Sample records for predicting liquid immiscibility

  1. Method of removing an immiscible lubricant from a refrigeration system and apparatus for same

    DOEpatents

    Spauschus, Hans O.; Starr, Thomas L.

    1999-01-01

    A method of separating an immiscible lubricant from a liquid refrigerant in a refrigerating system including a compressor, a condenser, an expansion device and an evaporator, wherein the expansion device is connected to the condenser by a liquid refrigerant flow line for liquid refrigerant and immiscible lubricant. The method comprising slowing the rate of flow of the liquid refrigerant and immiscible lubricant between the condenser and the expansion device such that the liquid refrigerant and the immiscible lubricant separate based upon differences in density. The method also comprises collecting the separated immiscible lubricant in a collection chamber in fluid communication with the separated immiscible lubricant. Apparatus for performing the method is also disclosed.

  2. Method of removing an immiscible lubricant from a refrigeration system and apparatus for same

    DOEpatents

    Spauschus, H.O.; Starr, T.L.

    1999-03-30

    A method is described for separating an immiscible lubricant from a liquid refrigerant in a refrigerating system including a compressor, a condenser, an expansion device and an evaporator, wherein the expansion device is connected to the condenser by a liquid refrigerant flow line for liquid refrigerant and immiscible lubricant. The method comprising slowing the rate of flow of the liquid refrigerant and immiscible lubricant between the condenser and the expansion device such that the liquid refrigerant and the immiscible lubricant separate based upon differences in density. The method also comprises collecting the separated immiscible lubricant in a collection chamber in fluid communication with the separated immiscible lubricant. Apparatus for performing the method is also disclosed. 3 figs.

  3. Evaporative Mass Transfer Behavior of a Complex Immiscible Liquid

    PubMed Central

    McColl, Colleen M.; Johnson, Gwynn R.; Brusseau, Mark L.

    2010-01-01

    A series of laboratory experiments was conducted with a multiple-component immiscible liquid, collected from the Picillo Farm Superfund Site in Rhode Island, to examine liquid-vapor mass-transfer behavior. The immiscible liquid, which comprises solvents, oils, pesticides, PCBs, paint sludges, explosives, and other compounds, was characterized using gas chromatography and gas chromatography/mass spectrometry to determine mole fractions of selected constituents. Batch experiments were conducted to evaluate equilibrium phase-partitioning behavior. Two sets of air-stripping column studies were conducted to examine the mass-transfer dynamics of five selected target compounds present in the immiscible-liquid mixture. One set of column experiments was designed to represent a system with free-phase immiscible liquid present; the other was designed to represent a system with a residual phase of immiscible liquid. Initial elution behavior of all target components generally appeared to be ideal for both systems, as the initial vapor-phase concentrations were similar to vapor-phase concentrations measured for the batch experiment and those estimated using Raoult’s law (incorporating the immiscible-liquid composition data). Later-stage removal of 1,2-dichlorobenzene appeared to be rate limited for the columns containing free-phase immiscible liquid and no porous medium. Conversely, evaporative mass transfer appeared to be ideal throughout the experiment conducted with immiscible liquid distributed relatively uniformly as a residual phase within a sandy porous medium. PMID:18614196

  4. Evaporative mass transfer behavior of a complex immiscible liquid.

    PubMed

    McColl, Colleen M; Johnson, Gwynn R; Brusseau, Mark L

    2008-09-01

    A series of laboratory experiments was conducted with a multiple-component immiscible liquid, collected from the Picillo Farm Superfund Site in Rhode Island, to examine liquid-vapor mass-transfer behavior. The immiscible liquid, which comprises solvents, oils, pesticides, PCBs, paint sludges, explosives, and other compounds, was characterized using gas chromatography and gas chromatography/mass spectrometry to determine mole fractions of selected constituents. Batch experiments were conducted to evaluate equilibrium phase-partitioning behavior. Two sets of air-stripping column studies were conducted to examine the mass-transfer dynamics of five selected target compounds present in the immiscible-liquid mixture. One set of column experiments was designed to represent a system with free-phase immiscible liquid present; the other was designed to represent a system with a residual phase of immiscible liquid. Initial elution behavior of all target components generally appeared to be ideal for both systems, as the initial vapor-phase concentrations were similar to vapor-phase concentrations measured for the batch experiment and those estimated using Raoult's law (incorporating the immiscible-liquid composition data). Later-stage removal of 1,2-dichlorobenzene appeared to be rate limited for the columns containing free-phase immiscible liquid and no porous medium. Conversely, evaporative mass transfer appeared to be ideal throughout the experiment conducted with immiscible liquid distributed relatively uniformly as a residual phase within a sandy porous medium.

  5. Liquid-liquid phase separation and core-shell structure of ternary Al-In-Sn immiscible alloys

    NASA Astrophysics Data System (ADS)

    Zhao, Degang; Bo, Lin; Wang, Lin; Li, Shanshan

    2018-04-01

    In this study, the liquid-liquid phase separation of four kinds of ternary immiscible Al-In-Sn melts was investigated with resistivity and thermodynamics method. The nonlinear changes in ρ-T and DSC curves of Al-In-Sn immiscible alloys above monotectic reaction temperature revealed the occurrence of liquid-liquid phase separation of Al-In-Sn melts. The monotectic temperature, liquid phase separation temperature and immiscible gap of ternary Al-In-Sn alloys were lower than those of binary Al-In alloy. With the Al content decreasing, the immiscible gap of Al-In-Sn alloy decreased. The composition of Al80In10Sn10, Al70In15Sn15, Al60In20Sn20 and Al50In25Sn25 was located in the immiscible zone of Al-In-Sn system. Due to the differences of Stokes effect, Marangoni convection and immiscible gap, the solidification morphology of four kinds of Al-In-Sn monotectic alloy was different. The core–shell structure of Al-In-Sn monotectic alloy can form within a certain range of composition.

  6. The nature and barium partitioning between immiscible melts - A comparison of experimental and natural systems with reference to lunar granite petrogenesis

    NASA Technical Reports Server (NTRS)

    Neal, C. R.; Taylor, L. A.

    1989-01-01

    Elemental partitioning between immiscible melts has been studied using experimental liquid-liquid Kds and those determined by analysis of immiscible glasses in basalt mesostases in order to investigate lunar granite petrogenesis. Experimental data show that Ba is partitioned into the basic immiscible melt, while probe analysis results show that Ba is partitioned into the granitic immiscible melt. It is concluded that lunar granite of significant size can only occur in a plutonic or deep hypabyssal environment.

  7. Low gravity containerless processing of immiscible gold rhodium alloys

    NASA Technical Reports Server (NTRS)

    Andrews, J. Barry

    1986-01-01

    Under normal one-g conditions immiscible alloys segregate extensively during solidification due to sedementation of the more dense of the immiscible liquid phases. However, under low-g conditions it should be possible to form a dispersion of the two immiscible liquids and maintain this dispersed structure during solidification. Immiscible (hypermonotectic) gold-rhodium alloys were processed in the Marshall Space Flight Center 105 meter drop tube in order to investigate the influence of low gravity, containerless solidification on their microstructure. Hypermonotectic alloys composed of 65 atomic % rhodium exhibited a tendency for the gold rich liquid to wet the outer surface of the containerless processed samples. This tendency led to extensive segregation in several cases. However, well dispersed microstructures consisting of 2 to 3 micron diameter rhodium-rich spheres in a gold-rich matrix were produced in 23.4 atomic % rhodium alloys. This is one of the best dispersions obtained in research on immiscible alloy-systems to data.

  8. Layered interfaces between immiscible liquids studied by density-functional theory and molecular-dynamics simulations.

    PubMed

    Geysermans, P; Elyeznasni, N; Russier, V

    2005-11-22

    We present a study of the structure in the interface between two immiscible liquids by density-functional theory and molecular-dynamics calculations. The liquids are modeled by Lennard-Jones potentials, which achieve immiscibility by suppressing the attractive interaction between unlike particles. The density profiles of the liquids display oscillations only in a limited part of the simple liquid-phase diagram (rho,T). When approaching the liquid-vapor coexistence, a significant depletion appears while the layering behavior of the density profile vanishes. By analogy with the liquid-vapor interface and the analysis of the adsorption this behavior is suggested to be strongly related to the drying transition.

  9. Ferrobasalt-rhyolite immiscibility in tholeiitic volcanic and plutonic series (Invited)

    NASA Astrophysics Data System (ADS)

    Charlier, B.; Namur, O.; Kamenetsky, V. S.; Grove, T. L.

    2013-12-01

    One atmosphere experiments show that silicate liquid immiscibility develops between Fe-rich and Si-rich melts below 1000-1020°C in compositionally diverse lavas that represent classical tholeiitic trends, such as Mull, Iceland, Snake River Plain and Sept Iles. Extreme iron enrichment along the evolution trend is not necessary; immiscibility also develops during iron depletion and silica enrichment after Fe-Ti oxide saturation. Natural liquid lines of descent for major tholeiitic series also approach or intersect the experimentally-defined compositional space of immiscibility. The importance of ferrobasalt-rhyolite unmixing in both volcanic and plutonic environments is supported by worldwide occurrence of immiscible globules in the mesostasis of erupted basalts, and by unmixed melt inclusions in cumulus phases of major layered intrusions such as Sept Iles, Skaergaard and Sudbury. A clear case of liquid immiscibility is also recorded in intrusive tholeiitic gabbros from the Siberian Large Igneous Province and is evidenced by textures and compositions of millimeter-sized silicate melt pools trapped in native iron. An important implication of immiscibility in natural ferrobasaltic provinces is the development of a compositional gap characterized by the absence of intermediate compositions, a major feature observed in many tholeiitic provinces and referred to as the Daly gap. The compositions of experimental silica-rich immiscible melts coincide with those of natural rhyolites with high FeOtot and low Al2O3, which suggests a potential role for large-scale immiscibility in the petrogenesis of late-stage ferroan silicic melts. No evidence for the paired ferrobasaltic melt is observed in volcanic provinces, probably because of its uneruptable characteristics. Instead, Fe-Ti×P-rich gabbros crystallized at depth and are the cumulate products of immiscible Fe-rich melts in plutonic settings, a feature clearly evidenced in the Sept Iles intrusion. The production of immiscible Fe-Ti-Ca-P liquids has also important implications for the formation of some iron deposits associated with alkaline lavas.

  10. A numeric investigation of co-flowing liquid streams using the Lattice Boltzmann Method

    NASA Astrophysics Data System (ADS)

    Somogyi, Andy; Tagg, Randall

    2007-11-01

    We present a numerical investigation of co-flowing immiscible liquid streams using the Lattice Boltzmann Method (LBM) for multi component, dissimilar viscosity, immiscible fluid flow. When a liquid is injected into another immiscible liquid, the flow will eventually transition from jetting to dripping due to interfacial tension. Our implementation of LBM models the interfacial tension through a variety of techniques. Parallelization is also straightforward for both single and multi component models as only near local interaction is required. We compare the results of our numerical investigation using LBM to several recent physical experiments.

  11. Hybrid multiphase CFD simulation for liquid-liquid interfacial area prediction in annular centrifugal contactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wardle, K.E.

    2013-07-01

    Liquid-liquid contacting equipment used in solvent extraction processes has the dual purpose of mixing and separating two immiscible fluids. Consequently, such devices inherently encompass a wide variety of multiphase flow regimes. A hybrid multiphase computational fluid dynamics (CFD) solver which combines the Eulerian multi-fluid method with VOF (volume of fluid) sharp interface capturing has been developed for application to annular centrifugal contactors. This solver has been extended to enable prediction of mean droplet size and liquid-liquid interfacial area through a single moment population balance method. Simulations of liquid-liquid mixing in a simplified geometry and a model annular centrifugal contactor aremore » reported with droplet breakup/coalescence models being calibrated versus available experimental data. Quantitative comparison is made for two different housing vane geometries and it is found that the predicted droplet size is significantly smaller for vane geometries which result in higher annular liquid holdup.« less

  12. Variable focus photographic lens without mechanical movements

    NASA Astrophysics Data System (ADS)

    Chen, Jiabi; Peng, Runling; Zhuang, Songlin

    2007-09-01

    A novel design of a zoom lens system without motorized movements is proposed. The lens system consists of a fixed lens and two double-liquid variable-focus lenses. The liquid lenses, made out of two immiscible liquids, are based on the principle of electrowetting: an effect controlling the wetting properties of a liquid on a solid by modifying the applied voltage at the solid-liquid interface. The structure and principle of the lens system are introduced in this paper. And detailed calculations and simulation examples are presented to predict how two liquid lenses are related to meet the basic requirements of zoom lenses.

  13. Drop impact onto a thin film: Miscibility effect

    NASA Astrophysics Data System (ADS)

    Chen, Ningli; Chen, H.; Amirfazli, A.

    2017-09-01

    In this work a systematic experimental study was performed to understand the process of liquid drop impact onto a thin film made of a different liquid from drop. The drop and film liquids can be miscible or immiscible. Three general outcomes of deposition, crown formation without splashing, and splashing, were observed in the advancing phase of the drop impact onto a solid surface covered by either a miscible or an immiscible thin film. However, for a miscible film, a larger Weber number and film thickness are needed for the formation of a crown and splashing comparing with immiscible cases. The advancing phase of drop impact onto a thin immiscible film with a large viscosity is similar to that of drop impact onto a dry surface; for a miscible film viscous film, the behavior is far from that of a dry surface. The behavior of liquid lamella in the receding phase of drop impact onto a thin miscible film is reported for the first time. The results show that immiscibility is not a necessary condition for the existence of a receding phase. The existence of a receding phase is highly dependent on the interfacial tension between the drop and the film. The miscibility can significantly affect the receding morphology as it will cause mixing of the two liquids.

  14. Process for blending coal with water immiscible liquid

    DOEpatents

    Heavin, Leonard J.; King, Edward E.; Milliron, Dennis L.

    1982-10-26

    A continuous process for blending coal with a water immiscible liquid produces a uniform, pumpable slurry. Pulverized raw feed coal and preferably a coal derived, water immiscible liquid are continuously fed to a blending zone (12 and 18) in which coal particles and liquid are intimately admixed and advanced in substantially plug flow to form a first slurry. The first slurry is withdrawn from the blending zone (12 and 18) and fed to a mixing zone (24) where it is mixed with a hot slurry to form the pumpable slurry. A portion of the pumpable slurry is continuously recycled to the blending zone (12 and 18) for mixing with the feed coal.

  15. Identification of Gravity-Related Effects on Crystal Growth From Melts With an Immiscibility Gap

    NASA Technical Reports Server (NTRS)

    Kassemi, M.; Sayir, A.; Farmer, S.

    1999-01-01

    This work involves an experimental-numerical approach to study the effects of natural and Marangoni convections on solidification of single crystals from a silicate melt with a liquid-liquid immiscibility gap. Industrial use of crystals grown from silicate melts is becoming increasingly important in electronic, optical, and high temperature structural applications. Even the simplest silicate systems like Al203-SiO2 have had, and will continue to have, a significant role in the development of traditional and advanced ceramics. A unique feature of crystals grown from the silicate systems is their outstanding linear electro-optic properties. They also exhibit exceptionally high optical rotativity. As a result, these crystals are attractive materials for dielectric, optical, and microwave applications. Experimental work in our laboratory has indicated that directional solidification of a single crystal mullite appears to be preceded by liquid-liquid phase separation in the melt. Disruption of the immiscible state results in crystallization of a two phase structure. There is also evidence that mixing in the melt caused by density-driven convection can significantly affect the stability of the immiscible liquid layers and result in poly-crystalline growth. On earth, the immiscible state has only been observed for small diameter crystals grown in float zone systems where natural convection is almost negligible. Therefore, it is anticipated that growth of large single crystals from silicate melts would benefit from microgravity conditions because of the reduction of the natural convective mixing. The main objective of this research is to determine the effects of transport processes on the phase separation in the melt during growth of a single crystal while addressing the following issues: (1) When do the immiscible layers form and are they real?; (2) What are the main physical characteristics of the immiscible liquids?; and (3) How mixing by natural or Marangoni convection affects the stability of the phase separated melt.

  16. Measuring Interfacial Tension Between Immiscible Liquids

    NASA Technical Reports Server (NTRS)

    Rashidnia, Nasser; Balasubramaniam, R.; Delsignore, David M.

    1995-01-01

    Glass capillary tube technique measures interfacial tension between two immiscible liquids. Yields useful data over fairly wide range of interfacial tensions, both for pairs of liquids having equal densities and pairs of liquids having unequal densities. Data on interfacial tensions important in diverse industrial chemical applications, including enhanced extraction of oil; printing; processing foods; and manufacture of paper, emulsions, foams, aerosols, detergents, gel encapsulants, coating materials, fertilizers, pesticides, and cosmetics.

  17. Containerless, Low-Gravity Undercooling of Ti-Ce Alloys in the MSFC Drop Tube

    NASA Technical Reports Server (NTRS)

    Robinson, M. B.; Rathz, T. J.; Li, D.; Williams, G.; Workman, G.

    1999-01-01

    Previous tests of the classical nucleation theory as applied to liquid-liquid gap miscibility systems found a discrepancy between experiment and theory in the ability to undercool one of the liquids before the L1-L2 separation occurs. To model the initial separation process in a two-phase liquid mixture, different theoretical approaches, such as free-energy gradient and density gradient theories, have been put forth. If there is a large enough interaction between the critical liquid and the crucible, both models predict a wetting temperature (T(sub w)) above which the minority liquid perfectly wets and layers the crucible interface, but only on one side of the immiscibility dome. Materials with compositions on the other side of the dome will have simple surface adsorption by the minority liquid before bulk separation occurs when the coexistence (i.e., binoidal) line in reached. If the interaction between the critical liquid and the crucible were to decrease, T(sub w) would increase, eventually approaching the critical consolute temperature (T(sub cc)). If this situation occurs, then there could be large regions of the miscibility gap where non-perfect wetting conditions prevail resulting in droplets of L1 liquid at the surface having a non-zero contact angle. The resulting bulk structure will then depend on what happens on the surface and the subsequent processing conditions. In the past several decades, many experiments in space have been performed on liquid metal binary immiscible systems for the purpose of determining the effects that different crucibles may have on the wetting and separation process of the liquids. Potard performed experiments that showed different crucible materials could cause the majority phase to preferentially wet the container and thus produce a dispersed microstructure of the minority phase. Several other studies have been performed on immiscibles in a semi-container environment using an emulsion technique. Only one previous study was performed using completely containerless processing of immiscible metals and the results of that investigation are similar to some of the emulsion studies. In all the studies, surface wetting was attributed as the cause for the similar microstructures or the asymmetry in the ability to undercool the liquid below the binoidal on one side of the immiscibility dome. By removing the container completely from the separation process, it was proposed that the loss of the crucible/liquid interaction would produce a large shift in T(sub w) and thus change the wetting characteristics at the surface. By investigating various compositions across the miscibility gap, a change in the type and amount of liquid wetting at the surface of a containerless droplet should change the surface nucleating behavior of the droplet - whether it be the liquid-liquid wetting or the liquid-to-solid transition. Undercooling of the liquid into the metastable region should produce significant differences in the separation process and the microstructure upon solidification. In this study, we attempt to measure these transitions by monitoring the temperature of the sample by optical pyrometry. Microstructural analysis will be made to correlate with the degree of undercooling and the separation mechanisms involved.

  18. Rare earth element selenochemistry of immiscible liquids and zircon at Apollo 14 - An ion probe study of evolved rocks on the moon

    NASA Technical Reports Server (NTRS)

    Snyder, Gregory A.; Taylor, Lawrence A.; Crozaz, Ghislaine

    1993-01-01

    Results are presented of trace-element analyses of three lunar zircons. The major-element and REE compositions were determined using electron microprobes, and a correction was made for zircon for Zr-Si-O molecular interferences in the La to Pr mass region. The three zircons were found to exhibit similar REE abundances and patterns. Results of the analyses confirm earlier studies (Hess et al., 1975; Watson, 1976; Neal and Taylor, 1989) on the partitioning behavior of trace elements in immiscible liquid-liquid pairs. The results also support the postulated importance of silicate liquid immiscibility in the differentiation of the upper mantle and crust of the moon.

  19. Liquid-liquid phase separation and solidification behavior of Al55Bi36Cu9 monotectic alloy with different cooling rates

    NASA Astrophysics Data System (ADS)

    Bo, Lin; Li, Shanshan; Wang, Lin; Wu, Di; Zuo, Min; Zhao, Degang

    2018-03-01

    The cooling rate has a significant effect on the solidification behavior and microstructure of monotectic alloy. In this study, different cooling rate was designed through casting in the copper mold with different bore diameters. The effects of different cooling rate on the solidification behavior of Al55Bi36Cu9 (at.%) immiscible alloy have been investigated. The liquid-liquid phase separation of Al55Bi36Cu9 immiscible alloy melt was investigated by resistivity test. The solidification microstructure and phase analysis of Al55Bi36Cu9 immiscible alloy were performed by the SEM and XRD, respectively. The results showed that the liquid-liquid phase separation occurred in the solidification of Al55Bi36Cu9 monotectic melt from 917 °C to 653 °C. The monotectic temperature, liquid phase separation temperature and immiscibility zone of Al55Bi36Cu9 monotectic alloy was lower than those of Al-Bi binary monotectic alloy. The solidification morphology of Al55Bi36Cu9 monotectic alloy was very sensitive to the cooling rate. The Al/Bi core-shell structure formed when Al55Bi36Cu9 melt was cast in the copper mold with a 8 mm bore diameter.

  20. Coupled Growth in Hypermonotectics

    NASA Technical Reports Server (NTRS)

    Andrews, J. Barry; Coriell, Sam R.

    2001-01-01

    The overall objective of this project is to obtain a fundamental understanding of the physics controlling solidification processes in immiscible alloy systems. The investigation involves both experimentation and the development of a model describing solidification in monotectic systems. The experimental segment was designed to first demonstrate that it is possible to obtain interface stability and steady state coupled growth in hypermonotectic alloys through microgravity processing. Microgravity results obtained to date have verified this possibility. Future flights will permit experimental determination of the limits of interface stability and the influence of alloy composition and growth rate on microstructure. The objectives of the modeling segment of the investigation include prediction of the limits of interface stability, modeling of convective flow due to residual acceleration, and the influence of surface tension driven flows at the solidification interface. The study of solidification processes in immiscible alloy systems is hindered by the inherent convective flow that occurs on Earth and by the possibility of sedimentation of the higher density immiscible liquid phase. It has been shown that processing using a high thermal gradient and a low growth rate can lead to a stable macroscopically planar growth front even in hypermonotectic alloys. Processing under these growth conditions can avoid constitutional supercooling and prevent the formation of the minor immiscible liquid phase in advance of the solidification front. However, the solute depleted boundary layer that forms in advance of the solidification front is almost always less dense than the liquid away from the solidification front. As a result, convective instability is expected. Ground based testing has indicated that convection is a major problem in these alloy systems and leads to gross compositional variations along the sample and difficulties maintaining interface stability. Sustained low gravity processing conditions are necessary in order to minimize these problems and obtain solidification conditions which approach steady state.

  1. Immiscible impact dynamics of droplets onto millimetric films

    NASA Astrophysics Data System (ADS)

    Shaikh, S.; Toyofuku, G.; Hoang, R.; Marston, J. O.

    2018-01-01

    The impact of liquid droplets onto a film of an immiscible liquid is studied experimentally across a broad range of parameters [Re = O(101-103), We = O(102-103)] with the aid of high-speed photography and image analysis. Above a critical impact parameter, Re^{1/2}We^{1/4} ≈ 100, the droplet fragments into multiple satellite droplets, which typically occurs as the result of a fingering instability. Statistical analysis indicates that the satellite droplets are approximately log-normally distributed, in agreement with some previous studies and the theoretical predictions of Wu (Prob Eng Mech 18:241-249, 2003). However, in contrast to a recent study by Lhuissier et al. (Phys Rev Lett 110:264503, 2013), we find that it is the modal satellite diameter, not the mean diameter, that scales inversely with the impact speed (or Weber number) and that the dependence is d_{mod} ˜ We^{-1/4}.

  2. Flash-point prediction for binary partially miscible mixtures of flammable solvents.

    PubMed

    Liaw, Horng-Jang; Lu, Wen-Hung; Gerbaud, Vincent; Chen, Chan-Cheng

    2008-05-30

    Flash point is the most important variable used to characterize fire and explosion hazard of liquids. Herein, partially miscible mixtures are presented within the context of liquid-liquid extraction processes. This paper describes development of a model for predicting the flash point of binary partially miscible mixtures of flammable solvents. To confirm the predictive efficacy of the derived flash points, the model was verified by comparing the predicted values with the experimental data for the studied mixtures: methanol+octane; methanol+decane; acetone+decane; methanol+2,2,4-trimethylpentane; and, ethanol+tetradecane. Our results reveal that immiscibility in the two liquid phases should not be ignored in the prediction of flash point. Overall, the predictive results of this proposed model describe the experimental data well. Based on this evidence, therefore, it appears reasonable to suggest potential application for our model in assessment of fire and explosion hazards, and development of inherently safer designs for chemical processes containing binary partially miscible mixtures of flammable solvents.

  3. Phase separation kinetics in immiscible liquids

    NASA Technical Reports Server (NTRS)

    Ng, Lee H.; Sadoway, Donald R.

    1987-01-01

    The kinetics of phase separation in the succinonitrile-water system are being investigated. Experiments involve initial physical mixing of the two immiscible liquids at a temperature above the consolute, decreasing the temperature into the miscibility gap, followed by iamging of the resultant microstructure as it evolves with time. Refractive index differences allow documentation of the changing microstructures by noninvasive optical techniques without the need to quench the liquid structures for analysis.

  4. Phase separation kinetics in immiscible liquids

    NASA Technical Reports Server (NTRS)

    Sadoway, D. R.

    1986-01-01

    The kinetics of phase separation in the succinonitrile-water system are being investigated. Experiments involve initial physical mixing of the two immiscible liquids at a temperature above the consolute, decreasing the temperature into the miscibility gap, followed by imaging of the resultant microstructure as it evolves with time. Refractive index differences allow documentation of the changing microstructures by noninvasive optical techniques without the need to quench the liquid structures for analysis.

  5. Ultrathin-skinned asymmetric membranes by immiscible solvents treatment

    DOEpatents

    Friesen, Dwayne T.; Babcock, Walter C.

    1989-01-01

    Improved semipermeable asymmetric fluid separation membranes useful in gas, vapor and liquid separations are disclosed. The membranes are prepared by substantially filling the pores of asymmetric cellulosic semipermeable membranes having a finely porous layer on one side thereof with a water immiscible organic liquid, followed by contacting the finely porous layer with water.

  6. Measurement of interfacial tension of immiscible liquid pairs in microgravity

    NASA Technical Reports Server (NTRS)

    Weinberg, Michael C.; Neilson, George F.; Baertlein, Carl; Subramanian, R. Shankar; Trinh, Eugene H.

    1994-01-01

    A discussion is given of a containerless microgravity experiment aimed at measuring the interfacial tension of immiscible liquid pairs using a compound drop rotation method. The reasons for the failure to execute such experiments in microgravity are described. Also, the results of post-flight analyses used to confirm our arguments are presented.

  7. Ultrathin-skinned asymmetric membranes by immiscible solvents treatment

    DOEpatents

    Friesen, D.T.; Babcock, W.C.

    1989-11-28

    Improved semipermeable asymmetric fluid separation membranes useful in gas, vapor and liquid separations are disclosed. The membranes are prepared by substantially filling the pores of asymmetric cellulosic semipermeable membranes having a finely porous layer on one side thereof with a water immiscible organic liquid, followed by contacting the finely porous layer with water.

  8. Multiphase inclusions in plagioclase from anorthosites in the Stillwater Complex, Montana: implications for the origin of the anorthosites

    USGS Publications Warehouse

    Loferski, P.J.; Arculus, R.J.

    1993-01-01

    Multiphase inclusions, consisting of clinopyroxene+ilmenite+apatite, occur within cumulus plagioclase grains from anorthosites in the Stillwater Complex, Montana, and in other rocks from the Middle Banded series of the intrusion. The textures and constant modal mineralogy of the inclusions indicate that they were incorporated in the plagioclase as liquid droplets that later crystallized rather than as solid aggregates. Their unusual assemblage, including a distinctive manganiferous ilmenite and the presence of baddeleyite (ZrO2), indicates formation from an unusual liquid. A process involving silicater liquid immiscibility is proposed, whereby small globules of a liquid enriched in Mg, Fe, Ca, Ti, P, REE, Zr and Mn exsolved from the main liquid that gave rise to the anorthosites, became trapped in the plagioclase, and later crystallized to form the inclusions. The immiscibility could have occurred locally within compositional boundaries around crystallizing plagioclase grains or it could have occurred pervasively throughout the liquid. It is proposed that the two immiscible liquids were analogous, n terms of their melt structures, to immiscible liquid pairs reported in the literature both in experiments and in natural basalts. For the previously reported pairs, immiscibility is between a highly polymerized liquid, typically granitic in composition, and a depolymerized liquid, typically ferrobasaltic in composition. In the case of the anorthosites, the depolymerized liquid is represented by the inclusions, and the other liquid was a highly polymerized aluminosilicate melt with a high normative plagioclase content from which the bulk of the anorthosites crystallized. Crystallization of the anorthosites from this highly polymerized liquid accounts for various distinctive textural and chemical features of the anorthosites compared to other rocks in the Stillwater Complex. A lack of correlation between P contents and chondrite-normalized rare earth element (REE) ratios of plagioclase separates indicates that the amount of apatite in the inclusions is too low to affect the REE signature of the plagioclase separates. Nevertheless, workers should use caution when attempting REE modelling studies of cumulates having low REE contents, because apatite-bearing inclusions can potentially cause problems. ?? 1993 Springer-Verlag.

  9. Automated hollow-fiber liquid-phase microextraction followed by liquid chromatography with mass spectrometry for the determination of benzodiazepine drugs in biological samples.

    PubMed

    Nazaripour, Ali; Yamini, Yadollah; Ebrahimpour, Behnam; Fasihi, Javad

    2016-07-01

    In this study, two-phase hollow-fiber liquid-phase microextraction and three-phase hollow-fiber liquid-phase microextraction based on two immiscible organic solvents were compared for extraction of oxazepam and Lorazepam. Separations were performed on a liquid chromatography with mass spectrometry instrument. Under optimal conditions, three-phase hollow-fiber liquid-phase microextraction based on two immiscible organic solvents has a better extraction efficiency. In a urine sample, for three-phase hollow fiber liquid-phase microextraction based on two immiscible organic solvents, the calibration curves were found to be linear in the range of 0.6-200 and 0.9-200 μg L(-1) and the limits of detection were 0.2 and 0.3 μg L(-1) for oxazepam and lorazepam, respectively. For two-phase hollow fiber liquid-phase microextraction, the calibration curves were found to be linear in the range of 1-200 and 1.5-200 μg L(-1) and the limits of detection were 0.3 and 0.5 μg L(-1) for oxazepam and lorazepam, respectively. In a urine sample, for three-phase hollow-fiber-based liquid-phase microextraction based on two immiscible organic solvents, relative standard deviations in the range of 4.2-4.5% and preconcentration factors in the range of 70-180 were obtained for oxazepam and lorazepam, respectively. Also for the two-phase hollow-fiber liquid-phase microextraction, preconcentration factors in the range of 101-257 were obtained for oxazepam and lorazepam, respectively. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Interfacial layering and capillary roughness in immiscible liquids.

    PubMed

    Geysermans, P; Pontikis, V

    2010-08-21

    The capillary roughness and the atomic density profiles of extended interfaces between immiscible liquids are determined as a function of the interface area by using molecular dynamics and Lennard-Jones (12-6) potentials. We found that with increasing area, the interface roughness diverges logarithmically, thus fitting the theoretical mean-field prediction. In systems small enough for the interfacial roughness not to blur the structural details, atomic density profiles across the fluid interface are layered with correlation length in the range of molecular correlations in liquids. On increasing the system size, the amplitude of the thermally excited position fluctuations of the interface increases, thus causing layering to rapidly vanish, if density profiles are computed without special care. In this work, we present and validate a simple method, operating in the direct space, for extracting from molecular dynamics trajectories the "intrinsic" structure of a fluid interface that is the local density profile of the interface cleaned from capillary wave effects. Estimated values of interfacial properties such as the tension, the intrinsic width, and the lower wavelength limit of position fluctuations are in agreement with results collected from the literature.

  11. Benard and Marangoni convection in multiple liquid layers

    NASA Technical Reports Server (NTRS)

    Koster, Jean N.; Prakash, A.; Fujita, D.; Doi, T.

    1992-01-01

    Convective fluid dynamics of immiscible double and triple liquid layers are considered. First results on multilayer convective flow, in preparation for spaceflight experiment aboard IML-2 (International Microgravity Laboratory), are discussed. Convective flow in liquid layers with one or two horizontal interfaces with heat flow applied parallel to them is one of the systems investigated. The second system comprises two horizontally layered immiscible liquids heated from below and cooled from above, that is, heat flow orthogonal to the interface. In this system convection results due to the classical Benard instability.

  12. FIELD TEST OF CYCLODEXTRIN FOR ENHANCED IN-SITU FLUSHING OF MULTIPLE-COMPONENT IMMISCIBLE ORGANIC LIQUID CONTAMINATION: PROJECT OVERVIEW AND INITIAL RESULTS

    EPA Science Inventory

    The purpose of this paper is to present an overview and the initial results of a pilot-scale experiment designated to test the use of cyclodextrin for enhanced in-situ flushing of an aquifer contaminated by immiscible liquid. This is the first field test of this technology, terme...

  13. Containerless low gravity processing of glass forming and immiscible alloys

    NASA Technical Reports Server (NTRS)

    Andrews, J. Barry; Briggs, Craig; Robinson, M. B.

    1990-01-01

    Under normal one-g conditions immiscible alloys segregate extensively during solidification due to sedimentation of the more dense of the immiscible liquid phases. Immiscible (hypermonotectic) gold-rhodium alloys were processed in the 100 meter drop tube under low gravity, containerless conditions to determine the feasibility of producing dispersed structures. Three alloy compositions were utilized. Alloys containing 10 percent by volume of the gold-rich hypermonotectic phase exhibited a tendency for the gold-rich liquid to wet the outer surface of the samples. This wetting tendency led to extensive segregation in several cases. Alloys containing 80 and 90 percent by volume of the gold-rich phase possessed completely different microstructures from the 10 percent samples when processed under low-g, containerless conditions. Several samples exhibited microstructures consisting of well dispersed 2 to 3 microns diameter rhodium-rich spheres in a gold-rich matrix.

  14. Redox chemistry at liquid/liquid interfaces

    NASA Technical Reports Server (NTRS)

    Volkov, A. G.; Deamer, D. W.

    1997-01-01

    The interface between two immiscible liquids with immobilized photosynthetic pigments can serve as the simplest model of a biological membrane convenient for the investigation of photoprocesses accompanied by spatial separation of charges. As it follows from thermodynamics, if the resolvation energies of substrates and products are very different, the interface between two immiscible liquids may act as a catalyst. Theoretical aspects of charge transfer reactions at oil/water interfaces are discussed. Conditions under which the free energy of activation of the interfacial reaction of electron transfer decreases are established. The activation energy of electron transfer depends on the charges of the reactants and dielectric permittivity of the non-aqueous phase. This can be useful when choosing a pair of immiscible solvents to decrease the activation energy of the reaction in question or to inhibit an undesired process. Experimental interfacial catalytic systems are discussed. Amphiphilic molecules such as chlorophyll or porphyrins were studied as catalysts of electron transfer reactions at the oil/water interface.

  15. (Energetics of silicate melts from thermal diffusion studies)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-01-01

    Research during the past year has been concentrated in four major areas. We are continuing work initiated during the first two years on modelling thermal diffusion on multicomponent silicate liquids. We have derived appropriate relations for ternary and quaternary systems and reanalyzed experimental thermal diffusion data for the ternary system fayalite-leucite-silica. In our manuscript entitled Thermal Diffusion in Petrology'', to be published in Adv. in Phy. Geochem., we show that these model results independently recover the compositional extent and temperature of liquid immiscibility in this system. Such retrieval provides a rigorous test of our theoretical predictions and simplified treatment ofmore » complex silicate liquids reported in Geochimica Cosmochimica Acta in 1986. The usefulness of our Soret research in providing mixing energies of silicate liquids has been recently confirmed by Ghiorso (1987, Cont. Min. Pet.). This demonstration provides a strategy for incorporating Soret data into the calibration of phase equilibrium-based solution models such as the one developed by Ghiorso. During the past year we also have resumed our studies of thermal diffusion in borosilicate glasses which also exhibit liquid immiscibility. Our objectives in studying these systems are (1) to further test of our multicomponent thermal diffusion model and (2) to provide quantitative constraints on the mixing properties of these glass-forming systems which are important for evaluating their suitability for storage of high-level nuclear waste. 16 refs.« less

  16. FINITE-ELEMENT ANALYSIS OF MULTIPHASE IMMISCIBLE FLOW THROUGH SOILS

    EPA Science Inventory

    A finite-element model is developed for multiphase flow through soil involving three immiscible fluids: namely, air, water, and a nonaqueous phase liquid (NAPL). A variational method is employed for the finite-element formulation corresponding to the coupled differential equation...

  17. Adiabatic compressibility of an immiscible molten NaCl-AgI salt mixture

    NASA Astrophysics Data System (ADS)

    Stepanov, V. P.; Tkachev, N. K.; Kulik, N. P.; Peshkina, K. G.

    2016-08-01

    Adiabatic compressibility β of an immiscible 0.5NaCl + 0.5AgI liquid mixture in the immiscibility range is studied experimentally and theoretically using the model of charged hard spheres. The compressibility is calculated by the relationship β = 1/ u 2ρ studied using sound velocity u measured by a pulse method and density ρ determined by hydrostatic weighing. It is shown that the compressibility of the upper phase decreases and that of the lower phase increases when the temperature increases because of the superposition of the effects of the thermal motion of ions and the phase compositions. The temperature dependence of the difference between the compressibilities of the equilibrium phases is described using the empirical equation Δβ = ( T c- T)0.442, which is close to the mean-field theory description. The results of the model calculations adequately reproduce the experimentally observed temperature dependence of the compressibility of the coexisting phases. However, the theoretically predicted critical exponent (1/2) differs from the experimentally determined exponent by 13%. These results are discussed in terms of the nature of chemical bond in silver iodide.

  18. Solidification phenomena of binary organic mixtures

    NASA Technical Reports Server (NTRS)

    Chang, K.

    1982-01-01

    The coalescence rates and motion of liquid bubbles in binary organic mixtures were studied. Several factors such as temperature gradient, composition gradient, interfacial tension, and densities of the two phases play important roles in separation of phases of immiscible liquids. An attempt was made to study the effect of initial compositions on separation rates of well-dispersed organic mixtures at different temperatures and, ultimately, on the homogeneity of solidification of the immiscible binary organic liquids. These organic mixtures serve as models for metallic pseudo binary systems under study. Two specific systems were investigated: ethyl salicylate - diethyl glycol and succinonitrile - water.

  19. Prediction of fingering in porous media

    NASA Astrophysics Data System (ADS)

    Wang, Zhi; Feyen, Jan; Elrick, David E.

    1998-09-01

    Immiscible displacement, involving two fluids in a porous medium, can be unstable and fingered under certain conditions. In this paper, the original linear instability criterion of Chuoke et al. [1959] is generalized, considering wettability of two immiscible fluids to the porous medium. This is then used to predict 24 specific flow and porous medium conditions for the onset of wetting front instability in the subsurface. Wetting front instability is shown to be a function of the driving fluid wettability to the medium, differences in density and viscosity of the fluids, the magnitude of the interfacial tension, and the direction of flow with respect to gravity. Scenarios of water and nonaqueous-phase liquid infiltration into the vadose zone are examined to predict preferential flow and contamination of groundwater. The mechanisms of finger formation, propagation, and persistence in the vadose zone are reviewed, and the existing equations for calculating the size, the number and velocity of fingers are simplified for field applications. The analyses indicate that fingers initiate and propagate according to spatial and temporal distribution of the dynamic breakthrough (water- or air-entry) pressures in the porous medium. The predicted finger size and velocity are in close agreement with the experimental results.

  20. High-Efficiency Inhibition of Gravity Segregation in Al-Bi Immiscible Alloys by Adding Lanthanum

    NASA Astrophysics Data System (ADS)

    Jia, Peng; Zhang, Jinyang; Geng, Haoran; Teng, Xinying; Zhao, Degang; Yang, Zhongxi; Wang, Yi; Hu, Song; Xiang, Jun; Hu, Xun

    2018-05-01

    The inhibition of gravity segregation has been a long-standing challenge in fabrication and applications of homogeneous immiscible alloys. Therefore, the effect of rare-earth La on the gravity segregation of Al-Bi immiscible alloys was investigated to understand the homogenization mechanism. The results showed that the addition of La can completely suppress the gravity segregation. This is attributed to the nucleation of Bi-rich liquid phase on the in-situ produced LaBi2 phase and the change of the shape of LaBi2@Bi droplets. In addition, a novel strategy is developed to prepare the homogeneous immiscible alloys through the addition of rare-earth elements. This strategy not only is applicable to other immiscible alloys, but also is conducive to finding more elements to suppress the gravity segregation. This study provided a useful reference for the fabrication of the homogeneous immiscible alloys.

  1. Thermocapillary convection in two immiscible liquid layers with free surface

    NASA Technical Reports Server (NTRS)

    Doi, Takao; Koster, Jean N.

    1993-01-01

    Thermocapillary convection is studied in two immiscible liquid layers with one free surface, one liquid/liquid interface, and differential heating applied parallel to the interfaces. An analytical solution is introduced for infinite horizontal layers. The defining parameter for the flow pattern is lambda, the ratio of the temperature coefficient of the interfacial tension to that of the surface tension. Four different flow patterns exist under zero gravity conditions. 'Halt' conditions which halt the fluid motion in the lower encapsulated liquid layer have been found. A numerical experiment is carried out to study effects of vertical end walls on the double layer convection in a 2D cavity. The halt condition obtained from the analytical study is found to be valid in the limit of small Reynolds numbers. The flow in the encapsulated liquid layer can be suppressed substantially.

  2. Carbonate-silicate liquid immiscibility upon impact melting, Ries Crater, Germany

    NASA Astrophysics Data System (ADS)

    Graup, Guenther

    1999-05-01

    The 24-km-diameter Ries impact crater in southern Germany is one of the most studied impact structures on Earth. The Ries impactor struck a Triassic to Upper Jurassic sedimentary sequence overlying Hercynian crystalline basement. At the time of impact (14.87 +/- 0.36 Ma; Storzer et al., 1995), the 350 m thick Malm limestone was present only to the S and E of the impact site. To the N and W, the Malm had been eroded away, exposing the underlying Dogger and Lias. The largest proportion of shocked target material is in the impact melt-bearing breccia suevite. The suevite had been believed to be derived entirely from the crystalline basement. Calcite in the suevite has been interpreted as a post-impact hydrothermal deposit. From optical inspection of 540 thin sections of suevite from 32 sites, I find that calcite in the suevite shows textural evidence of liquid immiscibility with the silicate impact melt. Textural evidence of liquid immiscibility between silicate and carbonate melt in the Ries suevite includes: carbonate globules within silicate glass, silicate globules embedded in carbonate, deformable and coalescing carbonate spheres within silicate glass, sharp menisci or cusps and budding between silicate and carbonate melt, fluidal textures and gas vesicles in carbonate schlieren, a quench crystallization sequence of the carbonate, spinifex textured quenched carbonate, separate carbonate spherules in the suevite mineral-fragment-matrix, and inclusions of mineral fragments suspended in carbonate blebs. Given this evidence of liquid immiscibility, the carbonate in the suevite has, therefore, like the silicate melt a primary origin by impact shock melting. Evidence of carbonate-silicate liquid immiscibility is abundant in the suevites to the SW to E of the Ries crater. The rarer suevites to the W to NE of the crater are nearly devoid of carbonate melts. This correspondence between the occurrence of outcropping limestones at the target surface and the formation of carbonate melt, indicates that the Malm limestones are the source rocks of the carbonate impact melt. This correspondence shows that the suevites preserve a compositional memory of their source rocks. From the regional distribution of suevites with or without immiscible carbonate melts, it is inferred that the Ries impactor hit the steep Albtrauf escarpment at its toe, in an oblique impact from the north.

  3. Hydrogenation with monolith reactor under conditions of immiscible liquid phases

    DOEpatents

    Nordquist, Andrew Francis; Wilhelm, Frederick Carl; Waller, Francis Joseph; Machado, Reinaldo Mario

    2002-01-01

    The present invention relates to an improved for the hydrogenation of an immiscible mixture of an organic reactant in water. The immiscible mixture can result from the generation of water by the hydrogenation reaction itself or, by the addition of, water to the reactant prior to contact with the catalyst. The improvement resides in effecting the hydrogenation reaction in a monolith catalytic reactor from 100 to 800 cpi, at a superficial velocity of from 0.1 to 2 m/second in the absence of a cosolvent for the immiscible mixture. In a preferred embodiment, the hydrogenation is carried out using a monolith support which has a polymer network/carbon coating onto which a transition metal is deposited.

  4. Electrowetting-actuated zoom lens with spherical-interface liquid lenses.

    PubMed

    Peng, Runling; Chen, Jiabi; Zhuang, Songlin

    2008-11-01

    The interface shape of two immiscible liquids in a conical chamber is discussed. The analytical solution of the differential equation describing the interface shape shows that the interface shape is completely spherical when the density difference of two liquids is zero. On the basis of the spherical-interface shape and an energy-minimization method, explicit calculations and detailed analyses of an extended Young-type equation for the conical double-liquid lens are given. Finally, a novel design of a zoom lens system without motorized movements is proposed. The lens system consists of a fixed lens and two conical double-liquid variable-focus lenses. The structure and principle of the lens system are introduced in this paper. Taking finite objects as example, detailed calculations and simulation examples are presented to predict how two liquid lenses are related to meet the basic requirements of zoom lenses.

  5. Prediction of Phase Separation of Immiscible Ga-Tl Alloys

    NASA Astrophysics Data System (ADS)

    Kim, Yunkyum; Kim, Han Gyeol; Kang, Youn-Bae; Kaptay, George; Lee, Joonho

    2017-06-01

    Phase separation temperature of Ga-Tl liquid alloys was investigated using the constrained drop method. With this method, density and surface tension were investigated together. Despite strong repulsive interactions, molar volume showed ideal mixing behavior, whereas surface tension of the alloy was close to that of pure Tl due to preferential adsorption of Tl. Phase separation temperatures and surface tension values obtained with this method were close to the theoretically calculated values using three different thermodynamic models.

  6. HIGH-PRESSURE PHYSICS. Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium.

    PubMed

    Knudson, M D; Desjarlais, M P; Becker, A; Lemke, R W; Cochrane, K R; Savage, M E; Bliss, D E; Mattsson, T R; Redmer, R

    2015-06-26

    Eighty years ago, it was proposed that solid hydrogen would become metallic at sufficiently high density. Despite numerous investigations, this transition has not yet been experimentally observed. More recently, there has been much interest in the analog of this predicted metallic transition in the dense liquid, due to its relevance to planetary science. Here, we show direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium. Experimental determination of the location of this transition provides a much-needed benchmark for theory and may constrain the region of hydrogen-helium immiscibility and the boundary-layer pressure in standard models of the internal structure of gas-giant planets. Copyright © 2015, American Association for the Advancement of Science.

  7. Fluid/Solid Boundary Conditions in Non-Isothermal Systems

    NASA Technical Reports Server (NTRS)

    Rosner, Daniel E.

    1999-01-01

    The existing theoretical research concerned with thermal creep at fluid/solid interfaces is briefly reviewed, and the importance of microgravity-based experimental data is then discussed. It is noted that the ultimate goal of this research is a rational molecular level theory that predicts the dependence of a dimensionless thermal creep coefficient, Ctc, on relevant dimensionless parameters describing the way fluid molecules interact with the solid surface and how they interact among themselves. The discussion covers thermophoresis of isolated solid spheres and aggregates in gases; solid sphere thermophoresis in liquids and dense vapors; thermophoresis of small immiscible liquid droplets; and applications of the direct simulation Monte Carlo method.

  8. Ray tracing matrix approach for refractive index mismatch aberrations in confocal microscopy.

    PubMed

    Nastyshyn, S Yu; Bolesta, I M; Lychkovskyy, E; Vankevych, P I; Yakovlev, M Yu; Pansu, B; Nastishin, Yu A

    2017-03-20

    The 2×2 ray tracing matrix (RTM) method is employed for the description of optical aberrations caused by the refractive index mismatch (RIM) in fluorescent confocal polarization microscopy. We predict and experimentally confirm that due to the RIM a liquid crystal layer with highly non-uniform director distribution appears to be imaged as a layer with non-uniform thickness, which shows up in the roughness of the rear surface. For the off-axial focusing of the probing beam in a droplet dispersed in an immiscible liquid, we have developed an extended method still keeping the 2×2 dimensionality of the RTM.

  9. Novel Directional Solidification Processing of Hypermonotectic Alloys

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.

    1999-01-01

    Gravity driven separation precludes uniform microstructural development during controlled directional solidification (DS) processing of hypermonotectic alloys. It is well established that liquid/liquid suspensions, in which the respective components are immiscible and have significant density differences, can be established and maintained by utilizing ultrasound. A historical introduction to this work is presented with the intent of establishing the basis for applying the phenomena to promote microstructural uniformity during controlled directional solidification processing of immiscible mixtures. Experimental work based on transparent organics, as well as salt systems, will be presented in view of the processing parameters.

  10. Optical Limiting Based on Liquid-Liquid Immiscibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Exarhos, Gregory J.; Ferris, Kim F.; Samuels, William D.

    A nonionic surfactant is used to stabilize a dispersed droplet phase in a continuous liquid phase when two immiscible liquids are mixed. As both liquid phases approach the index matched condition, interfacial scattering is suppressed, and the mixture takes on the characteristics of a Christiansen-Shelyubskii filter. If, in addition, one of the liquids exhibits a substantial nonlinear optical response, then interfacial light scattering can be reversibly turned on when a laser beam incident upon the filter exceeds a critical fluence. To demonstrate this effect, an organic phase (dichloroethane) was dispersed in an aqueous phase containing sodium thiocyanate (NaSCN) using anmore » alkyl end-capped polyethylene glycol ether. The salt concentration was adjusted so that the index-matched mixture exhibited a large pass band. Marked optical limiting was observed through this transparent medium under conditions where the focused second-harmonic output of a Q-Switched Nd:YAG laser was on the order of about 50 mJ/cm2. An open-aperture Z-scan technique was used to quantify the limiting behavior. Since the thiocyanate anion is both isostructural and isoelectronic with carbon disulfide which exhibits a large optical nonlinearity, the mechanism of optical limiting is thought to be a nonlinear shift in the aqueous fluid index of refraction, resulting in an index mismatch between the disparate phases at high laser fluence. Index mismatch between the two phases leads to multiple reflections, loss of coherence, and a significant transmission decrease due to Mie scattering. The presence of many boundaries significantly amplifies the effect. Experiments also were conducted on the phase-inverted system (aqueous phase in organic liquid). Fundamental studies of such systems are used to verify theoretical predictions of the limiting effect, and aid in the design and development of improved limiters based upon this optical deflection approach.« less

  11. Physical properties of immiscible polymers

    NASA Technical Reports Server (NTRS)

    Harris, J. Milton

    1987-01-01

    The demixing of immiscible polymers in low gravity is discussed. Applications of knowledge gained in this research will provide a better understanding of the role of phase segregation in determining the properties of polymer blends made from immiscible polymers. Knowledge will also be gained regarding the purification of biological materials by partitioning between the two liquid phases formed by solution of the polymers polyethylene glycol and dextran in water. Testing of new apparatus for space flight, extension of affinity phase partitioning, refinement of polymer chemistry, and demixing of isopycnic polymer phases in a one gravity environment are discussed.

  12. Transparent, immiscible, surrogate liquids with matchable refractive indexes: Increased range of density and viscosity ratios

    NASA Astrophysics Data System (ADS)

    Cadillon, Jérémy; Saksena, Rajat; Pearlstein, Arne J.

    2016-12-01

    By replacing the "heavy" silicone oil used in the oil phase of Saksena, Christensen, and Pearlstein ["Surrogate immiscible liquid pairs with refractive indexes matchable over a wide range of density and viscosity ratios," Phys. Fluids 27, 087103 (2015)] by one with a twentyfold higher viscosity, and replacing the "light" silicone oil in that work by one with a viscosity fivefold lower and a density about 10% lower, we have greatly extended the range of viscosity ratio accessible by index-matching the adjustable-composition oil phase to an adjustable-composition 1,2-propanediol + CsBr + H2O aqueous phase and have also extended the range of accessible density ratios. The new system of index-matchable surrogate immiscible liquids is capable of achieving the density and viscosity ratios for liquid/liquid systems consisting of water with the entire range of light or medium crude oils over the temperature range from 40 °F (4.44 °C) to 200 °F (93.3 °C) and can access the density and viscosity ratios for water with some heavy crude oils over part of the same temperature range. It also provides a room-temperature, atmospheric-pressure surrogate for the liquid CO2 + H2O system at 0 °C over almost all of the pressure range of interest in sub-seabed CO2 sequestration.

  13. Toward direct pore-scale modeling of three-phase displacements

    NASA Astrophysics Data System (ADS)

    Mohammadmoradi, Peyman; Kantzas, Apostolos

    2017-12-01

    A stable spreading film between water and gas can extract a significant amount of bypassed non-aqueous phase liquid (NAPL) through immiscible three-phase gas/water injection cycles. In this study, the pore-scale displacement mechanisms by which NAPL is mobilized are incorporated into a three-dimensional pore morphology-based model under water-wet and capillary equilibrium conditions. The approach is pixel-based and the sequence of invasions is determined by the fluids' connectivity and the threshold capillary pressure of the advancing interfaces. In addition to the determination of three-phase spatial saturation profiles, residuals, and capillary pressure curves, dynamic finite element simulations are utilized to predict the effective permeabilities of the rock microtomographic images as reasonable representations of the geological formations under study. All the influential features during immiscible fluid flow in pore-level domains including wetting and spreading films, saturation hysteresis, capillary trapping, connectivity, and interface development strategies are taken into account. The capabilities of the model are demonstrated by the successful prediction of saturation functions for Berea sandstone and the accurate reconstruction of three-phase fluid occupancies through a micromodel.

  14. The Role of Air-Electrode Structure on the Incorporation of Immiscible PFCs in Nonaqueous Li-O2 Battery.

    PubMed

    Balaish, Moran; Ein-Eli, Yair

    2017-03-22

    Perfluorocarbons (PFCs) are considered advantageous additives to nonaqueous Li-O 2 battery due to their superior oxygen solubility and diffusivity compared to common battery electrolytes. Up to now, the main focus was concentrated on PFCs-electrolyte investigation; however, no special attention was granted to the role of carbon structure in the PFCs-Li-O 2 system. In our current research, immiscible PFCs, rather than miscible fluorinated ethers, were added to activated carbon class air electrode due to their higher susceptibility toward O 2 •- attack and to their ability to shift the reaction from two-phase to an artificial three-phase reaction zone. The results showed superior battery performance upon PFCs addition at lower current density (0.05 mA cm -2 ) but unexpectedly failed to do so at higher current density (0.1 and 0.2 mA cm -2 ), where oxygen transport limitation is best illustrated. The last was a direct result of liquid-liquid displacement phenomenon occurring when the two immiscible liquids were introduced into the porous carbon medium. The investigation and role of carbon structure on the mechanism upon PFCs addition to Li-O 2 system are suggested based on electrochemical characterization, wettability behavior studies, and the physical adsorption technique. Finally, we suggest an optimum air-electrode structure enabling the incorporation of immiscible PFCs in a nonaqueous Li-O 2 battery.

  15. Boiling of the interface between two immiscible liquids below the bulk boiling temperatures of both components.

    PubMed

    Pimenova, Anastasiya V; Goldobin, Denis S

    2014-11-01

    We consider the problem of boiling of the direct contact of two immiscible liquids. An intense vapour formation at such a direct contact is possible below the bulk boiling points of both components, meaning an effective decrease of the boiling temperature of the system. Although the phenomenon is known in science and widely employed in technology, the direct contact boiling process was thoroughly studied (both experimentally and theoretically) only for the case where one of liquids is becoming heated above its bulk boiling point. On the contrary, we address the case where both liquids remain below their bulk boiling points. In this paper we construct the theoretical description of the boiling process and discuss the actualisation of the case we consider for real systems.

  16. LIGHT NONAQUEOUS PHASE LIQUIDS

    EPA Science Inventory

    Nonaqueous phase liquids (NAPLS) are hydrocarbons that exist as a separate, immiscible phase when in contact with water and/or air. ifferences in the physical and chemical properties of water and NAPL result in the formation of a physical interface between the liquids which preve...

  17. Synthesis of metal and semiconductor nanoparticles in a flow of immiscible liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matyushkin, L. B., E-mail: leva.matyushkin@gmail.com; Ryzhov, O. A.; Aleksandrova, O. A.

    Nanoparticles of silver and cadmium selenide are obtained by the method of synthesis in a flow of immiscible liquids (water/toluene, water/dodecane); these nanoparticles manifest, respectively, the effects of plasmon resonance and the spatial confinement of charge carriers. The reactor used is a polytetrafluoroethylene capillary with temperature-controlled sections for particle nucleation and growth with the supply of precursors using micropumps. The diameters of the particles are determined from absorbance spectra and are found to be 40 nm for Ag nanoparticles and 1–2 nm for CdSe nanoparticles (depending on the growth duration).

  18. Study on solidification of immisible alloys (M-10)

    NASA Technical Reports Server (NTRS)

    Kamio, Akihiko

    1993-01-01

    Alloying of immiscible alloys under microgravity is of interest in metallurgical processes. Several experiments investigating the alloying of immiscible alloys, such as Al-In, Al-Bi, Zn-Bi, and Zn-Pb, were done in space. Homogeneous distribution of small L2 particles in the matrix, such as an emulsion structure, was expected in the space-solidifed alloys. However, the alloys demonstrated an extremely segregated structure. To date insufficient information was obtained to explain these unexpected results. Our experiment was proposed to clarify the solidification manner of immiscible alloys and to obtain fundamental information concerning structural control of the alloys. In space, density differences between the two liquids separated in immiscible regions can be neglected, so that no sedimentation of L(sub 2) phase will take place. When the growth of the alloys is interrupted and this status is frozen by an adequate rapid cooling procedure, it will provide much information concerning decomposing homogeneous liquid and the interaction between the monotectic growth front morphology and the distribution of L(sub 2) phase. It is anticipated that the results will be useful for elucidating the monotectic solidification manner and it will be instructive to explain the segregated structures obtained in the past space experiments.

  19. Method and apparatus for continuous flow injection extraction analysis

    DOEpatents

    Hartenstein, Steven D.; Siemer, Darryl D.

    1992-01-01

    A method and apparatus for a continuous flow injection batch extraction aysis system is disclosed employing extraction of a component of a first liquid into a second liquid which is a solvent for a component of the first liquid, and is immiscible with the first liquid, and for separating the first liquid from the second liquid subsequent to extraction of the component of the first liquid.

  20. Solutal Marangoni flows of miscible liquids drive transport without surface contamination

    NASA Astrophysics Data System (ADS)

    Kim, Hyoungsoo; Muller, Koen; Shardt, Orest; Afkhami, Shahriar; Stone, Howard A.

    2017-11-01

    Mixing and spreading of different liquids are omnipresent in nature, life and technology, such as oil pollution on the sea, estuaries, food processing, cosmetic and beverage industries, lab-on-a-chip devices, and polymer processing. However, the mixing and spreading mechanisms for miscible liquids remain poorly characterized. Here, we show that a fully soluble liquid drop deposited on a liquid surface remains as a static lens without immediately spreading and mixing, and simultaneously a Marangoni-driven convective flow is generated, which are counterintuitive results when two liquids have different surface tensions. To understand the dynamics, we develop a theoretical model to predict the finite spreading time and length scales, the Marangoni-driven convection flow speed, and the finite timescale to establish the quasi-steady state for the Marangoni flow. The fundamental understanding of this solutal Marangoni flow may enable driving bulk flows and constructing an effective drug delivery and surface cleaning approach without causing surface contamination by immiscible chemical species.

  1. Miscibility at the immiscible liquid/liquid interface: A molecular dynamics study of thermodynamics and mechanism

    NASA Astrophysics Data System (ADS)

    Karnes, John J.; Benjamin, Ilan

    2018-01-01

    Molecular dynamics simulations are used to study the dissolution of water into an adjacent, immiscible organic liquid phase. Equilibrium thermodynamic and structural properties are calculated during the transfer of water molecule(s) across the interface using umbrella sampling. The net free energy of transfer agrees reasonably well with experimental solubility values. We find that water molecules "prefer" to transfer into the adjacent phase one-at-a-time, without co-transfer of the hydration shell, as in the case of evaporation. To study the dynamics and mechanism of transfer of water to liquid nitrobenzene, we collected over 400 independent dissolution events. Analysis of these trajectories suggests that the transfer of water is facilitated by interfacial protrusions of the water phase into the organic phase, where one water molecule at the tip of the protrusion enters the organic phase by the breakup of a single hydrogen bond.

  2. Oscillatory interfacial instability between miscible fluids

    NASA Astrophysics Data System (ADS)

    Shevtsova, Valentina; Gaponenko, Yuri; Mialdun, Aliaksandr; Torregrosa, Marita; Yasnou, Viktar

    Interfacial instabilities occurring between two fluids are of fundamental interest in fluid dynamics, biological systems and engineering applications such as liquid storage, solvent extraction, oil recovery and mixing. Horizontal vibrations applied to stratified layers of immiscible liquids may generate spatially periodic waving of the interface, stationary in the reference frame of the vibrated cell, referred to as a "frozen wave". We present experimental evidence that frozen wave instability exists between two ordinary miscible liquids of similar densities and viscosities. At the experiments and at the numerical model, two superimposed layers of ordinary liquids, water-alcohol of different concentrations, are placed in a closed cavity in a gravitationally stable configuration. The density and viscosity of these fluids are somewhat similar. Similar to the immiscible fluids this instability has a threshold. When the value of forcing is increased the amplitudes of perturbations grow continuously displaying a saw-tooth structure. The decrease of gravity drastically changes the structure of frozen waves.

  3. Apparatus and method for pumping hot, erosive slurry of coal solids in coal derived, water immiscible liquid

    DOEpatents

    Ackerman, Carl D.

    1983-03-29

    An apparatus for and method of pumping hot, erosive slurry of coal solids in a coal derived, water immiscible liquid to higher pressure involves the use of a motive fluid which is miscible with the liquid of the slurry. The apparatus includes a pump 12, a remote check valve 14 and a chamber 16 between and in fluid communication with the pump 12 and check valve 14 through conduits 18,20. Pump 12 exerts pressure on the motive fluid and thereby on the slurry through a concentration gradient of coal solids within chamber 16 to alternately discharge slurry under pressure from the outlet port of check valve 14 and draw slurry in through the inlet port of check valve 14.

  4. Optical Feedback Interferometry for Velocity Measurement of Parallel Liquid-Liquid Flows in a Microchannel

    PubMed Central

    Ramírez-Miquet, Evelio E.; Perchoux, Julien; Loubière, Karine; Tronche, Clément; Prat, Laurent; Sotolongo-Costa, Oscar

    2016-01-01

    Optical feedback interferometry (OFI) is a compact sensing technique with recent implementation for flow measurements in microchannels. We propose implementing OFI for the analysis at the microscale of multiphase flows starting with the case of parallel flows of two immiscible fluids. The velocity profiles in each phase were measured and the interface location estimated for several operating conditions. To the authors knowledge, this sensing technique is applied here for the first time to multiphase flows. Theoretical profiles issued from a model based on the Couette viscous flow approximation reproduce fairly well the experimental results. The sensing system and the analysis presented here provide a new tool for studying more complex interactions between immiscible fluids (such as liquid droplets flowing in a microchannel). PMID:27527178

  5. LABORATORY INVESTIGATION OF RESIDUAL LIQUID ORGANICS FROM SPILLS, LEAKS, AND THE DISPOSAL OF HAZARDOUS WASTES IN GROUNDWATER

    EPA Science Inventory

    Organic liquids that are essentially immiscible with water migrate through the subsurface under the influence of capillary, viscous, and buoyancy forces. These liquids originate from the improper disposal of hazardous wastes, and the spills and leaks of petroleum hydrocarbons a...

  6. Silicate liquid immiscibility in magmas and in the system K2O-FeO-AI2O3-SiO2: an example of serendipity

    USGS Publications Warehouse

    Roedder, E.

    1978-01-01

    The concept of silicate liquid immiscibility was invoked early in the history of petrology to explain certain pairs of compositionally divergent rocks, but. as a result of papers by Greig (Am. J. Sci. 13, 1-44, 133-154) and Bowen (The Evolution of the Igneous Rocks), it fell into disfavor for many years. The discovery of immiscibility in geologically reasonable temperature ranges and compositions in experimental work on the system K2O-FeO-Al2O3-SiO2, and of evidence for immiscibility in a variety of lunar and terrestrial rocks, has reinstated the process. Phase equilibria in the high-silica corner of the tetrahedron representing the system K2O- FeO-Al2O3-SiO2 are presented, in the form of constant FeO sections through the tetrahedron, at 10% increments. Those sections, showing the tentative relationships of the primary phase volumes, are based on 5631 quenching runs on 519 compositions, made in metallic iron containers in pure nitrogen. Thirteen crystalline compounds are involved, of which at least six show two or more crystal modifica-tions. Two separate phase volumes, in each of which two immiscible liquids, one iron-rich and the other iron-poor, are present at the liquidus. One of these volumes is entirely within the quaternary system, astride the 1:1 K2O:Al2O3 plane. No quaternary compounds as such have been found, but evidence does point toward at least partial quaternary solid solution, with rapidly lowering liquidus temperatures, from K2O??Al2O3?? 2SiO2 ('potash nepheline', kalsilite. kaliophilite) to the isostructural compound K2O??FeO??3SiO2, and from K2O??Al2O3??4SiO2 (leucite) to the isostructural compound K2O??FeO??5SiO2, Both of these series apparently involve substitution, in tetrahedral coordination. of a ferrous iron and a silicon ion for two aluminum ions. Some of the 'impurities' found in analyses of the natural phases may reflect these substitutions. As a result of the geometry of the immiscibility volume located entirely within the quaternary system, compositions near it show a number of phase changes and large amounts of crystallization with small temperature changes, generally in the range 1100-1150 C. Similar low-temperature, high-alkali immiscibility was discovered in a few exploratory runs in the equivalent systems with Rb or Cs substituting for K. But not in those with Li or Na. A review of the compositions and general behavior of systems involving immiscibility, both stable and metastable, and of the evidence for natural immiscibility. indicates that it may be a much more common feature than generally thought. Several examples of natural immiscibility are detailed; most yield a felsic. alkali-aluminosilicate melt and a mafic melt. from a wide variety of generally basaltic parental magmas, both under- and over saturated. Unfortunately, the best line of evidence for immiscibility in terrestrial rocks, a sharply defined meniscus between two compositionally disparate glasses, is by its very nature self-destructing, since it is effectively eliminated by either crystallization or gravitative separation and coalescence into separate magmas. Verification of operation of the exosolutionor 'splitting' process on a large scale will probably require careful study of isotopic and trace element partitioning in both laboratory and field. ?? 1978.

  7. Laboratory experiments on liquid fragmentation during Earth's core formation

    NASA Astrophysics Data System (ADS)

    Landeau, M.; Deguen, R.; Olson, P.

    2013-12-01

    Buoyancy-driven fragmentation of one liquid in another immiscible liquid likely occurred on a massive scale during the formation of the Earth, when dense liquid metal blobs were released within deep molten silicate magma oceans. Another example of this phenomenon is the sudden release of petroleum into the ocean during the Deepwater Horizon disaster (Gulf of Mexico, 2010). We present experiments on the instability and fragmentation of blobs of a heavy liquid released into a lighter immiscible liquid. During the fragmentation process, we observe deformation of the released fluid, formation of filamentary structures, capillary instability, and eventually drop formation. We find that, at low and intermediate Weber numbers (which measures the importance of inertia versus surface tension), the fragmentation regime mainly results from the competition between a Rayleigh-Taylor instability and the roll-up of a vortex ring. At sufficiently high Weber numbers (the relevant regime for core formation), the fragmentation process becomes turbulent. The large-scale flow then behaves as a turbulent vortex ring or a turbulent thermal: it forms a coherent structure whose shape remains self-similar during the fall and which grows by turbulent entrainment of ambient fluid. An integral model based on the entrainment assumption, and adapted to buoyant vortex rings with initial momentum, is consistent with our experimental data. This indicates that the concept of turbulent entrainment is valid for non-dispersed immiscible fluids at large Weber and Reynolds numbers. Series of photographs, turbulent fragmentation regime, time intervals of about 0.2 s. Portions (red boxes) have been magnified (on the right).

  8. Richtmyer-Meshkov instability experiments of miscible and immiscible incompressible fluids

    NASA Astrophysics Data System (ADS)

    Krivets, Vitaliy; Holt, Brason; Mokler, Matthew; Jacobs, Jeffrey

    2017-11-01

    Experiments were conducted in a 3 m tall vertical drop tower setup. A flat interface separating two liquids of differing density is formed in the Plexiglas tank with the heavier fluid in the bottom and the lighter one on top. Two liquids pairs were utilized, one - miscible (isopropyl alcohol and a calcium nitrate water mixture) and the other immiscible (silicone oil with the same heavy liquid), both with Atwood near 0.2. The tank is mounted on a rail mounted sled at 2 m initial height where an initial perturbation is generated using vertical periodic motion with 10 Hz frequency and 1 mm displacement, thus producing 3D interfacial waves. An impulsive acceleration, with approximately 100g magnitude, is imparted to the sled by a rail mounted weight released and allowed to fall, impacting the sled from above. Both weight and sled then travel freely down the rails where they are smoothly decelerated at the bottom of drop tower by magnetic brakes. PLIF is used to visualize mixing process by seeding fluorescein in the bottom fluid and illuminating using laser diode from above forming thin vertical sheet. The resulting fluorescent image sequences are captured using a digital camera mounted to the sled operating at a 100 Hz framing rate. Comparisons of the measured growth of the mixing zone for both immiscible and miscible liquid combinations with theoretical models are presented.

  9. Low-g simulation testing of propellant systems using neutral buoyancy

    NASA Technical Reports Server (NTRS)

    Balzer, D. L.; Lake, R. J., Jr.

    1972-01-01

    A two liquid, neutral buoyancy technique is being used to simulate propellant behavior in a weightless environment. By equalizing the density of two immiscible liquids within a container (propellant tank), the effect of gravity at the liquid interface is balanced. Therefore the surface-tension forces dominate to control the liquid/liquid system configuration in a fashion analogous to a liquid/gas system in a zero gravity environment.

  10. APPROXIMATE MULTIPHASE FLOW MODELING BY CHARACTERISTIC METHODS

    EPA Science Inventory

    The flow of petroleum hydrocarbons, organic solvents and other liquids that are immiscible with water presents the nation with some of the most difficult subsurface remediation problems. One aspect of contaminant transport associated releases of such liquids is the transport as a...

  11. X-ray imaging for studying behavior of liquids at high pressures and high temperatures using Paris-Edinburgh press.

    PubMed

    Kono, Yoshio; Kenney-Benson, Curtis; Shibazaki, Yuki; Park, Changyong; Wang, Yanbin; Shen, Guoyin

    2015-07-01

    Several X-ray techniques for studying structure, elastic properties, viscosity, and immiscibility of liquids at high pressures have been integrated using a Paris-Edinburgh press at the 16-BM-B beamline of the Advanced Photon Source. Here, we report the development of X-ray imaging techniques suitable for studying behavior of liquids at high pressures and high temperatures. White X-ray radiography allows for imaging phase separation and immiscibility of melts at high pressures, identified not only by density contrast but also by phase contrast imaging in particular for low density contrast liquids such as silicate and carbonate melts. In addition, ultrafast X-ray imaging, at frame rates up to ∼10(5) frames/second (fps) in air and up to ∼10(4) fps in Paris-Edinburgh press, enables us to investigate dynamics of liquids at high pressures. Very low viscosities of melts similar to that of water can be reliably measured. These high-pressure X-ray imaging techniques provide useful tools for understanding behavior of liquids or melts at high pressures and high temperatures.

  12. Specific interface area in a thin layer system of two immiscible liquids with vapour generation at the contact interface

    NASA Astrophysics Data System (ADS)

    Pimenova, Anastasiya V.; Gazdaliev, Ilias M.; Goldobin, Denis S.

    2017-06-01

    For well-stirred multiphase fluid systems the mean interface area per unit volume, or “specific interface area” SV, is a significant characteristic of the system state. In particular, it is important for the dynamics of systems of immiscible liquids experiencing interfacial boiling. We estimate the value of parameter SV as a function of the heat influx {\\dot{Q}}V to the system or the average system overheat <Θ> above the interfacial boiling point. The derived results can be reformulated for the case of an endothermic chemical reaction between two liquid reagents with the gaseous form of one of the reaction products. The final results are restricted to the case of thin layers, where the potential gravitational energy of bubbles leaving the contact interface is small compared to their surface tension energy.

  13. Partitioning of Nb, Mo, Ba, Ce, Pb, Th and U between immiscible carbonate and silicate liquids: Evaluating the effects of P2O5,F, and carbonate composition

    NASA Technical Reports Server (NTRS)

    Jones, J. H.; Walker, D.

    1993-01-01

    Previously we have reported carbonate liq./silicate liq. partition coefficients (D) for a standard suite of trace elements (Nb, Mo, Ba, Ce, Pb, Th, and U) and Ra and Pa as well. In brief, we have found that immiscible liquid partitioning is a strong function of temperature. As the critical temperature of the carbonate-silicate solvus is approached, all partition coefficients approach unity. Additionally, for the overwhelming majority of the partitioning elements, InD is a linear function of 'ionic field strength,' z/r, where z is the charge of the partitioned cation and r is its ionic radius.

  14. METHOD FOR MEASURING AIR-IMMISCIBLE LIQUID PARTITION COEFFICIENTS

    EPA Science Inventory

    The principal objective of this work was to measure nonaqueous phase liquid-air partition coefficients for various gas tracer compounds. Known amounts of trichloroethene (TCE) and tracer, as neat compounds, were introduced into glass vials and allowed to equilibrate. The TCE and ...

  15. Mechanisms of differentiation in the Skaergaard magma chamber

    NASA Astrophysics Data System (ADS)

    Tegner, C.; Lesher, C. E.; Holness, M. B.; Jakobsen, J. K.; Salmonsen, L. P.; Humphreys, M. C. S.; Thy, P.

    2012-04-01

    The Skaergaard intrusion is a superb natural laboratory for studying mechanisms of magma chamber differentiation. The magnificent exposures and new systematic sample sets of rocks that solidified inwards from the roof, walls and floor of the chamber provide means to test the relative roles of crystal settling, diffusion, convection, liquid immiscibility and compaction in different regions of the chamber and in opposite positions relative to gravity. Examination of the melt inclusions and interstitial pockets has demonstrated that a large portion of intrusion crystallized from an emulsified magma chamber composed of immiscible silica- and iron-rich melts. The similarity of ratios of elements with opposite partitioning between the immiscible melts (e.g. P and Rb) in wall, floor and roof rocks, however, indicate that large-scale separation did not occur. Yet, on a smaller scale of metres to hundred of metres and close to the interface between the roof and floor rocks (the Sandwich Horizon), irregular layers and pods of granophyre hosted by extremely iron-rich cumulates point to some separation of the two liquid phases. Similar proportions of the primocryst (cumulus) minerals in roof, wall and floor rocks indicate that crystal settling was not an important mechanism. Likewise, the lack of fractionation of elements with different behavior indicate that diffusion and fluid-driven metasomatism played relatively minor roles. Compositional convection and/or compaction within the solidifying crystal mush boundary layer are likely the most important mechanisms. A correlation of low trapped liquid fractions (calculated from strongly incompatible elements) in floor rocks with high fractionation density (the density difference between the crystal framework and the liquid) indicate that compaction is the dominating process in expelling evolved liquid from the crystal mush layer. This is supported by high and variable trapped liquid contents in the roof rocks, where gravity-driven compaction will not work.

  16. LABORATORY INVESTIGATION OF RESIDUAL LIQUID ORGANICS FROM SPILLS, LEAKS, AND THE DISPOSAL OF HAZARDOUS WASTES IN GROUNDWATER

    EPA Science Inventory

    Organic liquids that are essentially immiscible with water migrate through the subsurface through the influence of capillary, viscous and buoyancy forces. our experimental methods were employed. irst, quantitative displacement experiments using short soil columns; second, additio...

  17. LABORATORY INVESTIGATION OF RESIDUAL LIQUID ORGANICS FROM SPILLS, LEAKS, AND THE DISPOSAL OF HAZARDOUS WASTES IN GROUNDWATER

    EPA Science Inventory

    Organic liquids that are essentially immiscible with water migrate through the subsurface through the influence of capillary, viscous and buoyancy forces. Four experimental methods were employed. First, quantitative displacement experiments using short soil columns; second, add...

  18. SOLID-LIQUID PHASE TRANSFER CATALYZED SYNTHESIS OF CINNAMYL ACETATE-KINETICS AND ANALYSIS OF FACTORS AFFECTING THE REACTION IN A BATCH REACTOR

    EPA Science Inventory

    The use of solid-liquid phase transfer catalysis has an advantage of carrying out reaction between two immiscible substrates, one in solid phase and the other in liquid phase, with high selectivity and at relatively low temperatures. In this study we investigated the synthesis ci...

  19. Liquid carry-over in an injection moulded all-polymer chip system for immiscible phase magnetic bead-based solid-phase extraction

    NASA Astrophysics Data System (ADS)

    Kistrup, Kasper; Skotte Sørensen, Karen; Wolff, Anders; Fougt Hansen, Mikkel

    2015-04-01

    We present an all-polymer, single-use microfluidic chip system produced by injection moulding and bonded by ultrasonic welding. Both techniques are compatible with low-cost industrial mass-production. The chip is produced for magnetic bead-based solid-phase extraction facilitated by immiscible phase filtration and features passive liquid filling and magnetic bead manipulation using an external magnet. In this work, we determine the system compatibility with various surfactants. Moreover, we quantify the volume of liquid co-transported with magnetic bead clusters from Milli-Q water or a lysis-binding buffer for nucleic acid extraction (0.1 (v/v)% Triton X-100 in 5 M guanidine hydrochloride). A linear relationship was found between the liquid carry-over and mass of magnetic beads used. Interestingly, similar average carry-overs of 1.74(8) nL/μg and 1.72(14) nL/μg were found for Milli-Q water and lysis-binding buffer, respectively.

  20. Apatite-hosted melt inclusions in Damiao massif anorthosite complex, North China

    NASA Astrophysics Data System (ADS)

    Wang, M.; Veksler, I. V.; Zhang, Z.

    2014-12-01

    Models for the nelsonite formation are currently highly contentious, with liquid immiscibility and fractional crystallization as frequently proposed formation mechanisms. The nelsonites in the Damiao massif anorthosite complex in the North China Craton and experimental evidence are revisited for the existence of silica-free CaO-FeO-Fe2O3-TiO2-P2O5 immiscible nelsonitic liquids. Our results of differential scanning calorimetry (DSC) demonstrate that nelsonite with the composition of one-third apatite and two-thirds Fe-Ti oxides by weight completely melts well above 1450 ºC, which is in good agreement with numerous experimental studies of the CaO-P2O5-FexO system in connection to metallurgy. Thus, the composition cannot be molten at temperatures relevant for crystallization of the Damiao magma. A review of experimental studies of liquid immiscibility and analyses of natural immiscible glasses show that all the liquids on the Fe- and P-rich side of the miscibility gap have at least 20 wt. % of aluminosilicate components. Main results of this study come from the analyses of apatite-hosted melt inclusions in Damiao nelsonite. The inclusions range from ~3 to 200 μm in diameter. They are ubiquitous and meet all the morphological criteria of primary melt inclusions crystallised into assemblages of daughter minerals. Almost all of them contain vermiculite and chlorite, and some contain biotite, amphibole, phlogopite and Fe-Ti oxides. Out of dozens analysed inclusions, only three have high contents of SiO2 (62.1-73.8 wt. %) and low contents of FeO (0.25-2.35 wt. %). Bulk compositions of other inclusions show large variations in SiO2 (20.79-50.16 wt. %) and FeOt (13.44-32.78 wt. %). With a few exceptions, the inclusions are very low in CaO (0.04-1.51 wt. %, and high in Al2O3 (10-21.17 wt. %). Despite the high Fe content, the compositions differ from those of the typical immiscible Fe-rich melts. It appears that the cumulus apatite crystallised from Fe-rich, hydrated silicate melt. We propose that the inclusions at Damiao record a trend of intercumulus melt evolution, which was strongly affected by separation of a hydrothermal fluid phase and the losses of alkali and Ca silicate components from the melt into the fluid.

  1. Spontaneous Self-Formation of 3D Plasmonic Optical Structures.

    PubMed

    Choi, Inhee; Shin, Yonghee; Song, Jihwan; Hong, SoonGweon; Park, Younggeun; Kim, Dongchoul; Kang, Taewook; Lee, Luke P

    2016-08-23

    Self-formation of colloidal oil droplets in water or water droplets in oil not only has been regarded as fascinating fundamental science but also has been utilized in an enormous number of applications in everyday life. However, the creation of three-dimensional (3D) architectures by a liquid droplet and an immiscible liquid interface has been less investigated than other applications. Here, we report interfacial energy-driven spontaneous self-formation of a 3D plasmonic optical structure at room temperature without an external force. Based on the densities and interfacial energies of two liquids, we simulated the spontaneous formation of a plasmonic optical structure when a water droplet containing metal ions meets an immiscible liquid polydimethylsiloxane (PDMS) interface. At the interface, the metal ions in the droplet are automatically reduced to form an interfacial plasmonic layer as the liquid PDMS cures. The self-formation of both an optical cavity and integrated plasmonic nanostructure significantly enhances the fluorescence by a magnitude of 1000. Our findings will have a huge impact on the development of various photonic and plasmonic materials as well as metamaterials and devices.

  2. REDISTRIBUTOR FOR LIQUID-LIQUID EXTRACTION COLUMNS

    DOEpatents

    Bradley, J.G.

    1957-10-29

    An improved baffle plate construction to intimately mix immiscible liquid solvents for solvent extraction processes in a liquid-liquid pulse column is described. To prevent the light and heavy liquids from forming separate continuous homogeneous vertical channels through sections of the column, a baffle having radially placed rectangular louvers with deflection plates opening upon alternate sides of the baffle is placed in the column, normal to the axis. This improvement substantially completely reduces strippiig losses due to poor mixing.

  3. Overhead Projector Demonstrations.

    ERIC Educational Resources Information Center

    Kolb, Doris, Ed.

    1987-01-01

    Describes several chemistry demonstrations that use an overhead projector. Some of the demonstrations deal with electrochemistry, and another deals with the reactions of nonvolatile immiscible liquid in water. (TW)

  4. Hollow spherical shell manufacture

    DOEpatents

    O'Holleran, T.P.

    1991-11-26

    A process is disclosed for making a hollow spherical shell of silicate glass composition in which an aqueous suspension of silicate glass particles and an immiscible liquid blowing agent is placed within the hollow spherical cavity of a porous mold. The mold is spun to reduce effective gravity to zero and to center the blowing agent, while being heated so as to vaporize the immiscible liquid and urge the water carrier of the aqueous suspension to migrate into the body of the mold, leaving a green shell compact deposited around the mold cavity. The green shell compact is then removed from the cavity, and is sintered for a time and a temperature sufficient to form a silicate glass shell of substantially homogeneous composition and uniform geometry. 3 figures.

  5. Hollow spherical shell manufacture

    DOEpatents

    O'Holleran, Thomas P.

    1991-01-01

    A process for making a hollow spherical shell of silicate glass composition in which an aqueous suspension of silicate glass particles and an immiscible liquid blowing agent is placed within the hollow spherical cavity of a porous mold. The mold is spun to reduce effective gravity to zero and to center the blowing agent, while being heated so as to vaporize the immiscible liquid and urge the water carrier of the aqueous suspension to migrate into the body of the mold, leaving a green shell compact deposited around the mold cavity. The green shell compact is then removed from the cavity, and is sintered for a time and a temperature sufficient to form a silicate glass shell of substantially homogeneous composition and uniform geometry.

  6. Vertical vibration dynamics of acoustically levitated drop containing two immiscible liquids

    NASA Astrophysics Data System (ADS)

    Zang, Duyang; Zhai, Zhicong; Li, Lin; Lin, Kejun; Li, Xiaoguang; Geng, Xingguo

    2016-09-01

    We have studied the levitation and oscillation dynamics of complex drops containing two immiscible liquids. Two types of drops, core-shell drop and abnormal-shaped drop, have been obtained depending on the levitation procedures. The oscillation dynamics of the drops have been studied using a high speed camera. It has been found that the oscillation of the abnormal-shaped drop has a longer oscillation period and decays much faster than that of the core-shell drop, which cannot be accounted for by the air resistance itself. The acoustic streaming induced by ultrasound may bring an additional force against the motion of the drop due to the Bernoulli effect. This is responsible for the enhanced damping during the oscillation in acoustic levitation.

  7. Two-Liquid Cartesian Diver

    ERIC Educational Resources Information Center

    Planinsic, G.; Kos, M.; Jerman, R.

    2004-01-01

    It is quite easy to make a version of the well known Cartesian diver experiment that uses two immiscible liquids. This allows students to test their knowledge of density and pressure in explaining the diver's behaviour. Construction details are presented here together with a mathematical model to explain the observations.

  8. A Geochemical and Petrological Investigation into the causes of Immiscibility at the San Rafael Volcanic Field, Utah

    NASA Astrophysics Data System (ADS)

    Koebli, D. J.; Germa, A.; Wetmore, P. H.; Atlas, Z. D.

    2017-12-01

    The San Rafael Volcanic Field (SRVF), Utah, is a 4.6 Ma exposed volcanic plumbing system consisting of comagmatic dikes, sills and conduits. Sills were emplaced in a syn-eruptive time frame, given the comagmatism between them and conduits. Dikes and conduits consist of shonkinite, whereas in the sills, silicate liquid immiscibility led to the separation of a felsic phase from the mafic injected melt (Williams, 1983); resulting in syenite (50.8 wt% SiO2) being enclosed within shonkinite (45.8 wt% SiO2). To determine storage and differentiation parameters leading to liquid immiscibility within the sills, we compared mineral composition (determined by EPMA) to corresponding whole rock major and trace element data. Results support the hypothesis of a hydrated magma with hornblende (4% vol. in shonkinite, 23% vol. in syenite), biotite (10% vol. in shonkinite and 21% in syenite), altered olivine (20% vol. in shonkinite with 10% serpentine, and 5% vol. in syenite with 2% serpentine), pyroxene (30% vol. in shonkinite and 17% in syenite), and plagioclase (17% vol. in shonkinite - mostly matrix - and 30% in syenite). Potassic feldspar (<2% vol.) are present in syenite only. Many of the volcanic units have sandstone xenoliths entrained in both shonkinite and syenite. A relatively hot magma ( 1300 ˚C) is assumed based off of the compositions of olivine (Fo80-90) and plagioclase (An95-35); plagioclase compositions are based off of plotted mineral data which show a continuous trend. This temperature is confirmed by thermodynamic calculations and Rhyolite-MELTS modeling (Ghiorso et al, 2012; Ghiorso et al, 2015). Thermodynamic modeling also supports liquid immiscibility occurring within the sills due to mineral phases (olivine>magnetite>pyroxene) forming at different pressures and temperatures, repeatedly (ex: olivine at 700 bar and 150 bar). Results indicate a lithospheric magma source due to asthenospheric upwelling, which later differentiated in-situ within the sills as a result of immiscibility at a shallow pressure ( 50-27 bar); this led to a mafic, volatile-poor melt (shonkinite), and a felsic, viscous, volatile-rich melt (syenite) which is visible as veins, ocelli and lenses.

  9. X-ray imaging for studying behavior of liquids at high pressures and high temperatures using Paris-Edinburgh press

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kono, Yoshio; Kenney-Benson, Curtis; Park, Changyong

    2015-07-15

    Several X-ray techniques for studying structure, elastic properties, viscosity, and immiscibility of liquids at high pressures have been integrated using a Paris-Edinburgh press at the 16-BM-B beamline of the Advanced Photon Source. Here, we report the development of X-ray imaging techniques suitable for studying behavior of liquids at high pressures and high temperatures. White X-ray radiography allows for imaging phase separation and immiscibility of melts at high pressures, identified not only by density contrast but also by phase contrast imaging in particular for low density contrast liquids such as silicate and carbonate melts. In addition, ultrafast X-ray imaging, at framemore » rates up to ∼10{sup 5} frames/second (fps) in air and up to ∼10{sup 4} fps in Paris-Edinburgh press, enables us to investigate dynamics of liquids at high pressures. Very low viscosities of melts similar to that of water can be reliably measured. These high-pressure X-ray imaging techniques provide useful tools for understanding behavior of liquids or melts at high pressures and high temperatures.« less

  10. FIELD TEST OF CYCLODEXTRIN FOR ENHANCED IN-SITU FLUSHING OF MULTIPLE-COMPONENT IMMISCIBLE ORGANIC LIQUID CONTAMINATION: COMPARISON TO WATER FLUSHING

    EPA Science Inventory

    A pilot-scale field experiment was conducted to compare the remediation effectiveness of an enhanced-solubilization technique to that of water flushing for removal of multicomponent nonaqueous-phase organic liquid (NAPL) contaminants form a phreatic aquifer. This innovative remed...

  11. Centrifugal pyrocontactor

    DOEpatents

    Chow, Lorac S.; Leonard, Ralph A.

    1993-01-01

    A method for mixing and separating immiscible liquid salts and liquid metals in a centrifugal contractor. The method includes introducing the liquids into an annular mixing zone and intensely mixing the liquids using vertical vanes attached to a rotor cooperating with vertical baffles, a horizontal baffle, and bottom vanes attached to the contactor housing. The liquids enter the contactor in the range of 700-800 degrees Celsius. The liquids are separated in the rotor into a dense phase and a light phase which are discharged from the contactor.

  12. Centrifugal pyrocontactor

    DOEpatents

    Chow, L.S.; Leonard, R.A.

    1993-10-19

    A method is described for mixing and separating immiscible liquid salts and liquid metals in a centrifugal contractor. The method includes introducing the liquids into an annular mixing zone and intensely mixing the liquids using vertical vanes attached to a rotor cooperating with vertical baffles, a horizontal baffle, and bottom vanes attached to the contactor housing. The liquids enter the contactor in the range of 700-800 degrees Celsius. The liquids are separated in the rotor into a dense phase and a light phase which are discharged from the contactor. 6 figures.

  13. Liquid spreading under partial wetting conditions

    NASA Astrophysics Data System (ADS)

    Chen, M.; Pahlavan, A. A.; Cueto-Felgueroso, L.; McKinley, G. H.; Juanes, R.

    2013-12-01

    Traditional mathematical descriptions of multiphase flow in porous media rely on a multiphase extension of Darcy's law, and lead to nonlinear second-order (advection-diffusion) partial differential equations for fluid saturations. Here, we study horizontal redistribution of immiscible fluids. The traditional Darcy-flow model predicts that the spreading of a finite amount of liquid in a horizontal porous medium never stops; a prediction that is not substantiated by observation. To help guide the development of new models of multiphase flow in porous media [1], we draw an analogy with the flow of thin films. The flow of thin films over flat surfaces has been the subject of much theoretical, experimental and computational research [2]. Under the lubrication approximation, the classical mathematical model for these flows takes the form of a nonlinear fourth-order PDE, where the fourth-order term models the effect of surface tension [3]. This classical model, however, effectively assumes that the film is perfectly wetting to the substrate and, therefore, does not capture the partial wetting regime. Partial wetting is responsible for stopping the spread of a liquid puddle. Here, we present experiments of (large-volume) liquid spreading over a flat horizontal substrate in the partial wetting regime, and characterize the four spreading regimes that we observe. We extend our previous theoretical work of two-phase flow in a capillary tube [4], and develop a macroscopic phase-field modeling of thin-film flows with partial wetting. Our model naturally accounts for the dynamic contact angle at the contact line, and therefore permits modeling thin-film flows without invoking a precursor film, leading to compactly-supported solutions that reproduce the spreading dynamics and the static equilibrium configuration observed in the experiments. We anticipate that this modeling approach will provide a natural mathematical framework to describe spreading and redistribution of immiscible fluids in porous media. [1] L. Cueto-Felgueroso and R. Juanes, Phys. Rev. Lett. 101, 244504 (2008). [2] D. Bonn et al., Rev. Mod. Phys. 81, 739-805 (2009). [3] H. E. Huppert, Nature 300, 427-429 (1982). [4] L. Cueto-Felgueroso and R. Juanes, Phys. Rev. Lett. 108, 144502 (2012).

  14. Surrogate Immiscible Liquid Solution Pairs with Refractive Indexes Matchable Over a Wide Range of Density and Viscosity Ratios

    NASA Astrophysics Data System (ADS)

    Saksena, Rajat; Christensen, Kenneth T.; Pearlstein, Arne J.

    2014-11-01

    Use of laser diagnostics in liquid-liquid flows is limited by refractive index mismatch. This can be avoided using a surrogate pair of immiscible index-matched liquids, with density and viscosity ratios matching those of the original liquid pair. We demonstrate that a wide range of density and viscosity ratios is accessible using aqueous solutions of 1,2-propanediol and CsBr (for which index, density, and viscosity are available), and solutions of light and heavy silicone oils and 1-bromooctane (for which we measured the same properties at 119 compositions). For each liquid phase, polynomials in the composition variables were fitted to index and density and to the logarithm of kinematic viscosity, and the fits were used to determine accessible density and viscosity ratios for each matchable index. Index-matched solution pairs can be prepared with density and viscosity ratios equal to those for water-liquid CO2 at 0oC over a range of pressure, and for water-crude oil and water-trichloroethylene, each over a range of temperature. For representative index-matched solutions, equilibration changes index, density, and viscosity only slightly, and chemical analysis show that no component of either solution has significant interphase solubility. Partially supported by Intl. Inst. for Carbon-Neutral Energy Research.

  15. Skylab 3 and 4 science demonstrations: Preliminary report

    NASA Technical Reports Server (NTRS)

    Bannister, T. C.

    1974-01-01

    Twelve science demonstrations were accomplished on the Skylab 3 and 4 missions. These were defined in response to crew requests for time-gap fillers and were designed to be accomplished using onboard equipment. The following 12 are described and the preliminary results are given: liquid floating zone; diffusion in liquids; ice melting; immiscible liquids; liquid films; gyroscope; Rochelle salt growth; deposition of silver crystals; fluid mechanics series; neutron environment; orbital mechanics; and charged particle mobility.

  16. The role of liquid-liquid immiscibility and crystal fractionation in the genesis of carbonatite magmas: insights from Kerimasi melt inclusions

    NASA Astrophysics Data System (ADS)

    Guzmics, Tibor; Zajacz, Zoltán; Mitchell, Roger H.; Szabó, Csaba; Wälle, Markus

    2015-02-01

    We have reconstructed the compositional evolution of the silicate and carbonate melt, and various crystalline phases in the subvolcanic reservoir of Kerimasi Volcano in the East African Rift. Trace element concentrations of silicate and carbonate melt inclusions trapped in nepheline, apatite and magnetite from plutonic afrikandite (clinopyroxene-nepheline-perovskite-magnetite-melilite rock) and calciocarbonatite (calcite-apatite-magnetite-perovskite-monticellite-phlogopite rock) show that liquid immiscibility occurred during the generation of carbonatite magmas from a CO2-rich melilite-nephelinite magma formed at relatively high temperatures (1,100 °C). This carbonatite magma is notably more calcic and less alkaline than that occurring at Oldoinyo Lengai. The CaO-rich (32-41 wt%) nature and alkali-"poor" (at least 7-10 wt% Na2O + K2O) nature of these high-temperature (>1,000 °C) carbonate melts result from strong partitioning of Ca (relative to Mg, Fe and Mn) in the immiscible carbonate and the CaO-rich nature (12-17 wt%) of its silicate parent (e.g., melilite-nephelinite). Evolution of the Kerimasi carbonate magma can result in the formation of natrocarbonatite melts with similar composition to those of Oldoinyo Lengai, but with pronounced depletion in REE and HFSE elements. We suggest that this compositional difference results from the different initial parental magmas, e.g., melilite-nephelinite at Kerimasi and a nephelinite at Oldoinyo Lengai. The difference in parental magma composition led to a significant difference in the fractionating mineral phase assemblage and the element partitioning systematics upon silicate-carbonate melt immiscibility. LA-ICP-MS analysis of coeval silicate and carbonate melt inclusions provides an opportunity to infer carbonate melt/silicate melt partition coefficients for a wide range of elements. These data show that Li, Na, Pb, Ca, Sr, Ba, B, all REE (except Sc), U, V, Nb, Ta, P, Mo, W and S are partitioned into the carbonate melt, whereas Mg, Mn, Fe, Co, Cu, Zn, Al, Sc, Ti, Hf and Zr are partitioned into the silicate melt. Potassium and Rb show no preferential partitioning. Kerimasi melt inclusions show that the immiscible calcic carbonate melt is strongly enriched in Sr, Ba, Pb, LREE, P, W, Mo and S relative to other trace elements. Comparison of our data with experimental results indicates that preferential partitioning of oxidized sulfur (as SO4 2-), Ca and P (as PO4 3-) into the carbonate melt may promote the partitioning of Nb, Ta, Pb and all REE, excluding Sc, into this phase. Therefore, it is suggested that P and S enrichment in calcic carbonate magmas promotes the genesis of REE-rich carbonatites by liquid immiscibility. Our study shows that changes in the partition coefficients of elements between minerals and the coexisting melts along the liquid line of descent are rather significant at Kerimasi. This is why, in addition to the REE, Nb, Ta and Zr are also enriched in Kerimasi calciocarbonatites. We consider significant amounts of apatite and perovskite precipitated from melilite-nephelinite-derived carbonate melt as igneous minerals can have high LREE, Nb and Zr contents relative to other carbonatite minerals.

  17. Method and apparatus for selectively detecting one of two immiscible liquids in the presence of the other liquid

    DOEpatents

    Cry, J.W.; Kirkham, R.R.; McBride, J.F.; Simmons, C.S.; Gee, G.W.

    1990-02-06

    Oil is detected in the presence of water by placing a translucent, porous body of hydrophobic material in contact with the oil and water and detecting the amount by which light incident on the body is attenuated on propagation through the body. 4 figs.

  18. Carbon-based nanomaterial synthesis using nanosecond electrical discharges in immiscible layered liquids: n-heptane and water

    NASA Astrophysics Data System (ADS)

    Hamdan, Ahmad; Cha, Min Suk

    2018-06-01

    Plasmas in- or in-contact with liquids have been extensively investigated due to their high potential for a wide range of applications including, but not limited to, water treatment, material synthesis and functionalization, bio-medical applications, and liquid fuel reformation. Recently, we successfully developed a discharge using two immiscible liquids, having very different electrical permittivities, which could significantly intensify the electric field intensity. Here, we establish nanosecond discharges at the interface n-heptane-water (with respective relative dielectric permittivities of 2 and 80) to enable the synthesis of carbon-based nanomaterials. A characterization of the as-synthesized material and the annealed (500 °C) material, using various techniques (Fourier-transform, infra-red, scanning and transmission electron microscopes, etc), shows that the as-synthesized material is a mixture of two carbon-based phases: a crystalline phase (graphite like) embedded into a phase of hydrogenated amorphous carbon. The existence of two-phases may be explained by the non-homogeneity of the discharge that induces various chemical reactions in the plasma channel.

  19. MRI investigation of water-oil two phase flow in straight capillary, bifurcate channel and monolayered glass bead pack.

    PubMed

    Liu, Yu; Jiang, Lanlan; Zhu, Ningjun; Zhao, Yuechao; Zhang, Yi; Wang, Dayong; Yang, Mingjun; Zhao, Jiafei; Song, Yongchen

    2015-09-01

    The study of immiscible fluid displacement between aqueous-phase liquids and non-aqueous-phase liquids in porous media is of great importance to oil recovery, groundwater contamination, and underground pollutant migration. Moreover, the attendant viscous, capillary, and gravitational forces are essential to describing the two-phase flows. In this study, magnetic resonance imaging was used to experimentally examine the detailed effects of the viscous, capillary, and gravitational forces on water-oil flows through a vertical straight capillary, bifurcate channel, and monolayered glass-bead pack. Water flooding experiments were performed at atmospheric pressure and 37.8°C, and the evolution of the distribution and saturation of the oil as well as the characteristics of the two-phase flow were investigated and analyzed. The results showed that the flow paths, i.e., the fingers of the displacing phase, during the immiscible displacement in the porous medium were determined by the viscous, capillary, and gravitational forces as well as the sizes of the pores and throats. The experimental results afford a fundamental understanding of immiscible fluid displacement in a porous medium. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Droplet Evolution and Refinement During Liquid-Liquid Decomposition of Zn-6 Wt Pct Bi Immiscible Alloy Under High Static Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Zheng, Tianxiang; Zhong, Yunbo; Wang, Jiang; Ren, Zhongming; Ren, Weili; Lei, Zuosheng; Debray, Francois; Beaugnon, Eric; Wei, Xicheng

    2018-05-01

    In situ solidification experiments on Zn-6 wt pct Bi immiscible alloys were conducted to investigate the droplet evolution under high static magnetic fields (HSMFs). The results showed that a microstructure with extremely fine Bi-rich particles distributed in the matrix can be obtained under an HSMF of 29 T. The average diameter of the Bi-rich phase decreased with the increasing magnetic flux density. Stokes sedimentation disappeared when the HSMF was larger than 18 T. Starting at an HSMF of 18 T, Bi-rich droplets grew via pure diffusion in the liquid matrix. The HSMF decreased the spacing of the droplet arrays when the cooling rate (R) was approximately 1600 °C/min. The formation of a Zn-rich phase surrounded by a Bi-rich shell at HSMFs below 18 T, when R was approximately 60 °C/min, was attributed to the thermoelectric magnetic force.

  1. A planar lens based on the electrowetting of two immiscible liquids

    NASA Astrophysics Data System (ADS)

    Liu, Chao-Xuan; Park, Jihwan; Choi, Jin-Woo

    2008-03-01

    This paper reports the development and characterization of a planar liquid lens based on electrowetting. The working concept of electrowetting two immiscible liquids is demonstrated with measurement and characterization of contact angles with regard to externally applied electric voltages. Consequently, a planar liquid lens is designed and implemented based on this competitive electrowetting. A droplet of silicone oil confined in an aqueous solution (1% KCl) works as a liquid lens. Electrowetting then controls the shape of the confined silicone oil and the focal length of the liquid lens varies depending upon an applied dc voltage. A unique feature of this lens design is the double-ring planar electrodes beneath the hydrophobic substrate. While an outer ring electrode provides an initial boundary for the silicone oil droplet, an inner ring works as the actuation electrode for the lens. Further, the planar electrodes, instead of vertical or out-of-plane wall electrodes, facilitate the integration of liquid lenses into microfluidic systems. With the voltage applied in the range of 50-250 V, the confined silicone oil droplet changed its shape and the optical magnification of a 3 mm-diameter liquid lens was clearly demonstrated. Moreover, focal lengths of liquid lenses with diameters of 2 mm, 3 mm and 4 mm were characterized, respectively. The obtained results suggest that a larger lens diameter yields a longer focal length and a wider range of focal length change in response to voltage. The demonstrated liquid lens has a simple structure and is easy to fabricate.

  2. Understanding the Phase Behavior of Tetrahydrofuran + Carbon Dioxide, + Methane, and + Water Binary Mixtures from the SAFT-VR Approach.

    PubMed

    Míguez, J M; Piñeiro, M M; Algaba, J; Mendiboure, B; Torré, J P; Blas, F J

    2015-11-05

    The high-pressure phase diagrams of the tetrahydrofuran(1) + carbon dioxide(2), + methane(2), and + water(2) mixtures are examined using the SAFT-VR approach. Carbon dioxide molecule is modeled as two spherical segments tangentially bonded, water is modeled as a spherical segment with four associating sites to represent the hydrogen bonding, methane is represented as an isolated sphere, and tetrahydrofuran is represented as a chain of m tangentially bonded spherical segments. Dispersive interactions are modeled using the square-well intermolecular potential. In addition, two different molecular model mixtures are developed to take into account the subtle balance between water-tetrahydrofuran hydrogen-bonding interactions. The polar and quadrupolar interactions present in water, tetrahydrofuran, and carbon dioxide are treated in an effective way via square-well potentials of variable range. The optimized intermolecular parameters are taken from the works of Giner et al. (Fluid Phase Equil. 2007, 255, 200), Galindo and Blas (J. Phys. Chem. B 2002, 106, 4503), Patel et al. (Ind. Eng. Chem. Res. 2003, 42, 3809), and Clark et al. (Mol. Phys. 2006, 104, 3561) for tetrahydrofuran, carbon dioxide, methane, and water, respectively. The phase diagrams of the binary mixtures exhibit different types of phase behavior according to the classification of van Konynenburg and Scott, ranging from types I, III, and VI phase behavior for the tetrahydrofuran(1) + carbon dioxide(2), + methane(2), and + water(2) binary mixtures, respectively. This last type is characterized by the presence of a Bancroft point, positive azeotropy, and the so-called closed-loop curves that represent regions of liquid-liquid immiscibility in the phase diagram. The system exhibits lower critical solution temperatures (LCSTs), which denote the lower limit of immiscibility together with upper critical solution temperatures (UCSTs). This behavior is explained in terms of competition between the incompatibility with the alkyl parts of the tetrahydrofuran ring chain and the hydrogen bonding between water and the ether group. A minimum number of unlike interaction parameters are fitted to give the optimal representation of the most representative features of the binary phase diagrams. In the particular case of tetrahydrofuran(1) + water(2), two sets of intermolecular potential model parameters are proposed to describe accurately either the hypercritical point associated with the closed-loop liquid-liquid immiscibility region or the location of the mixture lower- and upper-critical end-points. The theory is not only able to predict the type of phase behavior of each mixture, but also provides a reasonably good description of the global phase behavior whenever experimental data are available.

  3. Perspectives on Magmatic Differentiation of Mercury

    NASA Astrophysics Data System (ADS)

    Charlier, B.; Namur, O.; Cartier, C.

    2018-05-01

    Silicate/metal liquid immiscibility, crystallization of a magma ocean, partial melting of mantle rocks, and surface crystallization have shaped Mercury as we know it today. We review these processes based on high-T experiments at reducing conditions.

  4. Immiscible Systems

    ERIC Educational Resources Information Center

    Eckelmann, Jens; Luning, Ulrich

    2013-01-01

    layers of liquids. The setup of both demonstrations is such that one homogeneous layer in a multiphasic mixture separates into two new layers upon shaking. The solvents used are methanol, toluene, petroleum ether or "n"-pentane, silicone oil, perfluoroheptanes,…

  5. How Does a Liquid Wet a Solid? Hydrodynamics of Dynamic Contact Angles

    NASA Technical Reports Server (NTRS)

    Rame, Enrique

    2001-01-01

    A contact line is defined at the intersection of a solid surface with the interface between two immiscible fluids. When one fluid displaces another immiscible fluid along a solid surface, the process is called dynamic wetting and a "moving" contact line (one whose position relative to the solid changes in time) often appears. The physics of dynamic wetting controls such natural and industrial processes as spraying of paints and insecticides, dishwashing, film formation and rupture in the eye and in the alveoli, application of coatings, printing, drying and imbibition of fibrous materials, oil recovery from porous rocks, and microfluidics.

  6. Low temperature synthesis of CaO-SiO2 glasses having stable liquid-liquid immiscibility by sol-gel process

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1990-01-01

    Calcium silicate glass compositions lying within the liquid-liquid immiscibility dome of the phase diagram, which could not have been prepared by the conventional melting method, were synthesized by the sol-gel process. Hydrolysis and polycondensation of tetraethyl orthosilicate (TEOS) solutions containing up to 20 mol percent calcium nitrate resulted in the formation of clear and transparent gels. The gel formation time decreased with increase in water:TEOS mole ratio, calcium content, and the reaction temperature. Smaller values of gel times in the presence of calcium nitrate are probably caused by lowering of the ionic charge on the sol particles by the salt present. The gelation activation energy, E(sub gel), was evaluated from temperature dependence of the gel time. Presence of Ca(2+) ions or the water:TEOS mole ratio did not have an appreciable effect on the value of E(sub gel). Presence of glycerol in the solution helped in the formation of crack-free monolithic gel specimens. Chemical and structural changes occurring in the gels, as a function of the heat treatments, have been monitored using DTA, TGA, IR-spectroscopy, x ray diffraction, surface area and pore size distribution measurements.

  7. Low temperature synthesis of CaO-SiO2 glasses having stable liquid-liquid immiscibility by the sol-gel process

    NASA Technical Reports Server (NTRS)

    Bansal, N. P.

    1992-01-01

    Calcium silicate glass compositions lying within the liquid-liquid immiscibility dome of the phase diagram, which could not have been prepared by the conventional melting method, were synthesized by the sol-gel process. Hydrolysis and polycondensation of tetraethyl orthosilicate (TEOS) solutions containing up to 20 mol percent calcium nitrate resulted in the formation of clear and transparent gels. The gel formation time decreased with increase in water: TEOS mole ratio, calcium content, and the reaction temperature. Smaller values of gel times in the presence of calcium nitrate are probably caused by lowering of the ionic charge on the sol particles by the salt present. The gelation activation energy, E(sub gel), was evaluated from temperature dependence of the gel time. Presence of Ca(2+) ions or the water:TEOS mole ratio did not have an appreciable effect on the value of E(sub gel). Presence of glycerol in the solution helped in the formation of crack-free monolithic gel specimens. Chemical and structural changes occurring in the gels, as a function of the heat treatments, have been monitored using DTA, TGA, IR-spectroscopy, X-ray diffraction, surface area and pore size distribution measurements.

  8. Effect of cell-surface hydrophobicity on bacterial conversion of water-immiscible chemicals in two-liquid-phase culture systems.

    PubMed

    Hamada, Takahiro; Maeda, Yusuke; Matsuda, Hiroyuki; Sameshima, Yuka; Honda, Kohsuke; Omasa, Takeshi; Kato, Junichi; Ohtake, Hisao

    2009-08-01

    The effect of bacterial cell-surface hydrophobicity on the bioconversion of water-immiscible chemicals in an aqueous-organic (A/O) two-liquid-phase culture system was investigated. Escherichia coli JM109 and Rhodococcus opacus B-4 were used as hydrophilic and hydrophobic whole-cell catalysts, respectively. Hydroxylation reactions of monoaromatics, including toluene (log P(ow)=2.9), ethylbenzene (3.1), n-propylbenzene (3.4), and sec-butylbenzene (3.7), were employed as model conversions. When the todC1C2BA genes encoding Pseudomonas putida toluene dioxygenase were expressed in E. coli JM109, the yield of hydroxylated monoaromatics decreased with increasing substrate hydrophobicity. By contrast, R. opacus transformants, which expressed the todC1C2BA genes, showed high performance in the hydroxylation of monoaromatics, irrespective of substrate hydrophobicity. When the R. opacus transformants were examined for their ability to hydroxylate monoaromatics in an aqueous single-liquid-phase culture, the reaction velocity was markedly lower than that observed in the A/O two-liquid-phase culture. These results suggested that R. opacus B-4 accessed the hydrophobic substrates in the oil phase, thus making it more effective for the bioconversion reactions.

  9. PHYSICS OF IMMISCIBLE FLOW IN POROUS MEDIA

    EPA Science Inventory

    Conceptual formulation, numerical implementation and experimental validation of a model for the movement of organic chemicals which are introduced into soils as nonaqueous phase liquids via surface spills or leakage from subsurface containment facilities were addressed. Relations...

  10. Drop Fragmentation at Impact onto a Bath of an Immiscible Liquid

    NASA Astrophysics Data System (ADS)

    Lhuissier, H.; Sun, C.; Prosperetti, A.; Lohse, D.

    2013-06-01

    The impact of a drop onto a deep bath of an immiscible liquid is studied with emphasis on the drop fragmentation into a collection of noncoalescing daughter drops. At impact the drop flattens and spreads at the surface of the crater it transiently opens in the bath and reaches a maximum deformation, which gets larger with increasing impact velocity, before surface tension drives its recession. This recession can promote the fragmentation by two different mechanisms: At moderate impact velocity, the drop recession converges to the axis of symmetry to form a jet which then fragments by a Plateau-Rayleigh mechanism. At higher velocity the edge of the receding drop destabilizes and shapes into radial ligaments which subsequently fragment. For this latter mechanism the number N∝We3 and the size distribution of the daughter drops p(d)∝d-4 as a function of the impact Weber number We are explained on the basis of the observed spreading of the drop. The universality of this model for the fragmentation of receding liquid sheets might be relevant for other configurations.

  11. Active polar two-fluid macroscopic dynamics.

    PubMed

    Pleiner, H; Svenšek, D; Brand, H R

    2013-11-01

    We study the dynamics of systems with a polar dynamic preferred direction. Examples include the pattern-forming growth of bacteria as well as shoals of fish, flocks of birds and migrating insects. Due to the fact that the preferred direction only exists dynamically, but not statically, the macroscopic variable of choice is the macroscopic velocity associated with the motion of the active units, which are typically biological in nature. We derive the macroscopic equations for such a system and discuss novel static, reversible and irreversible cross-couplings connected to a second velocity as a variable. We analyze in detail how the macroscopic behavior of an active system with a polar dynamic preferred direction compares to other systems with two velocities including immiscible liquids and electrically neutral quantum liquids such as superfluid (4)He and (3)He . We critically discuss changes in the normal mode spectrum when comparing uncharged superfluids, immiscible liquids and active system with a polar dynamic preferred direction. We investigate the influence of a macroscopic hand (collective effects of chirality) on the macroscopic behavior of such active media.

  12. Chemical projectile-target interaction and liquid immiscibility in impact glass from the Wabar craters, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Hamann, Christopher; Hecht, Lutz; Ebert, Matthias; Wirth, Richard

    2013-11-01

    Impact glasses are usually strongly affected by secondary alteration and chemical weathering. Thus, in order to understand relevant formation processes, detailed petrographic studies on unweathered impact glasses are necessary as preserved heterogeneities in quenched impact glasses may serve as a tool to better understand their genesis. Here, we report on petrography and microchemistry of impact glasses from the Wabar impact craters (Saudi Arabia) that, with an age of ∼300 years, are among the youngest terrestrial impact craters. The fact that parts of the IIIAB iron meteorite have survived impact and subsequent weathering is granting Wabar a special role among the presently 184 confirmed terrestrial impact structures. Electron microprobe analysis (EMPA) and transmission electron microscopy (TEM) obtained on the black impact melt/glass variety at Wabar suggest that meteoritic Fe was selectively mixed with high-silica target melt at high temperatures due to selective oxidation, resulting in high Fe/Ni ratios for the black melt (37 on average, individual values range from 13 to 449) and low Fe/Ni ratios for projectile droplets ("FeNi spheres" with a Fe/Ni ratio of 3 on average; Fe/Ni ratio for the meteorite is ∼12). The black melt shows emulsion textures that are the result of silicate liquid immiscibility. Liquid-liquid phase-separation resulted in the formation of a poorly polymerized, ultrabasic melt (Lfe) rich in divalent cations like Fe2+, Ca2+, or Mg2+, that is dispersed in a highly polymerized, high-silica melt (Lsi) matrix. The typical Wabar black melt emulsion displays a spheres-in-a-matrix texture of ∼10-20% Lfe homogeneously dispersed in the form of two sets of spheres and droplets (10-30 nm and 0.1-0.4 μm in diameter) in ∼80-90% Lsi matrix, plus occasionally disseminated FeNi spheres. Around large (>10 μm) FeNi spheres, however, the typical emulsion texture changes to ∼21% Lsi dispersed in ∼79% Lfe. This change of texture is interpreted as evidence for the transfer of meteoritic Fe from the meteoritic FeNi spheres into the target melt due to selective oxidation of Fe over Ni and Co. Variations in the bulk composition of Wabar black melt largely depend on the volume ratios between immiscible ultrabasic Lfe, felsic Lsi, and remains of meteoritic FeNi spheres. Based on natural occurrences of phase-separated glasses (this work and literature) and quenching experiments (literature), there is growing evidence that liquid immiscibility is a major process in the formation of glassy impactites.

  13. Peralkaline nephelinites. I. Comparative petrology of Shombole and Oldoinyo L'engai, East Africa

    NASA Astrophysics Data System (ADS)

    Peterson, Tony D.

    1989-04-01

    Shombole, a nephelinite-carbonatite volcano in south Kenya, erupted silicate lavas, carbonatite dikes and tuffs, and pyroclastic rocks similar to those at other East African alkaline centres. Shombole lavas containing cpx + nepheline + accessory minerals range from perovskite-bearing nephelinites (43% SiO2, volatile-free) to sphene-bearing and phonolitic nephelinites (46 49% SiO2) and phonolites (49 56% SiO2) and have low peralkalinity ([Na+K]/Al ≈ 1.15) which does not correlate with SiO2. Early fractionation of olivine and clinopyroxene strongly depleted Ni and Cr concentrations (≈10 ppm); fractionation of perovskite, melanite, sphene, and apatite produced negative correlations of all REE with SiO2. Many lavas contain cognate intrusive xenoliths and xenocrysts and oscillatory zoning is a common feature of clinopyroxene, nepheline, and melanite crystals, indicating recycling of intrusive material. Irregular calcite-rich bodies in many samples are interpreted as quenched immiscible Ca-carbonatite liquid, and [Ca-carbonate]-silicate liquid immiscibility is observed in experiments with one nephelinite. Chemical variation in the Shombole suite can be modeled as a combination of crystal fractionation (clinopyroxene and heavy minor phases) and retention of neutral density nepheline derived from disaggregated xenoliths entrained during emplacement of dike swarms. Six newly analyzed lavas from Oldoinyo L'engai, northern Tanzania, are geochemically similar to Shombole nephelinites except that they have relatively high Na2O+K2O (average 18% vs 12%) and Zr (average 680 ppm vs 400 ppm). They are extremely peralkaline and are not typical of nephelinites from other centres. Three with [Na+K]/Al≈1.5 contain euhedral wollastonite phenocrysts; three with [Na+K]/Al≈2.0 contain combeite (Na2Ca2Si3O9) phenocrysts and pseudomorphs after wollastonite. Both types contain abundant sodalite phenocrysts (+nepheline+clinopyroxene+melanite+sphene). Seven other wollastonite nephelinite samples from L'engai have been described, but it is a lava type rarely seen in other centres. Combeite has been described from only two other locations (Mt. Shaheru, Zaire; Mayener Feld, Eifel). The hyperalkaline L'engai nephelinites have compositions similar to those of experimental silicate liquids immiscible with natrocarbonatite. Textural evidence for both carbonate-silicate (as carbonate globules) and silicate-silicate (as two optically discrete glasses with distinct compositions) liquid immiscibility is observed in the samples.

  14. Stabilizing liquid drops of arbitrary shape by the interfacial jamming of nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, Thomas P.; Cui, Mengmeng; Emrick, Todd

    A stabilized assembly including a first liquid phase of non-spherical droplets in a second liquid phase, wherein the second liquid phase is immiscible with the first phase, and nanoparticle surfactants assembled at an interface of the non-spherical droplets and the second phase is disclosed. The nanoparticle surfactants include nanoparticles and end-functionalized polymers that can interact through ligand type interactions, and the first phase is stabilized by a disordered, jammed layer of nanoparticle surfactants. A method of preparing a stabilized assembly is also disclosed.

  15. Visualizing monolayers with a water-soluble fluorophore to quantify adsorption, desorption, and the double layer.

    PubMed

    Shieh, Ian C; Zasadzinski, Joseph A

    2015-02-24

    Contrast in confocal microscopy of phase-separated monolayers at the air-water interface can be generated by the selective adsorption of water-soluble fluorescent dyes to disordered monolayer phases. Optical sectioning minimizes the fluorescence signal from the subphase, whereas convolution of the measured point spread function with a simple box model of the interface provides quantitative assessment of the excess dye concentration associated with the monolayer. Coexisting liquid-expanded, liquid-condensed, and gas phases could be visualized due to differential dye adsorption in the liquid-expanded and gas phases. Dye preferentially adsorbed to the liquid-disordered phase during immiscible liquid-liquid phase coexistence, and the contrast persisted through the critical point as shown by characteristic circle-to-stripe shape transitions. The measured dye concentration in the disordered phase depended on the phase composition and surface pressure, and the dye was expelled from the film at the end of coexistence. The excess concentration of a cationic dye within the double layer adjacent to an anionic phospholipid monolayer was quantified as a function of subphase ionic strength, and the changes in measured excess agreed with those predicted by the mean-field Gouy-Chapman equations. This provided a rapid and noninvasive optical method of measuring the fractional dissociation of lipid headgroups and the monolayer surface potential.

  16. Externally triggered microcapsules

    NASA Technical Reports Server (NTRS)

    Mosier, Benjamin (Inventor); Morrison, Dennis R. (Inventor)

    2011-01-01

    Disclosed are microcapsules comprising a polymer shell enclosing one or more immiscible liquid phases in which a drug or drug precursor are contained in a liquid phase. The microparticles also contain magnetic particles that can be heated by application of an external magnetic field and thus heated to a predetermined Curie temperature. Heating of the particles melts the polymer shell and releases the drug without causing heating of surrounding tissues.

  17. Design of a zoom lens without motorized optical elements

    NASA Astrophysics Data System (ADS)

    Peng, Runling; Chen, Jiabi; Zhu, Cheng; Zhuang, Songlin

    2007-05-01

    A novel design of a zoom lens system without motorized movements is proposed. The lens system consists of a fixed lens and two double-liquid variable-focus lenses. The liquid lenses, made out of two immiscible liquids, are based on the principle of electrowetting: an effect controlling the wetting properties of a liquid on a solid by modifying the applied voltage at the solid-liquid interface. The structure and principle of the lens system are introduced in this paper. Detailed calculations and simulation examples are presented to show that this zoom lens system appears viable as the next-generation zoom lens.

  18. Design of a zoom lens without motorized optical elements.

    PubMed

    Peng, Runling; Chen, Jiabi; Zhu, Cheng; Zhuang, Songlin

    2007-05-28

    A novel design of a zoom lens system without motorized movements is proposed. The lens system consists of a fixed lens and two double-liquid variable-focus lenses. The liquid lenses, made out of two immiscible liquids, are based on the principle of electrowetting: an effect controlling the wetting properties of a liquid on a solid by modifying the applied voltage at the solid-liquid interface. The structure and principle of the lens system are introduced in this paper. Detailed calculations and simulation examples are presented to show that this zoom lens system appears viable as the next-generation zoom lens.

  19. Variable-focus liquid lens for portable applications

    NASA Astrophysics Data System (ADS)

    Kuiper, Stein; Hendriks, Benno H.; Huijbregts, Laura J.; Hirschberg, A. Mico; Renders, Christel A.; van As, Marco A.

    2004-10-01

    The meniscus between two immiscible liquids can be used as an optical lens. A change in curvature of this meniscus by electrowetting leads to a change in focal distance. We demonstrate that two liquids in a tube form a self-centered tunable lens of high optical quality. Several properties were studied, such as optical performance, electrical characteristics and dynamic behavior. We designed and constructed a miniature camera module based on this tunable lens and show that it is very well suited for use in portable applications.

  20. CO2-rich phonolitic melt and carbonatite immiscibility in melt inclusions in nephelinite (Hanang volcano, North Tanzanian Divergence, East African Rift).

    NASA Astrophysics Data System (ADS)

    Baudouin, C.; Parat, F.

    2016-12-01

    Hanang is the southern volcano of the East branch of the East African Rift and represents volcanic activity at early stage rifting (0.9 Ma). Lavas are highly alkaline Mg-poor nephelinites (Mg#=24.4-35.2) with cpx, garnet, nepheline, titanite, and apatite and result from fractional crystallisation of primary melilitite magmas (Parat et al. AGU2016). In this study, we investigate glassy melt inclusions at the rim of nepheline phenocrysts to constrain the late stage of nephelinite evolution and the behaviour of volatiles (CO2, H2O, S, F, Cl) during magma storage and ascent. The melt inclusions have a green silicate glass, a microcrystalline carbonate phase and a shrinkage bubble free of gas phase (Raman analyses) suggesting that carbonatite-silicate liquid immiscibility (85:15) occurred during nephelinite differentiation. The silicate glasses have trachytic composition (Na+K/Al=1.6-7.2, SiO2=54-65.5 wt%) with high CO2 (0.43 wt% CO2, SIMS analyses), sulfur (0.21-0.92 wt% S) and halogens (0.28-0.84 wt% Cl; 0.35-2.54 wt% F) content and very low H2O content (<0.1wt%, Raman analyses). The carbonate phase is an anhydrous Ca-Na±S,K- carbonate with 33 wt% CaO, 20 wt% Na2O, 3 wt% K2O, and 3 wt% S. The pre-immiscible silicate liquid (e.g. silicate melt + carbonatite) in equilibrium with nepheline and cpx phenocrysts has CO2-rich phonolitic composition (Na+K/Al=6.2-6.9) with 6 ± 1.5 wt% CO2 at pressure of 700-1100 MPa. The entrapped melt in nepheline corresponds to evolved interstitial silicate melt after crystallisation of cpx (16.7%), nepheline (40%) garnet (6.5%) and apatite (1.7%) from Mg-nephelinite magma. The immiscibility process leading to glassy silicate melt and microcrystalline carbonatitic melt occurred in closed system during rapid ascent at crustal level at 200-230 MPa. The absence of gas phase in shrinkage bubble in melt inclusions suggests CO2-undersaturated conditions during quenching. The absence of carbonatite lavas at Hanang volcano is then explained by open system differentiation with primary melilititic magma replenishment preventing alkaline enrichment and carbonatite-silicate liquid immiscibility at depth as observed for the nephelinite-natrocarbonatite Oldoinyo Lengai volcano in the Natron Basin (150 km north).

  1. Interfacial tension measurement of immiscible liq uids using a capillary tube

    NASA Technical Reports Server (NTRS)

    Rashidnia, N.; Balasubramaniam, R.; Delsignore, D.

    1992-01-01

    The interfacial tension of immiscible liquids is an important thermophysical property that is useful in the behavior of liquids both in microgravity (Martinez et al. (1987) and Karri and Mathur (1988)) and in enhanced oil recovery processes under normal gravity (Slattery (1974)). Many techniques are available for its measurement, such as the ring method, drop weight method, spinning drop method, and capillary height method (Adamson (1960) and Miller and Neogi (1985)). Karri and Mathur mention that many of the techniques use equations that contain a density difference term and are inappropriate for equal density liquids. They reported a new method that is suitable for both equal and unequal density liquids. In their method, a capillary tube forms one of the legs of a U-tube. The interfacial tension is related to the heights of the liquids in the cups of the U-tube above the interface in the capillary. Our interest in this area arose from a need to measure small interfacial tension (around 1 mN/m) for a vegetable oil/silicon oil system that was used in a thermocapillary drop migration experiment (Rashidnia and Balasubramaniam (1991)). In our attempts to duplicate the method proposed by Karri and Mathur, we found it quite difficult to anchor the interface inside the capillary tube; small differences of the liquid heights in the cups drove the interface out of the capillary. We present an alternative method using a capillary tube to measure the interfacial tensions of liquids of equal or unequal density. The method is based on the combined capillary rises of both liquids in the tube.

  2. Communication: Hydrogen bonding interactions in water-alcohol mixtures from X-ray absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, Royce K.; Smith, Jacob W.; Saykally, Richard J., E-mail: saykally@berkeley.edu

    While methanol and ethanol are macroscopically miscible with water, their mixtures exhibit negative excess entropies of mixing. Despite considerable effort in both experiment and theory, there remains significant disagreement regarding the origin of this effect. Different models for the liquid mixture structure have been proposed to address this behavior, including the enhancement of the water hydrogen bonding network around the alcohol hydrophobic groups and microscopic immiscibility or clustering. We have investigated mixtures of methanol, ethanol, and isopropanol with water by liquid microjet X-ray absorption spectroscopy on the oxygen K-edge, an atom-specific probe providing details of both inter- and intra-molecular structure.more » The measured spectra evidence a significant enhancement of hydrogen bonding originating from the methanol and ethanol hydroxyl groups upon the addition of water. These additional hydrogen bonding interactions would strengthen the liquid-liquid interactions, resulting in additional ordering in the liquid structures and leading to a reduction in entropy and a negative enthalpy of mixing, consistent with existing thermodynamic data. In contrast, the spectra of the isopropanol-water mixtures exhibit an increase in the number of broken alcohol hydrogen bonds for mixtures containing up to 0.5 water mole fraction, an observation consistent with existing enthalpy of mixing data, suggesting that the measured negative excess entropy is a result of clustering or micro-immiscibility.« less

  3. Test plan for Geo-Cleanse{reg_sign} demonstration (in situ destruction of dense non-aqueous phase liquid (DNAPL))

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jerome, K.M.; Looney, B.B.; Accorsi, F.

    1996-09-01

    Soils and groundwater beneath an abandoned process sewer line in the A/M Area of the Savannah River Site (SRS) contain elevated levels of volatile organic compounds, specifically trichloroethylene (TCE) and tetrachloroethylene (PCE), two common chlorinated solvents. These compounds have low aqueous solubilities, thus when released to the subsurface in sufficient quantity, tend to exist as immiscible fluids or nonaqueous phase liquids (NAPLs). Because chlorinated solvents are also denser than water, they are referred to by the acronym DNAPLs, or dense non-aqueous phase liquids. Technologies targeted at the efficient characterization or removal of DNAPL are not currently proven. For example, mostmore » DNAPL studies rely on traditional soil and water sampling and the fortuitous observation of immiscible solvent. Once DNAPL is identified, soil excavation (which is only applicable to small contained spill sites) is the only proven cleanup method. New cleanup approaches based on destruction of DNAPL either in situ or ex situ have been proposed and tested at the pilot scale. The proposed demonstration, as described in this report will evaluate the applicability to DNAPL plumes of a technology proven for in situ destruction of light non-aqueous phase liquids (LNAPLs) such as oils.« less

  4. On the shedding of impaled droplets: The role of transient intervening layers

    NASA Astrophysics Data System (ADS)

    Stamatopoulos, Christos; Schutzius, Thomas M.; Köppl, Christian J.; Hayek, Nicolas El; Maitra, Tanmoy; Hemrle, Jaroslav; Poulikakos, Dimos

    2016-01-01

    Maintaining the non-wetting property of textured hydrophobic surfaces is directly related to the preservation of an intervening fluid layer (gaseous or immiscible liquid) between the droplet and substrate; once displaced, it cannot be recovered spontaneously as the fully penetrated Wenzel wetting state is energetically favorable. Here, we identify pathways for the “lifting” of droplets from the surface texture, enabling a complete Wenzel-to-Cassie-Baxter wetting state transition. This is accomplished by the hemiwicking of a transient (limited lifetime due to evaporation) low surface tension (LST) liquid, which is capable of self-assembling as an intervening underlayer, lifting the droplet from its impaled state and facilitating a skating-like behavior. In the skating phase, a critical substrate tilting angle is identified, up to which underlayer and droplet remain coupled exhibiting a pseudo-Cassie-Baxter state. For greater titling angles, the droplet, driven by inertia, detaches itself from the liquid intervening layer and transitions to a traditional Cassie-Baxter wetting state, thereby accelerating and leaving the underlayer behind. A model is also presented that elucidates the mechanism of mobility recovery. Ultimately, this work provides a better understanding of multiphase mass transfer of immiscible LST liquid-water mixtures with respect to establishing facile methods towards retaining intervening layers.

  5. On the shedding of impaled droplets: The role of transient intervening layers

    PubMed Central

    Stamatopoulos, Christos; Schutzius, Thomas M.; Köppl, Christian J.; Hayek, Nicolas El; Maitra, Tanmoy; Hemrle, Jaroslav; Poulikakos, Dimos

    2016-01-01

    Maintaining the non-wetting property of textured hydrophobic surfaces is directly related to the preservation of an intervening fluid layer (gaseous or immiscible liquid) between the droplet and substrate; once displaced, it cannot be recovered spontaneously as the fully penetrated Wenzel wetting state is energetically favorable. Here, we identify pathways for the “lifting” of droplets from the surface texture, enabling a complete Wenzel-to-Cassie-Baxter wetting state transition. This is accomplished by the hemiwicking of a transient (limited lifetime due to evaporation) low surface tension (LST) liquid, which is capable of self-assembling as an intervening underlayer, lifting the droplet from its impaled state and facilitating a skating-like behavior. In the skating phase, a critical substrate tilting angle is identified, up to which underlayer and droplet remain coupled exhibiting a pseudo-Cassie-Baxter state. For greater titling angles, the droplet, driven by inertia, detaches itself from the liquid intervening layer and transitions to a traditional Cassie-Baxter wetting state, thereby accelerating and leaving the underlayer behind. A model is also presented that elucidates the mechanism of mobility recovery. Ultimately, this work provides a better understanding of multiphase mass transfer of immiscible LST liquid-water mixtures with respect to establishing facile methods towards retaining intervening layers. PMID:26743806

  6. Properties of injectable ready-to-use calcium phosphate cement based on water-immiscible liquid.

    PubMed

    Heinemann, S; Rössler, S; Lemm, M; Ruhnow, M; Nies, B

    2013-04-01

    Calcium phosphate cements (CPCs) are highly valuable materials for filling bone defects and bone augmentation by minimal invasive application via percutaneous injection. In the present study some key features were significantly improved by developing a novel injectable ready-to-use calcium phosphate cement based on water-immiscible carrier liquids. A combination of two surfactants was identified to facilitate the targeted discontinuous exchange of the liquid for water after contact with aqueous solutions, enabling the setting reaction to take place at distinct ratios of cement components to water. This prolonged the shelf life of the pre-mixed paste and enhanced reproducibility during application and setting reactions. The developed paste technology is applicable for different CPC formulations. Evaluations were performed for the formulation of an α-TCP-based CPC as a representative example for the preparation of injectable pastes with a powder-to-carrier liquid ratio of up to 85:15. We demonstrate that the resulting material retains the desirable properties of conventional CPC counterparts for fast setting, mechanical strength and biocompatibility, shows improved cohesion and will most probably show a similar degree of resorbability due to identical mineral structure of the set products. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Preliminary drop-tower experiments on liquid-interface geometry in partially filled containers at zero gravity

    NASA Technical Reports Server (NTRS)

    Smedley, G.

    1990-01-01

    Plexiglass containers with rounded trapezoidal cross sections were designed and built to test the validity of Concus and Finn's existence theorem (1974, 1983) for a bounded free liquid surface at zero gravity. Experiments were carried out at the NASA Lewis two-second drop tower. Dyed ethanol-water solutions and three immiscible liquid pairs, with one liquid dyed, were tested. High-speed movies were used to record the liquid motion. Liquid rose to the top of the smaller end of the containers when the contact angle was small enough, in agreement with the theory. Liquid interface motion demonstrated a strong dependence on physical properties, including surface roughness and contamination.

  8. Calculations of the surface tensions of liquid metals

    NASA Technical Reports Server (NTRS)

    Stroud, D. G.

    1981-01-01

    The understanding of the surface tension of liquid metals and alloys from as close to first principles as possible is discussed. The two ingredients which are combined in these calculations are: the electron theory of metals, and the classical theory of liquids, as worked out within the framework of statistical mechanics. The results are a new theory of surface tensions and surface density profiles from knowledge purely of the bulk properties of the coexisting liquid and vapor phases. It is found that the method works well for the pure liquid metals on which it was tested; work is extended to mixtures of liquid metals, interfaces between immiscible liquid metals, and to the temperature derivative of the surface tension.

  9. Predicting the Fluid-Phase Behavior of Aqueous Solutions of ELP (VPGVG) Sequences Using SAFT-VR.

    PubMed

    Zhao, Binwu; Lindeboom, Tom; Benner, Steven; Jackson, George; Galindo, Amparo; Hall, Carol K

    2017-10-24

    The statistical associating fluid theory for potentials of variable range (SAFT-VR) is used to predict the fluid phase behavior of elastin-like polypeptide (ELP) sequences in aqueous solution with special focus on the loci of lower critical solution temperatures (LCSTs). A SAFT-VR model for these solutions is developed following a coarse-graining approach combining information from atomistic simulations and from previous SAFT models for previously reported relevant systems. Constant-pressure temperature-composition phase diagrams are determined for solutions of (VPGVG) n sequences + water with n = 1 to 300. The SAFT-VR equation of state lends itself to the straightforward calculation of phase boundaries so that complete fluid-phase equilibria can be calculated efficiently. A broad range of thermodynamic conditions of temperature and pressure are considered, and regions of vapor-liquid and liquid-liquid coexistence, including LCSTs, are found. The calculated phase boundaries at low concentrations match those measured experimentally. The temperature-composition phase diagrams of the aqueous ELP solutions at low pressure (0.1 MPa) are similar to those of types V and VI phase behavior in the classification of Scott and van Konynenburg. An analysis of the high-pressure phase behavior confirms, however, that a closed-loop liquid-liquid immiscibility region, separate from the gas-liquid envelope, is present for aqueous solutions of (VPGVG) 30 ; such a phase diagram is typical of type VI phase behavior. ELPs with shorter lengths exhibit both liquid-liquid and gas-liquid regions, both of which become less extensive as the chain length of the ELP is decreased. The strength of the hydrogen-bonding interaction is also found to affect the phase diagram of the (VPGVG) 30 system in that the liquid-liquid and gas-liquid regions expand as the hydrogen-bonding strength is decreased and shrink as it is increased. The LCSTs of the mixtures are seen to decrease as the ELP chain length is increased.

  10. Measurement of interactions between solid particles, liquid droplets, and/or gas bubbles in a liquid using an integrated thin film drainage apparatus.

    PubMed

    Wang, Louxiang; Sharp, David; Masliyah, Jacob; Xu, Zhenghe

    2013-03-19

    A novel device was designed to measure drainage dynamics of thin liquid films confined between a solid particle, an immiscible liquid droplet, and/or gas bubble. Equipped with a bimorph force sensor, a computer-interfaced video capture, and a data acquisition system, the newly designed integrated thin film drainage apparatus (ITFDA) allows for the direct and simultaneous measurements of force barrier, true film drainage time, and bubble/droplet deformation under a well-controlled external force, receding and advancing contact angles, capillary force, and adhesion (detachment) force between an air bubble or oil droplet and a solid, a liquid, or an air bubble in an immiscible liquid. Using the diaphragm of a high-frequency speaker as the drive mechanism for the air bubble or oil droplet attached to a capillary tube, this newly designed device is capable of measuring forces over a wide range of hydrodynamic conditions, including bubble approach and retract velocities up to 50 mm/s and displacement range up to 1 mm. The results showed that the ITFDA was capable of measuring hydrodynamic resistance, film drainage time, and other important physical parameters between air bubbles and solid particles in aqueous solutions. As an example of illustrating the versatility, the ITFDA was also applied to other important systems such as interactions between air bubble and oil droplet, two air bubbles, and two oil droplets in an aqueous solution.

  11. Combination of corona discharge ion mobility spectrometry with a novel reagent gas and two immiscible organic solvent liquid-liquid-liquid microextraction for analysis of clomipramine in biological samples.

    PubMed

    Saraji, Mohammad; Bidgoli, Ali Akbar Hajialiakbari; Khayamian, Taghi; Moradmand, Ali

    2011-12-02

    A novel and sensitive method based on combination of two immiscible organic solvents hollow fiber-based liquid-liquid-liquid microextraction and corona discharge ion mobility spectrometry (HF-LLLME-CD-IMS) was employed for the analysis of clomipramine in human urine and plasma. The effect of formic, acetic and propionic acid as the reagent gas (dopant) on the corona discharge ion mobility signal was investigated. The influence of dopant amount was also studied. Optimum mass flow rates of the dopants were 3.7, 1.1 and 1.0 μmol min(-1) for formic, acetic and propionic acid, respectively. Experimental parameters influencing the extraction efficiency of HF-LLLME, such as NaOH concentration as donor solution, ionic strength of the sample, stirring rate, and extraction time were investigated and optimized. Under the optimum conditions, analytical parameters such as linearity, precision and limit of detection were also evaluated. The linear dynamic range was from 1 to 100 μg L(-1) (r(2)=0.9980) and the limit of detection was 0.35 μg L(-1). Intra- and inter-day precisions were satisfactory with a relative standard deviation (RSD) of 5.9 and 6.7%, respectively. The proposed method was satisfactorily applied for the determination of clomipramine in human plasma and urine. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. De-vitrification of nanoscale phase-separated amorphous thin films in the immiscible copper-niobium system

    NASA Astrophysics Data System (ADS)

    Puthucode, A.; Devaraj, A.; Nag, S.; Bose, S.; Ayyub, P.; Kaufman, M. J.; Banerjee, R.

    2014-05-01

    Copper and niobium are mutually immiscible in the solid state and exhibit a large positive enthalpy of mixing in the liquid state. Using vapour quenching via magnetron co-sputter deposition, far-from equilibrium amorphous Cu-Nb films have been deposited which exhibit a nanoscale phase separation. Annealing these amorphous films at low temperatures (~200 °C) initiates crystallization via the nucleation and growth of primary nanocrystals of a face-centred cubic Cu-rich phase separated by the amorphous matrix. Interestingly, subsequent annealing at a higher temperature (>300 °C) leads to the polymorphic nucleation and growth of large spherulitic grains of a body-centred cubic Nb-rich phase within the retained amorphous matrix of the partially crystallized film. This sequential two-stage crystallization process has been investigated in detail by combining transmission electron microscopy [TEM] (including high-resolution TEM) and atom probe tomography studies. These results provide new insights into the crystallization behaviour of such unusual far-from equilibrium phase-separated metallic glasses in immiscible systems.

  13. Immiscible phase incorporation during directional solidification of hypermonotectics

    NASA Technical Reports Server (NTRS)

    Andrews, J. Barry; Merrick, Roger A.

    1993-01-01

    Solidification processes in immiscible samples were investigated by directly observing the events taking place at the solid-liquid interface during directional solidification. Visualization of these events was made possible through the use of a transparent metal analog system and a temperature gradient stage assembly fitted to an optical microscope. The immiscible transparent analog system utilized was the succinonitrile-glycerol system. This system has been shown to exhibit the same morphological transitions as observed in metallic alloys of monotectic composition. Both monotectic and hypermonotectic composition samples were directionally solidified in order to gain an improved understanding of the manner in which the excess hypermonotectic liquid is incorporated into the solidifying structure. The processing conditions utilized prevented sedimentation of the excess hypermonotectic liquid by directionally solidifying the samples in very thin (13 microns), horizontally oriented cells. High thermal gradient to growth rate ratios (G/R) were used in an effort to prevent constitutional supercooling and the subsequent formation of L(sub 2) droplets in advance of the solidification front during the growth of fibrous composite structures. Results demonstrated that hypermonotectic composites could be produced in samples up to two weight percent off of the monotectic composition by using a G/R ratio greater than or equal to 4.6 x 10(exp 4) C(s)/mm(sup 2) to avoid constitutional supercooling. For hypermonotectic samples processed with G/R ratios below 4.6 x 10(exp 4) C(s)/mm(sup 2), constitutional supercooling occurred and resulted in slight interfacial instability. For these samples, two methods of incorporation of the hypermonotectic liquid were observed and are reported. The correlation between the phase spacing, lambda, and the growth rate, R, was examined and was found to obey a relationship generally associated with a diffusion controlled coupled growth process. For samples with compositions ranging from the monotectic composition up to 2 percent off of the monotectic composition, data indicated that the square of the phase spacing (lambda) varied linearly with the inverse of the growth rate (R).

  14. Electrowetting-Based Variable-Focus Lens for Miniature Systems

    NASA Astrophysics Data System (ADS)

    Hendriks, B. H. W.; Kuiper, S.; van As, M. A. J.; et al.

    The meniscus between two immiscible liquids of different refractive indices can be used as a lens. A change in curvature of this meniscus by electrostatic control of the solid/liquid interfacial tension leads to a change in focal distance. It is demonstrated that two liquids in a tube form a self-centred variable-focus lens. The optical properties of this lens were investigated experimentally. We designed and constructed a miniature camera module based on this variable lens suitable for mobile applications. Furthermore, the liquid lens was applied in a Blu-ray Disc optical recording system to enable dual layer disc reading/writing.

  15. Development of adaptive liquid microlenses and microlens arrays

    NASA Astrophysics Data System (ADS)

    Berry, Shaun R.; Stewart, Jason B.; Thorsen, Todd A.; Guha, Ingrid

    2013-03-01

    We report on the development of sub-millimeter size adaptive liquid microlenses and microlens arrays using two immiscible liquids to form individual lenses. Microlenses and microlens arrays having aperture diameters as small as 50 microns were fabricated on a planar quartz substrate using patterned hydrophobic/hydrophilic regions. Liquid lenses were formed by a self-assembled oil dosing process that created well-defined lenses having a high fill factor. Variable focus was achieved by controlling the lens curvature through electrowetting. Greater than 70° of contact angle change was achieved with less than 20 volts, which results in a large optical power dynamic range.

  16. Analytical and experimental investigation of liquid double drop dynamics: Preliminary design for space shuttle experiments

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The preliminary grant assessed the use of laboratory experiments for simulating low g liquid drop experiments in the space shuttle environment. Investigations were begun of appropriate immiscible liquid systems, design of experimental apparatus and analyses. The current grant continued these topics, completed construction and preliminary testing of the experimental apparatus, and performed experiments on single and compound liquid drops. A continuing assessment of laboratory capabilities, and the interests of project personnel and available collaborators, led to, after consultations with NASA personnel, a research emphasis specializing on compound drops consisting of hollow plastic or elastic spheroids filled with liquids.

  17. Lipid extraction from microalgae using a single ionic liquid

    DOEpatents

    Salvo, Roberto Di; Reich, Alton; Dykes, Jr., H. Waite H.; Teixeira, Rodrigo

    2013-05-28

    A one-step process for the lysis of microalgae cell walls and separation of the cellular lipids for use in biofuel production by utilizing a hydrophilic ionic liquid, 1-butyl-3-methylimidazolium. The hydrophilic ionic liquid both lyses the microalgae cell walls and forms two immiscible layers, one of which consists of the lipid contents of the lysed cells. After mixture of the hydrophilic ionic liquid with a suspension of microalgae cells, gravity causes a hydrophobic lipid phase to move to a top phase where it is removed from the mixture and purified. The hydrophilic ionic liquid is recycled to lyse new microalgae suspensions.

  18. Contraction of an air disk caught between two different liquids

    NASA Astrophysics Data System (ADS)

    Thoraval, M.-J.; Thoroddsen, S. T.

    2013-12-01

    When a drop impacts a pool of liquid it entraps a thin disk of air under its center. This disk contracts rapidly into a bubble to minimize surface energy. Herein we use ultra-high-speed imaging to measure the contraction speed of this disk when the drop and pool are of different liquids. For miscible liquids the contraction rate is governed by the weaker of the two surface tensions. Some undulations are observed on the edge of the disk for a water drop impacting a pool of water, but not on a pool of lower surface tension. Similar results are observed for a pair of immiscible liquids.

  19. Dynamics of immiscible liquids in a rotating horizontal cylinder

    NASA Astrophysics Data System (ADS)

    Kozlov, N. V.; Kozlova, A. N.; Shuvalova, D. A.

    2016-11-01

    The dynamics of an interface between two immiscible liquids of different density is studied experimentally in a horizontal cylinder at rotation in the gravity field. Two liquids entirely fill the cavity volume, and the container is rotated sufficiently fast so that the liquids are centrifuged. The light liquid forms a column extended along the rotation axis, and the heavy liquid forms an annular layer. Under the action of gravity, the light liquid column displaces steadily along the radius, downwards in the laboratory frame. As a result, fluid oscillations in the cavity frame are excited at the interface, which lead to the generation of a steady streaming, and the fluid comes into a slow lagging rotation with respect to the cylinder walls. The dynamics of the studied system is determined by the ratio of the gravity acceleration to the centrifugal one—the dimensionless acceleration. In experiments, the system is controlled by the means of variation of the rotation rate, i.e., of the centrifugal force. At a critical value of the dimensionless acceleration the circular interface looses stability, and an azimuthal wave is excited. This leads to a strong increase in the interface differential velocity. A theoretical analysis is done based on the theory of centrifugal waves and a frequency equation is obtained. Experimental results are in good agreement with the theory at the condition of small wave amplitudes. Mechanism of steady streaming generation is analyzed based on previously published theoretical results obtained for the limiting case when the light phase is a solid cylinder. A qualitative agreement is found.

  20. MODELING MULTIPHASE ORGANIC CHEMICAL TRANSPORT IN SOILS AND GROUND WATER

    EPA Science Inventory

    Subsurface contamination due to immiscible organic liquids is a widespread problem which poses a serious threat to ground-water resources. n order to understand the movement of such materials in the subsurface, a mathematical model was developed for multiphase flow and multicompo...

  1. Liquid electrode

    DOEpatents

    Ekechukwu, Amy A.

    1994-01-01

    A dropping electrolyte electrode for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions.

  2. Variable-focus liquid lens for miniature cameras

    NASA Astrophysics Data System (ADS)

    Kuiper, S.; Hendriks, B. H. W.

    2004-08-01

    The meniscus between two immiscible liquids can be used as an optical lens. A change in curvature of this meniscus by electrowetting leads to a change in focal distance. It is demonstrated that two liquids in a tube form a self-centered lens with a high optical quality. The motion of the lens during a focusing action was studied by observation through the transparent tube wall. Finally, a miniature achromatic camera module was designed and constructed based on this adjustable lens, showing that it is excellently suited for use in portable applications.

  3. Method of removing and detoxifying a phosphorus-based substance

    DOEpatents

    Vandegrift, G.F.; Steindler, M.J.

    1985-05-21

    A method of removing a phosphorus-based poisonous substance from water contaminated is presented. In addition, the toxicity of the phosphorus-based substance is also subsequently destroyed. A water-immiscible organic solvent is first immobilized on a supported liquid membrane before the contaminated water is contacted with one side of the supported liquid membrane to absorb the phosphorus-based substance in the organic solvent. The other side of the supported liquid membrane is contacted with a hydroxy-affording strong base to react with phosphorus-based solvated species to form a non-toxic product.

  4. Formation and Cross-Cumulus Migration of Silica-Rich Liquids in the Skaergaard Intrusion, East Greenland

    NASA Astrophysics Data System (ADS)

    Larsen, R. B.; Sorensen, B. E.; Muller, A.

    2008-12-01

    In a recent publication on the Skaergaard intrusion evidence for the formation of silica-rich melts by silicate- silicate liquid immiscibility was proposed (Jakobsen et al., Geology 33, 2005). Coexisting iron-rich and silica- rich microscopic melt inclusions were trapped in apatite during crystallisation of the Skaergaard melts. Given this evidence for liquid immiscibility it is possible to explain the formation of macroscopic accumulations of silica rich entities throughout the magmatic stratigraphy. Previously, the formation and emplacement of these granophyric entities were challenging to explain. Examples include decimetre to metre size granophyric /melano-granophyric aggregates in either gabbroic pegmatite, in chimney shaped columns intersecting the layering or in isolated pods. Particularly, the presence of numerous granophyric pods a few metres above large gabbroic pegmatite were enigmatic. Moving the granophyric melts from the pegmatite where they formed (Larsen and Brooks, Journal of Petrology 35, 1994) and several metres across the magmatic stratigraphy would require unconsolidated cumulates i.e. a crystal mush. Geothermobarometric estimates from fluid inclusions, amphibole and feldspars show that the silica-rich aggregations solidified between 900 and 660 C at P from 1.8 to 2.9 kb. However, to be true products of liquid immiscibility they should form at T > 1050 C. With an average of 960 ppm Zr, the silica-rich aggregates are extremely Zr rich. Zr saturation thermometry imply minimum T's of 1070 (c. 2000 ppm Zr) to 900 C (c. 700 ppm Zr). Ti in Zr thermometry is progressing and may further constrain the T of formation. Although large uncertainties apply, a T of 1070 C or higher, would agree with a formation by liquid immiscibility. Assuming T > 1070 C the cumulus stratigraphy was unconsolidated with > 30 vol% intercumulus melts in the lower part of the magmachamber. With a density of 2.4-2.6 g/cm3, the silica-rich melts were much lighter than the ambient mush (c. 3.2 g/cm3) and may have migrated diapirically and/or along syn-magmatic semi-ductile fault systems (as observed in Lower Zone c and the Middle Zone). With an onset of silica-rich melt migration at T > 1070 C in the Lower Zone, large proportions of the magma chamber was molten and, at least theoretically, it was possible to reintroduce the silica-rich melts in the convecting magma. 19 chimney shaped structures of granophyric and melano-granophyric rocks in MZ with diameters of 2-5 metres, imply that the transfer of silica-rich melts was not only a trivial matter but substantially may have interacted with the cumulates they transgressed or the ambient convecting melt if they migrated this far.

  5. Surrogate immiscible liquid pairs with refractive indexes matchable over a wide range of density and viscosity ratios

    NASA Astrophysics Data System (ADS)

    Saksena, Rajat; Christensen, Kenneth T.; Pearlstein, Arne J.

    2015-08-01

    In liquid-liquid flows, use of optical diagnostics is limited by interphase refractive index mismatch, which leads to optical distortion and complicates data interpretation, and sometimes also by opacity. Both problems can be eliminated using a surrogate pair of immiscible index-matched transparent liquids, whose density and viscosity ratios match corresponding ratios for the original liquid pair. We show that a wide range of density and viscosity ratios is accessible using aqueous solutions of 1,2-propanediol and CsBr (for which index, density, and viscosity are available), and solutions of light and heavy silicone oils and 1-bromooctane (for which we measured the same properties at 119 compositions). For each liquid phase, polynomials in the composition variables, least-squares fitted to index and density and to the logarithm of kinematic viscosity, were used to determine accessible density and viscosity ratios for each matchable index. Index-matched solution pairs can be prepared with density and viscosity ratios equal to those for water-liquid CO2 at 0 °C over a range of pressure (allowing water-liquid CO2 behavior at inconveniently high pressure to be simulated by 1-bar experiments), and for water-crude oil and water-trichloroethylene (avoiding opacity and toxicity problems, respectively), each over a range of temperature. For representative index-matched solutions, equilibration changes index, density, and viscosity only slightly, and mass spectrometry and elemental analysis show that no component of either phase has significant interphase solubility. Finally, procedures are described for iteratively reducing the residual index mismatch in surrogate solution pairs prepared on the basis of approximate polynomial fits to experimental data, and for systematically dealing with nonzero interphase solubility.

  6. ENVIRONMENTAL RESEARCH BRIEF: SURFACTANT-ENHANCED DNAPL REMEDIATION: SURFACTANT SELECTION, HYDRAULIC EFFICIENCY, AND ECONOMIC FACTORS

    EPA Science Inventory

    Chlorinated hydrocarbons are ubiquitous ground water contaminants due to their widespread use as organic solvents and cleaners/degreasers. The immiscibility of chlorinated organis with ground water causes them to exists as nonaqueous phase liquids (NAPLs); this results in their o...

  7. Pore-scale simulation of liquid CO2 displacement of water using a two-phase lattice Boltzmann model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Haihu; Valocchi, Albert J.; Werth, Charles J.

    A lattice Boltzmann color-fluid model, which was recently proposed by Liu et al. [H. Liu, A.J. Valocchi, and Q. Kang. Three-dimensional lattice Boltzmann model for immiscible two-phase flow simulations. Phys. Rev. E, 85:046309, 2012.] based on a concept of continuum surface force, is improved to simulate immiscible two-phase flows in porous media. The new improvements allow the model to account for different kinematic viscosities of both fluids and to model fluid-solid interactions. The capability and accuracy of this model is first validated by two benchmark tests: a layered two-phase flow with a viscosity ratio, and a dynamic capillary intrusion. Thismore » model is then used to simulate liquid CO2 (LCO2) displacing water in a dual-permeability pore network. The extent and behavior of LCO2 preferential flow (i.e., fingering) is found to depend on the capillary number (Ca), and three different displacement patterns observed in previous micromodel experiments are reproduced. The predicted variation of LCO2 saturation with Ca, as well as variation of specific interfacial length with LCO2 saturation, are both in good agreement with the experimental observations. To understand the effect of heterogeneity on pore-scale displacement, we also simulate LCO2 displacing water in a randomly heterogeneous pore network, which has the same size and porosity as the dual-permeability pore network. In comparison to the dual-permeability case, the transition from capillary fingering to viscous fingering occurs at a higher Ca, and LCO2 saturation is higher at low Ca but lower at high Ca. In either pore network, the LCO2-water specific interfacial length is found to obey a power-law dependence on LCO2 saturation.« less

  8. EXPERIMENTAL EVALUATION OF TWO SHARP FRONT MODELS FOR VADOSE ZONE NON-AQUEOUS PHASE LIQUID TRANSPORT

    EPA Science Inventory

    Recent research efforts on the transport of immiscible organic wastes in subsurface the development of numerical models of various levels of sophistication. Systems have focused on the site characterization data needed to obtain. However, in real field applications, the model p...

  9. In Situ Activation of Microcapsules

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (Inventor); Mosier, Benjamin (Inventor)

    2000-01-01

    Disclosed are microcapsules comprising a polymer shell enclosing two or more immiscible liquid phases in which a drug, or a prodrug and a drug activator are partitioned into separate phases. or prevented from diffusing out of the microcapsule by a liquid phase in which the drug is poorly soluble. Also disclosed are methods of using the microcapsules for in situ activation of drugs where upon exposure to an appropriate energy source the internal phases mix and the drug is activated in situ.

  10. Liquid electrode

    DOEpatents

    Ekechukwu, A.A.

    1994-07-05

    A dropping electrolyte electrode is described for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions. 2 figures.

  11. Microcapsules and Methods for Making

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (Inventor); Mosier, Benjamin (Inventor)

    1998-01-01

    Methods of forming multi-lamellar microcapsules having alternating layers of hydrophilic and hydrophobic immiscible liquid phases have been developed using different polymer/solvent systems. The methods use liquid-liquid diffusion and simultaneous lateral phase separation, controlled by proper timed-sequence exposures of immiscible phases and low shear mixing, to form narrow size distributions of spherical, multilamellar microcapsules. The use of special formulations of solubilized drugs, surfactants, and polymeric co-surfactants in aqueous vehicles which are dispersed in hydrocarbon solvents containing small quantities of oil, low molecular weight co-surfactants and glycerides that are aqueous insoluble enables the formation of unique microcapsules which can carry large amounts of pharmaceuticals in both aqueous and non-aqueous solvent compartments. The liquid microcapsules are quickly formed in a single step and can include a polymeric outer 'skin' which protects the microcapsules during physical manipulation or exposure to high shear forces. Water-in-oil and oil-in-water microcapsules have been formed both in 1 x g and in microgravity, which contain several types of drugs co-encapsulated within different fluid compartments inside the same microcapsule. Large, spherical multi-lamellar microcapsules have been formed including a cytotoxic drug co-encapsulated with a radiocontrast medium which has advantages for chemoembolization of vascular tumors. In certain cases, crystals of the drug form inside the microcapsules providing zero-order and first order, sustained drug release kinetics.

  12. Atomistic and Coarse-Grained Modeling of the Adsorption of Graphene Nanoflakes at the Oil-Water Interface.

    PubMed

    Ardham, Vikram Reddy; Leroy, Frédéric

    2018-03-01

    The high interfacial tension between two immiscible liquids can provide the necessary driving force for the self-assembly of nanoparticles at the interface. Particularly, the interface between water and oily liquids (hydrocarbon chains) has been exploited to prepare networks of highly interconnected graphene sheets of only a few layers thickness, which are well suited for industrial applications. Studying such complex systems through particle-based simulations could greatly enhance the understanding of the various driving forces in action and could possibly give more control over the self-assembly process. However, the interaction potentials used in particle-based simulations are typically derived by reproducing bulk properties and are therefore not suitable for describing systems dominated by interfaces. To address this issue, we introduce a methodology to derive solid-liquid interaction potentials that yield an accurate representation of the balance between interfacial interactions at atomistic and coarse-grained resolutions. Our approach is validated through its ability to lead to the adsorption of graphene nanoflakes at the interface between water and n-hexane. The development of accurate coarse-grained potentials that our approach enables will allow us to perform large-scale simulations to study the assembly of graphene nanoparticles at the interface between immiscible liquids. Our methodology is illustrated through a simulation of many graphene nanoflakes adsorbing at the interface.

  13. A comparative flow visualization study of thermocapillary flow in drops in liquid-liquid systems

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R.; Rashidnia, N.

    1991-01-01

    Experiments are performed to visualize thermocapillary flow in drops in an immiscible host liquid. The host liquid used is silicone oil. Drops of three different liquids are used, viz, vegetable oil, water-methanol mixture anad pure methanol. Clear evidence of thermocapillary flow is seen in vegetable oil drops. For a mixture of water and methanol (approximately 50-50 by weight), natural convection is seen to dominate the flow outside the drop. Pure methanol drops exhibit thermocapillary flow, but dissolve in silicone oil. A small amount of water added to pure methanol significantly reduces the dissolution. Flow oscillations occur in this system for both isothermal and non-isothermal conditions.

  14. A Liquid Optical Phase Shifter with an Embedded Electrowetting Actuator

    PubMed Central

    Ashtiani, Alireza Ousati; Jiang, Hongrui

    2017-01-01

    We demonstrate an electrowetting-based liquid optical phase shifter. The phase shifter consists of two immiscible liquid layers with different refractive indices. Sandwiched between the two liquids is a rigid membrane that moves freely along the optical axis and supported by a compliant surround. When applied with a pressure, the thicknesses of both liquid layers change, which induces a difference in optical path, resulting in a phase shift. A miniaturized electrowetting-based actuator is used to produce hydraulic pressure. A multi-layered SU8 bonded structure was fabricated. A phase shift of 171° was observed when the device was incorporated in a Mach-Zehnder interferometer and driven with 100 V. PMID:29038640

  15. Method for removing organic liquids from aqueous solutions and mixtures

    DOEpatents

    Hrubesh, Lawrence W.; Coronado, Paul R.; Dow, Jerome P.

    2004-03-23

    A method for removing organic liquids from aqueous solutions and mixtures. The method employs any porous material preferably in granular form and having small pores and a large specific surface area, that is hydrophobic so that liquid water does not readily wet its surface. In this method, organics, especially organic solvents that mix with and are more volatile than water, are separated from aqueous solution by preferentially evaporating across the liquid/solid boundary formed at the surfaces of the hydrophobic porous materials. Also, organic solvents that are immiscible with water, preferentially wet the surfaces of the hydrophobic material and are drawn within the porous materials by capillary action.

  16. Growth of normally-immiscible materials (NIMs), binary alloys, and metallic fibers by hyperbaric laser chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Maxwell, J. L.; Black, M. R.; Chavez, C. A.; Maskaly, K. R.; Espinoza, M.; Boman, M.; Landstrom, L.

    2008-06-01

    This work demonstrates that two or more elements of negligible solubility (and no known phase diagram) can be co-deposited in fiber form by hyperbaric-pressure laser chemical vapor deposition (HP-LCVD). For the first time, Hg-W alloys were grown as fibers from mixtures of tungsten hexafluoride, mercury vapor, and hydrogen. This new class of materials is termed normally-immiscible materials (NIMs), and includes not only immiscible materials, but also those elemental combinations that have liquid states at exclusive temperatures. This work also demonstrates that a wide variety of other binary and ternary alloys, intermetallics, and mixtures can be grown as fibers, e.g. silicon-tungsten, aluminum-silicon, boron-carbon-silicon, and titanium-carbon-nitride. In addition, pure metallic fibers of aluminum, titanium, and tungsten were deposited, demonstrating that materials of high thermal conductivity can indeed be grown in three-dimensions, provided sufficient vapor pressures are employed. A wide variety of fiber properties and microstructures resulted depending on process conditions; for example, single crystals, fine-grained alloys, and glassy metals could be deposited.

  17. Thermocapillary migration of liquid droplets in a temperature gradient in a density matched system

    NASA Technical Reports Server (NTRS)

    Rashidnia, N.; Balasubramaniam, R.

    1991-01-01

    An experimental investigation of thermocapillary flow in droplets of a vegetable oil (partially hydrogenated soybean oil) immersed in silicone oil was conducted in a test cell with a heated top wall and a cooled bottom wall. The liquids are nearly immiscible and have equal densities at a temperature below the room temperature, thus providing a simulation of low-gravity conditions by reducing the buoyancy forces. The interfacial tension between the two oils was measured in the temperature range 20 to 50 C using a capillary tube and (d sigma)/(d T) was determined to be negative. Droplets ranging in sizes from 3 mm to 1 cm diameter were injected into the silicone oil. The vertical temperature profile in the bulk liquid (silicone oil) produces temperature variations along the interface which induce variations in the interfacial tension. The flow inside the droplet driven by the resulting interfacial shear stresses was observed using a laser light-sheet flow visualization technique. The flow direction is consistent with the sign of (d sigma)/(d T). The observed maximum surface velocities are compared to the theoretical predictions of Young et al. (1959).

  18. Thermocapillary migration of liquid droplets in a temperature gradient in a density matched system

    NASA Technical Reports Server (NTRS)

    Rashidnia, N.; Balasubramaniam, R.

    1989-01-01

    An experimental investigation of thermocapillary flow in droplets of a vegetable oil (partially hydrogenated soybean oil) immersed in silicone oil was conducted in a test cell with a heated top wall and a cooled bottom wall. The liquids are nearly immiscible and have equal densities at a temperature below the room temperature, thus providing a simulation of low-gravity conditions by reducing the buoyancy forces. The interfacial tension between the two oils was measured in the temperature range 20 to 50 C using a capillary tube and (d sigma)/(d T) was determined to be negative. Droplets ranging in sizes from 3 mm to 1 cm diameter were injected into the silicone oil. The vertical temperature profile in the bulk liquid (silicone oil) produces temperature variations along the interface which induce variations in the interfacial tension. The flow inside the droplet driven by the resulting interfacial shear stresses was observed using a laser light-sheet flow visualization technique. The flow direction is consistent with the sign of (d sigma)/(d T). The observed maximum surface velocities are compared to the theoretical predictions of Young et al. (1959).

  19. Extraction of S- and N-compounds from the mixture of hydrocarbons by ionic liquids as selective solvents.

    PubMed

    Gabrić, Beata; Sander, Aleksandra; Cvjetko Bubalo, Marina; Macut, Dejan

    2013-01-01

    Liquid-liquid extraction is an alternative method that can be used for desulfurization and denitrification of gasoline and diesel fuels. Recent approaches employ different ionic liquids as selective solvents, due to their general immiscibility with gasoline and diesel, negligible vapor pressure, and high selectivity to sulfur- and nitrogen-containing compounds. For that reason, five imidazolium-based ionic liquids and one pyridinium-based ionic liquid were selected for extraction of thiophene, dibenzothiophene, and pyridine from two model solutions. The influences of hydrodynamic conditions, mass ratio, and number of stages were investigated. Increasing the mass ratio of ionic liquid/model fuel and multistage extraction promotes the desulfurization and denitrification abilities of the examined ionic liquids. All selected ionic liquids can be reused and regenerated by means of vacuum evaporation.

  20. Extraction of S- and N-Compounds from the Mixture of Hydrocarbons by Ionic Liquids as Selective Solvents

    PubMed Central

    Gabrić, Beata; Sander, Aleksandra; Cvjetko Bubalo, Marina; Macut, Dejan

    2013-01-01

    Liquid-liquid extraction is an alternative method that can be used for desulfurization and denitrification of gasoline and diesel fuels. Recent approaches employ different ionic liquids as selective solvents, due to their general immiscibility with gasoline and diesel, negligible vapor pressure, and high selectivity to sulfur- and nitrogen-containing compounds. For that reason, five imidazolium-based ionic liquids and one pyridinium-based ionic liquid were selected for extraction of thiophene, dibenzothiophene, and pyridine from two model solutions. The influences of hydrodynamic conditions, mass ratio, and number of stages were investigated. Increasing the mass ratio of ionic liquid/model fuel and multistage extraction promotes the desulfurization and denitrification abilities of the examined ionic liquids. All selected ionic liquids can be reused and regenerated by means of vacuum evaporation. PMID:23843736

  1. Preparation of biodiesel with the help of ultrasonic and hydrodynamic cavitation.

    PubMed

    Ji, Jianbing; Wang, Jianli; Li, Yongchao; Yu, Yunliang; Xu, Zhichao

    2006-12-22

    An alkali-catalyzed biodiesel production method with power ultrasonic (19.7 kHz) has been developed that allows a short reaction time and high yield because of emulsification and cavitation of the liquid-liquid immiscible system. Orthogonality experiments were employed to evaluate the effects of synthesis parameters. Furthermore, hydrodynamic cavitation was used for biodiesel production in comparison to ultrasonic method. Both methods were proved to be efficient, and time and energy saving for the preparation of biodiesel by transesterification of soybean oil.

  2. Some Pecularities of Solidification of the Almandine Impact Melt

    NASA Astrophysics Data System (ADS)

    Feldman, V. I.; Kozlov, E. A.; Zhugin, Yu. N.

    1996-03-01

    SOME PECULIARITIES OF SOLIDIFICATION OF THE ALMANDINE IMPACT MELT. Feldman V.I. Moscow State University, Geological Faculty, Department of Petrology, 119899, Moscow, Russia. Kozlov E.A., Zhugin Yu.N. Russian Federal nuclear Center - Research Institute of Technical Physics, P.O.Box 245, 456770, Snezhinsk, Russia. The aim of these investigations is a description of the experiments and the first results of a loading of the garnet sand by spherical converging shock waves. These experiments show that impact liquid have by solidification three stage of liquid immiscibility.

  3. Alkali Metal/Salt Thermal-Energy-Storage Systems

    NASA Technical Reports Server (NTRS)

    Phillips, Wayne W.; Stearns, John W.

    1987-01-01

    Proposed thermal-energy-storage system based on mixture of alkali metal and one of its halide salts; metal and salt form slurry of two immiscible melts. Use of slurry expected to prevent incrustations of solidified salts on heat-transfer surfaces that occur where salts alone used. Since incrustations impede heat transfer, system performance improved. In system, charging heat-exchanger surface immersed in lower liquid, rich in halide-salt, phase-charge material. Discharging heat exchanger surface immersed in upper liquid, rich in alkali metal.

  4. The Development of a Droplet Formation and Entrainment Model for Simulations of Immiscible Liquid-Liquid Flows

    DTIC Science & Technology

    1999-01-01

    scale lch and with some constant C2 by 89.02 gchp RilCd ⋅⋅≅ (5.3.13) This was done so that the length scale included in the model...εαα 23 22 12.0 k rrd p RiL < 1.0 Rig < 0.2 K-H Vortices ( ) ( ) 89.022 10.5 gchp Rilrrd ⋅⋅−⋅≅ αα where lch = MIN(δmx

  5. RECOVERY OF URANIUM VALUES

    DOEpatents

    Brown, K.B.; Crouse, D.J. Jr.; Moore, J.G.

    1959-03-10

    A liquid-liquid extraction method is presented for recovering uranium values from an aqueous acidic solution by means of certain high molecular weight amine in the amine classes of primary, secondary, heterocyclic secondary, tertiary, or heterocyclic tertiary. The uranium bearing aqueous acidic solution is contacted with the selected amine dissolved in a nonpolar water-immiscible organic solvent such as kerosene. The uranium which is substantially completely exiracted by the organic phase may be stripped therefrom by waters and recovered from the aqueous phase by treatment into ammonia to precipitate ammonium diuranate.

  6. Microcapsules and Methods for Making

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (Inventor); Mosier, Benjamin (Inventor)

    1994-01-01

    This invention relates to methods for forming multi-lamellar microcapsules of both hydrophilic and hydrophobic immiscible liquid phases using several polymer/solvent systems. Liquid-Liquid diffusion and spontaneous emulsification are controlled by properly timed sequence exposures of immiscible phases in aqueous vehicles dispersed in hydrocarbon solvents containing small quantities of oil, co-surfactants, and glycerides. Water-in-oil and oil-in-water microcapsules are formed containing selected combinations of several types of drugs, co-encapsulated within fluid compartments inside the microcapsule. Commercial applications of the process and the resultant product relate to drug therapy for treating medical conditions such as cancer, circulatory conditions, and other conditions in which pharmaceuticals are advantageously targeted to specific organs, or delivered in combination with other pharmaceuticals. Small microcapsules may be delivered intravenously to diseased organs or clotted vessels. The use of multiple drugs within the same microcapsule structure provides advantages for applications such as chemoembolization treatments and may be used to deliver both chemotherapeutic drugs, against tumor cells, and an immuno-adjuvant or immunological stimulant to enhance the patient's immune response. Active forms of urokinase and other enzymes may be delivered without dilution to the local site of an embolism for dissolving the embolism. Thus, the invention has several potentially valuable commercial applications related to pharmaceutical and medical applications.

  7. Insights into the role of wettability in cathode catalyst layer of proton exchange membrane fuel cell; pore scale immiscible flow and transport processes

    NASA Astrophysics Data System (ADS)

    Fathi, H.; Raoof, A.; Mansouri, S. H.

    2017-05-01

    The production of liquid water in cathode catalyst layer, CCL, is a significant barrier to increase the efficiency of proton exchange membrane fuel cell. Here we present, for the first time, a direct three-dimensional pore-scale modelling to look at the complex immiscible two-phase flow in CCL. After production of the liquid water at the surface of CCL agglomerates due to the electrochemical reactions, water spatial distribution affects transport of oxygen through the CCL as well as the rate of reaction at the agglomerate surfaces. To explore the wettability effects, we apply hydrophilic and hydrophobic properties using different surface contact angles. Effective diffusivity is calculated under several water saturation levels. Results indicate larger diffusive transport values for hydrophilic domain compared to the hydrophobic media where the liquid water preferentially floods the larger pores. However, hydrophobic domain showed more available surface area and higher oxygen consumption rate at the reaction sites under various saturation levels, which is explained by the effect of wettability on pore-scale distribution of water. Hydrophobic domain, with a contact angle of 150, reveals efficient water removal where only 28% of the pore space stays saturated. This condition contributes to the enhanced available reaction surface area and oxygen diffusivity.

  8. PERFORMANCE ASSESSMENT OF IN-WELL AERATION FOR THE REMEDIATION OF AN AQUIFER CONTAMINATED BY MULTICOMPONENT IMMISCIBLE LIQUID

    EPA Science Inventory

    A pilot-scale test to evaluate the performance of a vertical recirculation well equipped with an in-well air stripper was conducted at Hill AFB, Utah, in an aquifer contaminated with petroleum and chlorinated solvents. During the two months of operation, the air stripping system ...

  9. Steel Spheres and Skydiver--Terminal Velocity

    ERIC Educational Resources Information Center

    Costa Leme, J.; Moura, C.; Costa, Cintia

    2009-01-01

    This paper describes the use of open source video analysis software in the study of the relationship between the velocity of falling objects and time. We discuss an experiment in which a steel sphere falls in a container filled with two immiscible liquids. The motion is similar to that of a skydiver falling through air.

  10. Lipid immiscibility and biophysical properties: Molecular order within and among unit cell volumes

    USDA-ARS?s Scientific Manuscript database

    Saturated and unsaturated fatty acids clearly have a discrete chemical structure in the solid state. In a saturated solution, the solid state and solution state are in chemical equilibrium. The lipid stearic acid packs in unit cell volumes in the liquid state as well as in the solid state. Normal...

  11. Interface colloidal robotic manipulator

    DOEpatents

    Aronson, Igor; Snezhko, Oleksiy

    2015-08-04

    A magnetic colloidal system confined at the interface between two immiscible liquids and energized by an alternating magnetic field dynamically self-assembles into localized asters and arrays of asters. The colloidal system exhibits locomotion and shape change. By controlling a small external magnetic field applied parallel to the interface, structures can capture, transport, and position target particles.

  12. Controlling the Formation of Ionic-Liquid-based Aqueous Biphasic Systems by Changing the Hydrogen-Bonding Ability of Polyethylene Glycol End Groups.

    PubMed

    Pereira, Jorge F B; Kurnia, Kiki A; Freire, Mara G; Coutinho, João A P; Rogers, Robin D

    2015-07-20

    The formation of aqueous biphasic systems (ABS) when mixing aqueous solutions of polyethylene glycol (PEG) and an ionic liquid (IL) can be controlled by modifying the hydrogen-bond-donating/-accepting ability of the polymer end groups. It is shown that the miscibility/immiscibility in these systems stems from both the solvation of the ether groups in the oxygen chain and the ability of the PEG terminal groups to preferably hydrogen bond with water or the anion of the salt. The removal of even one hydrogen bond in PEG can noticeably affect the phase behavior, especially in the region of the phase diagram in which all the ethylene oxide (EO) units of the polymeric chain are completely solvated. In this region, removing or weakening the hydrogen-bond-donating ability of PEG results in greater immiscibility, and thus, in a higher ability to form ABS, as a result of the much weaker interactions between the IL anion and the PEG end groups. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Combination of deep eutectic solvent and ionic liquid to improve biocatalytic reduction of 2-octanone with Acetobacter pasteurianus GIM1.158 cell

    PubMed Central

    Xu, Pei; Du, Peng-Xuan; Zong, Min-Hua; Li, Ning; Lou, Wen-Yong

    2016-01-01

    The efficient anti-Prelog asymmetric reduction of 2-octanone with Acetobacter pasteurianus GIM1.158 cells was successfully performed in a biphasic system consisting of deep eutectic solvent (DES) and water-immiscible ionic liquid (IL). Various DESs exerted different effects on the synthesis of (R)-2-octanol. Choline chloride/ethylene glycol (ChCl/EG) exhibited good biocompatibility and could moderately increase the cell membrane permeability thus leading to the better results. Adding ChCl/EG increased the optimal substrate concentration from 40 mM to 60 mM and the product e.e. kept above 99.9%. To further improve the reaction efficiency, water-immiscible ILs were introduced to the reaction system and an enhanced substrate concentration (1.5 M) was observed with C4MIM·PF6. Additionally, the cells manifested good operational stability in the reaction system. Thus, the efficient biocatalytic process with ChCl/EG and C4MIM·PF6 was promising for efficient synthesis of (R)-2-octanol. PMID:27185089

  14. Combination of deep eutectic solvent and ionic liquid to improve biocatalytic reduction of 2-octanone with Acetobacter pasteurianus GIM1.158 cell

    NASA Astrophysics Data System (ADS)

    Xu, Pei; Du, Peng-Xuan; Zong, Min-Hua; Li, Ning; Lou, Wen-Yong

    2016-05-01

    The efficient anti-Prelog asymmetric reduction of 2-octanone with Acetobacter pasteurianus GIM1.158 cells was successfully performed in a biphasic system consisting of deep eutectic solvent (DES) and water-immiscible ionic liquid (IL). Various DESs exerted different effects on the synthesis of (R)-2-octanol. Choline chloride/ethylene glycol (ChCl/EG) exhibited good biocompatibility and could moderately increase the cell membrane permeability thus leading to the better results. Adding ChCl/EG increased the optimal substrate concentration from 40 mM to 60 mM and the product e.e. kept above 99.9%. To further improve the reaction efficiency, water-immiscible ILs were introduced to the reaction system and an enhanced substrate concentration (1.5 M) was observed with C4MIM·PF6. Additionally, the cells manifested good operational stability in the reaction system. Thus, the efficient biocatalytic process with ChCl/EG and C4MIM·PF6 was promising for efficient synthesis of (R)-2-octanol.

  15. Combination of deep eutectic solvent and ionic liquid to improve biocatalytic reduction of 2-octanone with Acetobacter pasteurianus GIM1.158 cell.

    PubMed

    Xu, Pei; Du, Peng-Xuan; Zong, Min-Hua; Li, Ning; Lou, Wen-Yong

    2016-05-17

    The efficient anti-Prelog asymmetric reduction of 2-octanone with Acetobacter pasteurianus GIM1.158 cells was successfully performed in a biphasic system consisting of deep eutectic solvent (DES) and water-immiscible ionic liquid (IL). Various DESs exerted different effects on the synthesis of (R)-2-octanol. Choline chloride/ethylene glycol (ChCl/EG) exhibited good biocompatibility and could moderately increase the cell membrane permeability thus leading to the better results. Adding ChCl/EG increased the optimal substrate concentration from 40 mM to 60 mM and the product e.e. kept above 99.9%. To further improve the reaction efficiency, water-immiscible ILs were introduced to the reaction system and an enhanced substrate concentration (1.5 M) was observed with C4MIM·PF6. Additionally, the cells manifested good operational stability in the reaction system. Thus, the efficient biocatalytic process with ChCl/EG and C4MIM·PF6 was promising for efficient synthesis of (R)-2-octanol.

  16. Electrodeposition of Polymer Nanostructures using Three Diffuse Double Layers: Polymerization beyond the Liquid/Liquid Interfaces

    NASA Astrophysics Data System (ADS)

    Divya, Velpula; Sangaranarayanan, M. V.

    2018-04-01

    Nanostructured conducting polymers have received immense attention during the past few decades on account of their phenomenal usefulness in diverse contexts, while the interface between two immiscible liquids is of great interest in chemical and biological applications. Here we propose a novel Electrode(solid)/Electrolyte(aqueous)/Electrolyte(organic) Interfacial assembly for the synthesis of polymeric nanostructures using a novel concept of three diffuse double layers. There exist remarkable differences between the morphologies of the polymers synthesized using the conventional electrode/electrolyte method and that of the new approach. In contrast to the commonly employed electrodeposition at liquid/liquid interfaces, these polymer modified electrodes can be directly employed in diverse applications such as sensors, supercapacitors etc.

  17. Screen-printed electrode based electrochemical detector coupled with ionic liquid dispersive liquid-liquid microextraction and microvolume back-extraction for determination of mercury in water samples.

    PubMed

    Fernández, Elena; Vidal, Lorena; Martín-Yerga, Daniel; Blanco, María del Carmen; Canals, Antonio; Costa-García, Agustín

    2015-04-01

    A novel approach is presented, whereby gold nanostructured screen-printed carbon electrodes (SPCnAuEs) are combined with in-situ ionic liquid formation dispersive liquid-liquid microextraction (in-situ IL-DLLME) and microvolume back-extraction for the determination of mercury in water samples. In-situ IL-DLLME is based on a simple metathesis reaction between a water-miscible IL and a salt to form a water-immiscible IL into sample solution. Mercury complex with ammonium pyrrolidinedithiocarbamate is extracted from sample solution into the water-immiscible IL formed in-situ. Then, an ultrasound-assisted procedure is employed to back-extract the mercury into 10 µL of a 4 M HCl aqueous solution, which is finally analyzed using SPCnAuEs. Sample preparation methodology was optimized using a multivariate optimization strategy. Under optimized conditions, a linear range between 0.5 and 10 µg L(-1) was obtained with a correlation coefficient of 0.997 for six calibration points. The limit of detection obtained was 0.2 µg L(-1), which is lower than the threshold value established by the Environmental Protection Agency and European Union (i.e., 2 µg L(-1) and 1 µg L(-1), respectively). The repeatability of the proposed method was evaluated at two different spiking levels (3 and 10 µg L(-1)) and a coefficient of variation of 13% was obtained in both cases. The performance of the proposed methodology was evaluated in real-world water samples including tap water, bottled water, river water and industrial wastewater. Relative recoveries between 95% and 108% were obtained. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Vapor Bubbles

    NASA Astrophysics Data System (ADS)

    Prosperetti, Andrea

    2017-01-01

    This article reviews the fundamental physics of vapor bubbles in liquids. Work on bubble growth and condensation for stationary and translating bubbles is summarized and the differences with bubbles containing a permanent gas stressed. In particular, it is shown that the natural frequency of a vapor bubble is proportional not to the inverse radius, as for a gas bubble, but to the inverse radius raised to the power 2/3. Permanent gas dissolved in the liquid diffuses into the bubble with strong effects on its dynamics. The effects of the diffusion of heat and mass on the propagation of pressure waves in a vaporous bubbly liquid are discussed. Other topics briefly touched on include thermocapillary flow, plasmonic nanobubbles, and vapor bubbles in an immiscible liquid.

  19. Sol-Gel synthesis of MgO-SiO2 glass compositions having stable liquid-liquid immiscibility

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1987-01-01

    MgO-SiO2 glasses containing up to 15 mol % MgO, which could not have been prepared by the conventional glass melting method due to the presence of stable liquid-liquid immiscibility, were synthesized by the sol-gel technique. Clear and transparent gels were obtained from the hydrolysis and polycondensation of silicon tetraethoxide (TEOS) and magnesium nitrate hexahydrate when the water/TEOS mole ratio was four or more. The gelling time decreased with increase in magnesium content, water/TEOS ratio, and reaction temperature. Magnesium nitrate hexahydrate crystallized out of the gels containing 15 and 20 mol % MgO on slow drying. This problem was partially alleviated by drying the gels quickly at higher temperatures. Monolithic gel samples were prepared using glycerol as the drying control additive. The gels were subjected to various thermal treatments and characterized by several methods. No organic groups could be detected in the glasses after heat treatments to approx. 800 C, but trace amounts of hydroxyl groups were still present. No crystalline phase was found from X-ray diffraction in the gel samples to approx. 890 C. At higher temperatures, alpha quartz precipitated out as the crystalline phase in gels containing up to 10 mol % MgO. The overall activation energy for gel formation in 10MgO-90SiO2 (mol %) system for water/TEOS mole ratio of 7.5 was calculated to be 58.7 kJ/mol.

  20. Hydrogenation of coal liquid utilizing a metal carbonyl catalyst

    DOEpatents

    Feder, Harold M.; Rathke, Jerome W.

    1979-01-01

    Coal liquid having a dissolved transition metal, catalyst as a carbonyl complex such as Co.sub.2 (CO.sub.8) is hydrogenated with hydrogen gas or a hydrogen donor. A dissociating solvent contacts the coal liquid during hydrogenation to form an immiscible liquid mixture at a high carbon monoxide pressure. The dissociating solvent, e.g. ethylene glycol, is of moderate coordinating ability, while sufficiently polar to solvate the transition metal as a complex cation along with a transition metal, carbonyl anion in solution at a decreased carbon monoxide pressure. The carbon monoxide pressure is reduced and the liquids are separated to recover the hydrogenated coal liquid as product. The dissociating solvent with the catalyst in ionized form is recycled to the hydrogenation step at the elevated carbon monoxide pressure for reforming the catalyst complex within fresh coal liquid.

  1. A compositional multiphase model for groundwater contamination by petroleum products: 1. Theoretical considerations

    USGS Publications Warehouse

    Corapcioglu, M. Yavuz; Baehr, Arthur L.

    1987-01-01

    A mathematical model is developed to describe the fate of hydrocarbon constituents of petroleum products introduced to soils as an immiscible liquid from sources such as leaking underground storage tanks and ruptured pipelines. The problem is one of multiphase transport (oil (immiscible), air, and water phases) of a reactive contaminant with constituents such as benzene, toluene, and xylene found in refined petroleum products like gasoline. In the unsaturated zone, transport of each constituent can occur as a solute in the water phase, vapor in the air phase, and as an unaltered constituent in the oil phase. Additionally, the model allows for adsorption. Molecular transformations, microbially mediated or abiotic, are incorporated as sink terms in the conservation of mass equations. An equilibrium approximation, applicable to any immiscible organic contaminant is applied to partition constituent mass between the air, oil, water, and adsorbed phases for points in the region where the oil phase exists. Outside the oil plume the equilibrium approximation takes on a simpler form to partition constituent mass between the air, water, and adsorbed phases only. Microbial degradation of petroleum products is first discussed in a general model, then the conservation of mass equation for oxygen is incorporated into the analysis which takes advantage of the key role played by oxygen in the metabolism of hydrocarbon utilizing microbes in soil environments. Approximations to two subproblems, oil plume establishment in the unsaturated zone, and solute and vapor transport subsequent to immiscible plume establishment are then developed from the general model.

  2. THE VELOCITY OF DNAPL FINGERING IN WATER-SATURATED POROUS MEDIA LABORATORY EXPERIMENTS AND A MOBILE-IMMOBILE-ZONE MODEL. (R826157)

    EPA Science Inventory

    Dense nonaqueous phase liquids (DNAPLs) are immiscible with water and can give rise to highly fingered fluid distributions when infiltrating through water-saturated porous media. In this paper, a conceptual mobile¯immobile¯zone (MIZ) model is pr...

  3. A phase-field method to analyze the dynamics of immiscible fluids in porous media

    NASA Astrophysics Data System (ADS)

    de Paoli, Marco; Roccon, Alessio; Zonta, Francesco; Soldati, Alfredo

    2017-11-01

    Liquid carbon dioxide (CO2) injected into geological formations (filled with brine) is not completely soluble in the surrounding fluid. For this reason, complex transport phenomena may occur across the interface that separates the two phases (CO2+brine and brine). Inspired by this geophysical instance, we used a Phase-Field Method (PFM) to describe the dynamics of two immiscible fluids in satured porous media. The basic idea of the PFM is to introduce an order parameter (ϕ) that varies continuously across the interfacial layer between the phases and is uniform in the bulk. The equation that describes the distribution of ϕ is the Cahn-Hilliard (CH) equation, which is coupled with the Darcy equation (to evaluate fluid velocity) through the buoyancy and Korteweg stress terms. The governing equations are solved through a pseudo-spectral technique (Fourier-Chebyshev). Our results show that the value of the surface tension between the two phases strongly influences the initial and the long term dynamics of the system. We believe that the proposed numerical approach, which grants an accurate evaluation of the interfacial fluxes of momentum/energy/species, is attractive to describe the transfer mechanism and the overall dynamics of immiscible and partially miscible phases.

  4. Phase equilibrium in a water + n-hexane system with a high water content

    NASA Astrophysics Data System (ADS)

    Rasulov, S. M.; Orakova, S. M.; Isaev, Z. A.

    2017-02-01

    The P, ρ, and T-properties of a water + n-hexane system immiscible under normal conditions are measured piezometrically in the water mole fraction range of 0.918-0.977 at 309-685 K and pressures of up to 66 MPa. Two phase transitions are observed on each isochore corresponding to phase transitions of hydrocarbon liquid into gas or the dissolution of n-hexane in water and the transition of aqueous liquid into gas. The boundaries of phase transitions and their critical parameters are determined.

  5. Separation and concentration of lower alcohols from dilute aqueous solutions

    DOEpatents

    Moore, Raymond H.; Eakin, David E.; Baker, Eddie G.; Hallen, Richard T.

    1991-01-01

    A process for producing, from a dilute aqueous solution of a lower (C.sub.1 -C.sub.5) alcohol, a concentrated liquid solution of the alcohol in an aromatic organic solvent is disclosed. Most of the water is removed from the dilute aqueous solution of alcohol by chilling sufficiently to form ice crystals. Simultaneously, the remaining liquid is extracted at substantially the same low temperature with a liquid organic solvent that is substantially immiscible in aqueous liquids and has an affinity for the alcohol at that temperature, causing the alcohol to transfer to the organic phase. After separating the organic liquid from the ice crystals, the organic liquid can be distilled to enrich the concentration of alcohol therein. Ethanol so separated from water and concentrated in an organic solvent such as toluene is useful as an anti-knock additive for gasoline.

  6. A novel coarsening mechanism of droplets in immiscible fluid mixtures

    NASA Astrophysics Data System (ADS)

    Shimizu, Ryotaro; Tanaka, Hajime

    2015-06-01

    In our daily lives, after shaking a salad dressing, we see the coarsening of oil droplets suspended in vinegar. Such a demixing process is observed everywhere in nature and also of technological importance. For a case of high droplet density, domain coarsening proceeds with inter-droplet collisions and the resulting coalescence. This phenomenon has been explained primarily by the so-called Brownian-coagulation mechanism: stochastic thermal forces exerted by molecules induce random motion of individual droplets, causing accidental collisions and subsequent interface-tension-driven coalescence. Contrary to this, here we demonstrate that the droplet motion is not random, but hydrodynamically driven by the composition Marangoni force due to an interfacial tension gradient produced in each droplet as a consequence of composition correlation among droplets. This alters our physical understanding of droplet coarsening in immiscible liquid mixtures on a fundamental level.

  7. Liquid-liquid equilibria for 2,3-butanediol + water + organic solvents at 303. 15 K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, S.; Pandya, G.; Chakrabarti, T.

    1994-10-01

    2, 3-Butanediol, an important industrial chemical, is of interest because of its application as a solvent and liquid fuel additive. Liquid-liquid equilibria at 303.15 [+-] 0.5 K were measured for water + 2, 3-butanediol + butan-1-ol, + 3-methyl-1-butanol, + 4-methyl-2-pentanone, + tributyl phosphate, and + butyl acetate. Complete phase diagrams were obtained by evaluating the solubility and tie-line results for each ternary mixture. The consistency of the tie-line results was ascertained using an Othmer-Tobias plot. The distribution coefficient and separation factors were evaluated over the immiscibility region. Among the solvents studied, butan-1-ol is the most effective one though tributyl phosphatemore » and 3-methyl-1-butanol may be preferred because of their low solubility and high selectivity.« less

  8. Membrane-less variable focus liquid lens with manual actuation

    NASA Astrophysics Data System (ADS)

    Patra, Roshan; Agarwal, Shivam; Kondaraju, Sasidhar; Bahga, Supreet Singh

    2017-04-01

    We present a tunable, membrane-less, mechanical-wetting liquid lens that can be actuated manually using a linear actuator such as screw or piston. The operation of the liquid lens is based on deforming the interface separating two immiscible liquids with different refractive indices, while pinning the three-phase contact line at the sharp edge of lens aperture. Our lens design improves upon the existing designs of mechanical-wetting lenses by eliminating the use of complex actuation mechanisms, without compromising on the optical performance. We demonstrate the operation of the liquid lens by tuning its power back and forth from negative to positive by simple rotation of a screw. We also present an analytical description of the focal length of the lens and validate it with detailed experimental measurements. Our experiments show that the focal length of the liquid lens can be tuned repeatably without any adverse effects of hysteresis and gravity.

  9. Phase equilibrium measurements on nine binary mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilding, W.V.; Giles, N.F.; Wilson, L.C.

    1996-11-01

    Phase equilibrium measurements have been performed on nine binary mixtures. The PTx method was used to obtain vapor-liquid equilibrium data for the following systems at two temperatures each: (aminoethyl)piperazine + diethylenetriamine; 2-butoxyethyl acetate + 2-butoxyethanol; 2-methyl-2-propanol + 2-methylbutane; 2-methyl-2-propanol + 2-methyl-2-butene; methacrylonitrile + methanol; 1-chloro-1,1-difluoroethane + hydrogen chloride; 2-(hexyloxy)ethanol + ethylene glycol; butane + ammonia; propionaldehyde + butane. Equilibrium vapor and liquid phase compositions were derived form the PTx data using the Soave equation of state to represent the vapor phase and the Wilson or the NRTL activity coefficient model to represent the liquid phase. A large immiscibility region existsmore » in the butane + ammonia system at 0 C. Therefore, separate vapor-liquid-liquid equilibrium measurements were performed on this system to more precisely determine the miscibility limits and the composition of the vapor phase in equilibrium with the two liquid phases.« less

  10. Measurement of dielectric constant of organic solvents by indigenously developed dielectric probe

    NASA Astrophysics Data System (ADS)

    Keshari, Ajay Kumar; Rao, J. Prabhakar; Rao, C. V. S. Brahmmananda; Ramakrishnan, R.; Ramanarayanan, R. R.

    2018-04-01

    The extraction, separation and purification of actinides (uranium and plutonium) from various matrices are an important step in nuclear fuel cycle. One of the separation process adopted in an industrial scale is the liquid-liquid extraction or solvent extraction. Liquid-liquid extraction uses a specific ligand/extractant in conjunction with suitable diluent. Solvent extraction or liquid-liquid extraction, involves the partitioning of the solute between two immiscible phases. In most cases, one of the phases is aqueous, and the other one is an organic solvent. The solvent used in solvent extraction should be selective for the metal of interest, it should have optimum distribution ratio, and the loaded metal from the organic phase should be easily stripped under suitable experimental conditions. Some of the important physical properties which are important for the solvent are density, viscosity, phase separation time, interfacial surface tension and the polarity of the extractant.

  11. Comparison of theory and experiment for NAPL dissolution in porous media

    NASA Astrophysics Data System (ADS)

    Bahar, T.; Golfier, F.; Oltéan, C.; Lefevre, E.; Lorgeoux, C.

    2018-04-01

    Contamination of groundwater resources by an immiscible organic phase commonly called NAPL (Non Aqueous Phase Liquid) represents a major scientific challenge considering the residence time of such a pollutant. This contamination leads to the formation of NAPL blobs trapped in the soil and impact of this residual saturation cannot be ignored for correct predictions of the contaminant fate. In this paper, we present results of micromodel experiments on the dissolution of pure hydrocarbon phase (toluene). They were conducted for two values of the Péclet number. These experiments provide data for comparison and validation of a two-phase non-equilibrium theoretical model developed by Quintard and Whitaker (1994) using the volume averaging method. The model was directly upscaled from the averaged pore-scale mass balance equations. The effective properties of the macroscopic model were calculated over periodic unit cells designed from images of the experimental flow cell. Comparison of experimental and numerical results shows that the transport model predicts correctly - with no fitting parameters - the main mechanisms of NAPL mass transfer. The study highlights the crucial need of having a fair recovery of pore-scale characteristic lengths to predict the mass transfer coefficient with accuracy.

  12. Simultaneous multicomponent spectrophotometric monitoring of methyl and propyl parabens using multivariate statistical methods after their preconcentration by robust ionic liquid-based dispersive liquid-liquid microextraction.

    PubMed

    Khani, Rouhollah; Ghasemi, Jahan B; Shemirani, Farzaneh

    2014-03-25

    A powerful and efficient signal-preprocessing technique that combines local and multiscale properties of the wavelet prism with the global filtering capability of orthogonal signal correction (OSC) is applied for pretreatment of spectroscopic data of parabens as model compounds after their preconcentration by robust ionic liquid-based dispersive liquid-liquid microextraction method (IL-DLLME). In the proposed technique, a mixture of a water-immiscible ionic liquid (as extraction solvent) [Hmim][PF6] and disperser solvent is injected into an aqueous sample solution containing one of the IL's ions, NaPF6, as extraction solvent and common ion source. After preconcentration, the absorbance of the extracted compounds was measured in the wavelength range of 200-700 nm. The wavelet orthogonal signal correction with partial least squares (WOSC-PLS) method was then applied for simultaneous determination of each individual compound. Effective parameters, such as amount of IL, volume of the disperser solvent and amount of NaPF6, were inspected by central composite design to identify the most important parameters and their interactions. The effect of pH on the sensitivity and selectivity was studied according to the net analyte signal (NAS) for each component. Under optimum conditions, enrichment factors of the studied compounds were 75 for methyl paraben (MP) and 71 for propyl paraben (PP). Limits of detection for MP and PP were 4.2 and 4.8 ng mL(-)(1), respectively. The root mean square errors of prediction for MP and PP were 0.1046 and 0.1275 μg mL(-)(1), respectively. The practical applicability of the developed method was examined using hygienic, cosmetic, pharmaceutical and natural water samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Crystal separation from mother solution and conservation under microgravity conditions using inert liquid

    NASA Astrophysics Data System (ADS)

    Regel, L. L.; Vedernikov, A. A.; Queeckers, P.; Legros, J.-C.

    1991-12-01

    The problem of the separation of crystals from their feeding solutions and their conservation at the end of the crystallization under microgravity is investigated. The goal to be reached is to propose an efficient and simple system. This method has to be applicable for an automatic separation on board a spacecraft, without using a centrifuge. The injection of an immiscible and inert liquid into the cell is proposed to solve the problem. The results of numerical modeling, earth simulation tests and experiments under short durations of weightlessness (using aircraft parabolic flights) are described.

  14. Theory and Tests of Two-Phase Turbines

    NASA Technical Reports Server (NTRS)

    Elliott, D. G.

    1986-01-01

    New turbines open possibility of new types of power cycles. Report describes theoretical analysis and experimental testing of two-phase impulse turbines. Such turbines open possibility of new types of power cycles operating with extremely wet mixtures of steam and water, organic fluids, or immiscible liquids and gases. Possible applications are geothermal power, waste-heat recovery, refrigerant expansion, solar conversion, transportation, and engine-bottoming cycles.

  15. The first Chinese student space shuttle getaway special program

    NASA Technical Reports Server (NTRS)

    Lee, Mark C.; Jin, Xun-Shu; Ke, Shou-Quan; Fu, Bing-Chen

    1988-01-01

    The first Chinese Getaway Special program is described. Program organization, the student proposal evaluation procedure, and the objectives of some of the finalist's experiments are covered. The two experiments selected for eventual flight on the space shuttle are described in detail. These include: (1) the control of debris in the cabin of the space shuttle; and (2) the solidification of two immiscible liquids in space.

  16. The Chinese student space shuttle get-way-special program

    NASA Technical Reports Server (NTRS)

    Lee, Mark C.; Jin, Xun-Shu; Ke, Shou-Quan; Fu, Bing-Chen

    1989-01-01

    The first Chinese Getaway Special program is described. Program organization, the student proposal evaluation procedure, and the objectives of some of the finalist's experiments are covered. The two experiments selected for eventual flight on the space shuttle are described in detail. These include: (1) the control of debris in the cabin of the space shuttle; and (2) the solidification of two immiscible liquids in space.

  17. DETERMINING EFFECTIVE INTERFACIAL TENSION AND PREDICTING FINGER SPACING FOR DNAPL PENETRATION INTO WATER-SATURATED POROUS MEDIA. (R826157)

    EPA Science Inventory

    The difficulty in determining the effective interfacial tension limits the prediction of the wavelength of fingering of immiscible fluids in porous media. A method to estimate the effective interfacial tension using fractal concepts was presented by Chang et al. [Water Resour. Re...

  18. Simulations of thermal Rayleigh-Marangoni convection in a three-layer liquid-metal-battery model

    NASA Astrophysics Data System (ADS)

    Köllner, Thomas; Boeck, Thomas; Schumacher, Jörg

    2017-11-01

    Operating a liquid-metal battery produces Ohmic losses in the electrolyte layer that separates both metal electrodes. As a consequence, temperature gradients establish which potentially cause thermal convection since density and interfacial tension depend on the local temperature. In our numerical investigations, we considered three plane, immiscible layers governed by the Navier-Stokes-Boussinesq equations held at a constant temperature of 500°C at the bottom and top. A homogeneous current is applied that leads to a preferential heating of the mid electrolyte layer. We chose a typical material combination of Li separated by LiCl-KCl (a molten salt) from Pb-Bi for which we analyzed the linear stability of pure thermal conduction and performed three-dimensional direct-numerical simulations by a pseudospectral method probing different: electrolyte layer heights, overall heights, and current densities. Four instability mechanisms are identified, which are partly coupled to each other: buoyant convection in the upper electrode, buoyant convection in the molten salt layer, and Marangoni convection at both interfaces between molten salt and electrode. The global turbulent heat transfer follows scaling predictions for internally heated buoyant convection. Financial support by the Deutsche Forschungsgemeinschaft under Grant No. KO 5515/1-1 is gratefully acknowledged.

  19. Liquid gallium-lead mixture phase diagram, surface tension near the critical mixing point, and prewetting transition.

    PubMed

    Osman, S M; Grosdidier, B; Ali, I; Abdellah, A Ben

    2013-06-01

    Quite recently, we reported a semianalytical equation of state (EOS) for the Ga-Pb alloy [Phys. Rev. B 78, 024205 (2008)], which was based on the first-order perturbation theory of fluid mixtures, within the simplified random phase approximation, in conjunction with the Grosdidier et al. model pair potentials for Ga-Ga and Pb-Pb with a suitable nonadditive pair potential between Ga-Pb unlike pairs. In the present work, we employ the present EOS to calculate the Ga-Pb phase diagram along the immiscibility gap region. The accuracy of the EOS is tested by consulting the empirical binodal curve. A statistical-mechanical-based theory for the surface tension is employed to obtain an analytical expression for the alloy surface tension. We calculated the surface tension along the bimodal curve and at extreme conditions of temperatures and pressures. The surface tension exhibits reasonably well the prewetting transition of Pb atoms at the surface of the Ga-rich liquid alloy and could qualitatively explain the prewetting phenomena occurring in the Ga-rich side of the phase diagram. The predicted prewetting line and wetting temperature qualitatively agree with the empirical measurements.

  20. Investigation of immiscible systems and potential applications

    NASA Technical Reports Server (NTRS)

    Markworth, A. J.; Oldfield, W.; Duga, J.; Gelles, S. H.

    1975-01-01

    The droplet coalescence kinetics at 0 g and 1 g were considered for two systems which contained liquid droplets in a host liquid. One of these (Al-In) typified a system containing a liquid phase miscibility gap and the order (oil-water) a mixture of two essentially insoluble liquids. A number of coalescence mechanisms potentially prominent at low g in this system were analyzed and explanations are presented for the observed unusual stability of the emulsion. Ground base experiments were conducted on the coalescence of In droplets in and Al-In alloy during cooling through the miscibility gap at different cooling rates. These were in qualitative agreement with the computer simulation. Potential applications for systems with liquid phase miscibility gaps were explored. Possibilities included superconductors, electrical contact materials, superplastic materials, catalysts, magnetic materials, and others. The role of space processing in their production was also analyzed.

  1. Multiphase flow of miscible liquids: jets and drops

    NASA Astrophysics Data System (ADS)

    Walker, Travis W.; Logia, Alison N.; Fuller, Gerald G.

    2015-05-01

    Drops and jets of liquids that are miscible with the surrounding bulk liquid are present in many processes from cleaning surfaces with the aid of liquid soaps to the creation of biocompatible implants for drug delivery. Although the interactions of immiscible drops and jets show similarities to miscible systems, the small, transient interfacial tension associated with miscible systems create distinct outcomes such as intricate droplet shapes and breakup resistant jets. Experiments have been conducted to understand several basic multiphase flow problems involving miscible liquids. Using high-speed imaging of the morphological evolution of the flows, we have been able to show that these processes are controlled by interfacial tensions. Further multiphase flows include investigating miscible jets, which allow the creation of fibers from inelastic materials that are otherwise difficult to process due to capillary breakup. This work shows that stabilization from the diminishing interfacial tensions of the miscible jets allows various elongated morphologies to be formed.

  2. Ternary Free-Energy Entropic Lattice Boltzmann Model with a High Density Ratio

    NASA Astrophysics Data System (ADS)

    Wöhrwag, M.; Semprebon, C.; Mazloomi Moqaddam, A.; Karlin, I.; Kusumaatmaja, H.

    2018-06-01

    A thermodynamically consistent free energy model for fluid flows comprised of one gas and two liquid components is presented and implemented using the entropic lattice Boltzmann scheme. The model allows a high density ratio, up to the order of O (103), between the liquid and gas phases, and a broad range of surface tension ratios, covering partial wetting states where Neumann triangles are formed, and full wetting states where complete encapsulation of one of the fluid components is observed. We further demonstrate that we can capture the bouncing, adhesive, and insertive regimes for the binary collisions between immiscible droplets suspended in air. Our approach opens up a vast range of multiphase flow applications involving one gas and several liquid components.

  3. Chemical amplification based on fluid partitioning in an immiscible liquid

    DOEpatents

    Anderson, Brian L.; Colston, Bill W.; Elkin, Christopher J.

    2010-09-28

    A system for nucleic acid amplification of a sample comprises partitioning the sample into partitioned sections and performing PCR on the partitioned sections of the sample. Another embodiment of the invention provides a system for nucleic acid amplification and detection of a sample comprising partitioning the sample into partitioned sections, performing PCR on the partitioned sections of the sample, and detecting and analyzing the partitioned sections of the sample.

  4. Nanoparticle cages for enzyme catalysis in organic media.

    PubMed

    Wu, Changzhu; Bai, Shuo; Ansorge-Schumacher, Marion B; Wang, Dayang

    2011-12-15

    Encapsulation of enzymes in Pickering emulsions results in a large interfacial area of the enzyme-containing aqueous phase for biocatalysis in organic media. This immobilization technique minimizes enzyme inactivation through stabilizing immiscible liquids by particles, facilitates separation processes, and significantly increases catalytic performance of both stable and vulnerable enzymes. Thus, a broad technical applicability can be envisioned. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Novel Directional Solidification Processing of Hypermonotectic Alloys

    NASA Technical Reports Server (NTRS)

    Kaukler, William; Fedoseyev, Alex

    2002-01-01

    A model has been developed that determines the size of Liquid (sub 11) droplets generated during application of ultrasonic energy (as a function of amplitude) to immiscible alloys. The initial results are in accordance with experimental results based on Succinonitrile - Glycerol "alloys" and pure tin dispersions. Future work will take into account the importance of other effects, e.g., thermo-vibrational convection, sound attenuation, viscosity variations, and compositional changes.

  6. Improved Heat-of-Fusion Energy Storage

    NASA Technical Reports Server (NTRS)

    Chen, K. H.; Manvi, R.

    1982-01-01

    Alkali metal/alkali-halide mixtures proposed for preventing solid buildup during energy recovery. When mixture melts (by absorption of heat of fusion), it forms two immiscible liquids. Salt-rich phase is heavier and has higher melting/recrysallization temperature; so during energy recovery salt crystallizes in this phase first. Since heat exchanger for energy recovery is in lighter metal-rich phase, solids do not form and there is no reduction of heat-recovery efficiency.

  7. Cyclodextrin-enhanced solubilization and removal of residual-phase chlorinated solvents from porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boving, T.B.; Wang, X.; Brusseau, M.L.

    1999-03-01

    The development of improved methods for remediation of contaminated aquifers has emerged as a significant environmental priority. One technology that appears to have considerable promise involves the use of solubilization agents such as surfactants and cosolvents for enhancing the removal of residual phase immiscible liquids. The authors examined the use of cyclodextrin, a glucose-based molecule, for solubilizing and removing residual-phase immiscible liquid from porous media. Batch experiments were conducted to measure the degree of trichloroethene (TCE) and tetrachloroethene (PCE) solubilization induced by hydroxypropyl-{beta}-cyclodextrin (HPCD) and methyl-{beta}-cyclodextrin (MCD). These studies revealed that the solubilities of TCE and PCE were enhanced bymore » up to 9.5 and 36.0 times, respectively. Column experiments were conducted to compare water and cyclodextrin-enhanced flushing of Borden sand containing residual saturations of TCE and PCE. The results indicate that solubilization and mass removal were enhanced substantially with the use of cyclodextrins. The effluent concentrations during the steady-state phase of the HPCD and MCD flushing experiments were close to the apparent solubilities measured with the batch experiments, indicating equilibrium concentrations were maintained during the initial phase of cyclodextrin flushing. Mobilization was observed for only the TCE-MCD and PCE-5%MCD experiments.« less

  8. Prediction of solubility parameters and miscibility of pharmaceutical compounds by molecular dynamics simulations.

    PubMed

    Gupta, Jasmine; Nunes, Cletus; Vyas, Shyam; Jonnalagadda, Sriramakamal

    2011-03-10

    The objectives of this study were (i) to develop a computational model based on molecular dynamics technique to predict the miscibility of indomethacin in carriers (polyethylene oxide, glucose, and sucrose) and (ii) to experimentally verify the in silico predictions by characterizing the drug-carrier mixtures using thermoanalytical techniques. Molecular dynamics (MD) simulations were performed using the COMPASS force field, and the cohesive energy density and the solubility parameters were determined for the model compounds. The magnitude of difference in the solubility parameters of drug and carrier is indicative of their miscibility. The MD simulations predicted indomethacin to be miscible with polyethylene oxide and to be borderline miscible with sucrose and immiscible with glucose. The solubility parameter values obtained using the MD simulations values were in reasonable agreement with those calculated using group contribution methods. Differential scanning calorimetry showed melting point depression of polyethylene oxide with increasing levels of indomethacin accompanied by peak broadening, confirming miscibility. In contrast, thermal analysis of blends of indomethacin with sucrose and glucose verified general immiscibility. The findings demonstrate that molecular modeling is a powerful technique for determining the solubility parameters and predicting miscibility of pharmaceutical compounds. © 2011 American Chemical Society

  9. Prediction of superconducting iron–bismuth intermetallic compounds at high pressure

    PubMed Central

    Amsler, Maximilian; Naghavi, S. Shahab

    2017-01-01

    The synthesis of materials in high-pressure experiments has recently attracted increasing attention, especially since the discovery of record breaking superconducting temperatures in the sulfur–hydrogen and other hydrogen-rich systems. Commonly, the initial precursor in a high pressure experiment contains constituent elements that are known to form compounds at ambient conditions, however the discovery of high-pressure phases in systems immiscible under ambient conditions poses an additional materials design challenge. We performed an extensive multi component ab initio structural search in the immiscible Fe–Bi system at high pressure and report on the surprising discovery of two stable compounds at pressures above ≈36 GPa, FeBi2 and FeBi3. According to our predictions, FeBi2 is a metal at the border of magnetism with a conventional electron–phonon mediated superconducting transition temperature of T c = 1.3 K at 40 GPa. PMID:28507678

  10. Prediction of superconducting iron–bismuth intermetallic compounds at high pressure

    DOE PAGES

    Amsler, Maximilian; Naghavi, S. Shahab; Wolverton, Chris

    2016-12-07

    The synthesis of materials in high-pressure experiments has recently attracted increasing attention, especially since the discovery of record breaking superconducting temperatures in the sulfur–hydrogen and other hydrogen-rich systems. Commonly, the initial precursor in a high pressure experiment contains constituent elements that are known to form compounds at ambient conditions, however the discovery of high-pressure phases in systems immiscible under ambient conditions poses an additional materials design challenge. We performed an extensive multi component ab initio structural search in the immiscible Fe–Bi system at high pressure and report on the surprising discovery of two stable compounds at pressures above ≈36 GPa,more » FeBi 2 and FeBi 3. According to our predictions, FeBi 2 is a metal at the border of magnetism with a conventional electron–phonon mediated superconducting transition temperature of T c = 1.3 K at 40 GPa.« less

  11. A mesoscopic simulation on distributions of red blood cells in a bifurcating channel

    NASA Astrophysics Data System (ADS)

    Inoue, Yasuhiro; Takagi, Shu; Matsumoto, Yoichiro

    2004-11-01

    Transports of red blood cells (RBCs) or particles in bifurcated channels have been attracting renewed interest since the advent of concepts of MEMS for sorting, analyzing, and removing cells or particles from sample medium. In this talk, we present a result on a transport of red blood cells (RBCs) in a bifurcating channel studied by using a mesoscale simulation technique of immiscible droplets, where RBCs have been modeled as immiscible droplets. The distribution of RBCs is represented by the fractional RBC flux into two daughters as a function of volumetric flow ratio between the daughters. The data obtained in our simulations are examined with a theoretical prediction, in which, we assume an exponential distribution for positions of RBCs in the mother channel. The theoretical predictions show a good agreement with simulation results. A non-uniform distribution of RBCs in the mother channel affects disproportional separation of RBC flux at a bifurcation.

  12. Additively manufactured MEMS multiplexed coaxial electrospray sources for high-throughput, uniform generation of core-shell microparticles.

    PubMed

    Olvera-Trejo, D; Velásquez-García, L F

    2016-10-18

    This study reports the first MEMS multiplexed coaxial electrospray sources in the literature. Coaxial electrospraying is a microencapsulation technology based on electrohydrodynamic jetting of two immiscible liquids, which allows precise control with low size variation of the geometry of the core-shell particles it generates, which is of great importance in numerous biomedical and engineering applications, e.g., drug delivery and self-healing composites. By implementing monolithic planar arrays of miniaturized coaxial electrospray emitters that work uniformly in parallel, the throughput of the compound microdroplet source is greatly increased, making the microencapsulation technology compatible with low-cost commercial applications. Miniaturized core-shell particle generators with up to 25 coaxial electrospray emitters (25 emitters cm -2 ) were fabricated via stereolithography, which is an additive manufacturing process that can create complex microfluidic devices at a small fraction of the cost per device and fabrication time associated with silicon-based counterparts. The characterization of devices with the same emitter structure but different array sizes demonstrates uniform array operation. Moreover, the data demonstrate that the per-emitter current is approximately proportional to the square root of the flow rate of the driving liquid, and it is independent of the flow rate of the driven liquid, as predicted by the theory. The core/shell diameters and the size distribution of the generated compound microparticles can be modulated by controlling the flow rates fed to the emitters.

  13. Origin and fate of sulfide liquids in hotspot volcanism (La Réunion): Pb isotope constraints from residual Fe-Cu oxides

    NASA Astrophysics Data System (ADS)

    Vlastélic, I.; Gannoun, A.; Di Muro, A.; Gurioli, L.; Bachèlery, P.; Henot, J. M.

    2016-12-01

    Immiscible sulfide liquids in basaltic magmas play an important role in trace metal transport and the sulfur budget of volcanic eruptions. However, sulfides are transient phases, whose origin and fate are poorly constrained. We address these issues by analyzing sulfide destabilization products preserved in lavas from La Réunion Island. Iron oxide globules and coatings, typically 20-80 μm in size, were found to occur in vesicles of differentiated lavas from Piton des Neiges, and recent pumice samples from Piton de la Fournaise. Field and mineralogical evidence indicates that the iron oxides are syn-eruptive phases not resulting from hydrothermal processes. Samples were first studied by Scanning Electron Microscopy. The globules were separated, whereas the smaller spherules and coatings were concentrated by magnetic sorting and acid leaching, and samples were processed through wet chemistry. The Fe oxide phases comprise 49-74 wt.% Fe, 26-40 wt.% O, and up to 6 wt.% Cu, 811 ppm Ni, 140 ppm Bi, and 8.5 ppm Pb. Compared to the host lava, Cu, Ni, and Bi are enriched by a factor of 101-103. Systematic Pb isotope disequilibrium (between 500 ppm and 2.9% for 206Pb/204Pb) exists between Fe oxides and host rocks, with Fe oxides generally displaying less radiogenic ratios. Unradiogenic Pb is a typical signature of sulfide, which tends to concentrate Pb, but not its parent elements U and Th. Thus, both the chemical and isotopic compositions of the vesicle-hosted Fe oxides suggest that they are more or less direct products of the destabilization of immiscible sulfide liquids. Although Pb dominantly partitions into the gas phase during sulfide breakdown, the original Pb isotope signature of sulfide is preserved in the residual oxide. The composition estimated for the parent sulfides (206Pb/204Pb = 18.20-18.77, 207Pb/204Pb = 15.575, and 208Pb/204Pb = 38.2-38.8) precludes a genetic link with the La Réunion plume, and suggests a lithospheric or crustal origin. It is estimated that magma ascent velocities at Piton de la Fournaise are high enough to counterbalance the settling velocities of millimeter-size sulfides. Despite their high density, sulfide liquids are thus transferred upward during eruptions and their destabilization contributes to SO2 emanations. Assimilation of foreign sulfides from the lithosphere can explain why SO2 emissions sometimes (e.g., during the April 2007 eruption) exceed those predicted from the S content of melt inclusions.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martínez-Ruiz, F. J.; Blas, F. J., E-mail: felipe@uhu.es; Moreno-Ventas Bravo, A. I.

    We determine the interfacial properties of a symmetrical binary mixture of equal-sized spherical Lennard-Jones molecules, σ{sub 11} = σ{sub 22}, with the same dispersive energy between like species, ϵ{sub 11} = ϵ{sub 22}, but different dispersive energies between unlike species low enough to induce phase separation. We use the extensions of the improved version of the inhomogeneous long-range corrections of Janecek [J. Phys. Chem. B 110, 6264 (2006)], presented recently by MacDowell and Blas [J. Chem. Phys. 131, 074705 (2009)] and Martínez-Ruiz et al. [J. Chem. Phys. 141, 184701 (2014)], to deal with the interaction energy and microscopic components ofmore » the pressure tensor. We perform Monte Carlo simulations in the canonical ensemble to obtain the interfacial properties of the symmetrical mixture with different cut-off distances r{sub c} and in combination with the inhomogeneous long-range corrections. The pressure tensor is obtained using the mechanical (virial) and thermodynamic route. The liquid-liquid interfacial tension is also evaluated using three different procedures, the Irving-Kirkwood method, the difference between the macroscopic components of the pressure tensor, and the test-area methodology. This allows to check the validity of the recent extensions presented to deal with the contributions due to long-range corrections for intermolecular energy and pressure tensor in the case of binary mixtures that exhibit liquid-liquid immiscibility. In addition to the pressure tensor and the surface tension, we also obtain density profiles and coexistence densities and compositions as functions of pressure, at a given temperature. According to our results, the main effect of increasing the cut-off distance r{sub c} is to sharpen the liquid-liquid interface and to increase the width of the biphasic coexistence region. Particularly interesting is the presence of a relative minimum in the total density profiles of the symmetrical mixture. This minimum is related with a desorption of the molecules at the interface, a direct consequence of a combination of the weak dispersive interactions between unlike species of the symmetrical binary mixture, and the presence of an interfacial region separating the two immiscible liquid phases in coexistence.« less

  15. Physical phenomena in containerless glass processing

    NASA Technical Reports Server (NTRS)

    Subramanian, R. Shankar; Cole, Robert

    1988-01-01

    Flight experiments are planned on drops containing bubbles. The experiments involve stimulating the drop via non-uniform heating and rotation. The resulting trajectories of the bubbles as well as the shapes of the drops and bubble will be videotaped and analyzed later frame-by-frame on the ground. Supporting ground based experiments are planned in the area of surface tension driven motion of bubbles, the behavior of compound drops settling in an immiscible liquid and the shapes and trajectories of large bubbles and drops in a rotating liquid. Theoretical efforts will be directed at thermocapillary migration of drops and bubbles, surfactant effects on such migration, and the behavior of compound drops.

  16. Amphiphilic phase-transforming catalysts for transesterification of triglycerides

    NASA Astrophysics Data System (ADS)

    Nawaratna, Gayan Ivantha

    Heterogeneous catalytic reactions that involve immiscible liquid-phase reactants are challenging to conduct due to limitations associated with mass transport. Nevertheless, there are numerous reactions such as esterification, transesterification, etherification, and hydrolysis where two immiscible liquid reactants (such as polar and non-polar liquids) need to be brought into contact with a catalyst. With the intention of alleviating mass transport issues associated with such systems but affording the ability to separate the catalyst once the reaction is complete, the overall goal of this study is geared toward developing a catalyst that has emulsification properties as well as the ability to phase-transfer (from liquid-phase to solid-phase) while the reaction is ongoing and evaluating the effectiveness of such a catalytic process in a practical reaction. To elucidate this concept, the transesterification reaction was selected. Metal-alkoxides that possess acidic and basic properties (to catalyze the reaction), amphiphilic properties (to stabilize the alcohol/oil emulsion) and that can undergo condensation polymerization when heated (to separate as a solid subsequent to the completion of the reaction) were used to test the concept. Studies included elucidating the effect of metal sites and alkoxide sites and their concentration effects on transesterification reaction, effect of various metal alkoxide groups on the phase stability of the reactant system, and kinetic effects of the reaction system. The studies revealed that several transition-metal alkoxides, especially, titanium and yttrium based, responded positively to this reaction system. These alkoxides were able to be added to the reaction medium in liquid phase and were able to stabilize the alcohol/oil system. The alkoxides were selective to the transesterification reaction giving a range of ester yields (depending on the catalyst used). It was also observed that transition-metal alkoxides were able to be recovered in the form of their polymerized counterparts as a result of condensation polymerization subsequent to completion of the transesterification reaction.

  17. Gas-liquid chromatography with a volatile "stationary" liquid phase.

    PubMed

    Wells, P S; Zhou, S; Parcher, J F

    2002-05-01

    A unique type of gas-liquid chromatography is described in which both mobile and "stationary" phases are composed of synthetic mixtures of helium and carbon dioxide. At temperatures below the critical point of the binary mixture and pressures above the vapor pressure of pure liquid carbon dioxide, helium and carbon dioxide can form two immiscible phases over extended composition ranges. A binary vapor phase enriched in helium can act as the mobile phase for chromatographic separations, whereas a CO2-rich liquid in equilibrium with the vapor phase, but condensed on the column wall, can act as a pseudostationary phase. Several examples of chromatographic separations obtained in "empty" capillary columns with no ordinary stationary liquid phase illustrate the range of conditions that produce such separations. In addition, several experiments are reported that confirm the proposed two-phase hypothesis. The possible consequences of the observed chromatographic phenomenon in the field of supercritical fluid chromatography with helium headspace carbon dioxide are discussed.

  18. Lattice Boltzmann simulation of immiscible displacement in the cavity with different channel configurations

    NASA Astrophysics Data System (ADS)

    Lou, Qin; Zang, Chenqiang; Yang, Mo; Xu, Hongtao

    In this work, the immiscible displacement in a cavity with different channel configurations is studied using an improved pseudo-potential lattice Boltzmann equation (LBE) model. This model overcomes the drawback of the dependence of the fluid properties on the grid size, which exists in the original pseudo-potential LBE model. The approach is first validated by the Laplace law. Then, it is employed to study the immiscible displacement process. The influences of different factors, such as the surface wettability, the distance between the gas cavity and liquid cavity and the surface roughness of the channel are investigated. Numerical results show that the displacement efficiency increases and the displacement time decreases with the increase of the surface contact angle. On the other hand, the displacement efficiency increases with increasing distance between the gas cavity and the liquid cavity at first and finally reaches a constant value. As for the surface roughness, two structures (a semicircular cavity and a semicircular bulge) are studied. The comprehensive results show that although the displacement processes for both the structures depend on the surface wettability, they present quite different behaviors. Specially, for the roughness structure constituted by the semicircular cavity, the displacement efficiency decreases and displacement time increases evidently with the size of the semicircular cavity for the small contact angle. The trend slows down as the increase of the contact angle. Once the contact angle exceeds a certain value, the size of the semicircular cavity almost has no influence on the displacement process. While for the roughness structure of a semicircular bulge, the displacement efficiency increases with the size of bulge first and then it decreases for the small contact angle. The displacement efficiency increases first and finally reaches a constant for the large contact angle. The results also show that the displacement time has an extreme value in these cases for the small contact angles.

  19. Experimental Constraints on Fe Isotope Fractionation in Carbonatite Melt Systems

    NASA Astrophysics Data System (ADS)

    Stuff, M.; Schuessler, J. A.; Wilke, M.

    2015-12-01

    Iron isotope data from carbonatite rocks show the largest variability found in igneous rocks to date [1]. Thus, stable Fe isotopes are promising tracers for the interaction of carbonate and silicate magmas in the mantle, particularly because their fractionation is controlled by oxidation state and bonding environment. The interpretation of Fe isotope data from carbonatite rocks remains hampered, since Fe isotope fractionation factors between silicate and carbonate melts are unknown and inter-mineral fractionation can currently only be assessed by theoretical calculations [1;2]. We present results from equilibration experiments in three natrocarbonatite systems between immiscible silicate and carbonate melts, performed at 1200°C and 0.7 GPa in an internally heated gas pressure vessel at intrinsic redox conditions. The Fe isotope compositions of the silicate melt (sil.m.), quenched to a glass, and the carbonate melt (carb.m.), forming fine-grained quench crystals, were analysed by solution MC-ICP-MS. Our first data indicate a remarkable fractionation of Δ56Fesil.m.‒carb.m.= 0.29 ±0.07 ‰ near equilibrium. At short run durations, even stronger fractionation up to Δ56Fesil.m.‒carb.m. = 0.41 ±0.07 ‰ occurs, due to kinetic effects. Additionally, Δ56Fesil.m.‒carb.m. changes with bulk chemical composition, likely reflecting considerable differences between the studied systems in terms of the Fe3+/Fe2+-ratios in the two immiscible liquids. Our findings provide experimental support for a carbonatite genesis model, in which extremely negative δ56Fe values in carbonatites result from differentiation processes, such as liquid immiscibility [1]. This effect can be enhanced by disequilibrium during fast ascent of carbonatite magmas. Their sensitivity to chemical and redox composition makes Fe isotopes a potential tool for constraining the original compositions of carbonatite magmas. [1] Johnson et al. (2010) Miner. Petrol. 98, 91-110. [2] Polyakov & Mineev (2000) Geochim. Cosmochim. Acta 64, 849-865.

  20. Experimental study on nonmonotonicity of Capillary Desaturation Curves in a 2-D pore network

    NASA Astrophysics Data System (ADS)

    Rodríguez de Castro, Antonio; Shokri, Nima; Karadimitriou, Nikolaos; Oostrom, Mart; Joekar-Niasar, Vahid

    2015-10-01

    Immiscible displacement in porous media is important in many applications such as soil remediation and enhanced oil recovery. When gravitational forces are negligible, two-phase immiscible displacement at the pore level is controlled by capillary and viscous forces whose relative importance is quantified through the dimensionless capillary number Ca and the viscosity ratio M between liquid phases. Depending on the values of Ca and M, capillary fingering, viscous fingering, or stable displacement may be observed resulting in a variety of patterns affecting the phase entrapment. The Capillary Desaturation Curve (CDC), which represents the relationship between the residual oil saturation and Ca, is an important relation to describe the phase entrapment at a given Ca. In the present study, we investigated the CDC as influenced by the viscosity ratio. To do so, we have conducted a comprehensive series of experiments using a high-resolution microscope and state-of-art micromodels to investigate the dynamics and patterns of phase entrapment at different Ca and M. By postprocessing of the experimental high-resolution images, we calculated the CDC and quantified the effects of the Ca and M on the phase entrapment and number of blobs trapped in the micromodel and their size distributions during immiscible two-phase flow. Our results show that CDCs are not necessarily monotonic for all M, and the physical mechanisms causing this nonmonotonic behavior are discussed.

  1. Interfacial bioconjugation on emulsion droplet for biosensors.

    PubMed

    Zhang, Qifan; Scigliano, Anita; Biver, Tarita; Pucci, Andrea; Swager, Timothy M

    2018-04-13

    Interfacial bioconjugation methods are developed for intact liquid emulsion droplets. Complex emulsion droplets having internal hydrocarbon and fluorocarbon immiscible structured phases maintain a dynamic interface for controlled interfacial reactivity. The internal morphological change after binding to biomolecules is readily visualized and detected by light transmission, which provides a platform for the formation of inexpensive and portable bio-sensing assays for enzymes, antibodies, nucleic acids and carbohydrates. Copyright © 2018. Published by Elsevier Ltd.

  2. The materials processing research base of the Materials Processing Center

    NASA Technical Reports Server (NTRS)

    Latanision, R. M.

    1986-01-01

    An annual report of the research activities of the Materials Processing Center of the Massachusetts Institute of Technology is given. Research on dielectrophoresis in the microgravity environment, phase separation kinetics in immiscible liquids, transport properties of droplet clusters in gravity-free fields, probes and monitors for the study of solidification of molten semiconductors, fluid mechanics and mass transfer in melt crystal growth, and heat flow control and segregation in directional solidification are discussed.

  3. Apparatus for chemical amplification based on fluid partitioning in an immiscible liquid

    DOEpatents

    Anderson, Brian L [Lodi, CA; Colston, Bill W [San Ramon, CA; Elkin, Christopher J [San Ramon, CA

    2012-05-08

    A system for nucleic acid amplification of a sample comprises partitioning the sample into partitioned sections and performing PCR on the partitioned sections of the sample. Another embodiment of the invention provides a system for nucleic acid amplification and detection of a sample comprising partitioning the sample into partitioned sections, performing PCR on the partitioned sections of the sample, and detecting and analyzing the partitioned sections of the sample.

  4. Method for chemical amplification based on fluid partitioning in an immiscible liquid

    DOEpatents

    Anderson, Brian L.; Colston, Bill W.; Elkin, Christopher J.

    2015-06-02

    A system for nucleic acid amplification of a sample comprises partitioning the sample into partitioned sections and performing PCR on the partitioned sections of the sample. Another embodiment of the invention provides a system for nucleic acid amplification and detection of a sample comprising partitioning the sample into partitioned sections, performing PCR on the partitioned sections of the sample, and detecting and analyzing the partitioned sections of the sample.

  5. Method for chemical amplification based on fluid partitioning in an immiscible liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Brian L.; Colston, Bill W.; Elkin, Christopher J.

    A system for nucleic acid amplification of a sample comprises partitioning the sample into partitioned sections and performing PCR on the partitioned sections of the sample. Another embodiment of the invention provides a system for nucleic acid amplification and detection of a sample comprising partitioning the sample into partitioned sections, performing PCR on the partitioned sections of the sample, and detecting and analyzing the partitioned sections of the sample.

  6. Method of removing and detoxifying a phosphorus-based substance

    DOEpatents

    Vandegrift, George F.; Steindler, Martin J.

    1989-01-01

    A method of removing organic phosphorus-based poisonous substances from water contaminated therewith and of subsequently destroying the toxicity of the substance is disclosed. Initially, a water-immiscible organic is immobilized on a supported liquid membrane. Thereafter, the contaminated water is contacted with one side of the supported liquid membrane to selectively dissolve the phosphorus-based substance in the organic extractant. At the same time, the other side of the supported liquid membrane is contacted with a hydroxy-affording strong base to react the phosphorus-based substance dissolved by the organic extractant with a hydroxy ion. This forms a non-toxic reaction product in the base. The organic extractant can be a water-insoluble trialkyl amine, such as trilauryl amine. The phosphorus-based substance can be phosphoryl or a thiophosphoryl.

  7. Finite-size radiation force correction for inviscid spheres in standing waves.

    PubMed

    Marston, Philip L

    2017-09-01

    Yosioka and Kawasima gave a widely used approximation for the acoustic radiation force on small liquid spheres surrounded by an immiscible liquid in 1955. Considering the liquids to be inviscid with negligible thermal dissipation, in their approximation the force on the sphere is proportional to the sphere's volume and the levitation position in a vertical standing wave becomes independent of the size. The analysis given here introduces a small correction term proportional to the square of the sphere's radius relative to the aforementioned small-sphere force. The significance of this term also depends on the relative density and sound velocity of the sphere. The improved approximation is supported by comparison with the exact partial-wave-series based radiation force for ideal fluid spheres in ideal fluids.

  8. A weighted multiple-relaxation-time lattice Boltzmann method for multiphase flows and its application to partial coalescence cascades

    NASA Astrophysics Data System (ADS)

    Fakhari, Abbas; Bolster, Diogo; Luo, Li-Shi

    2017-07-01

    We present a lattice Boltzmann method (LBM) with a weighted multiple-relaxation-time (WMRT) collision model and an adaptive mesh refinement (AMR) algorithm for direct numerical simulation of two-phase flows in three dimensions. The proposed WMRT model enhances the numerical stability of the LBM for immiscible fluids at high density ratios, particularly on the D3Q27 lattice. The effectiveness and efficiency of the proposed WMRT-LBM-AMR is validated through simulations of (a) buoyancy-driven motion and deformation of a gas bubble rising in a viscous liquid; (b) the bag-breakup mechanism of a falling drop; (c) crown splashing of a droplet on a wet surface; and (d) the partial coalescence mechanism of a liquid drop at a liquid-liquid interface. The numerical simulations agree well with available experimental data and theoretical approximations where applicable.

  9. Adaptive beam tracking and steering via electrowetting-controlled liquid prism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, JT; Chen, CL

    2011-11-07

    We report an electrowetting-controlled optofluidic system for adaptive beam tracking and agile steering. With two immiscible fluids in a transparent cell, we can actively control the contact angle along the fluid-fluid-solid tri-junction line and hence the orientation of the fluid-fluid interface via electrowetting. The naturally formed meniscus between the two liquids can function as an optical prism. We have fabricated a liquid prism module with an aperture size of 10 mm -10mm. With 1 wt.% KCl and 1 wt.% Sodium Dodecyl Sulfate added into deionized water, the orientation of the water-silicone oil interface has been modulated between -26 degrees andmore » 26 degrees that can deflect and steer beam within the incidence angle of 0 degrees-15 degrees. The wide-range beam tracking and steering enables the liquid prism work as an electrowetting solar cell. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3660578]« less

  10. Adaptive beam tracking and steering via electrowetting-controlled liquid prism

    NASA Astrophysics Data System (ADS)

    Cheng, Jiangtao; Chen, Chung-Lung

    2011-11-01

    We report an electrowetting-controlled optofluidic system for adaptive beam tracking and agile steering. With two immiscible fluids in a transparent cell, we can actively control the contact angle along the fluid-fluid-solid tri-junction line and hence the orientation of the fluid-fluid interface via electrowetting. The naturally formed meniscus between the two liquids can function as an optical prism. We have fabricated a liquid prism module with an aperture size of 10 mm × 10mm. With 1 wt. % KCl and 1 wt. % Sodium Dodecyl Sulfate added into deionized water, the orientation of the water-silicone oil interface has been modulated between -26° and 26° that can deflect and steer beam within the incidence angle of 0°-15°. The wide-range beam tracking and steering enables the liquid prism work as an electrowetting solar cell.

  11. Ultrasonic cavitation of molten gallium: formation of micro- and nano-spheres.

    PubMed

    Kumar, Vijay Bhooshan; Gedanken, Aharon; Kimmel, Giora; Porat, Ze'ev

    2014-05-01

    Pure gallium has a low melting point (29.8°C) and can be melted in warm water or organic liquids, thus forming two immiscible liquid phases. Irradiation of this system with ultrasonic energy causes cavitation and dispersion of the molten gallium as microscopic spheres. The resultant spheres were found to have radii range of 0.2-5 μm and they do not coalesce upon cessation of irradiation, although the ambient temperature is well above the m.p. of gallium. It was found that the spheres formed in water are covered with crystallites of GaO(OH), whereas those formed in organic liquids (hexane and n-dodecane) are smooth, lacking such crystallites. However, Raman spectroscopy revealed that the spheres formed in organic liquids are coated with a carbon film. The latter may be the factor preventing their coalescence at temperatures above the m.p. of gallium. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Mechano-regulated surface for manipulating liquid droplets

    NASA Astrophysics Data System (ADS)

    Tang, Xin; Zhu, Pingan; Tian, Ye; Zhou, Xuechang; Kong, Tiantian; Wang, Liqiu

    2017-04-01

    The effective transfer of tiny liquid droplets is vital for a number of processes such as chemical and biological microassays. Inspired by the tarsi of meniscus-climbing insects, which can climb menisci by deforming the water/air interface, we developed a mechano-regulated surface consisting of a background mesh and a movable microfibre array with contrastive wettability. The adhesion of this mechano-regulated surface to liquid droplets can be reversibly switched through mechanical reconfiguration of the microfibre array. The adhesive force can be tuned by varying the number and surface chemistry of the microfibres. The in situ adhesion of the mechano-regulated surface can be used to manoeuvre micro-/nanolitre liquid droplets in a nearly loss-free manner. The mechano-regulated surface can be scaled up to handle multiple droplets in parallel. Our approach offers a miniaturized mechano-device with switchable adhesion for handling micro-/nanolitre droplets, either in air or in a fluid that is immiscible with the droplets.

  13. Topology-generating interfacial pattern formation during liquid metal dealloying

    DOE PAGES

    Geslin, Pierre -Antoine; McCue, Ian; Gaskey, Bernard; ...

    2015-11-19

    Liquid metal dealloying has emerged as a novel technique to produce topologically complex nanoporous and nanocomposite structures with ultra-high interfacial area and other unique properties relevant for diverse material applications. This process is empirically known to require the selective dissolution of one element of a multicomponent solid alloy into a liquid metal to obtain desirable structures. However, how structures form is not known. Here we demonstrate, using mesoscale phase-field modelling and experiments, that nano/microstructural pattern formation during dealloying results from the interplay of (i) interfacial spinodal decomposition, forming compositional domain structures enriched in the immiscible element, and (ii) diffusion-coupled growthmore » of the enriched solid phase and the liquid phase into the alloy. We highlight how those two basic mechanisms interact to yield a rich variety of topologically disconnected and connected structures. Furthermore, we deduce scaling laws governing microstructural length scales and dealloying kinetics.« less

  14. Topology-generating interfacial pattern formation during liquid metal dealloying.

    PubMed

    Geslin, Pierre-Antoine; McCue, Ian; Gaskey, Bernard; Erlebacher, Jonah; Karma, Alain

    2015-11-19

    Liquid metal dealloying has emerged as a novel technique to produce topologically complex nanoporous and nanocomposite structures with ultra-high interfacial area and other unique properties relevant for diverse material applications. This process is empirically known to require the selective dissolution of one element of a multicomponent solid alloy into a liquid metal to obtain desirable structures. However, how structures form is not known. Here we demonstrate, using mesoscale phase-field modelling and experiments, that nano/microstructural pattern formation during dealloying results from the interplay of (i) interfacial spinodal decomposition, forming compositional domain structures enriched in the immiscible element, and (ii) diffusion-coupled growth of the enriched solid phase and the liquid phase into the alloy. We highlight how those two basic mechanisms interact to yield a rich variety of topologically disconnected and connected structures. Moreover, we deduce scaling laws governing microstructural length scales and dealloying kinetics.

  15. 3D imaging of vapour and liquid inclusions from the Mole Granite, Australia, using helical fluorescence tomography

    NASA Astrophysics Data System (ADS)

    Cauzid, J.; Philippot, P.; Bleuet, P.; Simionovici, A.; Somogyi, A.; Golosio, B.

    2007-08-01

    World class Cu resources are concentrated in porphyry and epithermal ore deposits. Their formation remains partially understood, however, due to a lack of constraints on the partitioning properties of trace elements in general, and Cu in particular, between vapour and liquid phases evolved from boiling fluids at depth in the Earth's crust. Immiscible liquid and vapour fluid inclusions coexisting in a single quartz grain have been imaged in three dimensions by X-ray Fluorescence Computed Tomography (XFCT). Elemental spatial distributions confirm that Cu, and to a lesser extent As, partition into the vapour phase, whereas Mn, Fe, Zn, Br, Rb, Sr and Pb concentrate in the liquid inclusion. High resolution mapping of the vapour inclusions revealed that Cu is heterogeneously distributed at the scale of a single inclusion and is mostly concentrated as tiny daughter crystals.

  16. Multi-phase-fluid discrimination with local fibre-optical probes: III. Three-phase flows

    NASA Astrophysics Data System (ADS)

    Fordham, E. J.; Ramos, R. T.; Holmes, A.; Simonian, S.; Huang, S.-M.; Lenn, C. P.

    1999-12-01

    Local fibre-optical sensors (or `local probes') for immiscible-fluid discrimination are demonstrated in three-phase (oil/water/gas) flows. The probes are made from standard silica fibres with plane oblique facets polished at the fibre tip, with surface treatment for wettability control. They use total internal reflection to distinguish among drops, bubbles and other regions of fluid in multi-phase flows, on the basis of refractive-index contrast. Dual probes, using two sensors each with a quasi-binary output, are used to determine profiles of three-phase volume fraction in a flow of kerosene, water and air in a pipe. The individual sensors used discriminate oil from `not-oil' and gas from liquid; their logical combination discriminates among the three phases. Companion papers deal with the sensor designs used and quantitative results achieved in the simpler two-phase cases of liquid/liquid flows and gas/liquid flows.

  17. A Membrane‐Free Redox Flow Battery with Two Immiscible Redox Electrolytes

    PubMed Central

    Navalpotro, Paula; Palma, Jesus; Anderson, Marc

    2017-01-01

    Abstract Flexible and scalable energy storage solutions are necessary for mitigating fluctuations of renewable energy sources. The main advantage of redox flow batteries is their ability to decouple power and energy. However, they present some limitations including poor performance, short‐lifetimes, and expensive ion‐selective membranes as well as high price, toxicity, and scarcity of vanadium compounds. We report a membrane‐free battery that relies on the immiscibility of redox electrolytes and where vanadium is replaced by organic molecules. We show that the biphasic system formed by one acidic solution and one ionic liquid, both containing quinoyl species, behaves as a reversible battery without any membrane. This proof‐of‐concept of a membrane‐free battery has an open circuit voltage of 1.4 V with a high theoretical energy density of 22.5 Wh L−1, and is able to deliver 90 % of its theoretical capacity while showing excellent long‐term performance (coulombic efficiency of 100 % and energy efficiency of 70 %). PMID:28658538

  18. Microfluidic step-emulsification in a cylindrical geometry

    NASA Astrophysics Data System (ADS)

    Chakraborty, Indrajit; Leshansky, Alexander M.

    2016-11-01

    The model microfluidic device for high-throughput droplet generation in a confined cylindrical geometry is investigated numerically. The device comprises of core-annular pressure-driven flow of two immiscible viscous liquids through a cylindrical capillary connected co-axially to a tube of a larger diameter through a sudden expansion, mimicking the microfluidic step-emulsifier (1). To study this problem, the numerical simulations of axisymmetric Navier-Stokes equations have been carried out using an interface capturing procedure based on coupled level set and volume-of-fluid (CLSVOF) methods. The accuracy of the numerical method was favorably tested vs. the predictions of the linear stability analysis of core-annular two-phase flow in a cylindrical capillary. Three distinct flow regimes can be identified: the dripping (D) instability near the entrance to the capillary, the step- (S) and the balloon- (B) emulsification at the step-like expansion. Based on the simulation results we present the phase diagram quantifying transitions between various regimes in plane of the capillary number and the flow-rate ratio. MICROFLUSA EU H2020 project.

  19. Influence of spatial variation of phenomenological parameters on the modeling of boundary conditions for flows with dynamic wetting

    NASA Astrophysics Data System (ADS)

    Hizumi, Yuka; Omori, Takeshi; Yamaguchi, Yasutaka; Kajisima, Takeo

    2014-11-01

    For reliable prediction of multiphase flows in micro- and nano-scales, continuum models are expected to account for small scale physics near the contact line (CL) region. Some existing works (for example the series of papers by the group of Qian and Ren) have been successful in deriving continuum models and corresponding boundary conditions which reproduce well the molecular dynamics (MD) simulation results. Their studies, however, did not fully address the issue of adsorption layer especially in the CL region, and it is still not clear if general conclusion can be deduced from their results. In the present study we investigate in detail the local viscosity and the corresponding stress tensor formulation in the solid-liquid interface and in the CL region of immiscible two-phase Couette flows by means of MD simulation. The application limit of the generalized Navier boundary condition and the continuum model with uniform viscosity is addressed by systematic coarse-graining of sampling bins.

  20. Space Processing Application Rocket project, SPAR 5

    NASA Technical Reports Server (NTRS)

    Reeves, F. (Compiler); Schaefer, D. (Compiler)

    1980-01-01

    Post flight results and analysis are presented on the following experiments: 'Agglomeration in Immiscible Liquids', 'Contained Polycrystalline Solidification in Low G', 'The Direct Observation of Dendrite Remelting and Macrosegregation in Casting', and 'Uniform Dispersion by Crystallization'. An engineering report on the performance of the SPAR Black Brant rocket is also included. Much useful data and information were accumulated for directing and developing experimental techniques and investigations toward an expanding commercially beneficial program of materials processing in the coming shuttle era.

  1. Light Nonaqueous-Phase Liquid Weathering at Various Fuel Release Sites, 2003 Update

    DTIC Science & Technology

    2003-08-01

    the survival of most soil microbes; and • Requirements for microbial proliferation (e.g., nutrients, terminal electron acceptors, pH, moisture...P.D. Boehm, M. Marchand, R.M. Atlas , D.M. Ward, and D.A. Wolfe. 1993. The Fate of Amoco Cadiz Oil. Science, Vol. 221, pp 122-129. Groundwater...Migration of Organic Fluids Immiscible. Pollutants in Porous Media, Ecological Studies. Vol 47, pp. 27-48. Springer-Verlag. New York. Seagren, E

  2. Thermodynamic Modeling of Ag-Ni System Combining Experiments and Molecular Dynamic Simulation

    NASA Astrophysics Data System (ADS)

    Rajkumar, V. B.; Chen, Sinn-wen

    2017-04-01

    Ag-Ni is a simple and important system with immiscible liquids and (Ag,Ni) phases. Previously, this system has been thermodynamically modeled utilizing certain thermochemical and phase equilibria information based on conjecture. An attempt is made in this study to determine the missing information which are difficult to measure experimentally. The boundaries of the liquid miscibility gap at high temperatures are determined using a pyrometer. The temperature of the liquid ⇌ (Ag) + (Ni) eutectic reaction is measured using differential thermal analysis. Tie-lines of the Ag-Ni system at 1023 K and 1473 K are measured using a conventional metallurgical method. The enthalpy of mixing of the liquid at 1773 K and the (Ag,Ni) at 973 K is calculated by molecular dynamics simulation using a large-scale atomic/molecular massively parallel simulator. These results along with literature information are used to model the Gibbs energy of the liquid and (Ag,Ni) by a calculation of phase diagrams approach, and the Ag-Ni phase diagram is then calculated.

  3. Getting in shape: molten wax drop deformation and solidification at an immiscible liquid interface.

    PubMed

    Beesabathuni, Shilpa N; Lindberg, Seth E; Caggioni, Marco; Wesner, Chris; Shen, Amy Q

    2015-05-01

    The controlled production of non-spherical shaped particles is important for many applications such as food processing, consumer goods, adsorbents, drug delivery, and optical sensing. In this paper, we investigated the deformation and simultaneous solidification of millimeter size molten wax drops as they impacted an immiscible liquid interface of higher density. By varying initial temperature and viscoelasticity of the molten drop, drop size, impact velocity, viscosity and temperature of the bath fluid, and the interfacial tension between the molten wax and bath fluid, spherical molten wax drops impinged on a cooling water bath and were arrested into non-spherical solidified particles in the form of ellipsoid, mushroom, disc, and flake-like shapes. We constructed cursory phase diagrams for the various particle shapes generated over a range of Weber, Capillary, Reynolds, and Stefan numbers, governed by the interfacial, inertial, viscous, and thermal effects. We solved a simplified heat transfer problem to estimate the time required to initiate the solidification at the interface of a spherical molten wax droplet and cooling aqueous bath after impact. By correlating this time with the molten wax drop deformation history captured from high speed imaging experiments, we elucidate the delicate balance of interfacial, inertial, viscous, and thermal forces that determine the final morphology of wax particles. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. A coupled chemo-thermo-hygro-mechanical model of concrete at high temperature and failure analysis

    NASA Astrophysics Data System (ADS)

    Li, Xikui; Li, Rongtao; Schrefler, B. A.

    2006-06-01

    A hierarchical mathematical model for analyses of coupled chemo-thermo-hygro-mechanical behaviour in concretes at high temperature is presented. The concretes are modelled as unsaturated deforming reactive porous media filled with two immiscible pore fluids, i.e. the gas mixture and the liquid mixture, in immiscible-miscible levels. The thermo-induced desalination process is particularly integrated into the model. The chemical effects of both the desalination and the dehydration processes on the material damage and the degradation of the material strength are taken into account. The mathematical model consists of a set of coupled, partial differential equations governing the mass balance of the dry air, the mass balance of the water species, the mass balance of the matrix components dissolved in the liquid phases, the enthalpy (energy) balance and momentum balance of the whole medium mixture. The governing equations, the state equations for the model and the constitutive laws used in the model are given. A mixed weak form for the finite element solution procedure is formulated for the numerical simulation of chemo-thermo-hygro-mechanical behaviours. Special considerations are given to spatial discretization of hyperbolic equation with non-self-adjoint operator nature. Numerical results demonstrate the performance and the effectiveness of the proposed model and its numerical procedure in reproducing coupled chemo-thermo-hygro-mechanical behaviour in concretes subjected to fire and thermal radiation.

  5. PREFACE: Functionalized Liquid Liquid Interfaces

    NASA Astrophysics Data System (ADS)

    Girault, Hubert; Kornyshev, Alexei A.; Monroe, Charles W.; Urbakh, Michael

    2007-09-01

    Most natural processes take place at interfaces. For this reason, surface science has been a focal point of modern research. At solid-liquid interfaces one can induce various species to adsorb or react, and thus may study interactions between the substrate and adsorbates, kinetic processes, optical properties, etc. Liquid-liquid interfaces, formed by immiscible liquids such as water and oil, have a number of distinctive features. Both sides of the interface are amenable to detailed physical and chemical analysis. By chemical or electrochemical means, metal or semiconductor nanoparticles can be formed or localised at the interface. Surfactants can be used to tailor surface properties, and also to place organic molecular or supermolecular constructions at the boundary between the liquids. Electric fields can be used to drive ions from one fluid to another, or even change the shape of the interface itself. In many cases, both liquids are optically transparent, making functionalized liquid-liquid interfaces promising for various optical applications based on the transmission or reflection of light. An advantage common to most of these systems is self-assembly; because a liquid-liquid interface is not mechanically constrained like a solid-liquid interface, it can easily access its most stable state, even after it has been driven far from equilibrium. This special issue focuses on four modes of liquid-liquid interfacial functionalization: the controlled adsorption of molecules or nanoparticles, the formation of adlayers or films, electrowetting, and ion transfer or interface-localized reactions. Interfacial adsorption can be driven electrically, chemically, or mechanically. The liquid-liquid interface can be used to study how anisotropic particles orient at a surface under the influence of a field, how surfactants interact with other adsorbates, and how nanoparticles aggregate; the transparency of the interface also makes the chirality of organic adsorbates amenable to optical study. Film formation goes a step beyond adsorption; some surfactants form monolayers or multilayers at the interface. A polymer microfilm or a polymer-particle matrix can be synthesized at the liquid-liquid boundary. Such films exhibit unique adsorption and ion-intercalation properties of their own. Electrowetting refers broadly to the phenomenon in which an applied voltage modulates the shape of a liquid-liquid interface, essentially by altering the surface tension. Electric fields can be used to induce droplets on solid substrates to change shape, or to affect the structure of liquid-liquid emulsions. Various chemical reactions can be performed at the liquid-liquid boundary. Liquid-liquid microelectrodes allow detailed study of ion-transfer kinetics at the interface. Photochemical processes can also be used to control the conformations of molecules adsorbed at the interface. But how much precise control do we actually have on the state of the interfacial region? Several contributions to this issue address a system which has been studied for decades in electrochemistry, but remains essentially unfamilar to physicists. This is the interface between two immiscible electrolytic solutions (ITIES), a progressing interdisciplinary field in which condensed-matter physics and physical chemistry meet molecular electrochemistry. Why is it so exciting? The reason is simple. The ITIES is chargeable: when positioned between two electrodes it can be polarized, and back- to-back electrical double layers form on both sides of the liquid-liquid interface. Importantly, the term immiscible refers not only to oil and water but also to the electrolytes. Inorganic electrolytes, such as alkali halides, tend to stay in water, whereas organic electrolytes, such as tetrabutylammonium tetraphenylborate, stay in oil. This behaviour arises because energies of the order of 0.2-0.3 eV are needed to drive ions across the interface. As long as these free energies of transfer are not exceeded by the external potential bias, the ITIES works as an 'electrode'; there is no traffic of ions across it. Thus the interface can sustain fields of the order of 106 V/cm, which are localized in a nanoscopic layer near the interface. This gives many new options for building various kinds of electrically tunable self assembled moloecular devices. Through the years, ITIES have been considered by electrochemists as a popular biomimetic model system, or for studies of interfacial reaction kinetics; ITIES were also used in industrial phase-transfer catalysis. Recently, this system has opened up new options for nano-scale engineering of functional assemblies (for dense information storage, efficient energy conversion, light-harvesting, and miniaturized sensors), which justifies its presentation in this issue.

  6. The role of S in the evolution of the parental cores of the iron meteorites

    NASA Technical Reports Server (NTRS)

    Kracher, A.; Wasson, J. T.

    1982-01-01

    The S contents of iron meteorite parent bodies are estimated on the basis of cosmochemical relationships to undifferentiated meteorites, the results are compared to observations on the major magmatic iron meteorite groups, and evidence is presented that S/Ni ratios in their parent melts were much lower than those inferred for the parent body. Several alternative models to account for the discrepancy are offered, including volatilization of S from the IIAB parent body, liquid immiscibility, and metastable liquid layers produced by episodic melting. Finally, the fate of the S-rich meteoroidal material is discussed, as well as the question of why it seems to be missing from meteorite collections.

  7. Droplets size evolution of dispersion in a stirred tank

    NASA Astrophysics Data System (ADS)

    Kysela, Bohus; Konfrst, Jiri; Chara, Zdenek; Sulc, Radek; Jasikova, Darina

    2018-06-01

    Dispersion of two immiscible liquids is commonly used in chemical industry as wall as in metallurgical industry e. g. extraction process. The governing property is droplet size distribution. The droplet sizes are given by the physical properties of both liquids and flow properties inside a stirred tank. The first investigation stage is focused on in-situ droplet size measurement using image analysis and optimizing of the evaluation method to achieve maximal result reproducibility. The obtained experimental results are compared with multiphase flow simulation based on Euler-Euler approach combined with PBM (Population Balance Modelling). The population balance model was, in that specific case, simplified with assumption of pure breakage of droplets.

  8. A Simple Inexpensive Bridgman-Stockbarger Crystal Growth System for Organic Materials

    NASA Technical Reports Server (NTRS)

    Choi, J.; Aggarwal, M. D.; Wang, W. S.; Metzl, R.; Bhat, K.; Penn, Benjamin G.; Frazier, Donald O.

    1996-01-01

    Direct observation of solid-liquid interface is important for the directional solidification to determine the desired interface shape by controlling the growth parameters. To grow good quality single crystals of novel organic nonlinear optical materials, a simple inexpensive Bridgman-Stockbarger (BS) crystal growth system has been designed and fabricated. Two immiscible liquids have been utilized to create two zones for this crystal growth system. Bulk single crystals of benzil derivative and n-salicylidene-aniline have been successfully grown in this system. The optimum lowering rate has been found to be 0.1 mm/h for the flat interface. Results on the crystal growth and other parameters of the grown crystals are presented.

  9. Coaction of intercellular adhesion and cortical tension specifies tissue surface tension

    PubMed Central

    Manning, M. Lisa; Foty, Ramsey A.; Steinberg, Malcolm S.; Schoetz, Eva-Maria

    2010-01-01

    In the course of animal morphogenesis, large-scale cell movements occur, which involve the rearrangement, mutual spreading, and compartmentalization of cell populations in specific configurations. Morphogenetic cell rearrangements such as cell sorting and mutual tissue spreading have been compared with the behaviors of immiscible liquids, which they closely resemble. Based on this similarity, it has been proposed that tissues behave as liquids and possess a characteristic surface tension, which arises as a collective, macroscopic property of groups of mobile, cohering cells. But how are tissue surface tensions generated? Different theories have been proposed to explain how mesoscopic cell properties such as cell–cell adhesion and contractility of cell interfaces may underlie tissue surface tensions. Although recent work suggests that both may be contributors, an explicit model for the dependence of tissue surface tension on these mesoscopic parameters has been missing. Here we show explicitly that the ratio of adhesion to cortical tension determines tissue surface tension. Our minimal model successfully explains the available experimental data and makes predictions, based on the feedback between mechanical energy and geometry, about the shapes of aggregate surface cells, which we verify experimentally. This model indicates that there is a crossover from adhesion dominated to cortical-tension dominated behavior as a function of the ratio between these two quantities. PMID:20616053

  10. Synthetic fluid inclusions in natural quartz I. Compositional types synthesized and applications to experimental geochemistry

    NASA Astrophysics Data System (ADS)

    Sterner, S. Michael; Bodnar, Robert J.

    1984-12-01

    Synthetic fluid inclusions having a wide range of geologically applicable compositions in the C-O-H-S-Na-K-Ca-Cl-Cu-Fe system have been formed by healing fractures in inclusion-free natural quartz and by precipitating new quartz overgrowths on an original "seed" crystal. Inclusion types synthesized include: (1) liquid-rich, pure H 2O inclusions of primary and secondary origin, (2) pure H 2O inclusions with the critical density, (3) liquid-rich inclusions containing undersaturated aqueous solutions of NaCl or KCl or CaCl 2, or mixtures of the three salts, (4) H 2O-NaCl inclusions containing halite daughter minerals, (5) H 2O-NaCl-KCl inclusions containing halite and sylvite daughter minerals, (6) H 2O-CO 2 inclusions of various compositions containing liquid H 2O and either CO 2 vapor or CO 2 liquid, or both, at 25°C, (7) H 2O-CO 2-NaCl inclusions containing an aqueous phase, liquid and vapor CO 2, and halite at 25°C, (8) C-O-H inclusions containing liquid H 2O, a CO 2-CH 4 liquid phase and graphite daughter minerals at 25°C, (9) H 2O-NaCl inclusions that contain a chalcopyrite daughter mineral, and (10)inclusions representing trapping of the coexisting, immiscible fluids in the H 2O-NaCl, H 2O-CO 2-NaCl, and Na-C-O-H systems. The inclusions exhibit uniform phase ratios at room temperature, and the temperatures of various phase changes within individual inclusions agree with those predicted from experimental and theoretical data, indicating that the inclusion fluid has the same composition and density as the parent solution. These 'miniature autoclaves' thus may be used to study various problems related to fluid inclusion research, to calibrate analytical equipment used to study natural inclusions, and to study phase equilibria, solubility and PVT relations of a variety of chemical systems.

  11. On the Rigid-Lid Approximation for Two Shallow Layers of Immiscible Fluids with Small Density Contrast

    NASA Astrophysics Data System (ADS)

    Duchêne, Vincent

    2014-08-01

    The rigid-lid approximation is a commonly used simplification in the study of density-stratified fluids in oceanography. Roughly speaking, one assumes that the displacements of the surface are negligible compared with interface displacements. In this paper, we offer a rigorous justification of this approximation in the case of two shallow layers of immiscible fluids with constant and quasi-equal mass density. More precisely, we control the difference between the solutions of the Cauchy problem predicted by the shallow-water (Saint-Venant) system in the rigid-lid and free-surface configuration. We show that in the limit of a small density contrast, the flow may be accurately described as the superposition of a baroclinic (or slow) mode, which is well predicted by the rigid-lid approximation, and a barotropic (or fast) mode, whose initial smallness persists for large time. We also describe explicitly the first-order behavior of the deformation of the surface and discuss the case of a nonsmall initial barotropic mode.

  12. A simulation of dielectrophoresis force actuated liquid lens

    NASA Astrophysics Data System (ADS)

    Yao, Xiaoyin; Xia, Jun

    2009-11-01

    Dielectrophoresis (DEP) and electrowetting on dielectric (EWOD) are based on the electrokinetic mechanisms which have great potential in microfluidic manipulation. DEP dominate the movement of particles induced by polarization effects in nonuniform electric field ,while EWOD has become one of the most widely used tools for manipulating tiny amounts of liquids on solid surfaces. Liquid lens driven by EWOD have been well studied and developed. But liquid lens driven by DEP has not been studied adequately. This paper focuses on modeling liquid lens driven by DEP force. A simulation of DEP driven droplet dynamics was performed by coupling of the electrostatic field and the two-phase flow field. Two incompressible and dielectric liquids with different permittivity were chosen in the two-phase flow field. The DEP force density, in direct proportion to gradient of the square of the electric field intensity, was used as a body force density in Navier-Stokes equation. When voltage applied, the liquid with high permittivity flowed to the place where the gradient of the square of the electric field intensity was higher, and thus change the curvature of interface between two immiscible liquid. The differences between DEP and EWOD liquid lens were also presented.

  13. Separation by solvent extraction

    DOEpatents

    Holt, Jr., Charles H.

    1976-04-06

    17. A process for separating fission product values from uranium and plutonium values contained in an aqueous solution, comprising adding an oxidizing agent to said solution to secure uranium and plutonium in their hexavalent state; contacting said aqueous solution with a substantially water-immiscible organic solvent while agitating and maintaining the temperature at from -1.degree. to -2.degree. C. until the major part of the water present is frozen; continuously separating a solid ice phase as it is formed; separating a remaining aqueous liquid phase containing fission product values and a solvent phase containing plutonium and uranium values from each other; melting at least the last obtained part of said ice phase and adding it to said separated liquid phase; and treating the resulting liquid with a new supply of solvent whereby it is practically depleted of uranium and plutonium.

  14. Space Processing Applications Rocket project, SPAR 2

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Experiment objectives, design/operational concepts, and final results are summarized for six materials science experiments conducted during the second space processing applications rocket mission flown by NASA. The individual experiments discussed are: (1) solidification of Pb-Sb eutectic; (2) feasibility of producing closed-cell metal foams; (3) direct observation of dendrite remelting and macrosegregation in castings; (4) agglomeration in immiscible liquids; (5) casting dispersion - strengthened composites at zero gravity; and (6) solidification behavior of Al-In alloys under zero gravity conditions.

  15. Making MgO/SiO2 Glasses By The Sol-Gel Process

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1989-01-01

    Silicon dioxide glasses containing 15 mole percent magnesium oxide prepared by sol-gel process. Not made by conventional melting because ingredients immiscible liquids. Synthesis of MgO/SiO2 glass starts with mixing of magnesium nitrate hexahydrate with silicon tetraethoxide, both in alcohol. Water added, and transparent gel forms. Subsequent processing converts gel into glass. Besides producing glasses of new composition at lower processing temperatures, sol-gel method leads to improved homogeneity and higher purity.

  16. SOLVENT EXTRACTION PROCESS FOR PLUTONIUM

    DOEpatents

    Seaborg, G.T.

    1959-04-14

    The separation of plutonium from aqueous inorganic acid solutions by the use of a water immiscible organic extractant liquid is described. The plutonium must be in the oxidized state, and the solvents covered by the patent include nitromethane, nitroethane, nitropropane, and nitrobenzene. The use of a salting out agents such as ammonium nitrate in the case of an aqueous nitric acid solution is advantageous. After contacting the aqueous solution with the organic extractant, the resulting extract and raffinate phases are separated. The plutonium may be recovered by any suitable method.

  17. New Instrumentation for Phase Partitioning

    NASA Technical Reports Server (NTRS)

    Harris, J. M.

    1985-01-01

    Cells and molecules can be purified by partitioning between the two immiscible liquid phases formed by aqueous solutions of poly/ethylene glycol and dextran. Such purification can be more selective, higher yielding, and less destructive to sensitive biological materials than other available techniques. Earth's gravitational field is a hindering factor as it causes sedimentation of particles to be purified and shear-induced particle randomization. The present proposal is directed toward developing new instrumentation for performing phase partitioning both on Earth and in microgravity.

  18. The role of hydrothermal processes in the granite-hosted Zr, Y, REE deposit at Strange Lake, Quebec/Labrador: Evidence from fluid inclusions

    NASA Astrophysics Data System (ADS)

    Salvi, Stefano; Williams-Jones, Anthony E.

    1990-09-01

    The Strange Lake Zr, Y, REE, Nb, and Be deposit is hosted by a small, high-level, Late-Proterozoic peralkaline granite stock that intruded into high-grade metamorphic gneisses on the Quebec-Labrador border. The stock is extensively altered. Early alteration is manifested by the replacement of arfvedsonite with aegirine. Later alteration involved Ca-Na exchange. Zr, Ti, Y, REEs, Nb, and Be are concentrated in Ca-bearing minerals that, together with quartz, commonly pseudomorph Na-bearing minerals. Fluid inclusions in pseudomorphs comprise several distinct types: high-salinity (13 to 24 wt% NaCl eq.), Ca-rich aqueous inclusions that homogenize to liquid between 135 and 195°C; mixed aqueousmethane inclusions; methane inclusions; and solid-bearing inclusions. Aqueous-methane inclusions represent heterogeneous entrapment of immiscible high-salinity aqueous liquid and methane. Bastnäsite (tentatively identified by SEM analysis) occurs as a daughter mineral. Other daughter or trapped minerals include a Y, HREE-bearing mineral, possibly gagarinite, and hematite, galena, sphalerite, fluorite, pyrochlore, kutnahorite (?), and griceite (?). The first three inclusion types also occur in quartz in pegmatites and veins together with lower-temperature, lower-salinity, Na-dominated aqueous inclusions. The entrapment temperature inferred for the aqueous inclusions from microthermometry and the Na-K-Ca geothermometer range from 155 to 195°C for the higher-salinity inclusions and 100 to 165°C for the low-salinity inclusions. A model is proposed in which the intrusion of a peralkaline granite to high crustal levels initiated a ground/formational water-dominated hydrothermal system in adjacent gabbroic, calc-silicate, and graphitic gneisses. Reaction of the high-salinity, Ca-rich liquid with the graphitic gneisses led to the production of an immiscible methane gas. Subsequent interaction of this liquid with the granite led to extensive replacement of sodic minerals by calcium analogues at temperatures of less than 200°C. Some time after the onset of Ca metasomatism the high-salinity liquid mixed with a Ca-poor, low-salinity, low-temperature liquid that had leached F and rare metals from the granite. Yttrium and REE mineral deposition occurred as a result of the decreased ligand concentration that accompanied fluorite deposition during mixing of the Ca-rich and Ca-poor aqueous liquids.

  19. Understanding the breakdown of classic two-phase theory and spray atomization at engine-relevant conditions

    NASA Astrophysics Data System (ADS)

    Dahms, Rainer N.

    2016-04-01

    A generalized framework for multi-component liquid injections is presented to understand and predict the breakdown of classic two-phase theory and spray atomization at engine-relevant conditions. The analysis focuses on the thermodynamic structure and the immiscibility state of representative gas-liquid interfaces. The most modern form of Helmholtz energy mixture state equation is utilized which exhibits a unique and physically consistent behavior over the entire two-phase regime of fluid densities. It is combined with generalized models for non-linear gradient theory and for liquid injections to quantify multi-component two-phase interface structures in global thermal equilibrium. Then, the Helmholtz free energy is minimized which determines the interfacial species distribution as a consequence. This minimal free energy state is demonstrated to validate the underlying assumptions of classic two-phase theory and spray atomization. However, under certain engine-relevant conditions for which corroborating experimental data are presented, this requirement for interfacial thermal equilibrium becomes unsustainable. A rigorously derived probability density function quantifies the ability of the interface to develop internal spatial temperature gradients in the presence of significant temperature differences between injected liquid and ambient gas. Then, the interface can no longer be viewed as an isolated system at minimal free energy. Instead, the interfacial dynamics become intimately connected to those of the separated homogeneous phases. Hence, the interface transitions toward a state in local equilibrium whereupon it becomes a dense-fluid mixing layer. A new conceptual view of a transitional liquid injection process emerges from a transition time scale analysis. Close to the nozzle exit, the two-phase interface still remains largely intact and more classic two-phase processes prevail as a consequence. Further downstream, however, the transition to dense-fluid mixing generally occurs before the liquid length is reached. The significance of the presented modeling expressions is established by a direct comparison to a reduced model, which utilizes widely applied approximations but fundamentally fails to capture the physical complexity discussed in this paper.

  20. Process for removal of ammonia and acid gases from contaminated waters

    DOEpatents

    King, C. Judson; MacKenzie, Patricia D.

    1985-01-01

    Contaminating basic gases, i.e., ammonia, and acid gases, e.g., carbon dioxide, are removed from process waters or waste waters in a combined extraction and stripping process. Ammonia in the form of ammonium ion is extracted by an immiscible organic phase comprising a liquid cation exchange component, especially an organic phosphoric acid derivative, and preferably di-2-ethyl hexyl phosphoric acid, dissolved in an alkyl hydrocarbon, aryl hydrocarbon, higher alcohol, oxygenated hydrocarbon, halogenated hydrocarbon, and mixtures thereof. Concurrently, the acidic gaseous contaminants are stripped from the process or waste waters by stripping with steam, air, nitrogen, or the like. The liquid cation exchange component has the ammonia stripped therefrom by heating, and the component may be recycled to extract additional amounts of ammonia.

  1. Process for removal of ammonia and acid gases from contaminated waters

    DOEpatents

    King, C.J.; Mackenzie, P.D.

    1982-09-03

    Contaminating basic gases, i.e., ammonia and acid gases, e.g., carbon dioxide, are removed from process waters or waste waters in a combined extraction and stripping process. Ammonia in the form of ammonium ion is extracted by an immiscible organic phase comprising a liquid cation exchange component, especially an organic phosphoric acid derivative, and preferably di-2-ethyl hexyl phosphoric acid, dissolved in an alkyl hydrocarbon, aryl hydrocarbon, higher alcohol, oxygenated hydrocarbon, halogenated hydrocarbon, and mixtures thereof. Concurrently, the acidic gaseous contaminants are stripped from the process or waste waters by stripping with stream, air, nitrogen, or the like. The liquid cation exchange component has the ammonia stripped therefrom by heating, and the component may be recycled to extract additional amounts of ammonia.

  2. Coding/decoding and reversibility of droplet trains in microfluidic networks.

    PubMed

    Fuerstman, Michael J; Garstecki, Piotr; Whitesides, George M

    2007-02-09

    Droplets of one liquid suspended in a second, immiscible liquid move through a microfluidic device in which a channel splits into two branches that reconnect downstream. The droplets choose a path based on the number of droplets that occupy each branch. The interaction among droplets in the channels results in complex sequences of path selection. The linearity of the flow through the microchannels, however, ensures that the behavior of the system can be reversed. This reversibility makes it possible to encrypt and decrypt signals coded in the intervals between droplets. The encoding/decoding device is a functional microfluidic system that requires droplets to navigate a network in a precise manner without the use of valves, switches, or other means of external control.

  3. Suspended liquid subtractive lithography: printing three dimensional channels directly into uncured PDMS

    NASA Astrophysics Data System (ADS)

    Helmer, D.; Voigt, A.; Wagner, S.; Keller, N.; Sachsenheimer, K.; Kotz, F.; Nargang, T. M.; Rapp, B. E.

    2018-02-01

    Polydimethylsiloxane (PDMS) is one of the most widely used polymers for the generation of microfluidic chips. The standard procedures of soft lithography require the formation of a new master structure for every design which is timeconsuming and expensive. All channel generated by soft lithography need to be consecutively sealed by bonding which is a process that can proof to be hard to control. Channel cross-sections are largely restricted to squares or flat-topped designs and the generation of truly three-dimensional designs is not straightforward. Here we present Suspended Liquid Subtractive Lithography (SLSL) a method for generating microfluidic channels of nearly arbitrary three-dimensional structures in PDMS that do not require master formation or bonding and give circular channel cross sections which are especially interesting for mimicking in vivo environments. In SLSL, an immiscible liquid is introduced into the uncured PDMS by a capillary mounted on a 3D printer head. The liquid forms continuous "threads" inside the matrix thus creating void suspended channel structures.

  4. One-step synthesis of layered yttrium hydroxides in immiscible liquid-liquid systems: Intercalation of sterically-bulky hydrophobic organic anions and doping of europium ions

    NASA Astrophysics Data System (ADS)

    Watanabe, Mebae; Fujihara, Shinobu

    2014-02-01

    Inorganic-organic layered rare-earth compounds were synthesized on the basis of a biphasic liquid-liquid system in one pot. Layered yttrium hydroxides (LYHs) were chosen as a host material for the intercalation of hydrophobic organic guest anions such as benzoate, sebacate, or laurate. In a typical synthesis, an organic phase dissolving carboxylic acid was placed in contact with an equal amount of an aqueous phase dissolving yttrium nitrate n-hydrate and urea. At elevated temperatures up to 80 °C, urea was hydrolyzed to release hydroxyl anions which were used to form yttrium hydroxide layers. LYHs were then precipitated with the intercalation of carboxylate anions delivered from the organic phase under the distribution law. The structure and the morphology of the LYHs could be modulated by the intercalated anions. Doped with Eu3+ ions, the LYHs exhibited red photoluminescence which was enhanced by the intercalated anions due to the antenna effect.

  5. Numerical modeling of materials processes with fluid-fluid interfaces

    NASA Astrophysics Data System (ADS)

    Yanke, Jeffrey Michael

    A numerical model has been developed to study material processes that depend on the interaction between fluids with a large discontinuity in thermophysical properties. A base model capable of solving equations of mass, momentum, energy conservation, and solidification has been altered to enable tracking of the interface between two immiscible fluids and correctly predict the interface deformation using a volume of fluid (VOF) method. Two materials processes investigated using this technique are Electroslag Remelting (ESR) and plasma spray deposition. ESR is a secondary melting technique that passes an AC current through an electrically resistive slag to provide the heat necessary to melt the alloy. The simulation tracks the interface between the slag and metal. The model was validated against industrial scale ESR ingots and was able to predict trends in melt rate, sump depth, macrosegregation, and liquid sump depth. In order to better understand the underlying physics of the process, several constant current ESR runs simulated the effects of freezing slag in the model. Including the solidifying slag in the imulations was found to have an effect on the melt rate and sump shape but there is too much uncertainty in ESR slag property data at this time for quantitative predictions. The second process investigated in this work is the deposition of ceramic coatings via plasma spray deposition. In plasma spray deposition, powderized coating material is injected into a plasma that melts and carries the powder towards the substrate were it impacts, flattening out and freezing. The impacting droplets pile up to form a porous coating. The model is used to simulate this rain of liquid ceramic particles impacting the substrate and forming a coating. Trends in local solidification time and porosity are calculated for various particle sizes and velocities. The predictions of decreasing porosity with increasing particle velocity matches previous experimental results. Also, a preliminary study was conducted to investigate the effects of substrate surface defects and droplet impact angle on the propensity to form columnar porosity.

  6. Electrolysis of a molten semiconductor

    PubMed Central

    Yin, Huayi; Chung, Brice; Sadoway, Donald R.

    2016-01-01

    Metals cannot be extracted by electrolysis of transition-metal sulfides because as liquids they are semiconductors, which exhibit high levels of electronic conduction and metal dissolution. Herein by introduction of a distinct secondary electrolyte, we reveal a high-throughput electro-desulfurization process that directly converts semiconducting molten stibnite (Sb2S3) into pure (99.9%) liquid antimony and sulfur vapour. At the bottom of the cell liquid antimony pools beneath cathodically polarized molten stibnite. At the top of the cell sulfur issues from a carbon anode immersed in an immiscible secondary molten salt electrolyte disposed above molten stibnite, thereby blocking electronic shorting across the cell. As opposed to conventional extraction practices, direct sulfide electrolysis completely avoids generation of problematic fugitive emissions (CO2, CO and SO2), significantly reduces energy consumption, increases productivity in a single-step process (lower capital and operating costs) and is broadly applicable to a host of electronically conductive transition-metal chalcogenides. PMID:27553525

  7. Assembly of metals and nanoparticles into novel nanocomposite superstructures

    PubMed Central

    Xu, Jiaquan; Chen, Lianyi; Choi, Hongseok; Konish, Hiromi; Li, Xiaochun

    2013-01-01

    Controlled assembly of nanoscale objects into superstructures is of tremendous interests. Many approaches have been developed to fabricate organic-nanoparticle superstructures. However, effective fabrication of inorganic-nanoparticle superstructures (such as nanoparticles linked by metals) remains a difficult challenge. Here we show a novel, general method to assemble metals and nanoparticles rationally into nanocomposite superstructures. Novel metal-nanoparticle superstructures are achieved by self-assembly of liquid metals and nanoparticles in immiscible liquids driven by reduction of free energy. Superstructures with various architectures, such as metal-core/nanoparticle-shell, nanocomposite-core/nanoparticle-shell, network of metal-linked core/shell nanostructures, and network of metal-linked nanoparticles, were successfully fabricated by simply tuning the volume ratio between nanoparticles and liquid metals. Our approach provides a simple, general way for fabrication of numerous metal-nanoparticle superstructures and enables a rational design of these novel superstructures with desired architectures for exciting applications.

  8. Electrolysis of a molten semiconductor.

    PubMed

    Yin, Huayi; Chung, Brice; Sadoway, Donald R

    2016-08-24

    Metals cannot be extracted by electrolysis of transition-metal sulfides because as liquids they are semiconductors, which exhibit high levels of electronic conduction and metal dissolution. Herein by introduction of a distinct secondary electrolyte, we reveal a high-throughput electro-desulfurization process that directly converts semiconducting molten stibnite (Sb2S3) into pure (99.9%) liquid antimony and sulfur vapour. At the bottom of the cell liquid antimony pools beneath cathodically polarized molten stibnite. At the top of the cell sulfur issues from a carbon anode immersed in an immiscible secondary molten salt electrolyte disposed above molten stibnite, thereby blocking electronic shorting across the cell. As opposed to conventional extraction practices, direct sulfide electrolysis completely avoids generation of problematic fugitive emissions (CO2, CO and SO2), significantly reduces energy consumption, increases productivity in a single-step process (lower capital and operating costs) and is broadly applicable to a host of electronically conductive transition-metal chalcogenides.

  9. Electrolysis of a molten semiconductor

    NASA Astrophysics Data System (ADS)

    Yin, Huayi; Chung, Brice; Sadoway, Donald R.

    2016-08-01

    Metals cannot be extracted by electrolysis of transition-metal sulfides because as liquids they are semiconductors, which exhibit high levels of electronic conduction and metal dissolution. Herein by introduction of a distinct secondary electrolyte, we reveal a high-throughput electro-desulfurization process that directly converts semiconducting molten stibnite (Sb2S3) into pure (99.9%) liquid antimony and sulfur vapour. At the bottom of the cell liquid antimony pools beneath cathodically polarized molten stibnite. At the top of the cell sulfur issues from a carbon anode immersed in an immiscible secondary molten salt electrolyte disposed above molten stibnite, thereby blocking electronic shorting across the cell. As opposed to conventional extraction practices, direct sulfide electrolysis completely avoids generation of problematic fugitive emissions (CO2, CO and SO2), significantly reduces energy consumption, increases productivity in a single-step process (lower capital and operating costs) and is broadly applicable to a host of electronically conductive transition-metal chalcogenides.

  10. Phenomenological model and phase behavior of saturated and unsaturated lipids and cholesterol.

    PubMed

    Putzel, G Garbès; Schick, M

    2008-11-15

    We present a phenomenological theory for the phase behavior of ternary mixtures of cholesterol and saturated and unsaturated lipids, one that describes both liquid and gel phases. It leads to the following description of the mechanism of the phase behavior: In a binary system of the lipids, phase separation occurs when the saturated chains are well ordered, as in the gel phase, simply due to packing effects. In the liquid phase, the saturated ones are not sufficiently well ordered for separation to occur. The addition of cholesterol, however, increases the saturated lipid order to the point that phase separation is once again favorable. Our theory addresses this last mechanism-the means by which cholesterol-mediated ordering of membrane lipids leads to liquid-liquid immiscibility. It produces, for the system above the main chain transition of the saturated lipid, phase diagrams in which there can be liquid-liquid phase separation in the ternary system but not in any of the binary ones, while below that temperature it yields the more common phase diagram in which a gel phase, rich in saturated lipid, appears in addition to the two liquid phases.

  11. Perfluorocarbon perfused vitrectomy: animal studies.

    PubMed

    Quiroz-Mercado, Hugo; Suarez-Tatá, Luis; Magdalenic, Rudi; Murillo-López, Sergio; García-Aguirre, Gerardo; Guerrero-Naranjo, Jose; Rodríguez-Reyes, Abelardo A

    2004-02-01

    To investigate the feasibility and advantages of using perfluorocarbon liquid (PCL) perfusion to remove vitreous during suction-cutting vitrectomy in rabbit and pig eyes. Experimental study. Balanced salt solution (BSS) was replaced by PCL perfusion during experimental vitrectomy. Oxygenated or nonoxygenated PCL was used in a recycling or a nonrecycling system. Recycling was achieved by two systems: a manual recycling system or a closed-loop system. The experiments in this study consisted of: an in vitro solubility observation, safety and feasibility of vitrectomy in rabbit eyes, effectiveness of vitrectomy with equal vitrectomy time in rabbit eyes, and retinal stability and pigment and blood dispersion in porcine eyes. Toxicity was assessed by a complete ophthalmic examination, endothelial cell count, electroretinography, and histopathology. Vitreous, blood, and pigments were immiscible in PCL. Manual recycling required less amounts of PCL than nonrecycling (15 vs 25 cc). Oxygenated and nonoxygenated PCL were not toxic. Perfluorocarbon liquid infusion removed more vitreous than balanced salt solution in a 3-minute vitrectomy time using the same settings on the vitrectomy machine. The PCL infusion in porcine eyes stabilized the retina and isolated vitreous cavity from pigment and blood and maintained a clear vitreous cavity. These data indicate that perfusion of PCL can be used to remove vitreous with a suction-cutting probe in rabbit and pig eyes. Retinal stability and isolation of the vitreous cavity at the time of vitreous removal along with PCL immiscibility and its specific gravity suggest that PCL has a potential clinical use as an irrigating solution to remove vitreous.

  12. Control of Thermal Convection in Layered Fluids Using Magnetic fields

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Leslie, F. W.

    2003-01-01

    Immiscible fluid layers are found in a host of applications ranging from materials processing, for example the use of encapsulants in float zone crystal growth technique and a buffer layer in industrial Czochralski growth of crystals to prevent Marangoni convection, to heat transfer phenomena in day-to-day processes like the presence of air pockets in heat exchangers. In the microgravity and space processing realm, the exploration of other planets requires the development of enabling technologies in several fronts. The reduction in the gravity level poses unique challenges for fluid handling and heat transfer applications. The present work investigates the efficacy of controlling thermal convective flow using magnetic fluids and magnetic fields. The setup is a two-layer immiscible liquids system with one of the fluids being a diluted ferrofluid (super paramagnetic nano particles dispersed in carrier fluid). Using an external magnetic field one can essentially dial in a volumetric force - gravity level, on the magnetic fluid and thereby affect the system thermo-fluid behavior. The paper will describe the experimental and numerical modeling approach to the problem and discuss results obtained to date.

  13. Experimental study on nonmonotonicity of capillary desaturation curves in a 2-D pore-network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriquez de Castro, Antonio; Shokri, Nima; Karadimitriou, Nikolaos

    2015-10-28

    Immiscible displacement in a porous medium is important in many applications such as soil remediation and enhanced oil recovery. When gravitational forces are negligible, two-phase immiscible displacement at the pore level is controlled by capillary and viscous forces whose relative importance is quantified through the dimensionless capillary number Ca and the viscosity ratio M between liquid phases. Depending on the values of Ca and M, capillary fingering, viscous fingering, or stable displacement may be observed resulting in a variety of patterns affecting the phase entrapment. The Capillary Desaturation Curve (CDC), which represents the relationship between the residual oils saturation andmore » Ca, is an important relation to describe the phase entrapment at a given Ca. In the present study, we investigate the CDC as influenced by the viscosity ratio. A comprehensive series of experiments using a high-resolution microscope and state-of-the-art micromodels were conducted. The CDCs were calculated and the effects of Ca and M on phase entrapments were quantified. The results show that CDCs are not necessarily monotonic for all M.« less

  14. Density and Adiabatic Compressibility of the Immiscible Molten AgBr+LiCl Mixture

    NASA Astrophysics Data System (ADS)

    Stepanov, Victor P.; Kulik, Nina P.

    2017-04-01

    The adiabatic compressibility, β, of the immiscible liquid mixture 0.52 LiCl+0.48 AgBr (the top of the miscibility gap) was experimentally investigated in the temperature range from the melting point to the critical mixing temperature using the sound velocity values, u, measured by the pulse method, and the density quantities, ρ, which were determined using the hydrostatic weight procedure based on the relationship β=u- 2ρ- 1. It is shown that the coefficients of the temperature dependencies for the compressibility and density of the upper and lower equilibrium phases have opposite signs because of the superposition of the intensity of the thermal motion of the ions and the change in the composition of the phases. The differences, ∆β and ∆ρ, in the magnitudes of the compressibility and density for the equilibrium phases decrease with temperature elevation. The temperature dependencies of the compressibility and density difference are described using the empirical equations ∆β≈(Tc-T)0.438 and ∆ρ≈(Tc-T)0.439.

  15. A Membrane-Free Redox Flow Battery with Two Immiscible Redox Electrolytes.

    PubMed

    Navalpotro, Paula; Palma, Jesus; Anderson, Marc; Marcilla, Rebeca

    2017-10-02

    Flexible and scalable energy storage solutions are necessary for mitigating fluctuations of renewable energy sources. The main advantage of redox flow batteries is their ability to decouple power and energy. However, they present some limitations including poor performance, short-lifetimes, and expensive ion-selective membranes as well as high price, toxicity, and scarcity of vanadium compounds. We report a membrane-free battery that relies on the immiscibility of redox electrolytes and where vanadium is replaced by organic molecules. We show that the biphasic system formed by one acidic solution and one ionic liquid, both containing quinoyl species, behaves as a reversible battery without any membrane. This proof-of-concept of a membrane-free battery has an open circuit voltage of 1.4 V with a high theoretical energy density of 22.5 Wh L -1 , and is able to deliver 90 % of its theoretical capacity while showing excellent long-term performance (coulombic efficiency of 100 % and energy efficiency of 70 %). © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  16. Unstable infiltration fronts in porous media on laboratory scale

    NASA Astrophysics Data System (ADS)

    Schuetz, Cindi; Neuweiler, Insa

    2014-05-01

    Water flow and transport of substances in the unsaturated zone are important processes for the quality and quantity of water in the hydrologic cycle. The water movement through preferential paths is often much faster than standard models (e. g. Richards equation in homogeneous porous media) predict. One type/phenomenon of preferential flow can occur during water infiltration into coarse and/or dry porous media: the so-called gravity-driven fingering flow. To upscale the water content and to describe the averaged water fluxes in order to couple models of different spheres it is necessary to understand and to quantify the behavior of flow instabilities. We present different experiments of unstable infiltration in homogeneous and heterogeneous structures to analyze development and morphology of gravity-driven fingering flow on the laboratory scale. Experiments were carried out in two-dimensional and three-dimensional sand tanks as well as in larger two-dimensional sand tanks with homogeneous and heterogeneous filling of sand and glass beads. In the small systems, water content in the medium was measured at different times. We compare the experiments to prediction of theoretical approaches (e.g. Saffman and Taylor, 1958; Chuoke et al., 1959; Philip 1975a; White et al., 1976; Parlange and Hill, 1976a; Glass et al., 1989a; Glass et al., 1991; Wang et al., 1998c) that quantify properties of the gravity-driven fingers. We use hydraulic parameters needed for the theoretical predictions (the water-entry value (hwe), van Genuchten parameter (Wang et al., 1997, Wang et al., 2000) and saturated conductivity (Ks), van Genuchten parameter (Guarracino, 2007) to simplify the prediction of the finger properties and if necessary to identify a constant correction factor. We find in general that the finger properties correspond well to theoretical predictions. In heterogeneous settings, where fine inclusions are embedded into a coarse material, the finger properties do not change much, while the inclusions act as a storage that is filled during the infiltration process. References: Chouke, R.L., van Meurs, P., and van der Poel, C., 1959. The instability of slow immiscible, viscous liquid-liquid displacements in permeable media, Trans. AIME. 216:188-194. Glass, R.J., Steenhuis, T.S., and Parlange J.-Y., 1989a. Mechanism for finger persistence in homogeneous, unsaturated, porous media: Theory and verification, Soil Sci. 148:60-70. Glass R.J., Parlange, J.-Y., and Steenhuis, T.S., 1991. Immiscible displacement in porous media: Stability analysis of three-dimensional, axisymmetric disturbances with application to gravity-driven wetting front instability, Water Resour. Res., 27, 1947-1956. Guarracino, L., 2007. Estimation of saturated hydraulic conductivity Ks from the van Genuchten shape parameter , Water Resour. Res., 43, W11502. Parlange, J.-Y. and Hill, D.E., 1976a. Theoretical analysis of wetting front instability in soils, Soil Sci. 122:236-239. Philip, J. 1975a. Stability analysis of infiltration, Soil Sci. Soc. Am. Proc. 39:1042-1049. Saffman, P.G. and Taylor, G., 1958. The penetration of a fluid into a porous medium or hele-shaw cell containing a more viscous liquid, Proc. R. Soc. London, 245:312-329. Wang Z., Feyen, J., Nielsen, D.R., and van Genuchten, M.T., 1997. Two-phase flow infiltration equations accounting for air entrapment effects, Water Resour. Res., 33:2759-2767. Wang, Z., Feyen, J., and Elrick, D.E., 1998c. Prediction of fingering in porous media, Water Resour. Res. 34(9):2183-2190. Wang Z., Wu, L., and Wu, Q.J., 2000. Water-entry value as an alternative indicator of soil water-repellency and wettability, Journal of Hydrology., 231-232, 76-83. White, I., Colombera, P.M., and Philip, J.R., 1976. Experimental studies of wetting front instability induced by sudden changes of pressure gradient, Soil Sci. Soc. Am. Proc., 40:824-829.

  17. Microfluidics with fluid walls.

    PubMed

    Walsh, Edmond J; Feuerborn, Alexander; Wheeler, James H R; Tan, Ann Na; Durham, William M; Foster, Kevin R; Cook, Peter R

    2017-10-10

    Microfluidics has great potential, but the complexity of fabricating and operating devices has limited its use. Here we describe a method - Freestyle Fluidics - that overcomes many key limitations. In this method, liquids are confined by fluid (not solid) walls. Aqueous circuits with any 2D shape are printed in seconds on plastic or glass Petri dishes; then, interfacial forces pin liquids to substrates, and overlaying an immiscible liquid prevents evaporation. Confining fluid walls are pliant and resilient; they self-heal when liquids are pipetted through them. We drive flow through a wide range of circuits passively by manipulating surface tension and hydrostatic pressure, and actively using external pumps. Finally, we validate the technology with two challenging applications - triggering an inflammatory response in human cells and chemotaxis in bacterial biofilms. This approach provides a powerful and versatile alternative to traditional microfluidics.The complexity of fabricating and operating microfluidic devices limits their use. Walsh et al. describe a method in which circuits are printed as quickly and simply as writing with a pen, and liquids in them are confined by fluid instead of solid walls.

  18. The effects of sulfide composition on the solubility of sulfur in coexisting silicate melts

    NASA Astrophysics Data System (ADS)

    Smythe, Duane; Wood, Bernard; Kiseeva, Ekaterina

    2016-04-01

    The extent to which sulfur dissolves in silicate melts saturated in an immiscible sulfide phase is a fundamental question in igneous petrology and plays a primary role in the generation of magmatic ore deposits, volcanic degassing and planetary differentiation. Terrestrial sulfide melts often contain over 20 weight percent Ni + Cu, however, most experimental studies investigating sulfur solubility in silicate melt have been primarily concerned with the effects of silicate melt composition, and pure FeS has been use as the immiscible sulfide melt (O'Neill and Mavrogenes, 2002; Li and Ripley, 2005). To investigation of the effects of sulfide composition, in addition to those of temperature, pressure and silicate melt composition, on sulfur solubility in silicate melts, we have carried out a series of experiments done at pressures between 1.5 and 3 GPa and temperatures from 1400 to 1800C over a range of compositions of both the silicate and sulfide melt. We find that the solubility of sulfur in silicate melts drops significantly with the substitution of Ni and Cu for Fe in the immiscible sulfide melt, decreasing by approximately 40% at mole fractions of NiS + Cu2S of 0.4. Combining our results with those from the previous studies investigating sulfur solubility in silicate melts we have also found that solubility increases with increasing temperature and decreases pressure. These results show that without considering the composition of the immiscible sulfide phase the sulfur content of silicate melts can be significantly overestimated. This may serve to explain the relatively low sulfur concentrations in MORB melts, which previous models predict to be undersaturated in a sulfide phase despite showing chemical and textural evidence for sulfide saturation. Li, C. & Ripley, E. M. (2005). Empirical equations to predict the sulfur content of mafic magmas at sulfide saturation and applications to magmatic sulfide deposits. Mineralium Deposita 40, 218-230. O'Neill, H. S. C. & Mavrogenes, J. A. (2002). The Sulfide Capacity and the Sulfur Content at Sulfide Saturation of Silicate Melts at 1400°C and 1 bar. Journal of Petrology 43, 1049-1087.

  19. Origin of Fe-Ti Oxide Mineralization in the Middle Paleoproterozoic Elet'ozero Syenite-Gabbro Intrusive Complex (Northern Karelia, Russia)

    NASA Astrophysics Data System (ADS)

    Sharkov, E. V.; Chistyakov, A. V.; Shchiptsov, V. V.; Bogina, M. M.; Frolov, P. V.

    2018-03-01

    Magmatic oxide mineralization widely developed in syenite-gabbro intrusive complexes is an important Fe and Ti resource. However, its origin is hotly debatable. Some researchers believe that the oxide ores were formed through precipitation of dense Ti-magnetite in an initial ferrogabbroic magma (Bai et al., 2012), whereas others consider them as a product of immiscible splitting of Fe-rich liquid during crystallization of Fe-Ti basaltic magma (Zhou et al., 2013). We consider this problem with a study of the Middle Paleoproterozoic (2086 ± 30 Ma) Elet'ozero Ti-bearing layered intrusive complex in northern Karelia (Baltic Shield). The first ore-bearing phase of the complex is mainly made up of diverse ferrogabbros, with subordinate clinopyroxenites and peridotites. Fe-Ti oxides (magnetite, Ti-magnetite, and ilmenite) usually account for 10-15 vol %, reaching 30-70% in ore varieties. The second intrusive phase is formed by alkaline and nepheline syenites. Petrographical, mineralogical, and geochemical data indicate that the first phase of the intrusion was derived from a moderately alkaline Fe-Ti basaltic melt, while the parental melt of the second phase was close in composition to alkaline trachyte. The orebodies comprise disseminated and massive ores. The disseminated Fe-Ti oxide ores make up lenses and layers conformable to general layering. Massive ores occur in subordinate amounts as layers and lenses, as well as cross-cutting veins. Elevated Nb and Ta contents in Fe-Ti oxides makes it possible to consider them complex ores. It is shown that the Fe-Ti oxide mineralization is related to the formation of a residual (Fe,Ti)-rich liquid, which lasted for the entire solidification history of the first intrusive phase. The liquid originated through multiple enrichment of Fe and Ti in the crystallization zone of the intrusion owing to the following processes: (1) precipitation of silicate minerals in the crystallization zone with a corresponding increase in the Fe and Ti contents in an interstitial melt; and (2) periodic accumulation of the residual melt in front of this zone. Unlike liquid immiscibility leading to melt splitting into two phases, this liquid dissolved the residual components of the melt. Correspondingly, such an Fe-rich liquid has unusual properties and requires further study.

  20. EFFECT OF TEMPERATURE AND PORE SIZE ON THE HYDRAULIC PROPERTIES AND FLOW OF A HYDROCARBON OIL IN THE SUBSURFACE

    EPA Science Inventory

    Capillary pressure relationships in a porous medium determine the distribution of immiscible fluids under static conditions and can largely influence the movement of the fluids when the system is not at equilibrium. Theory predicts that for a given porous medium, the effect of di...

  1. Non-traditional stable isotope behaviors in immiscible silica-melts in a mafic magma chamber.

    PubMed

    Zhu, Dan; Bao, Huiming; Liu, Yun

    2015-12-01

    Non-traditional stable isotopes have increasingly been applied to studies of igneous processes including planetary differentiation. Equilibrium isotope fractionation of these elements in silicates is expected to be negligible at magmatic temperatures (δ(57)Fe difference often less than 0.2 per mil). However, an increasing number of data has revealed a puzzling observation, e.g., the δ(57)Fe for silicic magmas ranges from 0‰ up to 0.6‰, with the most positive δ(57)Fe almost exclusively found in A-type granitoids. Several interpretations have been proposed by different research groups, but these have so far failed to explain some aspects of the observations. Here we propose a dynamic, diffusion-induced isotope fractionation model that assumes Si-melts are growing and ascending immiscibly in a Fe-rich bulk magma chamber. Our model offers predictions on the behavior of non-traditional stable isotope such as Fe, Mg, Si, and Li that are consistent with observations from many A-type granitoids, especially those associated with layered intrusions. Diffusion-induced isotope fractionation may be more commonly preserved in magmatic rocks than was originally predicted.

  2. Pore-scale modeling of moving contact line problems in immiscible two-phase flow

    NASA Astrophysics Data System (ADS)

    Kucala, Alec; Noble, David; Martinez, Mario

    2016-11-01

    Accurate modeling of moving contact line (MCL) problems is imperative in predicting capillary pressure vs. saturation curves, permeability, and preferential flow paths for a variety of applications, including geological carbon storage (GCS) and enhanced oil recovery (EOR). Here, we present a model for the moving contact line using pore-scale computational fluid dynamics (CFD) which solves the full, time-dependent Navier-Stokes equations using the Galerkin finite-element method. The MCL is modeled as a surface traction force proportional to the surface tension, dependent on the static properties of the immiscible fluid/solid system. We present a variety of verification test cases for simple two- and three-dimensional geometries to validate the current model, including threshold pressure predictions in flows through pore-throats for a variety of wetting angles. Simulations involving more complex geometries are also presented to be used in future simulations for GCS and EOR problems. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  3. Processes affecting soil and groundwater contamination by DNAPL in low-permeability media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McWhorter, D.B.

    1996-08-01

    This paper is one of a set of focus papers intended to document the current knowledge relevant to the contamination and remediation of soils and ground water by dense, nonaqueous phase liquids (DNAPL). The emphasis is on low permeability media such as fractured clay and till and unconsolidated, stratified formations. Basic concepts pertaining to immiscible-fluid mixtures are described and used to discuss such aspects as DNAPL transport, dissolved-phase transport, and equilibrium mass distributions. Several implications for remediation are presented. 27 refs., 8 figs., 4 tabs.

  4. Continuous extraction of organic materials from water

    USGS Publications Warehouse

    Goldberg, M.C.; DeLong, L.; Kahn, L.

    1971-01-01

    A continuous liquid solvent extractor, designed to utilize organic solvents that are heavier than water, is described. The extractor is capable of handling input rates up to 2 liters per hour and has a 500-ml. extractant capacity. Extraction efficiency is dependent upon the p-value, the two solvent ratios, rate of flow of the aqueous phase, and rate of reflux of the organic phase. Extractors can be serially coupled to increase extraction efficiency and, when coupled with a lighter-than-water extractor, the system will allow the use of any immiscible solvent.

  5. Development of Uniform Microstructures in Immiscible Alloys by Processing in a Low-Gravity Environment

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.; Brush, L. N.

    1996-01-01

    Highly segregated macrostructures tend to develop during processing of hypermonotectic alloys because of the density difference existing between the two liquid phases. The approximately 4.6 seconds of low-gravity provided by Marshall Space Flight Center's 105 meter drop tube was utilized to minimize density-driven separation and promote uniform microstructures in hypermonotectic Ag-Ni and Ag-Mn alloys. For the Ag-Ni alloys a numerical model was developed to track heat flow and solidification of the bi-metal drop configuration. Results, potential applications, and future work are presented.

  6. Method and apparatus for controlled size distribution of gel microspheres formed from aqueous dispersions. [Patent application

    DOEpatents

    Ryon, A.D.; Haas, P.A.; Vavruska, J.S.

    1982-01-19

    The present invention is directed to a method and apparatus for making a population of dense, closely size-controlled microspheres by sol-gel procedures wherein said microspheres are characterized by a significant percentage of said population being within a predetermined, relatively narrow size range. This is accomplished by subjecting aqueous dispersions of a sol, within a water-immiscible organic liquid to a turbulent flow. Microsphere populations thus provided are useful in vibratory-packed processes for nuclear fuels to be irradiated in LWR- and FBR-type nuclear reactors.

  7. URANIUM DECONTAMINATION WITH RESPECT TO ZIRCONIUM

    DOEpatents

    Vogler, S.; Beederman, M.

    1961-05-01

    A process is given for separating uranium values from a nitric acid aqueous solution containing uranyl values, zirconium values and tetravalent plutonium values. The process comprises contacting said solution with a substantially water-immiscible liquid organic solvent containing alkyl phosphate, separating an organic extract phase containing the uranium, zirconium, and tetravalent plutonium values from an aqueous raffinate, contacting said organic extract phase with an aqueous solution 2M to 7M in nitric acid and also containing an oxalate ion-containing substance, and separating a uranium- containing organic raffinate from aqueous zirconium- and plutonium-containing extract phase.

  8. Palladium, platinum, and rhodium contents of rocks near the lower margin of the Stillwater complex, Montana.

    USGS Publications Warehouse

    Zientek, M.L.; Foose, M.P.; Leung, Mei

    1986-01-01

    Statistical summaries are reported for Pd, Pt and Rh contents of rocks from the lower part of the Stillwater complex, the underlying contact-metamorphosed sediments, and post-metamorphic dykes and sills wholly within the hornfelses. Variability of the data among the rock types is attributed largely to differences in sulphide content. Non-correlation of sulphur with platinum-group assays of many rock types leads to the suggestion that the immiscible sulphide and silicate liquids did not completely equilibrate with respect to platinum-group elements. -G.J.N.

  9. Liquid-liquid phase separation of freely falling undercooled ternary Fe-Cu-Sn alloy

    NASA Astrophysics Data System (ADS)

    Wang, W. L.; Wu, Y. H.; Li, L. H.; Zhai, W.; Zhang, X. M.; Wei, B.

    2015-11-01

    The active modulation and control of the liquid phase separation for high-temperature metallic systems are still challenging the development of advanced immiscible alloys. Here we present an attempt to manipulate the dynamic process of liquid-liquid phase separation for ternary Fe47.5Cu47.5Sn5 alloy. It was firstly dispersed into numerous droplets with 66 ~ 810 μm diameters and then highly undercooled and rapidly solidified under the containerless microgravity condition inside drop tube. 3-D phase field simulation was performed to explore the kinetic evolution of liquid phase separation. Through regulating the combined effects of undercooling level, phase separation time and Marangoni migration, three types of separation patterns were yielded: monotectic cell, core shell and dispersive structures. The two-layer core-shell morphology proved to be the most stable separation configuration owing to its lowest chemical potential. Whereas the monotectic cell and dispersive microstructures were both thermodynamically metastable transition states because of their highly active energy. The Sn solute partition profiles of Fe-rich core and Cu-rich shell in core-shell structures varied only slightly with cooling rate.

  10. Determination of desipramine in biological samples using liquid-liquid-liquid microextraction combined with in-syringe derivatization, gas chromatography, and nitrogen/phosphorus detection.

    PubMed

    Saraji, Mohammad; Mehrafza, Narges; Bidgoli, Ali Akbar Hajialiakbari; Jafari, Mohammad Taghi

    2012-10-01

    A method was established for the determination of desipramine in biological samples using liquid-liquid-liquid microextraction followed by in-syringe derivatization and gas chromatography-nitrogen phosphorus detection. The extraction method was based on the use of two immiscible organic solvents. n-Dodecane was impregnated in the pores of the hollow fiber and methanol was placed inside the lumen of the fiber as the acceptor phase. Acetic anhydride was used as the reagent for the derivatization of the analyte inside the syringe barrel. Parameters that affect the extraction efficiency (composition of donor and acceptor phase, ionic strength, sample temperature, and extraction time) as well as derivatization efficiency (amount of acetic anhydride and reaction time and temperature) were investigated. The limit of detection was 0.02 μg/L with intra and interday RSDs of 2.6 and 7.7%, respectively. The linearity of the method was in the range of 0.2-20 μg/L (r(2) = 0.9986). The method was successfully applied to determine desipramine in human plasma and urine. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The pH-controlled synthesis of a gold nanoparticle/polymer matrix via electrodeposition at a liquid liquid interface

    NASA Astrophysics Data System (ADS)

    Lepková, K.; Clohessy, J.; Cunnane, V. J.

    2007-09-01

    A controlled synthesis of metal nanoparticles co-deposited in a polymer matrix at various pH conditions has been investigated at the interface between two immiscible phases. The pH value of the aqueous phase is modified, resulting in various types of reaction between the gold compound and the monomer. The types of electrochemical processes and their kinetic parameters are determined using both the method of Nicholson and a method based on the Butler-Volmer equation. Cyclic voltammetry is the experimental method used. A material analysis via transmission electron microscopy and particle size distribution calculations confirm that nanoparticles of different sizes can be synthesized by modification of the system pH. The stability of the generated nanocomposite is also discussed.

  12. Magnesium-antimony liquid metal battery for stationary energy storage.

    PubMed

    Bradwell, David J; Kim, Hojong; Sirk, Aislinn H C; Sadoway, Donald R

    2012-02-01

    Batteries are an attractive option for grid-scale energy storage applications because of their small footprint and flexible siting. A high-temperature (700 °C) magnesium-antimony (Mg||Sb) liquid metal battery comprising a negative electrode of Mg, a molten salt electrolyte (MgCl(2)-KCl-NaCl), and a positive electrode of Sb is proposed and characterized. Because of the immiscibility of the contiguous salt and metal phases, they stratify by density into three distinct layers. Cells were cycled at rates ranging from 50 to 200 mA/cm(2) and demonstrated up to 69% DC-DC energy efficiency. The self-segregating nature of the battery components and the use of low-cost materials results in a promising technology for stationary energy storage applications. © 2012 American Chemical Society

  13. Convective fluid flows in a horizontal channel with evaporation: analytical and experimental investigations

    NASA Astrophysics Data System (ADS)

    Lyulin, Y. V.; Rezanova, E. V.

    2017-11-01

    Heat- and mass transfer processes in a two-layer system of the liquid and gas are studied with respect to evaporation at interface. The stationary convective flows of two immiscible viscous incompressible fluids filling an infinite channel and being under action of the transverse gravitation field are studied analytically. Mathematical modeling of the flows is carried out with the help of the Navier-Stokes equations in Boussinesq approximation. The Dufour and Soret effects are taken into consideration in the gas-vapor phase. In the two-dimensional case the exact solutions of special type are constructed under condition of a given specific gas flow rate. Comparison of the analytical results with results of the physical experiments with the “liquid-gas” system like “ethanol-air” are presented.

  14. Freeze-thawing behaviour of highly concentrated aqueous alkali chloride-glucose systems.

    PubMed

    Kajiwara, K; Motegi, A; Murase, N

    2001-01-01

    The freeze-thawing behaviour of highly concentrated aqueous alkali chloride-glucose systems was investigated by differential scanning calorimetry (DSC). In the aqueous NaCl-glucose solution system, single or double glass transitions followed by the corresponding devitrification exotherms were observed during rewarming. In the aqueous KCl-glucose solution system, on the other hand, a single glass transition followed by an exotherm was observed during rewarming. The presence of double glass transitions observed for a certain composition of the aqueous NaCl-glucose solution was taken as an evidence for the liquid-liquid immiscibility at low temperatures. Two kinds of crystallisation accompanied by exotherms during rewarming were identified by X-ray diffraction as ice and ice/NaCl x 2H(2)O, or ice/KCl eutectic component.

  15. Reconfigurable and responsive droplet-based compound micro-lenses.

    PubMed

    Nagelberg, Sara; Zarzar, Lauren D; Nicolas, Natalie; Subramanian, Kaushikaram; Kalow, Julia A; Sresht, Vishnu; Blankschtein, Daniel; Barbastathis, George; Kreysing, Moritz; Swager, Timothy M; Kolle, Mathias

    2017-03-07

    Micro-scale optical components play a crucial role in imaging and display technology, biosensing, beam shaping, optical switching, wavefront-analysis, and device miniaturization. Herein, we demonstrate liquid compound micro-lenses with dynamically tunable focal lengths. We employ bi-phase emulsion droplets fabricated from immiscible hydrocarbon and fluorocarbon liquids to form responsive micro-lenses that can be reconfigured to focus or scatter light, form real or virtual images, and display variable focal lengths. Experimental demonstrations of dynamic refractive control are complemented by theoretical analysis and wave-optical modelling. Additionally, we provide evidence of the micro-lenses' functionality for two potential applications-integral micro-scale imaging devices and light field display technology-thereby demonstrating both the fundamental characteristics and the promising opportunities for fluid-based dynamic refractive micro-scale compound lenses.

  16. Comparison of the Effect of Horizontal Vibrations on Interfacial Waves in a Two-Layer System of Inviscid Liquids to Effective Gravity Inversion

    NASA Astrophysics Data System (ADS)

    Pimenova, Anastasiya V.; Goldobin, Denis S.; Lyubimova, Tatyana P.

    2018-02-01

    We study the waves at the interface between two thin horizontal layers of immiscible liquids subject to high-frequency tangential vibrations. Nonlinear governing equations are derived for the cases of two- and three-dimensional flows and arbitrary ratio of layer thicknesses. The derivation is performed within the framework of the long-wavelength approximation, which is relevant as the linear instability of a thin-layers system is long-wavelength. The dynamics of equations is integrable and the equations themselves can be compared to the Boussinesq equation for the gravity waves in shallow water, which allows one to compare the action of the vibrational field to the action of the gravity and its possible effective inversion.

  17. Reconfigurable and responsive droplet-based compound micro-lenses

    PubMed Central

    Nagelberg, Sara; Zarzar, Lauren D.; Nicolas, Natalie; Subramanian, Kaushikaram; Kalow, Julia A.; Sresht, Vishnu; Blankschtein, Daniel; Barbastathis, George; Kreysing, Moritz; Swager, Timothy M.; Kolle, Mathias

    2017-01-01

    Micro-scale optical components play a crucial role in imaging and display technology, biosensing, beam shaping, optical switching, wavefront-analysis, and device miniaturization. Herein, we demonstrate liquid compound micro-lenses with dynamically tunable focal lengths. We employ bi-phase emulsion droplets fabricated from immiscible hydrocarbon and fluorocarbon liquids to form responsive micro-lenses that can be reconfigured to focus or scatter light, form real or virtual images, and display variable focal lengths. Experimental demonstrations of dynamic refractive control are complemented by theoretical analysis and wave-optical modelling. Additionally, we provide evidence of the micro-lenses' functionality for two potential applications—integral micro-scale imaging devices and light field display technology—thereby demonstrating both the fundamental characteristics and the promising opportunities for fluid-based dynamic refractive micro-scale compound lenses. PMID:28266505

  18. [Determination of several antibiotics using voltamperometry at the interface of nitrobenzene and water].

    PubMed

    Koryta, I; Kozlov, Iu N; Gofmanova, A; Khalil, V; Vanysek, P

    1983-11-01

    A new electroanalytical method of voltamperometry at the interface of two immiscible electrolyte solutions (ITIES) is based on electrochemical polarization of a liquid/liquid interface. The resulting current voltage characteristics completely resemble those obtained with metallic electrodes. The charge transfer processes are either the direct ion transfer across the ITIES or the transfer facilitated by macrocyclic ionophores. Determination of tetracycline antibiotics is based on the direct transfer of the cationic forms of these substances in acid media. Determination of valinomycin, nonactin and monensin acting as ion carriers is connected with the facilitated alkali metal ion transfer. In general, antibiotic concentrations higher than 0.02-0.05 mmol/l can be determined with this method. Monensin can also be determined in the extracts of Streptomyces cinnamonensis.

  19. Investigations on transparent liquid-miscibility gap systems

    NASA Technical Reports Server (NTRS)

    Lacy, L. L.; Nishioka, G.; Ross, S.

    1979-01-01

    Sedimentation and phase separation is a well known occurrence in monotectic or miscibility gap alloys. Previous investigations indicate that it may be possible to prepare such alloys in a low-gravity space environment but recent experiments indicate that there may be nongravity dependent phase separation processes which can hinder the formation of such alloys. Such phase separation processes are studied using transparent liquid systems and holography. By reconstructing holograms into a commercial-particle-analysis system, real time computer analysis can be performed on emulsions with diameters in the range of 5 micrometers or greater. Thus dynamic effects associated with particle migration and coalescence can be studied. Characterization studies on two selected immiscible systems including an accurate determination of phase diagrams, surface and interfacial tension measurements, surface excess and wetting behavior near critical solution temperatures completed.

  20. Flow of two immiscible fluids in a periodically constricted tube: Transitions to stratified, segmented, churn, spray or segregated flow

    NASA Astrophysics Data System (ADS)

    Tsamopoulos, John; Fraggedakis, Dimitris; Dimakopoulos, Yiannis

    2015-11-01

    We study the flow of two immiscible, Newtonian fluids in a periodically constricted tube driven by a constant pressure gradient. Our Volume-of-Fluid algorithm is used to solve the governing equations. First the code is validated by comparing its predictions to previously reported results for stratified and pulsing flow. Then it is used to capture accurately all the significant topological changes that take place. Initially, the fluids have a core-annular arrangement, which is found to either remain the same or change to a different arrangement depending on the fluid properties, the pressure driving the flow or the flow geometry. The flow-patterns that appear are the core-annular, segmented, churn, spray and segregated flow. The predicted scalings near pinching of the core fluid concur with similarity predictions and earlier numerical results (Cohen et al. (1999)). Flow-pattern maps are constructed in terms of the Reynolds and Weber numbers. Our results provide deeper insights in the mechanism of the pattern transitions and are in agreement with previous studies on core-annular flow (Kouris & Tsamopoulos (2001 & 2002)), segmented flow (Lac & Sherwood (2009)) and churn flow (Bai et al. (1992)). GSRT of Greece through the program ``Excellence'' (Grant No. 1918, entitled ``FilCoMicrA'').

  1. Continuous Solidification of Immiscible Alloys and Microstructure Control

    NASA Astrophysics Data System (ADS)

    Jiang, Hongxiang; Zhao, Jiuzhou

    2018-05-01

    Immiscible alloys have aroused considerable interest in last few decades due to their excellent physical and mechanical characteristics as well as potential industrial applications. Up to date, plenty of researches have been carried out to investigate the solidification of immiscible alloys on the ground or in space and great progress has been made. It is demonstrated that the continuous solidification technique have great future in the manufacturing of immiscible alloys, it also indicates that the addition of surface active micro-alloying or inoculants for the nucleation of the minority phase droplets and proper application of external fields, e.g., static magnetic field, electric current, microgravity field, etc. may promote the formation of immiscible alloys with an expected microstructure. The objective of this article is to review the research work in this field.

  2. Pore-scale modeling of moving contact line problems in immiscible two-phase flow.

    NASA Astrophysics Data System (ADS)

    Kucala, A.; Noble, D.; Martinez, M. J.

    2016-12-01

    Two immiscible fluids in static equilibrium form a common interface along a solid surface, characterized as the static contact (wetting) angle and is a function of surface geometry, intermolecular forces, and interfacial surface energies manifested as interfacial tension. This static configuration may become perturbed due to external force imbalances (mass injection, pressure gradients, buoyancy, etc.) and the contact line location and interface curvature becomes dynamic. Accurate modeling of moving contact line (MCL) problems is imperative in predicting capillary pressure vs. saturation curves, permeability, and preferential flow paths for a variety of applications, including geological carbon storage (GCS) and enhanced oil recovery (EOR). Here, we present a model for the moving contact line using pore-scale computational fluid dynamics (CFD) which solves the full, time-dependent Navier-Stokes equations using the Galerkin finite-element method. The MCL is modeled as a surface traction force proportional to the surface tension, dependent on the static properties of the immiscible fluid/solid system. The moving two-phase interface is tracked using the level set method and discretized with the conformal decomposition finite element method (CDFEM), allowing for surface tension effects to be computed at the exact interface location. We present a variety of verification test cases for simple two- and three-dimensional geometries to validate the current model, including threshold pressure predictions in flows through pore-throats for a variety of wetting angles. Simulations involving more complex geometries are also presented to be used in future simulations for GCS and EOR problems. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000

  3. Extra-terrestrial igneous granites and related rocks: A review of their occurrence and petrogenesis

    NASA Astrophysics Data System (ADS)

    Bonin, Bernard

    2012-11-01

    The telluric planets and the asteroid belt display the same internal structure with a metallic inner core and a silicate outer shell. Experimental data and petrological evidence in silicate systems show that granite can be produced by extreme igneous differentiation through various types of igneous processes. On Moon, 4.4-3.9 Ga granite clasts display dry mineral assemblages. They correspond to at least 8 discrete intrusive events. Large K/Ca enrichment and low REE abundances in granite relative to KREEP are consistent with silicate liquid immiscibility, a process observed in melt inclusions within olivine of lunar basalts and in lunar meteorites. Steep-sided domes identified by remote sensing can represent intrusive or extrusive felsic formations. On Mars, black-and-white rhythmic layers observed on the Tharsis rise along the flanks of the peripheral scarps of the Tharsis Montes giant volcanoes suggest the possible eruption of felsic pyroclastites. Though no true granites were found so far in the Martian SNC meteorites, felsic glasses and mesostases were identified and a component close to terrestrial continental (granitic) crust is inferred from trace element and isotope systematics. Venus has suffered extensive volcanic resurfacing, whereas folded and faulted areas resemble terrestrial continents. Near large shield volcanoes, with dominant basaltic compositions, steep-sided domes have been interpreted as non-degassed silicic extrusions. The hypothesis of a granitic component is "tantalising". Extra-terrestrial granite is frequently found as clasts and mesostases in asteroidal meteorites. Porphyritic textures, with alkali feldspar crystals up to several centimetres in size, were observed in silicate enclaves within iron meteorites. In the chondrite clan, polymict breccias can contain granitic clasts, whose provenance is debated. One clast from the Adzhi-Bogdo meteorite yields a 4.53 ± 0.03 Ga Pb-Pb age, making it the oldest known granite in the solar system. The vast majority of granitic materials recognised so far in the extra-terrestrial record are characterised by ferroan A-type compositions, characterised by high to very high K2O and medium CaO contents, sodic varieties being exceedingly rare. Textural evidence of graphic quartz-alkali feldspar intergrowths within crystallised products suggests that they are igneous in origin and crystallised quickly from a liquid. In water-depleted to water-free environments, fluorine and chlorine can play significant roles, as their effects on liquidus temperatures and crystallising assemblages are nearly identical to those of water. The distribution of alkalis and alkaline earths cannot be related only to extensive crystal fractionation, but is likely induced by supplementary silicate liquid immiscibility. Medium-temperature silicate liquid immiscibility is well known as a mode of differentiation in experimental petrology studies at very low pressures on systems dominated by Fe, Ti, K, and P as major elements. The ultimate question is, therefore, not whether granite (s.l.) occurs in any given planetary body, but if sufficient volumes of granitic materials could have been produced to constitute stable continental nuclei.

  4. Measuring experimental cyclohexane-water distribution coefficients for the SAMPL5 challenge

    NASA Astrophysics Data System (ADS)

    Rustenburg, Ariën S.; Dancer, Justin; Lin, Baiwei; Feng, Jianwen A.; Ortwine, Daniel F.; Mobley, David L.; Chodera, John D.

    2016-11-01

    Small molecule distribution coefficients between immiscible nonaqueuous and aqueous phases—such as cyclohexane and water—measure the degree to which small molecules prefer one phase over another at a given pH. As distribution coefficients capture both thermodynamic effects (the free energy of transfer between phases) and chemical effects (protonation state and tautomer effects in aqueous solution), they provide an exacting test of the thermodynamic and chemical accuracy of physical models without the long correlation times inherent to the prediction of more complex properties of relevance to drug discovery, such as protein-ligand binding affinities. For the SAMPL5 challenge, we carried out a blind prediction exercise in which participants were tasked with the prediction of distribution coefficients to assess its potential as a new route for the evaluation and systematic improvement of predictive physical models. These measurements are typically performed for octanol-water, but we opted to utilize cyclohexane for the nonpolar phase. Cyclohexane was suggested to avoid issues with the high water content and persistent heterogeneous structure of water-saturated octanol phases, since it has greatly reduced water content and a homogeneous liquid structure. Using a modified shake-flask LC-MS/MS protocol, we collected cyclohexane/water distribution coefficients for a set of 53 druglike compounds at pH 7.4. These measurements were used as the basis for the SAMPL5 Distribution Coefficient Challenge, where 18 research groups predicted these measurements before the experimental values reported here were released. In this work, we describe the experimental protocol we utilized for measurement of cyclohexane-water distribution coefficients, report the measured data, propose a new bootstrap-based data analysis procedure to incorporate multiple sources of experimental error, and provide insights to help guide future iterations of this valuable exercise in predictive modeling.

  5. Microtubules as platforms for probing liquid-liquid phase separation in cells: application to RNA-binding proteins.

    PubMed

    Maucuer, Alexandre; Desforges, Bénédicte; Joshi, Vandana; Boca, Mirela; Kretov, Dmitry; Hamon, Loic; Bouhss, Ahmed; Curmi, Patrick A; Pastré, David

    2018-05-04

    Liquid-liquid phase separation enables compartmentalization of biomolecules in cells, notably RNA and associated proteins in the nucleus. Besides critical functions in RNA processing, there is a major interest in deciphering the molecular mechanisms of compartmentalization orchestrated by RNA-binding proteins such as TDP-43 and FUS due to their link to neuron diseases. However, tools for probing compartmentalization in cells are lacking. Here we developed a method to analyze the mixing:demixing of two different phases in a cellular context. The principle is the following: mRNA-binding proteins are confined on microtubules and quantitative parameters defining their spatial segregation are measured along the microtubule network. Through this approach, we found that four mRNA binding proteins, HuR, G3BP1, TDP-43 and FUS form mRNA-rich liquid-like compartments on microtubules. TDP-43 is partly miscible with FUS but immiscible with either HuR or G3BP1. We also demonstrate that mRNA is essential to capture the mixing:demixing behavior of RNA-binding proteins in cells. Altogether we show that microtubules can be used as platforms to understand the mechanisms underlying liquid-liquid phase separation and their deregulation in human diseases. © 2018. Published by The Company of Biologists Ltd.

  6. Highly Productive and Enantioselective Enzyme Catalysis under Continuous Supported Liquid-Liquid Conditions Using a Hybrid Monolithic Bioreactor.

    PubMed

    Sandig, Bernhard; Buchmeiser, Michael R

    2016-10-20

    Enzyme-containing ionic liquids (ILs) were immobilized in cellulose-2.5-acetate microbeads particles embedded in a porous monolithic polyurethane matrix. This bioreactor was used under continuous liquid-liquid conditions by dissolving the substrates in a nonpolar organic phase immiscible with the ILs, thereby creating a biphasic system. Lipases (candida antarctica lipase B, CALB, candida rugosa lipase, CRL) were used to catalyze the enantioselective transesterification of racemic (R,S)-1-phenylethanol with vinyl butyrate and vinyl acetate, the esterification of (+/-)-2-isopropyl-5-methylcyclohexanol with propionic anhydride and the amidation of (R,S)-1-phenylethylamine with ethyl methoxyacetate. With this unique setup, very high productivities, that is, turnover numbers (TONs) up to 5.1×10 6 and space-time yields (STYs) up to 28 g product L -1  h -1 , exceeding the corresponding values for batch-type reactions by a factor of 3100 and 40, respectively, were achieved while maintaining or even enhancing enantioselectivity compared to batch reactions via kinetic resolution. To our best knowledge, this is the first continuously operated bioreactor using supported liquid-liquid conditions that shows these features in the synthesis of chiral esters and amides. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Electrokinetic migration across artificial liquid membranes Tuning the membrane chemistry to different types of drug substances.

    PubMed

    Gjelstad, Astrid; Rasmussen, Knut Einar; Pedersen-Bjergaard, Stig

    2006-08-18

    Twenty different basic drugs were electrokinetically extracted across a thin artificial organic liquid membrane with a 300 V d.c. electrical potential difference as the driving force. From a 300 microl aqueous sample (acidified corresponding to 10mM HCl), the drugs were extracted for 5 min through a 200 microm artificial liquid membrane of a water immiscible organic solvent immobilized in the pores of a polypropylene hollow fiber, and into a 30 microl aqueous acceptor solution of 10mM HCl inside the lumen of the hollow fiber. Hydrophobic basic drugs (logP>1.7) were effectively isolated utilizing 2-nitrophenyl octyl ether (NPOE) as the artificial liquid membrane, with recoveries up to 83%. For more hydrophilic basic drugs (logP<1.0), a mixture of NPOE and 25% (w/w) di-(2-ethylhexyl) phosphate (DEHP) was required to ensure efficient extraction, resulting in recoveries up to 75%. DEHP was expected to act as an ion-pair reagent ion-pairing the protonated hydrophilic drugs at the interface between the sample and the membrane, resulting in permeation of the interface.

  8. Adjustable liquid aperture to eliminate undesirable light in holographic projection.

    PubMed

    Wang, Di; Liu, Chao; Li, Lei; Zhou, Xin; Wang, Qiong-Hua

    2016-02-08

    In this paper, we propose an adjustable liquid aperture to eliminate the undesirable light in a holographic projection. The aperture is based on hydrodynamic actuation. A chamber is formed with a cylindrical tube. A black droplet is filled in the sidewall of the cylinder tube and the outside space is the transparent oil which is immiscible with the black droplet. An ultrathin glass sheet is attached on the bottom substrate of the device and a black shading film is secured to the central area of the glass sheet. By changing the volume of the black droplet, the black droplet will move to the middle or sidewall due to hydrodynamic actuation, so the device can be used as an adjustable aperture. A divergent spherical wave and a solid lens are used to separate the focus planes of the reconstructed image and diffraction beams induced by the liquid crystal on silicon in the holographic projection. Then the aperture is used to eliminate the diffraction beams by adjusting the size of the liquid aperture and the holographic projection does not have undesirable light.

  9. Possibilities and challenges for biosurfactants use in petroleum industry.

    PubMed

    Perfumo, Amedea; Rancich, Ivo; Banat, Ibrahim M

    2010-01-01

    Biosurfactants are a group of microbial molecules identified by their unique capabilities to interact with hydrocarbons. Emulsification and de-emulsification, dispersion, foaming, wetting and coating are some of the numerous surface activities that biosurfactants can achieve when applied within systems such as immiscible liquid/liquid (e.g., oil/water), solid/ liquid (e.g., rock/oil and rock/water) and gas/liquid. Therefore, the possibilities of exploiting these bioproducts in oil-related sciences are vast and made petroleum industry their largest possible market at present. The role of biosurfactants in enhancing oil recovery from reservoirs is certainly the best known; however they can be effectively applied in many other fields from transportation of crude oil in pipeline to the clean-up of oil storage tanks and even manufacturing of fine petrochemicals. When properly used, biosurfactants are comparable to traditional chemical analogues in terms of performances and offer advantages with regard to environment protection/conservation. This chapter aims at providing an up-to-date overview of biosurfactant roles, applications and possible future uses related to petroleum industry.

  10. Evidence for a palaeo-oil column and alteration of residual oil in a gas-condensate field: Integrated oil inclusion and experimental results

    NASA Astrophysics Data System (ADS)

    Bourdet, Julien; Burruss, Robert C.; Chou, I.-Ming; Kempton, Richard; Liu, Keyu; Hung, Nguyen Viet

    2014-10-01

    In the Phuong Dong gas condensate field, Cuu Long Basin, Vietnam, hydrocarbon inclusions in quartz trapped a variety of petroleum fluids in the gas zone. Based on the attributes of the oil inclusion assemblages (fluorescence colour of the oil, bubble size, presence of bitumen), the presence of a palaeo-oil column is inferred prior to migration of gas into the reservoir. When a palaeo-oil column is displaced by gas, a residual volume fraction of oil remains in pores. If the gas does not completely mix with the oil, molecular partitioning between the residual oil and the new gas charge may change the composition and properties of the residual oil (gas stripping or gas washing). To simulate this phenomenon in the laboratory, we sealed small amounts of crude oil (42 and 30 °API) and excess pure gas (methane, ethane, or propane) in fused silica capillary capsules (FSCCs), with and without water. These mixtures were characterized with the same methods used to characterize the fluid inclusions, heating and cooling stage microscopy, fluorescence spectroscopy, synchrotron FT-IR, and Raman spectroscopy. At room temperature, mixtures of ethane and propane with the 30 °API oil formed a new immiscible fluorescent liquid phase with colour that is visually more blue than the initial oil. The fluorescence of the original oil phase shifted to yellow or disappeared with formation of semi-solid residues. The blue-shift of the fluorescence of the immiscible phases and strong CH stretching bands in FT-IR spectra are consistent with stripping of hydrocarbon molecules from the oil. In experiments in FSCCs with water solid residues are common. At elevated temperature, reproducing geologic reservoir conditions, the fluorescence changes and therefore the molecular fractionation are enhanced. However, the precipitation of solid residues is responsible of more complex changes. Mixing experiments with the 42 °API oil do not form a new immiscible hydrocarbon liquid although the fluorescence displays a similar yellow shift when gas is added. Solid residues rarely form in mixtures with 42 °API oil. FT-IR spectra suggest that the decrease of fluorescence intensity of the original oil at short wavelengths to be due to the partitioning of low molecular weight aromatic molecules into the vapour phase and/or the new immiscible liquid phase. The decrease of fluorescence intensity at long wavelengths appears to be due to loss of high molecular weight aromatics during precipitation of solid residues by desorption of aromatics and resins from asphaltenes. Desorption of low molecular weight aromatics and resins from asphaltenes during precipitation can also increase the fluorescence intensity at short wavelengths of the residual oil. Water clearly affects the precipitation of semi-solid residues from the oil phase of the lowest API gravity oil. The change of hydrocarbon phase(s) in UV-visible fluorescence and FT-IR enclosed within the FSCCs were compared with the fluorescence patterns of natural fluid inclusions at Phuong Dong gas condensate field. The experimental results support the concept of gas-washing of residual oil and are consistent with the oil inclusion attributes from the current gas zone at Phuong Dong field. The hydrocarbon charge history of the fractured granite reservoir is interpreted to result from the trapping of residual oil after drainage of a palaeo-oil column by gas.

  11. Flow behaviour of negatively buoyant jets in immiscible ambient fluid

    NASA Astrophysics Data System (ADS)

    Geyer, A.; Phillips, J. C.; Mier-Torrecilla, M.; Idelsohn, S. R.; Oñate, E.

    2012-01-01

    In this paper we investigate experimentally the injection of a negatively buoyant jet into a homogenous immiscible ambient fluid. Experiments are carried out by injecting a jet of dyed fresh water through a nozzle in the base of a cylindrical tank containing rapeseed oil. The fountain inlet flow rate and nozzle diameter were varied to cover a wide range of Richardson Ri (8 × 10-4 < Ri < 1.98), Reynolds Re (467 < Re < 5,928) and Weber We (2.40 < We < 308.56) numbers. Based on the Re, Ri and We values for the experiments, we have determined a regime map to define how these values may control the occurrence of the observed flow types. Whereas Ri plays a stronger role when determining the maximum penetration height, the effect of the Reynolds number is stronger predicting the flow behaviour for a specific nozzle diameter and injection velocity.

  12. Process for Encapsulating Protein Crystals

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R.; Mosier, Benjamin

    2003-01-01

    A process for growing protein crystals encapsulated within membranes has been invented. This process begins with the encapsulation of a nearly saturated aqueous protein solution inside semipermeable membranes to form microcapsules. The encapsulation is effected by use of special formulations of a dissolved protein and a surfactant in an aqueous first liquid phase, which is placed into contact with a second, immiscible liquid phase that contains one or more polymers that are insoluble in the first phase. The second phase becomes formed into the semipermeable membranes that surround microglobules of the first phase, thereby forming the microcapsules. Once formed, the microcapsules are then dehydrated osmotically by exposure to a concentrated salt or polymer solution. The dehydration forms supersaturated solutions inside the microcapsules, thereby enabling nucleation and growth of protein crystals inside the microcapsules. By suitable formulation of the polymer or salt solution and of other physical and chemical parameters, one can control the rate of transport of water out of the microcapsules through the membranes and thereby create physicochemical conditions that favor the growth, within each microcapsule, of one or a few large crystals suitable for analysis by x-ray diffraction. The membrane polymer can be formulated to consist of low-molecular-weight molecules that do not interfere with the x-ray diffraction analysis of the encapsulated crystals. During dehydration, an electrostatic field can be applied to exert additional control over the rate of dehydration. This protein-crystal-encapsulation process is expected to constitute the basis of protein-growth experiments to be performed on the space shuttle and the International Space Station. As envisioned, the experiments would involve the exposure of immiscible liquids to each other in sequences of steps under microgravitational conditions. The experiments are expected to contribute to knowledge of the precise conditions under which protein crystals form. By enhancing the ability to grow crystals suitable for x-ray diffraction analysis, this knowledge can be expected to benefit not only the space program but also medicine and the pharmaceutical industry.

  13. High-temperature rapid pyrometamorphism induced by a charcoal pit burning: The case of Ricetto, central Italy

    NASA Astrophysics Data System (ADS)

    Capitanio, Flavio; Larocca, Francesco; Improta, Salvatore

    Bulk chemistry and mineralogy of the peculiar rock of Ricetto (Carseolani Mts., Central Apennines, Italy) was studied to resolve its controversial origin: igneous dyke or anthropic product. This hybrid rock consists of a colorless, felsic component made up of glass plus quartz, and a brown, femic component made up of fans and spherulites of diopside, calcic plagioclase, wollastonite, and melilite. Textural relationships indicate very rapid cooling and immiscibility phenomena. The bulk chemistry of the rock is the same as that of the surrounding siliciclastic sandstone. The 14C analysis of a coal fragment from bottom of the body yields the conventional age of 227(+/-50) years. The Ricetto occurrence is an example of pyrometamorphism of a siliceous limestone induced by a charcoal pit burning. The small size of the heat source at Ricetto caused an intense but short-lived melting of the country rock. Prograde metamorphism caused a temperature increase up to 1,000-1,100 °C when melilite crystallization conditions were reached at appreciable P(CO2) and high f(O2). Melting occurred in a close system represented by the simplified equation: 3Cal+16.5Qtz+Ms+Bt-->Mel+Melt+2H2O+3CO2+0.5O2. Diopside+calcic plagioclase+wollastonite formed by melilite breakdown during rapid cooling, through the reaction: 6Mel+6Qtz+0.5O2-->3Di+2An+7Wo. Liquid immiscibility caused the separation between the felsic melt component and the femic melilite-bearing component. Immiscibility was characterized by different fractionation of alumina and alkalies between these two phases. Differences in bulk, glass, and mineral chemistry between the Ricetto and other melilite-bearing pyrometamorphic rocks can be attributed mainly to different protoliths.

  14. Pore-scale Evaluation of Immiscible Fluid Characteristics and Displacements: Comparison Between Ambient- and Supercritical-Condition Experimental Studies

    NASA Astrophysics Data System (ADS)

    Herring, A. L.; Wildenschild, D.; Andersson, L.; Harper, E.; Sheppard, A.

    2015-12-01

    The transport of immiscible fluids within porous media is a topic of great importance for a wide range of subsurface processes; e.g. oil recovery, geologic sequestration of CO2, gas-water mass transfer in the vadose zone, and remediation of non-aqueous phase liquids (NAPLs) from groundwater. In particular, the trapping and mobilization of nonwetting phase fluids (e.g. oil, CO2, gas, or NAPL in water-wet media) is of significant concern; and has been well documented to be a function of both wetting and nonwetting fluid properties, morphological characteristics of the porous medium, and system history. However, generalization of empirical trends and results for application between different fluid-fluid-medium systems requires careful consideration and characterization of the relevant system properties. We present a comprehensive and cohesive description of nonwetting phase behaviour as observed via a suite of three dimensional x-ray microtomography imaging experiments investigating immiscible fluid flow, trapping, and interfacial interactions of wetting (brine) and nonwetting (air, oil, and supercritical CO2) phase in sandstones and synthetic media. Microtomographic images, acquired for drainage and imbibition flow processes, allow for precise and extensive characterization of nonwetting phase fluid saturation, topology, and connectivity; imaging results are paired with externally measured capillary pressure data to provide a comprehensive description of fluid states. Fluid flow and nonwetting phase trapping behaviour is investigated as a function of system history, morphological metrics of the geologic media, and nonwetting phase fluid characteristics; and particular emphasis is devoted to the differences between ambient condition (air-brine) and reservoir condition (supercritical CO2-brine) studies. Preliminary results provide insight into the applicability of using ambient condition experiments to explore reservoir condition processes, and also elucidate the underlying physics of trapping and mobilization of nonwetting phase fluids.

  15. Stochastic Rotation Dynamics simulations of wetting multi-phase flows

    NASA Astrophysics Data System (ADS)

    Hiller, Thomas; Sanchez de La Lama, Marta; Brinkmann, Martin

    2016-06-01

    Multi-color Stochastic Rotation Dynamics (SRDmc) has been introduced by Inoue et al. [1,2] as a particle based simulation method to study the flow of emulsion droplets in non-wetting microchannels. In this work, we extend the multi-color method to also account for different wetting conditions. This is achieved by assigning the color information not only to fluid particles but also to virtual wall particles that are required to enforce proper no-slip boundary conditions. To extend the scope of the original SRDmc algorithm to e.g. immiscible two-phase flow with viscosity contrast we implement an angular momentum conserving scheme (SRD+mc). We perform extensive benchmark simulations to show that a mono-phase SRDmc fluid exhibits bulk properties identical to a standard SRD fluid and that SRDmc fluids are applicable to a wide range of immiscible two-phase flows. To quantify the adhesion of a SRD+mc fluid in contact to the walls we measure the apparent contact angle from sessile droplets in mechanical equilibrium. For a further verification of our wettability implementation we compare the dewetting of a liquid film from a wetting stripe to experimental and numerical studies of interfacial morphologies on chemically structured surfaces.

  16. Assessment of flushing methods for the removal of heavy chlorinated compounds DNAPL in an alluvial aquifer.

    PubMed

    Maire, Julien; Joubert, Antoine; Kaifas, Delphine; Invernizzi, Thomas; Marduel, Julien; Colombano, Stéfan; Cazaux, David; Marion, Cédric; Klein, Pierre-Yves; Dumestre, Alain; Fatin-Rouge, Nicolas

    2018-01-15

    Immiscible mobilization and foam flushing were assessed as low surfactant consuming technologies, for the enhanced recovery of dense non-aqueous phase liquid (DNAPL) residual at a site contaminated by heavy chlorinated compounds. Preliminary experiments in well-controlled conditions demonstrated the phenomena involved in these remediation technologies and their limitations. Furthermore, we characterized the technologies according to by their surfactant consumption (per kg of DNAPL recovered) and the final DNAPL saturation reached. Surfactant foam flushing (SFF) produced lower DNAPL saturation than immiscible mobilization, thanks to its higher viscosity. However, its efficiency is strongly correlated to the pressure gradient (▽P) used during injection, and that is limited by risks of soil fracturing. The two technologies were tested in field cells (10m×10m×10m) delimited by cement/bentonite walls anchored in the clayey substratum. The deepest soil layer was the most contaminated. It was composed of silt-sandy soil and had an average hydraulic conductivity of 10 -4 ms -1 . Field results show that we should now model flushing fluid propagation to design efficient set-ups for recovering the displaced DNAPL. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Influence of humidity on performance and microscopic dynamics of an ionic liquid in supercapacitor

    NASA Astrophysics Data System (ADS)

    Osti, Naresh C.; Dyatkin, Boris; Thompson, Matthew W.; Tiet, Felix; Zhang, Pengfei; Dai, Sheng; Tyagi, Madhusudan; Cummings, Peter T.; Gogotsi, Yury; Wesolowski, David J.; Mamontov, Eugene

    2017-08-01

    We investigated the influence of water molecules on the diffusion, dynamics, and electrosorption of a room temperature ionic liquid (RTIL), [BMI m+] [T f2N-] , confined in carbide-derived carbon with a bimodal nanoporosity. Water molecules in pores improved power densities and rate handling abilities of these materials in supercapacitor electrode configurations. We measured the water-dependent microscopic dynamics of the RTIL cations using quasielastic neutron scatting (QENS). The ionic liquid demonstrated greater mobility with increasing water uptake, facilitated by the nanoporous carbon environment, up to a well-defined saturation point. We concluded that water molecules displaced RTIL ions attached to the pore surfaces and improved the diffusivity of the displaced cations. This effect consequently increased capacitance and rate handling of the electrolyte in water-containing pores. Our findings suggest the possible effect of immiscible co-solvents on energy and power densities of energy storage devices, as well as the operating viability of nonaqueous supercapacitor electrolytes in humid environments.

  18. Microchannel Reactor System for Catalytic Hydrogenation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adeniyi Lawal; Woo Lee; Ron Besser

    2010-12-22

    We successfully demonstrated a novel process intensification concept enabled by the development of microchannel reactors, for energy efficient catalytic hydrogenation reactions at moderate temperature, and pressure, and low solvent levels. We designed, fabricated, evaluated, and optimized a laboratory-scale microchannel reactor system for hydrogenation of onitroanisole and a proprietary BMS molecule. In the second phase of the program, as a prelude to full-scale commercialization, we designed and developed a fully-automated skid-mounted multichannel microreactor pilot plant system for multiphase reactions. The system is capable of processing 1 – 10 kg/h of liquid substrate, and an industrially relevant immiscible liquid-liquid was successfully demonstratedmore » on the system. Our microreactor-based pilot plant is one-of-akind. We anticipate that this process intensification concept, if successfully demonstrated, will provide a paradigm-changing basis for replacing existing energy inefficient, cost ineffective, environmentally detrimental slurry semi-batch reactor-based manufacturing practiced in the pharmaceutical and fine chemicals industries.« less

  19. Electrolysis of a molten semiconductor

    DOE PAGES

    Yin, Huayi; Chung, Brice; Sadoway, Donald R.

    2016-08-24

    Metals cannot be extracted by electrolysis of transition-metal sulfides because as liquids they are semiconductors, which exhibit high levels of electronic conduction and metal dissolution. Herein by introduction of a distinct secondary electrolyte, we reveal a high-throughput electro-desulfurization process that directly converts semiconducting molten stibnite (Sb 2S 3) into pure (99.9%) liquid antimony and sulfur vapour. At the bottom of the cell liquid antimony pools beneath cathodically polarized molten stibnite. At the top of the cell sulfur issues from a carbon anode immersed in an immiscible secondary molten salt electrolyte disposed above molten stibnite, thereby blocking electronic shorting across themore » cell. In conclusion, as opposed to conventional extraction practices, direct sulfide electrolysis completely avoids generation of problematic fugitive emissions (CO 2, CO and SO 2), significantly reduces energy consumption, increases productivity in a single-step process (lower capital and operating costs) and is broadly applicable to a host of electronically conductive transition-metal chalcogenides.« less

  20. Analysis and Numerical Simulation of EWOD of a Droplet for Application in a Variable Focus Microlens

    NASA Astrophysics Data System (ADS)

    Chang, Yuan-Jen; Mohseni, Kamran; Bright, Victor

    2006-11-01

    Modification of the curvature of the interface between a conductive (water) and isolating (oil) liquids is used in order to design a tunable microlens. Electrowetting on Dielectric (EWOD), the modification of surface energy of a conductive droplet on an isolated electrode, is employed in order to change the interface curvature and tune the microlens. Several features of the microlens design are addressed. These includes: the drop-centering mechanism, matching of the density of the two immiscible liquids, refractive indexes of the two liquids, and planar electrodes for electrowetting. A dimensional analysis is performed to identify the relevant nondimensional parameters. Direct numerical simulation of the hydrodynamic and electric fields is carried out. It is found that the focal length of the microlens changes continuously from negative to positive by applying a voltage from 0 to 200 volts. The focusing speed of the microlens is calculated to be around 10 milli-seconds. A successfully fabricated microlens device has been demonstrated.

  1. Bicontinuous structured liquids with sub-micrometre domains using nanoparticle surfactants

    DOE PAGES

    Huang, Caili; Forth, Joe; Wang, Weiyu; ...

    2017-09-25

    Bicontinuous jammed emulsions (or bijels) are tortuous, interconnected structures of two immiscible liquids, kinetically trapped by colloidal particles that are irreversibly bound to the oil–water interface. A wealth of applications has been proposed for bijels in catalysis, energy storage and molecular encapsulation, but large domain sizes (on the order of 5 µm or larger) and difficulty in fabrication pose major barriers to their use. In this paper, we show that bijels with sub-micrometre domains can be formed via homogenization, rather than spinodal decomposition. We achieve this by using nanoparticle surfactants: polymers and nanoparticles of complementary functionality (for example, ion-pairing) thatmore » bind to one another at the oil–water interface. This allows the stabilization of the bijel far from the demixing point of the liquids, with interfacial tensions on the order of 20 mN m -1. Finally, furthermore, our strategy is extremely versatile, as solvent, nanoparticle and ligand can all be varied.« less

  2. Bicontinuous structured liquids with sub-micrometre domains using nanoparticle surfactants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Caili; Forth, Joe; Wang, Weiyu

    Bicontinuous jammed emulsions (or bijels) are tortuous, interconnected structures of two immiscible liquids, kinetically trapped by colloidal particles that are irreversibly bound to the oil–water interface. A wealth of applications has been proposed for bijels in catalysis, energy storage and molecular encapsulation, but large domain sizes (on the order of 5 µm or larger) and difficulty in fabrication pose major barriers to their use. In this paper, we show that bijels with sub-micrometre domains can be formed via homogenization, rather than spinodal decomposition. We achieve this by using nanoparticle surfactants: polymers and nanoparticles of complementary functionality (for example, ion-pairing) thatmore » bind to one another at the oil–water interface. This allows the stabilization of the bijel far from the demixing point of the liquids, with interfacial tensions on the order of 20 mN m -1. Finally, furthermore, our strategy is extremely versatile, as solvent, nanoparticle and ligand can all be varied.« less

  3. Ionic liquid-based single-drop microextraction/gas chromatographic/mass spectrometric determination of benzene, toluene, ethylbenzene and xylene isomers in waters.

    PubMed

    Aguilera-Herrador, Eva; Lucena, Rafael; Cárdenas, Soledad; Valcárcel, Miguel

    2008-08-01

    The direct coupling between ionic liquid-based single-drop microextraction and gas chromatography/mass spectrometry is proposed for the rapid and simple determination of benzene, toluene, ethylbenzene and xylenes isomers (BTEX) in water samples. The extraction procedure exploits not only the high affinity of the selected ionic liquid (1-methyl-3-octyl-imidazolium hexaflourophosphate) to these aromatic compounds but also its special properties like viscosity, low vapour pressure and immiscibility with water. All the variables involved in the extraction process have been studied in depth. The developed method allows the determination of these single-ring compounds in water under the reference concentration level fixed by the international legislation. In this case, limits of detection were in the range 20 ng L(-1) (obtained for benzene) and 91 ng L(-1) (for o-xylene). The repeatability of the proposed method, expressed as RSD (n=5), varied between 3.0% (o-xylene) and 5.2% (toluene).

  4. Nanoparticle Assemblies at Fluid Interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, Thomas P.

    2015-03-10

    A systematic study of the structure and dynamics of nanoparticles (NP) and NP-surfactants was performed. The ligands attached to both the NPs and NP-surfactants dictate the manner in which the nanoscopic materials assemble at fluid interfaces. Studies have shown that a single layer of the nanoscpic materials form at the interface to reduce the interactions between the two immiscible fluids. The shape of the NP is, also, important, where for spherical particles, a disordered, liquid-like monolayer forms, and, for nanorods, ordered domains at the interface is found and, if the monolayers are compressed, the orientation of the nanorods with respectmore » to the interface can change. By associating end-functionalized polymers to the NPs assembled at the interface, NP-surfactants are formed that increase the energetic gain in segregating each NP at the interface which allows the NP-surfactants to jam at the interface when compressed. This has opened the possibility of structuring the two liquids by freezing in shape changes of the liquids.« less

  5. High-temperature phase relations and thermodynamics in the iron-lead-sulfur system

    NASA Astrophysics Data System (ADS)

    Eric, R. Hurman; Ozok, Hakan

    1994-01-01

    The PbS activities in FeS-PbS liquid mattes were obtained at 1100 °C and 1200 °C by the dew-point method. Negative deviations were observed, and the liquid-matte solutions were modeled by the Krupkowski formalism. The liquid boundaries of the FeS-PbS phase diagram were derived from the model equations yielding a eutectic temperature of 842 °C at X Pbs = 0.46. A phase diagram of the pseudobinary FeS-PbS was also verified experimentally by quenching samples equilibrated in evacuated and sealed silica capsules. No terminal solid solution ranges could be found. Within the Fe-Pb-S ternary system, the boundaries of the immiscibility region together with the tie-line distributions were established at 1200 °C. Activities of Pb were measured by the dew-point technique along the metal-rich boundary of the miscibility gap. Activities of Fe, Pb, and S, along the miscibility gap were also calculated by utilizing the bounding binary thermodynamics, phase equilibria, and tie-lines.

  6. Optical Limiting by Index-Matched Phase-Segregated Mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Exarhos, Gregory J.; Ferris, Kim F.; Manijeh Razeghi, Gail J. Brown

    The nonlinear optical response for index-matched, non-absorbing immiscible phases (liquid-solid, liquid-liquid, solid-solid) has been determined by means of open aperture z-scan measurements. In mixtures where one constituent shows a relatively high optical nonlinearity, rapid and reversible transformation to a light-scattering state is observed under conditions where a critical incident light fluence is exceeded. This passive broadband response is induced by a transient change in the dispersive part of the refractive index, and is based upon the Christiansen-Shelyubskii filter that at one time was used as a means to monitor the temperature of glass melts. Modeling studies are used to simulatemore » scattering intensities in such textured composites as a function of composition, microstructure, and constituent optical properties. Results provide a rational approach to the selection of materials for use in these limiters. Challenges to preparing dispersed phase mixtures and their response to 532 nm nanosecond pulsed laser irradiation are described.« less

  7. A smoothed particle hydrodynamics framework for modelling multiphase interactions at meso-scale

    NASA Astrophysics Data System (ADS)

    Li, Ling; Shen, Luming; Nguyen, Giang D.; El-Zein, Abbas; Maggi, Federico

    2018-01-01

    A smoothed particle hydrodynamics (SPH) framework is developed for modelling multiphase interactions at meso-scale, including the liquid-solid interaction induced deformation of the solid phase. With an inter-particle force formulation that mimics the inter-atomic force in molecular dynamics, the proposed framework includes the long-range attractions between particles, and more importantly, the short-range repulsive forces to avoid particle clustering and instability problems. Three-dimensional numerical studies have been conducted to demonstrate the capabilities of the proposed framework to quantitatively replicate the surface tension of water, to model the interactions between immiscible liquids and solid, and more importantly, to simultaneously model the deformation of solid and liquid induced by the multiphase interaction. By varying inter-particle potential magnitude, the proposed SPH framework has successfully simulated various wetting properties ranging from hydrophobic to hydrophilic surfaces. The simulation results demonstrate the potential of the proposed framework to genuinely study complex multiphase interactions in wet granular media.

  8. Non-traditional stable isotope behaviors in immiscible silica-melts in a mafic magma chamber

    PubMed Central

    Zhu, Dan; Bao, Huiming; Liu, Yun

    2015-01-01

    Non-traditional stable isotopes have increasingly been applied to studies of igneous processes including planetary differentiation. Equilibrium isotope fractionation of these elements in silicates is expected to be negligible at magmatic temperatures (δ57Fe difference often less than 0.2 per mil). However, an increasing number of data has revealed a puzzling observation, e.g., the δ57Fe for silicic magmas ranges from 0‰ up to 0.6‰, with the most positive δ57Fe almost exclusively found in A-type granitoids. Several interpretations have been proposed by different research groups, but these have so far failed to explain some aspects of the observations. Here we propose a dynamic, diffusion-induced isotope fractionation model that assumes Si-melts are growing and ascending immiscibly in a Fe-rich bulk magma chamber. Our model offers predictions on the behavior of non-traditional stable isotope such as Fe, Mg, Si, and Li that are consistent with observations from many A-type granitoids, especially those associated with layered intrusions. Diffusion-induced isotope fractionation may be more commonly preserved in magmatic rocks than was originally predicted. PMID:26620121

  9. Wrapping with a splash: High-speed encapsulation with ultrathin sheets

    NASA Astrophysics Data System (ADS)

    Kumar, Deepak; Paulsen, Joseph D.; Russell, Thomas P.; Menon, Narayanan

    2018-02-01

    Many complex fluids rely on surfactants to contain, protect, or isolate liquid drops in an immiscible continuous phase. Thin elastic sheets can wrap liquid drops in a spontaneous process driven by capillary forces. For encapsulation by sheets to be practically viable, a rapid, continuous, and scalable process is essential. We exploit the fast dynamics of droplet impact to achieve wrapping of oil droplets by ultrathin polymer films in a water phase. Despite the violence of splashing events, the process robustly yields wrappings that are optimally shaped to maximize the enclosed fluid volume and have near-perfect seams. We achieve wrappings of targeted three-dimensional (3D) shapes by tailoring the 2D boundary of the films and show the generality of the technique by producing both oil-in-water and water-in-oil wrappings.

  10. Electrochemical Sensing and Imaging Based on Ion Transfer at Liquid/Liquid Interfaces

    PubMed Central

    Amemiya, Shigeru; Kim, Jiyeon; Izadyar, Anahita; Kabagambe, Benjamin; Shen, Mei; Ishimatsu, Ryoichi

    2013-01-01

    Here we review the recent applications of ion transfer (IT) at the interface between two immiscible electrolyte solutions (ITIES) for electrochemical sensing and imaging. In particular, we focus on the development and recent applications of the nanopipet-supported ITIES and double-polymer-modified electrode, which enable the dynamic electrochemical measurements of IT at nanoscopic and macroscopic ITIES, respectively. High-quality IT voltammograms are obtainable using either technique to quantitatively assess the kinetics and dynamic mechanism of IT at the ITIES. Nanopipet-supported ITIES serves as an amperometric tip for scanning electrochemical microscopy to allow for unprecedentedly high-resolution electrochemical imaging. Voltammetric ion sensing at double-polymer-modified electrodes offers high sensitivity and unique multiple-ion selectivity. The promising future applications of these dynamic approaches for bioanalysis and electrochemical imaging are also discussed. PMID:24363454

  11. The electrical properties of zero-gravity processed immiscibles

    NASA Technical Reports Server (NTRS)

    Lacy, L. L.; Otto, G. H.

    1974-01-01

    When dispersed or mixed immiscibles are solidified on earth, a large amount of separation of the constituents takes place due to differences in densities. However, when the immiscibles are dispersed and solidified in zero-gravity, density separation does not occur, and unique composite solids can be formed with many new and promising electrical properties. By measuring the electrical resistivity and superconducting critical temperature, Tc, of zero-g processed Ga-Bi samples, it has been found that the electrical properties of such materials are entirely different from the basic constituents and the ground control samples. Our results indicate that space processed immiscible materials may form an entirely new class of electronic materials.

  12. Water and hydrogen are immiscible in Earth's mantle.

    PubMed

    Bali, Enikő; Audétat, Andreas; Keppler, Hans

    2013-03-14

    In the deep, chemically reducing parts of Earth's mantle, hydrous fluids contain significant amounts of molecular hydrogen (H2). Thermodynamic models of fluids in Earth's mantle so far have always assumed that molecular hydrogen and water are completely miscible. Here we show experimental evidence that water and hydrogen can coexist as two separate, immiscible phases. Immiscibility between water and hydrogen may be the cause of the formation of enigmatic, ultra-reducing domains in the mantle that contain moissanite (SiC) and other phases indicative of extremely reducing conditions. Moreover, the immiscibility between water and hydrogen may provide a mechanism for the rapid oxidation of Earth's upper mantle immediately following core formation.

  13. Phase relations in the system NaCl-KCl-H2O. III: Solubilities of halite in vapor-saturated liquids above 445°C and redetermination of phase equilibrium properties in the system NaCl-H2O to 1000°C and 1500 bars

    USGS Publications Warehouse

    Chou, I.-Ming

    1987-01-01

    Through use of these new halite solubility data and the data from synthetic fluid inclusions [formed by healing fractures in inclusion-free Brazilian quartz in the presence of two coexisting, immiscible NaCl-H2O fluids at various temperatures and pressures (Bodnar et al., 1985)], phase equilibria in the system NaCl-H2O have been redetermined to 1000°C and 1500 bars.

  14. Bursting of a bubble confined in between two plates

    NASA Astrophysics Data System (ADS)

    Murano, Mayuko; Kimono, Natsuki; Okumura, Ko

    2015-11-01

    Rupture of liquid thin films, driven by surface tension, has attracted interests of scientists for many years. It is also a daily phenomenon familiar to everyone in the form of the bursting of soap films. In recent years, many studies in confined geometries (e.g. in a Hele-Shaw cell) have revealed physical mechanisms of the dynamics of bubbles and drops. As for a liquid film sandwiched in between another liquid immiscible to the film liquid in the Hele-Shaw cell, it is reported that the thin film bursts at a constant speed and the speed depends on the viscosity of the surrounding liquid when the film is less viscous, although a rim is not formed at the bursting tip; this is because the circular symmetry of the hole in the bursting film is lost. Here, we study the bursting speed of a thin film sandwiched between air instead of the surrounding liquid in the Hele-Shaw cell to seek different scaling regimes. By measuring the bursting velocity and the film thickness of an air bubble with a high speed camera, we have found a new scaling law in viscous regime. This research was partly supported by ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan).

  15. Understanding the breakdown of classic two-phase theory and spray atomization at engine-relevant conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahms, Rainer N.

    A generalized framework for multi-component liquid injections is presented to understand and predict the breakdown of classic two-phase theory and spray atomization at engine-relevant conditions. The analysis focuses on the thermodynamic structure and the immiscibility state of representative gas-liquid interfaces. The most modern form of Helmholtz energy mixture state equation is utilized which exhibits a unique and physically consistent behavior over the entire two-phase regime of fluid densities. It is combined with generalized models for non-linear gradient theory and for liquid injections to quantify multi-component two-phase interface structures in global thermal equilibrium. Then, the Helmholtz free energy is minimized whichmore » determines the interfacial species distribution as a consequence. This minimal free energy state is demonstrated to validate the underlying assumptions of classic two-phase theory and spray atomization. However, under certain engine-relevant conditions for which corroborating experimental data are presented, this requirement for interfacial thermal equilibrium becomes unsustainable. A rigorously derived probability density function quantifies the ability of the interface to develop internal spatial temperature gradients in the presence of significant temperature differences between injected liquid and ambient gas. Then, the interface can no longer be viewed as an isolated system at minimal free energy. Instead, the interfacial dynamics become intimately connected to those of the separated homogeneous phases. Hence, the interface transitions toward a state in local equilibrium whereupon it becomes a dense-fluid mixing layer. A new conceptual view of a transitional liquid injection process emerges from a transition time scale analysis. Close to the nozzle exit, the two-phase interface still remains largely intact and more classic two-phase processes prevail as a consequence. Further downstream, however, the transition to dense-fluid mixing generally occurs before the liquid length is reached. As a result, the significance of the presented modeling expressions is established by a direct comparison to a reduced model, which utilizes widely applied approximations but fundamentally fails to capture the physical complexity discussed in this paper.« less

  16. Understanding the breakdown of classic two-phase theory and spray atomization at engine-relevant conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahms, Rainer N., E-mail: Rndahms@sandia.gov

    A generalized framework for multi-component liquid injections is presented to understand and predict the breakdown of classic two-phase theory and spray atomization at engine-relevant conditions. The analysis focuses on the thermodynamic structure and the immiscibility state of representative gas-liquid interfaces. The most modern form of Helmholtz energy mixture state equation is utilized which exhibits a unique and physically consistent behavior over the entire two-phase regime of fluid densities. It is combined with generalized models for non-linear gradient theory and for liquid injections to quantify multi-component two-phase interface structures in global thermal equilibrium. Then, the Helmholtz free energy is minimized whichmore » determines the interfacial species distribution as a consequence. This minimal free energy state is demonstrated to validate the underlying assumptions of classic two-phase theory and spray atomization. However, under certain engine-relevant conditions for which corroborating experimental data are presented, this requirement for interfacial thermal equilibrium becomes unsustainable. A rigorously derived probability density function quantifies the ability of the interface to develop internal spatial temperature gradients in the presence of significant temperature differences between injected liquid and ambient gas. Then, the interface can no longer be viewed as an isolated system at minimal free energy. Instead, the interfacial dynamics become intimately connected to those of the separated homogeneous phases. Hence, the interface transitions toward a state in local equilibrium whereupon it becomes a dense-fluid mixing layer. A new conceptual view of a transitional liquid injection process emerges from a transition time scale analysis. Close to the nozzle exit, the two-phase interface still remains largely intact and more classic two-phase processes prevail as a consequence. Further downstream, however, the transition to dense-fluid mixing generally occurs before the liquid length is reached. The significance of the presented modeling expressions is established by a direct comparison to a reduced model, which utilizes widely applied approximations but fundamentally fails to capture the physical complexity discussed in this paper.« less

  17. Understanding the breakdown of classic two-phase theory and spray atomization at engine-relevant conditions

    DOE PAGES

    Dahms, Rainer N.

    2016-04-26

    A generalized framework for multi-component liquid injections is presented to understand and predict the breakdown of classic two-phase theory and spray atomization at engine-relevant conditions. The analysis focuses on the thermodynamic structure and the immiscibility state of representative gas-liquid interfaces. The most modern form of Helmholtz energy mixture state equation is utilized which exhibits a unique and physically consistent behavior over the entire two-phase regime of fluid densities. It is combined with generalized models for non-linear gradient theory and for liquid injections to quantify multi-component two-phase interface structures in global thermal equilibrium. Then, the Helmholtz free energy is minimized whichmore » determines the interfacial species distribution as a consequence. This minimal free energy state is demonstrated to validate the underlying assumptions of classic two-phase theory and spray atomization. However, under certain engine-relevant conditions for which corroborating experimental data are presented, this requirement for interfacial thermal equilibrium becomes unsustainable. A rigorously derived probability density function quantifies the ability of the interface to develop internal spatial temperature gradients in the presence of significant temperature differences between injected liquid and ambient gas. Then, the interface can no longer be viewed as an isolated system at minimal free energy. Instead, the interfacial dynamics become intimately connected to those of the separated homogeneous phases. Hence, the interface transitions toward a state in local equilibrium whereupon it becomes a dense-fluid mixing layer. A new conceptual view of a transitional liquid injection process emerges from a transition time scale analysis. Close to the nozzle exit, the two-phase interface still remains largely intact and more classic two-phase processes prevail as a consequence. Further downstream, however, the transition to dense-fluid mixing generally occurs before the liquid length is reached. As a result, the significance of the presented modeling expressions is established by a direct comparison to a reduced model, which utilizes widely applied approximations but fundamentally fails to capture the physical complexity discussed in this paper.« less

  18. Realization of integral 3-dimensional image using fabricated tunable liquid lens array

    NASA Astrophysics Data System (ADS)

    Lee, Muyoung; Kim, Junoh; Kim, Cheol Joong; Lee, Jin Su; Won, Yong Hyub

    2015-03-01

    Electrowetting has been widely studied for various optical applications such as optical switch, sensor, prism, and display. In this study, vari-focal liquid lens array is developed using electrowetting principle to construct integral 3-dimensional imaging. The electrowetting principle that changes the surface tension by applying voltage has several advantages to realize active optical device such as fast response time, low electrical consumption, and no mechanical moving parts. Two immiscible liquids that are water and oil are used for forming lens. By applying a voltage to the water, the focal length of the lens could be tuned as changing contact angle of water. The fabricated electrowetting vari-focal liquid lens array has 1mm diameter spherical lens shape that has 1.6mm distance between each lens. The number of lenses on the panel is 23x23 and the focal length of the lens array is simultaneously tuned from -125 to 110 diopters depending on the applied voltage. The fabricated lens array is implemented to integral 3-dimensional imaging. A 3D object is reconstructed by fabricated liquid lens array with 23x23 elemental images that are generated by 3D max tools. When liquid lens array is tuned as convex state. From vari-focal liquid lens array implemented integral imaging system, we expect that depth enhanced integral imaging can be realized in the near future.

  19. Groundwater and organic chemicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawson, H.E.

    1995-12-01

    Groundwater is a major source of drinking water for many communities. Unfortunately, organic chemicals such as dry cleaning fluids, solvent, fuels, and pesticides have contaminated groundwater in many areas, rendering the groundwater useless as a drinking water resource. In many cases, the groundwater cannot be cleaned up with current technologies, particularly if the groundwater has been contaminated with immiscible (low solubility) organic liquids. In this talk, I will describe the path I have followed from geologist to geochemist and finally to environmental engineer. As a geologist, I studied the chemistry of rock metamorphosis. As a geochemist, I explored for goldmore » and other metals. Now as an environmental engineer, I investigate the behavior of organic liquids in the subsurface. While these fields all appear very different, in reality I have always focused on the interaction of rocks or sediments with the fluids with which they come in contact.« less

  20. Specific interface area and self-stirring in a two-liquid system experiencing intense interfacial boiling below the bulk boiling temperatures of both components

    NASA Astrophysics Data System (ADS)

    Goldobin, Denis S.; Pimenova, Anastasiya V.

    2017-04-01

    We present an approach to theoretical assessment of the mean specific interface area (δ S/δ V) for a well-stirred system of two immiscible liquids experiencing interfacial boiling. The assessment is based on the balance of transformations of mechanical energy and the laws of the momentum and heat transfer in the turbulent boundary layer. The theory yields relations between the specific interface area and the characteristics of the system state. In particular, this allows us to derive the equations of self-cooling dynamics of the system in the absence of external heat supply. The results provide possibility for constructing a self-contained mathematical description of the process of interfacial boiling. In this study, we assume the volume fractions of two components to be similar as well as the values of their kinematic viscosity and molecular heat diffusivity.

  1. Wetting of silicone oil onto a cell-seeded substrate

    NASA Astrophysics Data System (ADS)

    Lu, Yongjie; Chan, Yau Kei; Chao, Youchuang; Shum, Ho Cheung

    2017-11-01

    Wetting behavior of solid substrates in three-phase systems containing two immiscible liquids are widely studied. There exist many three-phase systems in biological environments, such as droplet-based microfluidics or tamponade of silicone oil for eye surgery. However, few studies focus on wetting behavior of biological surfaces with cells. Here we investigate wetting of silicone oil onto cell-seeded PMMA sheet immersed in water. Using a simple parallel-plate cell, we show the effect of cell density, viscosity of silicone oil, morphology of silicone oil drops and interfacial tension on the wetting phenomenon. The dynamics of wetting is also observed by squeezing silicone oil drop using two parallel plates. Experimental results are explained based on disjoining pressure which is dependent on the interaction of biological surfaces and liquid used. These findings are useful for explaining emulsification of silicone oil in ophthalmological applications.

  2. Electrotunable nanoplasmonic liquid mirror

    NASA Astrophysics Data System (ADS)

    Montelongo, Yunuen; Sikdar, Debabrata; Ma, Ye; McIntosh, Alastair J. S.; Velleman, Leonora; Kucernak, Anthony R.; Edel, Joshua B.; Kornyshev, Alexei A.

    2017-11-01

    Recently, there has been a drive to design and develop fully tunable metamaterials for applications ranging from new classes of sensors to superlenses among others. Although advances have been made, tuning and modulating the optical properties in real time remains a challenge. We report on the first realization of a reversible electrotunable liquid mirror based on voltage-controlled self-assembly/disassembly of 16 nm plasmonic nanoparticles at the interface between two immiscible electrolyte solutions. We show that optical properties such as reflectivity and spectral position of the absorption band can be varied in situ within +/-0.5 V. This observed effect is in excellent agreement with theoretical calculations corresponding to the change in average interparticle spacing. This electrochemical fully tunable nanoplasmonic platform can be switched from a highly reflective `mirror' to a transmissive `window' and back again. This study opens a route towards realization of such platforms in future micro/nanoscale electrochemical cells, enabling the creation of tunable plasmonic metamaterials.

  3. Controlled multistep synthesis in a three-phase droplet reactor

    PubMed Central

    Nightingale, Adrian M.; Phillips, Thomas W.; Bannock, James H.; de Mello, John C.

    2014-01-01

    Channel-fouling is a pervasive problem in continuous flow chemistry, causing poor product control and reactor failure. Droplet chemistry, in which the reaction mixture flows as discrete droplets inside an immiscible carrier liquid, prevents fouling by isolating the reaction from the channel walls. Unfortunately, the difficulty of controllably adding new reagents to an existing droplet stream has largely restricted droplet chemistry to simple reactions in which all reagents are supplied at the time of droplet formation. Here we describe an effective method for repeatedly adding controlled quantities of reagents to droplets. The reagents are injected into a multiphase fluid stream, comprising the carrier liquid, droplets of the reaction mixture and an inert gas that maintains a uniform droplet spacing and suppresses new droplet formation. The method, which is suited to many multistep reactions, is applied to a five-stage quantum dot synthesis wherein particle growth is sustained by repeatedly adding fresh feedstock. PMID:24797034

  4. Stable density stratification solar pond

    NASA Technical Reports Server (NTRS)

    Lansing, F. L. (Inventor)

    1985-01-01

    A stable density-stratification solar pond for use in the collection and storage of solar thermal energy including a container having a first section characterized by an internal wall of a substantially cylindrical configuration and a second section having an internal wall of a substantially truncated conical configuration surmounting the first section in coaxial alignment therewith, the second section of said container being characterized by a base of a diameter substantially equal to the diameter of the first section and a truncated apex defining a solar energy acceptance opening is discussed. A body of immiscible liquids is disposed within the container and comprises a lower portion substantially filling the first section of the container and an upper portion substantially filling the second section of the container, said lower portion being an aqueous based liquid of a darker color than the upper portion and of a greater density. A protective cover plate is removably provided for covering the acceptance opening.

  5. A comparison of acoustic levitation with microgravity processing for containerless solidification of ternary Al-Cu-Sn alloy

    NASA Astrophysics Data System (ADS)

    Yan, N.; Hong, Z. Y.; Geng, D. L.; Wei, B.

    2015-07-01

    The containerless rapid solidification of liquid ternary Al-5 %Cu-65 %Sn immiscible alloy was accomplished at both ultrasonic levitation and free fall conditions. A maximum undercooling of 185 K (0.22 T L) was obtained for the ultrasonically levitated alloy melt at a cooling rate of about 122 K s-1. Meanwhile, the cooling rate of alloy droplets in drop tube varied from 102 to 104 K s-1. The macrosegregation was effectively suppressed through the complex melt flow under ultrasonic levitation condition. In contrast, macrosegregation became conspicuous and core-shell structures with different layers were formed during free fall. The microstructure formation mechanisms during rapid solidification at containerless states were investigated in comparison with the conventional static solidification process. It was found that the liquid phase separation and structural growth kinetics may be modulated by controlling both alloy undercooling and cooling rate.

  6. Phosphorus solubility in basaltic glass: Limitations for phosphorus immobilization in glass and glass-ceramics.

    PubMed

    Tarrago, M; Garcia-Valles, M; Martínez, S; Neuville, D R

    2018-05-11

    The composition of sewage sludge from urban wastewater treatment plants is simulated using P-doped basalts. Electron microscopy analyses show that the solubility of P in the basaltic melt is limited by the formation of a liquid-liquid immiscibility in the form of an aluminosilicate phase and a Ca-Mg-Fe-rich phosphate phase. The rheological behavior of these compositions is influenced by both phase separation and nanocrystallization. Upon a thermal treatment, the glasses will crystallize into a mixture of inosilicates and spinel-like phases at low P contents and into Ca-Mg-Fe phosphate at high P contents. Hardness measurements yield values between 5.41 and 7.66 GPa, inside the range of commercial glasses and glass-ceramics. Leaching affects mainly unstable Mg 2+ -PO 4 3- complexes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Centrifugation-assisted Assembly of Colloidal Silica into Crack-Free and Transferrable Films with Tunable Crystalline Structures

    PubMed Central

    Fan, Wen; Chen, Min; Yang, Shu; Wu, Limin

    2015-01-01

    Self-assembly of colloidal particles into colloidal films has many actual and potential applications. While various strategies have been developed to direct the assembly of colloidal particles, fabrication of crack-free and transferrable colloidal film with controllable crystal structures still remains a major challenge. Here we show a centrifugation-assisted assembly of colloidal silica spheres into free-standing colloidal film by using the liquid/liquid interfaces of three immiscible phases. Through independent control of centrifugal force and interparticle electrostatic repulsion, polycrystalline, single-crystalline and quasi-amorphous structures can be readily obtained. More importantly, by dehydration of silica particles during centrifugation, the spontaneous formation of capillary water bridges between particles enables the binding and pre-shrinkage of the assembled array at the fluid interface. Thus the assembled colloidal films are not only crack-free, but also robust and flexible enough to be easily transferred on various planar and curved substrates. PMID:26159121

  8. Tapered optical fiber waveguide coupling to whispering gallery modes of liquid crystal microdroplet for thermal sensing application.

    PubMed

    Wang, Yan; Li, Hanyang; Zhao, Liyuan; Liu, Yongjun; Liu, Shuangqiang; Yang, Jun

    2017-01-23

    We demonstrate efficient coupling to the optical whispering gallery modes (WGMs) of nematic liquid crystal (NLC) microdroplets immersed in an immiscible aqueous environment. An individual NLC microdroplet, confined at the tip of a microcapillary, was coupled via a tapered optical fiber waveguide positioned correctly within its vicinity. Critical coupling of the taper-microdroplet system was facilitated by adjusting the gap between the taper and the microdroplet to change the overlap of the evanescent electromagnetic fields; efficient and controlled power transfer from the taper waveguide to the NLC microdroplet is indeed possible via the proposed technique. We also found that NLC microdroplets can function as highly sensitive thermal sensors: A maximum temperature sensitivity of 267.6 pm/°C and resolution of 7.5 × 10-2 °C were achieved in a 78-μm-diameter NLC microdroplet.

  9. Microorganism Nutrition Processes as a General Route for the Preparation of Bionic Nanocomposites Based on Intractable Polymers.

    PubMed

    Valentini, L; Bon, S Bittolo; Pugno, N M

    2016-08-31

    In this paper the fermentation process activated by living microorganisms of the baker's yeast is proposed as a facile assembly method of hybrid nanoparticles at liquid interface. Water dispersion of commercial baker's yeast extract used for bread production, graphene nanoplatelets (GNPs), and carbon nanotubes (CNTs) were added to oil/water interface; when the yeast is activated by adding sugar, the byproduct carbon dioxide bubbles migrate from the water phase to the oil/water interface generating a floating nanostructured film at liquid interface where it is trapped. Starting from this simple method, we propose a general approach for the stabilization of intractable poly(etheretherketone) polymeric particles with GNPs and CNTs at immiscible liquid interface. This process allowed the formation of sintered porous composites with improved mechanical properties. The porous structure of the composites gave rise to a low thermal conductivity making them good candidates for thermal insulating applications. Liquid absorption by these porous composites has been also reported. We believe that this new approach may have applications in the large scale fabrication of nanomaterials and is particularly suited for the preparation of nanocomposites starting from polymers that are intractable by solvent casting.

  10. Widom Lines in Binary Mixtures of Supercritical Fluids.

    PubMed

    Raju, Muralikrishna; Banuti, Daniel T; Ma, Peter C; Ihme, Matthias

    2017-06-08

    Recent experiments on pure fluids have identified distinct liquid-like and gas-like regimes even under supercritical conditions. The supercritical liquid-gas transition is marked by maxima in response functions that define a line emanating from the critical point, referred to as Widom line. However, the structure of analogous state transitions in mixtures of supercritical fluids has not been determined, and it is not clear whether a Widom line can be identified for binary mixtures. Here, we present first evidence for the existence of multiple Widom lines in binary mixtures from molecular dynamics simulations. By considering mixtures of noble gases, we show that, depending on the phase behavior, mixtures transition from a liquid-like to a gas-like regime via distinctly different pathways, leading to phase relationships of surprising complexity and variety. Specifically, we show that miscible binary mixtures have behavior analogous to a pure fluid and the supercritical state space is characterized by a single liquid-gas transition. In contrast, immiscible binary mixture undergo a phase separation in which the clusters transition separately at different temperatures, resulting in multiple distinct Widom lines. The presence of this unique transition behavior emphasizes the complexity of the supercritical state to be expected in high-order mixtures of practical relevance.

  11. Selecting polymers for two-phase partitioning bioreactors (TPPBs): Consideration of thermodynamic affinity, crystallinity, and glass transition temperature.

    PubMed

    Bacon, Stuart L; Peterson, Eric C; Daugulis, Andrew J; Parent, J Scott

    2015-01-01

    Two-phase partitioning bioreactor technology involves the use of a secondary immiscible phase to lower the concentration of cytotoxic solutes in the fermentation broth to subinhibitory levels. Although polymeric absorbents have attracted recent interest due to their low cost and biocompatibility, material selection requires the consideration of properties beyond those of small molecule absorbents (i.e., immiscible organic solvents). These include a polymer's (1) thermodynamic affinity for the target compound, (2) degree of crystallinity (wc ), and (3) glass transition temperature (Tg ). We have examined the capability of three thermodynamic models to predict the partition coefficient (PC) for n-butyric acid, a fermentation product, in 15 polymers. Whereas PC predictions for amorphous materials had an average absolute deviation (AAD) of ≥16%, predictions for semicrystalline polymers were less accurate (AAD ≥ 30%). Prediction errors were associated with uncertainties in determining the degree of crystallinity within a polymer and the effect of absorbed water on n-butyric acid partitioning. Further complications were found to arise for semicrystalline polymers, wherein strongly interacting solutes increased the polymer's absorptive capacity by actually dissolving the crystalline fraction. Finally, we determined that diffusion limitations may occur for polymers operating near their Tg , and that the Tg can be reduced by plasticization by water and/or solute. This study has demonstrated the impact of basic material properties that affects the performance of polymers as sequestering phases in TPPBs, and reflects the additional complexity of polymers that must be taken into account in material selection. © 2015 American Institute of Chemical Engineers.

  12. A Phosphine-mediated Synthesis of 2,3,4,5-tetra-substituted N-hydroxypyrroles from α-oximino Ketones and Dialkyl Acetylenedicarboxylates Under Ionic Liquid Green-media.

    PubMed

    Shahvelayati, Ashraf S; Ghazvini, Maryam; Yadollahzadeh, Khadijeh; Delbari, Akram S

    2018-01-01

    The development of multicomponent reactions (MCRs) in the presence of task-specific ionic liquids (ILs), used not only as environmentally benign reaction media, but also as catalysts, is a new approach that meet with the requirements of sustainable chemistry. In recent years, the use of ionic liquids as a green media for organic synthesis has become a chief study area. This is due to their unique properties such as non-volatility, non-flammability, chemical and thermal stability, immiscibility with both organic compounds and water and recyclability. Ionic liquids are used as environmentally friendly solvents instead of hazardous organic solvents. We report the condensation reaction between α-oximinoketone and dialkyl acetylene dicarboxylate in the presence of triphenylphosphine to afford substituted pyrroles under ionic liquid conditions in good yields. Densely functionalized pyrroles was easily prepared from reaction of α-oximinoketones, dialkyl acetylene dicarboxylate in the presence of triphenylphosphine in a quantitative yield under ionic liquid conditions at room temperature. In conclusion, ionic liquids are indicated as a useful and novel reaction medium for the selective synthesis of functionalized pyrroles. This reaction medium can replace the use of hazardous organic solvents. Easy work-up, synthesis of polyfunctional compounds, decreased reaction time, having easily available-recyclable ionic liquids, and good to high yields are advantages of present method. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Experimental study on immiscible jet breakup using refractive index matched oil-water pair

    NASA Astrophysics Data System (ADS)

    Xue, Xinzhi; Katz, Joseph

    2016-11-01

    A subsea oil well blowout creates an immiscible crude oil jet. This jet fragments shortly after injection, resulting in generation of a droplet cloud. Detailed understanding of the processes involved is crucial for modeling the fragmentation and for predicting the droplet size distribution. High density of opaque droplets near nozzle limits our ability to visualize and quantify the breakup process. To overcome this challenge, two immiscible fluids: silicone oil and sugar water with the same index of refraction (1.4015) are used as surrogates for crude oil and seawater, respectively. Their ratios of kinematic viscosity (5.64), density (0.83) and interfacial tension are closely matched with those of crude oil and seawater. Distribution of the oil phase is visualized by fluorescent tagging. Both phases are also seeded with particles for simultaneous PIV measurements. The measurements are performed within atomization range of Ohnesorge and Reynolds numbers. Index matching facilitates undistorted view of the phase distribution in illuminated section. Ongoing tests show that the jet surface initially rolls up into Kelvin-Helmholtz rings, followed by development of dispersed phase ligaments further downstream, which then break into droplets. Some of these droplets are re-entrained into the high momentum core, resulting in secondary breakup. As the oil layer and ligaments evolve, they often entrain water, resulting in generation of multiple secondary water droplets encapsulated within the oil droplets. This research is made possible by a Grant from Gulf of Mexico Research Initiative.

  14. The rotating movement of three immiscible fluids - A benchmark problem

    USGS Publications Warehouse

    Bakker, M.; Oude, Essink G.H.P.; Langevin, C.D.

    2004-01-01

    A benchmark problem involving the rotating movement of three immiscible fluids is proposed for verifying the density-dependent flow component of groundwater flow codes. The problem consists of a two-dimensional strip in the vertical plane filled with three fluids of different densities separated by interfaces. Initially, the interfaces between the fluids make a 45??angle with the horizontal. Over time, the fluids rotate to the stable position whereby the interfaces are horizontal; all flow is caused by density differences. Two cases of the problem are presented, one resulting in a symmetric flow field and one resulting in an asymmetric flow field. An exact analytical solution for the initial flow field is presented by application of the vortex theory and complex variables. Numerical results are obtained using three variable-density groundwater flow codes (SWI, MOCDENS3D, and SEAWAT). Initial horizontal velocities of the interfaces, as simulated by the three codes, compare well with the exact solution. The three codes are used to simulate the positions of the interfaces at two times; the three codes produce nearly identical results. The agreement between the results is evidence that the specific rotational behavior predicted by the models is correct. It also shows that the proposed problem may be used to benchmark variable-density codes. It is concluded that the three models can be used to model accurately the movement of interfaces between immiscible fluids, and have little or no numerical dispersion. ?? 2003 Elsevier B.V. All rights reserved.

  15. Electrically induced displacement transport of immiscible oil in saline sediments.

    PubMed

    Pamukcu, Sibel; Shrestha, Reena A; Ribeiro, Alexandra B; Mateus, Eduardo P

    2016-08-05

    Electrically assisted mitigation of coastal sediment oil pollution was simulated in floor-scale laboratory experiments using light crude oil and saline water at approximately 1/10 oil/water (O/W) mass ratio in pore fluid. The mass transport of the immiscible liquid phases was induced under constant direct current density of 2A/m(2), without water flooding. The transient pore water pressures (PWP) and the voltage differences (V) at and in between consecutive ports lined along the test specimen cell were measured over 90days. The oil phase transport occurred towards the anode half of the test specimen where the O/W volume ratio increased by 50% over its initial value within that half-length of the specimen. In contrast, the O/W ratio decreased within the cathode side half of the specimen. During this time, the PWP decreased systematically at the anode side with oil bank accumulation. PWP increased at the cathode side of the specimen, signaling increased concentration of water there as it replaced oil in the pore space. Electrically induced transport of the non-polar, non-conductive oil was accomplished in the opposing direction of flow by displacement in absence of viscous coupling of oil-water phases. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Chromite and olivine in type II chondrules in carbonaceous and ordinary chondrites - Implications for thermal histories and group differences

    NASA Technical Reports Server (NTRS)

    Johnson, Craig A.; Prinz, Martin

    1991-01-01

    Unequilibrated chromite and olivine margin compositions in type II chondrules are noted to differ systematically among three of the chondrite groups, suggesting that type II liquids differed in composition among the groups. These differences may be interpreted as indicators of different chemical compositions of the precursor solids which underwent melting, or, perhaps, as differences in the extent to which immiscible metal sulfide droplets were lost during chondrule formation. Because zinc is detectable only in type II chromites which have undergone reequilibration, the high zinc contents reported for chondritic chromites in other studies probably reflect redistribution during thermal metamorphism.

  17. Low Gravity Freefall Facilities

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Composite of Marshall Space Flight Center's Low-Gravity Free Fall Facilities.These facilities include a 100-meter drop tower and a 100-meter drop tube. The drop tower simulates in-flight microgravity conditions for up to 4.2 seconds for containerless processing experiments, immiscible fluids and materials research, pre-flight hardware design test and flight experiment simulation. The drop tube simulates in-flight microgravity conditions for up to 4.6 seconds and is used extensively for ground-based microgravity convection research in which extremely small samples are studied. The facility can provide deep undercooling for containerless processing experiments that require materials to remain in a liquid phase when cooled below the normal solidification temperature.

  18. Microgravity

    NASA Image and Video Library

    1981-03-30

    Composite of Marshall Space Flight Center's Low-Gravity Free Fall Facilities.These facilities include a 100-meter drop tower and a 100-meter drop tube. The drop tower simulates in-flight microgravity conditions for up to 4.2 seconds for containerless processing experiments, immiscible fluids and materials research, pre-flight hardware design test and flight experiment simulation. The drop tube simulates in-flight microgravity conditions for up to 4.6 seconds and is used extensively for ground-based microgravity convection research in which extremely small samples are studied. The facility can provide deep undercooling for containerless processing experiments that require materials to remain in a liquid phase when cooled below the normal solidification temperature.

  19. Capillary pressure-saturation relations in quartz and carbonate sands: Limitations for correlating capillary and wettability influences on air, oil, and supercritical CO2 trapping

    NASA Astrophysics Data System (ADS)

    Wang, Shibo; Tokunaga, Tetsu K.; Wan, Jiamin; Dong, Wenming; Kim, Yongman

    2016-08-01

    Capillary pressure (Pc)-saturation (Sw) relations are essential for predicting equilibrium and flow of immiscible fluid pairs in soils and deeper geologic formations. In systems that are difficult to measure, behavior is often estimated based on capillary scaling of easily measured Pc-Sw relations (e.g., air-water, and oil-water), yet the reliability of such approximations needs to be examined. In this study, 17 sets of brine drainage and imbibition curves were measured with air-brine, decane-brine, and supercritical (sc) CO2-brine in homogeneous quartz and carbonate sands, using porous plate systems under ambient (0.1 MPa, 23°C) and reservoir (12.0 MPa, 45°C) conditions. Comparisons between these measurements showed significant differences in residual nonwetting phase saturation, Snw,r. Through applying capillary scaling, changes in interfacial properties were indicated, particularly wettability. With respect to the residual trapping of the nonwetting phases, Snwr, CO2 > Snwr, decane > Snwr, air. Decane-brine and scCO2-brine Pc-Sw curves deviated significantly from predictions assuming hydrophilic interactions. Moreover, neither the scaled capillary behavior nor Snw,r for scCO2-brine were well represented by decane-brine, apparently because of differences in wettability and viscosities, indicating limitations for using decane (and other organic liquids) as a surrogate fluid in studies intended to apply to geological carbon sequestration. Thus, challenges remain in applying scaling for predicting capillary trapping and multiphase displacement processes across such diverse fields as vadose zone hydrology, enhanced oil recovery, and geologic carbon sequestration.

  20. Capillary pressure - saturation relations in quartz and carbonate sands: Limitations for correlating capillary and wettability influences on air, oil, and supercritical CO2 trapping

    NASA Astrophysics Data System (ADS)

    Tokunaga, T. K.; Wang, S.; Wan, J.; Dong, W.; Kim, Y.

    2016-12-01

    Capillary pressure (Pc) - saturation (Sw) relations are essential for predicting equilibrium and flow of immiscible fluid pairs in soils and deeper geologic formations. In systems that are difficult to measure, behavior is often estimated based on capillary scaling of easily measured Pc-Sw relations (e.g., air-water, and oil-water), yet the reliability of such approximations needs to be examined. In this study, seventeen sets of brine drainage and imbibition curves were measured with air-brine, decane-brine, and supercritical (sc) CO2-brine in homogeneous quartz and carbonate sands, using porous plate systems under ambient (0.1 MPa, 23 °C) and reservoir (12.0 MPa, 45 °C) conditions. Comparisons between these measurements showed significant differences in residual nonwetting phase saturation, Snw,r. Through applying capillary scaling, changes in interfacial properties were indicated, particularly wettability. With respect to the residual trapping of the nonwetting phases, Snwr, CO2 > Snwr, decane > Snwr, air. Decane-brine and scCO2-brine Pc-Sw curves deviated significantly from predictions assuming hydrophilic interactions. Moreover, neither the scaled capillary behavior nor Snw,r for scCO2-brine were well represented by decane-brine, apparently because of differences in wettability and viscosities, indicating limitations for using decane (and other organic liquids) as a surrogate fluid in studies intended to apply to geological carbon sequestration. Thus, challenges remain in applying scaling for predicting capillary trapping and multiphase displacement processes across such diverse fields as vadose zone hydrology, enhanced oil recovery, and geologic carbon sequestration.

  1. A polymeric liquid membrane electrode responsive to 3,3',5,5'-tetramethylbenzidine oxidation for sensitive peroxidase/peroxidase mimetic-based potentiometric biosensing.

    PubMed

    Wang, Xuewei; Yang, Yangang; Li, Long; Sun, Mingshuang; Yin, Haogen; Qin, Wei

    2014-05-06

    The oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) has great utility in bioanalysis such as peroxidase/peroxidase mimetic-based biosensing. In this paper, the behaviors of TMB oxidation intermediates/products in liquid/liquid biphasic systems have been investigated for the first time. The free radical, charge transfer complex, and diimine species generated by TMB oxidation are all positively charged under acidic and near-neutral conditions. Electron paramagnetic resonance and visible absorbance spectroscopy data demonstrate that these cationic species can be effectively transferred from an aqueous phase into a water-immiscible liquid phase functionalized by an appropriate cation exchanger. Accordingly, sensitive potential responses of TMB oxidation have been obtained on a cation exchanger-doped polymeric liquid membrane electrode under mildly acidic and near-neutral conditions. By using the membrane electrode responsive to TMB oxidations, two sensitive potentiometric biosensing schemes including the peroxidase-labeled sandwich immunoassay and G-quadruplex DNAzyme-based DNA hybridization assay have been developed. The obtained detection limits for the target antigen and DNA are 0.02 ng/mL and 0.1 nM, respectively. Coupled with other advantages such as low cost, high reliability, and ease of miniaturization and integration, the proposed polymeric liquid membrane electrode holds great promise as a facile and efficient transducer for TMB oxidation and related biosensing applications.

  2. Multi-phase-fluid discrimination with local fibre-optical probes: I. Liquid/liquid flows

    NASA Astrophysics Data System (ADS)

    Fordham, E. J.; Holmes, A.; Ramos, R. T.; Simonian, S.; Huang, S.-M.; Lenn, C. P.

    1999-12-01

    We demonstrate the use of a novel design of fibre-optical sensor (or `local probe') for immiscible-fluid discrimination in multi-phase flows. These probes are made from standard silica fibres with plane oblique facets polished at the fibre tip, with various surface treatments, including a crucial one for wettability control. Total internal reflection is used to distinguish drops, bubbles or other regions of fluid in multi-phase flows, on the basis of refractive-index contrast. Such probes have quasi-binary outputs; we demonstrate in this paper their use in distinguishing water from oil (kerosene) in oil/water two-phase flows and compare the results with those obtained from a simple cleaved fibre relying on the (small) difference in Fresnel reflectivity for discrimination. Quantitative accuracy is demonstrated by comparison of profiles, across a pipe diameter, of local, time-averaged volume fractions (`hold-ups'), with pipe-averaged hold-ups determined from a carefully calibrated gradio-manometer in a fully developed region of the flow. Companion papers deal with the sensors used and results achieved in gas/liquid flows and three-phase flows.

  3. Numerical modeling of immiscible two-phase flow in micro-models using a commercial CFD code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crandall, Dustin; Ahmadia, Goodarz; Smith, Duane H.

    2009-01-01

    Off-the-shelf CFD software is being used to analyze everything from flow over airplanes to lab-on-a-chip designs. So, how accurately can two-phase immiscible flow be modeled flowing through some small-scale models of porous media? We evaluate the capability of the CFD code FLUENT{trademark} to model immiscible flow in micro-scale, bench-top stereolithography models. By comparing the flow results to experimental models we show that accurate 3D modeling is possible.

  4. A double Fe-Ti oxide and Fe-sulphide liquid immiscibility in the Itsindro Gabbro Complex, Madagascar

    NASA Astrophysics Data System (ADS)

    Augé, Thierry; Bailly, Laurent; Roig, Jean-Yves

    2017-11-01

    The petrology and mineralogy of the Itsindro complex in south-central Madagascar has been investigated through samples obtained from the 320.7 m-deep Lanjanina borehole. The section consists of a 254 m-thick pyroxenite unit with interbedded gabbro layers that overlies a gabbro unit and is itself overlain by a 19 m-thick granite unit. Most of the structures are sub-horizontal. A weak magmatic layering is locally observed but at the scale of the core, the intrusion does not appear to be a layered complex. Pyroxenite and gabbro show a systematic disseminated mineralization consisting of Fe-Ti-P oxides and Fe-(Cu-Ni) sulphides that takes the form of ilmenite-titanomagnetite ± apatite and pyrrhotite ± chalcopyrite ± pentlandite. In the upper zone, from 90 to 72 m, sub-massive centimetre-to decimetre-sized layers of oxides and sulphides comprise a total of 16 m of sub-massive sulphide (the main mineralized zone). In this mineralized zone the oxide/sulphide ratio is close to 1/1. The sulphide is strongly dominated by pyrrhotite, which may locally contain inclusions of molybdenite crystals with the Re sulphide rheniite (ReS2). Oxides are generally euhedral, included in or attached to the Fe-sulphide, and also locally form sub-massive centimetre-sized bands. Apatite as a cumulus phase is ubiquitous. Locally it may account for 30% of the ore-rich samples and some samples consist of apatite-Fe-Ti oxides-Fe-Cu-Ni sulphides with virtually no silicate. Apatite is the main REE carrier but the total REE content remains low (<90 ppm). Mineral compositions and whole rock geochemistry indicate that the rocks are highly differentiated, and in spite of a relatively limited thickness, the differentiation process is observed. Two zones can be distinguished: from the bottom to 162.8 m we see a decrease in the Mg number of olivine and pyroxene, and a drop in TiO2 and Al2O3 for the latter. A reverse trend is then observed within the pyroxenite unit from the 162.8 m level upwards. The main mineralized zone is located in the upper part of this unit, about 70 m above this discontinuity. The highly differentiated Fe-Ti-P facies of the Lanjanina series in the Itsindro Gabbro Complex have been interpreted as corresponding to the Fe-Ti-P rich, Si-poor member remaining after an immiscible segregation of an evolved mafic magma. The granite dykes and the overlying granite unit represent the second, Si-rich member of the immiscibility process. The presence of large amounts of sulphide is attributed to sulphur contamination of the Fe-Ti-rich liquid. Fe-Ti oxides will tend to crystallize on the sulphide droplets and the accumulation of dense Fe-sulphides (liquid) and associated Fe-Ti oxides (solid) will result in this complex and unusual association taking the form of a net texture.

  5. Geobarometry of ultramafic xenoliths from Loihi Seamount, Hawaii, on the basis of CO2 inclusions in olivine

    USGS Publications Warehouse

    Roedder, E.

    1983-01-01

    Abundant fluid inclusions in olivine of dunite xenoliths (???1-3 cm) in basalt dredged from the young Loihi Seamount, 30 km southeast of Hawaii, are evidence for three coexisting immiscible fluid phases-silicate melt (now glass), sulfide melt (now solid), and dense supercritical CO2 (now liquid + gas)-during growth and later fracturing of some of these olivine crystals. Some olivine xenocrysts, probably from disaggregation of xenoliths, contain similar inclusions. Most of the inclusions (2-10 ??m) are on secondary planes, trapped during healing of fractures after the original crystal growth. Some such planes end abruptly within single crystals and are termed pseudosecondary, because they formed during the growth of the host olivine crystals. The "vapor" bubble in a few large (20-60 ??m), isolated, and hence primary, silicate melt inclusions is too large to be the result of simple differential shrinkage. Under correct viewing conditions, these bubbles are seen to consist of CO2 liquid and gas, with an aggregate ??{variant} = ??? 0.5-0.75 g cm-3, and represent trapped globules of dense supercritical CO2 (i.e., incipient "vesiculation" at depth). Some spinel crystals enclosed within olivine have attached CO2 blebs. Spherical sulfide blebs having widely variable volume ratios to CO2 and silicate glass are found in both primary and pseudosecondary inclusions, demonstrating that an immiscible sulfide melt was also present. Assuming olivine growth at ??? 1200??C and hydrostatic pressure from a liquid lava column, extrapolation of CO2 P-V-T data indicates that the primary inclusions were trapped at ??? 220-470 MPa (2200-4700 bars), or ??? 8-17 km depth in basalt magma of ??{variant} = 2.7 g cm-3. Because the temperature cannot change much during the rise to eruption, the range of CO2 densities reveals the change in pressure from that during original olivine growth to later deformation and rise to eruption on the sea floor. The presence of numerous decrepitated inclusions indicates that the inclusion sample studied is biased by the loss of higher-density inclusions and suggests that some part of these olivine xenoliths formed at greater depths. ?? 1983.

  6. Geometric effects on bilayer convection in cylindrical containers

    NASA Astrophysics Data System (ADS)

    Johnson, Duane Thomas

    The study of convection in two immiscible fluid layers is of interest for reasons both theoretical as well as applied. Recently, bilayer convection has been used as a model of convection in the earth's mantle. It is also an interesting system to use in the study of pattern formation. Bilayer convection also occurs in a process known as liquid encapsulated crystal growth, which is used to grow compound semiconductors. It is the last application which motivates this study. To analyze bilayer convection, theoretical models, numerical calculations and experiments were used. One theoretical model involves the derivation of the Navier- Stokes and energy equation for two immiscible fluid layers, using the Boussinesq approximation. A weakly nonlinear analysis was also performed to study the behavior of the system slightly beyond the onset of convection. Numerical calculations were necessary to solve both models. The experiments involved a single liquid layer of silicone oil, superposed by a layer of air. The radius and height of each fluid layer were changed to observe different flow patterns at the onset of convection. From the experiments and theory, two major discoveries were made as well as several interesting observations. The first discovery is the existence of codimension-two points-particular aspect ratios where two flow patterns coexist-in cylindrical containers. At these points, dynamic switching between different flow patterns was observed. The second discovery was the effect of air convection on the flow pattern in silicone oil. Historically, air has been considered a passive medium that has no effect on the lower fluid. However, experiments were done to show that for large air heights, convection in the air can cause radial temperature gradients at the liquid interface. These temperature gradients then cause surface tension gradient-driven flows. It was also shown that changing the radius of the container can change the driving force of convection from a surface tension gradient-driven to buoyancy-driven and back again. Finally, the weakly nonlinear analysis was able to give a qualitative description of codimension-two points as well as the change in flow patterns due to the convecting air layer.

  7. Iron species determination by task-specific ionic liquid-based in situ solvent formation dispersive liquid-liquid microextraction combined with flame atomic absorption spectrometry.

    PubMed

    Sadeghi, Susan; Ashoori, Vahid

    2017-10-01

    The task-specific ionic liquid (TSIL) of 1-ethyl-3-methylimidazolium bromide functionalized with 8-hydroxyquinoline was used as a chelating agent and extracting solvent for dispersive liquid-liquid microextraction and subsequent determination of Fe(III) by flame atomic absorption spectrometry. The in situ solvent formation of TSIL using KPF 6 provided the desired water-immiscible ionic liquid. The total Fe concentration could be determined after pre-oxidation of Fe(II) to Fe(III). Various factors affecting the proposed extraction procedure were optimized. The proposed analytical conditions were: sample pH 5, TSIL amount 0.3% (w/v), KPF 6 amount 0.15% (w/v), anti-sticking 0.1% (w/v) and salt concentration 5% (w/v). Under optimal conditions, the linear dynamic ranges for Fe(III) and total Fe were 20-80 and 20-110 ng mL -1 , respectively, with a detection limit of 6.9 ng mL -1 for Fe(III) and relative standard deviation of 2.2%. The proposed method was successfully applied to the determination of trace Fe(III) in water (underground, tap, refined water and artificial sea water) and beverage (apple, tomato, and tea) samples. The developed method offers advantages such as simplicity, ease of operation, and extraction of Fe(III) from aqueous solutions without the use of organic solvent. It was successfully applied for iron speciation in different real samples. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. Liquid-in-gas droplet microfluidics; experimental characterization of droplet morphology, generation frequency, and monodispersity in a flow-focusing microfluidic device

    NASA Astrophysics Data System (ADS)

    Tirandazi, Pooyan; Hidrovo, Carlos H.

    2017-07-01

    Microfluidic techniques for production of uniform droplets usually rely on the use of two immiscible liquids (e.g. water-in-oil emulsions). It has been shown recently that a continuous gas flow instead of a second liquid carrier can be used as an alternative approach in droplet microfluidics. In this work we experimentally investigate the generation of liquid water droplets within air in flow-focusing configurations. Over a wide range of flow conditions we identify six distinct flow regimes inside the microchannel: Co-flowing, Threading, Plugging, Dripping, Multi-Satellite Formation, and Jetting. Flow regimes and their transitions are plotted and characterized based on the Weber number (We) of the system. We further investigate the impact of liquid microchannel size on the flow maps. Generation frequency, morphology, and monodispersity of the droplets are characterized in more detail in the Dripping regime. Generation frequency can be related to the product of the liquid and gas flow rates. However, droplet morphology (length and width) is more dependent on the gas flow rate. We demonstrate the production of monodisperse droplets (d < 100 µm and σ/d < 5 %) up to kHz formation rates in liquid-gas microfluidic systems for the first time. The results of this work provide practical and useful guidelines for precise, oil-free delivery of ultra-small volumes of fluid which can be integrated in lab-on-a-chip systems for a variety of applications in biochemical research and material synthesis.

  9. Gravitational instability of thin gas layer between two thick liquid layers

    NASA Astrophysics Data System (ADS)

    Pimenova, A. V.; Goldobin, D. S.

    2016-12-01

    We consider the problem of gravitational instability (Rayleigh-Taylor instability) of a horizontal thin gas layer between two liquid half-spaces (or thick layers), where the light liquid overlies the heavy one. This study is motivated by the phenomenon of boiling at the surface of direct contact between two immiscible liquids, where the rate of the "break-away" of the vapor layer growing at the contact interface due to development of the Rayleigh-Taylor instability on the upper liquid-gas interface is of interest. The problem is solved analytically under the assumptions of inviscid liquids and viscous weightless vapor. These assumptions correspond well to the processes in real systems, e.g., they are relevant for the case of interfacial boiling in the system water- n-heptane. In order to verify the results, the limiting cases of infinitely thin and infinitely thick gas layers were considered, for which the results can be obviously deduced from the classical problem of the Rayleigh-Taylor instability. These limiting cases are completely identical to the well-studied cases of gravity waves at the liquidliquid and liquid-gas interfaces. When the horizontal extent of the system is long enough, the wavenumber of perturbations is not limited from below, and the system is always unstable. The wavelength of the most dangerous perturbations and the rate of their exponential growth are derived as a function of the layer thickness. The dependence of the exponential growth rate on the gas layer thickness is cubic.

  10. Comparison of micellar extraction combined with ionic liquid based vortex-assisted liquid-liquid microextraction and modified quick, easy, cheap, effective, rugged, and safe method for the determination of difenoconazole in cowpea.

    PubMed

    Chen, Xiaochu; Bian, Yanli; Liu, Fengmao; Teng, Peipei; Sun, Pan

    2017-10-06

    Two simple sample pretreatment for the determination of difenoconazole in cowpea was developed including micellar extraction combined with ionic liquid based vortex-assisted liquid-liquid microextraction (ME-IL-VALLME) prior to high performance liquid chromatography (HPLC), and modified quick, easy, cheap, effective, rugged, and safe method (QuEChERS) coupled with HPLC-MS/MS. In ME-IL-VALLME method, the target analyte was extracted by surfactant Tween 20 micellar solution, then the supernatant was diluted with 3mL water to decrease the solubility of micellar solution. Subsequently, the vortex-assisted liquid-liquid microextraction (VALLME) procedure was performed in the diluted extraction solution by using the ionic liquid of 1-hexyl-3-methylimidazolium hexafluorophosphate ([HMIM]PF 6 ) as the extraction solvent and Tween 20 as an emulsifier to enhance the dispersion of the water-immiscible ionic liquid into the aqueous phase. Parameters that affect the extraction have been investigated in both methods Under the optimum conditions, the limits of quantitation were 0.10 and 0.05mgkg -1 , respectively. And good linearity was achieved with the correlation coefficient higher than 0.9941. The relative recoveries ranged from 78.6 to 94.8% and 92.0 to 118.0% with the relative standard deviations (RSD) of 7.9-9.6% and 1.2-3.2%, respectively. Both methods were quick, simple and inexpensive. However, the ME-IL-VALLME method provides higher enrichment factor compared with conventional QuEChERS method. The ME-IL-VALLME method has a strong potential for the determination of difenoconazole in complex vegetable matrices with HPLC. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. The Influence of Oxygen and Sulfur on Uranium Partitioning Into the Core

    NASA Astrophysics Data System (ADS)

    Moore, R. D., Jr.; Van Orman, J. A.; Hauck, S. A., II

    2017-12-01

    Uranium, along with K and Th, may provide substantial long-term heating in planetary cores, depending on the magnitude of their partitioning into the metal during differentiation. In general, non-metallic light elements are known to have a large influence on the partitioning of trace elements, and the presence of sulfur is known to enhance the partitioning of uranium into the metal. Data from the steelmaking literature indicate that oxygen also enhances the solubility of oxygen in liquid iron alloys. Here we present experimental data on the partitioning of U between immiscible liquids in the Fe-S-O system, and use these data along with published metal-silicate partitioning data to calibrate a quantitative activity model for U in the metal. We also determined partition coefficients for Th, K, Nb, Nd, Sm, and Yb, but were unable to fully constrain activity models for these elements with available data. A Monte Carlo fitting routine was used to calculate U-S, U-O, and U-S-O interaction coefficients, and their associated uncertainties. We find that the combined interaction of uranium with sulfur and oxygen is predominant, with S and O together enhancing the solubility of uranium to a far greater degree than either element in isolation. This suggests that uranium complexes with sulfite or sulfate species in the metal. For a model Mars core composition containing 14 at% S and 5 at% O, the metal/silicate partition coefficient for U is predicted to be an order of magnitude larger than for a pure Fe-Ni core.

  12. Eclogite-associated potassic silicate melts and chloride-rich fluids in the mantle: a possible connection

    NASA Astrophysics Data System (ADS)

    Safonov, O.; Butvina, V.

    2009-04-01

    Relics of potassium-rich (4-14 wt. % of K2O and K2O/Na2O > 1.0) melts are a specific features of some partially molten diamondiferous eclogite xenoliths in kimberlites worldwide [1, 2]. In addition, potassic silicic melt inclusions with up to 16 wt. % of K2O are associated with eclogite phases in kimberlitic diamonds (O. Navon, pers. comm.). According to available experimental data, no such potassium contents can be reached by "dry" and hydrous melting of eclogite. These data point to close connection between infiltration of essentially potassic fluids, partial melting and diamond formation in mantle eclogites [2]. Among specific components of these fluids, alkali chlorides, apparently, play an important role. This conclusion follows from assemblages of the melt relics with chlorine-bearing phases in eclogite xenoliths [1], findings of KCl-rich inclusions in diamonds from the xenoliths [3], and concentration of Cl up to 0.5-1.5 wt. % in the melt inclusions in diamonds. In this presentation, we review our experimental data on reactions of KCl melts and KCl-bearing fluids with model and natural eclogite-related minerals and assemblages. Experiments in the model system jadeite(±diopside)-KCl(±H2O) at 4-7 GPa showed that, being immiscible, chloride liquids provoke a strong K-Na exchange with silicates (jadeite). As a result, low-temperature ultrapotassic chlorine-bearing (up to 3 wt. % of Cl) aluminosilicate melts form. These melts is able to produce sanidine, which is characteristic phase in some partially molten eclogites. In addition, in presence of water Si-rich Cl-bearing mica (Al-celadonite-phlogopite) crystallizes in equilibrium with sanidine and/or potassic melt and immiscible chloride liquid. This mica is similar to that observed in some eclogitic diamonds bearing chloride-rich fluid inclusions [4], as well as in diamonds in partially molten eclogites [2]. Interaction of KCl melt with pyrope garnet also produce potassic aluminosilicate melt because of high affinity of Al and Si to potassium. Additional products of this interaction are spinel and, possibly, olivine. These minerals are common products of garnet breakdown within the zones of partial melting of eclogite xenoliths [1, 2]. It is evident that simultaneous action of fluid species (H2O, CO2) and chlorides would produce much stronger effect. Following to this assumption, we further performed experiments on melting of model and natural eclogites with participation of the H2O-CO2-KCl fluids at 5 GPa. Comparison with the KCl-free melting (i.e. H2O-CO2 fluid only) shows that addition of KCl to the fluid intensifies melting. This effect is related both to high Cl content (up to 3-5.5 wt. %) in the newly formed silicate melt and its enrichment in K2O via K-Na exchange reactions with the immiscible chloride melt. Owing to these reactions, the ratio K2O/Cl in the melts increases with the increase of the KCl content in the system and reaches 2.5-3.5 in the melts coexisting with immiscible chloride liquids. However, the KCl/(H2O+CO2) ratio in the fluid does not influence on the K2O/Cl ratio in the melts suggesting that solubility of KCl in the melts practically does not depends on a presence of the H2O-CO2 fluid. Thus, the experiments imply that the KCl-bearing fluids or aqueous(±carbonic) KCl liquids could serve as a possible factor assisting to formation of the K-rich Cl-bearing aluminosilicate melts during the eclogite melting in the mantle. In turn, it means that the KCl content in such rock-melt-fluid systems could exceed 5 wt. %. The study is supported by the RFBR (07-05-00499), the Leading Scientific Schools Program (1949.2008.5), Russian President Grant MD-130.2008.5, and Russian Science Support Foundation. References: [1] Misra et al. (2004) Contrib. Mineral. Petrol. V. 146. P. 696-714; [2] Shatsky et al. (2008) Lithos. 105. 289-300; [3] Zedgenizov et al. (2007) Doklady Earth Sci. 415. 961-964; [4] Izraeli et al. (2001) Earth Planet. Sci. Lett. 5807. 1-10.

  13. Mixing of immiscible polymers using nanoporous coordination templates

    NASA Astrophysics Data System (ADS)

    Uemura, Takashi; Kaseda, Tetsuya; Sasaki, Yotaro; Inukai, Munehiro; Toriyama, Takaaki; Takahara, Atsushi; Jinnai, Hiroshi; Kitagawa, Susumu

    2015-07-01

    The establishment of methodologies for the mixing of immiscible substances is highly desirable to facilitate the development of fundamental science and materials technology. Herein we describe a new protocol for the compatibilization of immiscible polymers at the molecular level using porous coordination polymers (PCPs) as removable templates. In this process, the typical immiscible polymer pair of polystyrene (PSt) and poly(methyl methacrylate) (PMMA) was prepared via the successive homopolymerizations of their monomers in a PCP to distribute the polymers inside the PCP particles. Subsequent dissolution of the PCP frameworks in a chelator solution affords a PSt/PMMA blend that is homogeneous in the range of several nanometers. Due to the unusual compatibilization, the thermal properties of the polymer blend are remarkably improved compared with the conventional solvent-cast blend. This method is also applicable to the compatibilization of PSt and polyacrylonitrile, which have very different solubility parameters.

  14. Apparatus for the production of gel beads containing a biocatalyst

    DOEpatents

    Scott, C.D.; Scott, T.C.; Davison, B.H.

    1998-03-19

    An apparatus is described for the large-scale and continuous production of gel beads containing a biocatalyst. The apparatus is a columnar system based on the chemical cross-linking of hydrocolloidal gels that contain and immobilize a biocatalyst, the biocatalyst being a microorganism or an enzyme. Hydrocolloidal gels, such as alginate, carrageenan, and a mixture of bone gelatin and modified alginate, provide immobilization matrices that can be used to entrap and retain the biocatalyst while allowing effective contact with substrates and release of products. Such immobilized biocatalysts are generally formulated into small spheres or beads that have high concentrations of the biocatalyst within the gel matrix. The columnar system includes a gel dispersion nozzle submerged in a heated non-interacting liquid, typically an organic liquid, that is immiscible with water to allow efficient formation of spherical gel droplets, the non-interacting liquid having a specific gravity that is less than water so that the gel droplets will fall through the liquid by the force of gravity. The heated non-interacting liquid is in direct contact with a chilled upflowing non-interacting liquid that will provide sufficient residence time for the gel droplets as they fall through the liquid so that they will be cooled below the gelling temperature and form solid spheres. The upflowing non-interacting liquid is in direct contact with an upflowing temperature-controlled aqueous solution containing the necessary chemicals for cross-linking or fixing of the gel beads to add the necessary stability. The flow rates of the two liquid streams can be varied to control the proper residence time in each liquid section to accommodate the production of gel beads of differing settling velocities. A valve is provided for continuous removal of the stabilized gel beads from the bottom of the column. 1 fig.

  15. Apparatus and method for the production of gel beads containing a biocatalyst

    DOEpatents

    Scott, Charles D.; Scott, Timothy C.; Davison, Brian H.

    1998-01-01

    An apparatus and method for the large-scale and continuous production of gel beads containing a biocatalyst. The apparatus is a columnar system based on the chemical cross-linking of hydrocolloidal gels that contain and immobilize a biocatalyst, the biocatalyst being a microorganism or an enzyme. Hydrocolloidal gels, such as alginate, carrageenan, and a mixture of bone gelatin and modified alginate, provide immobilization matrices that can be used to entrap and retain the biocatalyst while allowing effective contact with substrates and release of products. Such immobilized biocatalysts are generally formulated into small spheres or beads that have high concentrations of the biocatalyst within the gel matrix. The columnar system includes a gel dispersion nozzle submerged in a heated non-interacting liquid, typically an organic liquid, that is immiscible with water to allow efficient formation of spherical gel droplets, the non-interacting liquid having a specific gravity that is less than water so that the gel droplets will fall through the liquid by the force of gravity. The heated non-interacting liquid is in direct contact with a chilled upflowing non-interacting liquid that will provide sufficient residence time for the gel droplets as they fall through the liquid so that they will be cooled below the gelling temperature and form solid spheres. The upflowing non-interacting liquid is in direct contact with an upflowing temperature-controlled aqueous solution containing the necessary chemicals for cross-linking or fixing of the gel beads to add the necessary stability. The flow rates of the two liquid streams can be varied to control the proper residence time in each liquid section to accommodate the production of gel beads of differing settling velocities. A valve is provided for continuous removal of the stabilized gel beads from the bottom of the column.

  16. Apparatus for the production of gel beads containing a biocatalyst

    DOEpatents

    Scott, Charles D.; Scott, Timothy C.; Davison, Brian H.

    1998-01-01

    An apparatus for the large-scale and continuous production of gel beads containing a biocatalyst. The apparatus is a columnar system based on the chemical cross-linking of hydrocolloidal gels that contain and immobilize a biocatalyst, the biocatalyst being a microorganism or an enzyme. Hydrocolloidal gels, such as alginate, carrageenan, and a mixture of bone gelatin and modified alginate, provide immobilization matrices that can be used to entrap and retain the biocatalyst while allowing effective contact with substrates and release of products. Such immobilized biocatalysts are generally formulated into small spheres or beads that have high concentrations of the biocatalyst within the gel matrix. The columnar system includes a gel dispersion nozzle submerged in a heated non-interacting liquid, typically an organic liquid, that is immiscible with water to allow efficient formation of spherical gel droplets, the non-interacting liquid having a specific gravity that is less than water so that the gel droplets will fall through the liquid by the force of gravity. The heated non-interacting liquid is in direct contact with a chilled upflowing non-interacting liquid that will provide sufficient residence time for the gel droplets as they fall through the liquid so that they will be cooled below the gelling temperature and form solid spheres. The upflowing non-interacting liquid is in direct contact with an upflowing temperature-controlled aqueous solution containing the necessary chemicals for cross-linking or fixing of the gel beads to add the necessary stability. The flow rates of the two liquid streams can be varied to control the proper residence time in each liquid section to accommodate the production of gel beads of differing settling velocities. A valve is provided for continuous removal of the stabilized gel beads from the bottom of the column.

  17. Generation of Monodisperse Liquid Droplets in a Microfluidic Chip Using a High-Speed Gaseous Microflow

    NASA Astrophysics Data System (ADS)

    Tirandazi, Pooyan; Hidrovo, Carlos

    2015-11-01

    Over the last few years, microfluidic systems known as Lab-on-a-Chip (LOC) and micro total analysis systems (μTAS) have been increasingly developed as essential components for numerous biochemical applications. Droplet microfluidics, however, provides a distinctive attribute for delivering and processing discrete as well as ultrasmall volumes of fluid, which make droplet-based systems more beneficial over their continuous-phase counterparts. Droplet generation in its conventional scheme usually incorporates the injection of a liquid (water) into a continuous immiscible liquid (oil) medium. In this study we demonstrate a novel scheme for controlled generation of monodisperse droplets in confined gas-liquid microflows. We experimentally investigate the manipulation of water droplets in flow-focusing configurations using a high inertial air stream. Different flow regimes are observed by varying the gas and liquid flow rates, among which, the ``dripping regime'' where monodisperse droplets are generated is of great importance. The controlled size and generation rate of droplets in this region provide the capability for precise and contaminant-free delivery of microliter to nanoliter volumes of fluid. Furthermore, the high speed droplets generated in this method represent the basis for a new approach based on droplet pair collisions for fast efficient micromixing which provides a significant development in modern LOC and μTAS devices. This project is currently being supported by an NSF CAREER Award grant CBET-1151091.

  18. Liquid crystalline composites toward organic photovoltaic application (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shimizu, Yo; Sosa-Vargas, Lydia; Shin, Woong; Higuchi, Yumi; Itani, Hiromichi; Kawano, Koki; Dao, Quang Duy; Fujii, Akihiko; Ozaki, Masanori

    2017-02-01

    Liquid crystalline semiconductor is an interesting category of organic electronic materials and also has been extensively studied in terms of "Printed Electronics". For the wider diversity in research toward new applications, one can consider how to use a combination of miscibility and phase separation in liquid crystals. Here we report discotic liquid crystals in making a composite of which structural order is controlled in nano-scale toward photovoltaic applications. Discotic columnar LCs were studied on their resultant molecular order and carrier transport properties. Liquid crystals of phthalocyanine and its analogues which exhibit columnar mesomorphism with high carrier mobility (10-1 cm2/Vs) were examined with making binary phase diagrams and the correlation to carrier transport properties by TOF measurements was discussed. The shape-analogues in chemical structure shows a good miscibility even for the different lattice-type of columnar arrangement and the carrier mobility is mostly decrease except for a case of combination with a metal-free and the metal complex. For the mixtures with non-mesogenic C60 derivatives, one sees a phase-separated structure due to its immiscibility, though the columnar order is remained in a range of component ratio.Especially, in a range of the ratio, it was observed the phase separated C60 derivatives are fused into the matrix of columnar bundles, indicating C60 derivatives could be diffused in columnar arrays in molecular level.

  19. Dynamic Forces Between Two Deformable Oil Droplets in Water

    NASA Astrophysics Data System (ADS)

    Dagastine, Raymond R.; Manica, Rogério; Carnie, Steven L.; Chan, D. Y. C.; Stevens, Geoffrey W.; Grieser, Franz

    2006-07-01

    The understanding of static interactions in colloidal suspensions is well established, whereas dynamic interactions more relevant to biological and other suspended soft-matter systems are less well understood. We present the direct force measurement and quantitative theoretical description for dynamic forces for liquid droplets in another immiscible fluid. Analysis of this system demonstrates the strong link between interfacial deformation, static surface forces, and hydrodynamic drainage, which govern dynamic droplet-droplet interactions over the length scale of nanometers and over the time scales of Brownian collisions. The results and analysis have direct bearing on the control and manipulation of suspended droplets in soft-matter systems ranging from the emulsions in shampoo to cellular interactions.

  20. Stripe formation in an immiscible polymer blend under electric and shear-flow fields

    NASA Astrophysics Data System (ADS)

    Na, Yang-Ho; Shibuya, Tetsunori; Ujiie, Seiji; Nagaya, Tomoyuki; Orihara, Hiroshi

    2008-04-01

    We found a stripe formation in an emulsion of a liquid crystalline polymer (LCP) and a machine oil (OIL) in electric and shear fields. Through the simultaneous measurement with a confocal scanning laser microscope and a rheometer, it was clearly shown that the formation of stripes, which are periodically arrayed, leads to the increase of the shear stress. The droplets, which are one component of the emulsion, start to be connected at low electric fields and then change into the stripes with the increase of electric field. Finally, a three-dimensional network is formed at high electric fields. The period and fluctuation of the stripe structure were also investigated in detail.

  1. Enhancement of in situ microbial remediation of aquifers

    DOEpatents

    Fredrickson, James K.; Brockman, Fred J.; Streile, Gary P.; Cary, John W.; McBride, John F.

    1993-01-01

    Methods are provided for remediating subsurface areas contaminated by toxic organic compounds. An innocuous oil, such as vegetable oil, mineral oil, or other immiscible organic liquid, is introduced into the contaminated area and permitted to move therethrough. The oil concentrates or strips the organic contaminants, such that the concentration of the contaminants is reduced and such contaminants are available to be either pumped out of the subsurface area or metabolized by microorganisms. Microorganisms may be introduced into the contaminated area to effect bioremediation of the contamination. The methods may be adapted to deliver microorganisms, enzymes, nutrients and electron donors to subsurface zones contaminated by nitrate in order to stimulate or enhance denitrification.

  2. Enhancement of in situ microbial remediation of aquifers

    DOEpatents

    Fredrickson, J.K.; Brockman, F.J.; Streile, G.P.; Cary, J.W.; McBride, J.F.

    1993-11-30

    Methods are provided for remediating subsurface areas contaminated by toxic organic compounds. An innocuous oil, such as vegetable oil, mineral oil, or other immiscible organic liquid, is introduced into the contaminated area and permitted to move therethrough. The oil concentrates or strips the organic contaminants, such that the concentration of the contaminants is reduced and such contaminants are available to be either pumped out of the subsurface area or metabolized by microorganisms. Microorganisms may be introduced into the contaminated area to effect bioremediation of the contamination. The methods may be adapted to deliver microorganisms, enzymes, nutrients and electron donors to subsurface zones contaminated by nitrate in order to stimulate or enhance denitrification. 4 figures.

  3. Critical point wetting drop tower experiment

    NASA Technical Reports Server (NTRS)

    Kaukler, W. F.; Tcherneshoff, L. M.; Straits, S. R.

    1984-01-01

    Preliminary results for the Critical Point Wetting CPW Drop Tower Experiment are produced with immiscible systems. Much of the observed phenomena conformed to the anticipated behavior. More drops will be needed to test the CPW theory with these immiscible systems.

  4. Lubricant retention in liquid-infused microgrooves exposed to turbulent flow

    NASA Astrophysics Data System (ADS)

    Fu, Matthew; Chen, Ting-Hsuan; Arnold, Craig; Hultmark, Marcus

    2017-11-01

    Liquid infused surfaces are a promising method of passive drag reduction for turbulent flows. These surfaces rely on functionalized roughness elements to trap a liquid lubricant that is immiscible with external fluids. The presence of the lubricant creates a collection of fluid-fluid interfaces which can support a finite slip velocity at the effective surface. Generating a streamwise slip at the surface has been demonstrated as an effective mechanism for drag reduction; however, sustained drag reduction is predicated on the retention of the lubricating layer. Here, a turbulent channel-flow facility is used to characterize the robustness of liquid-infused surfaces and evaluate criteria for ensuring retention of the lubricant. Microscale grooved surfaces infused with alkane lubricants are mounted flush in the channel and exposed to turbulent flows. The retention of lubricants and pressure drop are monitored to characterize the effects of surface geometry and lubricant properties. To improve the retention of lubricant within grooved structures, a novel laser patterning technique is used to scribe chemical barriers onto grooved surfaces and evaluated. Supported under ONR Grants N00014-12-1-0875 and N00014-12-1-0962 (program manager Ki-Han Kim) and by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  5. Fabrication of miniature elastomer lenses with programmable liquid mold for smartphone microscopy: curing polydimethylsiloxane with in situ curvature control

    NASA Astrophysics Data System (ADS)

    Karunakaran, Bhuvaneshwari; Tharion, Joseph; Dhawangale, Arvind Ramrao; Paul, Debjani; Mukherji, Soumyo

    2018-02-01

    Miniature lenses can transform commercial imaging systems, e.g., smartphones and webcams, into powerful, low-cost, handheld microscopes. To date, the reproducible fabrication of polymer lenses is still a challenge as they require controlled dispensing of viscous liquid. This paper reports a reproducible lens fabrication technique using liquid mold with programmable curvature and off-the-shelf materials. The lens curvature is controlled during fabrication by tuning the curvature of an interface of two immiscible liquids [polydimethylsiloxane (PDMS) and glycerol]. The curvature control is implemented using a visual feedback system, which includes a software-based guiding system to produce lenses of desired curvature. The technique allows PDMS lens fabrication of a wide range of sizes and focal lengths, within 20 min. The fabrication of two lens diameters: 1 and 5 mm with focal lengths ranging between 1.2 and 11 mm are demonstrated. The lens surface and bulk quality check performed using X-ray microtomography and atomic force microscopy reveal that the lenses are suitable for optical imaging. Furthermore, a smartphone microscope with ˜1.4-μm resolution is developed using a self-assembly of a single high power fabricated lens and microaperture. The lenses have various potential applications, e.g., optofluidics, diagnostics, forensics, and surveillance.

  6. Fluid Fe(1 - x)Hx under extreme conditions

    NASA Astrophysics Data System (ADS)

    Seclaman, Alexandra; Wilson, Hugh F.; Cohen, Ronald E.

    We study the fluid Fe-H binary system using first principles molecular dynamics (FPMD) and a new FPMD-based method, CATS, in order to compute efficiently and accurately the equation of state of Fe-H fluids up to 5 TPa and 30,000K. We constructed GRBV-type LDA pseudopotentials for Fe and H with small rcuts in order to avoid pseudo-core overlap. In the liquid Fe regime we find good agreement with previous works, up to the pressures where data is available. In the high density regime of pure H we also find good agreement with previous results. Previous work has been focused on low Fe concentrations in metallic liquid H. We extend previous studies by investigating several intermediate Fe(1 - x)Hx liquid compositions, as well as metallic liquid H and Fe. Preliminary results indicate extreme compositional pressure effects under isothermic and isochoric conditions, 3.9 TPa difference between Fe and H at 20,000K. Thermal pressure effects are comparatively small, 0.12-0.15 TPa per 10,000K for H and Fe, respectively. Equations of state will be presented and fluid immiscibility will be discussed. This work has been supported by the ERC Advanced Grant ToMCaT and NSF and the Carnegie Institution.

  7. High-performance beam steering using electrowetting-driven liquid prism fabricated by a simple dip-coating method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enrico Clement, Carlos; Park, Sung-Yong, E-mail: mpeps@nus.edu.sg

    2016-05-09

    A high degree of beam steering is demonstrated using an electrowetting-driven liquid prism. While prism devices have typically relied on complex and expensive laboratory setups, such as high-vacuum facilities for fabrication of dielectric layers, this work utilizes a simple dip-coating method to provide an ion gel layer as a dielectric, offering 2 or 3 orders higher specific capacitance (c ≈ 10 μF/cm{sup 2}) than that of conventional dielectrics. Analytical studies present the effects of liquid selection and arrangement on overall prism performance. For experimental demonstrations of high-performance beam steering, we not only selected two immiscible liquids of water and 1-bromonaphthalene (1-BN)more » oil which provide the large refractive index difference (n{sub water} = 1.33 and n{sub 1-BN} = 1.65 at λ = 532 nm) between them, but also utilized a double-stacked prism configuration which increases the number of interfaces for incoming light to be steered. At a prism apex angle of φ = 27°, we were able to achieve significantly large beam steering of up to β = 19.06°, which is the highest beam steering performance ever demonstrated using electrowetting technology.« less

  8. Recovery of useful chemicals from palm oil mill wastewater

    NASA Astrophysics Data System (ADS)

    Ratanaporn, Yuangsawad; Duangkamol, Na-Ranong; Teruoki, Tago; Takao, Masuda

    2017-11-01

    A two-step process consisting of pyrolysis of dried sludge and catalytic upgrading of pyrolysed liquid was proposed. Wastewater from a palm oil mill was separated to solid cake and liquid by filtration. The solid cake was dried and pyrolysed at 773 K. Liquid product obtained from the pyrolysis had two immiscible aqueous and oil phases (PL-A and PL-O). Identification of chemicals in PL-A and PL-O indicated that both phases contained various chemicals with unsaturated bonds, such as carboxylic acids and alcohols, however, most of the chemicals could not be identified. Catalytic upgrading of PL-A and PL-O over ZrO2·FeOx were separately performed using a fixed bed reactor at various conditions, T = 513-723 K and mass of catalyst to feed rate = 0.25-10 h. The main components in the liquid products of PL-A upgrading were methanol and acetone whereas they were acetone and phenol in the case of PL-O upgrading. More than 15% of carbon in raw material was deposited on the catalyst. To reduce the carbon deposition, the used catalyst was treated with air at 823 K. This simple treatment could reasonably regenerate the catalyst only for the case of PL-A catalytic upgrading.

  9. On-demand generation and mixing of liquid-in-gas slugs with digitally-programmable composition and size

    PubMed Central

    Chen, Yi-Chun; Liu, Kan; Shen, Clifton Kwang-Fu; van Dam, R. Michael

    2017-01-01

    Microscopic droplets or slugs of mixed reagents provide a convenient platform for performing large numbers of isolated biochemical or chemical reactions for many screening and optimization applications. Myriad microfluidic approaches have emerged for creating droplets or slugs with controllable size and composition, generally using an immiscible carrier fluid to assist with the formation or merging processes. We report a novel device for generation of liquid slugs in air when the use of a carrier liquid is not compatible with the application. The slug generator contains two adjacent chambers, each of which has a volume that can be digitally adjusted by closing selected microvalves. Reagents are filled into the two chambers, merged together into a contiguous liquid slug, ejected at the desired time from the device using gas pressure, and mixed by flowing in a downstream channel. Programmable size and composition of slugs is achieved by dynamically adjusting the volume of each chamber prior to filling. Slug formation in this fashion is independent of fluid properties and can easily be scaled to mix larger numbers of reagents. This device has already been used to screen monomer ratios in supramolecular nanoparticle assembly and radiolabeling conditions of engineered antibodies, and here we provide a detailed description of the underlying device. PMID:29167603

  10. A Three-Dimensional Pore-Scale Model for Non-Wetting Phase Mobilization with Ferrofluid

    NASA Astrophysics Data System (ADS)

    Wang, N.; Prodanovic, M.

    2017-12-01

    Ferrofluid, a stable dispersion of paramagnetic nanoparticles in water, can generate a distributed pressure difference across the phase interface in an immiscible two-phase flow under an external magnetic field. In water-wet porous media, this non-uniform pressure difference may be used to mobilize the non-wetting phase, e.g. oil, trapped in the pores. Previous numerical work by Soares et al. of two-dimensional single-pore model showed enhanced non-wetting phase recovery with water-based ferrofluid under certain magnetic field directions and decreased recovery under other directions. However, the magnetic field selectively concentrates in the high magnetic permeability ferrofluid which fills the small corners between the non-wetting phase and the solid wall. The magnetic field induced pressure is proportional to the square of local magnetic field strength and its normal component, and makes a significant impact on the non-wetting phase deformation. The two-dimensional model omitted the effect of most of these corners and is not sufficient to compute the magnetic-field-induced pressure difference or to predict the non-wetting blob deformation. Further, it is not clear that 3D effects on magnetic field in an irregular geometry can be approximated in 2D. We present a three-dimensional immiscible two-phase flow model to simulate the deformation of a non-wetting liquid blob in a single pore filled with a ferrofluid under a uniform external magnetic field. The ferrofluid is modeled as a uniform single phase because the nanoparticles are 104 times smaller than the pore. The open source CFD solver library OpenFOAM is used for the simulations based on the volume of fluid method. Simulations are performed in a converging-diverging channel model on different magnetic field direction, different initial oil saturations, and different pore shapes. Results indicate that the external magnetic field always stretches the non-wetting blob away from the solid channel wall. A magnetic field transverse to the channel direction may likely provide the best elongation along the channel direction for the non-wetting blob. The pore-throat size ratio has an impact on the deformation of the non-wetting blob.

  11. Acoustic and mechanical response of reservoir rocks under variable saturation and effective pressure.

    PubMed

    Ravazzoli, C L; Santos, J E; Carcione, J M

    2003-04-01

    We investigate the acoustic and mechanical properties of a reservoir sandstone saturated by two immiscible hydrocarbon fluids, under different saturations and pressure conditions. The modeling of static and dynamic deformation processes in porous rocks saturated by immiscible fluids depends on many parameters such as, for instance, porosity, permeability, pore fluid, fluid saturation, fluid pressures, capillary pressure, and effective stress. We use a formulation based on an extension of Biot's theory, which allows us to compute the coefficients of the stress-strain relations and the equations of motion in terms of the properties of the single phases at the in situ conditions. The dry-rock moduli are obtained from laboratory measurements for variable confining pressures. We obtain the bulk compressibilities, the effective pressure, and the ultrasonic phase velocities and quality factors for different saturations and pore-fluid pressures ranging from normal to abnormally high values. The objective is to relate the seismic and ultrasonic velocity and attenuation to the microstructural properties and pressure conditions of the reservoir. The problem has an application in the field of seismic exploration for predicting pore-fluid pressures and saturation regimes.

  12. Wrapping with a splash: High-speed encapsulation with ultrathin sheets.

    PubMed

    Kumar, Deepak; Paulsen, Joseph D; Russell, Thomas P; Menon, Narayanan

    2018-02-16

    Many complex fluids rely on surfactants to contain, protect, or isolate liquid drops in an immiscible continuous phase. Thin elastic sheets can wrap liquid drops in a spontaneous process driven by capillary forces. For encapsulation by sheets to be practically viable, a rapid, continuous, and scalable process is essential. We exploit the fast dynamics of droplet impact to achieve wrapping of oil droplets by ultrathin polymer films in a water phase. Despite the violence of splashing events, the process robustly yields wrappings that are optimally shaped to maximize the enclosed fluid volume and have near-perfect seams. We achieve wrappings of targeted three-dimensional (3D) shapes by tailoring the 2D boundary of the films and show the generality of the technique by producing both oil-in-water and water-in-oil wrappings. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  13. Suppressing Crack Formation in Particulate Systems by Utilizing Capillary Forces

    PubMed Central

    Schneider, Monica; Maurath, Johannes; Fischer, Steffen B.; Weiß, Moritz; Willenbacher, Norbert; Koos, Erin

    2017-01-01

    Cracks, formed during the drying of particulate films, can reduce the effectiveness or even render products useless. We present a novel, generic approach to suppress crack formation in thin films made from hard particle suspensions, which are otherwise highly susceptible to cracking, using the capillary force between particles present when a trace amount of an immiscible liquid is added to a suspension. This secondary liquid preserves the particle cohesion, modifying the structure and increasing the drying rate. Crack-free films can be produced at thicknesses much greater than the critical cracking thickness for a suspension without capillary interactions, and even persists after sintering. This capillary suspension strategy is applicable to a broad range of materials including suspensions of metals, semiconductive and ceramic oxides or glassy polymeric particles and can be easily implemented in many industrial processes since it is based on well-established unit operations. Promising fields of application include ceramic foils and printed electronic devices. PMID:28263554

  14. Direct measurement of friction of a fluctuating contact line

    NASA Astrophysics Data System (ADS)

    Guo, Shuo; Gao, Min; Xiong, Xiaomin; Wang, Yong Jian; Wang, Xiaoping; Sheng, Ping; Tong, Penger

    2013-03-01

    What happens at a moving contact line, where one fluid displaces another (immiscible) fluid over a solid surface, is a fundamental issue in fluid dynamics. In this presentation, we report a direct measurement of the friction coefficient in the immediate vicinity of a fluctuating contact line using a micron-sized vertical glass fiber with one end glued to an atomic force microscope (AFM) cantilever beam and the other end touching a liquid-air interface. By measuring the broadening of the resonance peak of the cantilever system with varying liquid viscosity η, we obtain the friction coefficient ξc associated with the contact line fluctuations on the glass fiber of diameter d and find it has the universal form, ξc = 0 . 8 πdη , independent of the contact angle. The result is further confirmed by using a soap film system whose bulk effect is negligibly small. This is the first time that the friction coefficient of a fluctuating contact line is measured. *Work supported by the Research Grants Council of Hong Kong SAR.

  15. Sol-Gel Glasses

    NASA Technical Reports Server (NTRS)

    Mukherjee, S. P.

    1985-01-01

    Multicomponent homogeneous, ultrapure noncrystalline gels/gel derived glasses are promising batch materials for the containerless glass melting experiments in microgravity. Hence, ultrapure, homogeneous gel precursors could be used to: (1) investigate the effect of the container induced nucleation on the glass forming ability of marginally glass forming compositions; and (2) investigate the influence of gravity on the phase separation and coarsening behavior of gel derived glasses in the liquid-liquid immiscibility zone of the nonsilicate systems having a high density phase. The structure and crystallization behavior of gels in the SiO2-GeO2 as a function of gel chemistry and thermal treatment were investigated. As are the chemical principles involved in the distribution of a second network former in silica gel matrix being investigated. The procedures for synthesizing noncrystalline gels/gel-monoliths in the SiO2-GeO2, GeO2-PbO systems were developed. Preliminary investigations on the levitation and thermal treatment of germania silicate gel-monoliths in the Pressure Facility Acoustic Levitator were done.

  16. SOLVENT EXTRACTION PROCESS FOR THE SEPARATION OF URANIUM AND THORIUM FROM PROTACTINIUM AND FISSION PRODUCTS

    DOEpatents

    Rainey, R.H.; Moore, J.G.

    1962-08-14

    A liquid-liquid extraction process was developed for recovering thorium and uranium values from a neutron irradiated thorium composition. They are separated from a solvent extraction system comprising a first end extraction stage for introducing an aqueous feed containing thorium and uranium into the system consisting of a plurality of intermediate extractiorr stages and a second end extractron stage for introducing an aqueous immiscible selective organic solvent for thorium and uranium in countercurrent contact therein with the aqueous feed. A nitrate iondeficient aqueous feed solution containing thorium and uranium was introduced into the first end extraction stage in countercurrent contact with the organic solvent entering the system from the second end extraction stage while intro ducing an aqueous solution of salting nitric acid into any one of the intermediate extraction stages of the system. The resultant thorium and uranium-laden organic solvent was removed at a point preceding the first end extraction stage of the system. (AEC)

  17. Electro-coalescence of particle-coated droplets

    NASA Astrophysics Data System (ADS)

    Shum, Anderson Ho Cheung

    Droplets in air or in an immiscible liquid phase are used widely in applications ranging from personal hygiene products to drug delivery. The stability of the droplets are highly linked to their utility, and thus have been systematically studied. To enhance the stability of the droplets, particles are often added to the droplets. In this talk, I will discuss how the particle layer at droplet interfaces responds to electrical charging of the droplets. The electrical forces can distort the droplet shape, which is opposed by the layer of particles adsorbed. A balance of the electrical and interfacial effects provides a quantitative indicator of the droplet instability. The coalescence of droplets in both air and liquid induced by electrically charging, which we call ``electro-coalescence'', will be introduced, with its potential application in devising a digital millifluidic platform. We thank the Research Grants Council of Hong Kong (No. HKU 719813E, 17304514 and 17306315 and C6004-14G) from the and National Natural Science Foundation of China (No. 21476189/B060201 and 91434202).

  18. Study of axial mixing, holdup and slip velocity of dispersed phase in a pulsed sieve plate extraction column using radiotracer technique.

    PubMed

    Ghiyas Ud Din; Imran Rafiq Chughtai; Hameed Inayat, Mansoor; Hussain Khan, Iqbal

    2009-01-01

    Axial mixing, holdup and slip velocity of dispersed phase which are parameters of fundamental importance in the design and operation of liquid-liquid extraction pulsed sieve plate columns have been investigated. Experiments for residence time distribution (RTD) analysis have been carried out for a range of pulsation frequency and amplitude in a liquid-liquid extraction pulsed sieve plate column with water as dispersed and kerosene as continuous phase using radiotracer technique. The column was operated in emulsion region and (99m)Tc in the form of sodium pertechnetate eluted from a (99)Mo/(99m)Tc generator was used to trace the dispersed phase. Axial dispersed plug flow model with open-open boundary condition and two points measurement method was used to simulate the hydrodynamics of dispersed phase. It has been observed that the axial mixing and holdup of dispersed phase increases with increase in pulsation frequency and amplitude until a maximum value is achieved while slip velocity decreases with increase in pulsation frequency and amplitude until it approaches a minimum value. Short lived and low energy radiotracer (99m)Tc in the form of sodium pertechnetate was found to be a good water tracer to study the hydrodynamics of a liquid-liquid extraction pulsed sieve plate column operating with two immiscible liquids, water and kerosene. Axial dispersed plug flow model with open-open boundary condition was found to be a suitable model to describe the hydrodynamics of dispersed phase in the pulsed sieve plate extraction column.

  19. The system water-sodium oxide-silicon dioxide at 200, 250, and 300°

    USGS Publications Warehouse

    Rowe, Jack J.; Fournier, Robert O.; Morey, G.W.

    1967-01-01

    Studies were made of the H2O-Na2O-SiO2 system at its vapor pressure at 200, 250, and 300??. Three different sodium trisilicate hydrates were encountered in the investigation. At 300??, Na2Si3O7??5H2O is found: at 250??, Na2Si3O7??6H2O; and at 200??, Na2Si3O7??11H2O. The liquid immiscibility previously reported to exist in the system was found to be a quenching phenomenon caused by the decomposition of the hydrates to unstable, supersaturated, viscous liquids. Under conditions where equilibrium is maintained, as temperature is lowered, the hydrates decompose to quartz, sodium disilicate, and liquid. The retrograde solubility of sodium disilicate and its tendency to form supersaturated solutions during heating from 25 to 250?? account for higher solubilities reported by others than were found in this study. The solubility of sodium disilicate in water is 26% at 200??, 9% at 250??, and 5% at 300??. Sodium metasilicate solubility is 38% at 200?? and 34% at 250??; this compound is incongruently soluble at 300??.

  20. Measurement of interfacial tension by use of pendant drop video techniques

    NASA Astrophysics Data System (ADS)

    Herd, Melvin D.; Thomas, Charles P.; Bala, Gregory A.; Lassahn, Gordon D.

    1993-09-01

    This report describes an instrument to measure the interfacial tension (IFT) of aqueous surfactant solutions and crude oil. The method involves injection of a drop of fluid (such as crude oil) into a second immiscible phase to determine the IFT between the two phases. The instrument is composed of an AT-class computer, optical cell, illumination, video camera and lens, video frame digitizer board, monitor, and software. The camera displays an image of the pendant drop on the monitor, which is then processed by the frame digitizer board and non-proprietary software to determine the IFT. Several binary and ternary phase systems were taken from the literature and used to measure the precision and accuracy of the instrument in determining IFT's. A copy of the software program is included in the report. A copy of the program on diskette can be obtained from the Energy Science and Technology Software Center, P.O. Box 1020, Oak Ridge, TN 37831-1020. The accuracy and precision of the technique and apparatus presented is very good for measurement of IFT's in the range from 72 to 10(exp -2) mN/m, which is adequate for many EOR applications. With modifications to the equipment and the numerical techniques, measurements of ultralow IFT's (less than 10(exp -3) mN/m) should be possible as well as measurements at reservoir temperature and pressure conditions. The instrument has been used at the Idaho National Engineering Laboratory to support the research program on microbial enhanced oil recovery. Measurements of IFT's for several bacterial supernatants and unfractionated acid precipitates of microbial cultures containing biosurfactants against medium to heavy crude oils are reported. These experiments demonstrate that the use of automated video imaging of pendant drops is a simple and fast method to reliably determine interfacial tension between two immiscible liquid phases, or between a gas and a liquid phase.

  1. Numerical modelling of erosion and assimilation of sulfur-rich substrate by martian lava flows: Implications for the genesis of massive sulfide mineralization on Mars

    NASA Astrophysics Data System (ADS)

    Baumgartner, Raphael J.; Baratoux, David; Gaillard, Fabrice; Fiorentini, Marco L.

    2017-11-01

    Mantle-derived volcanic rocks on Mars display physical and chemical commonalities with mafic-ultramafic ferropicrite and komatiite volcanism on the Earth. Terrestrial komatiites are common hosts of massive sulfide mineralization enriched in siderophile-chalcophile precious metals (i.e., Ni, Cu, and the platinum-group elements). These deposits correspond to the batch segregation and accumulation of immiscible sulfide liquids as a consequence of mechanical/thermo-mechanical erosion and assimilation of sulfur-rich bedrock during the turbulent flow of high-temperature and low-viscosity komatiite lava flows. This study adopts this mineralization model and presents numerical simulations of erosion and assimilation of sulfide- and sulfate-rich sedimentary substrates during the dynamic emplacement of (channelled) mafic-ultramafic lava flows on Mars. For sedimentary substrates containing adequate sulfide proportions (e.g., 1 wt% S), our simulations suggest that sulfide supersaturation in low-temperature (< 1350 °C) flows could be attained at < 200 km distance, but may be postponed in high-temperature lavas flows (> 1400 °C). The precious-metals tenor in the derived immiscible sulfide liquids may be significantly upgraded as a result of their prolonged equilibration with large volumes of silicate melts along flow conduits. The influence of sulfate assimilation on sulfide supersaturation in martian lava flows is addressed by simulations of melt-gas equilibration in the Csbnd Hsbnd Osbnd S fluid system. However, prolonged sulfide segregation and deposit genesis by means of sulfate assimilation appears to be limited by lava oxidation and the release of sulfur-rich gas. The identification of massive sulfide endowments on Mars is not possible from remote sensing data. Yet the results of this study aid to define regions for the potential occurrence of such mineral systems, which may be the large canyon systems Noctis Labyrinthus and Valles Marineris, or the Hesperian channel systems of Mars' highlands (e.g., Kasei Valles), most of which have been periodically draped by mafic-ultramafic lavas.

  2. Unsteady Thermocapillary Migration of Isolated Drops in Creeping Flow

    NASA Technical Reports Server (NTRS)

    Dill, Loren H.; Balasubramaniam, R.

    1992-01-01

    The problem of an isolated immiscible drop that slowly migrates due to unsteady thermocapillary stresses is considered. All physical properties except for interfacial tension are assumed constant for the two Newtonian fluids. Explicit expressions are found for the migration rate and stream functions in the Laplace domain. The resulting microgravity theory is useful, e.g., in predicting the distance a drop will migrate due to an impulsive interfacial temperature gradient as well as the time required to attain steady flow conditions from an initially resting state.

  3. Petrography, fluid inclusion analysis, and geochronology of the End uranium deposit, Kiggavik, Nunavut, Canada

    NASA Astrophysics Data System (ADS)

    Chi, Guoxiang; Haid, Taylor; Quirt, David; Fayek, Mostafa; Blamey, Nigel; Chu, Haixia

    2017-02-01

    The End deposit is one of several uranium deposits in the Kiggavik area near the Proterozoic Thelon Basin, which is geologically similar to the Athabasca Basin known for its unconformity-related uranium deposits. The mineralization occurs as uraninite and coffinite in quartz veins and wall rocks (psammopelitic gneisses) in the sub-Thelon basement and is associated with clay- and hematite-altered fault zones. Fluid inclusions were studied in quartz cementing unmineralized breccias formed before mineralization (Q2), quartz veins that were formed before mineralization but spatially associated with uranite (Q4), and calcite veins that were formed after mineralization. Four types of fluid inclusions were recognized, namely liquid-dominated biphase (liquid + vapor), vapor-dominated biphase (vapor + liquid), monophase (vapor-only), and triphase (liquid + vapor + halite) inclusions. The first three types were found in Q2, whereas all four types were found in Q4 and calcite. The coexistence of these different types of inclusions within individual fluid inclusion assemblages is interpreted to indicate fluid immiscibility and heterogeneous trapping. Based on microthermometry, the fluids associated with Q2 are characterized by low salinities (0.4 to 6.6 wt%) and moderate temperatures from 148 to 261 °C, and the fluids associated with calcite show high salinities (26.8 to 29.3 wt%) and relatively low temperatures from 146 to 205 °C, whereas the fluids associated with Q4 have a wide range of salinities from 0.7 to 38.8 wt% and temperatures from 80 to 332 °C. Microthermometric and cryogenic Raman spectroscopic studies indicate that the high-salinity fluids in Q4 and calcite belong to the H2O-NaCl-CaCl2 ± MgCl2 system, with some dominated by NaCl and others by CaCl2. The fluid inclusions in Q2 are interpreted to be unrelated to mineralization, whereas those in Q4 and calcite reflect the mineralizing fluids. The fluid inclusion data are consistent with a genetic link of mineralization with basinal brines derived from the Thelon Basin. However, unlike the conventional deep-burial (>5 km) diagenetic-hydrothermal model proposed for the unconformity-related uranium deposits, the uranium mineralization in the End deposit is inferred to have formed in a shallow environment (probably <2 km), based on fluid immiscibility and low fluid pressures obtained in this study. The U-Pb age of uraninite (1295 ± 12 Ma) is interpreted to reflect isotopic resetting after the primary mineralization.

  4. Deformation of a crystalline olivine aggregate containing two immiscible liquids: Implications for early core-mantle differentiation

    NASA Astrophysics Data System (ADS)

    Cerantola, V.; Walte, N. P.; Rubie, D. C.

    2015-05-01

    Deformation-assisted segregation of metallic and sulphidic liquid from a solid peridotitic matrix is a process that may contribute to the early differentiation of small planetesimals into a metallic core and a silicate mantle. Here we present results of an experimental study using a simplified system consisting of a polycrystalline Fo90-olivine matrix containing a small percentage of iron sulphide and a synthetic primitive MORB melt, in order to investigate whether the silicate melt enhances the interconnection and segregation of FeS liquid under deformation conditions at varying strain rates. The experiments have been performed at 2 GPa, 1450 °C and strain rates between 1 ×10-3s-1 to 1 ×10-5s-1. Our results show that the presence of silicate melt actually hinders the migration and segregation of sulphide liquid by reducing its interconnectivity. At low to moderate strain rates the sulphide liquid pockets preserved a roundish shape, showing the liquid behavior is governed mainly by surface tension rather than by differential stress. Even at the highest strain rates, insignificant FeS segregation and interconnection were observed. On the other hand the basaltic melt was very mobile during deformation, accommodating part of the strain, which led to its segregation from the matrix at high bulk strains leaving the sulphide liquid stranded in the olivine matrix. Hence, we conclude that deformation-induced percolation of sulphide liquid does not contribute to the formation of planetary cores after the silicate solidus is overstepped. A possible early deformation enhanced core-mantle differentiation after overstepping the Fe-S solidus is not possible between the initial formation of silicate melt and the formation of a widespread magma ocean.

  5. Deformation and Breakup of Two Fluid Jets

    NASA Astrophysics Data System (ADS)

    Doshi, Pankaj; Ramkrishna, Doraiswamy; Basaran, Osman

    2001-11-01

    Two fluid jets consists of an inner liquid core surrounded by an annulus of outer immiscible liquid. The perturbation in the inner and outer interphase could cause capillary instability resulting in large deformation and breakup of the jet into drops. The jet breakup and drop size distribution is largely influenced by the properties of inner and outer fluid phases. Out of the various jet breakup phenomena one with most technological importance is the one in which inner interphase ruptures followed by the outer interphase resulting in the formation of compound drops. The compound drop formation is very useful for the microencapsulation technology, which find use in diverse pharmaceutical and chemical industry applications. In this paper we present a computational analysis of non-linear deformation and breakup of two fluid jets of Newtonian fluids. The analysis involves study of capillary instability driven deformation of a free jet with periodic boundary conditions. Although small amplitude deformation of two fluid jets have previously been studied, large amplitude deformation exhibiting interesting nonlinear dynamics and eventual breakup of the two fluid jets have been beyond the reach of previously used analytical and computational techniques. The computational difficulties result from the facts that (1) the inner and outer interphase can overturn during the motion and (2) pressure and normal stress are discontinuous at the inner interphase. We overcome both of these difficulties by using a new Galerkin/finite element algorithm that relies on a powerful elliptic mesh generation technique. The results to be presented includes jet deformation and breakup time as a function of inner and outer fluid phase properties. The highlight of the results will be prediction of drop size distribution which is of critical importance for microencapsulation technology.

  6. Geometric and energetic considerations of surface fluctuations during ion transfer across the water-immiscible organic liquid interface

    NASA Astrophysics Data System (ADS)

    Karnes, John J.; Benjamin, Ilan

    2016-07-01

    Molecular dynamics simulations and umbrella sampling free energy calculations are used to examine the thermodynamics, energetics, and structural fluctuations that accompany the transfer of a small hydrophilic ion (Cl-) across the water/nitrobenzene interface. By examining several constrained interface structures, we isolate the energetic costs of interfacial deformation and co-transfer of hydration waters during the ion transfer. The process is monitored using both energy-based solvation coordinates and a geometric coordinate recently introduced by Morita and co-workers to describe surface fluctuations. Our simulations show that these coordinates provide a complimentary description of the water surface fluctuations during the transfer and are necessary for elucidating the mechanism of the ion transfer.

  7. STS-42 Phase Partitioning Experiment (PPE) closeup taken onboard OV-103

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-42 Phase Partitioning Experiment (PPE), an International Microgravity Laboratory 1 (IML-1) experiment, is documented in a closeup taken onboard Discovery, Orbiter Vehicle (OV) 103. Phase partitioning is a very effective technique used by biochemists and cell biologists to obtain fairly pure cells. Cells are separated and collected in a mixture of two immiscible liquids (fluids that tend not to mix) by their surface characteristics. In the PPE, investigators feel they will be able to separate closely related cells because cell density and convection flows are not factors in the phase partitioning process in space. They also hope to study other factors that influence the process. Phase partitioning is used to separate biological materials such as bone marrow cells for cancer treatment.

  8. Metal separations using aqueous biphasic partitioning systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaiko, D.J.; Zaslavsky, B.; Rollins, A.N.

    1996-05-01

    Aqueous biphasic extraction (ABE) processes offer the potential for low-cost, highly selective separations. This countercurrent extraction technique involves selective partitioning of either dissolved solutes or ultrafine particulates between two immiscible aqueous phases. The extraction systems that the authors have studied are generated by combining an aqueous salt solution with an aqueous polymer solution. They have examined a wide range of applications for ABE, including the treatment of solid and liquid nuclear wastes, decontamination of soils, and processing of mineral ores. They have also conducted fundamental studies of solution microstructure using small angle neutron scattering (SANS). In this report they reviewmore » the physicochemical fundamentals of aqueous biphase formation and discuss the development and scaleup of ABE processes for environmental remediation.« less

  9. Simulation of Charged Systems in Heterogeneous Dielectric Media via a True Energy Functional

    NASA Astrophysics Data System (ADS)

    Jadhao, Vikram; Solis, Francisco J.; de la Cruz, Monica Olvera

    2012-11-01

    For charged systems in heterogeneous dielectric media, a key obstacle for molecular dynamics (MD) simulations is the need to solve the Poisson equation in the media. This obstacle can be bypassed using MD methods that treat the local polarization charge density as a dynamic variable, but such approaches require access to a true free energy functional, one that evaluates to the equilibrium electrostatic energy at its minimum. In this Letter, we derive the needed functional. As an application, we develop a Car-Parrinello MD method for the simulation of free charges present near a spherical emulsion droplet separating two immiscible liquids with different dielectric constants. Our results show the presence of nonmonotonic ionic profiles in the dielectric with a lower dielectric constant.

  10. Partitioning of palladium, iridium, platinum, and gold between sulfide liquid and basalt melt at 1,200 degree C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, W.E.; Crocket, J.H.; Fleet, M.E.

    1990-08-01

    Iron-nickel monosulfide and basalt glass containing trace amounts of PGE equilibrated at 1,200{degree}C, and f{sub o{sub 2}} = 10{sup {minus}9.2} (close to the wustite-magnetite buffer) and f{sub s{sub 2}} = 10{sup {minus}0.9}, have been analyzed for noble metals by radiochemical and instrumental neutron activation analysis. The average contents of PGE in coexisting Fe-Ni sulfide and basalt glass, respectively, are Pd, 50 ppm and 0.5 ppb; Ir, 50 ppm and 0.5 ppb; Pt, 100 ppm and 10 ppb; and Au, 0.7 ppm and 0.8 ppb. The sulfide liquid-silicate melt partition coefficients (D values) for the noble metals are (9 {plus minus}more » 7) {times} 10{sup 4} for Pd, (1 {plus minus} 0.7) {times} 10{sup 5} for Ir, (9 {plus minus} 6) {times} 10{sup 3} Pt, and (1 {plus minus} 0.9) {times} 10{sup 3} for Au. The noble metals are strongly partitioned into sulfide liquid, but the affinity of Pd and Ir for sulfide liquid is about 50 times greater than that of Pt and about 500 times greater than that of Au. The D values indicate that equilibrium partitioning between immiscible sulfide liquid and basalt magma would result in fractionation of the noble metals, which differs significantly from that generally observed in nature.« less

  11. Sulfur and sulfides in chondrules

    NASA Astrophysics Data System (ADS)

    Marrocchi, Yves; Libourel, Guy

    2013-10-01

    The nature and distribution of sulfides within type I PO, POP and PP chondrules of the carbonaceous chondrite Vigarano (CV3) have been studied by secondary electron microscopy and electron microprobe. They occur predominantly as spheroidal blebs composed entirely of low-Ni iron sulfide (troilite, FeS) or troilite + magnetite but in less abundance in association with metallic Fe-Ni beads in opaque assemblages. Troilites are mainly located within the low-Ca pyroxene outer zone and their amounts increase with the abundance of low-Ca pyroxene within chondrules, suggesting co-crystallization of troilite and low-Ca pyroxene during high-temperature events. We show that sulfur concentration and sulfide occurrence in chondrules obey high temperature sulfur solubility and saturation laws. Depending on the fS2 and fO2 of the surrounding gas and on the melt composition, mainly the FeO content, sulfur dissolved in chondrule melts may eventually reach a concentration limit, the sulfur content at sulfide saturation (SCSS), at which an immiscible iron sulfide liquid separates from the silicate melt. The occurrence of both a silicate melt and an immiscible iron sulfide liquid is further supported by the non-wetting behavior of sulfides on silicate phases in chondrules due to the high interfacial tension between their precursor iron-sulfide liquid droplets and the surrounding silicate melt during the high temperature chondrule-forming event. The evolution of chondrule melts from PO to PP towards more silicic compositions, very likely due to high PSiO(g) of the surrounding nebular gas, induces saturation of FeS at much lower S content in PP than in PO chondrules, leading to the co-crystallization of iron sulfides and low-Ca pyroxenes. Conditions of co-saturation of low-Ca pyroxene and FeS are only achieved in non canonical environments characterized by high partial pressures of sulfur and SiO and redox conditions more oxidizing than IW-3. Fe and S mass balance calculations also suggest the occurrence of an external source of iron, very likely gaseous, during chondrule formation. We therefore propose that enrichments in sulfur (and other volatile and moderately volatile elements) from PO to PP type I bulk chondrule compositions towards chondritic values result from progressive reaction between partially depleted olivine-bearing precursors and a volatile-rich gas phase.

  12. Novel fabrication technique of hybrid structure lens array for 3D images

    NASA Astrophysics Data System (ADS)

    Lee, Junsik; Kim, Junoh; Kim, Cheoljoong; Shin, Dooseub; Koo, Gyohyun; Won, Yong Hyub

    2016-03-01

    Tunable liquid lens arrays can produce three dimensional images by using electrowetting principle that alters surface tensions by applying voltage. This method has advantages of fast response time and low power consumption. However, it is challenging to fabricate a high fill factor liquid lens array and operate three dimensional images which demand high diopter. This study describes a hybrid structure lens array which has not only a liquid lens array but a solid lens array. A concave-shape lens array is unavoidable when using only the liquid lens array and some voltages are needed to make the lens flat. By placing the solid lens array on the liquid lens array, initial diopter can be positive. To fabricate the hybrid structure lens array, a conventional lithographic process in semiconductor manufacturing is needed. A negative photoresist SU-8 was used as chamber master molds. PDMS and UV adhesive replica molding are done sequentially. Two immiscible liquids, DI water and dodecane, are injected in the fabricated chamber, followed by sealing. The fabricated structure has a 20 by 20 pattern of cylindrical shaped circle array and the aperture size of each lens is 1mm. The thickness of the overall hybrid structure is about 2.8mm. Hybrid structure lens array has many advantages. Solid lens array has almost 100% fill factor and allow high efficiency. Diopter can be increased by more than 200 and negative diopter can be shifted to the positive region. This experiment showed several properties of the hybrid structure and demonstrated its superiority.

  13. Using the liquid nature of the stationary phase in countercurrent chromatography. IV. The cocurrent CCC method.

    PubMed

    Berthod, Alain; Hassoun, Mahmoud

    2006-05-26

    The retention volumes of solutes in countercurrent chromatography (CCC) are directly proportional to their distribution coefficients, K(D) in the biphasic liquid system used as mobile and stationary phase in the CCC column. The cocurrent CCC method consists in putting the liquid "stationary" phase in slow motion in the same direction as the mobile phase. A mixture of five steroid compounds of widely differing polarities was used as a test mixture to evaluate the capabilities of the method with the biphasic liquid system made of water/methanol/ethyl acetate/heptane 6/5/6/5 (v/v) and a 53 mL CCC column of the coil planet centrifuge type. It is shown that the chromatographic resolution obtained in cocurrent CCC is very good because the solute band broadening is minimized as long as the solute is located inside the "stationary" phase. Pushing the method at its limits, it is demonstrated that the five steroids can still be (partly) separated when the flow rate of the two liquid phases is the same (2 mL/min). This is due to the higher volume of upper phase (72% of the column volume) contained inside the CCC column producing a lower linear speed compared to the aqueous lower phase linear speed. The capabilities of the cocurrent CCC method compare well with those of the gradient elution method in HPLC. Continuous detection is a problem due to the fact that two immiscible liquid phases elute from the column. It was partly solved using an evaporative light scattering detector.

  14. On-line hyphenation of centrifugal partition chromatography and high pressure liquid chromatography for the fractionation of flavonoids from Hippophaë rhamnoides L. berries.

    PubMed

    Michel, Thomas; Destandau, Emilie; Elfakir, Claire

    2011-09-09

    Centrifugal Partition Chromatography (CPC), a liquid-liquid preparative chromatography using two immiscible solvent systems, benefits from numerous advantages for the separation or purification of synthetic or natural products. This study presents the on-line hyphenation of CPC-Evaporative Light Scattering Detector (CPC-ELSD) with High Performance Liquid Chromatography-UV (HPLC-UV) for the fractionation of flavonols from a solvent-free microwave extract of sea buckthorn (Hippophaë rhamnoides L., Elaeagnaceae) berries. An Arizona G system was used for the fractionation of flavonoids by CPC and a fused core Halo C18 column allowed the on-line analyses of collected fractions by HPLC. The on-line CPC/HPLC procedure allowed the simultaneous fractionation step at preparative scale combined with the HPLC analyses which provide direct fingerprint of collected fractions. Thus the crude extract was simplified and immediate information on the composition of fractions could be obtained. Furthermore, this methodology reduced the time of post-fractionation steps and facilitated identification of main molecules by Mass Spectrometry (MS). Rutin, isorhamnetin-3-O-rutinoside, isorhamnetin-3-O-glucoside, quercetin-3-O-glucoside, isorhamnetin-rhamnoside, quercetin and isorhamnetin were identified. CPC-ELSD/HPLC-UV could be considered as a high-throughput technique for the guided fractionation of bioactive natural products from complex crude extracts. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Laser imaging in liquid-liquid flows

    NASA Astrophysics Data System (ADS)

    Abidin, M. I. I. Zainal; Park, Kyeong H.; Voulgaropoulos, Victor; Chinaud, Maxime; Angeli, Panagiota

    2016-11-01

    In this work, the flow patterns formed during the horizontal flow of two immiscible liquids are studied. The pipe is made from acrylic, has an ID of 26 mm and a length of 4 m. A silicone oil (5cSt) and a water/glycerol mixture are used as test fluids. This set of liquids is chosen to match the refractive indices of the phases and enable laser based flow pattern identification. A double pulsed Nd:Yag laser was employed (532mm) with the appropriate optics to generate a laser sheet at the middle of the pipe. The aqueous phase was dyed with Rhodamine 6G, to distinguish between the two phases. Experiments were carried out for mixture velocities ranging from 0.15 to 2 m/s. Different inlet designs were used to actuate flow patterns in a controlled way and observe their development downstream the test section. A static mixer produced dispersed flow at the inlet which separated downstream due to enhanced coalescence. On the other hand, the use of a cylindrical bluff body at the inlet created non-linear interfacial waves in initially stratified flows from which drops detached leading to the transition to dispersed patterns. From the detailed images important flow parameters were measured such as wave characteristics and drop size. Project funded under the UK Engineering and Physical Sciences Research Council (EPSRC) Programme Grant MEMPHIS.

  16. Surfactant-based ionic liquids for extraction of phenolic compounds combined with rapid quantification using capillary electrophoresis.

    PubMed

    Huang, Fangzhi; Berton, Paula; Lu, Chengfei; Siraj, Noureen; Wang, Chun; Magut, Paul K S; Warner, Isiah M

    2014-09-01

    A rapid liquid phase extraction employing a novel hydrophobic surfactant-based room temperature ionic liquid (RTIL), tetrabutylphosphonium dioctyl sulfosuccinate ([4C4 P][AOT]), coupled with capillary electrophoretic-UV (CE-UV) detection is developed for removal and determination of phenolic compounds. The long-carbon-chain RTIL used is sparingly soluble in most solvents and can be used to replace volatile organic solvents. This fact, in combination with functional-surfactant-anions, is proposed to reduce the interfacial energy of the two immiscible liquid phases, resulting in highly efficient extraction of analytes. Several parameters that influence the extraction efficiencies, such as extraction time, RTIL type, pH value, and ionic strength of aqueous solutions, were investigated. It was found that, under acidic conditions, most of the investigated phenols were extracted from aqueous solution into the RTIL phase within 12 min. Good linearity was observed over the concentration range of 0.1-80.0 μg/mL for all phenols investigated. The precision of this method, expressed as RSD, was determined to be within 3.4-5.3% range. The LODs (S/N = 3) of the method were in the range of 0.047-0.257 μg/mL. The proposed methodology was successfully applied to determination of phenols in real water samples. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Fabrication of miniature elastomer lenses with programmable liquid mold for smartphone microscopy: curing polydimethylsiloxane with in situ curvature control.

    PubMed

    Karunakaran, Bhuvaneshwari; Tharion, Joseph; Dhawangale, Arvind Ramrao; Paul, Debjani; Mukherji, Soumyo

    2018-02-01

    Miniature lenses can transform commercial imaging systems, e.g., smartphones and webcams, into powerful, low-cost, handheld microscopes. To date, the reproducible fabrication of polymer lenses is still a challenge as they require controlled dispensing of viscous liquid. This paper reports a reproducible lens fabrication technique using liquid mold with programmable curvature and off-the-shelf materials. The lens curvature is controlled during fabrication by tuning the curvature of an interface of two immiscible liquids [polydimethylsiloxane (PDMS) and glycerol]. The curvature control is implemented using a visual feedback system, which includes a software-based guiding system to produce lenses of desired curvature. The technique allows PDMS lens fabrication of a wide range of sizes and focal lengths, within 20 min. The fabrication of two lens diameters: 1 and 5 mm with focal lengths ranging between 1.2 and 11 mm are demonstrated. The lens surface and bulk quality check performed using X-ray microtomography and atomic force microscopy reveal that the lenses are suitable for optical imaging. Furthermore, a smartphone microscope with ∼1.4-μm resolution is developed using a self-assembly of a single high power fabricated lens and microaperture. The lenses have various potential applications, e.g., optofluidics, diagnostics, forensics, and surveillance. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  18. Morphology Evolution of Polypropylene in Immiscible Polymer Blends for Fabrication of Nanofibers

    USDA-ARS?s Scientific Manuscript database

    Immiscible blends of cellulose acetate butyrate (CAB) and isotactic polypropylenes (iPPs) with different melting index were extruded through a two-strand rod die. The extrudates were hot-drawn at the die exit at different draw ratios by controlling the drawing speed. The morphologies of iPP fibers e...

  19. Fabrication of Tunable Submicro- or Nano-structured Polyethylene Materials form Immiscible Blends with Cellulose Acetate Butyrate

    USDA-ARS?s Scientific Manuscript database

    Low density polyethylene (LDPE) was prepared into micro- or submicro-spheres or nanofibers via melt blending or extrusion of cellulose acetate butyrate (CAB)/LDPE immiscible blends and subsequent removal of the CAB matrix. The sizes of the PE spheres or fibers can be successfully controlled by varyi...

  20. Solvent extraction: the coordination chemistry behind extractive metallurgy.

    PubMed

    Wilson, A Matthew; Bailey, Phillip J; Tasker, Peter A; Turkington, Jennifer R; Grant, Richard A; Love, Jason B

    2014-01-07

    The modes of action of the commercial solvent extractants used in extractive hydrometallurgy are classified according to whether the recovery process involves the transport of metal cations, M(n+), metalate anions, MXx(n-), or metal salts, MXx into a water-immiscible solvent. Well-established principles of coordination chemistry provide an explanation for the remarkable strengths and selectivities shown by most of these extractants. Reagents which achieve high selectivity when transporting metal cations or metal salts into a water-immiscible solvent usually operate in the inner coordination sphere of the metal and provide donor atom types or dispositions which favour the formation of particularly stable neutral complexes that have high solubility in the hydrocarbons commonly used in recovery processes. In the extraction of metalates, the structures of the neutral assemblies formed in the water-immiscible phase are usually not well defined and the cationic reagents can be assumed to operate in the outer coordination spheres. The formation of secondary bonds in the outer sphere using, for example, electrostatic or H-bonding interactions are favoured by the low polarity of the water-immiscible solvents.

  1. Apparatus and method for the production of gel beads containing a biocatalyst

    DOEpatents

    Scott, C.D.; Scott, T.C.; Davison, B.H.

    1998-01-27

    An apparatus and method are disclosed for the large-scale and continuous production of gel beads containing a biocatalyst. The apparatus is a columnar system based on the chemical cross-linking of hydrocolloidal gels that contain and immobilize a biocatalyst, the biocatalyst being a microorganism or an enzyme. Hydrocolloidal gels, such as alginate, carrageenan, and a mixture of bone gelatin and modified alginate, provide immobilization matrices that can be used to entrap and retain the biocatalyst while allowing effective contact with substrates and release of products. Such immobilized biocatalysts are generally formulated into small spheres or beads that have high concentrations of the biocatalyst within the gel matrix. The columnar system includes a gel dispersion nozzle submerged in a heated non-interacting liquid, typically an organic liquid, that is immiscible with water to allow efficient formation of spherical gel droplets, the non-interacting liquid having a specific gravity that is less than water so that the gel droplets will fall through the liquid by the force of gravity. The heated non-interacting liquid is in direct contact with a chilled upflowing non-interacting liquid that will provide sufficient residence time for the gel droplets as they fall through the liquid so that they will be cooled below the gelling temperature and form solid spheres. The upflowing non-interacting liquid is in direct contact with an upflowing temperature-controlled aqueous solution containing the necessary chemicals for cross-linking or fixing of the gel beads to add the necessary stability. The flow rates of the two liquid streams can be varied to control the proper residence time in each liquid section to accommodate the production of gel beads of differing settling velocities. A valve is provided for continuous removal of the stabilized gel beads from the bottom of the column. 1 fig.

  2. Controlled and high throughput fabrication of poly(trimethylene terephthalate) nanofibers via melt extrusion of immiscible blends

    USDA-ARS?s Scientific Manuscript database

    Immiscible blends of cellulose acetate butyrate (CAB) and poly(trimethylene terephthalate) (PTT) were melt extruded through a two strand rod die. The extrudates were hot-drawn at the die exit at different draw ratios. PTT fibers were obtained by removal of the CAB matrix from the drawn extrudates, a...

  3. Controlled and high throughput fabrication of poly(trimethylene terphthalate) nanofibers via melt extrusion of immiscible blends

    USDA-ARS?s Scientific Manuscript database

    Immiscible blends of cellulose acetate butyrate (CAB) and poly(trimethylene terephthalate) (PTT) were melt extruded through a two strand rod die. The extrudates were hot-drawn at the die exit at different draw ratios. PTT fibers were obtained by removal of the CAB matrix from the drawn extrudates, a...

  4. Holographic microscopy studies of emulsions

    NASA Technical Reports Server (NTRS)

    Witherow, W. K.

    1981-01-01

    A holographic microscopy system that records and observes the dynamic properties of separation of dispersed immiscible fluids is described. The holographic construction system and reconstruction system that were used to obtain particle size and distribution information from the holograms are discussed. The holographic microscopy system is used to observed the phase separating processes in immiscible fluids that were isothermally cooled into the two phase region. Nucleation, growth rates, coalescence, and particle motion are successfully demonstrated with this system. Thus a holographic particle sizing system with a resolution of 2 micrometers and a field of view of 100 cu cm was developed that provides the capability of testing the theories of separating immiscible fluids for particle number densities in the range of 10 to 10 to the 7th power particles.

  5. Optofluidic solar concentrators using electrowetting tracking: Concept, design, and characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, JT; Park, S; Chen, CL

    2013-03-01

    We introduce a novel optofluidic solar concentration system based on electrowetting tracking. With two immiscible fluids in a transparent cell, we can actively control the orientation of fluid fluid interface via electrowetting. The naturally-formed meniscus between the two liquids can function as a dynamic optical prism for solar tracking and sunlight steering. An integrated optofluidic solar concentrator can be constructed from the liquid prism tracker in combination with a fixed and static optical condenser (Fresnel lens). Therefore, the liquid prisms can adaptively focus sunlight on a concentrating photovoltaic (CPV) cell sitting on the focus of the Fresnel lens as themore » sun moves. Because of the unique design, electrowetting tracking allows the concentrator to adaptively track both the daily and seasonal changes of the sun's orbit (dual-axis tracking) without bulky, expensive and inefficient mechanical moving parts. This approach can potentially reduce capital costs for CPV and increases operational efficiency by eliminating the power consumption of mechanical tracking. Importantly, the elimination of bulky tracking hardware and quiet operation will allow extensive residential deployment of concentrated solar power. In comparison with traditional silicon-based photovoltaic (PV) solar cells, the electrowetting-based self-tracking technology will generate,similar to 70% more green energy with a 50% cost reduction. (C) 2013 Elsevier Ltd. All rights reserved.« less

  6. Simultaneous PLIF and PIV measurement of a near field turbulent immiscible buoyant oil jet fragmentation in water using liquid-liquid refractive index matching

    NASA Astrophysics Data System (ADS)

    Xue, Xinzhi; Katz, Joseph

    2017-11-01

    Very little experimental data exits on the flow structure in the near field of a crude oil jet fragmenting in water because of inability to probe dense droplet cloud. Refractive index-matching is applied to overcome this challenge by using silicone oil and sugar water as a surrogate liquid pair. Their density ratio, viscosity ratio, and interfacial tension are closely matched with those of crude oil and seawater. Simultaneous PLIF and PIV measurements are conducted by fluorescently tagging the oil and seeding both phases with particles. With increasing jet Reynolds and Weber numbers, the oil plume breakup occurs closer to the nozzle, the spreading angle of the jet increases, and the droplet sizes decrease. The varying spread rate is attributed to differences in droplet size distributions. The location of primary oil breakup is consistent with the region of high strain rate fluctuations. What one may perceive as oil droplets in opaque fluids actually consists of multi-layers containing water droplets, which sometimes encapsulate smaller oil droplets, creating a ``Russian Doll'' like phenomenon. This system forms as ligaments of oil and water wrap around each other during entrainment. Results include profiles of mean velocity and turbulence parameters along with energy spectra. Gulf of Mexico Research Inititave.

  7. Mercury's core evolution

    NASA Astrophysics Data System (ADS)

    Deproost, Marie-Hélène; Rivoldini, Attilio; Van Hoolst, Tim

    2016-10-01

    Remote sensing data of Mercury's surface by MESSENGER indicate that Mercury formed under reducing conditions. As a consequence, silicon is likely the main light element in the core together with a possible small fraction of sulfur. Compared to sulfur, which does almost not partition into solid iron at Mercury's core conditions and strongly decreases the melting temperature, silicon partitions almost equally well between solid and liquid iron and is not very effective at reducing the melting temperature of iron. Silicon as the major light element constituent instead of sulfur therefore implies a significantly higher core liquidus temperature and a decrease in the vigor of compositional convection generated by the release of light elements upon inner core formation.Due to the immiscibility in liquid Fe-Si-S at low pressure (below 15 GPa), the core might also not be homogeneous and consist of an inner S-poor Fe-Si core below a thinner Si-poor Fe-S layer. Here, we study the consequences of a silicon-rich core and the effect of the blanketing Fe-S layer on the thermal evolution of Mercury's core and on the generation of a magnetic field.

  8. Evaporation of a Volatile Liquid Lens on the Surface of an Immiscible Liquid.

    PubMed

    Sun, Wei; Yang, Fuqian

    2016-06-21

    The evaporation behavior of toluene and hexane lenses on the surface of deionized (DI) water is studied. The toluene and hexane lenses during evaporation experience an advancing stage and a receding stage. There exists a significant difference of the evaporation behavior between the toluene lenses and the hexane lenses. The lifetime and largest diameter of both the toluene and hexane lenses increase with increasing the initial volume of the lenses. For the evaporation of the toluene lenses, the lifetime and largest diameter of the lenses decrease with increasing the temperature of DI water. The effect of the residual of the oil molecules on the evaporation of toluene lenses at a temperature of 21 °C is investigated via the evaporation of a series of consecutive toluene lenses being placed on the same position of the surface of DI water. The temporal evolution of the toluene lenses placed after the first toluene lens deviates significantly from that of the first toluene lens. Significant increase of the receding speed occurs at the dimensionless time in a range 0.7-0.8.

  9. Ternary liquid mixtures control the multiplicity, shape and internal structure of emulsion droplets

    NASA Astrophysics Data System (ADS)

    Haase, Martin F.; Brujic, Jasna

    2014-03-01

    It is important to control the shape, internal structure and stability of emulsion droplets for drug delivery, biochemical assays, and the design of materials with novel physical properties. Successful methods involve the mechanical manipulation of the flow of oil in water using complex microfluidic devices to make multiple emulsions with a sequential introduction of specific reactants. Instead, here we show how the thermodynamics of immiscible liquid mixtures tailor emulsions using a single dripping instability. For example, the initial composition and choice of surfactant govern the multiplicity of concentric alternating oil and water layers inside the droplets. Stabilizing ternary droplets using nanoparticles gives rise to a plethora of shapes whose geometry is defined by the deformability of the shell and the flow rate. Another option is to incorporate lipids to the multiple emulsion droplet, which form vesicles upon expulsion of the inner water droplets. Depending on the number of initial water droplets, these vesicles eventually form complex hollow topologies, which can be used as junctions or scaffolds for the self-assembly of colloidal particles in the future.

  10. Department of Homeland Security (DHS) Proficiency Testing on Small-Scale Safety and Thermal Testing of Improvised Explosives

    NASA Astrophysics Data System (ADS)

    Reynolds, John; Sandstrom, Mary; Brown, Geoffrey; Warner, Kirstin; Phillips, Jason; Shelley, Timothy; Reyes, Jose; Hsu, Peter

    2013-06-01

    One of the first steps in establishing safe handling procedures for explosives is small-scale safety and thermal (SSST) testing. To better understand the response of improvised materials or HMEs to SSST testing, 18 HME materials were compared to 3 standard military explosives in a proficiency-type round robin study among five laboratories--2 DoD and 3 DOE--sponsored by DHS. The testing matrix has been designed to address problems encountered with improvised materials--powder mixtures, liquid suspensions, partially wetted solids, immiscible liquids, and reactive materials. Over 30 issues have been identified that indicate standard test methods may require modification when applied to HMEs to derive accurate sensitivity assessments needed for development safe handling and storage practices. This presentation will discuss experimental difficulties encountered when testing these problematic samples, show inter-laboratory testing results, show some statistical interpretation of the results, and highlight some of the testing issues. Some of the work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-617519 (721812).

  11. DHS small-scale safety and thermal testing of improvised explosives-comparison of testing performance

    NASA Astrophysics Data System (ADS)

    Reynolds, J. G.; Sandstrom, M. M.; Brown, G. W.; Warner, K. F.; Phillips, J. J.; Shelley, T. J.; Reyes, J. A.; Hsu, P. C.

    2014-05-01

    One of the first steps in establishing safe handling procedures for explosives is small-scale safety and thermal (SSST) testing. To better understand the response of improvised materials or homemade explosives (HMEs) to SSST testing, 16 HME materials were compared to three standard military explosives in a proficiency-type round robin study among five laboratories-two DoD and three DOE-sponsored by DHS. The testing matrix has been designed to address problems encountered with improvised materials-powder mixtures, liquid suspensions, partially wetted solids, immiscible liquids, and reactive materials. More than 30 issues have been identified that indicate standard test methods may require modification when applied to HMEs to derive accurate sensitivity assessments needed for developing safe handling and storage practices. This paper presents a generalized comparison of the results among the testing participants, comparison of friction results from BAM (German Bundesanstalt für Materi-alprüfung) and ABL (Allegany Ballistics Laboratory) designed testing equipment, and an overview of the statistical results from the RDX (1,3,5-Trinitroperhydro-1,3,5-triazine) standard tested throughout the proficiency test.

  12. Separated rupture and retraction of a bi-layer free film

    NASA Astrophysics Data System (ADS)

    Stewart, Peter; Feng, Jie; Griffiths, Ian

    2017-11-01

    We investigate the dynamics of a rising air bubble in an aqueous phase coated with a layer of oil. Recent experiments have shown that bubble rupture at the compound air/oil/aqueous interface can effectively disperse submicrometre oil droplets into the aqueous phase, suggesting a possible mechanism for clean-up of oil spillages on the surface of the ocean. Using a theoretical model we consider the stability of the long liquid free film formed as the bubble reaches the free surface, composed of two immiscible layers of differing viscosities, where each layer experiences a van der Waals force between its interfaces. For an excess of surfactant on one gas-liquid interface we show that the instability manifests as distinct rupture events, with the oil layer rupturing first and retracting over the in-tact water layer beneath, consistent with the experimental observations. We use our model to examine the dynamics of oil retraction, showing that it follows a power-law for short times, and examine the influence of retraction on the stability of the water layer.

  13. Oil-Water Flow Investigations using Planar-Laser Induced Fluorescence and Particle Velocimetry

    NASA Astrophysics Data System (ADS)

    Ibarra, Roberto; Matar, Omar K.; Markides, Christos N.

    2017-11-01

    The study of the complex behaviour of immiscible liquid-liquid flow in pipes requires the implementation of advanced measurement techniques in order to extract detailed in situ information. Laser-based diagnostic techniques allow the extraction of high-resolution space- and time resolve phase and velocity information, which aims to improve the fundamental understanding of these flows and to validate closure relations for advanced multiphase flow models. This work shows a novel simultaneous planar-laser induced fluorescence and particle velocimetry in stratified oil-water flows using two laser light sheets at two different wavelengths for fluids with different refractive indices at horizontal and upward pipe inclinations (<5°) in stratified flow conditions (i.e. separated layers). Complex flow structures are extracted from 2-D instantaneous velocity fields, which are strongly dependent on the pipe inclination at low velocities. The analysis of mean wall-normal velocity profiles and velocity fluctuations suggests the presence of single- and counter-rotating vortices in the azimuthal direction, especially in the oil layer, which can be attributed to the influence of the interfacial waves. Funding from BP, and the TMF Consortium is gratefully acknowledged.

  14. Apparent and microscopic dynamic contact angles in confined flows

    NASA Astrophysics Data System (ADS)

    Omori, Takeshi; Kajishima, Takeo

    2017-11-01

    An abundance of empirical correlations between a dynamic contact angle and a capillary number representing a translational velocity of a contact line have been provided for the last decades. The experimentally obtained dynamic contact angles are inevitably apparent contact angles but often undistinguished from microscopic contact angles formed right on the wall. As Bonn et al. ["Wetting and spreading," Rev. Mod. Phys. 81, 739-805 (2009)] pointed out, however, most of the experimental studies simply report values of angles recorded at some length scale which is quantitatively unknown. It is therefore hard to evaluate or judge the physical validity and the generality of the empirical correlations. The present study is an attempt to clear this clutter regarding the dynamic contact angle by measuring both the apparent and the microscopic dynamic contact angles from the identical data sets in a well-controlled manner, by means of numerical simulation. The numerical method was constructed so that it reproduced the fine details of the flow with a moving contact line predicted by molecular dynamics simulations [T. Qian, X. Wang, and P. Sheng, "Molecular hydrodynamics of the moving contact line in two-phase immiscible flows," Commun. Comput. Phys. 1, 1-52 (2006)]. We show that the microscopic contact angle as a function of the capillary number has the same form as Blake's molecular-kinetic model [T. Blake and J. Haynes, "Kinetics of liquid/liquid displacement," J. Colloid Interface Sci. 30, 421-423 (1969)], regardless of the way the flow is driven, the channel width, the mechanical properties of the receding fluid, and the value of the equilibrium contact angle under the conditions where the Reynolds and capillary numbers are small. We have also found that the apparent contact angle obtained by the arc-fitting of the interface behaves surprisingly universally as claimed in experimental studies in the literature [e.g., X. Li et al., "An experimental study on dynamic pore wettability," Chem. Eng. Sci. 104, 988-997 (2013)], although the angle deviates significantly from the microscopic contact angle. It leads to a practically important point that it suffices to measure arc-fitted contact angles to make formulae to predict flow rates in capillary tubes.

  15. Seismic Wave Velocity in Earth's Shallow Core

    NASA Astrophysics Data System (ADS)

    Alexandrakis, C.; Eaton, D. W.

    2008-12-01

    Studies of the outer core indicate that it is composed of liquid Fe and Ni alloyed with a ~10% fraction of light elements such as O, S or Si. Recently, unusual features, such as sediment accumulation, immiscible fluid layers or stagnant convection, have been predicted in the shallow core region. Secular cooling and compositional buoyancy drive vigorous convection that sustains the geodynamo, although critical details of light-element composition and thermal regime remain uncertain. Seismic velocity models can provide important constraints on the light element composition, however global reference models, such as Preliminary Reference Earth Model (PREM), IASP91 and AK135 vary significantly in the 200 km below the core-mantle boundary. Past studies of the outermost core velocity structure have been hampered by traveltime uncertainties due to lowermost mantle heterogeneities. The recently published Empirical Transfer Function (ETF) method has been shown to reduce the uncertainty using a waveform stacking approach to improve global observations of SmKS teleseismic waves. Here, we apply the ETF method to achieve a precise top-of-core velocity measurement of 8.05 ± 0.03 km/s. This new model accords well with PREM. Since PREM is based on the adiabatic form of the Adams-Williamson equation, it assumes a well mixed (i.e. homogeneous) composition. This result suggests a lack of heterogeneity in the outermost core due to layering or stagnant convection.

  16. Phase-field-based lattice Boltzmann modeling of large-density-ratio two-phase flows

    NASA Astrophysics Data System (ADS)

    Liang, Hong; Xu, Jiangrong; Chen, Jiangxing; Wang, Huili; Chai, Zhenhua; Shi, Baochang

    2018-03-01

    In this paper, we present a simple and accurate lattice Boltzmann (LB) model for immiscible two-phase flows, which is able to deal with large density contrasts. This model utilizes two LB equations, one of which is used to solve the conservative Allen-Cahn equation, and the other is adopted to solve the incompressible Navier-Stokes equations. A forcing distribution function is elaborately designed in the LB equation for the Navier-Stokes equations, which make it much simpler than the existing LB models. In addition, the proposed model can achieve superior numerical accuracy compared with previous Allen-Cahn type of LB models. Several benchmark two-phase problems, including static droplet, layered Poiseuille flow, and spinodal decomposition are simulated to validate the present LB model. It is found that the present model can achieve relatively small spurious velocity in the LB community, and the obtained numerical results also show good agreement with the analytical solutions or some available results. Lastly, we use the present model to investigate the droplet impact on a thin liquid film with a large density ratio of 1000 and the Reynolds number ranging from 20 to 500. The fascinating phenomena of droplet splashing is successfully reproduced by the present model and the numerically predicted spreading radius exhibits to obey the power law reported in the literature.

  17. Microfluidic process monitor for industrial solvent extraction system

    DOEpatents

    Gelis, Artem; Pereira, Candido; Nichols, Kevin Paul Flood

    2016-01-12

    The present invention provides a system for solvent extraction utilizing a first electrode with a raised area formed on its surface, which defines a portion of a microfluidic channel; a second electrode with a flat surface, defining another portion of the microfluidic channel that opposes the raised area of the first electrode; a reversibly deformable substrate disposed between the first electrode and second electrode, adapted to accommodate the raised area of the first electrode and having a portion that extends beyond the raised area of the first electrode, that portion defining the remaining portions of the microfluidic channel; and an electrolyte of at least two immiscible liquids that flows through the microfluidic channel. Also provided is a system for performing multiple solvent extractions utilizing several microfluidic chips or unit operations connected in series.

  18. Evolution of KREEP - Further petrologic evidence. [igneous rocks from Apollo 15 site

    NASA Technical Reports Server (NTRS)

    Crawford, M. L.; Hollister, L. S.

    1977-01-01

    It is hypothesized that KREEP samples from the Apollo 15 site are igneous. To support the hypothesis, comparisons are made with other crystalline KREEP samples, especially 14310. It is noted that the low siderophile element content and lack of high pressure phenocrysts in the Apollo 15 KREEP may be indications of a slower rise of KREEP melt to the surface, when contrasted with sample 14310. Gravitational separation of Fe-Ni metal is proposed as a mechanism to account for the depletion of siderophile elements relative to the Si-rich component. It is further suggested that KREEP may be the parent of Apollo 12 and 15 basalts, as well as of granitic rocks, due to the liquid immiscibility occurring during the KREEP melt crystallization, and the subsequent independent evolution of the components.

  19. Electrically conducting ternary amorphous fully oxidized materials and their application

    NASA Technical Reports Server (NTRS)

    Giauque, Pierre (Inventor); Nicolet, Marc (Inventor); Gasser, Stefan M. (Inventor); Kolawa, Elzbieta A. (Inventor); Cherry, Hillary (Inventor)

    2004-01-01

    Electrically active devices are formed using a special conducting material of the form Tm--Ox mixed with SiO2 where the materials are immiscible. The immiscible materials are forced together by using high energy process to form an amorphous phase of the two materials. The amorphous combination of the two materials is electrically conducting but forms an effective barrier.

  20. Intermolecular network analysis of the liquid and vapor interfaces of pentane and water: microsolvation does not trend with interfacial properties.

    PubMed

    Ghadar, Yasaman; Clark, Aurora E

    2014-06-28

    Liquid:vapor and liquid:liquid interfaces exhibit complex organizational structure and dynamics at the molecular level. In the case of water and organic solvents, the hydrophobicity of the organic, its conformational flexibility, and compressibility, all influence interfacial properties. This work compares the interfacial tension, width, molecular conformations and orientations at the vapor and aqueous liquid interfaces of two solvents, n-pentane and neopentane, whose varying molecular shapes can lead to significantly different interfacial behavior. Particular emphasis has been dedicated toward understanding how the hydrogen bond network of water responds to the pentane relative to the vapor interface and the sensitivity of the network to the individual pentane isomer and system temperature. Interfacial microsolvation of the immiscible solvents has been examined using graph theoretical methods that quantify the structure and dynamics of microsolvated species (both H2O in C5H12 and C5H12 in H2O). At room temperature, interfacial water at the pentane phase boundary is found to have markedly different organization and dynamics than at the vapor interface (as indicated by the hydrogen bond distributions and hydrogen bond persistence in solution). While the mesoscale interfacial properties (e.g. interfacial tension) are sensitive to the specific pentane isomer, the distribution and persistence of microsolvated species at the interface is nearly identical for both systems, irrespective of temperature (between 273 K and 298 K). This has important implications for understanding how properties defined by the interfacial organization are related to the underlying solvation reactions that drive formation of the phase boundary.

  1. Screen-printed electrode-based electrochemical detector coupled with in-situ ionic-liquid-assisted dispersive liquid-liquid microextraction for determination of 2,4,6-trinitrotoluene.

    PubMed

    Fernández, Elena; Vidal, Lorena; Iniesta, Jesús; Metters, Jonathan P; Banks, Craig E; Canals, Antonio

    2014-03-01

    A novel method is reported, whereby screen-printed electrodes (SPELs) are combined with dispersive liquid-liquid microextraction. In-situ ionic liquid (IL) formation was used as an extractant phase in the microextraction technique and proved to be a simple, fast and inexpensive analytical method. This approach uses miniaturized systems both in sample preparation and in the detection stage, helping to develop environmentally friendly analytical methods and portable devices to enable rapid and onsite measurement. The microextraction method is based on a simple metathesis reaction, in which a water-immiscible IL (1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, [Hmim][NTf2]) is formed from a water-miscible IL (1-hexyl-3-methylimidazolium chloride, [Hmim][Cl]) and an ion-exchange reagent (lithium bis[(trifluoromethyl)sulfonyl]imide, LiNTf2) in sample solutions. The explosive 2,4,6-trinitrotoluene (TNT) was used as a model analyte to develop the method. The electrochemical behavior of TNT in [Hmim][NTf2] has been studied in SPELs. The extraction method was first optimized by use of a two-step multivariate optimization strategy, using Plackett-Burman and central composite designs. The method was then evaluated under optimum conditions and a good level of linearity was obtained, with a correlation coefficient of 0.9990. Limits of detection and quantification were 7 μg L(-1) and 9 μg L(-1), respectively. The repeatability of the proposed method was evaluated at two different spiking levels (20 and 50 μg L(-1)), and coefficients of variation of 7 % and 5 % (n = 5) were obtained. Tap water and industrial wastewater were selected as real-world water samples to assess the applicability of the method.

  2. Solidification of floating organic droplet in dispersive liquid-liquid microextraction as a green analytical tool.

    PubMed

    Mansour, Fotouh R; Danielson, Neil D

    2017-08-01

    Dispersive liquid-liquid microextraction (DLLME) is a special type of microextraction in which a mixture of two solvents (an extracting solvent and a disperser) is injected into the sample. The extraction solvent is then dispersed as fine droplets in the cloudy sample through manual or mechanical agitation. Hence, the sample is centrifuged to break the formed emulsion and the extracting solvent is manually separated. The organic solvents commonly used in DLLME are halogenated hydrocarbons that are highly toxic. These solvents are heavier than water, so they sink to the bottom of the centrifugation tube which makes the separation step difficult. By using solvents of low density, the organic extractant floats on the sample surface. If the selected solvent such as undecanol has a freezing point in the range 10-25°C, the floating droplet can be solidified using a simple ice-bath, and then transferred out of the sample matrix; this step is known as solidification of floating organic droplet (SFOD). Coupling DLLME to SFOD combines the advantages of both approaches together. The DLLME-SFOD process is controlled by the same variables of conventional liquid-liquid extraction. The organic solvents used as extractants in DLLME-SFOD must be immiscible with water, of lower density, low volatility, high partition coefficient and low melting and freezing points. The extraction efficiency of DLLME-SFOD is affected by types and volumes of organic extractant and disperser, salt addition, pH, temperature, stirring rate and extraction time. This review discusses the principle, optimization variables, advantages and disadvantages and some selected applications of DLLME-SFOD in water, food and biomedical analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Finite-element simulations of the influence of pore wall adsorption on cyclic voltammetry of ion transfer across a liquid-liquid interface formed at a micropore.

    PubMed

    Ellis, Jonathan S; Strutwolf, Jörg; Arrigan, Damien W M

    2012-02-21

    Adsorption onto the walls of micropores was explored by computational simulations involving cyclic voltammetry of ion transfer across an interface between aqueous and organic phases located at the micropore. Micro-interfaces between two immiscible electrolyte solutions (micro-ITIES) have been of particular research interest in recent years and show promise for biosensor and biomedical applications. The simulation model combines diffusion to and within the micropore, Butler-Volmer kinetics for ion transfer at the liquid-liquid interface, and Langmuir-style adsorption on the pore wall. Effects due to pore radius, adsorption and desorption rates, surface adsorption site density, and scan rates were examined. It was found that the magnitude of the reverse peak current decreased due to adsorption of the transferring ion on the pore wall; this decrease was more marked as the scan rate was increased. There was also a shift in the half-wave potential to lower values following adsorption, consistent with a wall adsorption process which provides a further driving force to transfer ions across the ITIES. Of particular interest was the disappearance of the reverse peak from the cyclic voltammogram at higher scan rates, compared to the increase in the reverse peak size in the absence of wall adsorption. This occurred for scan rates of 50 mV s(-1) and above and may be useful in biosensor applications using micropore-based ITIES.

  4. On-line comprehensive two-dimensional normal-phase liquid chromatography × reversed-phase liquid chromatography for preparative isolation of Peucedanum praeruptorum.

    PubMed

    Wang, Xin-Yuan; Li, Jia-Fu; Jian, Ya-Mei; Wu, Zhen; Fang, Mei-Juan; Qiu, Ying-Kun

    2015-03-27

    A new on-line comprehensive preparative two-dimensional normal-phase liquid chromatography × reversed-phase liquid chromatography (2D NPLC × RPLC) system was developed for the separation of complicated natural products. It was based on the use of a silica gel packed medium-pressure column as the first dimension and an ODS preparative HPLC column as the second dimension. The two dimensions were connected with normal-phase (NP) and reversed-phase (RP) enrichment units, involving a newly developed airflow assisted adsorption (AAA) technique. The instrument operation and the performance of this NPLC × RPLC separation method were illustrated by gram-scale isolation of ethanol extract from the roots of Peucedanum praeruptorum. In total, 19 compounds with high purity were obtained via automated multi-step preparative separation in a short period of time using this system, and their structures were comprehensively characterized by ESI-MS, (1)H NMR, and (13)C NMR. Including two new compounds, five isomers in two groups with identical HPLC and TLC retention values were also obtained and identified by 1D NMR and 2D NMR. This is the first report of an NPLC × RPLC system successfully applied in an on-line preparative process. This system not only solved the interfacing problem of mobile-phase immiscibility caused by NP and RP separation, it also exhibited apparent advantages in separation efficiency and sample treatment capacity compared with conventional methods. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Numerical study of wall effects on buoyant gas-bubble rise in a liquid-filled finite cylinder

    PubMed Central

    Mukundakrishnan, Karthik; Quan, Shaoping; Eckmann, David M.; Ayyaswamy, Portonovo S.

    2009-01-01

    The wall effects on the axisymmetric rise and deformation of an initially spherical gas bubble released from rest in a liquid-filled, finite circular cylinder are numerically investigated. The bulk and gas phases are considered incompressible and immiscible. The bubble motion and deformation are characterized by the Morton number (Mo), Eötvös number (Eo), Reynolds number (Re), Weber number (We), density ratio, viscosity ratio, the ratios of the cylinder height and the cylinder radius to the diameter of the initially spherical bubble (H* = H/d0, R* = R/d0). Bubble rise in liquids described by Eo and Mo combinations ranging from (1,0.01) to (277.5,0.092), as appropriate to various terminal state Reynolds numbers (ReT) and shapes have been studied. The range of terminal state Reynolds numbers includes 0.02 < ReT < 70. Bubble shapes at terminal states vary from spherical to intermediate spherical-cap–skirted. The numerical procedure employs a front tracking finite difference method coupled with a level contour reconstruction of the front. This procedure ensures a smooth distribution of the front points and conserves the bubble volume. For the wide range of Eo and Mo examined, bubble motion in cylinders of height H* = 8 and R* ≥ 3, is noted to correspond to the rise in an infinite medium, both in terms of Reynolds number and shape at terminal state. In a thin cylindrical vessel (small R*), the motion of the bubble is retarded due to increased total drag and the bubble achieves terminal conditions within a short distance from release. The wake effects on bubble rise are reduced, and elongated bubbles may occur at appropriate conditions. For a fixed volume of the bubble, increasing the cylinder radius may result in the formation of well-defined rear recirculatory wakes that are associated with lateral bulging and skirt formation. The paper includes figures of bubble shape regimes for various values of R*, Eo, Mo, and ReT. Our predictions agree with existing results reported in the literature. PMID:17930342

  6. The Skaergaard trough layering: sedimentation in a convecting magma chamber

    NASA Astrophysics Data System (ADS)

    Vukmanovic, Z.; Holness, M. B.; Monks, K.; Andersen, J. C. Ø.

    2018-05-01

    The upper parts of the floor cumulates of the Skaergaard Intrusion, East Greenland, contain abundant features known as troughs. The troughs are gently plunging synformal structures comprising stacks of crescentic modally graded layers with a sharply defined mafic base that grades upward into plagioclase-rich material. The origin of the troughs and layering is contentious, attributed variously to deposition of mineral grains by magmatic currents descending from the nearby walls, or to in situ development by localised recrystallisation during gravitationally-driven compaction. They are characterised by outcrop-scale features such as mineral lineations parallel to the trough axis, evidence of erosion and layer truncation associated with migration of the trough axis, and disruption of layering by syn-magmatic slumping. A detailed microstructural study of the modal trough layers, using electron backscatter diffraction together with geochemical mapping, demonstrates that these rocks do not record evidence for deformation by either dislocation creep or dissolution-reprecipitation. Instead, the troughs are characterised by the alignment of euhedral plagioclase crystals with unmodified primary igneous compositional zoning. We argue that the lineations and foliations are, therefore, a consequence of grain alignment during magmatic flow. Post-accumulation amplification of the modal layering occurred as a result of differential migration of an unmixed immiscible interstitial liquid, with upwards migration of the Si-rich conjugate into the plagioclase-rich upper part of the layers, whereas the Fe-rich immiscible conjugate remained in the mafic base. Both field and microstructure evidence support the origin of the troughs as the sites of repeated deposition from crystal-rich currents descending from the nearby chamber walls.

  7. Universality Results for Multi-phase Hele-Shaw Flows

    NASA Astrophysics Data System (ADS)

    Daripa, Prabir

    2013-03-01

    Saffman-Taylor instability is a well known viscosity driven instability of an interface separating two immiscible fluids. We study linear stability of displacement processes in a Hele-Shaw cell involving an arbitrary number of immiscible fluid phases. This is a problem involving many interfaces. Universal stability results have been obtained for this multi-phase immiscible flow in the sense that the results hold for arbitrary number of interfaces. These stability results have been applied to design displacement processes that are considerably less unstable than the pure Saffman-Taylor case. In particular, we derive universal formula which gives specific values of the viscosities of the fluid layers corresponding to smallest unstable band. Other similar universal results will also be presented. The talk is based on the following paper. This work was supported by the Qatar National Research Fund (a member of The Qatar Foundation).

  8. Non-crosslinked, amorphous, block copolymer electrolyte for batteries

    DOEpatents

    Mayes, Anne M.; Ceder, Gerbrand; Chiang, Yet-Ming; Sadoway, Donald R.; Aydinol, Mehmet K.; Soo, Philip P.; Jang, Young-Il; Huang, Biying

    2006-04-11

    Solid battery components are provided. A block copolymeric electrolyte is non-crosslinked and non-glassy through the entire range of typical battery service temperatures, that is, through the entire range of at least from about 0.degree. C. to about 70.degree. C. The chains of which the copolymer is made each include at least one ionically-conductive block and at least one second block immiscible with the ionically-conductive block. The chains form an amorphous association and are arranged in an ordered nanostructure including a continuous matrix of amorphous ionically-conductive domains and amorphous second domains that are immiscible with the ionically-conductive domains. A compound is provided that has a formula of Li.sub.xM.sub.yN.sub.zO.sub.2. M and N are each metal atoms or a main group elements, and x, y and z are each numbers from about 0 to about 1. y and z are chosen such that a formal charge on the M.sub.yN.sub.z portion of the compound is (4-x). In certain embodiments, these compounds are used in the cathodes of rechargeable batteries. The present invention also includes methods of predicting the potential utility of metal dichalgogenide compounds for use in lithium intercalation compounds. It also provides methods for processing lithium intercalation oxides with the structure and compositional homogeneity necessary to realize the increased formation energies of said compounds. An article is made of a dimensionally-stable, interpenetrating microstructure of a first phase including a first component and a second phase, immiscible with the first phase, including a second component. The first and second phases define interphase boundaries between them, and at least one particle is positioned between a first phase and a second phase at an interphase boundary. When the first and second phases are electronically-conductive and ionically-conductive polymers, respectively, and the particles are ion host particles, the arrangement is an electrode of a battery.

  9. Compositions of Magmatic and Impact Melt Sulfides in Tissint And EETA79001: Precursors of Immiscible Sulfide Melt Blebs in Shergottite Impact Melts

    NASA Technical Reports Server (NTRS)

    Ross, D. K.; Rao, M. N.; Nyquist, L.; Agee, C.; Sutton, S.

    2013-01-01

    Immiscible sulfide melt spherules are locally very abundant in shergottite impact melts. These melts can also contain samples of Martian atmospheric gases [1], and cosmogenic nuclides [2] that are present in impact melt, but not in the host shergottite, indicating some components in the melt resided at the Martian surface. These observations show that some regolith components are, at least locally, present in the impact melts. This view also suggests that one source of the over-abundant sulfur in these impact melts could be sulfates that are major constituents of Martian regolith, and that the sulfates were reduced during shock heating to sulfide. An alternative view is that sulfide spherules in impact melts are produced solely by melting the crystalline sulfide minerals (dominantly pyrrhotite, Fe(1-x)S) that are present in shergottites [3]. In this abstract we report new analyses of the compositions of sulfide immiscible melt spherules and pyrrhotite in the shergottites Tissint, and EETA79001,507, and we use these data to investigate the possible origins of the immiscible sulfide melt spherules. In particular, we use the metal/S ratios determined in these blebs as potential diagnostic criteria for tracking the source material from which the numerous sulfide blebs were generated by shock in these melts.

  10. Electrowetting Lens Employing Hemispherical Cavity Formed by Hydrofluoric Acid, Nitric Acid, and Acetic Acid Etching of Silicon

    NASA Astrophysics Data System (ADS)

    Lee, June Kyoo; Choi, Ju Chan; Jang, Won Ick; Kim, Hak-Rin; Kong, Seong Ho

    2012-06-01

    We demonstrate the design of an electrowetting lens employing a high-aspect-ratio hemispherical lens cavity and its micro-electro-mechanical-system (MEMS) fabrication process in this study. Our preliminary simulation results showed that the physical and electrical durability of the lens can be improved by the mitigation of stresses on the insulator at the hemispherical cavity. High-aspect-ratio hemispherical cavities with various diameters and very smooth sidewall surfaces were uniformly fabricated on a silicon wafer by a sophisticated isotropic wet etching technique. Moreover, we experimentally investigated the optical properties of the MEMS-based electrowetting lens with the proposed cavity. Two immiscible liquids in the proposed lens cavity were electrostatically controlled with negligible optical distortion and low focal-length hysteresis due to the fully axis-symmetrical geometry and smooth sidewall of the cavity.

  11. Formation of droplet interface bilayers in a Teflon tube

    NASA Astrophysics Data System (ADS)

    Walsh, Edmond; Feuerborn, Alexander; Cook, Peter R.

    2016-09-01

    Droplet-interface bilayers (DIBs) have applications in disciplines ranging from biology to computing. We present a method for forming them manually using a Teflon tube attached to a syringe pump; this method is simple enough it should be accessible to those without expertise in microfluidics. It exploits the properties of interfaces between three immiscible liquids, and uses fluid flow through the tube to pack together drops coated with lipid monolayers to create bilayers at points of contact. It is used to create functional nanopores in DIBs composed of phosphocholine using the protein α-hemolysin (αHL), to demonstrate osmotically-driven mass transfer of fluid across surfactant-based DIBs, and to create arrays of DIBs. The approach is scalable, and thousands of DIBs can be prepared using a robot in one hour; therefore, it is feasible to use it for high throughput applications.

  12. Numerical Simulation of Hydrodynamics of a Heavy Liquid Drop Covered by Vapor Film in a Water Pool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, W.M.; Yang, Z.L.; Giri, A.

    2002-07-01

    A numerical study on the hydrodynamics of a droplet covered by vapor film in water pool is carried out. Two level set functions are used as to implicitly capture the interfaces among three immiscible fluids (melt-drop, vapor and coolant). This approach leaves only one set of conservation equations for the three phases. A high-order Navier-Stokes solver, called Cubic-Interpolated Pseudo-Particle (CIP) algorithm, is employed in combination with level set approach, which allows large density ratios (up to 1000), surface tension and jump in viscosity. By this calculation, the hydrodynamic behavior of a melt droplet falling into a volatile coolant is simulated,more » which is of great significance to reveal the mechanism of steam explosion during a hypothetical severe reactor accident. (authors)« less

  13. Chronology and petrogenesis of a 1.8 g lunar granitic clast:14321,1062

    NASA Technical Reports Server (NTRS)

    Shih, C.-Y.; Bansal, B. M.; Wiesmann, H.; Nyquist, L. E.; Bogard, D. D.; Wooden, J. L.

    1985-01-01

    Geochronological, isotopic, and trace element data for a pristine granite clast from Apollo 14 breccia 14321 obtained using Rb-Sr, Sm-Nd, and (Ar-39)-(Ar-40) methods are presented. Trace element data for a possibly related evolved rock, the quartz-monodiorite clast from breccia 15404 are also presented, and the relationship between these two rock types is discussed. The concordancy of the Rb-Sr and Sm-Nd internal isochron ages and especially the Rb-Sr model age strongly suggest that the granite clast formed 4.1 AE ago. It probably crystallized slowly in the crust and was later excavated and brecciated about 3.88 AE ago, as indicated by the Ar-Ar age. A two-stage model involving crystal fractionation followed by silicate liquid immiscibility is proposed for the lunar granite genesis.

  14. Oleoplaning droplets on lubricated surfaces

    NASA Astrophysics Data System (ADS)

    Daniel, Dan; Timonen, Jaakko V. I.; Li, Ruoping; Velling, Seneca J.; Aizenberg, Joanna

    2017-10-01

    Recently, there has been much interest in using lubricated surfaces to achieve extreme liquid repellency: a foreign droplet immiscible with the underlying lubricant layer was shown to slide off at a small tilt angle <5°. This behaviour was hypothesized to arise from a thin lubricant overlayer film sandwiched between the droplet and solid substrate, but this has not been observed experimentally. Here, using thin-film interference, we are able to visualize the intercalated film under both static and dynamic conditions. We further demonstrate that for a moving droplet, the film thickness follows the Landau-Levich-Derjaguin law. The droplet is therefore oleoplaning--akin to tyres hydroplaning on a wet road--with minimal dissipative force and no contact line pinning. The techniques and insights presented in this study will inform future work on the fundamentals of wetting for lubricated surfaces and enable their rational design.

  15. Flow of two immiscible fluids in a periodically constricted tube: Transitions to stratified, segmented, churn, spray, or segregated flow

    NASA Astrophysics Data System (ADS)

    Fraggedakis, D.; Kouris, Ch.; Dimakopoulos, Y.; Tsamopoulos, J.

    2015-08-01

    We study the flow of two immiscible, Newtonian fluids in a periodically constricted tube driven by a constant pressure gradient. Our volume-of-fluid algorithm is used to solve the governing equations. First, the code is validated by comparing its predictions to previously reported results for stratified and pulsing flow. Then, it is used to capture accurately all the significant topological changes that take place. Initially, the fluids have a core-annular arrangement, which is found to either remain the same or change to a different arrangement depending on the fluid properties, the pressure driving the flow, or the flow geometry. The flow-patterns that appear are the core-annular, segmented, churn, spray, and segregated flow. The predicted scalings near pinching of the core fluid concur with similarity predictions and earlier numerical results [I. Cohen et al., "Two fluid drop snap-off problem: Experiments and theory," Phys. Rev. Lett. 83, 1147-1150 (1999)]. Flow-pattern maps are constructed in terms of the Reynolds and Weber numbers. Our result provides deeper insights into the mechanism of the pattern transitions and is in agreement with previous studies on core-annular flow [Ch. Kouris and J. Tsamopoulos, "Core-annular flow in a periodically constricted circular tube, I. Steady state, linear stability and energy analysis," J. Fluid Mech. 432, 31-68 (2001) and Ch. Kouris et al., "Comparison of spectral and finite element methods applied to the study of interfacial instabilities of the core-annular flow in an undulating tube," Int. J. Numer. Methods Fluids 39(1), 41-73 (2002)], segmented flow [E. Lac and J. D. Sherwood, "Motion of a drop along the centreline of a capillary in a pressure-driven flow," J. Fluid Mech. 640, 27-54 (2009)], and churn flow [R. Y. Bai et al., "Lubricated pipelining—Stability of core annular-flow. 5. Experiments and comparison with theory," J. Fluid Mech. 240, 97-132 (1992)].

  16. Deep eutectic solvent based gas-assisted dispersive liquid-phase microextraction combined with gas chromatography and flame ionization detection for the determination of some pesticide residues in fruit and vegetable samples.

    PubMed

    Farajzadeh, Mir Ali; Sattari Dabbagh, Masoumeh; Yadeghari, Adeleh

    2017-05-01

    In this study, a gas-assisted dispersive liquid-phase microextraction method using a deep eutectic solvent as the extraction solvent combined with gas chromatography and flame ionization detection was developed for the extraction and determination of some pesticide residues in vegetable and fruit juice samples. In this method, choline chloride and 4-chlorophenol at a molar ratio of 1:2 were mixed. By heating and vortexing, a clear, water-immiscible, and homogeneous liquid was formed. The obtained deep eutectic solvent was added to an aqueous solution of the analytes in a conical test tube. Air was bubbled into the aqueous solution and a cloudy solution was obtained. During this step, the analytes were extracted into the fine droplets of the extraction solvent. After centrifugation, an aliquot of the settled phase was injected into the separation system. Under the optimum extraction conditions, enrichment factors, and extraction recoveries were obtained in the ranges of 247-355 and 49-71%, respectively. The obtained values for the limits of detection and quantification were in the ranges of 0.24-1.4 and 0.71-4.2 μg/L, respectively. The proposed method is simple, fast, efficient, and inexpensive. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Immiscible fluid: Heat of fusion heat storage system

    NASA Technical Reports Server (NTRS)

    Edie, D. D.; Melsheimer, S. S.; Mullins, J. C.

    1980-01-01

    Both heat and mass transfer in direct contact aqueous crystallizing systems were studied as part of a program desig- ned to evaluate the feasibility of direct contact heat transfer in phase change storage using aqueous salt system. Major research areas, discussed include (1) crystal growth velocity study on selected salts; (2) selection of salt solutions; (3) selection of immiscible fluids; (4) studies of heat transfer and system geometry; and (5) system demonstration.

  18. Metal Immiscibility Route to Synthesis of Ultrathin Carbides, Borides, and Nitrides.

    PubMed

    Wang, Zixing; Kochat, Vidya; Pandey, Prafull; Kashyap, Sanjay; Chattopadhyay, Soham; Samanta, Atanu; Sarkar, Suman; Manimunda, Praveena; Zhang, Xiang; Asif, Syed; Singh, Abhisek K; Chattopadhyay, Kamanio; Tiwary, Chandra Sekhar; Ajayan, Pulickel M

    2017-08-01

    Ultrathin ceramic coatings are of high interest as protective coatings from aviation to biomedical applications. Here, a generic approach of making scalable ultrathin transition metal-carbide/boride/nitride using immiscibility of two metals is demonstrated. Ultrathin tantalum carbide, nitride, and boride are grown using chemical vapor deposition by heating a tantalum-copper bilayer with corresponding precursor (C 2 H 2 , B powder, and NH 3 ). The ultrathin crystals are found on the copper surface (opposite of the metal-metal junction). A detailed microscopy analysis followed by density functional theory based calculation demonstrates the migration mechanism, where Ta atoms prefer to stay in clusters in the Cu matrix. These ultrathin materials have good interface attachment with Cu, improving the scratch resistance and oxidation resistance of Cu. This metal-metal immiscibility system can be extended to other metals to synthesize metal carbide, boride, and nitride coatings. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Inhomogeneity of block copolymers at the interface of an immiscible polymer blend

    NASA Astrophysics Data System (ADS)

    Ryu, Ji Ho; Kim, YongJoo; Lee, Won Bo

    2018-04-01

    We present the effects of structure and stiffness of block copolymers on the interfacial properties of an immiscible homopolymer blend. Diblock and two-arm grafted copolymers with variation in stiffness are modeled using coarse-grained molecular dynamics to compare the compatibilization efficiency, i.e., reduction of interfacial tension. Overall, grafted copolymers are located more compactly at the interface and show better compatibilization efficiency than diblock copolymers. In addition, an increase in the stiffness for one of the blocks of the diblock copolymers causes unusual inhomogeneous interfacial coverage due to bundle formation. However, an increase in the stiffness for one of blocks of the grafted copolymers prevents the bundle formation due to the branched chain. As a result, homogeneous interfacial coverage of homopolymer blends is realized with significant reduction of interfacial tension which makes grafted copolymer a better candidate for the compatibilizer of immiscible homopolymer blend.

  20. Enhancement of Palmarumycin C12 and C13 Production by the Endophytic Fungus Berkleasmium sp. Dzf12 in an Aqueous-Organic Solvent System.

    PubMed

    Mou, Yan; Xu, Dan; Mao, Ziling; Dong, Xuejiao; Lin, Fengke; Wang, Ali; Lai, Daowan; Zhou, Ligang; Xie, Bingyan

    2015-11-12

    The endophytic fungus Berkleasmium sp. Dzf12, isolated from Dioscorea zingiberensis, was found to produce palmarumycins C12 and C13 which possess a great variety of biological activities. Seven biocompatible water-immiscible organic solvents including n-dodecane, n-hexadecane, 1-hexadecene, liquid paraffin, dibutyl phthalate, butyl oleate and oleic acid were evaluated to improve palmarumycins C12 and C13 production in suspension culture of Berkleasmium sp. Dzf12. Among the chosen solvents both butyl oleate and liquid paraffin were the most effective to improve palmarumycins C12 and C13 production. The addition of dibutyl phthalate, butyl oleate and oleic acid to the cultures of Berkleasmium sp. Dzf12 significantly enhanced palmarumycin C12 production by adsorbing palmarumycin C12 into the organic phase. When butyl oleate was fed at 5% (v/v) in medium at the beginning of fermentation (day 0), the highest palmarumycin C12 yield (191.6 mg/L) was achieved, about a 34.87-fold increase in comparison with the control (5.3 mg/L). n-Dodecane, 1-hexadecene and liquid paraffin had a great influence on the production of palmarumycin C13. When liquid paraffin was added at 10% (v/v) in medium on day 3 of fermentation, the palmarumycin C13 yield reached a maximum value (134.1 mg/L), which was 4.35-fold that of the control (30.8 mg/L). Application of the aqueous-organic solvent system should be a simple and efficient process strategy for enhancing palmarumycin C12 and C13 production in liquid cultures of the endophytic fungus Berkleasmium sp. Dzf12.

  1. Numerical simulations of negatively buoyant jets in an immiscible fluid using the Particle Finite Element Method

    NASA Astrophysics Data System (ADS)

    Mier-Torrecilla, Monica; Geyer, Adelina; Phillips, Jeremy C.; Idelsohn, Sergio R.; Oñate, Eugenio

    2010-05-01

    In this work we investigate numerically the injection of a negatively buoyant jet into a homogenous immiscible ambient fluid using the Particle Finite Element Method (PFEM), a newly developed tool that combines the flexibility of particle-based methods with the accuracy of the finite element discretization. In order to test the applicability of PFEM to the study of negatively buoyant jets, we have compared the two-dimensional numerical results with experiments investigating the injection of a jet of dyed water through a nozzle in the base of a cylindrical tank containing rapeseed oil. In both simulations and experiments, the fountain inlet flow velocity and nozzle diameter were varied to cover a wide range of Reynolds Re and Froude numbers Fr, such that 0.1 < Fr < 30, reproducing both weak and strong fountains in a laminar regime (8 < Re < 1350). Numerical results, together with the experimental observations, allow us to describe three different fountain behaviors that have not been previously reported. Based on the Re and Fr values for the numerical and experimental simulations, we have built a regime map to define how these values may control the occurrence of each of the observed flow types. Whereas the Fr number itself provides a prediction of the maximum penetration height of the jet, its combination with the Re number provides a prediction of the flow behavior for a specific nozzle diameter and injection velocity. Conclusive remarks concerning the dynamics of negatively buoyant jets may be applied later on to several geological situations, e.g. the flow structure of a fully submerged subaqueous eruptive vent discharging magma or the replenishment of magma chambers in the Earth's crust.

  2. Engineering the Flow of Liquid Two-Phase Systems by Passive Noise Control

    NASA Astrophysics Data System (ADS)

    Zhang, Zeyi; Kong, Tiantian; Zhou, Chunmei; Wang, Liqiu

    2018-02-01

    We investigate a passive noise-control approach to engineering the two-phase flow in a microfluidic coflow system. The presence or absence of the jet breakup is studied for two immiscible oil phases, in a straight microchannel (referred to as the J device in the main text), an expansion microchannel (the W device) and a microchannel with the expansion-contraction geometry (the S device), respectively. We show that the jet breaks into droplets, in the jetting regime and the dripping regime (also referred to as the widening-jetting regime) for the straight channel and expansion channel, respectively, while a stable long jet does not break for the expansion-contraction geometry. As the inner phase passes the expansion-contraction functional unit, the random noise on the interface is significantly reduced and the hydrodynamic instability is suppressed, for a range of experimental parameters including flow rates, device geometry, liquid viscosity, and interfacial tension. We further present scale-up devices with multiple noise-control units and achieve decimeter-long yet stable jets. Our simple, effective, and robust noise-control approach can benefit microfluidic applications such as microfiber fabrication, interface chemical reaction, and on-chip distance transportation.

  3. Calcio-carbonatite melts and metasomatism in the mantle beneath Mt. Vulture (Southern Italy)

    NASA Astrophysics Data System (ADS)

    Rosatelli, Gianluigi; Wall, Frances; Stoppa, Francesco

    2007-12-01

    At Mt. Vulture volcano (Basilicata, Italy) calcite globules (5-150 μm) are hosted by silicate glass pools or veins cross-cutting amphibole-bearing, or more common spinel-bearing mantle xenoliths and xenocrysts. The carbonate globules are rounded or elongated and are composed of a mosaic of 2-20 μm crystals, with varying optical orientation. These features are consistent with formation from a quenched calciocarbonatite melt. Where in contact with carbonate amphibole has reacted to form fassaitic pyroxene. Some of these globules contain liquid/gaseous CO 2 bubbles and sulphide inclusions, and are pierced by quench microphenocrysts of silicate phases. The carbonate composition varies from calcite to Mg-calcite (3.8-5.0 wt.% MgO) both within the carbonate globules and from globule to globule. Trace element contents of the carbonate, determined by LAICPMS, are similar to those of carbonatites worldwide including ΣREE up to 123 ppm. The Sr-Nd isotope ratios of the xenolith carbonate are similar to the extrusive carbonatite and silicate rocks of Mt. Vulture testifying to derivation from the same mantle source. Formation of immiscibile silicate-carbonatite liquids within mantle xenoliths occurred via disequilibrium immiscibility during their exhumation.

  4. Lunar Science Conference, 5th, Houston, Tex., March 18-22, 1974, Proceedings. Volume 1 - Mineralogy and petrology. Volume 2 Chemical and isotope analyses. Organic chemistry. Volume 3 - Physical properties

    NASA Technical Reports Server (NTRS)

    Gose, W. A.

    1974-01-01

    Numerous studies on the properties of the moon based on Apollo findings and samples are presented. Topics treated include ages of the lunar nearside light plains and maria, orange material in the Sulpicius Gallus formation at the southwestern edge of Mare Serenitatis, impact-induced fractionation in the lunar highlands, igneous rocks from Apollo 16 rake samples, experimental liquid line of descent and liquid immiscibility for basalt 70017, ion microprobe mass analysis of plagioclase from 'non-mare' lunar samples, grain size and the evolution of lunar soils, chemical composition of rocks and soils at Taurus-Littrow, the geochemical evolution of the moon, U-Th-Pb systematics of some Apollo 17 lunar samples and implications for a lunar basin excavation chronology, volatile-element systematics and green glass in Apollo 15 lunar soils, solar wind nitrogen and indigenous nitrogen in Apollo 17 lunar samples, lunar trapped xenon, solar flare and lunar surface process characterization at the Apollo 17 site, and the permanent and induced magnetic dipole moment of the moon. Individual items are announced in this issue.

  5. Thermocapillary reorientation of Janus drops

    NASA Astrophysics Data System (ADS)

    Rosales, Rodolfo; Saenz, Pedro

    2017-11-01

    Janus drops, named after the Ancient Roman two-faced god, are liquid drops formed from two immiscible fluids. Experimental observations indicate that a Janus drop may re-orientate in response to an applied external thermal gradient due to the Marangoni effect. Depending on the angle between the interior interface and the direction of the temperature gradient, disparities in the physical properties of the constituent liquids may lead to asymmetries in the thermocapillary flow. As a result, the drop will move along a curved path until a torque-free configuration is achieved, point after which it will continue on a straight trajectory. Here, we present the results of a theoretical investigation of this realignment phenomenon in the Stokes regime and in the limit of non-deformable interfaces. A 3D semi-analytical method in terms of polar spherical harmonics is developed to characterize and rationalize the hydrodynamic response (forces and torques), flow (velocity and temperature distribution) and trajectory of a Janus drop moving during the temperature-driven reorientation process. Furthermore, we discuss how this phenomenon may be exploited to develop dynamically reconfigurable micro-lenses. This work was partially supported by the US National Science Foundation through Grants DMS-1614043 and DMS-1719637.

  6. When immiscible becomes miscible-Methane in water at high pressures.

    PubMed

    Pruteanu, Ciprian G; Ackland, Graeme J; Poon, Wilson C K; Loveday, John S

    2017-08-01

    At low pressures, the solubility of gases in liquids is governed by Henry's law, which states that the saturated solubility of a gas in a liquid is proportional to the partial pressure of the gas. As the pressure increases, most gases depart from this ideal behavior in a sublinear fashion, leveling off at pressures in the 1- to 5-kbar (0.1 to 0.5 GPa) range with solubilities of less than 1 mole percent (mol %). This contrasts strikingly with the well-known marked increase in solubility of simple gases in water at high temperature associated with the critical point (647 K and 212 bar). The solubility of the smallest hydrocarbon, the simple gas methane, in water under a range of pressure and temperature is of widespread importance, because it is a paradigmatic hydrophobe and occurs widely in terrestrial and extraterrestrial geology. We report measurements up to 3.5 GPa of the pressure dependence of the solubility of methane in water at 100°C-well below the latter's critical temperature. Our results reveal a marked increase in solubility between 1 and 2 GPa, leading to a state above 2 GPa where the maximum solubility of methane in water exceeds 35 mol %.

  7. Deformation of a 3D granular media caused by fluid invasion

    NASA Astrophysics Data System (ADS)

    Dalbe, M. J.; Juanes, R.

    2016-12-01

    Multiphase flow in porous media plays a fundamental role in many natural and engineered subsurface processes. The interplay between fluid flow, medium deformation and fracture is essential in geoscience problems as disparate as fracking for unconventional hydrocarbon production, conduit formation and methane venting from lake and ocean sediments, and desiccation cracks in soil. Several experimental and computational studies have shown that the competition between capillary and friction forces can lead to different regimes of deformation, from frictional fingering to hydro-capillary fracturing (Sandnes et al., Nat. Comm. 2011, Holtzman et al., PRL 2012). Most of these investigations have focused, however, on 2D or quasi-2D systems. Here, we develop an experimental set-up that allows us to observe two-phase flow in a fully 3D granular bed and measure the fluid pressure while controlling the level of confining stress. We use an index matching technique to directly visualize the injection of a liquid in a granular media saturated with another, immiscible liquid. We extract the deformation the whole granular bulk as well as at the particle level. Our results show the existence of different regimes of invasion patterns depending on key dimensionless groups that control the system.

  8. Deformation of a 3D granular media caused by fluid invasion

    NASA Astrophysics Data System (ADS)

    Dalbe, Marie-Julie; Juanes, Ruben

    2016-11-01

    Multiphase flow in porous media plays a fundamental role in many natural and engineered subsurface processes. The interplay between fluid flow, medium deformation and fracture is essential in geoscience problems as disparate as fracking for unconventional hydrocarbon production, conduit formation and methane venting from lake and ocean sediments, and desiccation cracks in soil. Several experimental and computational studies have shown that the competition between capillary and friction forces can lead to different regimes of deformation, from frictional fingering to hydro-capillary fracturing. Most of these investigations have focused, however, on 2D or quasi-2D systems. Here, we develop an experimental set-up that allows us to observe two-phase flow in a fully 3D granular bed and measure the fluid pressure while controlling the level of confining stress. We use an index matching technique to directly visualize the injection of a liquid in a granular media saturated with another, immiscible liquid. We extract the deformation the whole granular bulk as well as at the particle level. Our results show the existence of different regimes of invasion patterns depending on key dimensionless groups that control the system.

  9. Visualizing 3D Fracture Morphology in Granular Media

    NASA Astrophysics Data System (ADS)

    Dalbe, M. J.; Juanes, R.

    2015-12-01

    Multiphase flow in porous media plays a fundamental role in many natural and engineered subsurface processes. The interplay between fluid flow, medium deformation and fracture is essential in geoscience problems as disparate as fracking for unconventional hydrocarbon production, conduit formation and methane venting from lake and ocean sediments, and desiccation cracks in soil. Recent work has pointed to the importance of capillary forces in some relevant regimes of fracturing of granular materials (Sandnes et al., Nat. Comm. 2011), leading to the term hydro-capillary fracturing (Holtzman et al., PRL 2012). Most of these experimental and computational investigations have focused, however, on 2D or quasi-2D systems. Here, we develop an experimental set-up that allows us to observe two-phase flow in a 3D granular bed, and control the level of confining stress. We use an index matching technique to directly visualize the injection of a liquid in a granular media saturated with another, immiscible liquid. We determine the key dimensionless groups that control the behavior of the system, and elucidate different regimes of the invasion pattern. We present result for the 3D morphology of the invasion, with particular emphasis on the fracturing regime.

  10. Synthesis and Manipulation of Semiconductor Nanocrystals inMicrofluidic Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Emory Ming-Yue

    2006-01-01

    Microfluidic reactors are investigated as a mechanism tocontrol the growth of semiconductor nanocrystals and characterize thestructural evolution of colloidal quantum dots. Due to their shortdiffusion lengths, low thermal masses, and predictable fluid dynamics,microfluidic devices can be used to quickly and reproducibly alterreaction conditions such as concentration, temperature, and reactiontime, while allowing for rapid reagent mixing and productcharacterization. These features are particularly useful for colloidalnanocrystal reactions, which scale poorly and are difficult to controland characterize in bulk fluids. To demonstrate the capabilities ofnanoparticle microreactors, a size series of spherical CdSe nanocrystalswas synthesized at high temperature in a continuous-flow, microfabricatedglass reactor. Nanocrystalmore » diameters are reproducibly controlled bysystematically altering reaction parameters such as the temperature,concentration, and reaction time. Microreactors with finer control overtemperature and reagent mixing were designed to synthesize nanoparticlesof different shapes, such as rods, tetrapods, and hollow shells. The twomajor challenges observed with continuous flow reactors are thedeposition of particles on channel walls and the broad distribution ofresidence times that result from laminar flow. To alleviate theseproblems, I designed and fabricated liquid-liquid segmented flowmicroreactors in which the reaction precursors are encapsulated inflowing droplets suspended in an immiscible carrier fluid. The synthesisof CdSe nanocrystals in such microreactors exhibited reduced depositionand residence time distributions while enabling the rapid screening aseries of samples isolated in nL droplets. Microfluidic reactors werealso designed to modify the composition of existing nanocrystals andcharacterize the kinetics of such reactions. The millisecond kinetics ofthe CdSe-to-Ag 2Se nanocrystal cation exchange reaction are measured insitu with micro-X-ray Absorption Spectroscopy in silicon microreactorsspecifically designed for rapid mixing and time-resolved X-rayspectroscopy. These results demonstrate that microreactors are valuablefor controlling and characterizing a wide range of reactions in nLvolumes even when nanoscale particles, high temperatures, causticreagents, and rapid time scales are involved. These experiments providethe foundation for future microfluidic investigations into the mechanismsof nanocrystal growth, crystal phase evolution, and heterostructureassembly.« less

  11. Process for treating moisture laden coal fines

    DOEpatents

    Davis, Burl E.; Henry, Raymond M.; Trivett, Gordon S.; Albaugh, Edgar W.

    1993-01-01

    A process is provided for making a free flowing granular product from moisture laden caked coal fines, such as wet cake, by mixing a water immiscible substance, such as oil, with the caked coal, preferably under low shear forces for a period of time sufficient to produce a plurality of free flowing granules. Each granule is preferably comprised of a dry appearing admixture of one or more coal particle, 2-50% by weight water and the water immiscible substance.

  12. Facile and rapid DNA extraction and purification from food matrices using IFAST (immiscible filtration assisted by surface tension).

    PubMed

    Strotman, Lindsay N; Lin, Guangyun; Berry, Scott M; Johnson, Eric A; Beebe, David J

    2012-09-07

    Extraction and purification of DNA is a prerequisite to detection and analytical techniques. While DNA sample preparation methods have improved over the last few decades, current methods are still time consuming and labor intensive. Here we demonstrate a technology termed IFAST (Immiscible Filtration Assisted by Surface Tension), that relies on immiscible phase filtration to reduce the time and effort required to purify DNA. IFAST replaces the multiple wash and centrifugation steps required by traditional DNA sample preparation methods with a single step. To operate, DNA from lysed cells is bound to paramagnetic particles (PMPs) and drawn through an immiscible fluid phase barrier (i.e. oil) by an external handheld magnet. Purified DNA is then eluted from the PMPs. Here, detection of Clostridium botulinum type A (BoNT/A) in food matrices (milk, orange juice), a bioterrorism concern, was used as a model system to establish IFAST's utility in detection assays. Data validated that the DNA purified by IFAST was functional as a qPCR template to amplify the bont/A gene. The sensitivity limit of IFAST was comparable to the commercially available Invitrogen ChargeSwitch® method. Notably, pathogen detection via IFAST required only 8.5 μL of sample and was accomplished in five-fold less time. The simplicity, rapidity and portability of IFAST offer significant advantages when compared to existing DNA sample preparation methods.

  13. Gravity-directed separation of both immiscible and emulsified oil/water mixtures utilizing coconut shell layer.

    PubMed

    Li, Jian; Xu, Changcheng; Zhang, Yan; Tang, Xiaohua; Qi, Wei; Wang, Qiong

    2018-02-01

    Pressure-driven and lower flux of superwetting ultrafiltration membranes in various emulsions separation are long-standing issues and major barriers for their large-scale utilization. Even though currently reported membranes have achieved great success in emulsions separeation, they still suffer from low flux and complex fabrication process resulting from their smaller nanoscale pore size. Herein, utilizition of coconut shell as a novel biomaterial for developing into a layer through the simple smashing, cleaning and stacking procedures, which not only could avoid the complexity of film making process, but also could realize efficient gravity-directed separation of both immiscible oil/water mixtures and water-in-oil emulsions with high flux. Specifically, the layer acted as "water-removing" type filtrate material with excellent underwater superoleophobicity, exhibiting high efficiency for various immiscible oil/water mixtures separation and larger oil intrusion pressure. More importantly, the layer could also serve as adsorbent material with underoil superhydrophilicity, achieving gravity-directed kinds of water-in-oil emulsions separation with high separation efficiency (above 99.99%) and higher flux (above 1620L/m 2 h), even when their pore sizes are larger than that of emulsified droplets. We deeply believe that this study would open up a new strategy for both immiscible oil/water mixtures and water-in-oil emulsions separation. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance.

    PubMed

    Kim, Philseok; Wong, Tak-Sing; Alvarenga, Jack; Kreder, Michael J; Adorno-Martinez, Wilmer E; Aizenberg, Joanna

    2012-08-28

    Ice-repellent coatings can have significant impact on global energy savings and improving safety in many infrastructures, transportation, and cooling systems. Recent efforts for developing ice-phobic surfaces have been mostly devoted to utilizing lotus-leaf-inspired superhydrophobic surfaces, yet these surfaces fail in high-humidity conditions due to water condensation and frost formation and even lead to increased ice adhesion due to a large surface area. We report a radically different type of ice-repellent material based on slippery, liquid-infused porous surfaces (SLIPS), where a stable, ultrasmooth, low-hysteresis lubricant overlayer is maintained by infusing a water-immiscible liquid into a nanostructured surface chemically functionalized to have a high affinity to the infiltrated liquid and lock it in place. We develop a direct fabrication method of SLIPS on industrially relevant metals, particularly aluminum, one of the most widely used lightweight structural materials. We demonstrate that SLIPS-coated Al surfaces not only suppress ice/frost accretion by effectively removing condensed moisture but also exhibit at least an order of magnitude lower ice adhesion than state-of-the-art materials. On the basis of a theoretical analysis followed by extensive icing/deicing experiments, we discuss special advantages of SLIPS as ice-repellent surfaces: highly reduced sliding droplet sizes resulting from the extremely low contact angle hysteresis. We show that our surfaces remain essentially frost-free in which any conventional materials accumulate ice. These results indicate that SLIPS is a promising candidate for developing robust anti-icing materials for broad applications, such as refrigeration, aviation, roofs, wires, outdoor signs, railings, and wind turbines.

  15. Localized Scale Coupling and New Educational Paradigms in Multiscale Mathematics and Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LEAL, L. GARY

    2013-06-30

    One of the most challenging multi-scale simulation problems in the area of multi-phase materials is to develop effective computational techniques for the prediction of coalescence and related phenomena involving rupture of a thin liquid film due to the onset of instability driven by van der Waals or other micro-scale attractive forces. Accurate modeling of this process is critical to prediction of the outcome of milling processes for immiscible polymer blends, one of the most important routes to new advanced polymeric materials. In typical situations, the blend evolves into an ?emulsion? of dispersed phase drops in a continuous matrix fluid. Coalescencemore » is then a critical factor in determining the size distribution of the dispersed phase, but is extremely difficult to predict from first principles. The thin film separating two drops may only achieve rupture at dimensions of approximately 10 nm while the drop sizes are 0(10 ?m). It is essential to achieve very accurate solutions for the flow and for the interface shape at both the macroscale of the full drops, and within the thin film (where the destabilizing disjoining pressure due to van der Waals forces is proportional approximately to the inverse third power of the local film thickness, h-3). Furthermore, the fluids of interest are polymeric (through Newtonian) and the classical continuum description begins to fail as the film thins ? requiring incorporation of molecular effects, such as a hybrid code that incorporates a version of coarse grain molecular dynamics within the thin film coupled with a classical continuum description elsewhere in the flow domain. Finally, the presence of surface active additions, either surfactants (in the form of di-block copolymers) or surface-functionalized micro- or nano-scale particles, adds an additional level of complexity, requiring development of a distinct numerical method to predict the nonuniform concentration gradients of these additives that are responsible for Marangoni stresses at the interface. Again, the physical dimensions of these additives may become comparable to the thin film dimensions, requiring an additional layer of multi-scale modeling.« less

  16. Stochastic porous media modeling and high-resolution schemes for numerical simulation of subsurface immiscible fluid flow transport

    NASA Astrophysics Data System (ADS)

    Brantson, Eric Thompson; Ju, Binshan; Wu, Dan; Gyan, Patricia Semwaah

    2018-04-01

    This paper proposes stochastic petroleum porous media modeling for immiscible fluid flow simulation using Dykstra-Parson coefficient (V DP) and autocorrelation lengths to generate 2D stochastic permeability values which were also used to generate porosity fields through a linear interpolation technique based on Carman-Kozeny equation. The proposed method of permeability field generation in this study was compared to turning bands method (TBM) and uniform sampling randomization method (USRM). On the other hand, many studies have also reported that, upstream mobility weighting schemes, commonly used in conventional numerical reservoir simulators do not accurately capture immiscible displacement shocks and discontinuities through stochastically generated porous media. This can be attributed to high level of numerical smearing in first-order schemes, oftentimes misinterpreted as subsurface geological features. Therefore, this work employs high-resolution schemes of SUPERBEE flux limiter, weighted essentially non-oscillatory scheme (WENO), and monotone upstream-centered schemes for conservation laws (MUSCL) to accurately capture immiscible fluid flow transport in stochastic porous media. The high-order schemes results match well with Buckley Leverett (BL) analytical solution without any non-oscillatory solutions. The governing fluid flow equations were solved numerically using simultaneous solution (SS) technique, sequential solution (SEQ) technique and iterative implicit pressure and explicit saturation (IMPES) technique which produce acceptable numerical stability and convergence rate. A comparative and numerical examples study of flow transport through the proposed method, TBM and USRM permeability fields revealed detailed subsurface instabilities with their corresponding ultimate recovery factors. Also, the impact of autocorrelation lengths on immiscible fluid flow transport were analyzed and quantified. A finite number of lines used in the TBM resulted into visual artifact banding phenomenon unlike the proposed method and USRM. In all, the proposed permeability and porosity fields generation coupled with the numerical simulator developed will aid in developing efficient mobility control schemes to improve on poor volumetric sweep efficiency in porous media.

  17. Ca-Rich Carbonate Melts: A Regular-Solution Model, with Applications to Carbonatite Magma + Vapor Equilibria and Carbonate Lavas on Venus

    NASA Technical Reports Server (NTRS)

    Treiman, Allan H.

    1995-01-01

    A thermochemical model of the activities of species in carbonate-rich melts would be useful in quantifying chemical equilibria between carbonatite magmas and vapors and in extrapolating liquidus equilibria to unexplored PTX. A regular-solution model of Ca-rich carbonate melts is developed here, using the fact that they are ionic liquids, and can be treated (to a first approximation) as interpenetrating regular solutions of cations and of anions. Thermochemical data on systems of alkali metal cations with carbonate and other anions are drawn from the literature; data on systems with alkaline earth (and other) cations and carbonate (and other) anions are derived here from liquidus phase equilibria. The model is validated in that all available data (at 1 kbar) are consistent with single values for the melting temperature and heat of fusion for calcite, and all liquidi are consistent with the liquids acting as regular solutions. At 1 kbar, the metastable congruent melting temperature of calcite (CaCO3) is inferred to be 1596 K, with (Delta)bar-H(sub fus)(calcite) = 31.5 +/- 1 kJ/mol. Regular solution interaction parameters (W) for Ca(2+) and alkali metal cations are in the range -3 to -12 kJ/sq mol; W for Ca(2+)-Ba(2+) is approximately -11 kJ/sq mol; W for Ca(2+)-Mg(2+) is approximately -40 kJ/sq mol, and W for Ca(2+)-La(3+) is approximately +85 kJ/sq mol. Solutions of carbonate and most anions (including OH(-), F(-), and SO4(2-)) are nearly ideal, with W between 0(ideal) and -2.5 kJ/sq mol. The interaction of carbonate and phosphate ions is strongly nonideal, which is consistent with the suggestion of carbonate-phosphate liquid immiscibility. Interaction of carbonate and sulfide ions is also nonideal and suggestive of carbonate-sulfide liquid immiscibility. Solution of H2O, for all but the most H2O-rich compositions, can be modeled as a disproportionation to hydronium (H3O(+)) and hydroxyl (OH(-)) ions with W for Ca(2+)-H3O(+) (approximately) equals 33 kJ/sq mol. The regular-solution model of carbonate melts can be applied to problems of carbonatite magma + vapor equilibria and of extrapolating liquidus equilibria to unstudied systems. Calculations on one carbonatite (the Husereau dike, Oka complex, Quebec, Canada) show that the anion solution of its magma contained an OH mole fraction of (approximately) 0.07, although the vapor in equilibrium with the magma had P(H2O) = 8.5 x P(CO2). F in carbonatite systems is calculated to be strongly partitioned into the magma (as F(-)) relative to coexisting vapor. In the Husereau carbonatite magma, the anion solution contained an F(-) mole fraction of (approximately) 6 x 10(exp -5).

  18. Dynamics of rigid microparticles at the interface of co-flowing immiscible liquids in a microchannel.

    PubMed

    Jayaprakash, K S; Banerjee, U; Sen, A K

    2017-05-01

    We report the dynamical migration behavior of rigid polystyrene microparticles at an interface of co-flowing streams of primary CP 1 (aqueous) and secondary CP 2 (oils) immiscible phases at low Reynolds numbers (Re) in a microchannel. The microparticles initially suspended in the CP 1 either continue to flow in the bulk CP 1 or migrate across the interface into CP 2 , when the stream width of the CP 1 approaches the diameter of the microparticles. Experiments were performed with different secondary phases and it is found that the migration criterion depends on the sign of the spreading parameter S and the presence of surfactant at the interface. To substantiate the migration criterion, experiments were also carried out by suspending the microparticles in CP 2 (oil phase). Our study reveals that in case of aqueous-silicone oil combination, the microparticles get attached to the interface since S<0 and the three phase contact angle, θ>90°. For complete detachment of microparticles from the interface into the secondary phase, additional energy ΔG is needed. We discuss the role of interfacial perturbation, which causes detachment of microparticles from the interface. In case of mineral and olive oils, the surfactants present at the interface prevents attachment of the microparticles to the interface due to the repulsive disjoining pressure. Finally, using a aqueous-silicone oil system, we demonstrate size based sorting of microparticles of size 25μm and 15μm respectively from that of 15μm and 10μm and study the variation of separation efficiency η with the ratio of the width of the aqueous stream to the diameter of the microparticles ρ. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Multiple (immiscible) melt phases of mafic composition in Chicxulub impact ejecta from northeastern Mexico: New constraints on target lithologies

    NASA Astrophysics Data System (ADS)

    Schulte, P.; Stinnesbeck, W.; Kontny, A.; Stüben, D.; Kramar, U.; Harting, M.

    2002-12-01

    Proximal ejecta deposits in sections from NE Mexico (Rancho Nuevo, La Sierrita, El Peñon, El Mimbral) have been investigated by backscattered electron imaging, wave-length dispersive electron microprobe analyses, and cathodoluminiscence, in order to characterize target lithologies, and ejecta mixing, fractionation, and distribution mechanisms. Additional investigations included magnetic properties (Kontny et al, this meeting) and trace element analyses (Harting et al, this meeting). Petrological features of these ejecta deposits are extraordinarily well preserved. They consist of mm-cm sized vesiculated spherical to drop-shaped spherules and angular to filamentous (ejecta-) fragments, as well as carbonate clasts, marl clasts, and rare benthic foraminifera floating in a carbonaceous matrix. Occasionally, spherules and fragments show welding-amalgamation features and enclose other components, thus resulting in a foam-like texture. An origin from the Chicxulub impact is suggested by geographical proximity and morphologically similarity to spherules found in other K-T sites in North to Central America and the Atlantic. The far distribution of such coarse-grained, foamy, and fragile ejecta-clasts as well as welding features suggest ignimbrite-like transport mechanisms or nearby secondary impacts. Several silicic ejecta phases have been observed that occur as distinct phases, even within one ejecta particle with textures indicative of liquid immiscibility: (1) Fe- (25-35 wt%), Mg- (10-15 wt%) rich phases with <25 wt% SiO2, altered to chlorite, (2) K- (5-8 wt.%) and Al- (25-30 wt%) rich hydrated glass with 45-50 wt% SiO2, and (3) rare SiO2- (>60 wt%) rich andesitic glasses. In addition to these silicic phases, abundant carbonate characterizes all studied ejecta deposits. It occurs within spherules and fragments and as clasts and globules, and shows textures indicative of either liquid immiscibility and/or quenching (`feathery calcite'). Quenched carbonates are enriched in Fe and Mg (up to one wt%) and are characterized by dark red-brown luminescence, in contrast to the carbonaceous matrix, which shows bright luminescence colors. Within all phases, but mainly in (1), various inclusions have been observed: (a) Globules enriched in Fe and Mg, (b) schlieren, rich in Ti, K, Fe, (c) garland-shaped Ti-rich lamellae, (d) dendritic and skeletal crystals of Ti-Fe oxides, (e) hematite crystals with a Ni-content up to 0.4 wt%, as well as goethite and rutile crystals, (f) rare μm-sized Co-, Ni-, Fe-rich metallic or sulfidic particles. These compositional phases are present in all studied outcrops, but their individual amount varies with prevailing Fe-rich phases at Rancho Nuevo and La Sierrita and Fe-, K-rich and silicic phases at El Peñon and El Mimbral. These characteristics imply an origin of the ejecta from mafic lithologies and carbonaceous sediments, in addition to contribution from felsic rocks. The occurrence of different compositional phases in single ejecta layers and even within individual ejecta particles suggests strong fractionation effects and/or negligible mixing of different melt phases. The presence of metallic Fe, Ni and Co may indicate that additional contamination by meteoritic material occurred.

  20. Contact angle hysteresis and oil film lubrication in electrowetting with two immiscible liquids

    NASA Astrophysics Data System (ADS)

    Gao, J.; Mendel, N.; Dey, R.; Baratian, D.; Mugele, F.

    2018-05-01

    Electrowetting (EW) of water drops in ambient oil has found a wide range of applications including lab-on-a-chip devices, display screens, and variable focus lenses. The efficacy of all these applications is dependent on the contact angle hysteresis (CAH), which is generally reduced in the presence of ambient oil due to thin lubrication layers. While it is well-known that AC voltage reduces the effective contact angle hysteresis (CAH) for EW in ambient air, we demonstrate here that CAH for EW in ambient oil increases with increasing AC and DC voltage. Taking into account the disjoining pressure of the fluoropolymer-oil-water system, short range chemical interactions, viscous oil entrainment, and electrostatic stresses, we find that this observation can be explained by progressive thinning of the oil layer underneath the drop with increasing voltage. This exposes the droplet to the roughness of the underlying solid and thereby increases hysteresis.

  1. Resolution Limits of Nanoimprinted Patterns by Fluorescence Microscopy

    NASA Astrophysics Data System (ADS)

    Kubo, Shoichi; Tomioka, Tatsuya; Nakagawa, Masaru

    2013-06-01

    The authors investigated optical resolution limits to identify minimum distances between convex lines of fluorescent dye-doped nanoimprinted resist patterns by fluorescence microscopy. Fluorescent ultraviolet (UV)-curable resin and thermoplastic resin films were transformed into line-and-space patterns by UV nanoimprinting and thermal nanoimprinting, respectively. Fluorescence immersion observation needed an immersion medium immiscible to the resist films, and an ionic liquid of triisobutyl methylphosphonium tosylate was appropriate for soluble thermoplastic polystyrene patterns. Observation with various numerical aperture (NA) values and two detection wavelength ranges showed that the resolution limits were smaller than the values estimated by the Sparrow criterion. The space width to identify line patterns became narrower as the line width increased. The space width of 100 nm was demonstrated to be sufficient to resolve 300-nm-wide lines in the detection wavelength range of 575-625 nm using an objective lens of NA= 1.40.

  2. Cell separations and the demixing of aqueous two phase polymer solutions in microgravity

    NASA Technical Reports Server (NTRS)

    Brooks, Donald E.; Bamberger, Stephan; Harris, J. M.; Van Alstine, James M.

    1991-01-01

    Partition in phase separated aqueous polymer solutions is a cell separation procedure thought to be adversely influenced by gravity. In preparation for performing cell partitioning experiments in space, and to provide general information concerning the demixing of immiscible liquids in low gravity, a series of phase separated aqueous polymer solutions have been flown on two shuttle flights. Fluorocarbon oil and water emulsions were also flown on the second flight. The aqueous polymer emulsions, which in one g demix largely by sedimentation and convection due to the density differences between the phases, demixed more slowly than on the ground and the final disposition of the phases was determined by the wetting of the container wall by the phases. The demixing behavior and kinetics were influenced by the phase volume ratio, physical properties of the systems and chamber wall interaction. The average domain size increased linearly with time as the systems demixed.

  3. A General Approach for Fluid Patterning and Application in Fabricating Microdevices.

    PubMed

    Huang, Zhandong; Yang, Qiang; Su, Meng; Li, Zheng; Hu, Xiaotian; Li, Yifan; Pan, Qi; Ren, Wanjie; Li, Fengyu; Song, Yanlin

    2018-06-19

    Engineering the fluid interface such as the gas-liquid interface is of great significance for solvent processing applications including functional material assembly, inkjet printing, and high-performance device fabrication. However, precisely controlling the fluid interface remains a great challenge owing to its flexibility and fluidity. Here, a general method to manipulate the fluid interface for fluid patterning using micropillars in the microchannel is reported. The principle of fluid patterning for immiscible fluid pairs including air, water, and oils is proposed. This understanding enables the preparation of programmable multiphase fluid patterns and assembly of multilayer functional materials to fabricate micro-optoelectronic devices. This general strategy of fluid patterning provides a promising platform to study the fundamental processes occurring on the fluid interface, and benefits applications in many subjects, such as microfluidics, microbiology, chemical analysis and detection, material synthesis and assembly, device fabrication, etc. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. High-silica glass inclusions in olivine of Luna-24 samples

    NASA Technical Reports Server (NTRS)

    Roedder, E.; Weiblen, P. W.

    1977-01-01

    Optical examination of nine polished grain mounts of Luna-24 drill-core material (0.09-0.50 mm size) revealed melt inclusions in olivine crystals. Two inclusions consist of clear glass with exceptionally high Si, yet contain no visible daughter minerals and have had no reaction effects with the olivine walls. Their compositions (one has SiO2 93.8, Al2O3 1.51, FeO 2.32, MgO 1.61, CaO 0.06, Na2O less than 0.05, K2O 0.11, total 99.41%; the other is similar) are unique and quite unlike the high-Si high-K melt of granitic composition that is found as inclusions in late-stage minerals of these (and the Apollo) samples, from silicate liquid immiscibility. The host olivines are Fo73 and Fo51. The origin of the melt in the inclusions and the lack of reaction effects are perplexing unsolved problems.

  5. Flow in porous media, phase and ultralow interfacial tensions: Mechanisms of enhanced petroleum recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, H.T.; Scriven, L.E.

    1991-07-01

    A major program of university research, longer-ranged and more fundamental in approach than industrial research, into basic mechanisms of enhancing petroleum recovery and into underlying physics, chemistry, geology, applied mathematics, computation, and engineering science has been built at Minnesota. The original focus was surfactant-based chemical flooding, but the approach taken was sufficiently fundamental that the research, longer-ranged than industrial efforts, has become quite multidirectional. Topics discussed are volume controlled porosimetry; fluid distribution and transport in porous media at low wetting phase saturation; molecular dynamics of fluids in ultranarrow pores; molecular dynamics and molecular theory of wetting and adsorption; new numericalmore » methods to handle initial and boundary conditions in immiscible displacement; electron microscopy of surfactant fluid microstructure; low cost system for animating liquid crystallites viewed with polarized light; surfaces of constant mean curvature with prescribed contact angle.« less

  6. Bubble formation during drop impact on a heated pool

    NASA Astrophysics Data System (ADS)

    Tian, Yuansi; Alhazmi, Muath; Kouraytem, Nadia; Thoroddsen, Sigurdur

    2017-11-01

    Ultra high-speed video imaging, at up to 200 kfps, is used to investigate a drop impinging onto a high temperature pool. The room-temperature perfluorohexane drop, which has a boiling temperature as low as 56 °C impacts on the soybean oil pool heated up to around 200 °C, which is overwhelmingly higher than the boiling temperature of the drop. The bottom of the drop is therefore covered by a layer of vapor which prevents contact between the two immiscible liquid surfaces, akin to the Leidenfrost effect However, as the pool temperature is reduced, one starts seeing contact and the dynamics transition into the vapor explosion regime. At the boundary of this regime we observe some entrapment of scattered or a toroidal ring of small bubbles. Experimental video data will be presented to show this novel phenomenon and explain how these bubbles are formed and evolve.

  7. Containerless Studies of Nucleation and Undercooling

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.

    1985-01-01

    The long term research goals are to perform experiments to determine the achievable limits of undercooling, the characteristics of heterogeneous nucleation, and the physical properties of significantly undercooled melts. The techniques used are based on the newly developed containerless manipulation methods afforded by acoustic levitation. Ground based investigations involved 0.1 to 2 mm specimens of pure metals and alloys (In, Ga, Sn, Ga-In, ...) as well as glass-forming organic compounds (O-Terphenyl). A currently operating ultrasonic high temperature apparatus has allowed the ground-based levitation of 1 to 2 mm samples of solid aluminum at 550 deg C in an argon atmosphere. Present work is concentrating on the undercooling of pure metal samples (In, Sn), and on the measurements of surface tension and viscosity of the undercooled melts via shape oscillation techniques monitored through optical detection methods. The sound velocity of undercooled O-Terphenyl is being measured in an immiscible liquid levitation cells.

  8. Regularized lattice Boltzmann model for immiscible two-phase flows with power-law rheology

    NASA Astrophysics Data System (ADS)

    Ba, Yan; Wang, Ningning; Liu, Haihu; Li, Qiang; He, Guoqiang

    2018-03-01

    In this work, a regularized lattice Boltzmann color-gradient model is developed for the simulation of immiscible two-phase flows with power-law rheology. This model is as simple as the Bhatnagar-Gross-Krook (BGK) color-gradient model except that an additional regularization step is introduced prior to the collision step. In the regularization step, the pseudo-inverse method is adopted as an alternative solution for the nonequilibrium part of the total distribution function, and it can be easily extended to other discrete velocity models no matter whether a forcing term is considered or not. The obtained expressions for the nonequilibrium part are merely related to macroscopic variables and velocity gradients that can be evaluated locally. Several numerical examples, including the single-phase and two-phase layered power-law fluid flows between two parallel plates, and the droplet deformation and breakup in a simple shear flow, are conducted to test the capability and accuracy of the proposed color-gradient model. Results show that the present model is more stable and accurate than the BGK color-gradient model for power-law fluids with a wide range of power-law indices. Compared to its multiple-relaxation-time counterpart, the present model can increase the computing efficiency by around 15%, while keeping the same accuracy and stability. Also, the present model is found to be capable of reasonably predicting the critical capillary number of droplet breakup.

  9. Electrochemical ion transfer across liquid/liquid interfaces confined within solid-state micropore arrays--simulations and experiments.

    PubMed

    Strutwolf, Jörg; Scanlon, Micheál D; Arrigan, Damien W M

    2009-01-01

    Miniaturised liquid/liquid interfaces provide benefits for bioanalytical detection with electrochemical methods. In this work, microporous silicon membranes which can be used for interface miniaturisation were characterized by simulations and experiments. The microporous membranes possessed hexagonal arrays of pores with radii between 10 and 25 microm, a pore depth of 100 microm and pore centre-to-centre separations between 99 and 986 microm. Cyclic voltammetry was used to monitor ion transfer across arrays of micro-interfaces between two immiscible electrolyte solutions (microITIES) formed at these membranes, with the organic phase present as an organogel. The results were compared to computational simulations taking into account mass transport by diffusion and encompassing diffusion to recessed interfaces and overlapped diffusion zones. The simulation and experimental data were both consistent with the situation where the location of the liquid/liquid (l/l) interface was on the aqueous side of the silicon membrane and the pores were filled with the organic phase. While the current for the forward potential scan (transfer of the ion from the aqueous phase to the organic phase) was strongly dependent on the location of the l/l interface, the current peak during the reverse scan (transfer of the ion from the organic phase to the aqueous phase) was influenced by the ratio of the transferring ion's diffusion coefficients in both phases. The diffusion coefficient of the transferring ion in the gelified organic phase was ca. nine times smaller than in the aqueous phase. Asymmetric cyclic voltammogram shapes were caused by the combined effect of non-symmetrical diffusion (spherical and linear) and by the inequality of the diffusion coefficient in both phases. Overlapping diffusion zones were responsible for the observation of current peaks instead of steady-state currents during the forward scan. The characterisation of the diffusion behaviour is an important requirement for application of these silicon membranes in electroanalytical chemistry.

  10. Summer 2017 Microfluidics Research Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mcculloch, Quinn

    Liquid-liquid Extraction (LLE), also known as solvent extraction, represents a large subset of chemistry where one or more solutes are transferred across an interface between two immiscible liquids. This type of chemistry is used in industrial scale processes to purify solvents, refine ore, process petroleum, treat wastewater, and much more. Although LLE has been successfully employed at the macroscale, where many liters/kgs of species are processed at large flow rates, LLE stands to benefit from lab-on-a-chip technology, where reactions take place quickly and efficiently at the microscale. A device, called a screen contactor, has been invented at Los Alamos Nationalmore » Laboratory (LANL) to perform solvent extraction at the microscale. This invention has been submitted to LANL’s Feynman Center for Innovation, and has been filed for provisional patent under U.S. Patent Application No. 62/483,107 1. The screen contactor consists of a housing that contains two different screen materials, flametreated stainless steel and polyether ether ketone (PEEK) thermoplastic, that are uniquely wetted by either an aqueous or an organic liquid phase, respectively. Liquids in this device flow longitudinally through the screens. The fine pore size of the screens (tens of microns) provide large capillary/adhesional forces while maintaining small hydraulic pressure drops. These physical characteristics are paramount to efficient microscale liquid phase separation. To demonstrate mass transfer using the screen contactor, a well-known chemical system 2 consisting of water and n-decane as solvents and trimethylamine (TEA) as a solute was selected. TEA is basic in water so its concentration can easily be quantified using a digital pH meter and an experimentally determined base dissociation constant. Characterization of this solvent system and its behavior in the screen contactor have been the focus of my research activities this summer. In the following sections, I have detailed experimental results that have been gathered.« less

  11. Simulating immiscible multi-phase flow and wetting with 3D stochastic rotation dynamics (SRD)

    NASA Astrophysics Data System (ADS)

    Hiller, Thomas; Sanchez de La Lama, Marta; Herminghaus, Stephan; Brinkmann, Martin

    2013-11-01

    We use a variant of the mesoscopic particle method stochastic rotation dynamics (SRD) to simulate immiscible multi-phase flow on the pore and sub-pore scale in three dimensions. As an extension to the multi-color SRD method, first proposed by Inoue et al., we present an implementation that accounts for complex wettability on heterogeneous surfaces. In order to demonstrate the versatility of this algorithm, we consider immiscible two-phase flow through a model porous medium (disordered packing of spherical beads) where the substrate exhibits different spatial wetting patterns. We show that these patterns have a significant effect on the interface dynamics. Furthermore, the implementation of angular momentum conservation into the SRD algorithm allows us to extent the applicability of SRD also to micro-fluidic systems. It is now possible to study e.g. the internal flow behaviour of a droplet depending on the driving velocity of the surrounding bulk fluid or the splitting of droplets by an obstacle.

  12. Chloride-bearing liquids and partial melting of mantle eclogites: experimental study and application to the diamond-forming processes.

    NASA Astrophysics Data System (ADS)

    Safonov, Oleg

    2010-05-01

    Recent studies prove that the partial melting in some eclogite xenoliths in kimberlites is closely related to formation of diamonds in these rocks at 4-6 GPa and 1150-12500C [e.g. 1, 2]. Along with specific mineral assemblages, the products of the eclogite partial melting commonly include relics of potassium-rich silicic melts (45-65 wt. % of SiO2, 4-14 wt. % of K2O and K2O/Na2O > 1.0) [1, 2]. Available experimental data, however, demonstrate that such melts can not be produced by 'dry' or hydrous melting of a common eclogite. It implies that partial melting and conjugate diamond formation in mantle eclogites was triggered by infiltration of potassic fluids/melts. Assemblages of Cl-bearing phases and carbonates in eclogite xenoliths [1], and eclogitic diamonds [3-6] suggest that these agents were chloride-carbonate-H2O melts or/and chloride-H2O-CO2 fluids. In order to characterize interaction of both types of liquids with eclogites and their minerals, experiments in the eclogite-related systems with participation of CaCO3-Na2CO3-KCl-H2O or H2O-CO2-KCl are reviewed. Melting relations in the system eclogite-CaCO3-Na2CO3-KCl-H2O follow the general scheme proposed earlier for chloride-carbonate-silicate systems [7]. Below 12000C, Grt, Cpx and phlogopite (Phl) coexist with LCC only. Formation of Phl and Ca-rich Grt after Cpx indicate active reactions of Cpx with LCC accompanied by CO2 degassing and depletion of the clinopyroxene in jadeite. Subsequent dissolution of silicates in LCC at >1200OC results in formation of potassic silica-undersaturated carbonate and Cl-bearing melt (LCS) (37-40 wt. % of SiO2, 10-12 wt. % of K2O, ~3.5 wt. % of Cl) immiscible with the LCC. Compositional feature of this melt is very comparable to those of low-Mg carbonate-silicate melt inclusions in diamonds [6]. However, it is not relevant to the melt relics preserved in the partially molten eclogite xenoliths. Melting of eclogites with participation of the H2O-CO2-KCl fluid at 5 GPa at 1200-13000C [8] produces CO2-depleted aluminosilicate melts with up to 46 wt. % of SiO2, 9-10 wt. % of K2O, 2-5 wt. % of Cl, whose SiO2 and K2O contents resemble the silica-poor varieties of melt relics in the eclogite xenoliths [1, 2]. Presence of KCl in the fluid intensifies melting, that is related both to high Cl content in the melt and its enrichment in K2O via K-Na exchange reactions with the immiscible chloride melt. The ratio K2O/Cl in the melts increases with the increase of the KCl content in the system and reaches 2.5-3.5 in the melts coexisting with immiscible chloride liquids. No additional crystalline phases, except Grt, Cpx, and Phl, were observed in the above experiments. However, experiments in the model system jadeite-diopside-KCl(±H2O) at 4-5 GPa shows, that KCl liquids provoke formation of ultrapotassic Cl-bearing silica-rich (i.e. 63-65 wt. % of SiO2) melt, which is able to produce sanidine and Al-celadonite-phlogopite mica, which are observed in partially molten eclogites [2]. Dissolution of pyrope in KCl-rich liquids results in formation of spinel and olivine, which are also common products of garnet breakdown within the zones of partial melting in eclogite xenoliths [1, 2]. Thus, the reviewed experiments imply that the KCl-bearing liquids could serve as triggers for formation of the wide varieties of K-rich aluminosilicate and carbonate-silicate melts during the eclogite melting in the mantle. Nevertheless, compositional variability of the produced melts, as well as formation of some crystalline phases (sanidine, mica, spinel, olivine) during this process could be a result of highly localized action of these liquids. The study is supported by the RFBR (10-05-00040), Russian President Grant (MD-130.2008.5) and Russian Science Support Foundation. References: [1] Misra et al. (2004) Contrib. Mineral. Petrol., V. 146, P. 696-714; [2] Shatsky et al. (2008) Lithos, 105, 289-300; [3] Izraeli et al. (2001) Earth Planet. Sci. Lett., 5807, 1-10; [3] Zedgenizov et al. (2007) Doklady Earth Sci., 415, 961-964; [5] Tomlinson et al. (2006), Earth Planet. Sci. Lett., 250, 581-585; [6] Weiss et al. (2009), Lithos, 112S, 660-674; [7] Safonov et al. (2009), Lithos, 112S, 260-273; [8] Butvina et al. (2009), Doklady Earth Sci., 427A, 956-960.

  13. Particle Swarm Transport through Immiscible Fluid Layers in a Fracture

    NASA Astrophysics Data System (ADS)

    Teasdale, N. D.; Boomsma, E.; Pyrak-Nolte, L. J.

    2011-12-01

    Immiscible fluids occur either naturally (e.g. oil & water) or from anthropogenic processes (e.g. liquid CO2 & water) in the subsurface and complicate the transport of natural or engineered micro- or nano-scale particles. In this study, we examined the effect of immiscible fluids on the formation and evolution of particle swarms in a fracture. A particle swarm is a collection of colloidal-size particles in a dilute suspension that exhibits cohesive behavior. Swarms fall under gravity with a velocity that is greater than the settling velocity of a single particle. Thus a particle swarm of colloidal contaminants can potentially travel farther and faster in a fracture than expected for a dispersion or emulsion of colloidal particles. We investigated the formation, evolution, and break-up of colloidal swarms under gravity in a uniform aperture fracture as hydrophobic/hydrophyllic particle swarms move across an oil-water interface. A uniform aperture fracture was fabricated from two transparent acrylic rectangular prisms (100 mm x 50 mm x 100 mm) that are separated by 1, 2.5, 5, 10 or 50 mm. The fracture was placed, vertically, inside a glass tank containing a layer of pure silicone oil (polydimethylsiloxane) on distilled water. Along the length of the fracture, 30 mm was filled with oil and 70 mm with water. Experiments were conducted using silicone oils with viscosities of 5, 10, 100, or 1000 cSt. Particle swarms (5 μl) were comprised of a 1% concentration (by mass) of 25 micron glass beads (hydrophilic) suspended in a water drop, or a 1% concentration (by mass) of 3 micron polystyrene fluorescent beads (hydrophobic) suspended in a water drop. The swarm behavior was imaged using an optical fluorescent imaging system composed of a CCD camera and by green (525 nm) LED arrays for illumination. Swarms were spherical and remained coherent as they fell through the oil because of the immiscibility of oil and water. However, as a swarm approached the oil-water interface, it decreased in speed and came to rest on the interface while maintaining its spherical shape. After the interface between a swarm and the oil thinned sufficiently, the swarm was rapidly released into the water layer. The time that this took depended on the viscosity of the oil layer, which determines the rate of thinning, and on the size and properties of the particles. The swarm geometry and velocity in the water layer depended on the aperture of the fracture, the viscosity of the oil and the hydrophobicity or hydrophyllicity of the particles in the swarm. Hydrophobic beads result in multiple mini swarms after breaking through the interface rather than a single large swarm like that observed for hydrophilic swarms. After many experiments a pile formed at the bottom of the tank near the center of the fracture, indicating that swarms can lead to locally high concentration of colloidal contaminants. Acknowledgment: The authors wish to acknowledge support of this work by the Geosciences Research Program, Office of Basic Energy Sciences US Department of Energy (DE-FG02-09ER16022) and the Summer Undergraduate Research Fellowship program at Purdue University.

  14. Phase Equilibria of the Ternary Sn-Pb-Co System at 250°C and Interfacial Reactions of Co with Sn-Pb Alloys

    NASA Astrophysics Data System (ADS)

    Wang, Chao-hong; Kuo, Chun-yi; Yang, Nian-cih

    2015-11-01

    The isothermal section of the ternary Sn-Pb-Co system at 250°C was experimentally determined through a series of the equilibrated Sn-Pb-Co alloys of various compositions. The equilibrium phases were identified on the basis of compositional analysis. For the Sn-Co intermetallic compounds (IMCs), CoSn3, CoSn2, CoSn and Co3Sn2, the Pb solubility was very limited. There exist five tie-triangle regions. The Co-Pb system involves one monotectic reaction, so the phase separation of liquid alloys near the Co-Pb side occurred prior to solidification. The immiscibility field was also determined. Additionally, interfacial reactions between Co and Sn-Pb alloys were conducted. The reaction phase for the Sn-48 at.%Pb and Sn-58 at.%Pb at 250°C was CoSn3 and CoSn2, respectively. Both of them were simultaneously formed in the Sn-53 at.%Pb/Co. The formed IMCs were closely associated to the phase equilibria relationship of the liquid-CoSn3-CoSn2 tie-triangle. Furthermore, with increasing temperatures, the phase formed in equilibrium with Sn-37 wt.%Pb was found to transit from CoSn3 to CoSn2 at 275°C. We propose a simple method of examining the phase transition temperature in the interfacial reactions to determine the boundaries of the liquid-CoSn3-CoSn2 tie-triangles at different temperatures.

  15. Polysiloxanes derived from the controlled hydrolysis of tetraethoxysilane as precursors to silica for use in ceramic processing

    NASA Technical Reports Server (NTRS)

    Philipp, Warren H.

    1990-01-01

    Synthesis, properties, and potential applications in ceramic processing for two polysiloxane silica precursors derived from the controlled hydrolysis of tetraethoxysilane (TEOS) are presented. The higher molecular weight TEOS-A is a thick adhesive liquid of viscosity 8000 to 12,000 c.p. having a SiO2 char yield of about 55 percent. The lower molecular weight TEOS-B is a more fluid liquid of viscosity 150 to 200 c.p. having a SiO2 char yield of about 52 percent. The acid catalyzed hydrolysis of TEOS to hydrated silica gel goes through a series of polysiloxane intermediates. The rate of this transition increases with the quantity of water added to the TEOS; thus, for ease of polymer isolation, the amount of water added must be carefully determined so as to produce the desired polymer in a reasonable time. The water to TEOS mole ratio falls in the narrow range of 1.05 for TEOS-A and 0.99 for TEOS-B. Further polymerization or gelation is prevented by storing at -5 C in a freezer. Both polysiloxanes thermoset to a glassy solid at 115 C. The liquid polymers are organic in nature in that they are miscible with toluene and ethanol, slightly souble in heptane, but immiscible with water. For both polymers, results on viscosity versus time are given at several temperatures and water additions. Based on these results, some examples of practical utilization of the precursors for ceramic fabrication are given.

  16. Volcanic sulfur degassing and the role of sulfides in controlling volcanic metal emissions

    NASA Astrophysics Data System (ADS)

    Edmonds, M.; Liu, E.

    2017-12-01

    Volcanoes emit prodigious quantities of sulfur and metals, their behaviour inextricably linked through pre-eruptive sulfide systematics and through degassing and speciation in the volcanic plume. Fundamental differences exist in the metal output of ocean island versus arc volcanoes, with volcanoes in Hawaii and Iceland outgassing large fluxes of gaseous and particulate chalcophiles; and arc volcanoes' plumes, in contrast, enriched in Zn, Cu, Tl and Pb. Metals and metalloids partition into a magmatic vapor phase from silicate melt at crustal pressures. Their abundance in magmatic vapor is influenced strongly by sulfide saturation and by the composition of the magmatic vapor phase, particularly with respect to chloride. These factors are highly dependent on tectonic setting. Metal outgassing is controlled by magma water content and redox: deep saturation in vapor and minimal sulfide in arc basalts yields metal-rich vapor; shallow degassing and resorption of sulfides feeds the metal content of volcanic gas in ocean islands. We present a detailed study of the sulfide systematics of the products of the 2014-2015 Holuhraun basaltic fissure eruption (Bárðarbunga volcanic system, Iceland) to illustrate the interplay between late water and sulfur outgassing; sulfide saturation and breakdown; and metal partitioning into a vapor phase. Sulfide globules, representing quenched droplets of an immiscible sulfide liquid, are preserved within erupted tephra. Sulfide globules in rapidly quenched tephra are preserved within both matrix glass and as inclusions in crystals. The stereologically-corrected 3D size distribution of sulfide globules ranges from <1 µm to 43 µm, with a modal diameter of 14-17 µm (by number). Sulfides are not uniformly distributed, and are commonly observed in association with either sub-millimetre-scale plagioclase-clinopyroxene-olivine glomerocrysts or with bubbles. Maximum dissolved sulfur concentrations of 1750 ppm in melt inclusions and matrix glass next to sulfides are consistent with empirical determinations of the sulfur content at sulfide saturation for MORB. The Holuhraun magma was sulfide-saturated on eruption and co-existed with an immiscible sulfide liquid throughout much of ol-cpx-plag crystallisation. Individual globules are associated with locally elevated dissolved sulfur concentrations, with concentration gradients away from sulfides preserved over distances of 10-40 µm from the melt-sulfide interfaces. We discuss the mechanisms of sulfide breakdown and its importance in supplying sulfur and metals to the atmosphere during eruption.

  17. Genesis of the Abu Marawat gold deposit, central Eastern Desert of Egypt

    NASA Astrophysics Data System (ADS)

    Zoheir, Basem A.; Akawy, Ahmed

    2010-06-01

    Gold mineralisation at the Abu Marawat mine, central Eastern Desert of Egypt, is related to a system of massive and sheared, milky quartz veins cutting a sequence of Neoproterozoic island arc metavolcanic/volcaniclastic rocks and related banded iron formation (BIF). Sulphide-bearing quartz veins and related hydrothermal breccia bodies display a range of textures including sheared, boudinaged and recrystallised quartz, open space filling and microbreccia. These variable textures imply a complex history of crack-seal mechanism characterising the relation between mineral deposition and a major N-S-trending shear zone, during a late brittle-ductile deformation event which affected the area at about 550 Ma. Gold-base metal mineralisation is associated with brecciation and fracturing of the iron ore bands, close to silicified shears and related quartz veins. The auriferous quartz lodes are characterised by the occurrence of visible pyrite-chalcopyrite ± pyrrhotite ± sphalerite ± galena mineralisation. Gold is refractory in pyrite and chalcopyrite, but rare visible gold/electrum and telluride specks were observed in a few samples. Hydrothermal alteration includes pervasive silicification, pyritisation, sericitisation, carbonatisation confined to a delicate set of veins and altered shears, and a more widespread propylitic alteration assemblage (quartz + chlorite + pyrite + calcite ± epidote). Fluid inclusion petrography and microthermometric studies suggest heterogeneous trapping of a low-salinity (1.4-6.7 wt.% eq. NaCl) aqueous solution and a carbonic fluid. Evidence for fluid immiscibility during ore formation includes variable liquid/vapour ratios in inclusions along individual trails and bulk inclusion homogenisation into liquid and occasionally to vapour at comparable temperatures. The trapping conditions of intragranular aqueous-carbonic inclusions approximate 264-378 °C at 700-1300 bar. Similar temperature estimates have been obtained from Al-in-chlorite geothermometry of chlorite associated with sulphides in the mineralised quartz veins. Fracturing enhanced fluid circulation through the wallrock and related BIF, allowing reaction of the S-bearing ore fluid with iron oxides. This caused pyrite formation and concomitant Au precipitation, enhanced by fluid immiscibility as H 2S partitioned preferentially into the carbonic phase. The ore fluids may have originated from granitoid intrusions (likely the post-Hammamat felsites, whereas gold and base metals might have been leached from the Abu Marawat basic metavolcanics.

  18. Electrolyte additive for improved battery performance

    DOEpatents

    Bellows, Richard J.; Kantner, Edward

    1989-04-04

    In one embodiment of the present invention, there is provided an electrochemical cell having a metal bromine couple. The cell includes an electrode structure on which to deposit the metal of the couple and a counterelectrode at which to generate bromine. A microporous membrane separates the electrode and counterelectrode. Importantly, the aqueous electrolyte comprises an aqueous metal bromide solution containing a water soluble bromine complexing agent capable of forming a water immiscible complex with bromine and an additive capable of decreasing the wettability of the microporous separators employed in such cells by such water immiscible bromine complexes.

  19. Influence of gravity level and interfacial energies on dispersion-forming tendencies in hypermonotectic Cu-Pb-Al alloys

    NASA Technical Reports Server (NTRS)

    Andrews, J. B.; Curreri, P. A.; Sandlin, A. C.

    1988-01-01

    Results on the nondirectional solidification of several hypermonotectic Cu-Pb-Al alloys were obtained aboard NASA's KC-135 zero-gravity aircraft in order to determine the influence of interfacial energies and gravity levels on dispersion-forming tendencies. The Al content was systematially varied in the alloys. The dispersion-forming ability is correlated with gravity level during solidification, the interfacial energy between the immiscible phases, and the tendency for the minority immiscible phase to wet the walls of the crucible.

  20. Interfacial spreading effects on one-dimensional organic liquid imbibition in water-wetted porous media

    NASA Astrophysics Data System (ADS)

    McBride, J. F.; Simmons, C. S.; Cary, J. W.

    1992-10-01

    The spreading coefficient, Csp, determines whether an organic immiscible liquid, OIL, will form a lens ( Csp < 0) or will spread spontaneously ( Csp > 0) on a water surface. An OIL that forms a lens does not perfectly wet the water surface and therefore has a contact angle greater than 0°. The one-dimensional rate at which an OIL spreads spontaneously on a water surface is proportional to the square root of Csp. Of the OIL's that pose a contaminant threat to the subsurface, the majority has a non-zero Csp. To test the influence of such interfacial spreading phenomena on OIL infiltration in a pristine vadose zone, upward OIL and water imbibition infiltration experiments were performed in glass-bead columns, moistened with water, by using OIL's with different Csp. An analytical model for saturated liquid front rise was used to inversely estimate the effective capillary pressure head at the front and the average liquid conductivity. A nonspreading OIL ( Csp ≪ 0) exhibited a reduced capillary pressure head in the water-wetted glass beads. A spontaneously spreading OIL ( Csp ≫0) manifested an enhanced capillary pressure head. Reduced capillary pressure head was associated with an increase in average conductivity, and enhanced capillary pressure head was associated with a decrease in average conductivity when compared to the average water conductivity during water imbibition. The employed experimental method and mathematical analysis of dynamic flow, subject to interfacial spreading phenomena, are practical for quantifying parameters for use in sharp-front OIL infiltration models, but more research is needed to determine how to incorporate the spreading coefficient in numerical multiphase flow models.

Top