermostabilized and irradiated foods to reduce the potential of harmful microorganisms. There is an explanation of drinks available, rehydratable foods, and natural forms of food, (i.e., commercially available foods that are packaged in individual serving sizes). There is also discussion of the requirements for future missions, and the research gap for requirements for food that will last 5 years, with packaging and nutrients intact.

  13. Drug stability analyzer for long duration spaceflights

    NASA Astrophysics Data System (ADS)

    Shende, Chetan; Smith, Wayne; Brouillette, Carl; Farquharson, Stuart

    2014-06-01

    Crewmembers of current and future long duration spaceflights require drugs to overcome the deleterious effects of weightlessness, sickness and injuries. Unfortunately, recent studies have shown that some of the drugs currently used may degrade more rapidly in space, losing their potency well before their expiration dates. To complicate matters, the degradation products of some drugs can be toxic. Consequently there is a need for an analyzer that can determine if a drug is safe at the time of use, as well as to monitor and understand space-induced degradation, so that drug types, formulations, and packaging can be improved. Towards this goal we have been investigating the ability of Raman spectroscopy to monitor and quantify drug degradation. Here we present preliminary data by measuring acetaminophen, and its degradation product, p-aminophenol, as pure samples, and during forced degradation reactions.

  14. Incident duration modeling using flexible parametric hazard-based models.

    PubMed

    Li, Ruimin; Shang, Pan

    2014-01-01

    Assessing and prioritizing the duration time and effects of traffic incidents on major roads present significant challenges for road network managers. This study examines the effect of numerous factors associated with various types of incidents on their duration and proposes an incident duration prediction model. Several parametric accelerated failure time hazard-based models were examined, including Weibull, log-logistic, log-normal, and generalized gamma, as well as all models with gamma heterogeneity and flexible parametric hazard-based models with freedom ranging from one to ten, by analyzing a traffic incident dataset obtained from the Incident Reporting and Dispatching System in Beijing in 2008. Results show that different factors significantly affect different incident time phases, whose best distributions were diverse. Given the best hazard-based models of each incident time phase, the prediction result can be reasonable for most incidents. The results of this study can aid traffic incident management agencies not only in implementing strategies that would reduce incident duration, and thus reduce congestion, secondary incidents, and the associated human and economic losses, but also in effectively predicting incident duration time.

  15. Incident duration modeling using flexible parametric hazard-based models.

    PubMed

    Li, Ruimin; Shang, Pan

    2014-01-01

    Assessing and prioritizing the duration time and effects of traffic incidents on major roads present significant challenges for road network managers. This study examines the effect of numerous factors associated with various types of incidents on their duration and proposes an incident duration prediction model. Several parametric accelerated failure time hazard-based models were examined, including Weibull, log-logistic, log-normal, and generalized gamma, as well as all models with gamma heterogeneity and flexible parametric hazard-based models with freedom ranging from one to ten, by analyzing a traffic incident dataset obtained from the Incident Reporting and Dispatching System in Beijing in 2008. Results show that different factors significantly affect different incident time phases, whose best distributions were diverse. Given the best hazard-based models of each incident time phase, the prediction result can be reasonable for most incidents. The results of this study can aid traffic incident management agencies not only in implementing strategies that would reduce incident duration, and thus reduce congestion, secondary incidents, and the associated human and economic losses, but also in effectively predicting incident duration time. PMID:25530753

  16. NEXT Long-Duration Test Neutralizer Performance and Erosion Characteristics

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Soulas, George C.; Patterson, Michael J.

    2009-01-01

    The NASA's Evolutionary Xenon Thruster (NEXT) program is developing the next-generation ion propulsion system with significant enhancements beyond the state-of-the-art to provide future NASA science missions with enhanced capabilities at a low total development cost. A Long-Duration Test (LDT) was initiated in June 2005, to verify the NEXT propellant throughput capability to a qualification-level of 450 kg, 1.5 times the anticipated throughput requirement of 300 kg per thruster based on mission analyses. As of September 2, 2009, the thruster has accumulated 24,400 hr of operation with extensive durations at the following input powers: 6.9, 4.7, 1.1, and 0.5 kW. The thruster has processed 434 kg of xenon, surpassing the NASA Solar Technology Application Readiness (NSTAR) program thruster propellant throughput demonstrated during the extended life testing of the Deep Space 1 flight spare ion thruster and approaching the NEXT development qualification throughput goal of 450 kg. The NEXT LDT has demonstrated a total impulse of 16.1 10(exp 6zzz0 N s; the highest total impulse ever demonstrated by an ion thruster. A reduction in neutralizer flow margin has been the only appreciable source of thruster performance degradation. The behavior of the neutralizer is not easily predicted due to both erosion and deposition observed in previous wear tests. Spot-to-plume mode transition flow data and in-situ erosion results for the LDT neutralizer are discussed. This loss of flow margin has been addressed through a combination of a design change in the prototype-model neutralizer to increase flow margin at low emission current and to update the NEXT throttle table to ensure adequate flow margin as a function of propellant throughput processed. The new throttle table will be used for future LDT operations. The performance of the NEXT LDT neutralizer is consistent with that observed for long-life hollow cathodes. The neutralizer life-limiting failure modes are progressing as expected

  17. Bone Density Following Three Years of Recovery from Long-Duration Space-Flight

    NASA Technical Reports Server (NTRS)

    Amin, S.; Achenbach, S. J.; Atkinson, E. J.; Sibonga, J.

    2010-01-01

    Bone loss during long-duration space flight is well recognized, but the long-term implications on bone health following return from flight remain unclear. Among US crew who were involved in long-duration missions in space (Mir and ISS), we have previously shown that at approximately 12 months following return, men, but not women, had BMD values at most sites that were still lower than would be expected had they not been exposed to a prolonged period of microgravity. We now extend our observations to 3 years of follow-up post-flight. Using their age, pre-flight BMD and follow-up time, post-flight BMD values for each US crew were predicted based on the model developed from the community sample. We found BMD measures to be either stable or improve by 3 years relative to their immediate post-flight BMD, however only total hip BMD still remains significantly lower than would be expected had they not been exposed to microgravity. Among male US crew, who have had their BMD measured following at least 3 years of recovery post long-duration flight, they continue to have lower BMD at the hip than would be expected, raising potential concerns regarding future hip fracture risk.

  18. Recalled Initiation and Duration of Maternal Breastfeeding Among Children with and Without ADHD in a Well Characterized Case-Control Sample.

    PubMed

    Stadler, Diane D; Musser, Erica D; Holton, Kathleen F; Shannon, Jackilen; Nigg, Joel T

    2016-02-01

    Early environmental influences are increasingly of interest in understanding ADHD as a neurodevelopmental condition, particularly in light of recognition that gene by environment interplay are likely involved in this condition. Breastfeeding duration predicts cognitive development, as well as development of brain white matter connectivity, in areas similar to those seen in ADHD. Prior studies show an association between breastfeeding and ADHD but without adequate evaluation of ADHD. A case control cohort of 474 children aged 7-13 years was examined, 291 with well characterized ADHD (71.5 % male) and the rest typically developing controls (51.9 % male). Mothers retrospectively reported on breast feeding initiation and duration. Initiation of breastfeeding was not associated with child ADHD, but shorter duration of breastfeeding was associated with child ADHD with a medium effect size (d = 0.40, p < 0.05); this effect held after covarying a broad set of potential confounders, including child oppositional defiant and conduct problems and including maternal and paternal ADHD symptoms. Effects were replicated across both parent and teacher ratings of child ADHD symptoms. Shorter duration of breastfeeding is among several risk factors in early life associated with future ADHD, or else longer duration is protective. The direction of this effect is unknown, however. It may be that some children are more difficult to breastfeed or that breastfeeding provides nutrients or other benefits that reduce future chance of ADHD. PMID:25749651

  19. Predicting the Impact of Temperature Change on the Future Distribution of Maize Stem Borers and Their Natural Enemies along East African Mountain Gradients Using Phenology Models.

    PubMed

    Mwalusepo, Sizah; Tonnang, Henri E Z; Massawe, Estomih S; Okuku, Gerphas O; Khadioli, Nancy; Johansson, Tino; Calatayud, Paul-André; Le Ru, Bruno Pierre

    2015-01-01

    Lepidopteran stem borers are among the most important pests of maize in East Africa. The objective of the present study was to predict the impact of temperature change on the distribution and abundance of the crambid Chilo partellus, the noctuid Busseola fusca, and their larval parasitoids Cotesia flavipes and Cotesia sesamiae at local scale along Kilimanjaro and Taita Hills gradients in Tanzania and Kenya, respectively. Temperature-dependent phenology models of pests and parasitoids were used in a geographic information system for mapping. The three risk indices namely establishment, generation, and activity indices were computed using current temperature data record from local weather stations and future (i.e., 2055) climatic condition based on downscaled climate change data from the AFRICLIM database. The calculations were carried out using index interpolator, a sub-module of the Insect Life Cycle Modeling (ILCYM) software. Thin plate algorithm was used for interpolation of the indices. Our study confirmed that temperature was a key factor explaining the distribution of stem borers and their natural enemies but other climatic factors and factors related to the top-down regulation of pests by parasitoids (host-parasitoid synchrony) also played a role. Results based on temperature only indicated a worsening of stem borer impact on maize production along the two East African mountain gradients studied. This was attributed to three main changes occurring simultaneously: (1) range expansion of the lowland species C. partellus in areas above 1200 m.a.s.l.; (2) increase of the number of pest generations across all altitudes, thus by 2055 damage by both pests will increase in the most productive maize zones of both transects; (3) disruption of the geographical distribution of pests and their larval parasitoids will cause an improvement of biological control at altitude below 1200 m.a.s.l. and a deterioration above 1200 m.a.s.l. The predicted increase in pest activity

  20. Predicting the Impact of Temperature Change on the Future Distribution of Maize Stem Borers and Their Natural Enemies along East African Mountain Gradients Using Phenology Models

    PubMed Central

    Mwalusepo, Sizah; Tonnang, Henri E. Z.; Massawe, Estomih S.; Okuku, Gerphas O.; Khadioli, Nancy; Johansson, Tino; Calatayud, Paul-André; Le Ru, Bruno Pierre

    2015-01-01

    Lepidopteran stem borers are among the most important pests of maize in East Africa. The objective of the present study was to predict the impact of temperature change on the distribution and abundance of the crambid Chilo partellus, the noctuid Busseola fusca, and their larval parasitoids Cotesia flavipes and Cotesia sesamiae at local scale along Kilimanjaro and Taita Hills gradients in Tanzania and Kenya, respectively. Temperature-dependent phenology models of pests and parasitoids were used in a geographic information system for mapping. The three risk indices namely establishment, generation, and activity indices were computed using current temperature data record from local weather stations and future (i.e., 2055) climatic condition based on downscaled climate change data from the AFRICLIM database. The calculations were carried out using index interpolator, a sub-module of the Insect Life Cycle Modeling (ILCYM) software. Thin plate algorithm was used for interpolation of the indices. Our study confirmed that temperature was a key factor explaining the distribution of stem borers and their natural enemies but other climatic factors and factors related to the top-down regulation of pests by parasitoids (host-parasitoid synchrony) also played a role. Results based on temperature only indicated a worsening of stem borer impact on maize production along the two East African mountain gradients studied. This was attributed to three main changes occurring simultaneously: (1) range expansion of the lowland species C. partellus in areas above 1200 m.a.s.l.; (2) increase of the number of pest generations across all altitudes, thus by 2055 damage by both pests will increase in the most productive maize zones of both transects; (3) disruption of the geographical distribution of pests and their larval parasitoids will cause an improvement of biological control at altitude below 1200 m.a.s.l. and a deterioration above 1200 m.a.s.l. The predicted increase in pest activity

  1. Predicting the Impact of Temperature Change on the Future Distribution of Maize Stem Borers and Their Natural Enemies along East African Mountain Gradients Using Phenology Models.

    PubMed

    Mwalusepo, Sizah; Tonnang, Henri E Z; Massawe, Estomih S; Okuku, Gerphas O; Khadioli, Nancy; Johansson, Tino; Calatayud, Paul-André; Le Ru, Bruno Pierre

    2015-01-01

    Lepidopteran stem borers are among the most important pests of maize in East Africa. The objective of the present study was to predict the impact of temperature change on the distribution and abundance of the crambid Chilo partellus, the noctuid Busseola fusca, and their larval parasitoids Cotesia flavipes and Cotesia sesamiae at local scale along Kilimanjaro and Taita Hills gradients in Tanzania and Kenya, respectively. Temperature-dependent phenology models of pests and parasitoids were used in a geographic information system for mapping. The three risk indices namely establishment, generation, and activity indices were computed using current temperature data record from local weather stations and future (i.e., 2055) climatic condition based on downscaled climate change data from the AFRICLIM database. The calculations were carried out using index interpolator, a sub-module of the Insect Life Cycle Modeling (ILCYM) software. Thin plate algorithm was used for interpolation of the indices. Our study confirmed that temperature was a key factor explaining the distribution of stem borers and their natural enemies but other climatic factors and factors related to the top-down regulation of pests by parasitoids (host-parasitoid synchrony) also played a role. Results based on temperature only indicated a worsening of stem borer impact on maize production along the two East African mountain gradients studied. This was attributed to three main changes occurring simultaneously: (1) range expansion of the lowland species C. partellus in areas above 1200 m.a.s.l.; (2) increase of the number of pest generations across all altitudes, thus by 2055 damage by both pests will increase in the most productive maize zones of both transects; (3) disruption of the geographical distribution of pests and their larval parasitoids will cause an improvement of biological control at altitude below 1200 m.a.s.l. and a deterioration above 1200 m.a.s.l. The predicted increase in pest activity

  2. Abrupt climate change: Past, present and the search for precursors as an aid to predicting events in the future (Hans Oeschger Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Mayewski, Paul Andrew

    2016-04-01

    The demonstration using Greenland ice cores that abrupt shifts in climate, Dansgaard-Oeschger (D-O) events, existed during the last glacial period has had a transformational impact on our understanding of climate change in the naturally forced world. The demonstration that D-O events are globally distributed and that they operated during previous glacial periods has led to extensive research into the relative hemispheric timing and causes of these events. The emergence of civilization during our current interglacial, the Holocene, has been attributed to the "relative climate quiescence" of this period relative to the massive, abrupt shifts in climate that characterized glacial periods in the form of D-O events. But, everything is relative and climate change is no exception. The demise of past civilizations, (eg., Mesopatamian, Mayan and Norse) is integrally tied to abrupt climate change (ACC) events operating at regional scales. Regionally to globally distributed ACC events have punctuated the Holocene and extreme events have always posed significant challenges to humans and ecosystems. Current warming of the Arctic, in terms of length of the summer season, is as abrupt and massive, albeit not as extensive, as the transition from the last major D-O event, the Younger Dryas into the Holocene (Mayewski et al., 2013). Tropospheric source greenhouse gas rise and ozone depletion in the stratosphere over Antarctica are triggers for the modern advent of human emission instigated ACCs. Arctic warming and Antarctic ozone depletion have resulted in significance changes to the atmospheric circulation systems that transport heat, moisture, and pollutants in both hemispheres. Climate models offer a critical tool for assessing trends, but they cannot as yet predict ACC events, as evidenced by the inability of these models to predict the rapid onset of Arctic warming and resulting changes in atmospheric circulation; and in the model vs past analog differences in projections for

  3. Incorporating Satellite Remote Sensing Data into Hydrologic Models: Towards Improved Performance in Modeling the Past and Reduced Uncertainty in Predicting the Future

    NASA Astrophysics Data System (ADS)

    Parr, D.; Wang, G.

    2014-12-01

    In many regions of the worlds, studies of past hydrological variability have to rely on hydrological models either because river gauge measurement is not available or because measurements do not reflect the natural flow due to water diversion or reservoir regulation. However, results from these studies are subject to major uncertainty related to the challenges in quantifying vegetation conditions and evapotranspiration, both of which are important for surface water and energy budgets. This study incorporates satellite remote sensing data for ET and vegetation into the VIC model to improve the model performance in simulating the surface water budget, hydrological seasonality, and timing of hydrological extremes. Using the Connecticut River Basin as an example, and driven with the NASA NLDAS-2 meteorological forcing data, the VIC model has been modified to read in LAI and ET data derived from MODIS among others. The MODIS LAI data provides VIC with the inter-annually varying seasonal cycle of vegetation, and the MODIS ET data replaces the model simulated ET. The data-enhanced model performs significantly better in simulating river discharge, its magnitude, seasonality, timing, soil moisture and its temporal variation. Incorporation of the ET data led to an increase of stream flow correlations between model and observations on the daily and biweekly temporal scales, and the seasonality is better represented on a monthly scale with particular magnitude improvements during the summer when ET is greatest. Incorporation of the LAI data led to improved simulation of inter-annual variability. This joint application of remote sensing and modeling helps quantify the extent to which remote sensing data improves model performance, facilitates a more accurate understanding and attribution of past hydrological variability/changes, and helps characterize the range of model-related uncertainties in future predictions.

  4. Predicted effects of future climate warming on thermal habitat suitability for Lake Sturgeon (Acipenser fulvescens, Rafinesque, 1817) in rivers in Wisconsin, USA

    USGS Publications Warehouse

    Lyons, John D.; Stewart, Jana S.

    2015-01-01

    The Lake Sturgeon (Acipenser fulvescens, Rafinesque, 1817) may be threatened by future climate warming. The purpose of this study was to identify river reaches in Wisconsin, USA, where they might be vulnerable to warming water temperatures. In Wisconsin, A. fulvescens is known from 2291 km of large-river habitat that has been fragmented into 48 discrete river-lake networks isolated by impassable dams. Although the exact temperature tolerances are uncertain, water temperatures above 28–30°C are potentially less suitable for this coolwater species. Predictions from 13 downscaled global climate models were input to a lotic water temperature model to estimate amounts of potential thermally less-suitable habitat at present and for 2046–2065. Currently, 341 km (14.9%) of the known habitat are estimated to regularly exceed 28°C for an entire day, but only 6 km (0.3%) to exceed 30°C. In 2046–2065, 685–2164 km (29.9–94.5%) are projected to exceed 28°C and 33–1056 km (1.4–46.1%) to exceed 30°C. Most river-lake networks have cooler segments, large tributaries, or lakes that might provide temporary escape from potentially less suitable temperatures, but 12 short networks in the Lower Fox and Middle Wisconsin rivers totaling 93.6 km are projected to have no potential thermal refugia. One possible adaptation to climate change could be to provide fish passage or translocation so that riverine Lake Sturgeon might have access to more thermally suitable habitats.

  5. Inverse modeling using PS-InSAR for improved calibration of hydraulic parameters and prediction of future subsidence for Las Vegas Valley, USA

    NASA Astrophysics Data System (ADS)

    Burbey, T. J.; Zhang, M.

    2015-11-01

    Las Vegas Valley has had a long history of surface deformation due to groundwater pumping that began in the early 20th century. After nearly 80 years of pumping, PS-InSAR interferograms have revealed detailed and complex spatial patterns of subsidence in the Las Vegas Valley area that do not coincide with major pumping regions. High spatial and temporal resolution subsidence observations from InSAR and hydraulic head data were used to inversely calibrate transmissivities (T), elastic and inelastic skeletal storage coefficients (Ske and Skv) of the developed-zone aquifer and conductance (CR) of the basin-fill faults for the entire Las Vegas basin. The results indicate that the subsidence observations from PS-InSAR are extremely beneficial for accurately quantifying hydraulic parameters, and the model calibration results are far more accurate than when using only water-levels as observations, and just a few random subsidence observations. Future predictions of land subsidence to year 2030 were made on the basis of existing pumping patterns and rates. Simulation results suggests that subsidence will continue in northwest subsidence bowl area, which is expected to undergo an additional 11.3 cm of subsidence. Even mitigation measures that include artificial recharge and reduced pumping do not significantly reduce the compaction in the northwest subsidence bowl. This is due to the slow draining of thick confining units in the region. However, a small amount of uplift of 0.4 cm is expected in the North and Central bowl areas over the next 20 years.

  6. Sleep Duration and Area-Level Deprivation in Twins

    PubMed Central

    Watson, Nathaniel F.; Horn, Erin; Duncan, Glen E.; Buchwald, Dedra; Vitiello, Michael V.; Turkheimer, Eric

    2016-01-01

    Study Objectives: We used quantitative genetic models to assess whether area-level deprivation as indicated by the Singh Index predicts shorter sleep duration and modifies its underlying genetic and environmental contributions. Methods: Participants were 4,218 adult twin pairs (2,377 monozygotic and 1,841 dizygotic) from the University of Washington Twin Registry. Participants self-reported habitual sleep duration. The Singh Index was determined by linking geocoding addresses to 17 indicators at the census-tract level using data from Census of Washington State and Census Tract Cartographic Boundary Files from 2000 and 2010. Data were analyzed using univariate and bivariate genetic decomposition and quantitative genetic interaction models that assessed A (additive genetics), C (common environment), and E (unique environment) main effects of the Singh Index on sleep duration and allowed the magnitude of residual ACE variance components in sleep duration to vary with the Index. Results: The sample had a mean age of 38.2 y (standard deviation [SD] = 18), and was predominantly female (62%) and Caucasian (91%). Mean sleep duration was 7.38 h (SD = 1.20) and the mean Singh Index score was 0.00 (SD = 0.89). The heritability of sleep duration was 39% and the Singh Index was 12%. The uncontrolled phenotypic regression of sleep duration on the Singh Index showed a significant negative relationship between area-level deprivation and sleep length (b = −0.080, P < 0.001). Every 1 SD in Singh Index was associated with a ∼4.5 min change in sleep duration. For the quasi-causal bivariate model, there was a significant main effect of E (b0E = −0.063; standard error [SE] = 0.30; P < 0.05). Residual variance components unique to sleep duration were significant for both A (b0Au = 0.734; SE = 0.020; P < 0.001) and E (b0Eu = 0.934; SE = 0.013; P < 0.001). Conclusions: Area-level deprivation has a quasi-causal association with sleep duration, with greater deprivation being related to

  7. Duration estimates within a modality are integrated sub-optimally

    PubMed Central

    Cai, Ming Bo; Eagleman, David M.

    2015-01-01

    Perceived duration can be influenced by various properties of sensory stimuli. For example, visual stimuli of higher temporal frequency are perceived to last longer than those of lower temporal frequency. How does the brain form a representation of duration when each of two simultaneously presented stimuli influences perceived duration in different way? To answer this question, we investigated the perceived duration of a pair of dynamic visual stimuli of different temporal frequencies in comparison to that of a single visual stimulus of either low or high temporal frequency. We found that the duration representation of simultaneously occurring visual stimuli is best described by weighting the estimates of duration based on each individual stimulus. However, the weighting performance deviates from the prediction of statistically optimal integration. In addition, we provided a Bayesian account to explain a difference in the apparent sensitivity of the psychometric curves introduced by the order in which the two stimuli are displayed in a two-alternative forced-choice task. PMID:26321965

  8. Cohabitation Duration and Transient Domesticity.

    PubMed

    Golub, Andrew; Reid, Megan; Strickler, Jennifer; Dunlap, Eloise

    2013-01-01

    Research finds that many impoverished urban Black adults engage in a pattern of partnering and family formation involving a succession of short cohabitations yielding children, a paradigm referred to as transient domesticity. Researchers have identified socioeconomic status, cultural adaptations, and urbanicity as explanations for aspects of this pattern. We used longitudinal data from the 2001 Survey of Income and Program Participation to analyze variation in cohabitation and marriage duration by race/ethnicity, income, and urban residence. Proportional hazards regression indicated that separation risk is greater among couples that are cohabiting, below 200% of the federal poverty line, and Black but is not greater among urban dwellers. This provides empirical demographic evidence to support the emerging theory of transient domesticity and suggests that both socioeconomic status and race explain this pattern. We discuss the implications of these findings for understanding transient domesticity and make recommendations for using the Survey of Income and Program Participation to further study this family formation paradigm.

  9. Stage-specific heat effects: timing and duration of heat waves alter demographic rates of a global insect pest.

    PubMed

    Zhang, Wei; Rudolf, Volker H W; Ma, Chun-Sen

    2015-12-01

    The frequency and duration of periods with high temperatures are expected to increase under global warming. Thus, even short-lived organisms are increasingly likely to experience periods of hot temperatures at some point of their life-cycle. Despite recent progress, it remains unclear how various temperature experiences during the life-cycle of organisms affect demographic traits. We simulated hot days (daily mean temperature of 30 °C) increasingly experienced under field conditions and investigated how the timing and duration of such hot days during the life cycle of Plutella xylostella affects adult traits. We show that hot days experienced during some life stages (but not all) altered adult lifespan, fecundity, and oviposition patterns. Importantly, the effects of hot days were contingent on which stage was affected, and these stage-specific effects were not always additive. Thus, adults that experience different temporal patterns of hot periods (i.e., changes in timing and duration) during their life-cycle often had different demographic rates and reproductive patterns. These results indicate that we cannot predict the effects of current and future climate on natural populations by simply focusing on changes in the mean temperature. Instead, we need to incorporate the temporal patterns of heat events relative to the life-cycle of organisms to describe population dynamics and how they will respond to future climate change.

  10. Auditory streaming of tones of uncertain frequency, level, and duration.

    PubMed

    Chang, An-Chieh; Lutfi, Robert A; Lee, Jungmee

    2015-12-01

    Stimulus uncertainty is known to critically affect auditory masking, but its influence on auditory streaming has been largely ignored. Standard ABA-ABA tone sequences were made increasingly uncertain by increasing the sigma of normal distributions from which the frequency, level, or duration of tones were randomly drawn. Consistent with predictions based on a model of masking by Lutfi, Gilbertson, Chang, and Stamas [J. Acoust. Soc. Am. 134, 2160-2170 (2013)], the frequency difference for which A and B tones formed separate streams increased as a linear function of sigma in tone frequency but was much less affected by sigma in tone level or duration. PMID:26723358

  11. Diffusion from a steady source of short duration

    NASA Astrophysics Data System (ADS)

    Palazzi, E.; De Faveri, M.; Fumarola, G.; Ferraiolo, G.

    Releases of short duration can result from safety valves, rupture disks, sudden failures of storage tanks, reactors, lines, etc. Models for atmospheric dispersion of continuous, constant flow rate or instantaneous emissions lack reliability in those instances, because they do not take into account certain indispensable parameters, such as release duration, release starting time and exposure time. This paper offers a mathematical model which has been developed and validated with field experiments, with the intention of supplying reference material for design purposes (relief valves, plant design and layout) or for predicting potential consequences of a leakage, such as fires, explosions, contaminations.

  12. Auditory streaming of tones of uncertain frequency, level, and duration.

    PubMed

    Chang, An-Chieh; Lutfi, Robert A; Lee, Jungmee

    2015-12-01

    Stimulus uncertainty is known to critically affect auditory masking, but its influence on auditory streaming has been largely ignored. Standard ABA-ABA tone sequences were made increasingly uncertain by increasing the sigma of normal distributions from which the frequency, level, or duration of tones were randomly drawn. Consistent with predictions based on a model of masking by Lutfi, Gilbertson, Chang, and Stamas [J. Acoust. Soc. Am. 134, 2160-2170 (2013)], the frequency difference for which A and B tones formed separate streams increased as a linear function of sigma in tone frequency but was much less affected by sigma in tone level or duration.

  13. Climate Change Impacts on Snow and Soil Frost Depth and Duration in Southern Wisconsin, USA

    NASA Astrophysics Data System (ADS)

    Murdock, E. A.; Potter, K. W.

    2013-12-01

    S