Science.gov

Sample records for predicting thermal response

  1. Predicted ball grid array thermal response during reflow soldering

    SciTech Connect

    Voth, T.E.; Bergman, T.L.

    1995-12-31

    A numerical model is developed to predict the detailed thermomechanical response of a BGA assembly during reflow soldering. The governing coupled solid mechanics and heat diffusion equations are solved using a commercially available finite element package. Reported predictions illustrate the system`s sensitivity to both thermal and mechanical processing conditions, as well as component thermal properties. Specifically, assemblies with components of high thermal conductivity show the greatest sensitivity to mechanical loading conditions.

  2. On-Line, Self-Learning, Predictive Tool for Determining Payload Thermal Response

    NASA Technical Reports Server (NTRS)

    Jen, Chian-Li; Tilwick, Leon

    2000-01-01

    This paper will present the results of a joint ManTech / Goddard R&D effort, currently under way, to develop and test a computer based, on-line, predictive simulation model for use by facility operators to predict the thermal response of a payload during thermal vacuum testing. Thermal response was identified as an area that could benefit from the algorithms developed by Dr. Jeri for complex computer simulations. Most thermal vacuum test setups are unique since no two payloads have the same thermal properties. This requires that the operators depend on their past experiences to conduct the test which requires time for them to learn how the payload responds while at the same time limiting any risk of exceeding hot or cold temperature limits. The predictive tool being developed is intended to be used with the new Thermal Vacuum Data System (TVDS) developed at Goddard for the Thermal Vacuum Test Operations group. This model can learn the thermal response of the payload by reading a few data points from the TVDS, accepting the payload's current temperature as the initial condition for prediction. The model can then be used as a predictive tool to estimate the future payload temperatures according to a predetermined shroud temperature profile. If the error of prediction is too big, the model can be asked to re-learn the new situation on-line in real-time and give a new prediction. Based on some preliminary tests, we feel this predictive model can forecast the payload temperature of the entire test cycle within 5 degrees Celsius after it has learned 3 times during the beginning of the test. The tool will allow the operator to play "what-if' experiments to decide what is his best shroud temperature set-point control strategy. This tool will save money by minimizing guess work and optimizing transitions as well as making the testing process safer and easier to conduct.

  3. On-Line, Self-Learning, Predictive Tool for Determining Payload Thermal Response

    NASA Technical Reports Server (NTRS)

    Jen, Chian-Li; Tilwick, Leon

    2000-01-01

    This paper will present the results of a joint ManTech / Goddard R&D effort, currently under way, to develop and test a computer based, on-line, predictive simulation model for use by facility operators to predict the thermal response of a payload during thermal vacuum testing. Thermal response was identified as an area that could benefit from the algorithms developed by Dr. Jeri for complex computer simulations. Most thermal vacuum test setups are unique since no two payloads have the same thermal properties. This requires that the operators depend on their past experiences to conduct the test which requires time for them to learn how the payload responds while at the same time limiting any risk of exceeding hot or cold temperature limits. The predictive tool being developed is intended to be used with the new Thermal Vacuum Data System (TVDS) developed at Goddard for the Thermal Vacuum Test Operations group. This model can learn the thermal response of the payload by reading a few data points from the TVDS, accepting the payload's current temperature as the initial condition for prediction. The model can then be used as a predictive tool to estimate the future payload temperatures according to a predetermined shroud temperature profile. If the error of prediction is too big, the model can be asked to re-learn the new situation on-line in real-time and give a new prediction. Based on some preliminary tests, we feel this predictive model can forecast the payload temperature of the entire test cycle within 5 degrees Celsius after it has learned 3 times during the beginning of the test. The tool will allow the operator to play "what-if' experiments to decide what is his best shroud temperature set-point control strategy. This tool will save money by minimizing guess work and optimizing transitions as well as making the testing process safer and easier to conduct.

  4. Prediction of the thermal environment and thermal response of simple panels exposed to radiant heat

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.; Ash, Robert L.

    1989-01-01

    A method of predicting the radiant heat flux distribution produced by a bank of tubular quartz heaters was applied to a radiant system consisting of a single unreflected lamp irradiating a flat metallic incident surface. In this manner, the method was experimentally verified for various radiant system parameter settings and used as a source of input for a finite element thermal analysis. Two finite element thermal analyses were applied to a thermal system consisting of a thin metallic panel exposed to radiant surface heating. A two-dimensional steady-state finite element thermal analysis algorithm, based on Galerkin's Method of Weighted Residuals (GFE), was formulated specifically for this problem and was used in comparison to the thermal analyzers of the Engineering Analysis Language (EAL). Both analyses allow conduction, convection, and radiation boundary conditions. Differences in the respective finite element formulation are discussed in terms of their accuracy and resulting comparison discrepancies. The thermal analyses are shown to perform well for the comparisons presented here with some important precautions about the various boundary condition models. A description of the experiment, corresponding analytical modeling, and resulting comparisons are presented.

  5. A simplified model to predict the thermal response of PLG and its influence on BLEVE.

    PubMed

    Gong, Y W; Lin, W S; Gu, A Z; Lu, X S

    2004-04-30

    A simplified model has been developed to describe the thermal response of pressure liquefied gas (PLG) tanks subjected to fire. The development of the stratification layer is considered in this model. Comparison of results with available experimental data shows that our proposed model can reasonably predict the thermal response. The effect of stratification on the liquid energy is also summarized. Results show that the pressure in the tank rises faster as a result of thermal stratification, and for the same tank pressure the energy in the liquid is less when the liquid is stratified. Stratification can reduce the severity of hazards of boiling liquid expanding vapor explosion (BLEVE).

  6. Quantifying thermal extremes and biological variation to predict evolutionary responses to changing climate.

    PubMed

    Kingsolver, Joel G; Buckley, Lauren B

    2017-06-19

    Central ideas from thermal biology, including thermal performance curves and tolerances, have been widely used to evaluate how changes in environmental means and variances generate changes in fitness, selection and microevolution in response to climate change. We summarize the opportunities and challenges for extending this approach to understanding the consequences of extreme climatic events. Using statistical tools from extreme value theory, we show how distributions of thermal extremes vary with latitude, time scale and climate change. Second, we review how performance curves and tolerances have been used to predict the fitness and evolutionary responses to climate change and climate gradients. Performance curves and tolerances change with prior thermal history and with time scale, complicating their use for predicting responses to thermal extremes. Third, we describe several recent case studies showing how infrequent extreme events can have outsized effects on the evolution of performance curves and heat tolerance. A key issue is whether thermal extremes affect reproduction or survival, and how these combine to determine overall fitness. We argue that a greater focus on tails-in the distribution of environmental extremes, and in the upper ends of performance curves-is needed to understand the consequences of extreme events.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'. © 2017 The Author(s).

  7. Prediction of response of aircraft panels subjected to acoustic and thermal loads

    NASA Technical Reports Server (NTRS)

    Mei, Chuh

    1992-01-01

    The primary effort of this research project has been focused on the development of analytical methods for the prediction of random response of structural panels subjected to combined and intense acoustic and thermal loads. The accomplishments on various acoustic fatigue research activities are described first, then followed by publications and theses. Topics covered include: transverse shear deformation; finite element models of vibrating composite laminates; large deflection vibration modeling; finite element analysis of thermal buckling; and prediction of three dimensional duct using boundary element method.

  8. The Effect of Basis Selection on Thermal-Acoustic Random Response Prediction Using Nonlinear Modal Simulation

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Przekop, Adam

    2004-01-01

    The goal of this investigation is to further develop nonlinear modal numerical simulation methods for prediction of geometrically nonlinear response due to combined thermal-acoustic loadings. As with any such method, the accuracy of the solution is dictated by the selection of the modal basis, through which the nonlinear modal stiffness is determined. In this study, a suite of available bases are considered including (i) bending modes only; (ii) coupled bending and companion modes; (iii) uncoupled bending and companion modes; and (iv) bending and membrane modes. Comparison of these solutions with numerical simulation in physical degrees-of-freedom indicates that inclusion of any membrane mode variants (ii - iv) in the basis affects the bending displacement and stress response predictions. The most significant effect is on the membrane displacement, where it is shown that only the type (iv) basis accurately predicts its behavior. Results are presented for beam and plate structures in the thermally pre-buckled regime.

  9. Chemoradiotherapy and concurrent radiofrequency thermal therapy to treat primary rectal cancer and prediction of treatment responses

    PubMed Central

    Shoji, Hisanori; Motegi, Masahiko; Takakusagi, Yosuke; Asao, Takayuki; Kuwano, Hiroyuki; Takahashi, Takeo; Ogoshi, Kyoji

    2017-01-01

    The present study aimed to evaluate a previously reported predictive formula of output-limiting symptoms induced by radiofrequency (RF) to determine the efficacy of this neoadjuvant chemoradiation (NACR) and concurrent RF thermal therapy. The present study included 81 consecutive patients with confirmed diagnoses of rectal adenocarcinoma that was localized in the mid-low rectum (up to 12 cm from the anal verge) who received NACR [intensity-modulated radiotherapy (IMRT), 50 Gy/25 fractions, capecitabine 1,700 mg/m2/day for 5 days/week)] with concurrent thermal therapy (Thermotron-RF8, once a week for 5 weeks with 50 min irradiation). Patients with progressive disease (PD) did not receive RF outputs higher than the predicted value. Some patients who were predicted to receive more output in fact received more than the predicted output. In patients who were predicted to receive moderately higher outputs, 37.5% of the patients experienced pathological complete responses, which was the highest rate, while in those who did not receive more than the predicted output, 66.7% of the patients experienced PD, which was the highest rate in the present study. We speculate that RF thermal therapy may offset the chemoradiation effects in some patients. Adding thermal therapy as a multimodality therapy to NACR potentially affects patients with lower predicted outputs and actual observed outputs slightly higher than the predictive value. Our predictive equation for initial energy output, in which output-limiting symptoms can be used to predict treatment efficacy, consequently, can be used to decide whether to continue this treatment modality. PMID:27959450

  10. Brain response to thermal stimulation predicts outcome of patients with chronic disorders of consciousness.

    PubMed

    Li, Li; Kang, Xiao-gang; Qi, Shun; Xu, Xiao-xia; Xiong, Li-ze; Zhao, Gang; Yin, Hong; Jiang, Wen

    2015-08-01

    To study the role of brain responses to thermal stimulation in outcome prediction of patients in either vegetative or minimally conscious states. We performed a prospective study with 22 patients and used functional magnetic resonance imaging (fMRI) and EEG reactivity (EEG-R) tests in conjunction with thermal stimulation. We conducted thermal stimulation on patients by stimulating either their feet (fMRI) or hands (EEEG-R) with warm water (42±2°C). Each patient received a 1-year follow-up. Among the 22 patients, 1 was lost to follow- up, 10 had improved outcomes, and the remaining 11 patients showed no improvement. Thermal stimulation induced three different fMRI brain activation patterns: (1) high-order activation in 4 patients, (2) primary activation in 6 patients, and (3) no activation in 11 patients. Eight of the 10 patients with either high-order or primary activation had an improved outcome. Contrastingly, only 2 of the 11 patients with no activation pattern showed improvement. EEG-R was elicited in 11 patients and 9 of them showed improved outcomes. However, among the 10 patients with no EEG-R, 9 patients did not improve. Using fMRI and EEG to measure brain responses to thermal stimulation is capable of predicting patient outcomes with a high degree of predictive accuracy. Thermal stimulation can be used as an objective and quantifiable somatosensory stimulation mode for clinical EEG-R and fMRI tests. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  11. Geographic analysis of thermal equilibria: A bioenergetic model for predicting thermal response of aquatic insect communities

    SciTech Connect

    Sweeney, B.W.; Newbold, J.D.; Vannote, R.L.

    1991-12-01

    The thermal regime immediately downstream from bottom release reservoirs is often characterized by reduced diel and seasonal (winter warm/summer cool) conditions. These unusual thermal patterns have often been implicated as a primary factor underlying observed downstream changes in the species composition of aquatic macroinvertebrate communities. The potential mechanisms for selective elimination of benthic species by unusual thermal regimes has been reviewed. Although the effects of temperature on the rate and magnitude of larval growth and development has been included in the list of potential mechanisms, only recently have field studies below dams focused on this interrelationship. This study investigates the overall community structure as well as the seasonal pattern of larval growth and development for several univoltine species of insects in the Delaware River below or near the hypolimnetic discharge of the Cannonsville and Pepeacton dams. These dams, which are located on the West and East branches of the Delaware River, respectively, produce a thermal gradient extending about 70 km downstream.

  12. A standard predictive index of human response to the thermal environment

    SciTech Connect

    Gagge, A.P.; Fobelets, A.P.; Berglund, L.G.

    1986-01-01

    Temperature and sensory indicates of human response to the thermal environment are often expressed in terms of the known response in a controlled laboratory environment, as a standard. The three rational indices of this type to be considered are ASHRAE's Standard Effective Temperature (SET*) Index, defined as the equivalent dry bulb temperature of an isothermal environment at 50% RH in which a subject, while wearing clothing standardized for activity concerned, would have the same heat stress (skin temperature T/sub sk/) and thermo-regulatory strain (skin wettedness, w) as in the actual test environment; Fanger's Predicted Mean Vote (PMV) Index, defined in terms of the heat load that would be required to restore a state of ''Comfort'' and evaluated by his Comfort Equation; and Winslow's Skin Wettedness Index of ''Thermal Discomfort'' (DISC) defined in terms of the fraction of the body surface, wet with perspiration, required to regulate body temperature by evaporative cooling.

  13. Prediction of thermal and mechanical stress-strain responses of TMC's subjected to complex TMF histories

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.; Mirdamadi, M.

    1994-01-01

    This paper presents an experimental and analytical evaluation of cross-plied laminates of Ti-15V-3Cr-3Al-3Sn (Ti-15-3) matrix reinforced with continuous silicon-carbide fibers (SCS-6) subjected to a complex TMF loading profile. Thermomechanical fatigue test techniques were developed to conduct a simulation of a generic hypersonic flight profile. A micromechanical analysis was used. The analysis predicts the stress-strain response of the laminate and of the constituents in each ply during thermal and mechanical cycling by using only constituent properties as input. The fiber was modeled as elastic with transverse orthotropic and temperature-dependent properties. The matrix was modeled using a thermoviscoplastic constitutive relation. The fiber transverse modulus was reduced in the analysis to simulate the fiber-matrix interface failures. Excellent correlation was found between measured and predicted laminate stress-strain response due to generic hypersonic flight profile when fiber debonding was modeled.

  14. Simulating Physiological Response with a Passive Sensor Manikin and an Adaptive Thermal Manikin to Predict Thermal Sensation and Comfort

    SciTech Connect

    Rugh, John P; Chaney, Larry; Hepokoski, Mark; Curran, Allen; Burke, Richard; Maranville, Clay

    2015-04-14

    Reliable assessment of occupant thermal comfort can be difficult to obtain within automotive environments, especially under transient and asymmetric heating and cooling scenarios. Evaluation of HVAC system performance in terms of comfort commonly requires human subject testing, which may involve multiple repetitions, as well as multiple test subjects. Instrumentation (typically comprised of an array of temperature sensors) is usually only sparsely applied across the human body, significantly reducing the spatial resolution of available test data. Further, since comfort is highly subjective in nature, a single test protocol can yield a wide variation in results which can only be overcome by increasing the number of test replications and subjects. In light of these difficulties, various types of manikins are finding use in automotive testing scenarios. These manikins can act as human surrogates from which local skin and core temperatures can be obtained, which are necessary for accurately predicting local and whole body thermal sensation and comfort using a physiology-based comfort model (e.g., the Berkeley Comfort Model). This paper evaluates two different types of manikins, i) an adaptive sweating thermal manikin, which is coupled with a human thermoregulation model, running in real-time, to obtain realistic skin temperatures; and, ii) a passive sensor manikin, which is used to measure boundary conditions as they would act on a human, from which skin and core temperatures can be predicted using a thermophysiological model. The simulated physiological responses and comfort obtained from both of these manikin-model coupling schemes are compared to those of a human subject within a vehicle cabin compartment transient heat-up scenario.

  15. Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures?

    PubMed

    Sinclair, Brent J; Marshall, Katie E; Sewell, Mary A; Levesque, Danielle L; Willett, Christopher S; Slotsbo, Stine; Dong, Yunwei; Harley, Christopher D G; Marshall, David J; Helmuth, Brian S; Huey, Raymond B

    2016-11-01

    Thermal performance curves (TPCs), which quantify how an ectotherm's body temperature (Tb ) affects its performance or fitness, are often used in an attempt to predict organismal responses to climate change. Here, we examine the key - but often biologically unreasonable - assumptions underlying this approach; for example, that physiology and thermal regimes are invariant over ontogeny, space and time, and also that TPCs are independent of previously experienced Tb. We show how a critical consideration of these assumptions can lead to biologically useful hypotheses and experimental designs. For example, rather than assuming that TPCs are fixed during ontogeny, one can measure TPCs for each major life stage and incorporate these into stage-specific ecological models to reveal the life stage most likely to be vulnerable to climate change. Our overall goal is to explicitly examine the assumptions underlying the integration of TPCs with Tb , to develop a framework within which empiricists can place their work within these limitations, and to facilitate the application of thermal physiology to understanding the biological implications of climate change. © 2016 John Wiley & Sons Ltd/CNRS.

  16. Differential Response of Coral Assemblages to Thermal Stress Underscores the Complexity in Predicting Bleaching Susceptibility

    PubMed Central

    Toh, Kok Ben; Ng, Chin Soon Lionel; Cabaitan, Patrick; Tun, Karenne; Goh, Eugene; Afiq-Rosli, Lutfi; Taira, Daisuke; Du, Rosa Celia Poquita; Loke, Hai Xin; Khalis, Aizat; Li, Jinghan; Song, Tiancheng

    2016-01-01

    Coral bleaching events have been predicted to occur more frequently in the coming decades with global warming. The susceptibility of corals to bleaching during thermal stress episodes is dependent on many factors and an understanding of these underlying drivers is crucial for conservation management. In 2013, a mild bleaching episode ensued in response to elevated sea temperature on the sediment-burdened reefs in Singapore. Surveys of seven sites highlighted variable bleaching susceptibility among coral genera–Pachyseris and Podabacia were the most impacted (31% of colonies of both genera bleached). The most susceptible genera such as Acropora and Pocillopora, which were expected to bleach, did not. Susceptibility varied between less than 6% and more than 11% of the corals bleached, at four and three sites respectively. Analysis of four of the most bleached genera revealed that a statistical model that included a combination of the factors (genus, colony size and site) provided a better explanation of the observed bleaching patterns than any single factor alone. This underscored the complexity in predicting the coral susceptibility to future thermal stress events and the importance of monitoring coral bleaching episodes to facilitate more effective management of coral reefs under climate change. PMID:27438593

  17. Differential Response of Coral Assemblages to Thermal Stress Underscores the Complexity in Predicting Bleaching Susceptibility.

    PubMed

    Chou, Loke Ming; Toh, Tai Chong; Toh, Kok Ben; Ng, Chin Soon Lionel; Cabaitan, Patrick; Tun, Karenne; Goh, Eugene; Afiq-Rosli, Lutfi; Taira, Daisuke; Du, Rosa Celia Poquita; Loke, Hai Xin; Khalis, Aizat; Li, Jinghan; Song, Tiancheng

    2016-01-01

    Coral bleaching events have been predicted to occur more frequently in the coming decades with global warming. The susceptibility of corals to bleaching during thermal stress episodes is dependent on many factors and an understanding of these underlying drivers is crucial for conservation management. In 2013, a mild bleaching episode ensued in response to elevated sea temperature on the sediment-burdened reefs in Singapore. Surveys of seven sites highlighted variable bleaching susceptibility among coral genera-Pachyseris and Podabacia were the most impacted (31% of colonies of both genera bleached). The most susceptible genera such as Acropora and Pocillopora, which were expected to bleach, did not. Susceptibility varied between less than 6% and more than 11% of the corals bleached, at four and three sites respectively. Analysis of four of the most bleached genera revealed that a statistical model that included a combination of the factors (genus, colony size and site) provided a better explanation of the observed bleaching patterns than any single factor alone. This underscored the complexity in predicting the coral susceptibility to future thermal stress events and the importance of monitoring coral bleaching episodes to facilitate more effective management of coral reefs under climate change.

  18. Uncertainties in modeling and scaling in the prediction of fuel stored energy and thermal response

    SciTech Connect

    Wulff, W.

    1987-01-01

    The steady-state temperature distribution and the stored energy in nuclear fuel elements are computed by analytical methods and used to rank, in the order of importance, the effects on stored energy from statistical uncertainties in modeling parameters, in boundary and in operating conditions. An integral technique is used to calculate the transient fuel temperature and to estimate the uncertainties in predicting the fuel thermal response and the peak clad temperature during a large-break loss of coolant accident. The uncertainty analysis presented here is an important part of evaluating the applicability, the uncertainties and the scaling capabilities of computer codes for nuclear reactor safety analyses. The methods employed in this analysis merit general attention because of their simplicity. It is shown that the blowdown peak is dominated by fuel stored energy alone or, equivalently, by linear heating rate. Gap conductance, peaking factors and fuel thermal conductivity are the three most important fuel modeling parameters affecting peak clad temperature uncertainty. 26 refs., 10 figs., 6 tabs.

  19. The thermal niche of Neotropical nectar-feeding bats: Its evolution and application to predict responses to global warming.

    PubMed

    Ortega-García, Stephanie; Guevara, Lázaro; Arroyo-Cabrales, Joaquín; Lindig-Cisneros, Roberto; Martínez-Meyer, Enrique; Vega, Ernesto; Schondube, Jorge E

    2017-09-01

    The thermal niche of a species is one of the main determinants of its ecology and biogeography. In this study, we determined the thermal niche of 23 species of Neotropical nectar-feeding bats of the subfamily Glossophaginae (Chiroptera, Phyllostomidae). We calculated their thermal niches using temperature data obtained from collection records, by generating a distribution curve of the maximum and minimum temperatures per locality, and using the inflection points of the temperature distributions to estimate the species optimal (STZ) and suboptimal (SRZ) zones of the thermal niche. Additionally, by mapping the values of the STZ and SRZ on a phylogeny of the group, we generated a hypothesis of the evolution of the thermal niches of this clade of nectar-feeding bats. Finally, we used the characteristics of their thermal niches to predict the responses of these organisms to climate change. We found a large variation in the width and limits of the thermal niches of nectar-feeding bats. Additionally, while the upper limits of the thermal niches varied little among species, their lower limits differ wildly. The ancestral reconstruction of the thermal niche indicated that this group of Neotropical bats evolved under cooler temperatures. The two clades inside the Glossophaginae differ in the evolution of their thermal niches, with most members of the clade Choeronycterines evolving "colder" thermal niches, while the majority of the species in the clade Glossophagines evolving "warmer" thermal niches. By comparing thermal niches with climate change models, we found that all species could be affected by an increase of 1°C in temperature at the end of this century. This suggests that even nocturnal species could suffer important physiological costs from global warming. Our study highlights the value of scientific collections to obtain ecologically significant physiological data for a large number of species.

  20. Cookoff Response of PBXN-109: Material Characterization and ALE3D Thermal Predictions

    SciTech Connect

    McClelland, M A; Tran, T D; Cunningham, B J; Weese, R K; Maienschein, J L

    2001-08-21

    Materials properties measurements are made for the RDX-based explosive, PBXN-109, and initial ALE3D model predictions are given for the cookoff temperature in a U.S. Navy test. This work is part of an effort in the U.S. Navy and Department of Energy (DOE) laboratories to understand the thermal explosion behavior of this material. Benchmark cookoff experiments are being performed by the U.S. Navy to validate DOE materials models and computer codes. The ALE3D computer code can model the coupled thermal, mechanical, and chemical behavior of heating, ignition, and explosion in cookoff tests. In our application, a standard three-step step model is selected for the chemical kinetics. The strength behavior of the solid constituents is represented by a Steinberg-Guinan model while polynomial and gamma-law expressions are used for the Equation Of State (EOS) for the solid and gas species, respectively. Materials characterization measurements are given for thermal expansion, heat capacity, shear modulus, bulk modulus, and One-Dimensional-Time-to-Explosion (ODTX). These measurements and those of the other project participants are used to determine parameters in the ALE3D chemical, mechanical, and thermal models. Time-dependent, two-dimensional results are given for the temperature and material expansion. The results show predicted cookoff temperatures slightly higher than the measured values.

  1. Cookoff Response of PBXN-109: Material Characterization and ALE3D Thermal Predictions

    SciTech Connect

    McClelland, M A; Tran, T D; Cunningham, B J; Weese, R K; Maienschein, J L

    2001-05-29

    Materials properties measurements are made for the RDX-based explosive, PBXN-109, and initial ALE3D model predictions are given for the cookoff temperature in a U.S. Navy test. This work is part of an effort in the U.S. Navy and Department of Energy (DOE) laboratories to understand the thermal explosion behavior of this material. Benchmark cookoff experiments are being performed by the U.S. Navy to validate DOE materials models and computer codes. The ALE3D computer code can model the coupled thermal, mechanical, and chemical behavior of heating, ignition, and explosion in cookoff tests. In our application, a standard three-step step model is selected for the chemical kinetics. The strength behavior of the solid constituents is represented by a Steinberg-Guinan model while polynomial and gamma-law expressions are used for the Equation Of State (EOS) for the solid and gas species, respectively. Materials characterization measurements are given for thermal expansion, heat capacity, shear modulus, bulk modulus, and One-Dimensional-Time-to-Explosion (ODTX). These measurements and those of the other project participants are used to determine parameters in the ALE3D chemical, mechanical, and thermal models. Time-dependent, two-dimensional results are given for the temperature and material expansion. The results show predicted cookoff temperatures slightly higher than the measured values.

  2. Climate Change Simulations Predict Altered Biotic Response in a Thermally Heterogeneous Stream System

    PubMed Central

    Westhoff, Jacob T.; Paukert, Craig P.

    2014-01-01

    Climate change is predicted to increase water temperatures in many lotic systems, but little is known about how changes in air temperature affect lotic systems heavily influenced by groundwater. Our objectives were to document spatial variation in temperature for spring-fed Ozark streams in Southern Missouri USA, create a spatially explicit model of mean daily water temperature, and use downscaled climate models to predict the number of days meeting suitable stream temperature for three aquatic species of concern to conservation and management. Longitudinal temperature transects and stationary temperature loggers were used in the Current and Jacks Fork Rivers during 2012 to determine spatial and temporal variability of water temperature. Groundwater spring influence affected river water temperatures in both winter and summer, but springs that contributed less than 5% of the main stem discharge did not affect river temperatures beyond a few hundred meters downstream. A multiple regression model using variables related to season, mean daily air temperature, and a spatial influence factor (metric to account for groundwater influence) was a strong predictor of mean daily water temperature (r2 = 0.98; RMSE = 0.82). Data from two downscaled climate simulations under the A2 emissions scenario were used to predict daily water temperatures for time steps of 1995, 2040, 2060, and 2080. By 2080, peak numbers of optimal growth temperature days for smallmouth bass are expected to shift to areas with more spring influence, largemouth bass are expected to experience more optimal growth days (21 – 317% increase) regardless of spring influence, and Ozark hellbenders may experience a reduction in the number of optimal growth days in areas with the highest spring influence. Our results provide a framework for assessing fine-scale (10 s m) thermal heterogeneity and predict shifts in thermal conditions at the watershed and reach scale. PMID:25356982

  3. Thermal conditions in freezing chambers and prediction of the thermophysiological responses of workers

    NASA Astrophysics Data System (ADS)

    Raimundo, A. M.; Oliveira, A. V. M.; Gaspar, A. R.; Quintela, D. A.

    2015-11-01

    The present work is dedicated to the assessment of the cold thermal strain of human beings working within freezing chambers. To obtain the present results, both field measurements and a numerical procedure based on a modified version of the Stolwijk thermoregulation model were used. Eighteen freezing chambers were considered. A wide range of physical parameters of the cold stores, the workers clothing insulation, and the working and recovering periods were observed. The combination of these environmental and individual parameters lead to different levels of thermal stress, which were grouped under three categories. Some good practices were observed in the field evaluations, namely situations with appropriate level of clothing protection and limited duration of exposure to cold avoiding unacceptable level of hypothermia. However, the clothing ensembles normally used by the workers do not provide the minimum required insulation, which suggests the possibility of the whole body cooling for levels higher than admissible. The numerical predictions corroborate the main conclusions of the field survey. The results obtained with both methodologies clearly show that, for the low temperature of the freezing chambers, the clothing insulation is insufficient, the exposure periods are too long, and the recovering periods are inadequate. Thus, high levels of physiological strain can indeed be reached by human beings under such working environments.

  4. Thermal responses for men with different fat compositions during immersion in cold water at two depths: prediction versus observation.

    PubMed

    Xu, Xiaojiang; Castellani, John W; Santee, William; Kolka, Margaret

    2007-05-01

    A cold thermoregulatory model (CTM) was applied to data from partially immersed subjects divided into normal (NF) or low fat (LF) groups in order to validate CTM during immersion at two depths and to examine mechanisms underlying the individual differences. CTM defines thermal characteristics, e.g. surface area and maximal shivering intensity, using height, weight, fat %, age and VO(2max). Ten clothed subjects, 5 NF (15-19%) and 5 LF (8.1-14.7%), were immersed in both 10 and 15 degrees C water at chest (CH) and waist (WA) level. Environmental and clothing inputs for CTM were weighted to adjust for the ratio of skin surface area covered by either air or water at various immersion depths. Predicted core temperature (Tc) responses for each individual trial were compared with measured data. There were no significant differences (P > 0.05) between measured Tc and predicted Tc for NF at all four conditions. In contrast, for the LF group, the predicted Tc responses were all higher than measured (P < 0.05). However, predicted Tc agreed closer with measured Tc for LF when leg muscle blood flow was increased in the simulation. This suggests that blood flow may contribute to the rapid decline in Tc observed in LF and its variance may cause in part the individual differences in Tc responses. CTM predicts Tc responses to immersion at various depths with acceptable accuracy for NF individuals in this study and can be adapted to non-uniform environments.

  5. Prediction of the effects of thermal stratification on pressure and temperature response of the Apollo supercritical oxygen tank

    NASA Technical Reports Server (NTRS)

    Chen, I. M.; Anderson, R. E.

    1971-01-01

    A semiempirical design-oriented model has been developed for the prediction of the effects of thermal stratification on tank pressure and heater temperature response for the Apollo supercritical oxygen tank. The heat transfer formulation describes laminar free convection at low-g and takes into account the radiation and conduction processes occurring in the tank. The nonequilibrium thermodynamic behavior of the system due to localized heating of the stored fluid is represented by the characteristics of a discrete number of fluid regions and thermal nodes. Solutions to the time dependent variable fluid property problem are obtained through the use of a reference temperature procedure. A criterion which establishes the reference temperature as a function of the fluid density ratio is derived. The analytical results are compared with the flight data.

  6. Prediction of tissue thermal damage.

    PubMed

    Li, Xin; Zhong, Yongmin; Subic, Aleksandar; Jazar, Reza; Smith, Julian; Gu, Chengfan

    2016-04-29

    This paper presents a method to characterize tissue thermal damage by taking into account the thermal-mechanical effect of soft tissues for thermal ablation. This method integrates the bio-heating conduction and non-rigid motion dynamics to describe thermal-mechanical behaviors of soft tissues and further extends the traditional tissue damage model to characterize thermal-mechanical damage of soft tissues. Simulations and comparison analysis demonstrate that the proposed method can effectively predict tissue thermal damage and it also provides reliable guidelines for control of the thermal ablation procedure.

  7. Predictive Thermal Control Technology for Stable Telescope

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip

    Predictive Thermal Control (PTC) project is a multiyear effort to develop, demonstrate, mature towards TRL6, and assess the utility of model based Predictive Thermal Control technology to enable a thermally stable telescope. PTC demonstrates technology maturation by model validation and characterization testing of traceable components in a relevant environment. PTC's efforts are conducted in consultation with the Cosmic Origins Office and NASA Program Analysis Groups. To mature Thermally Stable Telescope technology, PTC has three objectives: • Validate models that predict thermal optical performance of real mirrors and structure based on their designs and constituent material properties, i.e. coefficient of thermal expansion (CTE) distribution, thermal conductivity, thermal mass, etc. • Derive thermal system stability specifications from wavefront stability requirements. • Demonstrate utility of Predictive Thermal Control for achieving thermal stability. To achieve these objectives, PTC has five quantifiable milestones: 1. Develop a high-fidelity model of the AMTD-2 1.5 meter ULE® mirror, including 3D CTE distribution and reflective optical coating, that predicts its optical performance response to steady-state and dynamic thermal gradients under bang/bang and proportional thermal control. 2. Derive specifications for thermal control system as a function of wavefront stability. 3. Design and build a predictive Thermal Control System for a 1.5 meter ULE® mirror using new and existing commercial-off-the-shelf components that sense temperature changes at the 1mK level and actively controls the mirrors thermal environment at the 20mK level. 4. Validate the model by testing a 1.5-m class ULE® mirror in a relevant thermal vacuum environment in the MSFC X-ray and Cryogenic Facility (XRCF) test facility. 5. Use validated model to perform trade studies to optimize thermo-optical performance as a function of mirror design, material selection, mass, etc. PTC advances

  8. Biophysical Characterization and Predicted Human Thermal Responses to U.S. Army Body Armor Protection Levels (BAPL)

    DTIC Science & Technology

    2013-09-01

    Capabilities Development Document CIE Clothing and Individual Equipment clo thermal resistance FRACU Flame Resistant Army Combat Uniform HSDA Heat...required to wear protective clothing and individual equipment ( CIE ). On top of a Soldier’s typical clothing configurations there is a consistent demand...Photographs of the test set-up are shown at Appendix A, and full definitions for clo, im/clo are shown in Appendix B. Predictive Modeling Predictive

  9. Forest cover reduces thermally suitable habitats and affects responses to a warmer climate predicted in a high-elevation lizard.

    PubMed

    Huang, Shu-Ping; Porter, Warren P; Tu, Ming-Chung; Chiou, Chyi-Rong

    2014-05-01

    Warmer climates have affected animal distribution ranges, but how they may interact with vegetation patterns to affect habitat use, an important consideration for future wildlife management, has received little attention. Here, we use a biophysical model to investigate the potential thermal impact of vegetation pattern on the habitat quality of a high-elevation grassland lizard, Takydromus hsuehshanensis, and to predict the thermal suitability of vegetation for this species in a future warmer climate (assuming 3 °C air temperature increase). We assess the thermal quality of vegetation types in our study area (Taroko National Park in areas >1,800 m) using three ecologically relevant estimates of reptiles: body temperature (T b), maximum active time, and maximum digestive time. The results show that increasing forest canopy gradually cools the microclimates, hence decreasing these estimates. In the current landscape, sunny mountain-top grasslands are predicted to serve as high quality thermal habitat, whereas the dense forests that are dominant as a result of forest protection are too cold to provide suitable habitat. In simulated warmer climates, the thermal quality of dense forests increases slightly but remains inferior to that of grasslands. We note that the impact of warmer climates on this reptile will be greatly affected by future vegetation patterns, and we suggest that the current trend of upslope forest movement found in many other mountain systems could cause disadvantages to some heliothermic lizard species.

  10. The Response of Human Thermal Sensation and Its Prediction to Temperature Step-Change (Cool-Neutral-Cool)

    PubMed Central

    Du, Xiuyuan; Li, Baizhan; Liu, Hong; Yang, Dong; Yu, Wei; Liao, Jianke; Huang, Zhichao; Xia, Kechao

    2014-01-01

    This paper reports on studies of the effect of temperature step-change (between a cool and a neutral environment) on human thermal sensation and skin temperature. Experiments with three temperature conditions were carried out in a climate chamber during the period in winter. Twelve subjects participated in the experiments simulating moving inside and outside of rooms or cabins with air conditioning. Skin temperatures and thermal sensation were recorded. Results showed overshoot and asymmetry of TSV due to the step-change. Skin temperature changed immediately when subjects entered a new environment. When moving into a neutral environment from cool, dynamic thermal sensation was in the thermal comfort zone and overshoot was not obvious. Air-conditioning in a transitional area should be considered to limit temperature difference to not more than 5°C to decrease the unacceptability of temperature step-change. The linear relationship between thermal sensation and skin temperature or gradient of skin temperature does not apply in a step-change environment. There is a significant linear correlation between TSV and Qloss in the transient environment. Heat loss from the human skin surface can be used to predict dynamic thermal sensation instead of the heat transfer of the whole human body. PMID:25136808

  11. The response of human thermal sensation and its prediction to temperature step-change (cool-neutral-cool).

    PubMed

    Du, Xiuyuan; Li, Baizhan; Liu, Hong; Yang, Dong; Yu, Wei; Liao, Jianke; Huang, Zhichao; Xia, Kechao

    2014-01-01

    This paper reports on studies of the effect of temperature step-change (between a cool and a neutral environment) on human thermal sensation and skin temperature. Experiments with three temperature conditions were carried out in a climate chamber during the period in winter. Twelve subjects participated in the experiments simulating moving inside and outside of rooms or cabins with air conditioning. Skin temperatures and thermal sensation were recorded. Results showed overshoot and asymmetry of TSV due to the step-change. Skin temperature changed immediately when subjects entered a new environment. When moving into a neutral environment from cool, dynamic thermal sensation was in the thermal comfort zone and overshoot was not obvious. Air-conditioning in a transitional area should be considered to limit temperature difference to not more than 5°C to decrease the unacceptability of temperature step-change. The linear relationship between thermal sensation and skin temperature or gradient of skin temperature does not apply in a step-change environment. There is a significant linear correlation between TSV and Qloss in the transient environment. Heat loss from the human skin surface can be used to predict dynamic thermal sensation instead of the heat transfer of the whole human body.

  12. Predicted thermal response of a cryogenic fuel tank exposed to simulated aerodynamic heating profiles with different cryogens and fill levels

    NASA Technical Reports Server (NTRS)

    Hanna, Gregory J.; Stephens, Craig A.

    1991-01-01

    A two dimensional finite difference thermal model was developed to predict the effects of heating profile, fill level, and cryogen type prior to experimental testing the Generic Research Cryogenic Tank (GRCT). These numerical predictions will assist in defining test scenarios, sensor locations, and venting requirements for the GRCT experimental tests. Boiloff rates, tank-wall and fluid temperatures, and wall heat fluxes were determined for 20 computational test cases. The test cases spanned three discrete fill levels and three heating profiles for hydrogen and nitrogen.

  13. Predicting human thermal comfort in a transient nonuniform thermal environment.

    PubMed

    Rugh, J P; Farrington, R B; Bharathan, D; Vlahinos, A; Burke, R; Huizenga, C; Zhang, H

    2004-09-01

    The National Renewable Energy Laboratory has developed a suite of thermal comfort tools to assist in the development of smaller and more efficient climate control systems in automobiles. These tools, which include a 126-segment sweating manikin, a finite element physiological model of the human body, and a psychological model based on human testing, are designed to predict human thermal comfort in transient, nonuniform thermal environments, such as automobiles. The manikin measures the heat loss from the human body in the vehicle environment and sends the heat flux from each segment to the physiological model. The physiological model predicts the body's response to the environment, determines 126-segment skin temperatures, sweat rate, and breathing rate, and transmits the data to the manikin. The psychological model uses temperature data from the physiological model to predict the local and global thermal comfort as a function of local skin and core temperatures and their rates of change. Results of initial integration testing show the thermal response of a manikin segment to transient environmental conditions.

  14. Thermal response of integral multicomponent composite thermal protection systems

    NASA Technical Reports Server (NTRS)

    Stewart, D. A.; Leiser, D. B.; Smith, M.; Kolodziej, P.

    1985-01-01

    Integral-multicomponent thermal-protection materials are discussed in terms of their thermal response to an arc-jet airstream. In-depth temperature measurements are compared with predictions from a one-dimensional, finite-difference code using calculated thermal conductivity values derived from an engineering model. The effect of composition, as well as the optical properties of the bonding material between components, on thermal response is discussed. The performance of these integral-multicomponent composite materials is compared with baseline Space Shuttle insulation.

  15. Climatic niche shift predicts thermal trait response in one but not both introductions of the Puerto Rican lizard Anolis cristatellus to Miami, Florida, USA

    PubMed Central

    Kolbe, Jason J; VanMiddlesworth, Paul S; Losin, Neil; Dappen, Nathan; Losos, Jonathan B

    2012-01-01

    Global change is predicted to alter environmental conditions for populations in numerous ways; for example, invasive species often experience substantial shifts in climatic conditions during introduction from their native to non-native ranges. Whether these shifts elicit a phenotypic response, and how adaptation and phenotypic plasticity contribute to phenotypic change, are key issues for understanding biological invasions and how populations may respond to local climate change. We combined modeling, field data, and a laboratory experiment to test for changing thermal tolerances during the introduction of the tropical lizard Anolis cristatellus from Puerto Rico to Miami, Florida. Species distribution models and bioclimatic data analyses showed lower minimum temperatures, and greater seasonal and annual variation in temperature for Miami compared to Puerto Rico. Two separate introductions of A. cristatellus occurred in Miami about 12 km apart, one in South Miami and the other on Key Biscayne, an offshore island. As predicted from the shift in the thermal climate and the thermal tolerances of other Anolis species in Miami, laboratory acclimation and field acclimatization showed that the introduced South Miami population of A. cristatellus has diverged from its native-range source population by acquiring low-temperature acclimation ability. By contrast, the introduced Key Biscayne population showed little change compared to its source. Our analyses predicted an adaptive response for introduced populations, but our comparisons to native-range sources provided evidence for thermal plasticity in one introduced population but not the other. The rapid acquisition of thermal plasticity by A. cristatellus in South Miami may be advantageous for its long-term persistence there and expansion of its non-native range. Our results also suggest that the common assumption of no trait variation when modeling non-native species distributions is invalid. PMID:22957158

  16. Climatic niche shift predicts thermal trait response in one but not both introductions of the Puerto Rican lizard Anolis cristatellus to Miami, Florida, USA.

    PubMed

    Kolbe, Jason J; Vanmiddlesworth, Paul S; Losin, Neil; Dappen, Nathan; Losos, Jonathan B

    2012-07-01

    Global change is predicted to alter environmental conditions for populations in numerous ways; for example, invasive species often experience substantial shifts in climatic conditions during introduction from their native to non-native ranges. Whether these shifts elicit a phenotypic response, and how adaptation and phenotypic plasticity contribute to phenotypic change, are key issues for understanding biological invasions and how populations may respond to local climate change. We combined modeling, field data, and a laboratory experiment to test for changing thermal tolerances during the introduction of the tropical lizard Anolis cristatellus from Puerto Rico to Miami, Florida. Species distribution models and bioclimatic data analyses showed lower minimum temperatures, and greater seasonal and annual variation in temperature for Miami compared to Puerto Rico. Two separate introductions of A. cristatellus occurred in Miami about 12 km apart, one in South Miami and the other on Key Biscayne, an offshore island. As predicted from the shift in the thermal climate and the thermal tolerances of other Anolis species in Miami, laboratory acclimation and field acclimatization showed that the introduced South Miami population of A. cristatellus has diverged from its native-range source population by acquiring low-temperature acclimation ability. By contrast, the introduced Key Biscayne population showed little change compared to its source. Our analyses predicted an adaptive response for introduced populations, but our comparisons to native-range sources provided evidence for thermal plasticity in one introduced population but not the other. The rapid acquisition of thermal plasticity by A. cristatellus in South Miami may be advantageous for its long-term persistence there and expansion of its non-native range. Our results also suggest that the common assumption of no trait variation when modeling non-native species distributions is invalid.

  17. Predicted Thermal Responses of Military Working Dog (MWD) to Chemical, Biological, Radiological, Nuclear (CBRN) Protective Kennel Enclosure

    DTIC Science & Technology

    2011-08-01

    Gagge (1971, 1986), Kraning (1997) and Yokota (2006) human thermo-physiological models with added or modified physiological mechanisms for the dog. A...panting dogs. J. Appl. Physiol.17:249- 251. 6. Folk, G.E. 1974. Textbook of Environmental Physiology.146-147. Lea & Febiger 7. Gagge , A.P., Stolwijk...77(1):247-62. 1986. 8. Gagge , A. P, A. Fobelets, Berglund, L.1986. A Standard Predictive Index of Human Response. ASHRAE Transactions, Vol. 92(2B

  18. Can respiratory physiology predict thermal niches?

    PubMed

    Verberk, Wilco C E P; Bartolini, Fabrizio; Marshall, David J; Pörtner, Hans-O; Terblanche, John S; White, Craig R; Giomi, Folco

    2016-02-01

    Predicting species responses to global warming is the holy grail of climate change science. As temperature directly affects physiological rates, it is clear that a mechanistic understanding of species vulnerability should be grounded in organismal physiology. Here, we review what respiratory physiology can offer the field of thermal ecology, showcasing different perspectives on how respiratory physiology can help explain thermal niches. In water, maintaining adequate oxygen delivery to fuel the higher metabolic rates under warming conditions can become the weakest link, setting thermal tolerance limits. This has repercussions for growth and scaling of metabolic rate. On land, water loss is more likely to become problematic as long as O2 delivery and pH balance can be maintained, potentially constraining species in their normal activity. Therefore, high temperatures need not be lethal, but can still affect the energy intake of an animal, with concomitant consequences for long-term fitness. While respiratory challenges and adaptive responses are diverse, there are clear recurring elements such as oxygen uptake, CO2 excretion, and water homeostasis. We show that respiratory physiology has much to offer the field of thermal ecology and call for an integrative, multivariate view incorporating respiratory challenges, thermal responses, and energetic consequences. Fruitful areas for future research are highlighted.

  19. Geographic analysis of thermal equilibria: A bioenergetic model for predicting thermal response of aquatic insect communities: Volume 1: Technical progress report, February 1, 1985-January 31, 1988

    SciTech Connect

    Vannote, R.L.; Sweeney, B.W.

    1987-01-01

    This report summarizes the principal research findings of both laboratory and field experiments on the effects of temperature on aquatic insects. It describes a large-scale laboratory experiment that tests the validity of a general model developed to predict the seasonal pattern of growth, development, and adult emergence of aquatic insect species at different locations in their geographic range. The report details the transition of the research program from its present focus on the ecology of stream and river insect populations to a program emphasizing the role of riparian biotic and geochemical factors in regulating the dynamics of stream systems. The long-term goals are to develop the functional relationships between alluvial floodplains and its drainage network. Initially, research will focus on mechanisms regulating input storage, transformation and release of nutrients between the riparian system and streams. Volume 1 reports on field studies of natural and thermally modified river systems, as well as laboratory studies on electrophoretic analysis of insects. 12 refs., 17 figs., 2 tabs.

  20. Geographic analysis of thermal equilibria: A bioenergetic model for predicting thermal response of aquatic insect communities. Final report, February 1, 1985--July 31, 1989: Volume 2

    SciTech Connect

    Sweeney, B.W.; Newbold, J.D.; Vannote, R.L.

    1991-12-01

    The thermal regime immediately downstream from bottom release reservoirs is often characterized by reduced diel and seasonal (winter warm/summer cool) conditions. These unusual thermal patterns have often been implicated as a primary factor underlying observed downstream changes in the species composition of aquatic macroinvertebrate communities. The potential mechanisms for selective elimination of benthic species by unusual thermal regimes has been reviewed. Although the effects of temperature on the rate and magnitude of larval growth and development has been included in the list of potential mechanisms, only recently have field studies below dams focused on this interrelationship. This study investigates the overall community structure as well as the seasonal pattern of larval growth and development for several univoltine species of insects in the Delaware River below or near the hypolimnetic discharge of the Cannonsville and Pepeacton dams. These dams, which are located on the West and East branches of the Delaware River, respectively, produce a thermal gradient extending about 70 km downstream.

  1. Predicting tumour response

    PubMed Central

    Law, W. Phillip; Miles, Kenneth A.

    2013-01-01

    Abstract Response prediction is an important emerging concept in oncologic imaging, with tailored, individualized treatment regimens increasingly becoming the standard of care. This review aims to define tumour response and illustrate the ways in which imaging techniques can demonstrate tumour biological characteristics that provide information on the likely benefit to be received by treatment. Two imaging approaches are described: identification of therapeutic targets and depiction of the treatment-resistant phenotype. The former approach is exemplified by the use of radionuclide imaging to confirm target expression before radionuclide therapy but with angiogenesis imaging and imaging correlates for genetic response predictors also demonstrating potential utility. Techniques to assess the treatment-resistant phenotype include demonstration of hypoperfusion with dynamic contrast-enhanced computed tomography and magnetic resonance imaging (MRI), depiction of necrosis with diffusion-weighted MRI, imaging of hypoxia and tumour adaption to hypoxia, and 99mTc-MIBI imaging of P-glycoprotein mediated drug resistance. To date, introduction of these techniques into clinical practice has often been constrained by inadequate cross-validation of predictive criteria and lack of verification against appropriate response end points such as survival. With further refinement, imaging predictors of response could play an important role in oncology, contributing to individualization of therapy based on the specific tumour phenotype. This ability to predict tumour response will have implications for improving efficacy of treatment, cost-effectiveness and omission of futile therapy. PMID:24061161

  2. Response microcantilever thermal detector

    SciTech Connect

    Cunningham, Joseph P.; Rajic, Slobodan; Datskos, Panagiotis G.; Evans III, Boyd M.

    2004-10-19

    A "folded leg" thermal detector microcantilever constructed of a substrate with at least one leg interposed between a fixed end and a deflective end, each leg having at least three essentially parallel leg segments interconnected on alternate opposing ends and aligned in a serpentine pattern with only the first leg segment attached to the fixed end and only the last leg segment attached to the deflective end. Alternate leg segment are coated on the pentalever with coating applied to the top of the first, third, and fifth leg segments of each leg and to the bottom of the second and fourth leg segments of each leg.

  3. A conceptual framework for understanding thermal constraints on ectotherm activity with implications for predicting responses to global change.

    PubMed

    Gunderson, Alex R; Leal, Manuel

    2015-12-09

    Activity budgets influence the expression of life history traits as well as population dynamics. For ectotherms, a major constraint on activity is environmental temperature. Nonetheless, we currently lack a comprehensive conceptual framework for understanding thermal constraints on activity, which hinders our ability to rigorously apply activity data to answer ecological and evolutionary questions. Here, we integrate multiple aspects of temperature-dependent activity into a single unified framework that has general applicability. We also provide examples of the implementation of this framework to address fundamental questions in ecology relating to climate change vulnerability and species' distributions using empirical data from a tropical lizard.

  4. Prediction of thermal cycling induced matrix cracking

    NASA Technical Reports Server (NTRS)

    Mcmanus, Hugh L.

    1992-01-01

    Thermal fatigue has been observed to cause matrix cracking in laminated composite materials. A method is presented to predict transverse matrix cracks in composite laminates subjected to cyclic thermal load. Shear lag stress approximations and a simple energy-based fracture criteria are used to predict crack densities as a function of temperature. Prediction of crack densities as a function of thermal cycling is accomplished by assuming that fatigue degrades the material's inherent resistance to cracking. The method is implemented as a computer program. A simple experiment provides data on progressive cracking of a laminate with decreasing temperature. Existing data on thermal fatigue is also used. Correlations of the analytical predictions to the data are very good. A parametric study using the analytical method is presented which provides insight into material behavior under cyclical thermal loads.

  5. Geographic analysis of thermal equilibria: a bioenergetic model for predicting thermal response of aquatic insect communities. Progress report, July 1, 1979-June 30, 1980

    SciTech Connect

    Vannote, R L; Sweeney, B W

    1980-04-01

    This report summarizes the first 9 months of field and laboratory work to test our central hypothesis. Five river systems were selected for intensive studies on insect growth, metabolism, and fecundity as well as determination of community structure for distinct assemblages of insect species exploiting various trophic and habitat resources. Laboratory studies were initiated to test the relative importance of temperature and food quality on growth, size, and fecundity of insects. Our project is intended to test the hypothesis that population stability, within the geographic range of many stream species, reflects largely a dynamic equilibrium between temperature and individual growth, metabolism, reproductive potential, and generation time. We propose to delineate the significance of natural thermal variation by quantifying the bioenergetics, developmental dynamics, and spatial distribution of major representative groups of stream insects throughout their geographic range.

  6. Geographic analysis of thermal equilibria: A bioenergetic model for predicting thermal response of aquatic insect communities: Volume 2: Technical progress report, February 1, 1985-January 31, 1988

    SciTech Connect

    Vannote, R.L.; Sweeney, B.W.

    1987-01-01

    This report summarizes the principal research findings of both laboratory and field experiments on the effects of temperature on aquatic insects. It describes a large-scale laboratory experiment that tests the validity of a general model developed to predict the seasonal pattern of growth, development, and adult emergence of aquatic insect species at different locations in their geographic range. The report details the transition of the research program from its present focus on the ecology of stream and river insect populations to a program emphasizing the role of riparian biotic and geochemical factors in regulating the dynamics of stream systems. The long term goals are to develop the functional relationships between alluvial floodplains and its drainage network. Initially, research will focus on mechanisms regulating input storage, transformation and release of nutrients between the riparian system and streams. Volume 2 contains studies on the effects of temperature and food quality on the growth of larval insects as well as experiments on insect metabolism. 24 refs., 15 figs., 10 tabs.

  7. Solar mechanics thermal response capabilities.

    SciTech Connect

    Dobranich, Dean D.

    2009-07-01

    In many applications, the thermal response of structures exposed to solar heat loads is of interest. Solar mechanics governing equations were developed and integrated with the Calore thermal response code via user subroutines to provide this computational simulation capability. Solar heat loads are estimated based on the latitude and day of the year. Vector algebra is used to determine the solar loading on each face of a finite element model based on its orientation relative to the sun as the earth rotates. Atmospheric attenuation is accounted for as the optical path length varies from sunrise to sunset. Both direct and diffuse components of solar flux are calculated. In addition, shadowing of structures by other structures can be accounted for. User subroutines were also developed to provide convective and radiative boundary conditions for the diurnal variations in air temperature and effective sky temperature. These temperature boundary conditions are based on available local weather data and depend on latitude and day of the year, consistent with the solar mechanics formulation. These user subroutines, coupled with the Calore three-dimensional thermal response code, provide a complete package for addressing complex thermal problems involving solar heating. The governing equations are documented in sufficient detail to facilitate implementation into other heat transfer codes. Suggestions for improvements to the approach are offered.

  8. Thermal preference predicts animal personality in Nile tilapia Oreochromis niloticus.

    PubMed

    Cerqueira, Marco; Rey, Sonia; Silva, Tome; Featherstone, Zoe; Crumlish, Margaret; MacKenzie, Simon

    2016-09-01

    Environmental temperature gradients provide habitat structure in which fish orientate and individual thermal choice may reflect an essential integrated response to the environment. The use of subtle thermal gradients likely impacts upon specific physiological and behavioural processes reflected as a suite of traits described by animal personality. In this study, we examine the relationship between thermal choice, animal personality and the impact of infection upon this interaction. We predicted that thermal choice in Nile tilapia Oreochromis niloticus reflects distinct personality traits and that under a challenge individuals exhibit differential thermal distribution. Nile tilapia were screened following two different protocols: 1) a suite of individual behavioural tests to screen for personality and 2) thermal choice in a custom-built tank with a thermal gradient (TCH tank) ranging from 21 to 33 °C. A first set of fish were screened for behaviour and then thermal preference, and a second set were tested in the opposite fashion: thermal then behaviour. The final thermal distribution of the fish after 48 h was assessed reflecting final thermal preferendum. Additionally, fish were then challenged using a bacterial Streptococcus iniae model infection to assess the behavioural fever response of proactive and reactive fish. Results showed that individuals with preference for higher temperatures were also classified as proactive with behavioural tests and reactive contemporaries chose significantly lower water temperatures. All groups exhibited behavioural fever recovering personality-specific thermal preferences after 5 days. Our results show that thermal preference can be used as a proxy to assess personality traits in Nile tilapia and it is a central factor to understand the adaptive meaning of animal personality within a population. Importantly, response to infection by expressing behavioural fever overrides personality-related thermal choice.

  9. Thermal barrier coating life prediction model development

    NASA Technical Reports Server (NTRS)

    Demasi, J. T.

    1986-01-01

    A methodology is established to predict thermal barrier coating life in a environment similar to that experienced by gas turbine airfoils. Experiments were conducted to determine failure modes of the thermal barrier coating. Analytical studies were employed to derive a life prediction model. A review of experimental and flight service components as well as laboratory post evaluations indicates that the predominant mode of TBC failure involves thermomechanical spallation of the ceramic coating layer. This ceramic spallation involves the formation of a dominant crack in the ceramic coating parallel to and closely adjacent to the topologically complex metal ceramic interface. This mechanical failure mode clearly is influenced by thermal exposure effects as shown in experiments conducted to study thermal pre-exposure and thermal cycle-rate effects. The preliminary life prediction model developed focuses on the two major damage modes identified in the critical experiments tasks. The first of these involves a mechanical driving force, resulting from cyclic strains and stresses caused by thermally induced and externally imposed mechanical loads. The second is an environmental driving force based on experimental results, and is believed to be related to bond coat oxidation. It is also believed that the growth of this oxide scale influences the intensity of the mechanical driving force.

  10. Thermal barrier coating life prediction model development

    NASA Technical Reports Server (NTRS)

    Meier, Susan M.; Nissley, David M.; Sheffler, Keith D.; Cruse, Thomas A.

    1991-01-01

    A thermal barrier coated (TBC) turbine component design system, including an accurate TBC life prediction model, is needed to realize the full potential of available TBC engine performance and/or durability benefits. The objective of this work, which was sponsored in part by NASA, was to generate a life prediction model for electron beam - physical vapor deposited (EB-PVD) zirconia TBC. Specific results include EB-PVD zirconia mechanical and physical properties, coating adherence strength measurements, interfacial oxide growth characteristics, quantitative cyclic thermal spallation life data, and a spallation life model.

  11. Vibration-thermal screening reliability prediction

    NASA Astrophysics Data System (ADS)

    Chenoweth, H. B.

    The method developed by Coffin-Manson and extended by Lambert for predicting low-level fatigue failure for electronic assemblies is utilized to determine the expected reliability. The reliability is determined for small damping, inelastic low-cycle fatigue with a catastrophic failure mode with a thermal cycling failure mode (correlated). These are integrated into a model to produce a method of characterizing the reliability benefit of screening methodology in terms of material parameters, thermal characteristics, and dynamic variables. An example is developed and a prediction generated.

  12. Thermal barrier coating life prediction model

    NASA Technical Reports Server (NTRS)

    Pilsner, B. H.; Hillery, R. V.; Mcknight, R. L.; Cook, T. S.; Kim, K. S.; Duderstadt, E. C.

    1986-01-01

    The objectives of this program are to determine the predominant modes of degradation of a plasma sprayed thermal barrier coating system, and then to develop and verify life prediction models accounting for these degradation modes. The program is divided into two phases, each consisting of several tasks. The work in Phase 1 is aimed at identifying the relative importance of the various failure modes, and developing and verifying life prediction model(s) for the predominant model for a thermal barrier coating system. Two possible predominant failure mechanisms being evaluated are bond coat oxidation and bond coat creep. The work in Phase 2 will develop design-capable, causal, life prediction models for thermomechanical and thermochemical failure modes, and for the exceptional conditions of foreign object damage and erosion.

  13. Influence of thermal buoyancy on vertical tube bundle thermal density head predictions under transient conditions. [LMFBR

    SciTech Connect

    Lin, H.C.; Kasza, K.E.

    1984-01-01

    The thermal-hydraulic behavior of an LMFBR system under various types of plant transients is usually studied using one-dimensional (1-D) flow and energy transport models of the system components. Many of the transient events involve the change from a high to a low flow with an accompanying change in temperature of the fluid passing through the components which can be conductive to significant thermal bouyancy forces. Thermal bouyancy can exert its influence on system dynamic energy transport predictions through alterations of flow and thermal distributions which in turn can influence decay heat removal, system-response time constants, heat transport between primary and secondary systems, and thermal energy rejection at the reactor heat sink, i.e., the steam generator. In this paper the results from a comparison of a 1-D model prediction and experimental data for vertical tube bundle overall thermal density head and outlet temperature under transient conditions causing varying degrees of thermal bouyancy are presented. These comparisons are being used to generate insight into how, when, and to what degree thermal buoyancy can cause departures from 1-D model predictions.

  14. Thermal response based item identification.

    SciTech Connect

    Smith, M. K.; Hypes, P. A.; Bracken, D. S.

    2001-01-01

    One of the most difficult problems in NDA of nuclear materials is identifying the chemical form of the nuclear material and the surrounding matrix. Recent work analyzing the calorimeter response of sources embedded in a variety of matrices has led to a possible solution to this problem. The wide range of thermal time constants exhibited by typical matrix materials lends itself to permitting the differentiation between materials, based on time constants extracted from the measured response. Potential applications include simple item identification, item fingerprinting as part of shipper-receiver measurements, and distinguishing between Pu metal and Pu oxide as required under certain proposed attribute measurements. The results of applying this technique to a variety of items will be presented and discussed.

  15. Thermal barrier coating life prediction model development

    NASA Technical Reports Server (NTRS)

    Demasi, J. T.; Sheffler, K. D.

    1986-01-01

    The objective of this program is to establish a methodology to predict Thermal Barrier Coating (TBC) life on gas turbine engine components. The approach involves experimental life measurement coupled with analytical modeling of relevant degradation modes. The coating being studied is a flight qualified two layer system, designated PWA 264, consisting of a nominal ten mil layer of seven percent yttria partially stabilized zirconia plasma deposited over a nominal five mil layer of low pressure plasma deposited NiCoCrAlY. Thermal barrier coating degradation modes being investigated include: thermomechanical fatigue, oxidation, erosion, hot corrosion, and foreign object damage.

  16. Thermal barrier coating life prediction model development

    NASA Technical Reports Server (NTRS)

    Demasi, J. T.; Manning, S. L.; Ortiz, M.; Sheffler, K. D.

    1987-01-01

    The objectives of this program are to increase understanding of thermal barrier coating (TBC) degradation and failure modes, to generate quantitative ceramic failure life data under cyclic thermal conditions which simulate those encountered in gas turbine engine service, and to develop an analytical methodology for prediction of coating life in the engine. Observations of degradation and failure modes in plasma deposited ceramic indicate that spallation failure results from progressive cracking of the ceramic parallel to and adjacent to, but not coincident with the metal-ceramic interface.

  17. Thermal barrier coating life prediction model development

    NASA Technical Reports Server (NTRS)

    Cruse, T. A.; Stewart, S. E.; Ortiz, M.

    1988-01-01

    A life prediction model for correlating the spallation life of ceramic thermal barrier coatings is developed which includes both cyclic and time-dependent damage. The cyclic damage is related to the calculated cyclic inelastic strain range, while the time-dependent damage is related to the oxidation kinetics at the bond-ceramic interface. The cyclic inelastic strain range is calculated using a modified form of the Walker viscoplastic material model; calculation of the oxidation kinetics is based on traditional oxidation algorithms using experimentally determined parameters. The correlation between the actual and predicted spallation lives is within a factor of 3.

  18. Thermal-vacuum response of polymer matrix composites in space

    NASA Technical Reports Server (NTRS)

    Tennyson, R. C.; Matthews, R.

    1993-01-01

    This report describes a thermal-vacuum outgassing model and test protocol for predicting outgassing times and dimensional changes for polymer matrix composites. Experimental results derived from 'control' samples are used to provide the basis for analytical predictions to compare with the outgassing response of Long Duration Exposure Facility (LDEF) flight samples. Coefficient of thermal expansion (CTE) data are also presented. In addition, an example is given illustrating the dimensional change of a 'zero' CTE laminate due to moisture outgassing.

  19. Thermal barrier coating life prediction model

    NASA Technical Reports Server (NTRS)

    Hillery, R. V.; Pilsner, B. H.

    1985-01-01

    This is the first report of the first phase of a 3-year program. Its objectives are to determine the predominant modes of degradation of a plasma sprayed thermal barrier coating system, then to develop and verify life prediction models accounting for these degradation modes. The first task (Task I) is to determine the major failure mechanisms. Presently, bond coat oxidation and bond coat creep are being evaluated as potential TBC failure mechanisms. The baseline TBC system consists of an air plasma sprayed ZrO2-Y2O3 top coat, a low pressure plasma sprayed NiCrAlY bond coat, and a Rene'80 substrate. Pre-exposures in air and argon combined with thermal cycle tests in air and argon are being utilized to evaluate bond coat oxidation as a failure mechanism. Unexpectedly, the specimens pre-exposed in argon failed before the specimens pre-exposed in air in subsequent thermal cycles testing in air. Four bond coats with different creep strengths are being utilized to evaluate the effect of bond coat creep on TBC degradation. These bond coats received an aluminide overcoat prior to application of the top coat to reduce the differences in bond coat oxidation behavior. Thermal cycle testing has been initiated. Methods have been selected for measuring tensile strength, Poisson's ratio, dynamic modulus and coefficient of thermal expansion both of the bond coat and top coat layers.

  20. Autonomous Aerobraking Using Thermal Response Surface Analysis

    NASA Technical Reports Server (NTRS)

    Prince, Jill L.; Dec, John A.; Tolson, Robert H.

    2007-01-01

    Aerobraking is a proven method of significantly increasing the science payload that can be placed into low Mars orbits when compared to an all propulsive capture. However, the aerobraking phase is long and has mission cost and risk implications. The main cost benefit is that aerobraking permits the use of a smaller and cheaper launch vehicle, but additional operational costs are incurred during the long aerobraking phase. Risk is increased due to the repeated thermal loading of spacecraft components and the multiple attitude and propulsive maneuvers required for successful aerobraking. Both the cost and risk burdens can be significantly reduced by automating the aerobraking operations phase. All of the previous Mars orbiter missions that have utilized aerobraking have increasingly relied on onboard calculations during aerobraking. Even though the temperature of spacecraft components has been the limiting factor, operational methods have relied on using a surrogate variable for mission control. This paper describes several methods, based directly on spacecraft component maximum temperature, for autonomously predicting the subsequent aerobraking orbits and prescribing apoapsis propulsive maneuvers to maintain the spacecraft within specified temperature limits. Specifically, this paper describes the use of thermal response surface analysis in predicting the temperature of the spacecraft components and the corresponding uncertainty in this temperature prediction.

  1. Thermal barrier coating life prediction model development

    NASA Technical Reports Server (NTRS)

    Hillery, R. V.; Pilsner, B. H.; Mcknight, R. L.; Cook, T. S.; Hartle, M. S.

    1988-01-01

    This report describes work performed to determine the predominat modes of degradation of a plasma sprayed thermal barrier coating system and to develop and verify life prediction models accounting for these degradation modes. The primary TBC system consisted of a low pressure plasma sprayed NiCrAlY bond coat, an air plasma sprayed ZrO2-Y2O3 top coat, and a Rene' 80 substrate. The work was divided into 3 technical tasks. The primary failure mode to be addressed was loss of the zirconia layer through spalling. Experiments showed that oxidation of the bond coat is a significant contributor to coating failure. It was evident from the test results that the species of oxide scale initially formed on the bond coat plays a role in coating degradation and failure. It was also shown that elevated temperature creep of the bond coat plays a role in coating failure. An empirical model was developed for predicting the test life of specimens with selected coating, specimen, and test condition variations. In the second task, a coating life prediction model was developed based on the data from Task 1 experiments, results from thermomechanical experiments performed as part of Task 2, and finite element analyses of the TBC system during thermal cycles. The third and final task attempted to verify the validity of the model developed in Task 2. This was done by using the model to predict the test lives of several coating variations and specimen geometries, then comparing these predicted lives to experimentally determined test lives. It was found that the model correctly predicts trends, but that additional refinement is needed to accurately predict coating life.

  2. Thermal barrier coating life prediction model development

    NASA Technical Reports Server (NTRS)

    Sheffler, K. D.; Demasi, J. T.

    1985-01-01

    A methodology was established to predict thermal barrier coating life in an environment simulative of that experienced by gas turbine airfoils. Specifically, work is being conducted to determine failure modes of thermal barrier coatings in the aircraft engine environment. Analytical studies coupled with appropriate physical and mechanical property determinations are being employed to derive coating life prediction model(s) on the important failure mode(s). An initial review of experimental and flight service components indicates that the predominant mode of TBC failure involves thermomechanical spallation of the ceramic coating layer. This ceramic spallation involves the formation of a dominant crack in the ceramic coating parallel to and closely adjacent to the metal-ceramic interface. Initial results from a laboratory test program designed to study the influence of various driving forces such as temperature, thermal cycle frequency, environment, and coating thickness, on ceramic coating spalling life suggest that bond coat oxidation damage at the metal-ceramic interface contributes significantly to thermomechanical cracking in the ceramic layer. Low cycle rate furnace testing in air and in argon clearly shows a dramatic increase of spalling life in the non-oxidizing environments.

  3. Non-Fourier based thermal-mechanical tissue damage prediction for thermal ablation.

    PubMed

    Li, Xin; Zhong, Yongmin; Smith, Julian; Gu, Chengfan

    2017-01-02

    Prediction of tissue damage under thermal loads plays important role for thermal ablation planning. A new methodology is presented in this paper by combing non-Fourier bio-heat transfer, constitutive elastic mechanics as well as non-rigid motion of dynamics to predict and analyze thermal distribution, thermal-induced mechanical deformation and thermal-mechanical damage of soft tissues under thermal loads. Simulations and comparison analysis demonstrate that the proposed methodology based on the non-Fourier bio-heat transfer can account for the thermal-induced mechanical behaviors of soft tissues and predict tissue thermal damage more accurately than classical Fourier bio-heat transfer based model.

  4. Thermal sensation and thermophysiological responses to metabolic step-changes.

    PubMed

    Goto, T; Toftum, J; de Dear, R; Fanger, P O

    2006-05-01

    This study investigated the effect on thermal perception and thermophysiological variables of controlled metabolic excursions of various intensities and durations. Twenty-four subjects were alternately seated on a chair or exercised by walking on a treadmill at a temperature predicted to be neutral at sedentary activity. In a second experimental series, subjects alternated between rest and exercise as well as between exercise at different intensities at two temperature levels. Measurements comprised skin and oesophageal temperatures, heart rate and subjective responses. Thermal sensation started to rise or decline immediately (within 1 min) after a change of activity, which means that even moderate activity changes of short duration affect thermal perceptions of humans. After approximately 15-20 min under constant activity, subjective thermal responses approximated the steady-state response. The sensitivity of thermal sensation to changes in core temperature was higher for activity down-steps than for up-steps. A model was proposed that estimates transient thermal sensation after metabolic step-changes. Based on predictions by the model, weighting factors were suggested to estimate a representative average metabolic rate with varying activity levels, e.g. for the prediction of thermal sensation by steady-state comfort models. The activity during the most recent 5 min should be weighted 65%, during the prior 10-5 min 25% and during the prior 20-10 min 10%.

  5. Thermal sensation and thermophysiological responses to metabolic step-changes

    NASA Astrophysics Data System (ADS)

    Goto, T.; Toftum, J.; de Dear, R.; Fanger, P. O.

    2006-05-01

    This study investigated the effect on thermal perception and thermophysiological variables of controlled metabolic excursions of various intensities and durations. Twenty-four subjects were alternately seated on a chair or exercised by walking on a treadmill at a temperature predicted to be neutral at sedentary activity. In a second experimental series, subjects alternated between rest and exercise as well as between exercise at different intensities at two temperature levels. Measurements comprised skin and oesophageal temperatures, heart rate and subjective responses. Thermal sensation started to rise or decline immediately (within 1 min) after a change of activity, which means that even moderate activity changes of short duration affect thermal perceptions of humans. After approximately 15 20 min under constant activity, subjective thermal responses approximated the steady-state response. The sensitivity of thermal sensation to changes in core temperature was higher for activity down-steps than for up-steps. A model was proposed that estimates transient thermal sensation after metabolic step-changes. Based on predictions by the model, weighting factors were suggested to estimate a representative average metabolic rate with varying activity levels, e.g. for the prediction of thermal sensation by steady-state comfort models. The activity during the most recent 5 min should be weighted 65%, during the prior 10 5 min 25% and during the prior 20 10 min 10%.

  6. Thermal barrier coating life prediction model development

    NASA Technical Reports Server (NTRS)

    Demasi, J.; Sheffler, K.

    1984-01-01

    The objective of this program is to develop an integrated life prediction model accounting for all potential life-limiting Thermal Barrier Coating (TBC) degradation and failure modes including spallation resulting from cyclic thermal stress, oxidative degradation, hot corrosion, erosion, and foreign object damage (FOD). The mechanisms and relative importance of the various degradation and failure modes will be determined, and the methodology to predict predominant mode failure life in turbine airfoil application will be developed and verified. An empirically based correlative model relating coating life to parametrically expressed driving forces such as temperature and stress will be employed. The two-layer TBC system being investigated, designated PWA264, currently is in commercial aircraft revenue service. It consists of an inner low pressure chamber plasma-sprayed NiCoCrAlY metallic bond coat underlayer (4 to 6 mils) and an outer air plasma-sprayed 7 w/o Y2O3-ZrO2 (8 to 12 mils) ceramic top layer.

  7. Predicting the thermal conductivity of crystalline nanowires

    NASA Astrophysics Data System (ADS)

    Mingo, Natalio; Yang, Liu; Li, D.; Majumdar, A.

    2003-03-01

    We present quantitative calculations of the lattice thermal conductivity vs. temperature of Si nanowires, yielding good agreement with experimental measurements by Li et al.[1]. Our calculation method is predictive, since no experimental data from the nanowires are needed as input for the theoretical curves. The formalism is based on a transmission function approach, and makes use of the full phonon dispersion relations of the material [2]. Using the same method we also calculate curves for Ge nanowires, for which experiments have not yet been performed. In the talk we will explain the formalism of our Full Dispersions Transmission Function approach (FDTF). The traditional methods of Callaway and Holland [3] will also be discussed and compared with our FDTF method. Predictions with the latter method are considerably better than those using the traditional methods. In principle, the FDTF approach can be employed to calculate lattice thermal conductivity curves for nanowires of different materials. It may therefore constitute a very useful piece in the theoretical modeling of new thermoelectric materials based on nanowires. [1] D. Li et al., submitted. [2] N. Mingo et al., to be submitted. [3] M. Asen-Palmer et al., Phys. Rev. B 56, 9431 (1997).

  8. Thermal barrier coating life prediction model

    NASA Technical Reports Server (NTRS)

    Hillery, R. V.; Pilsner, B. H.; Cook, T. S.; Kim, K. S.

    1986-01-01

    This is the second annual report of the first 3-year phase of a 2-phase, 5-year program. The objectives of the first phase are to determine the predominant modes of degradation of a plasma sprayed thermal barrier coating system and to develop and verify life prediction models accounting for these degradation modes. The primary TBC system consists of an air plasma sprayed ZrO-Y2O3 top coat, a low pressure plasma sprayed NiCrAlY bond coat, and a Rene' 80 substrate. Task I was to evaluate TBC failure mechanisms. Both bond coat oxidation and bond coat creep have been identified as contributors to TBC failure. Key property determinations have also been made for the bond coat and the top coat, including tensile strength, Poisson's ratio, dynamic modulus, and coefficient of thermal expansion. Task II is to develop TBC life prediction models for the predominant failure modes. These models will be developed based on the results of thermmechanical experiments and finite element analysis. The thermomechanical experiments have been defined and testing initiated. Finite element models have also been developed to handle TBCs and are being utilized to evaluate different TBC failure regimes.

  9. Geographic analysis of thermal equilibria: a bioenergetic model for predicting thermal response of aquatic-insect communities. Technical progress report, July 1, 1980-December 31, 1981 and proposed research program, January 1, 1982-June 30, 1983

    SciTech Connect

    Vannote, R.L.; Sweeney, B.W.

    1981-08-28

    The principal objective is to test and refine a conceptual model describing the effects of natural and altered temperature regimes on laval growth and adult size and fecundity of hemimetaboloyus aquatic insects. The central hypothesis is that the stability of a given population (i.e. the ability to recover from serious reduction in numbers by environmental perturbations or fluctuations) within the geographic range of a species reflects mainly a dynamic equilibrium between temperature and individual growth, metabolism, reproductive potential, and generation time. In this context, a thermal regime is viewed as optimum for a species when individual body weight and fecundity is maximized. The model predicts that geographic range extension away from a location with an optimum thermal regime would be associated with temperature induced changes in the rate and efficiency of energy use, developmental processes, and generation time. To test and refine the model, we proposed to study the growth, development, metabolism, and reproduction of a large number of aquatic species in both the natural riverine environment and under controlled laboratory conditions. Field studies were designed to focus on several populations of each species at various locations along a natural thermal gradient throughout its geographic range. Laboratory studies emphasize the relative importance of temperature and nutrition of larval growth and adult reproduction of a number of aquatic species commonly represented at field sites.

  10. Thermal barrier coating life prediction model development

    NASA Technical Reports Server (NTRS)

    Strangman, T. E.; Neumann, J. F.; Liu, A.

    1986-01-01

    Thermal barrier coatings (TBCs) for turbine airfoils in high-performance engines represent an advanced materials technology with both performance and durability benefits. The foremost TBC benefit is the reduction of heat transferred into air-cooled components, which yields performance and durability benefits. This program focuses on predicting the lives of two types of strain-tolerant and oxidation-resistant TBC systems that are produced by commercial coating suppliers to the gas turbine industry. The plasma-sprayed TBC system, composed of a low-pressure plasma-spray (LPPS) or an argon shrouded plasma-spray (ASPS) applied oxidation resistant NiCrAlY (or CoNiCrAlY) bond coating and an air-plasma-sprayed yttria (8 percent) partially stabilized zirconia insulative layer, is applied by Chromalloy, Klock, and Union Carbide. The second type of TBC is applied by the electron beam-physical vapor deposition (EB-PVD) process by Temescal.

  11. Geographic analysis of thermal equilibria: a bioenergetic model for predicting thermal response of aquatic insect communities. Technical progress report, January 1, 1983-December 31, 1983. Proposed research program, January 1, 1984-December 31, 1984

    SciTech Connect

    Vannote, R.L.; Sweeney, B.W.

    1983-09-30

    The objective is to test and refine a proposed conceptual model describing the effects of natural and altered temperature regimes on larval growth and adult size and fecundity of hemimetabolous aquatic insects. The model predicts that geographic range extension away from a location with an optimum thermal regime would be associated with temperature induced changes in the rate and efficiency of energy use, developmental processes, and generation time. To test and refine the model, we proposed to study the growth, development, metabolism, and reproduction of a large number of aquatic species in both the natural riverine environment and under controlled laboratory conditions. Field studies were designed to focus on several populations of each species at various locations along a natural thermal gradient throughout their geographic range. Laboratory studies would emphasize the relative importance of temperature and nutrition on larval growth and adult reproduction of a number of aquatic species commonly represented at our field sites. This progress report summarizes results of field and laboratory experiments during the first four sampling years (October 1979-September 1983) describes work still in progress, and outlines proposed research and analysis for the fifth sampling year (October 1983-September 1984). This report also discusses any modifications of the original work plan that had to be made to improve both the quality and quantity of our field data.

  12. Thermal responses of shape memory alloy artificial anal sphincters

    NASA Astrophysics Data System (ADS)

    Luo, Yun; Takagi, Toshiyuki; Matsuzawa, Kenichi

    2003-08-01

    This paper presents a numerical investigation of the thermal behavior of an artificial anal sphincter using shape memory alloys (SMAs) proposed by the authors. The SMA artificial anal sphincter has the function of occlusion at body temperature and can be opened with a thermal transformation induced deformation of SMAs to solve the problem of severe fecal incontinence. The investigation of its thermal behavior is of great importance in terms of practical use in living bodies as a prosthesis. In this work, a previously proposed phenomenological model was applied to simulate the thermal responses of SMA plates that had undergone thermally induced transformation. The numerical approach for considering the thermal interaction between the prosthesis and surrounding tissues was discussed based on the classical bio-heat equation. Numerical predictions on both in vitro and in vivo cases were verified by experiments with acceptable agreements. The thermal responses of the SMA artificial anal sphincter were discussed based on the simulation results, with the values of the applied power and the geometric configuration of thermal insulation as parameters. The results obtained in the present work provided a framework for the further design of SMA artificial sphincters to meet demands from the viewpoint of thermal compatibility as prostheses.

  13. Transient thermal response of a hot-wire anemometer

    NASA Astrophysics Data System (ADS)

    Morris, S. C.; Foss, J. F.

    2003-03-01

    The ability of a thermal anemometry system to accurately measure unsteady fluid velocity depends on the electrical control system as well as the thermal properties of the sensor. The present work is a numerical study of the thermal transient response of a hot-wire. A conventional constant temperature anemometer with an ideal feedback amplifier as well as a pulse width modulated system were used to model the electrical current supplied to the sensor to maintain a nominally constant sensor resistance. The agreement between these two electrical models confirmed that the response characteristics are only due to thermal effects. The thermal response was tested by providing a known input function for the cooling velocity, and comparing this with the output of the model. The first test used a step input function. It was found that the thermal transient effects along the length of the sensor caused the system to initially under predict the actual velocity increase; this was followed by an exponential increase to the steady state velocity. Secondly, the model was tested with sinusoidal inputs over a wide frequency range. The ratio: indicated-velocity/input-velocity, as a function of the input frequency was used to characterize the 'thermal frequency response'.

  14. Predicting response to epigenetic therapy

    PubMed Central

    Treppendahl, Marianne B.; Kristensen, Lasse S.; Grønbæk, Kirsten

    2014-01-01

    Drugs targeting the epigenome are new promising cancer treatment modalities; however, not all patients receive the same benefit from these drugs. In contrast to conventional chemotherapy, responses may take several months after the initiation of treatment to occur. Accordingly, identification of good pretreatment predictors of response is of great value. Many clinical parameters and molecular targets have been tested in preclinical and clinical studies with varying results, leaving room for optimization. Here we provide an overview of markers that may predict the efficacy of FDA- and EMA-approved epigenetic drugs. PMID:24382389

  15. Thermal Response Modeling System for a Mars Sample Return Vehicle

    NASA Technical Reports Server (NTRS)

    Chen, Y.-K.; Milos, F. S.

    2002-01-01

    A multi-dimensional, coupled thermal response modeling system for analysis of hypersonic entry vehicles is presented. The system consists of a high fidelity Navier-Stokes equation solver (GIANTS), a two-dimensional implicit thermal response, pyrolysis and ablation program (TITAN), and a commercial finite element thermal and mechanical analysis code (MARC). The simulations performed by this integrated system include hypersonic flowfield, fluid and solid interaction, ablation, shape change, pyrolysis gas generation and flow, and thermal response of heatshield and structure. The thermal response of the heatshield is simulated using TITAN, and that of the underlying structural is simulated using MARC. The ablating heatshield is treated as an outer boundary condition of the structure, and continuity conditions of temperature and heat flux are imposed at the interface between TITAN and MARC. Aerothermal environments with fluid and solid interaction are predicted by coupling TITAN and GIANTS through surface energy balance equations. With this integrated system, the aerothermal environments for an entry vehicle and the thermal response of the entire vehicle can be obtained simultaneously. Representative computations for a flat-faced arc-jet test model and a proposed Mars sample return capsule are presented and discussed.

  16. Integrated Thermal Response Tool for Earth Entry Vehicles

    NASA Technical Reports Server (NTRS)

    Chen, Y.-K.; Milos, F. S.; Partridge, Harry (Technical Monitor)

    2001-01-01

    A system is presented for multi-dimensional, fully-coupled thermal response modeling of hypersonic entry vehicles. The system consists of a two-dimensional implicit thermal response, pyrolysis and ablation program (TITAN), a commercial finite-element thermal and mechanical analysis code (MARC), and a high fidelity Navier-Stokes equation solver (GIANTS). The simulations performed by this integrated system include hypersonic flow-field, fluid and solid interaction, ablation, shape change, pyrolysis gas generation and flow, and thermal response of heatshield and structure. The thermal response of the ablating and charring heatshield material is simulated using TITAN, and that of the underlying structural is simulated using MARC. The ablating heatshield is treated as an outer boundary condition of the structure, and continuity conditions of temperature and heat flux are imposed at the interface between TITAN and MARC. Aerothermal environments with fluid and solid interaction are predicted by coupling TITAN and GIANTS through surface energy balance equations. With this integrated system, the aerothermal environments for an entry vehicle and the thermal response of both the heatshield and the structure can be obtained simultaneously. Representative computations for a proposed blunt body earth entry vehicle are presented and discussed in detail.

  17. Thermal Response Modeling System for a Mars Sample Return Vehicle

    NASA Technical Reports Server (NTRS)

    Chen, Y.-K.; Miles, Frank S.; Arnold, Jim (Technical Monitor)

    2001-01-01

    A multi-dimensional, coupled thermal response modeling system for analysis of hypersonic entry vehicles is presented. The system consists of a high fidelity Navier-Stokes equation solver (GIANTS), a two-dimensional implicit thermal response, pyrolysis and ablation program (TITAN), and a commercial finite-element thermal and mechanical analysis code (MARC). The simulations performed by this integrated system include hypersonic flowfield, fluid and solid interaction, ablation, shape change, pyrolysis gas eneration and flow, and thermal response of heatshield and structure. The thermal response of the heatshield is simulated using TITAN, and that of the underlying structural is simulated using MARC. The ablating heatshield is treated as an outer boundary condition of the structure, and continuity conditions of temperature and heat flux are imposed at the interface between TITAN and MARC. Aerothermal environments with fluid and solid interaction are predicted by coupling TITAN and GIANTS through surface energy balance equations. With this integrated system, the aerothermal environments for an entry vehicle and the thermal response of the entire vehicle can be obtained simultaneously. Representative computations for a flat-faced arc-jet test model and a proposed Mars sample return capsule are presented and discussed.

  18. The thermal impulse response of Escherichia coli

    PubMed Central

    Paster, Eli; Ryu, William S.

    2008-01-01

    Swimming Escherichia coli responds to changes in temperature by modifying its motor behavior. Previous studies using populations of cells have shown that E. coli accumulate in spatial thermal gradients, but these experiments did not cleanly separate thermal responses from chemotactic responses. Here we have isolated the thermal response by studying the behavior of single, tethered cells. The motor output of cells grown at 33°C was measured at constant temperature, from 10° to 40°C, and in response to small, impulsive increases in temperature, from 23° to 43°C. The thermal impulse response at temperatures < 31°C is similar to the chemotactic impulse response: Both follow a similar time course, share the same directionality, and show biphasic characteristics. At temperatures > 31°C, some cells show an inverted response, switching from warm- to cold-seeking behavior. The fraction of inverted responses increases nonlinearly with temperature, switching steeply at the preferred temperature of 37°C. PMID:18385380

  19. Thermal responses of Symbiodinium photosynthetic carbon assimilation

    NASA Astrophysics Data System (ADS)

    Oakley, Clinton A.; Schmidt, Gregory W.; Hopkinson, Brian M.

    2014-06-01

    The symbiosis between hermatypic corals and their dinoflagellate endosymbionts, genus Symbiodinium, is based on carbon exchange. This symbiosis is disrupted by thermally induced coral bleaching, a stress response in which the coral host expels its algal symbionts as they become physiologically impaired. The disruption of the dissolved inorganic carbon (DIC) supply or the thermal inactivation of Rubisco have been proposed as sites of initial thermal damage that leads to the bleaching response. Symbiodinium possesses a highly unusual Form II ribulose bisphosphate carboxylase/oxygenase (Rubisco), which exhibits a lower CO2:O2 specificity and may be more thermally unstable than the Form I Rubiscos of other algae and land plants. Components of the CO2 concentrating mechanism (CCM), which supplies inorganic carbon for photosynthesis, may also be temperature sensitive. Here, we examine the ability of four cultured Symbiodinium strains to acquire and fix DIC across a temperature gradient. Surprisingly, the half-saturation constant of photosynthesis with respect to DIC concentration ( K P), an index of CCM function, declined with increasing temperature in three of the four strains, indicating a greater potential for photosynthetic carbon acquisition at elevated temperatures. In the fourth strain, there was no effect of temperature on K P. Finding no evidence for thermal inhibition of the CCM, we conclude that CCM components are not likely to be the primary sites of thermal damage. Reduced photosynthetic quantum yields, a hallmark of thermal bleaching, were observed at low DIC concentrations, leaving open the possibility that reduced inorganic carbon availability is involved in bleaching.

  20. Prediction of effective thermal conductivity of cellular ceramics

    SciTech Connect

    Fu, X.; Viskanta, R.; Gore, J.P.

    1998-02-01

    Two unit cell based models have been developed to predict the effective thermal conductivity of porous materials using the thermal-circuit method. The first unit cell is a cubic-shaped box. The second unit cell is formed by a solid cube which is voided centrally by a sphere. The model predictions of the effective thermal conductivity of cellular ceramics are compared with experimental data.

  1. Anisotropic Thermal Response of Packed Copper Wire

    DOE PAGES

    Wereszczak, Andrew A.; Emily Cousineau, J.; Bennion, Kevin; ...

    2017-04-19

    The apparent thermal conductivity of packed copper wire test specimens was measured parallel and perpendicular to the axis of the wire using laser flash, transient plane source, and transmittance test methods. Approximately 50% wire packing efficiency was produced in the specimens using either 670- or 925-μm-diameter copper wires that both had an insulation coating thickness of 37 μm. The interstices were filled with a conventional varnish material and also contained some remnant porosity. The apparent thermal conductivity perpendicular to the wire axis was about 0.5–1 W/mK, whereas it was over 200 W/mK in the parallel direction. The Kanzaki model andmore » an finite element analysis (FEA) model were found to reasonably predict the apparent thermal conductivity perpendicular to the wires but thermal conductivity percolation from nonideal wire-packing may result in their underestimation of it.« less

  2. Thermal barrier coating life prediction model development, phase 1

    NASA Technical Reports Server (NTRS)

    Demasi, Jeanine T.; Ortiz, Milton

    1989-01-01

    The objective of this program was to establish a methodology to predict thermal barrier coating (TBC) life on gas turbine engine components. The approach involved experimental life measurement coupled with analytical modeling of relevant degradation modes. Evaluation of experimental and flight service components indicate the predominant failure mode to be thermomechanical spallation of the ceramic coating layer resulting from propagation of a dominant near interface crack. Examination of fractionally exposed specimens indicated that dominant crack formation results from progressive structural damage in the form of subcritical microcrack link-up. Tests conducted to isolate important life drivers have shown MCrAlY oxidation to significantly affect the rate of damage accumulation. Mechanical property testing has shown the plasma deposited ceramic to exhibit a non-linear stress-strain response, creep and fatigue. The fatigue based life prediction model developed accounts for the unusual ceramic behavior and also incorporates an experimentally determined oxide rate model. The model predicts the growth of this oxide scale to influence the intensity of the mechanic driving force, resulting from cyclic strains and stresses caused by thermally induced and externally imposed mechanical loads.

  3. Prediction of composite thermal behavior made simple

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1981-01-01

    A convenient procedure is described to determine the thermal behavior (thermal expansion coefficients and thermal stresses) of angleplied fiber composites using a pocket calculator. The procedure consists of equations and appropriate graphs for various ( + or - theta) ply combinations. These graphs present reduced stiffness and thermal expansion coefficients as functions of (+ or - theta) in order to simplify and expedite the use of the equations. The procedure is applicable to all types of balanced, symmetric fiber composites including interply and intraply hybrids. The versatility and generality of the procedure is illustrated using several step-by-step numerical examples.

  4. Thermal reactionomes reveal divergent responses to thermal extremes in warm and cool-climate ant species.

    PubMed

    Stanton-Geddes, John; Nguyen, Andrew; Chick, Lacy; Vincent, James; Vangala, Mahesh; Dunn, Robert R; Ellison, Aaron M; Sanders, Nathan J; Gotelli, Nicholas J; Cahan, Sara Helms

    2016-03-02

    The distributions of species and their responses to climate change are in part determined by their thermal tolerances. However, little is known about how thermal tolerance evolves. To test whether evolutionary extension of thermal limits is accomplished through enhanced cellular stress response (enhanced response), constitutively elevated expression of protective genes (genetic assimilation) or a shift from damage resistance to passive mechanisms of thermal stability (tolerance), we conducted an analysis of the reactionome: the reaction norm for all genes in an organism's transcriptome measured across an experimental gradient. We characterized thermal reactionomes of two common ant species in the eastern U.S, the northern cool-climate Aphaenogaster picea and the southern warm-climate Aphaenogaster carolinensis, across 12 temperatures that spanned their entire thermal breadth. We found that at least 2 % of all genes changed expression with temperature. The majority of upregulation was specific to exposure to low temperatures. The cool-adapted A. picea induced expression of more genes in response to extreme temperatures than did A. carolinensis, consistent with the enhanced response hypothesis. In contrast, under high temperatures the warm-adapted A. carolinensis downregulated many of the genes upregulated in A. picea, and required more extreme temperatures to induce down-regulation in gene expression, consistent with the tolerance hypothesis. We found no evidence for a trade-off between constitutive and inducible gene expression as predicted by the genetic assimilation hypothesis. These results suggest that increases in upper thermal limits may require an evolutionary shift in response mechanism away from damage repair toward tolerance and prevention.

  5. Thermal Response and Ablation Programs for TPS Sizing Computation

    NASA Technical Reports Server (NTRS)

    Chen, Y. K.; Rasky, Daniel J. (Technical Monitor)

    1997-01-01

    The computer programs developed at NASA Ames Research Center for TPS sizing computation have been applied to many NASA's space missions, such as Mars Pathfinder, StarDust, Mars 2001, DS-II, and Saturn Entry Probe. These computer programs include FIAT (Fully Implicit Ablation and Thermal Response Program, MAT (Multi-component Ablation Thermochemistry Program), TPSX (Thermal Protection Systems Expert & Material Properties Database), and TPSGui (Thermal Protection Systems Graphical User Interface). For most planetary missions, the aerothermodynamics and material response are strongly coupled; thus a closed loop iteration technique between the FIAT and CFD (Computational Fluid Dynamics) codes has been developed to obtain the high fidelity bench mark TPS sizing solution. The computer codes and predictive methods are presented and discussed in detail.

  6. Thermal Response and Ablation Programs for TPS Sizing Computation

    NASA Technical Reports Server (NTRS)

    Chen, Y. K.; Rasky, Daniel J. (Technical Monitor)

    1997-01-01

    The computer programs developed at NASA Ames Research Center for TPS sizing computation have been applied to many NASA's space missions, such as Mars Pathfinder, StarDust, Mars 2001, DS-II, and Saturn Entry Probe. These computer programs include FIAT (Fully Implicit Ablation and Thermal Response Program, MAT (Multi-component Ablation Thermochemistry Program), TPSX (Thermal Protection Systems Expert & Material Properties Database), and TPSGui (Thermal Protection Systems Graphical User Interface). For most planetary missions, the aerothermodynamics and material response are strongly coupled; thus a closed loop iteration technique between the FIAT and CFD (Computational Fluid Dynamics) codes has been developed to obtain the high fidelity bench mark TPS sizing solution. The computer codes and predictive methods are presented and discussed in detail.

  7. A simulation technique for predicting thickness of thermal sprayed coatings

    NASA Technical Reports Server (NTRS)

    Goedjen, John G.; Miller, Robert A.; Brindley, William J.; Leissler, George W.

    1995-01-01

    The complexity of many of the components being coated today using the thermal spray process makes the trial and error approach traditionally followed in depositing a uniform coating inadequate, thereby necessitating a more analytical approach to developing robotic trajectories. A two dimensional finite difference simulation model has been developed to predict the thickness of coatings deposited using the thermal spray process. The model couples robotic and component trajectories and thermal spraying parameters to predict coating thickness. Simulations and experimental verification were performed on a rotating disk to evaluate the predictive capabilities of the approach.

  8. Effect of fire engulfment on thermal response of LPG tanks.

    PubMed

    Bi, Ming-shu; Ren, Jing-jie; Zhao, Bo; Che, Wei

    2011-08-30

    A model has been developed to predict the thermal response of liquefied-pressure gases (LPG) tanks under fire, and three-dimensional numerical simulations were carried out on a horizontal LPG tank which was 60% filled. Comparison between numerical predictions and published experimental data shows close agreement. The attention is focused on the influence of different fire conditions (different fire scenarios, various engulfing degrees and flame temperatures) on thermal response of LPG tanks. Potential hazard probabilities under different fire conditions were discussed by analyzing the maximum wall temperature and media energy after the internal pressure rose to the same value. It is found that the less severe fire scenario and lower engulfing case may lead to a greater probability of burst hazard because of the higher maximum wall temperature and media energy before the pressure relief valve (PRV) opens.

  9. Thermal Management Architecture for Future Responsive Spacecraft

    NASA Astrophysics Data System (ADS)

    Bugby, D.; Zimbeck, W.; Kroliczek, E.

    2009-03-01

    This paper describes a novel thermal design architecture that enables satellites to be conceived, configured, launched, and operationally deployed very quickly. The architecture has been given the acronym SMARTS for Satellite Modular and Reconfigurable Thermal System and it involves four basic design rules: modest radiator oversizing, maximum external insulation, internal isothermalization and radiator heat flow modulation. The SMARTS philosophy is being developed in support of the DoD Operationally Responsive Space (ORS) initiative which seeks to drastically improve small satellite adaptability, deployability, and design flexibility. To illustrate the benefits of the philosophy for a prototypical multi-paneled small satellite, the paper describes a SMARTS thermal control system implementation that uses: panel-to-panel heat conduction, intra-panel heat pipe isothermalization, radiator heat flow modulation via a thermoelectric cooler (TEC) cold-biased loop heat pipe (LHP) and maximum external multi-layer insulation (MLI). Analyses are presented that compare the traditional "cold-biasing plus heater power" passive thermal design approach to the SMARTS approach. Plans for a 3-panel SMARTS thermal test bed are described. Ultimately, the goal is to incorporate SMARTS into the design of future ORS satellites, but it is also possible that some aspects of SMARTS technology could be used to improve the responsiveness of future NASA spacecraft. [22 CFR 125.4(b)(13) applicable

  10. Prediction of earthquake response spectra

    USGS Publications Warehouse

    Joyner, W.B.; Boore, David M.

    1982-01-01

    We have developed empirical equations for predicting earthquake response spectra in terms of magnitude, distance, and site conditions, using a two-stage regression method similar to the one we used previously for peak horizontal acceleration and velocity. We analyzed horizontal pseudo-velocity response at 5 percent damping for 64 records of 12 shallow earthquakes in Western North America, including the recent Coyote Lake and Imperial Valley, California, earthquakes. We developed predictive equations for 12 different periods between 0.1 and 4.0 s, both for the larger of two horizontal components and for the random horizontal component. The resulting spectra show amplification at soil sites compared to rock sites for periods greater than or equal to 0.3 s, with maximum amplification exceeding a factor of 2 at 2.0 s. For periods less than 0.3 s there is slight deamplification at the soil sites. These results are generally consistent with those of several earlier studies. A particularly significant aspect of the predicted spectra is the change of shape with magnitude (confirming earlier results by McGuire and by Irifunac and Anderson). This result indicates that the conventional practice of scaling a constant spectral shape by peak acceleration will not give accurate answers. The Newmark and Hall method of spectral scaling, using both peak acceleration and peak velocity, largely avoids this error. Comparison of our spectra with the Nuclear Regulatory Commission's Regulatory Guide 1.60 spectrum anchored at the same value at 0.1 s shows that the Regulatory Guide 1.60 spectrum is exceeded at soil sites for a magnitude of 7.5 at all distances for periods greater than about 0.5 s. Comparison of our spectra for soil sites with the corresponding ATC-3 curve of lateral design force coefficient for the highest seismic zone indicates that the ATC-3 curve is exceeded within about 7 km of a magnitude 6.5 earthquake and within about 15 km of a magnitude 7.5 event. The amount by

  11. Modeling thermally driven energetic response of high explosives

    SciTech Connect

    Sharp, R; Couch, R; McCallen, R C; Nichols III, A L; Otero, I

    1998-02-01

    We have improved our ability to model the response of energetic materials to thermal stimuli and the processes involved in the energetic response. Traditionally, the analyses of energetic materials have involved coupled thermal transport/chemical reaction codes. This provides only a reasonable estimate of the time and location of ensuing rapid reaction. To predict the violence of the reaction, the mechanical motion must be included in the wide range of time scales associated with the thermal hazard. The ALE3D code has been modified to assess the hazards associated with heating energetic materials in weapons by coupling to thermal transport model and chemistry models. We have developed an implicit time step option to efficiently and accurately compute the hours of heating to reaction of the energetic material. Since, on these longer time scales materials can be expected to have significant motion, it is even more important to provide high-order advection for all components, including the chemical species. We show two examples of coupled thermal/mechanical/chemical models of energetic materials in thermal environments.

  12. Modeling thermally driven energetic response of high explosives

    SciTech Connect

    Couch, R; McCallen, R C; Nichols III, A L; Otero, I; Sharp, R

    1998-08-17

    We have improved our ability to model the response of energetic materials to thermal stimuli and the processes involved in the energetic response. Traditionally, the analyses of energetic materials have involved coupled thermal transport/chemical reaction codes. This provides only a reasonable estimate of the time and location of ensuing rapid reaction. To predict the violence of the reaction, the mechanical motion must be included in the wide range of time scales associated with the thermal hazard. The ALE3D code has been modified to assess the hazards associated with heating energetic materials in weapons by coupling to thermal transport model and chemistry models. We have developed an implicit time step option to efficiently and accurately compute the hours of heating to reaction of the energetic material. Since, on these longer time scales materials can be expected to have significant motion, it is even more important to provide high-order advection for all components, including the chemical species. We show two examples of coupled thermal/mechanical/chemical models of energetic materials in thermal environments.

  13. Thermal weights for semiclassical vibrational response functions

    SciTech Connect

    Moberg, Daniel R.; Alemi, Mallory; Loring, Roger F.

    2015-08-28

    Semiclassical approximations to response functions can allow the calculation of linear and nonlinear spectroscopic observables from classical dynamics. Evaluating a canonical response function requires the related tasks of determining thermal weights for initial states and computing the dynamics of these states. A class of approximations for vibrational response functions employs classical trajectories at quantized values of action variables and represents the effects of the radiation-matter interaction by discontinuous transitions. Here, we evaluate choices for a thermal weight function which are consistent with this dynamical approximation. Weight functions associated with different semiclassical approximations are compared, and two forms are constructed which yield the correct linear response function for a harmonic potential at any temperature and are also correct for anharmonic potentials in the classical mechanical limit of high temperature. Approximations to the vibrational linear response function with quantized classical trajectories and proposed thermal weight functions are assessed for ensembles of one-dimensional anharmonic oscillators. This approach is shown to perform well for an anharmonic potential that is not locally harmonic over a temperature range encompassing the quantum limit of a two-level system and the limit of classical dynamics.

  14. Theoretical prediction of thermal pressure for solids

    NASA Astrophysics Data System (ADS)

    Pandey, Brijesh K.; Pandey, Anjani K.; Singh, Chandra K.

    2012-06-01

    Thermoelastic properties of materials at high temperature, is directly related to thermal pressure and volume expansion of the materials. In the present work we have made a comparative study of temperature dependence of thermal pressure for geophysical minerals MgO and Al2O3 by using Suzuki formulation and Maxwell's formulation. It is observe that ΔPTh calculated by using Suzuki formulation is in good agreement with the experimental values up to 800K, but after this limit there is deviation from experimental values, whereas, in case of Maxwell's formulation the agreement is valid only upto T=300K. This depart in the agreement has been interpreted using Hardy's Theory.

  15. Active thermal isolation for temperature responsive sensors

    NASA Technical Reports Server (NTRS)

    Martinson, Scott D. (Inventor); Gray, David L. (Inventor); Carraway, Debra L. (Inventor); Reda, Daniel C. (Inventor)

    1994-01-01

    A temperature responsive sensor is located in the airflow over the specified surface of a body and is maintained at a constant temperature. An active thermal isolator is located between this temperature responsive sensor and the specified surface of the body. The temperature of this isolator is controlled to reduce conductive heat flow from the temperature responsive sensor to the body. This temperature control includes: (1) operating the isolator at the same temperature as the constant temperature of the sensor and (2) establishing a fixed boundary temperature which is either less than or equal to or slightly greater than the sensor constant temperature.

  16. Model predictive control of a solar-thermal reactor

    NASA Astrophysics Data System (ADS)

    Saade Saade, Maria Elizabeth

    Solar-thermal reactors represent a promising alternative to fossil fuels because they can harvest solar energy and transform it into storable and transportable fuels. The operation of solar-thermal reactors is restricted by the available sunlight and its inherently transient behavior, which affects the performance of the reactors and limits their efficiency. Before solar-thermal reactors can become commercially viable, they need to be able to maintain a continuous high-performance operation, even in the presence of passing clouds. A well-designed control system can preserve product quality and maintain stable product compositions, resulting in a more efficient and cost-effective operation, which can ultimately lead to scale-up and commercialization of solar thermochemical technologies. In this work, we propose a model predictive control (MPC) system for a solar-thermal reactor for the steam-gasification of biomass. The proposed controller aims at rejecting the disturbances in solar irradiation caused by the presence of clouds. A first-principles dynamic model of the process was developed. The model was used to study the dynamic responses of the process variables and to identify a linear time-invariant model used in the MPC algorithm. To provide an estimation of the disturbances for the control algorithm, a one-minute-ahead direct normal irradiance (DNI) predictor was developed. The proposed predictor utilizes information obtained through the analysis of sky images, in combination with current atmospheric measurements, to produce the DNI forecast. In the end, a robust controller was designed capable of rejecting disturbances within the operating region. Extensive simulation experiments showed that the controller outperforms a finely-tuned multi-loop feedback control strategy. The results obtained suggest that our controller is suitable for practical implementation.

  17. Predict thermal conductivities of pure gases

    SciTech Connect

    Weber, J.H.

    1981-01-01

    The programs presented for the TI-59 programmable calculator can determine the thermal conductivity of pure gases and gases at low pressures as well as the effect of pressure on conductivity. They are based on correlations by Eucken, Stiel-Thodos, Misic-Thodos, Roy-Thodos, and Redlich-Kwong.

  18. Thermal response in van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Naidu Gandi, Appala; Alshareef, Husam N.; Schwingenschlögl, Udo

    2017-01-01

    We solve numerically the Boltzmann transport equations of the phonons and electrons to understand the thermoelectric response in heterostructures of M2CO2 (M: Ti, Zr, Hf) MXenes with transition metal dichalcogenide monolayers. Low frequency optical phonons are found to occur as a consequence of the van der Waals bonding, contribute significantly to the thermal transport, and compensate for the reduced contributions of the acoustic phonons (increased scattering cross-sections in heterostructures), such that the thermal conductivities turn out to be similar to those of the bare MXenes. Our results indicate that the important superlattice design approach of thermoelectrics (to reduce the thermal conductivity) may be effective for two-dimensional van der Waals materials when used in conjunction with intercalation.

  19. Thermal response in van der Waals heterostructures.

    PubMed

    Gandi, Appala Naidu; Alshareef, Husam N; Schwingenschlögl, Udo

    2017-01-25

    We solve numerically the Boltzmann transport equations of the phonons and electrons to understand the thermoelectric response in heterostructures of M2CO2 (M: Ti, Zr, Hf) MXenes with transition metal dichalcogenide monolayers. Low frequency optical phonons are found to occur as a consequence of the van der Waals bonding, contribute significantly to the thermal transport, and compensate for the reduced contributions of the acoustic phonons (increased scattering cross-sections in heterostructures), such that the thermal conductivities turn out to be similar to those of the bare MXenes. Our results indicate that the important superlattice design approach of thermoelectrics (to reduce the thermal conductivity) may be effective for two-dimensional van der Waals materials when used in conjunction with intercalation.

  20. Active thermal isolation for temperature responsive sensors

    NASA Technical Reports Server (NTRS)

    Martinson, Scott D. (Inventor); Gray, David L. (Inventor); Carraway, Debra L. (Inventor); Reda, Daniel C. (Inventor)

    1994-01-01

    The detection of flow transition between laminar and turbulent flow and of shear stress or skin friction of airfoils is important in basic research for validation of airfoil theory and design. These values are conventionally measured using hot film nickel sensors deposited on a polyimide substrate. The substrate electrically insulates the sensor and underlying airfoil but is prevented from thermally isolating the sensor by thickness constraints necessary to avoid flow contamination. Proposed heating of the model surface is difficult to control, requires significant energy expenditures, and may alter the basic flow state of the airfoil. A temperature responsive sensor is located in the airflow over the specified surface of a body and is maintained at a constant temperature. An active thermal isolator is located between this temperature responsive sensor and the specific surface of the body. The total thickness of the isolator and sensor avoid any contamination of the flow. The temperature of this isolator is controlled to reduce conductive heat flow from the temperature responsive sensor to the body. This temperature control includes (1) operating the isolator at the same temperature as the constant temperature of the sensor; and (2) establishing a fixed boundary temperature which is either less than or equal to, or slightly greater than the sensor constant temperature. The present invention accordingly thermally isolates a temperature responsive sensor in an energy efficient, controllable manner while avoiding any contamination of the flow.

  1. Development and validation of experimental models for hyperemic thermal response using IR imaging

    NASA Astrophysics Data System (ADS)

    Moreno, Eulalia; Hsieh, Sheng-Jen; Palomares, Benjamin Giron

    2012-06-01

    A common method for diagnosing heart health condition is to analyze blood flow rate and temperature behaviors after arterial occlusion. However, multiple factors besides heart condition could affect these behaviors. The objective of this research was to identify other factors that affect blood flow and thermal response after arterial occlusion, evaluate a mathematical model to determine thermal response after arterial occlusion, and develop an experimental model for thermal response after arterial occlusion. Twenty-eight experiments were conducted with 14 subjects to determine blood and thermal responses by using plethysmography and infrared imaging after applying arterial occlusion. Possible factors affecting blood flow and thermal responses that were investigated were: Initial finger temperature, blood pressure, body temperature, gender, and age. After determining the correlation coefficient among the mentioned factors and blood flow and thermal responses after occlusion, it was determined that only initial finger temperature and blood pressure show a strong effect. A mathematical model accounting only for the convective thermal effects, but not thermal conduction effects, was developed and tested, but was found to be insufficiently accurate in describing the thermal response by means of blood flow parameters for all of the subjects tested (error>90%). A linear regression model was then developed to relate blood flow to thermal response using two thirds of the experimental data, and was tested using one third of the data. The linear regression model was found to predict thermal response by means of blood flow response with an error rate of less than 50%.

  2. Biomarkers to Predict Antidepressant Response

    PubMed Central

    Cook, Ian A.; Hamilton, Steven P.; Narr, Katherine L.; Toga, Arthur; Hunter, Aimee M.; Faull, Kym; Whitelegge, Julian; Andrews, Anne M.; Loo, Joseph; Way, Baldwin; Nelson, Stanley F.; Horvath, Steven; Lebowitz, Barry D.

    2010-01-01

    During the past several years, we have achieved a deeper understanding of the etiology/pathophysiology of major depressive disorder (MDD). However, this improved understanding has not translated to improved treatment outcome. Treatment often results in symptomatic improvement, but not full recovery. Clinical approaches are largely trial-and-error, and when the first treatment does not result in recovery for the patient, there is little proven scientific basis for choosing the next. One approach to enhancing treatment outcomes in MDD has been the use of standardized sequential treatment algorithms and measurement-based care. Such treatment algorithms stand in contrast to the personalized medicine approach, in which biomarkers would guide decision making. Incorporation of biomarker measurements into treatment algorithms could speed recovery from MDD by shortening or eliminating lengthy and ineffective trials. Recent research results suggest several classes of physiologic biomarkers may be useful for predicting response. These include brain structural or functional findings, as well as genomic, proteomic, and metabolomic measures. Recent data indicate that such measures, at baseline or early in the course of treatment, may constitute useful predictors of treatment outcome. Once such biomarkers are validated, they could form the basis of new paradigms for antidepressant treatment selection. PMID:20963521

  3. The influence of light on thermal responses.

    PubMed

    te Kulve, M; Schellen, L; Schlangen, L J M; van Marken Lichtenbelt, W D

    2016-02-01

    Light is essential for vision and plays an important role in non-visual responses, thus affecting alertness, mood and circadian rhythms. Furthermore, light influences physiological processes, such as thermoregulation, and therefore may be expected to play a role in thermal comfort (TC) as well. A systematic literature search was performed for human studies exploring the relation between ocular light exposure, thermophysiology and TC. Experimental results show that light in the evening can reduce melatonin secretion, delay the natural decline in core body temperature (CBT) and slow down the increase in distal skin temperature. In the morning though, bright light can result in a faster decline in melatonin levels, thus enabling a faster increase in CBT. Moreover, the colour of light can affect temperature perception of the environment. Light with colour tones towards the red end of the visual spectrum leads to a warmer perception compared to more bluish light tones. It should be noted, however, that many results of light on thermal responses are inconclusive, and a theoretical framework is largely lacking. In conclusion, light is capable of evoking thermophysiological responses and visual input can alter perception of the thermal environment. Therefore, lighting conditions should be taken into consideration during thermophysiological research and in the design of indoor climates.

  4. Predicting the physiological performance of ectotherms in fluctuating thermal environments.

    PubMed

    Niehaus, Amanda C; Angilletta, Michael J; Sears, Michael W; Franklin, Craig E; Wilson, Robbie S

    2012-02-15

    Physiological ecologists have long sought to understand the plasticity of organisms in environments that vary widely among years, seasons and even hours. This is now even more important because human-induced climate change is predicted to affect both the mean and variability of the thermal environment. Although environmental change occurs ubiquitously, relatively few researchers have studied the effects of fluctuating environments on the performance of developing organisms. Even fewer have tried to validate a framework for predicting performance in fluctuating environments. Here, we determined whether reaction norms based on performance at constant temperatures (18, 22, 26, 30 and 34°C) could be used to predict embryonic and larval performance of anurans at fluctuating temperatures (18-28°C and 18-34°C). Based on existing theory, we generated hypotheses about the effects of stress and acclimation on the predictability of performance in variable environments. Our empirical models poorly predicted the performance of striped marsh frogs (Limnodynastes peronii) at fluctuating temperatures, suggesting that extrapolation from studies conducted under artificial thermal conditions would lead to erroneous conclusions. During the majority of ontogenetic stages, growth and development in variable environments proceeded more rapidly than expected, suggesting that acute exposures to extreme temperatures enable greater performance than do chronic exposures. Consistent with theory, we predicted performance more accurately for the less variable thermal environment. Our results underscore the need to measure physiological performance under naturalistic thermal conditions when testing hypotheses about thermal plasticity or when parameterizing models of life-history evolution.

  5. A fast response thermal conductivity gage

    NASA Astrophysics Data System (ADS)

    Pilcher, J. O., II; Krummerich, M. B.

    1986-04-01

    During the spring of 1983, the Ballistic Research Laboratory measured behind-the-armor effects for several weapons against a variety of targets. One of the major concerns was heat generation during and immediately following impact of the warhead against the targets. Previous tests of this type had used thin skin total heat gages and standard laboratory heat detectors. Thin skin gages record only the maximum temperature attained by the skins' back surface with no indication of the time required to reach this temperature. Although an approximation of the total heat deposition can be made, no rate of deposition can be estimated without knowing the time of the event. The large thermal mass of a typical laboratory detector such as an infrared power meter is designed to measure a steady-state flux and cannot respond quickly enough to register a transient event. Neither gage type can withstand severe blast and shock environments. Since the temperature inside the target rose sharply in a very short time, special thermal fluence gages were fabricated which emphasized the time response of the gage rather than its thermal capacity. This gage is used when the thermal flux is of short duration, 150 milliseconds or less, and of low total energy, 179 calories per square centimeter or less. The maximum operating temperature of the gage is 500 degree Celsius.

  6. Improvements to a Response Surface Thermal Model for Orion

    NASA Technical Reports Server (NTRS)

    Miller, Stephen W.; Walker, William Q.

    2011-01-01

    A study was performed to determine if a Design of Experiments (DOE)/Response Surface Methodology could be applied to on-orbit thermal analysis and produce a set of Response Surface Equations (RSE) that predict Orion vehicle temperatures within 10 F. The study used the Orion Outer Mold Line model. Five separate factors were identified for study: yaw, pitch, roll, beta angle, and the environmental parameters. Twenty-three external Orion components were selected and their minimum and maximum temperatures captured over a period of two orbits. Thus, there are 46 responses. A DOE case matrix of 145 runs was developed. The data from these cases were analyzed to produce a fifth order RSE for each of the temperature responses. For the 145 cases in the DOE matrix, the agreement between the engineering data and the RSE predictions was encouraging with 40 of the 46 RSEs predicting temperatures within the goal band. However, the verification cases showed most responses did not meet the 10 F goal. After reframing the focus of the study to better align the RSE development with the purposes of the model, a set of RSEs for both the minimum and maximum radiator temperatures was produced which predicted the engineering model output within +/-4 F. Therefore, with the correct application of the DOE/RSE methodology, RSEs can be developed that provide analysts a fast and easy way to screen large numbers of environments and assess proposed changes to the RSE factors.

  7. Thermal response of chalcogenide microsphere resonators

    SciTech Connect

    Ahmad, H; Aryanfar, I; Lim, K S; Chong, W Y; Harun, S W

    2012-05-31

    A chalcogenide microsphere resonator (CMR) used for temperature sensing is proposed and demonstrated. The CMR is fabricated using a simple technique of heating chalcogenide glass and allowing the molten glass to form a microsphere on the waist of a tapered silica fibre. The thermal responses of the CMR is investigated and compared to that of a single-mode-fibre (SMF) based microsphere resonator. It is observed that the CMR sensitivity to ambient temperature changes is 8 times higher than that of the SMF-based microsphere resonator. Heating the chalcogenide microsphere with a laser beam periodically turned on and off shows periodic shifts in the transmission spectrum of the resonator. By injecting an intensity-modulated cw signal through the resonator a thermal relaxation time of 55 ms is estimated.

  8. Numerical Prediction of Thermal Ship Wakes

    DTIC Science & Technology

    1987-09-04

    observed thickness of the viscous layer. A vortex will pump water to the surface causing the viscous layer to thin until it reaches the temperature of the...transfer to the air to again dominate the thinning effect. Because the water is at uniform temperature except at the top node, the energy equation is solved...CLASSIFICATION (M UNCLASSIFIEDIUNLIMITED 3 SAME AS RPT. I DTIC USERS UNCLASSIFIED 22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c

  9. Predictive Thermal Control Applied to HabEx

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas E.

    2017-01-01

    Exoplanet science can be accomplished with a telescope that has an internal coronagraph or with an external starshade. An internal coronagraph architecture requires extreme wavefront stability (10 pm change/10 minutes for 10(exp -10) contrast), so every source of wavefront error (WFE) must be controlled. Analysis has been done to estimate the thermal stability required to meet the wavefront stability requirement. This paper illustrates the potential of a new thermal control method called predictive thermal control (PTC) to achieve the required thermal stability. A simple development test using PTC indicates that PTC may meet the thermal stability requirements. Further testing of the PTC method in flight-like environments will be conducted in the X-ray and Cryogenic Facility (XRCF) at Marshall Space Flight Center (MSFC).

  10. Predicting lattice thermal conductivity with help from ab initio methods

    NASA Astrophysics Data System (ADS)

    Broido, David

    2015-03-01

    The lattice thermal conductivity is a fundamental transport parameter that determines the utility a material for specific thermal management applications. Materials with low thermal conductivity find applicability in thermoelectric cooling and energy harvesting. High thermal conductivity materials are urgently needed to help address the ever-growing heat dissipation problem in microelectronic devices. Predictive computational approaches can provide critical guidance in the search and development of new materials for such applications. Ab initio methods for calculating lattice thermal conductivity have demonstrated predictive capability, but while they are becoming increasingly efficient, they are still computationally expensive particularly for complex crystals with large unit cells . In this talk, I will review our work on first principles phonon transport for which the intrinsic lattice thermal conductivity is limited only by phonon-phonon scattering arising from anharmonicity. I will examine use of the phase space for anharmonic phonon scattering and the Grüneisen parameters as measures of the thermal conductivities for a range of materials and compare these to the widely used guidelines stemming from the theory of Liebfried and Schölmann. This research was supported primarily by the NSF under Grant CBET-1402949, and by the S3TEC, an Energy Frontier Research Center funded by the US DOE, office of Basic Energy Sciences under Award No. DE-SC0001299.

  11. Age-related thermal response: the cellular resilience of juveniles.

    PubMed

    Clark, M S; Thorne, M A S; Burns, G; Peck, L S

    2016-01-01

    Understanding species' responses to environmental challenges is key to predicting future biodiversity. However, there is currently little data on how developmental stages affect responses and also whether universal gene biomarkers to environmental stress can be identified both within and between species. Using the Antarctic clam, Laternula elliptica, as a model species, we examined both the tissue-specific and age-related (juvenile versus mature adult) gene expression response to acute non-lethal warming (12 h at 3 °C). In general, there was a relatively muted response to this sub-lethal thermal challenge when the expression profiles of treated animals, of either age, were compared with those of 0 °C controls, with none of the "classical" stress response genes up-regulated. The expression profiles were very variable between the tissues of all animals, irrespective of age with no single transcript emerging as a universal biomarker of thermal stress. However, when the expression profiles of treated animals of the different age groups were directly compared, a very different pattern emerged. The profiles of the younger animals showed significant up-regulation of chaperone and antioxidant transcripts when compared with those of the older animals. Thus, the younger animals showed evidence of a more robust cellular response to warming. These data substantiate previous physiological analyses showing a more resilient juvenile population.

  12. Bioadhesion to model thermally responsive surfaces

    NASA Astrophysics Data System (ADS)

    Andrzejewski, Brett Paul

    This dissertation focuses on the characterization of two surfaces: mixed self-assembled monolayers (SAMs) of hexa(ethylene glycol) and alkyl thiolates (mixed SAM) and poly(N-isopropylacrylamide) (PNIPAAm). The synthesis of hexa(ethylene gylcol) alkyl thiol (C11EG 6OH) is presented along with the mass spectrometry and nuclear magnetic resonance results. The gold substrates were imaged prior to SAM formation with atomic force micrscopy (AFM). Average surface roughness of the gold substrate was 0.44 nm, 0.67 nm, 1.65 nm for 15, 25 and 60 nm gold thickness, respectively. The height of the mixed SAM was measured by ellipsometry and varied from 13 to 28°A depending on surface mole fraction of C11EG6OH. The surface mole fraction of C11EG6OH for the mixed SAM was determined by X-ray photoelectron spectroscopy (XPS) with optimal thermal responsive behavior in the range of 0.4 to 0.6. The mixed SAM surface was confirmed to be thermally responsive by contact angle goniometry, 35° at 28°C and ˜55° at 40°C. In addition, the mixed SAM surfaces were confirmed to be thermally responsive for various aqueous mediums by tensiometry. Factors such as oxygen, age, and surface mole fraction and how they affect the thermal responsive of the mixed SAM are discussed. Lastly, rat fibroblasts were grown on the mixed SAM and imaged by phase contrast microscopy to show inhibition of attachment at temperatures below the molecular transition. Qualitative and quantitative measurements of the fibroblast adhesion data are provided that support the hypothesis of the mixed SAM exhibits a dominantly non-fouling molecular conformation at 25°C whereas it exhibits a dominantly fouling molecular conformation at 40°C. The adhesion of six model proteins: bovine serum albumin, collagen, pyruvate kinase, cholera toxin subunit B, ribonuclease, and lysozyme to the model thermally responsive mixed SAM were examined using AFM. All six proteins possessed adhesion to the pure component alkyl thiol, in

  13. Thermal Model Predictions of Advanced Stirling Radioisotope Generator Performance

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen J.; Fabanich, William Anthony; Schmitz, Paul C.

    2014-01-01

    This paper presents recent thermal model results of the Advanced Stirling Radioisotope Generator (ASRG). The three-dimensional (3D) ASRG thermal power model was built using the Thermal Desktop(trademark) thermal analyzer. The model was correlated with ASRG engineering unit test data and ASRG flight unit predictions from Lockheed Martin's (LM's) I-deas(trademark) TMG thermal model. The auxiliary cooling system (ACS) of the ASRG is also included in the ASRG thermal model. The ACS is designed to remove waste heat from the ASRG so that it can be used to heat spacecraft components. The performance of the ACS is reported under nominal conditions and during a Venus flyby scenario. The results for the nominal case are validated with data from Lockheed Martin. Transient thermal analysis results of ASRG for a Venus flyby with a representative trajectory are also presented. In addition, model results of an ASRG mounted on a Cassini-like spacecraft with a sunshade are presented to show a way to mitigate the high temperatures of a Venus flyby. It was predicted that the sunshade can lower the temperature of the ASRG alternator by 20 C for the representative Venus flyby trajectory. The 3D model also was modified to predict generator performance after a single Advanced Stirling Convertor failure. The geometry of the Microtherm HT insulation block on the outboard side was modified to match deformation and shrinkage observed during testing of a prototypic ASRG test fixture by LM. Test conditions and test data were used to correlate the model by adjusting the thermal conductivity of the deformed insulation to match the post-heat-dump steady state temperatures. Results for these conditions showed that the performance of the still-functioning inboard ACS was unaffected.

  14. Predicting responses from Rasch measures.

    PubMed

    Linacre, John M

    2010-01-01

    There is a growing family of Rasch models for polytomous observations. Selecting a suitable model for an existing dataset, estimating its parameters and evaluating its fit is now routine. Problems arise when the model parameters are to be estimated from the current data, but used to predict future data. In particular, ambiguities in the nature of the current data, or overfit of the model to the current dataset, may mean that better fit to the current data may lead to worse fit to future data. The predictive power of several Rasch and Rasch-related models are discussed in the context of the Netflix Prize. Rasch-related models are proposed based on Singular Value Decomposition (SVD) and Boltzmann Machines.

  15. Drug Response Prediction as a Link Prediction Problem

    PubMed Central

    Stanfield, Zachary; Coşkun, Mustafa; Koyutürk, Mehmet

    2017-01-01

    Drug response prediction is a well-studied problem in which the molecular profile of a given sample is used to predict the effect of a given drug on that sample. Effective solutions to this problem hold the key for precision medicine. In cancer research, genomic data from cell lines are often utilized as features to develop machine learning models predictive of drug response. Molecular networks provide a functional context for the integration of genomic features, thereby resulting in robust and reproducible predictive models. However, inclusion of network data increases dimensionality and poses additional challenges for common machine learning tasks. To overcome these challenges, we here formulate drug response prediction as a link prediction problem. For this purpose, we represent drug response data for a large cohort of cell lines as a heterogeneous network. Using this network, we compute “network profiles” for cell lines and drugs. We then use the associations between these profiles to predict links between drugs and cell lines. Through leave-one-out cross validation and cross-classification on independent datasets, we show that this approach leads to accurate and reproducible classification of sensitive and resistant cell line-drug pairs, with 85% accuracy. We also examine the biological relevance of the network profiles. PMID:28067293

  16. Caregiver responsiveness to the family bereavement program: what predicts responsiveness? What does responsiveness predict?

    PubMed

    Schoenfelder, Erin N; Sandler, Irwin N; Millsap, Roger E; Wolchik, Sharlene A; Berkel, Cady; Ayers, Timothy S

    2013-12-01

    The study developed a multidimensional measure to assess participant responsiveness to a preventive intervention and applied this measure to study how participant baseline characteristics predict responsiveness and how responsiveness predicts program outcomes. The study was conducted with caregivers who participated in the parenting-focused component of the Family Bereavement Program (FBP), a prevention program for families that have experienced parental death. The sample consisted of 89 caregivers assigned to the intervention condition in the efficacy trial of the FBP. Positive parenting, caregiver depression, and child externalizing problems at baseline were found to predict caregivers' use of program skills outside the group, and more child internalizing problems predicted more positive perceptions of the group environment. Higher levels of skill use during the program predicted increased positive parenting at the 11-month follow-up, whereas positive perceptions of the group environment predicted decreased caregiver depressive symptoms at follow-up. Caregiver skill use mediated the relation between baseline positive parenting and improvements in positive parenting at 11-month follow-up, and skill use and perceived group environment mediated changes in caregiver depression from baseline to 11-month follow-up.

  17. Caregiver Responsiveness to the Family Bereavement Program: What predicts responsiveness? What does responsiveness predict?

    PubMed Central

    Schoenfelder, Erin N.; Sandler, Irwin N.; Millsap, Roger E.; Wolchik, Sharlene A.; Berkel, Cady; Ayers, Timothy S.

    2013-01-01

    The study developed a multi-dimensional measure to assess participant responsiveness to a preventive intervention, and applied this measure to study how participant baseline characteristics predict responsiveness and how responsiveness predicts program outcomes. The study was conducted with caregivers who participated in the parenting-focused component of the Family Bereavement Program (FBP), a prevention program for families that have experienced parental death. The sample consisted of 89 caregivers assigned to the intervention condition in the efficacy trial of the FBP. Positive parenting, caregiver depression, and child externalizing problems at baseline were found to predict caregivers’ use of program skills outside the group, and more child internalizing problems predicted more positive perceptions of the group environment. Higher levels of skill use during the program predicted increased positive parenting at the 11-month follow-up, whereas positive perceptions of the group environment predicted decreased caregiver depressive symptoms at follow-up. Caregiver skill use mediated the relation between baseline positive parenting and improvements in positive parenting at 11-month follow-up, and skill use and perceived group environment mediated changes in caregiver depression from baseline to 11-month follow-up. PMID:23404661

  18. Autonomous Aerobraking: Thermal Analysis and Response Surface Development

    NASA Technical Reports Server (NTRS)

    Dec, John A.; Thornblom, Mark N.

    2011-01-01

    A high-fidelity thermal model of the Mars Reconnaissance Orbiter was developed for use in an autonomous aerobraking simulation study. Response surface equations were derived from the high-fidelity thermal model and integrated into the autonomous aerobraking simulation software. The high-fidelity thermal model was developed using the Thermal Desktop software and used in all phases of the analysis. The use of Thermal Desktop exclusively, represented a change from previously developed aerobraking thermal analysis methodologies. Comparisons were made between the Thermal Desktop solutions and those developed for the previous aerobraking thermal analyses performed on the Mars Reconnaissance Orbiter during aerobraking operations. A variable sensitivity screening study was performed to reduce the number of variables carried in the response surface equations. Thermal analysis and response surface equation development were performed for autonomous aerobraking missions at Mars and Venus.

  19. Predicting the effective thermal conductivity of carbon nanotube based nanofluids.

    PubMed

    Venkata Sastry, N N; Bhunia, Avijit; Sundararajan, T; Das, Sarit K

    2008-02-06

    Adding a small volume fraction of carbon nanotubes (CNTs) to a liquid enhances the thermal conductivity significantly. Recent experimental findings report an anomalously wide range of enhancement values that continue to perplex the research community and remain unexplained. In this paper we present a theoretical model based on three-dimensional CNT chain formation (percolation) in the base liquid and the corresponding thermal resistance network. The model considers random CNT orientation and CNT-CNT interaction forming the percolating chain. Predictions are in good agreement with almost all available experimental data. Results show that the enhancement critically depends on the CNT geometry (length), volume fraction, thermal conductivity of the base liquid and the nanofluid (CNT-liquid suspension) preparation technique. Based on the physical mechanism of heat conduction in the nanofluid, we introduce a new dimensionless parameter that alone characterizes the nanofluid thermal conductivity with reasonable accuracy (∼ ± 5%).

  20. Analytical Predictions of Thermal Stress in the Stardust PICA Heatshield Under Reentry Flight Conditions

    NASA Technical Reports Server (NTRS)

    Squire, Thomas; Milos, Frank; Agrawal, Parul

    2009-01-01

    We performed finite element analyses on a model of the Phenolic Impregnated Carbon Ablator (PICA) heatshield from the Stardust sample return capsule (SRC) to predict the thermal stresses in the PICA material during reentry. The heatshield on the Stardust SRC was a 0.83 m sphere cone, fabricated from a single piece of 5.82 cm-thick PICA. The heatshield performed successfully during Earth reentry of the SRC in January 2006. Material response analyses of the full, axisymmetric PICA heatshield were run using the Two-Dimensional Implicit Ablation, Pyrolysis, and Thermal Response Program (TITAN). Peak surface temperatures were predicted to be 3385K, while the temperature at the PICA backface remained at the estimated initial cold-soak temperature of 278K. Surface recession and temperature distribution results from TITAN, at several points in the reentry trajectory, were mapped onto an axisymmetric finite element model of the heatshield. We used the finite element model to predict the thermal stresses in the PICA from differential thermal expansion. The predicted peak compressive stress in the PICA heatshield was 1.38 MPa. Although this level of stress exceeded the chosen design limit for compressive stresses in PICA tiles for the design of the Orion crew exploration vehicle heatshield, the Stardust heatshield exhibited no obvious mechanical failures from thermal stress. The analyses of the Stardust heatshield were used to assess and adjust the level of conservatism in the finite element analyses in support of the Orion heatshield design.

  1. Analytical Predictions of Thermal Stress in the Stardust PICA Heatshield Under Reentry Flight Conditions

    NASA Technical Reports Server (NTRS)

    Squire, Thomas; Milos, Frank; Agrawal, Parul

    2009-01-01

    We performed finite element analyses on a model of the Phenolic Impregnated Carbon Ablator (PICA) heatshield from the Stardust sample return capsule (SRC) to predict the thermal stresses in the PICA material during reentry. The heatshield on the Stardust SRC was a 0.83 m sphere cone, fabricated from a single piece of 5.82 cm-thick PICA. The heatshield performed successfully during Earth reentry of the SRC in January 2006. Material response analyses of the full, axisymmetric PICA heatshield were run using the Two-Dimensional Implicit Ablation, Pyrolysis, and Thermal Response Program (TITAN). Peak surface temperatures were predicted to be 3385K, while the temperature at the PICA backface remained at the estimated initial cold-soak temperature of 278K. Surface recession and temperature distribution results from TITAN, at several points in the reentry trajectory, were mapped onto an axisymmetric finite element model of the heatshield. We used the finite element model to predict the thermal stresses in the PICA from differential thermal expansion. The predicted peak compressive stress in the PICA heatshield was 1.38 MPa. Although this level of stress exceeded the chosen design limit for compressive stresses in PICA tiles for the design of the Orion crew exploration vehicle heatshield, the Stardust heatshield exhibited no obvious mechanical failures from thermal stress. The analyses of the Stardust heatshield were used to assess and adjust the level of conservatism in the finite element analyses in support of the Orion heatshield design.

  2. Weather Satellite Thermal IR Responses Prior to Earthquakes

    NASA Technical Reports Server (NTRS)

    OConnor, Daniel P.

    2005-01-01

    A number of observers claim to have seen thermal anomalies prior to earthquakes, but subsequent analysis by others has failed to produce similar findings. What exactly are these anomalies? Might they be useful for earthquake prediction? It is the purpose of this study to determine if thermal anomalies can be found in association with known earthquakes by systematically co-registering weather satellite images at the sub-pixel level and then determining if statistically significant responses occurred prior to the earthquake event. A new set of automatic co-registration procedures was developed for this task to accommodate all properties particular to weather satellite observations taken at night, and it relies on the general condition that the ground cools after sunset. Using these procedures, we can produce a set of temperature-sensitive satellite images for each of five selected earthquakes (Algeria 2003; Bhuj, India 2001; Izmit, Turkey 2001; Kunlun Shan, Tibet 2001; Turkmenistan 2000) and thus more effectively investigate heating trends close to the epicenters a few hours prior to the earthquake events. This study will lay tracks for further work in earthquake prediction and provoke the question of the exact nature of the thermal anomalies.

  3. Thermal response properties of protective clothing fabrics

    SciTech Connect

    Baitinger, W.F.

    1995-12-31

    In the industrial workplace, it becomes increasingly incumbent upon employers to require employees to use suitable protective equipment and to wear protective apparel. When workers may be subjected to accidental radiant, flame, or electric arc heat sources, work clothing should be used that does not become involved in burning. It is axiomatic that work clothing should not become a primary fuel source, adding to the level of heat exposure, since clothing is usually in intimate contact with the skin. Further, clothing should provide sufficient insulation to protect the skin from severe burn injury. If the worker receives such protection from clothing, action then may be taken to escape the confronted thermal hazard. Published laboratory test methods are used to measure flame resistance and thermal responses of flame resistant fabrics in protective clothing. The purpose of this article is to review these test methods, to discuss certain limitations in application, and to suggest how flame resistant cotton fabrics may be used to enhance worker safety.

  4. Gene Expression Dynamics Accompanying the Sponge Thermal Stress Response

    PubMed Central

    Guzman, Christine; Conaco, Cecilia

    2016-01-01

    Marine sponges are important members of coral reef ecosystems. Thus, their responses to changes in ocean chemistry and environmental conditions, particularly to higher seawater temperatures, will have potential impacts on the future of these reefs. To better understand the sponge thermal stress response, we investigated gene expression dynamics in the shallow water sponge, Haliclona tubifera (order Haplosclerida, class Demospongiae), subjected to elevated temperature. Using high-throughput transcriptome sequencing, we show that these conditions result in the activation of various processes that interact to maintain cellular homeostasis. Short-term thermal stress resulted in the induction of heat shock proteins, antioxidants, and genes involved in signal transduction and innate immunity pathways. Prolonged exposure to thermal stress affected the expression of genes involved in cellular damage repair, apoptosis, signaling and transcription. Interestingly, exposure to sublethal temperatures may improve the ability of the sponge to mitigate cellular damage under more extreme stress conditions. These insights into the potential mechanisms of adaptation and resilience of sponges contribute to a better understanding of sponge conservation status and the prediction of ecosystem trajectories under future climate conditions. PMID:27788197

  5. Prediction of coefficients of thermal expansion for unidirectional composites

    NASA Technical Reports Server (NTRS)

    Bowles, David E.; Tompkins, Stephen S.

    1989-01-01

    Several analyses for predicting the longitudinal, alpha(1), and transverse, alpha(2), coefficients of thermal expansion of unidirectional composites were compared with each other, and with experimental data on different graphite fiber reinforced resin, metal, and ceramic matrix composites. Analytical and numerical analyses that accurately accounted for Poisson restraining effects in the transverse direction were in consistently better agreement with experimental data for alpha(2), than the less rigorous analyses. All of the analyses predicted similar values of alpha(1), and were in good agreement with the experimental data. A sensitivity analysis was conducted to determine the relative influence of constituent properties on the predicted values of alpha(1), and alpha(2). As would be expected, the prediction of alpha(1) was most sensitive to longitudinal fiber properties and the prediction of alpha(2) was most sensitive to matrix properties.

  6. Thermal Conductivity of Ionic Liquids: Measurement and Prediction

    NASA Astrophysics Data System (ADS)

    Fröba, A. P.; Rausch, M. H.; Krzeminski, K.; Assenbaum, D.; Wasserscheid, P.; Leipertz, A.

    2010-12-01

    This study reports thermal-conductivity data for a series of [EMIM] (1-ethyl-3-methylimidazolium)-based ionic liquids (ILs) having the anions [NTf2] (bis(trifluoromethylsulfonyl)imide), [OAc] (acetate), [N(CN)2] (dicyanimide), [C(CN)3] (tricyanomethide), [MeOHPO2] (methylphosphonate), [EtSO4] (ethylsulfate), or [OcSO4] (octylsulfate), and in addition for ILs with the [NTf2]-anion having the cations [HMIM] (1-hexyl-3-methylimidazolium), [OMA] (methyltrioctylammonium), or [BBIM] (1,3-dibutylimidazolium). Measurements were performed in the temperature range between (273.15 and 333.15) K by a stationary guarded parallel-plate instrument with a total measurement uncertainty of 3 % ( k = 2). For all ILs, the temperature dependence of the thermal conductivity can well be represented by a linear equation. While for the [NTf2]-based ILs, a slight increase of the thermal conductivity with increasing molar mass of the cation is found at a given temperature, the [EMIM]-based ILs show a pronounced, approximately linear decrease with increasing molar mass of the different probed anions. Based on the experimental data obtained in this study, a simple relationship between the thermal conductivity, molar mass, and density is proposed for the prediction of the thermal-conductivity data of ILs. For this, also densities were measured for [EMIM][OAc], [EMIM][C(CN)3], and [HMIM][NTf2]. The mean absolute percentage deviation of all thermal-conductivity data for ILs found in the literature from the proposed prediction is about 7 %. This result represents a convenient simplification in the acquisition of thermal conductivity information for the enormous amount of structurally different IL cation/anion combinations available.

  7. Prediction of thermal cycling induced cracking in polmer matrix composites

    NASA Technical Reports Server (NTRS)

    Mcmanus, Hugh L.

    1994-01-01

    The work done in the period August 1993 through February 1994 on the 'Prediction of Thermal Cycling Induced Cracking In Polymer Matrix Composites' program is summarized. Most of the work performed in this period, as well as the previous one, is described in detail in the attached Master's thesis, 'Analysis of Thermally Induced Damage in Composite Space Structures,' by Cecelia Hyun Seon Park. Work on a small thermal cycling and aging chamber was concluded in this period. The chamber was extensively tested and calibrated. Temperatures can be controlled very precisely, and are very uniform in the test chamber. Based on results obtained in the previous period of this program, further experimental progressive cracking studies were carried out. The laminates tested were selected to clarify the differences between the behaviors of thick and thin ply layers, and to explore other variables such as stacking sequence and scaling effects. Most specimens tested were made available from existing stock at Langley Research Center. One laminate type had to be constructed from available prepreg material at Langley Research Center. Specimens from this laminate were cut and prepared at MIT. Thermal conditioning was carried out at Langley Research Center, and at the newly constructed MIT facility. Specimens were examined by edge inspection and by crack configuration studies, in which specimens were sanded down in order to examine the distribution of cracks within the specimens. A method for predicting matrix cracking due to decreasing temperatures and/or thermal cycling in all plies of an arbitrary laminate was implemented as a computer code. The code also predicts changes in properties due to the cracking. Extensive correlations between test results and code predictions were carried out. The computer code was documented and is ready for distribution.

  8. Thermo-mechanical response predictions for metal matrix composite laminates

    NASA Technical Reports Server (NTRS)

    Aboudi, J.; Hidde, J. S.; Herakovich, C. T.

    1991-01-01

    An analytical micromechanical model is employed for prediction of the stress-strain response of metal matrix composite laminates subjected to thermomechanical loading. The predicted behavior of laminates is based upon knowledge of the thermomechanical response of the transversely isotropic, elastic fibers and the elastic-viscoplastic, work-hardening matrix. The method is applied to study the behavior of silicon carbide/titanium metal matrix composite laminates. The response of laminates is compared with that of unidirectional lamina. The results demonstrate the effect of cooling from a stress-free temperature and the mismatch of thermal and mechanical properties of the constituent phases on the laminate's subsequent mechanical response. Typical results are presented for a variety of laminates subjected to monotonic tension, monotonic shear and cyclic tensile/compressive loadings.

  9. Physiological Responses to Thermal Stress and Exercise

    NASA Astrophysics Data System (ADS)

    Iyota, Hiroyuki; Ohya, Akira; Yamagata, Junko; Suzuki, Takashi; Miyagawa, Toshiaki; Kawabata, Takashi

    The simple and noninvasive measuring methods of bioinstrumentation in humans is required for optimization of air conditioning and management of thermal environments, taking into consideration the individual specificity of the human body as well as the stress conditions affecting each. Changes in human blood circulation were induced with environmental factors such as heat, cold, exercise, mental stress, and so on. In this study, the physiological responses of human body to heat stress and exercise were investigated in the initial phase of the developmental research. We measured the body core and skin temperatures, skin blood flow, and pulse wave as the indices of the adaptation of the cardiovascular system. A laser Doppler skin blood flowmetry using an optical-sensor with a small portable data logger was employed for the measurement. These results reveal the heat-stress and exercise-induced circulatory responses, which are under the control of the sympathetic nerve system. Furthermore, it was suggested that the activity of the sympathetic nervous system could be evaluated from the signals of the pulse wave included in the signals derived from skin blood flow by means of heart rate variability assessments and detecting peak heights of velocity-plethysmogram.

  10. Thermal Responses to Exercise and Their Relationship to Physical Conditioning

    DTIC Science & Technology

    1982-05-14

    APPROVAL SHEET Title of Thesis: THERMAL RESPONSES TO EXERCISE AND THEIR RELATIONSHIP TO PHYSICAL CONDITIONING Name of Candidate: Guy R. Banta...aims of this study were: 1) to identify the acute (non steady-state) exercise -induced thermal responses of men with different levels of physical ...during exercise , and for one hour post exercise . Several major points about thermal responses to exercise and their relationship to physical

  11. Drift emplaced waste package thermal response

    SciTech Connect

    Ruffner, D.J.; Johnson, G.L.; Platt, E.A.; Blink, J.A.; Doering, T.W.

    1993-12-31

    Thermal calculations of the effects of radioactive waste decay heat on the potential repository at Yucca Mountain, Nevada, have been conducted by the Yucca Mountain Site Characterization Project (YMP) at Lawrence Livermore National Lab. (LLNL) in conjunction with the B&W Fuel Co. For a number of waste package spacings, these 3D transient calculations use the TOPAZ3D code to predict drift wall temperatures to 10,000 years following emplacement. Systematic temperature variation occurs as a function of fuel age at emplacement and Areal Mass Loading (AML) during the first few centuries after emplacement. After about 1000 years, emplacement age is not a strong driver on rock temperature; AML has a larger impact. High AMLs occur when large waste packages are emplaced end-to-end in drifts. Drift emplacement of equivalent packages results in lower rock temperatures than borehole emplacement. For an emplacement scheme with 50% of the drift length occupied by packages, an AML of 138 MTU/acre is about three times higher than the Site Characterization Plan-Conceptual Design (SCP-CD) value. With this higher AML (requiring only 1/3 of the SCP-CD repository footprint), peak drift wall temperatures do not exceed 160{degrees}C, but rock temperatures exceed the boiling point of water for about 3000 years. These TOPAZ3D results have been compared with reasonable agreement with two other computer codes.

  12. Drift emplaced waste package thermal response

    SciTech Connect

    Ruffner, D.J.; Johnson, G.L.; Platt, E.A.; Blink, J.A.; Doering, T.W.

    1993-01-01

    Thermal calculations of the effects of radioactive waste decay heat on the I repository at Yucca Mountain, Nevada have been conducted by the Yucca Mountain Site Characterization Project (YMP) at Lawrence Livermore National Laboratory (LLNL) in conjunction with the B&W Fuel Company. For a number of waste package spacings, these 3D transient calculations use the TOPAZ3D code to predict drift wall temperatures to 10,000 years following emplacement. Systematic tcniperature variation occurs as a function of fuel age at emplacement and Areal Mass Loading (AML) during the first few centuries after emplacement. After about 1000 years, emplacement age is not a strong driver on rock temperature; AML has a larger impact. High AMLs occur when large waste packages are emplaced end-tocnd in drifts. Drift emplacement of equivalent packages results in lower rock teniperatures than borehole emplacement. For an emplacement scheme with 50% of the drift length occupied by packages, an AML of 138 MTU/acre is about three times higher than the Site Characterization Plan-Conceptual Design (SCP-CD) value. With this higher AML (requiring only 1/3 of the SCP-CD repository footprint), peak drift wall temperatures do not exceed 160*C, but rock temperatures excetd the boiling point of water for about 3000 years. These TOPAZ3D results Iiive been compared with reasonable agreement with two other computer codes.

  13. Advances in Moire interferometry for thermal response of composites

    NASA Technical Reports Server (NTRS)

    Brooks, E. W., Jr.; Herakovich, C. T.; Post, D.; Hyer, M. W.

    1982-01-01

    An experimental technique for the precise measurement of the thermal response of both sides of a laminated composite coupon specimen uses Moire interferometry with fringe multiplication which yields a sensitivity of 833 nm (32.8 micro in.) per fringe. The reference gratings used are virtual gratings and are formed by partially mirrorized glass prisms in close proximity to the specimen. Results are compared with both results obtained from tests which used Moire interferometry on one side of composite laminates, and with those predicted by classical lamination theory. The technique is shown to be capable of producing the sensitivity and accuracy necessary to measure a wide range of thermal responses and to detect small side to side variations in the measured response. Tests were conducted on four laminate configurations of T300/5208 graphite epoxy over a temperature range of 297 K (75 F) to 422 K (300 F). The technique presented allows for the generation of reference gratings for temperature regimes well outside that used in these tests.

  14. THERMAL PREDICTIONS OF NEW COMPOSITE MATERIAL DURING INPILE TESTING

    SciTech Connect

    Donna Post Guillen; W. David Swank; Heng Ban; Kurt Harris; Adam Zabriskie

    2011-09-01

    An inpile experiment is currently underway wherein specimens comprised of a newly developed material are being irradiated at Idaho National Laboratory's Advanced Test Reactor (ATR) in conjunction with Utah State University under the auspices of the ATR National Scientific User Facility. This paper provides the thermophysical properties of this new material measured prior to irradiation. After the irradiation campaign is complete, the thermophysical properties of the specimens will be measured and compared to the preirradiation values. A finite-element model was constructed to predict bounding specimen temperatures during irradiation. Results from the thermal hydraulic modeling, including the steady-state temperatures of the specimens within sealed capsules, are presented. After the irradiation campaign is completed, best-estimate thermal predictions will be performed for the individual specimens using the actual as-run irradiation power levels.

  15. Prediction of the Effective Thermal Conductivity of Powder Insulation

    NASA Astrophysics Data System (ADS)

    Jin, Lingxue; Park, Jiho; Lee, Cheonkyu; Jeong, Sangkwon

    The powder insulation method is widely used in structural and cryogenic systems such as transportation and storage tanks of cryogenic fluids. The powder insulation layer is constructed by small particle powder with light weight and some residual gas with high porosity. So far, many experiments have been carried out to test the thermal performance of various kinds of powder, including expanded perlite, glass microspheres, expanded polystyrene (EPS). However, it is still difficult to predict the thermal performance of powder insulation by calculation due to the complicated geometries, including various particle shapes, wide powder diameter distribution, and various pore sizes. In this paper, the effective thermal conductivity of powder insulation has been predicted based on an effective thermal conductivity calculationmodel of porous packed beds. The calculation methodology was applied to the insulation system with expanded perlite, glass microspheres and EPS beads at cryogenic temperature and various vacuum pressures. The calculation results were compared with previous experimental data. Moreover, additional tests were carried out at cryogenic temperature in this research. The fitting equations of the deformation factor of the area-contact model are presented for various powders. The calculation results show agood agreement with the experimental results.

  16. Thermal barrier coating life-prediction model development

    NASA Technical Reports Server (NTRS)

    Strangman, T. E.; Neumann, J. F.; Liu, A.

    1987-01-01

    The primary objective of this program was to develop an operative thermal barrier coating (TBC) design model for life prediction. The objective was successfully accomplished with the development, calibration, and demonstration of a mechanistic thermochemical model which rapidly predicts TBC life as a function of engine, mission, and materials system parameters. This thermochemical design model accounts for the three operative TBC damage modes (bond coating oxidation, zirconia toughness reduction, and molten salt film damage), which all contribute to spalling of the insulating zirconia layer.

  17. Geomagnetic Secular Variation Prediction with Thermal Heterogeneous Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Kuang, Weijia; Tangborn, Andrew; Jiang, Weiyuan

    2011-01-01

    It has long been conjectured that thermal heterogeneity at the core-mantle boundary (CMB) affects the geodynamo substantially. The observed two pairs of steady and strong magnetic flux lobes near the Polar Regions and the low secular variation in the Pacific over the past 400 years (and perhaps longer) are likely the consequences of this CMB thermal heterogeneity. There are several studies on the impact of the thermal heterogeneity with numerical geodynamo simulations. However, direct correlation between the numerical results and the observations is found very difficult, except qualitative comparisons of certain features in the radial component of the magnetic field at the CMB. This makes it difficult to assess accurately the impact of thermal heterogeneity on the geodynamo and the geomagnetic secular variation. We revisit this problem with our MoSST_DAS system in which geomagnetic data are assimilated with our geodynamo model to predict geomagnetic secular variations. In this study, we implement a heterogeneous heat flux across the CMB that is chosen based on the seismic tomography of the lowermost mantle. The amplitude of the heat flux (relative to the mean heat flux across the CMB) varies in the simulation. With these assimilation studies, we will examine the influences of the heterogeneity on the forecast accuracies, e.g. the accuracies as functions of the heterogeneity amplitude. With these, we could be able to assess the model errors to the true core state, and thus the thermal heterogeneity in geodynamo modeling.

  18. Prediction of thermal conductivity in reservoir rocks using fabric theory

    NASA Astrophysics Data System (ADS)

    Luo, Ming; Wood, James R.; Cathles, Lawrence M.

    1994-12-01

    An accurate prediction of the thermal conductivity of reservoir rocks in the subsurface is extremely important for a quantitative analysis of basin thermal history and hydrocarbon maturation. A model for calculating the thermal conductivity of reservoir rocks as a function of mineral composition, porosity, fluid type, and temperature has been developed based on fabric theory and experimental data. The study indicates that thermal conductivities of reservoir rocks are dependent on the volume fraction of components (minerals, porosity, and fluids), the temperature, and the fraction of series elements ( FSE) which represents the way that the mineral components aggregate. The sensitivity test of the fabric model shows that quartz is the most sensitive mineral for the thermal conductivity of clastic rocks. The study results indicate that the FSE value is very critical. Different lithologies have different optimum FSE values because of different textures and sedimentary structures. The optimum FSE values are defined as those which result in the least error in the model computation of the thermal conductivity of the rocks. These values are 0.444 for water-saturated clay rocks, 0.498 for water-saturated sandstones, and 0.337 for water-saturated carbonates. Compared with the geometric mean model, the fabric model yields better results for the thermal conductivity, largely because the model parameters can be adjusted to satisfy different lithologies and to minimize the mean errors. The fabric model provides a good approach for estimating paleothermal conductivity in complex rock systems based on the mineral composition and pore fluid saturation of the rocks.

  19. Modeling the thermal response of porcine cartilage to laser irradiation

    NASA Astrophysics Data System (ADS)

    Diaz-Valdes, Sergio H.; Aguilar, Guillermo; Basu, Reshmi; Lavernia, Enrique J.; Wong, Brian J.

    2002-06-01

    Cartilage laser thermoforming, also known as laser reshaping, is a new surgical procedure that allows in-situ treatment of deformities in the head and neck with less morbidity than traditional approaches. During laser irradiation, cartilage becomes sufficiently subtle or deformable for stretching and shaping into new stable configurations. This study describes the experimental and theoretical characterization of the thermal response of porcine cartilage to laser irradiation (Nd:YAG). The surface temperature history of cartilage specimens was monitored during heating and thermal relaxation; using laser exposure times ranging between 1 and 15 s and laser powers of 1 to 10 W. The experimental results were then used to validate a finite element model, which accounts for heat diffusion, light propagation in tissue, and heat loss due to water evaporation. The simultaneous solution of the energy and mass diffusion equations resulted in predictions of temperature distribution in cartilage that were in good agreement with experiments. The model simulations will provide insights to the relationship between the laser treatment parameters (exposure time, laser beam diameter, and power) and the onset of new molecular arrangements and cell thermal injury in the material, thus conceiving basic guidelines of laser thermoforming.

  20. Experimental and numerical life prediction of thermally cycled thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Persson, C.; Wigren, J.

    2004-09-01

    This article addresses the predominant degradation modes and life prediction of a plasma-sprayed thermal barrier coating (TBC). The studied TBC system consists of an air-plasma-sprayed bond coat and an air-plasma-sprayed, yttria partially stabilized zirconia top layer on a conventional Hastelloy X substrate. Thermal shock tests of as-sprayed TBC and pre-oxidized TBC specimens were conducted under different burner flame conditions at Volvo Aero Corporation (Trollhättan, Sweden). Finite element models were used to simulate the thermal shock tests. Transient temperature distributions and thermal mismatch stresses in different layers of the coatings during thermal cycling were calculated. The roughness of the interface between the ceramic top coat and the bond coat was modeled through an ideally sinusoidal wavy surface. Bond coat oxidation was simulated through adding an aluminum oxide layer between the ceramic top coat and the bond coat. The calculated stresses indicated that interfacial delamination cracks, initiated in the ceramic top coat at the peak of the asperity of the interface, together with surface cracking, are the main reasons for coating failure. A phenomenological life prediction model for the coating was proposed. This model is accurate within a factor of 3.

  1. Microstructure defect detection using thermal response

    NASA Astrophysics Data System (ADS)

    Olson, Brandon; Chen, Kuan H.

    2002-04-01

    Detecting thermal and mechanical defects within multilayered microstructures is an important research area within the microdevice community. The detection of material flaws, mechanical damage, and packaging irregularities is often critical to the overall performanc eof the end product. The technique presented hereafter uses a series of surface temperature measurements, generated by a step function heat flux, to determine the thermal properties of a one- dimensional structure. These properties can either be used directly in a design effort, or they can be used as an indicator of problems that may exist within the structure. This technique is essentially non-invasive and it places no requirements on structure size, thus it is predisposed to semiconductor and MEMS applications. The technique exploits a thermal-electrical analog to match a measured thermal resistance pattern with the pattern of a corresponding thermal structure. Typically, the dimensions of the structure and the disturbance amplitude are required for property value determination.

  2. Modeling the thermal responses of the skin surface during hand-object interactions.

    PubMed

    Ho, Hsin-Ni; Jones, Lynette A

    2008-04-01

    The objective of this research is to analyze and model the decreases in skin temperature when the hand makes contact with an object at room temperature so that thermal feedback can be incorporated into haptic displays. A thermal model is proposed that predicts the thermal responses of the skin and object surface as well as the heat flux exchanged during hand-object interactions. The model was evaluated by comparing the theoretical predictions of temperature changes to those experimentally measured using an infrared thermal measurement system. The thermal measurement system was designed to overcome the limitations imposed by contact thermal sensors, and was able to measure skin temperature during contact, together with the contact area and contact force. The experimental results indicated that over the pressure range of 0.73-10.98 kPa, changes in skin temperature were well localized to the contact area and were affected by contact pressure. The pressure in turn influenced both thermal contact resistance and blood flow. Over the range of contact forces typically used in manual exploration, blood perfusion and metabolic heat generation do not appear to have a significant effect on the skin's thermal responses. The theoretical predictions and the measured data were consistent in characterizing the time course and amplitude of the skin temperature change during contact with differences typically being less than 1 degrees C between the two for pressures greater than 4 kPa. These findings indicate that the proposed thermal model is able to characterize and predict the skin temperature responses during hand-object interactions and could be used in a thermal display that simulates the properties of different materials.

  3. Physiological responses to short-term thermal stress in mayfly (Neocloeon triangulifer) larvae in relation to upper thermal limits.

    PubMed

    Kim, Kyoung Sun; Chou, Hsuan; Funk, David H; Jackson, John K; Sweeney, Bernard W; Buchwalter, David B

    2017-07-15

    Understanding species' thermal limits and their physiological determinants is critical in light of climate change and other human activities that warm freshwater ecosystems. Here, we ask whether oxygen limitation determines the chronic upper thermal limits in larvae of the mayfly Neocloeon triangulifer, an emerging model for ecological and physiological studies. Our experiments are based on a robust understanding of the upper acute (∼40°C) and chronic thermal limits of this species (>28°C, ≤30°C) derived from full life cycle rearing experiments across temperatures. We tested two related predictions derived from the hypothesis that oxygen limitation sets the chronic upper thermal limits: (1) aerobic scope declines in mayfly larvae as they approach and exceed temperatures that are chronically lethal to larvae; and (2) genes indicative of hypoxia challenge are also responsive in larvae exposed to ecologically relevant thermal limits. Neither prediction held true. We estimated aerobic scope by subtracting measurements of standard oxygen consumption rates from measurements of maximum oxygen consumption rates, the latter of which was obtained by treating with the metabolic uncoupling agent carbonyl cyanide-4-(trifluoromethoxy) pheylhydrazone (FCCP). Aerobic scope was similar in larvae held below and above chronic thermal limits. Genes indicative of oxygen limitation (LDH, EGL-9) were only upregulated under hypoxia or during exposure to temperatures beyond the chronic (and more ecologically relevant) thermal limits of this species (LDH). Our results suggest that the chronic thermal limits of this species are likely not driven by oxygen limitation, but rather are determined by other factors, e.g. bioenergetics costs. We caution against the use of short-term thermal ramping approaches to estimate critical thermal limits (CTmax) in aquatic insects because those temperatures are typically higher than those that occur in nature. © 2017. Published by The Company of

  4. Predicting tree pollen season start dates using thermal conditions.

    PubMed

    Myszkowska, Dorota

    2014-01-01

    Thermal conditions at the beginning of the year determine the timing of pollen seasons of early flowering trees. The aims of this study were to quantify the relationship between the tree pollen season start dates and the thermal conditions just before the beginning of the season and to construct models predicting the start of the pollen season in a given year. The study was performed in Krakow (Southern Poland); the pollen data of Alnus, Corylus and Betula were obtained in 1991-2012 using a volumetric method. The relationship between the tree pollen season start, calculated by the cumulated pollen grain sum method, and a 5-day running means of maximum (for Alnus and Corylus) and mean (for Betula) daily temperature was found and used in the logistic regression models. The estimation of model parameters indicated their statistically significance for all studied taxa; the odds ratio was higher in models for Betula, comparing to Alnus and Corylus. The proposed model makes the accuracy of prediction in 83.58 % of cases for Alnus, in 84.29 % of cases for Corylus and in 90.41 % of cases for Betula. In years of model verification (2011 and 2012), the season start of Alnus and Corylus was predicted more precisely in 2011, while in case of Betula, the model predictions achieved 100 % of accuracy in both years. The correctness of prediction indicated that the data used for the model arrangement fitted the models well and stressed the high efficacy of model prediction estimated using the pollen data in 1991-2010.

  5. Prediction of human thermophysiological responses during shower bathing.

    PubMed

    Munir, Abdul; Takada, Satoru; Matsushita, Takayuki; Kubo, Hiroko

    2010-03-01

    This study develops a model to predict the thermophysiological response of the human body during shower bathing. Despite the needs for the quantitative evaluation of human body response during bathing for thermal comfort and safety, the complicated mechanisms of heat transfer at the skin surface, especially during shower bathing, have disturbed the development of adequate models. In this study, an initial modeling approach is proposed by developing a simple heat transfer model at the skin surface during shower bathing applied to Stolwijk's human thermal model. The main feature of the model is the division of the skin surface into three parts: a dry part, a wet part without water flow, and a wet part with water flow. The area ratio of each part is decided by a simple formula developed from a geometrical approach based on the shape of the Stolwijk's human thermal model. At the same time, the convective heat transfer coefficient between the skin and the flowing water is determined experimentally. The proposed model is validated by a comparison with the results of human subject experiments under controlled and free shower conditions. The model predicts the mean skin temperature during shower fairly well both for controlled and free shower bathing styles.

  6. Prediction of human thermophysiological responses during shower bathing

    NASA Astrophysics Data System (ADS)

    Munir, Abdul; Takada, Satoru; Matsushita, Takayuki; Kubo, Hiroko

    2010-03-01

    This study develops a model to predict the thermophysiological response of the human body during shower bathing. Despite the needs for the quantitative evaluation of human body response during bathing for thermal comfort and safety, the complicated mechanisms of heat transfer at the skin surface, especially during shower bathing, have disturbed the development of adequate models. In this study, an initial modeling approach is proposed by developing a simple heat transfer model at the skin surface during shower bathing applied to Stolwijk’s human thermal model. The main feature of the model is the division of the skin surface into three parts: a dry part, a wet part without water flow, and a wet part with water flow. The area ratio of each part is decided by a simple formula developed from a geometrical approach based on the shape of the Stolwijk’s human thermal model. At the same time, the convective heat transfer coefficient between the skin and the flowing water is determined experimentally. The proposed model is validated by a comparison with the results of human subject experiments under controlled and free shower conditions. The model predicts the mean skin temperature during shower fairly well both for controlled and free shower bathing styles.

  7. Failure Mechanisms and Life Prediction of Thermal and Environmental Barrier Coatings under Thermal Gradients

    NASA Technical Reports Server (NTRS)

    Zju, Dongming; Ghosn, Louis J.; Miller, Robert A.

    2008-01-01

    Ceramic thermal and environmental barrier coatings (TEBCs) will play an increasingly important role in gas turbine engines because of their ability to further raise engine temperatures. However, the issue of coating durability is of major concern under high-heat-flux conditions. In particular, the accelerated coating delamination crack growth under the engine high heat-flux conditions is not well understood. In this paper, a laser heat flux technique is used to investigate the coating delamination crack propagation under realistic temperature-stress gradients and thermal cyclic conditions. The coating delamination mechanisms are investigated under various thermal loading conditions, and are correlated with coating dynamic fatigue, sintering and interfacial adhesion test results. A coating life prediction framework may be realized by examining the crack initiation and propagation driving forces for coating failure under high-heat-flux test conditions.

  8. A new solution of measuring thermal response of prestressed concrete bridge girders for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Jiao, Pengcheng; Borchani, Wassim; Hasni, Hassene; Lajnef, Nizar

    2017-08-01

    This study develops a novel buckling-based mechanism to measure the thermal response of prestressed concrete bridge girders under continuous temperature changes for structural health monitoring. The measuring device consists of a bilaterally constrained beam and a piezoelectric polyvinylidene fluoride transducer that is attached to the beam. Under thermally induced displacement, the slender beam is buckled. The post-buckling events are deployed to convert the low-rate and low-frequency excitations into localized high-rate motions and, therefore, the attached piezoelectric transducer is triggered to generate electrical signals. Attaching the measuring device to concrete bridge girders, the electrical signals are used to detect the thermal response of concrete bridges. Finite element simulations are conducted to obtain the displacement of prestressed concrete girders under thermal loads. Using the thermal-induced displacement as input, experiments are carried out on a 3D printed measuring device to investigate the buckling response and corresponding electrical signals. A theoretical model is developed based on the nonlinear Euler-Bernoulli beam theory and large deformation assumptions to predict the buckling mode transitions of the beam. Based on the presented theoretical model, the geometry properties of the measuring device can be designed such that its buckling response is effectively controlled. Consequently, the thermally induced displacement can be designed as limit states to detect excessive thermal loads on concrete bridge girders. The proposed solution sufficiently measures the thermal response of concrete bridges.

  9. Temperature prediction of space flight experiments by computer thermal analysis.

    PubMed

    Birdsong, M B; Luttges, M W

    1995-02-01

    Life sciences experiments are especially sensitive to temperature. A small temperature difference between otherwise identical samples can cause various differences in biological reaction rates. Knowledge of experimental temperatures and temperature histories help to distinguish the effects of microgravity and temperature on spaceflight experiments compared to ground based studies, and allow appropriate controls and sensitivity tests. Up to the present time, the Orbiter (Space Shuttle) has not generally provided temperature measurement instrumentation inside ambient lockers located in the Mid-deck of the Orbiter, or inside similar facilities such as Spacehab and Spacelab, but many pieces of hardware do have temperature recording capability. Most of these temperatures, however, have only been roughly measured or estimated. Such reported experimental temperatures, while accurate within a range of several degrees Celsius, are of limited utility to biological researchers. The temperature controlled lockers used in spaceflight, such as Commercial-Refrigeration Incubation Modules (C-R/IMs), severely reduce the mass and volume available for test samples and do not necessarily provide uniform thermal environments. While these test carriers avoid some of the experimental temperature variations of the ambient lockers, the number of samples which can be accommodated in these temperature controlled units is limited. In the present work, improved models of thermal prediction and control were sought. Temperatures are predicted by thermal analysis software using empirical temperatures recorded during STS-57. These temperatures are compared to data recorded throughout the mission using Ambient Temperature Recorders (ATRs) located within several payload lockers. Additional test cases are undertaken using controlled ground experiments to more precisely determine the reliability of the thermal model. The approach presented should increase the utility of various spaceflight carriers in

  10. Temperature prediction of space flight experiments by computer thermal analysis

    NASA Technical Reports Server (NTRS)

    Birdsong, M. B.; Luttges, M. W.

    1994-01-01

    Life sciences experiments are especially sensitive to temperature. A small temperature difference between otherwise identical samples can cause various differences in biological reaction rates. Knowledge of experimental temperatures and temperature histories help to distinguish the effects of microgravity and temperature on spaceflight experiments compared to ground based studies, and allow appropriate controls and sensitivity tests. Up to the present time, the Orbiter (Space Shuttle) has not generally provided temperature measurement instrumentation inside ambient lockers located in the Mid-deck of the Orbiter, or inside similar facilities such as Spacehab and Spacelab, but many pieces of hardware do have temperature recording capability. Most of these temperatures, however, have only been roughly measured or estimated. Such reported experimental temperatures, while accurate within a range of several degrees Celsius, are of limited utility to biological researchers. The temperature controlled lockers used in spaceflight, such as Commerical-Refrigeration Incubation Modules (C-R/IMs), severely reduce the mass and volume available for test samples and do not necessarily provide uniform thermal environments. While these test carriers avoid some of the experimental temperature variations of the ambient lockers, the number of samples which can be accommodated in these temperature controlled units is limited. In the present work, improved models of thermal prediction and control were sought. Temperatures are predicted by thermal analysis software using empirical temperatures recorded during STS-57. These temperatures are compared to data recorded throughout the mission using Ambient Temperature Recorders (ATRs) located within several payload lockers. Additional test cases are undertaken using controlled ground experiments to more precisely determine the reliability of the thermal model. The approach presented should increase the utility of various spaceflight carriers in

  11. Ablation and Thermal Response Property Model Validation for Phenolic Impregnated Carbon Ablator

    NASA Technical Reports Server (NTRS)

    Milos, F. S.; Chen, Y.-K.

    2009-01-01

    Phenolic Impregnated Carbon Ablator was the heatshield material for the Stardust probe and is also a candidate heatshield material for the Orion Crew Module. As part of the heatshield qualification for Orion, physical and thermal properties were measured for newly manufactured material, included emissivity, heat capacity, thermal conductivity, elemental composition, and thermal decomposition rates. Based on these properties, an ablation and thermal-response model was developed for temperatures up to 3500 K and pressures up to 100 kPa. The model includes orthotropic and pressure-dependent thermal conductivity. In this work, model validation is accomplished by comparison of predictions with data from many arcjet tests conducted over a range of stagnation heat flux and pressure from 107 Watts per square centimeter at 2.3 kPa to 1100 Watts per square centimeter at 84 kPa. Over the entire range of test conditions, model predictions compare well with measured recession, maximum surface temperatures, and in depth temperatures.

  12. Prediction of thermal cycling induced cracking in polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Mcmanus, Hugh L.

    1993-01-01

    This report summarizes the work done in the period February 1993 through July 1993 on the 'Prediction of Thermal Cycling Induced Cracking In Polymer Matrix Composites' program. An oral presentation of this work was given to Langley personnel in September of 1993. This document was prepared for archival purposes. Progress studies have been performed on the effects of spatial variations in material strength. Qualitative agreement was found with observed patterns of crack distribution. These results were presented to NASA Langley personnel in November 1992. The analytical methodology developed by Prof. McManus in the summer of 1992 (under an ASEE fellowship) has been generalized. A method for predicting matrix cracking due to decreasing temperatures and/or thermal cycling in all plies of an arbitrary laminate has been implemented as a computer code. The code also predicts changes in properties due to the cracking. Experimental progressive cracking studies on a variety of laminates were carried out at Langley Research Center. Results were correlated to predictions using the new methods. Results were initially mixed. This motivated an exploration of the configuration of cracks within laminates. A crack configuration study was carried out by cutting and/or sanding specimens in order to examine the distribution of cracks within the specimens. These investigations were supplemented by dye-penetrant enhanced X-ray photographs. The behavior of thin plies was found to be different from the behavior of thicker plies (or ply groups) on which existing theories are based. Significant edge effects were also noted, which caused the traditional metric of microcracking (count of cracks on a polished edge) to be very inaccurate in some cases. With edge and configuration taken into account, rough agreement with predictions was achieved. All results to date were reviewed with NASA Langley personnel in September 1993.

  13. Predicting and measuring fluid responsiveness with echocardiography.

    PubMed

    Miller, Ashley; Mandeville, Justin

    2016-06-01

    Echocardiography is ideally suited to guide fluid resuscitation in critically ill patients. It can be used to assess fluid responsiveness by looking at the left ventricle, aortic outflow, inferior vena cava and right ventricle. Static measurements and dynamic variables based on heart-lung interactions all combine to predict and measure fluid responsiveness and assess response to intravenous fluid resuscitation. Thorough knowledge of these variables, the physiology behind them and the pitfalls in their use allows the echocardiographer to confidently assess these patients and in combination with clinical judgement manage them appropriately.

  14. Predicting and measuring fluid responsiveness with echocardiography

    PubMed Central

    Mandeville, Justin

    2016-01-01

    Echocardiography is ideally suited to guide fluid resuscitation in critically ill patients. It can be used to assess fluid responsiveness by looking at the left ventricle, aortic outflow, inferior vena cava and right ventricle. Static measurements and dynamic variables based on heart–lung interactions all combine to predict and measure fluid responsiveness and assess response to intravenous fluid resuscitation. Thorough knowledge of these variables, the physiology behind them and the pitfalls in their use allows the echocardiographer to confidently assess these patients and in combination with clinical judgement manage them appropriately. PMID:27249550

  15. Thermal barrier coating life prediction model development, phase 2

    NASA Technical Reports Server (NTRS)

    Meier, Susan Manning; Sheffler, Keith D.; Nissley, David M.

    1991-01-01

    The objective of this program was to generate a life prediction model for electron-beam-physical vapor deposited (EB-PVD) zirconia thermal barrier coating (TBC) on gas turbine engine components. Specific activities involved in development of the EB-PVD life prediction model included measurement of EB-PVD ceramic physical and mechanical properties and adherence strength, measurement of the thermally grown oxide (TGO) growth kinetics, generation of quantitative cyclic thermal spallation life data, and development of a spallation life prediction model. Life data useful for model development was obtained by exposing instrumented, EB-PVD ceramic coated cylindrical specimens in a jet fueled burner rig. Monotonic compression and tensile mechanical tests and physical property tests were conducted to obtain the EB-PVD ceramic behavior required for burner rig specimen analysis. As part of that effort, a nonlinear constitutive model was developed for the EB-PVD ceramic. Spallation failure of the EB-PVD TBC system consistently occurred at the TGO-metal interface. Calculated out-of-plane stresses were a small fraction of that required to statically fail the TGO. Thus, EB-PVD spallation was attributed to the interfacial cracking caused by in-plane TGO strains. Since TGO mechanical properties were not measured in this program, calculation of the burner rig specimen TGO in-plane strains was performed by using alumina properties. A life model based on maximum in-plane TGO tensile mechanical strain and TGO thickness correlated the burner rig specimen EB-PVD ceramic spallation lives within a factor of about plus or minus 2X.

  16. Growth and development rates have different thermal responses.

    PubMed

    Forster, Jack; Hirst, Andrew G; Woodward, Guy

    2011-11-01

    Growth and development rates are fundamental to all living organisms. In a warming world, it is important to determine how these rates will respond to increasing temperatures. It is often assumed that the thermal responses of physiological rates are coupled to metabolic rate and thus have the same temperature dependence. However, the existence of the temperature-size rule suggests that intraspecific growth and development are decoupled. Decoupling of these rates would have important consequences for individual species and ecosystems, yet this has not been tested systematically across a range of species. We conducted an analysis on growth and development rate data compiled from the literature for a well-studied group, marine pelagic copepods, and use an information-theoretic approach to test which equations best describe these rates. Growth and development rates were best characterized by models with significantly different parameters: development has stronger temperature dependence than does growth across all life stages. As such, it is incorrect to assume that these rates have the same temperature dependence. We used the best-fit models for these rates to predict changes in organism mass in response to temperature. These predictions follow a concave relationship, which complicates attempts to model the impacts of increasing global temperatures on species body size.

  17. Hazards Response of Energetic Materials - Initiation Mechanisms, Experimental Characterization, and Development of Predictive Capability

    SciTech Connect

    Maienschein, J; Nichols III, A; Reaugh, J; McClelland, M; Hsu, P C

    2005-04-15

    We present our approach to develop a predictive capability for hazards -- thermal and non-shock impact -- response of energetic material systems based on: (A) identification of relevant processes; (B) characterization of the relevant properties; (C) application of property data to predictive models; and (D) application of the models into predictive simulation. This paper focuses on the first two elements above, while a companion paper by Nichols et al focuses on the final two elements. We outline the underlying mechanisms of hazards response and their interactions, and present our experimental work to characterize the necessary material parameters, including thermal ignition, thermal and mechanical properties, fracture/fragmentation behavior, deflagration rates, and the effect of material damage. We also describe our validation test, the Scaled Thermal Explosion Experiment. Finally, we integrate the entire collection of data into a qualitative understanding that is useful until such time as the predictive models become available.

  18. A Historical and Current Perspective on Predicting Thermal Cookoff Behavior

    SciTech Connect

    Burnham, A K; Weese, R K; Wemhoff, A P; Maienschein, J L

    2006-06-02

    Prediction of thermal explosions using chemical kinetic models dates back nearly a century. However, it has only been within the past 25 years that kinetic models and digital computers made reliable predictions possible. Two basic approaches have been used to derive chemical kinetic models for high explosives: [1] measurement of the reaction rate of small samples by mass loss (thermogravimetric analysis, TGA), heat release (differential scanning calorimetry, DSC), or evolved gas analysis (mass spectrometry, infrared spectrometry, etc.) or [2] inference from larger-scale experiments measuring the critical temperature (T{sub m}, lowest T for self-initiation), the time to explosion as a function of temperature, and sometimes a few other results, such as temperature profiles. Some of the basic principles of chemical kinetics involved are outlined, and major advances in these two approaches through the years are reviewed.

  19. On understanding and predicting groundwater response time.

    PubMed

    Sophocleous, Marios

    2012-01-01

    An aquifer system, when perturbed, has a tendency to evolve to a new equilibrium, a process that can take from just a few seconds to possibly millions of years. The time scale on which a system adjusts to a new equilibrium is often referred to as "response time" or "lag time." Because groundwater response time affects the physical and economic viability of various management options in a basin, natural resource managers are increasingly interested in incorporating it into policy. However, the processes of how groundwater responds to land-use change are not well understood, making it difficult to predict the timing of groundwater response to such change. The difficulty in estimating groundwater response time is further compounded because the data needed to quantify this process are not usually readily available. This article synthesizes disparate pieces of information on aquifer response times into a relatively brief but hopefully comprehensive review that the community of water professionals can use to better assess the impact of aquifer response time in future groundwater management investigations. A brief exposition on dimensional/scaling analysis is presented first, followed by an overview of aquifer response time for simplified aquifer systems. The aquifer response time is considered first from a water-quantity viewpoint and later expanded to incorporate groundwater age and water-quality aspects. Monitoring programs today, as well as water policies and regulations, should address this issue of aquifer response time so that more realistic management expectations can be reached.

  20. Ablative Thermal Response Analysis Using the Finite Element Method

    NASA Technical Reports Server (NTRS)

    Dec John A.; Braun, Robert D.

    2009-01-01

    A review of the classic techniques used to solve ablative thermal response problems is presented. The advantages and disadvantages of both the finite element and finite difference methods are described. As a first step in developing a three dimensional finite element based ablative thermal response capability, a one dimensional computer tool has been developed. The finite element method is used to discretize the governing differential equations and Galerkin's method of weighted residuals is used to derive the element equations. A code to code comparison between the current 1-D tool and the 1-D Fully Implicit Ablation and Thermal Response Program (FIAT) has been performed.

  1. Physiological Response of Siderastrea siderea to Thermal Stress

    NASA Astrophysics Data System (ADS)

    Bruno-Laureano, Y.; Mercado-Molina, A. E.; Fonseca, J. S.

    2016-02-01

    Warming of the ocean water is one of the major causes of coral bleaching, a phenomenon that disrupt the obligate endosymbiotic relationships that corals has with dinoflagellates of the genus Symbiodinium. Because it is predicted that sea surface temperature are going to increase 1-3°C in the next 10 years, it is important to understand how coral species will respond to such changes. It is known that the coral Siderastrea siderea is a scleractinian coral common to the Caribbean reefs that has shown to be very resistant to environmental stressors such as sedimentation and water contamination. However, little is known about its capacity to overcome high temperatures. But several studies suggest that Siderastrea siderea can recover faster than other corals from thermal-stress. The purpose of this study is to determine whether the physiology S. siderea varies with respect to an increase in water temperature. We conducted a controlled laboratory experiments where the coral were exposed to typical (27.5°C) and elevated temperatures (31.5°C). We quantified the densities of the endosymbiotic Symbiodinium spp. as well as physiological parameters such as protein and chlorophyll concentration to determine whether they change in response to an increase in temperature. Results show no significant differences or a direct relation between the thermal stress and the physiological mechanisms studied. Which would suggest that S. siderea indeed has the mechanisms to cope to high temperature scenarios.

  2. Thermal barrier coating life-prediction model development

    NASA Technical Reports Server (NTRS)

    Strangman, T. E.; Neumann, J.; Liu, A.

    1986-01-01

    The program focuses on predicting the lives of two types of strain-tolerant and oxidation-resistant thermal barrier coating (TBC) systems that are produced by commercial coating suppliers to the gas turbine industry. The plasma-sprayed TBC system, composed of a low-pressure plasma-spray (LPPS) or an argon shrouded plasma-spray (ASPS) applied oxidation resistant NiCrAlY or (CoNiCrAlY) bond coating and an air-plasma-sprayed yttria partially stabilized zirconia insulative layer, is applied by both Chromalloy, Klock, and Union Carbide. The second type of TBS is applied by the electron beam-physical vapor deposition (EB-PVD) process by Temescal. The second year of the program was focused on specimen procurement, TMC system characterization, nondestructive evaluation methods, life prediction model development, and TFE731 engine testing of thermal barrier coated blades. Materials testing is approaching completion. Thermomechanical characterization of the TBC systems, with toughness, and spalling strain tests, was completed. Thermochemical testing is approximately two-thirds complete. Preliminary materials life models for the bond coating oxidation and zirconia sintering failure modes were developed. Integration of these life models with airfoil component analysis methods is in progress. Testing of high pressure turbine blades coated with the program TBS systems is in progress in a TFE731 turbofan engine. Eddy current technology feasibility was established with respect to nondestructively measuring zirconia layer thickness of a TBC system.

  3. Predicting Responses to Contemporary Environmental Change Using Evolutionary Response Architectures.

    PubMed

    Bay, Rachael A; Rose, Noah; Barrett, Rowan; Bernatchez, Louis; Ghalambor, Cameron K; Lasky, Jesse R; Brem, Rachel B; Palumbi, Stephen R; Ralph, Peter

    2017-05-01

    Rapid environmental change currently presents a major threat to global biodiversity and ecosystem functions, and understanding impacts on individual populations is critical to creating reliable predictions and mitigation plans. One emerging tool for this goal is high-throughput sequencing technology, which can now be used to scan the genome for signs of environmental selection in any species and any system. This explosion of data provides a powerful new window into the molecular mechanisms of adaptation, and although there has been some success in using genomic data to predict responses to selection in fields such as agriculture, thus far genomic data are rarely integrated into predictive frameworks of future adaptation in natural populations. Here, we review both theoretical and empirical studies of adaptation to rapid environmental change, focusing on areas where genomic data are poised to contribute to our ability to estimate species and population persistence and adaptation. We advocate for the need to study and model evolutionary response architectures, which integrate spatial information, fitness estimates, and plasticity with genetic architecture. Understanding how these factors contribute to adaptive responses is essential in efforts to predict the responses of species and ecosystems to future environmental change.

  4. Suitability of frequency modulated thermal wave imaging for skin cancer detection-A theoretical prediction.

    PubMed

    Bhowmik, Arka; Repaka, Ramjee; Mulaveesala, Ravibabu; Mishra, Subhash C

    2015-07-01

    A theoretical study on the quantification of surface thermal response of cancerous human skin using the frequency modulated thermal wave imaging (FMTWI) technique has been presented in this article. For the first time, the use of the FMTWI technique for the detection and the differentiation of skin cancer has been demonstrated in this article. A three dimensional multilayered skin has been considered with the counter-current blood vessels in individual skin layers along with different stages of cancerous lesions based on geometrical, thermal and physical parameters available in the literature. Transient surface thermal responses of melanoma during FMTWI of skin cancer have been obtained by integrating the heat transfer model for biological tissue along with the flow model for blood vessels. It has been observed from the numerical results that, flow of blood in the subsurface region leads to a substantial alteration on the surface thermal response of the human skin. The alteration due to blood flow further causes a reduction in the performance of the thermal imaging technique during the thermal evaluation of earliest melanoma stages (small volume) compared to relatively large volume. Based on theoretical study, it has been predicted that the method is suitable for detection and differentiation of melanoma with comparatively large volume than the earliest development stages (small volume). The study has also performed phase based image analysis of the raw thermograms to resolve the different stages of melanoma volume. The phase images have been found to be clearly individuate the different development stages of melanoma compared to raw thermograms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Nonlinear random response prediction using MSC/NASTRAN

    NASA Astrophysics Data System (ADS)

    Robinson, J. H.; Chiang, C. K.; Rizzi, S. A.

    1993-10-01

    An equivalent linearization technique was incorporated into MSC/NASTRAN to predict the nonlinear random response of structures by means of Direct Matrix Abstract Programming (DMAP) modifications and inclusion of the nonlinear differential stiffness module inside the iteration loop. An iterative process was used to determine the rms displacements. Numerical results obtained for validation on simple plates and beams are in good agreement with existing solutions in both the linear and linearized regions. The versatility of the implementation will enable the analyst to determine the nonlinear random responses for complex structures under combined loads. The thermo-acoustic response of a hexagonal thermal protection system panel is used to highlight some of the features of the program.

  6. Nonlinear random response prediction using MSC/NASTRAN

    NASA Technical Reports Server (NTRS)

    Robinson, J. H.; Chiang, C. K.; Rizzi, S. A.

    1993-01-01

    An equivalent linearization technique was incorporated into MSC/NASTRAN to predict the nonlinear random response of structures by means of Direct Matrix Abstract Programming (DMAP) modifications and inclusion of the nonlinear differential stiffness module inside the iteration loop. An iterative process was used to determine the rms displacements. Numerical results obtained for validation on simple plates and beams are in good agreement with existing solutions in both the linear and linearized regions. The versatility of the implementation will enable the analyst to determine the nonlinear random responses for complex structures under combined loads. The thermo-acoustic response of a hexagonal thermal protection system panel is used to highlight some of the features of the program.

  7. Physiological threat responses predict number processing.

    PubMed

    Scholl, Annika; Moeller, Korbinian; Scheepers, Daan; Nuerk, Hans-Christoph; Sassenberg, Kai

    2017-01-01

    Being able to adequately process numbers is a key competency in everyday life. Yet, self-reported negative affective responses towards numbers are known to deteriorate numerical performance. Here, we investigated how physiological threat responses predict numerical performance. Physiological responses reflect whether individuals evaluate a task as exceeding or matching their resources and in turn experience either threat or challenge, which influences subsequent performance. We hypothesized that, the more individuals respond to a numerical task with physiological threat, the worse they would perform. Results of an experiment with cardiovascular indicators of threat/challenge corroborated this expectation. The findings thereby contribute to our understanding of the physiological mechanism underlying the influence of negative affective responses towards numbers on numerical performance.

  8. Hazards Response of Energetic Materials - Developing a Predictive Capability for Initiation and Reaction under Multiple Stimuli

    SciTech Connect

    Nichols III, A L; Wallin, B K; Maienschein, J L; Reaugh, J E; Yoh, J J; McClelland, M E

    2005-04-15

    We present our approach to develop a predictive capability for hazards--thermal and nonshock impact--response of energetic material systems based on: (A) identification of relevant processes; (B) characterization of the relevant properties; (C) application of property data to predictive models; and (D) application of the models into predictive simulation. This paper focuses on the last two elements above, while a companion paper by Maienschein et al focuses on the first two elements. We outline models to describe the both the microscopic evolution of hot spots for detonation response and thermal kinetic models used to model slow heat environments. We show examples of application to both types of environments.

  9. NON-DESTRUCTIVE THERMAL BARRIER COATING SPALLATION PREDICTION BY A LOADBASED MICRO-INDENTATION TECHNIQUE

    SciTech Connect

    J. M. Tannenbaum; K. Lee; B. S.-J. Kang; M.A. Alvin

    2010-11-18

    Currently, the durability and life cycle of thermal barrier coatings (TBC) applied to gas turbine blades and combustor components are limiting the maximum temperature and subsequent efficiency at which gas turbine engines operate. The development of new materials, coating technologies and evaluation techniques is required if enhanced efficiency is to be achieved. Of the current ceramic coating materials used in gas turbine engines, yttria stabilized zirconia (YSZ) is most prevalent, its low thermal conductivity, high thermal expansion coefficient and outstanding mechanical strength make it ideal for use in TBC systems. However, residual stresses caused by coefficients of thermal expansion mismatches within the TBC system and unstable thermally grown oxides are considered the primary causes for its premature and erratic spallation failure. Through finite element simulations, it is shown that the residual stresses generated within the thermally grown oxide (TGO), bond coat (BC), YSZ and their interfaces create slight variations in indentation unloading surface stiffness response prior to spallation failure. In this research, seven air plasma sprayed and one electron beam physical vapor deposition yttria partially stabilized zirconia TBCs were subjected to isothermal and cyclic loadings at 1100°C. The associated coating degradation was evaluated using a non-destructive multiple partial unloading micro-indentation procedure. The results show that the proposed non-destructive micro-indentation evaluation technique can be an effective and specimenindependent TBC failure prediction tool capable of determining the location of initial spallation failure prior to its actual occurrence.

  10. Development of a Response Surface Thermal Model for Orion Mated to the International Space Station

    NASA Technical Reports Server (NTRS)

    Miller, Stephen W.; Meier, Eric J.

    2010-01-01

    A study was performed to determine if a Design of Experiments (DOE)/Response Surface Methodology could be applied to on-orbit thermal analysis and produce a set of Response Surface Equations (RSE) that accurately predict vehicle temperatures. The study used an integrated thermal model of the International Space Station and the Orion Outer mold line model. Five separate factors were identified for study: yaw, pitch, roll, beta angle, and the environmental parameters. Twenty external Orion temperatures were selected as the responses. A DOE case matrix of 110 runs was developed. The data from these cases were analyzed to produce an RSE for each of the temperature responses. The initial agreement between the engineering data and the RSE predictions was encouraging, although many RSEs had large uncertainties on their predictions. Fourteen verification cases were developed to test the predictive powers of the RSEs. The verification showed mixed results with some RSE predicting temperatures matching the engineering data within the uncertainty bands, while others had very large errors. While this study to not irrefutably prove that the DOE/RSM approach can be applied to on-orbit thermal analysis, it does demonstrate that technique has the potential to predict temperatures. Additional work is needed to better identify the cases needed to produce the RSEs

  11. Thermal response of cholesteric liquid crystal elastomers

    NASA Astrophysics Data System (ADS)

    Nagai, Hama; Urayama, Kenji

    2015-08-01

    The effects of temperature variation on photonic properties of cholesteric liquid crystal elastomers (CLCEs) are investigated in mechanically unconstrained and constrained geometries. In the unconstrained geometry, cooling in the cholesteric state induces both a considerable shift of the selective reflection band to shorter wavelengths and a finite degree of macroscopic expansion in the two directions normal to the axis of the helical director configuration. The thermal deformation is driven by a change in orientational order of the underlying nematic structure S and the relation between the macroscopic strain and S is explained on the basis of the anisotropic Gaussian chain network model. The helical pitch varies with the film thickness in an affine manner under temperature variation. The CLCEs under the constrained geometry where thermal deformation is strictly prohibited show no shift of the reflection bands when subjected to temperature variation. This also reveals the strong correlation between the macroscopic dimensions and the pitch of the helical director configuration.

  12. Thermal Response of an Additive Manufactured Aluminum

    SciTech Connect

    Wu, Tong; Wereszczak, Andrew A; Wang, Hsin; Ozpineci, Burak; Ayers, Curtis William

    2016-01-01

    In this paper, the impacts of abnormal thermal property introduced by additive manufacture has been analysis based on simulation and experiment of a 3D printed liquid-cooled heat sink. Comparisons to the heat sink with identical geometry and conventionally manufactured by Aluminum 6061 are presented. Micro-structure analysis is implemented and solutions to eliminate the impacts by different manufacture methods are proposed.

  13. Catecholamines: Mediator of the Hypermetabolic Response to Thermal Injury

    PubMed Central

    Wilmore, Douglas W.; Long, James M.; Mason, Arthur D.; Skreen, Robert W.; Pruitt, Basil A.

    1974-01-01

    Hypermetabolism characterizes the metabolic response to thermal injury and the extent of energy production is positively related to the rate of urinary catecholamine excretion. Alpha and beta adrenergic blockade decreased metabolism from 69.6 ± 5.3 Kcal/m2/hr to 57.4 ± 5.2 (p < 0.01), and infusion of 6 µgm epinephrine/minute in normal man significantly increased metabolic rate. Twenty noninfected burned adults with a mean burn size of 45% total body surface (range 7-84%) and four normal controls were studied in an environmental chamber at two or more temperatures between 19 and 33 C with vapor pressure constant at 11.88 mm Hg. All burn patients were hypermetabolic at all temperatures studied and their core and mean skin temperatures were significantly elevated above control values. Between 25 and 33 C ambient, metabolism was unchanged in controls and burns of less than 40% total body surface (48.9 ± 4.6 Kcal/m2/hr vs. 48.9 ± 4.5), but metabolic rate decreased in larger burns in the warmer environment (72.0 ± 1.9 vs. 65.8 ± 1.7, p < 0.001). At 21 C, metabolism and catecholamines increased, except in four nonsurvivors who became hypothermic with decreased catechol elaboration. Metabolic rate in ten patients with bacteremia was below predicted levels while catecholamines were markedly elevated suggesting interference with tissue uptake of the neurohormonal transmitters. Feeding burn patients or administering glucose and insulin improved nitrogen retention and altered substrate flow but did not significantly reduce urinary catecholamines or metabolic rate. Burned patients are internally warm, not externally cold, and catecholamines appear to mediate their increased heat production. Hypermetabolism may be modified by ambient temperature, infection, and pharmacologic means. Alterations in hypothalamic function due to injury, resulting in increased catecholamine elaboration, would explain the metabolic response to thermal injury. PMID:4412350

  14. Thermal stress prediction in mirror and multilayer coatings.

    PubMed

    Cheng, Xianchao; Zhang, Lin; Morawe, Christian; Sanchez Del Rio, Manuel

    2015-03-01

    Multilayer optics for X-rays typically consist of hundreds of periods of two types of alternating sub-layers which are coated on a silicon substrate. The thickness of the coating is well below 1 µm (tens or hundreds of nanometers). The high aspect ratio (∼10(7)) between the size of the optics and the thickness of the multilayer can lead to a huge number of elements (∼10(16)) for the numerical simulation (by finite-element analysis using ANSYS code). In this work, the finite-element model for thermal-structural analysis of multilayer optics has been implemented using the ANSYS layer-functioned elements. The number of meshed elements is considerably reduced and the number of sub-layers feasible for the present computers is increased significantly. Based on this technique, single-layer coated mirrors and multilayer monochromators cooled by water or liquid nitrogen are studied with typical parameters of heat-load, cooling and geometry. The effects of cooling-down of the optics and heating of the X-ray beam are described. It is shown that the influences from the coating on temperature and deformation are negligible. However, large stresses are induced in the layers due to the different thermal expansion coefficients between the layer and the substrate materials, which is the critical issue for the survival of the optics. This is particularly true for the liquid-nitrogen cooling condition. The material properties of thin multilayer films are applied in the simulation to predict the layer thermal stresses with more precision.

  15. Measurements of short-term thermal responses of coniferous forest canopies using thermal scanner data

    NASA Technical Reports Server (NTRS)

    Luvall, J. C.; Holbo, H. R.

    1989-01-01

    Thermal Infrared Multispectral Scanner (TIMS) data were collected over a coniferous forest in western Oregon. Concurrent radiosonde measurements of atmospheric profiles of air temperature and moisture provided inputs to LOWTRAN6 for atmospheric radiance corrections of the TIMS data. Surface temperature differences measured by the TIMS over time between flight lines were combined with surface radiative energy balance estimates to develop thermal response numbers (TRN). These numbers characterized the thermal response of the diffent surface types. Barren surfaces had the lowest TRN, whereas the forested surfaces had the highest.

  16. Modeling thermal-hydrological response of the unsaturated zone at Yucca Mountain, Nevada, to thermal load at a potential repository.

    PubMed

    Haukwa, C B; Wu, Yu-Shu; Bodvarsson, G S

    2003-01-01

    This paper presents a numerical study on the response of the unsaturated zone (UZ) system of Yucca Mountain to heat generated from decaying radioactive wastes emplaced at the proposed repository. The modeling study is based on the current thermal-hydrological (TH) mountain-scale model, which uses a locally refined 2D north-south cross-section and dual-permeability numerical approach. The model provides a prediction of the mountain-scale TH response under the thermal-load scenario of 1.45 kW/m, while accounting for future climatic changes and the effects of drift ventilation. The TH simulation results show that ventilation of the repository drifts has a large impact on thermal-hydrologic regimes and moisture-flow conditions at the repository. In both cases, with and without ventilation, the TH model predicts dry or reduced liquid saturation near the drifts for over 1000 years, during which liquid flux through the drifts is reduced to either zero or less than the ambient flux. Without ventilation, the model predicts higher temperatures at the repository, but no major moisture redistribution in the UZ except in the areas very near the heated drifts.

  17. Thermal barrier coating life-prediction model development

    NASA Technical Reports Server (NTRS)

    Strangman, T. E.; Neumann, J.

    1985-01-01

    Life predictions are made for two types of strain-tolerant and oxidation-resistant Thermal Barrier Coating (TBC) systems produced by commercial coating suppliers to the gas turbine industry. The plasma-sprayed TBC system, composed of a low-pressure plasma spray (LPPS) applied oxidation-resistant NiCrAlY bond coating and an air-plasma-sprayed yttria (8 percent) partially stabilized zirconia insulative layer, is applied by both Chromalloy and Klock. The second type of TBC is applied by the electron-beam/physical vapor deposition process by Temescal. Thermomechanical and thermochemical testing of the program TBCs is in progress. A number of the former tests has been completed. Fracture mechanics data for the Chromalloy plasma-sprayed TBC system indicate that the cohesive toughness of the zirconia layer is increased by thermal cycling and reduced by high temperature exposure at 1150 C. Eddy current technology feasibility has been established with respect to nondestructively measuring zirconia layer thickness of a TBC system. High pressure turbine blades have been coated with program TBC systems for a piggyback test in a TFE731-5 turbofan factory engine test. Data from this test will be used to validate the TBC life models.

  18. Thermal therapy in urologic systems: a comparison of arrhenius and thermal isoeffective dose models in predicting hyperthermic injury.

    PubMed

    He, Xiaoming; Bhowmick, Sankha; Bischof, John C

    2009-07-01

    The Arrhenius and thermal isoeffective dose (TID) models are the two most commonly used models for predicting hyperthermic injury. The TID model is essentially derived from the Arrhenius model, but due to a variety of assumptions and simplifications now leads to different predictions, particularly at temperatures higher than 50 degrees C. In the present study, the two models are compared and their appropriateness tested for predicting hyperthermic injury in both the traditional hyperthermia (usually, 43-50 degrees C) and thermal surgery (or thermal therapy/thermal ablation, usually, >50 degrees C) regime. The kinetic parameters of thermal injury in both models were obtained from the literature (or literature data), tabulated, and analyzed for various prostate and kidney systems. It was found that the kinetic parameters vary widely, and were particularly dependent on the cell or tissue type, injury assay used, and the time when the injury assessment was performed. In order to compare the capability of the two models for thermal injury prediction, thermal thresholds for complete killing (i.e., 99% cell or tissue injury) were predicted using the models in two important urologic systems, viz., the benign prostatic hyperplasia tissue and the normal porcine kidney tissue. The predictions of the two models matched well at temperatures below 50 degrees C. At higher temperatures, however, the thermal thresholds predicted using the TID model with a constant R value of 0.5, the value commonly used in the traditional hyperthermia literature, are much lower than those predicted using the Arrhenius model. This suggests that traditional use of the TID model (i.e., R=0.5) is inappropriate for predicting hyperthermic injury in the thermal surgery regime (>50 degrees C). Finally, the time-temperature relationships for complete killing (i.e., 99% injury) were calculated and analyzed using the Arrhenius model for the various prostate and kidney systems.

  19. Stochastic interpretation of thermal response test with TRT-SInterp

    NASA Astrophysics Data System (ADS)

    Pasquier, Philippe

    2015-02-01

    A program designed to analyze thermal response tests by deterministic or stochastic inversion is presented. In its current state, the program treats variable heating power signals and emulates a borehole heat exchanger by a finite line-source model or a thermal resistance and capacity model. The possibly unknown parameters identified may comprise the thermal conductivity and volumetric heat capacity of the ground or grout, as well as the pipes spacing and initial ground temperature. If the thermal resistance and capacity model is used as the interpretation model, it is possible to integrate to the inversion the temperature measurements made at various depths in the fluid and grout and to take into account the thermal capacity of the underground components and the fluid flow rate. The program is tested under real field conditions by using the temperature measurements recorded by 18 probes installed at various depths in a borehole heat exchanger during a thermal response test. The test results indicate a relative insensitivity of the fluid temperature to the ground volumetric heat capacity and suggest that it is currently illusive to try identifying its real value from a conventional thermal response test.

  20. Thermal response of superparamagnetic particles suspended in liquid and solid media

    NASA Astrophysics Data System (ADS)

    Zeng, Pengyun; Kline, Timothy L.; Wang, Jian-ping; Wiedmann, Timothy Scott

    2009-03-01

    The purpose of this study was to explore the properties of coated superparamagnetic nanoparticles (SPNs) specifically for their use in thermal-responsive drug delivery systems. Coated, magnetite SPNs were prepared and dispersed in cyclohexane or cetyl alcohol, a solid lipid at the physiological temperatures of 37 °C. The induced temperature change as a function of SPN concentration and external magnetic field and frequency was consistent with theoretical predictions. SPNs dispersed in a solid lipid matrix underwent heating and the associated melting occurred at a temperature suitable for a thermal-responsive drug delivery system.

  1. Graphite Ablation and Thermal Response Simulation Under Arc-Jet Flow Conditions

    NASA Technical Reports Server (NTRS)

    Chen, Y.-K.; Milos, F. S.; Reda, D. C.; Stewart, D. A.; Venkatapathy, Ethiraj (Technical Monitor)

    2002-01-01

    The Two-dimensional Implicit Thermal Response and Ablation program, TITAN, was developed and integrated with a Navier-Stokes solver, GIANTS, for multidimensional ablation and shape change simulation of thermal protection systems in hypersonic flow environments. The governing equations in both codes are demoralized using the same finite-volume approximation with a general body-fitted coordinate system. Time-dependent solutions are achieved by an implicit time marching technique using Gauess-Siedel line relaxation with alternating sweeps. As the first part of a code validation study, this paper compares TITAN-GIANTS predictions with thermal response and recession data obtained from arc-jet tests recently conducted in the Interaction Heating Facility (IHF) at NASA Ames Research Center. The test models are graphite sphere-cones. Graphite was selected as a test material to minimize the uncertainties from material properties. Recession and thermal response data were obtained from two separate arc-jet test series. The first series was at a heat flux where graphite ablation is mainly due to sublimation, and the second series was at a relatively low heat flux where recession is the result of diffusion-controlled oxidation. Ablation and thermal response solutions for both sets of conditions, as calculated by TITAN-GIANTS, are presented and discussed in detail. Predicted shape change and temperature histories generally agree well with the data obtained from the arc-jet tests.

  2. Thermal ecology of the fiddler crab Uca panacea: Thermal constraints and organismal responses.

    PubMed

    Darnell, M Zachary; Nicholson, Haley S; Munguia, Pablo

    2015-08-01

    Temperature is one of the primary environmental variables limiting organismal performance, fitness, and species distributions. Yet, understanding temperature effects requires thorough exploration of thermal constraints and organismal responses that can translate to fitness and non-lethal long-term consequences under both constant and changing thermal regimes. We examined the thermal ecology of the fiddler crab Uca panacea, including critical thermal limits, thermal sensitivity of locomotion, operative environmental temperatures, preferred body temperatures, and acclimation ability. Operative environmental temperatures frequently reached the critical thermal maximum (41.8±0.8°C, mean ± s.e.m.), especially in unvegetated microhabitats, indicating the need for behavioral thermoregulation to maintain diurnal activity patterns. Preferred body temperatures (21.1-28.6°C) were substantially below the thermal optimum (30-40°C), although further research is needed to determine the driver of this mismatch. Critical thermal limits shifted 2-4°C in response to exposure to low (20°C) or high (35°C) temperatures, with full acclimation occurring in approximately 9d. This capacity for rapid acclimation, combined with the capacity for behavioral thermoregulation, is a strong candidate mechanism that explains the broad habitat use and could help explain the successful pantropical distribution of fiddler crabs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Prediction of psilocybin response in healthy volunteers.

    PubMed

    Studerus, Erich; Gamma, Alex; Kometer, Michael; Vollenweider, Franz X

    2012-01-01

    Responses to hallucinogenic drugs, such as psilocybin, are believed to be critically dependent on the user's personality, current mood state, drug pre-experiences, expectancies, and social and environmental variables. However, little is known about the order of importance of these variables and their effect sizes in comparison to drug dose. Hence, this study investigated the effects of 24 predictor variables, including age, sex, education, personality traits, drug pre-experience, mental state before drug intake, experimental setting, and drug dose on the acute response to psilocybin. The analysis was based on the pooled data of 23 controlled experimental studies involving 409 psilocybin administrations to 261 healthy volunteers. Multiple linear mixed effects models were fitted for each of 15 response variables. Although drug dose was clearly the most important predictor for all measured response variables, several non-pharmacological variables significantly contributed to the effects of psilocybin. Specifically, having a high score in the personality trait of Absorption, being in an emotionally excitable and active state immediately before drug intake, and having experienced few psychological problems in past weeks were most strongly associated with pleasant and mystical-type experiences, whereas high Emotional Excitability, low age, and an experimental setting involving positron emission tomography most strongly predicted unpleasant and/or anxious reactions to psilocybin. The results confirm that non-pharmacological variables play an important role in the effects of psilocybin.

  4. Prediction of Psilocybin Response in Healthy Volunteers

    PubMed Central

    Studerus, Erich; Gamma, Alex; Kometer, Michael; Vollenweider, Franz X.

    2012-01-01

    Responses to hallucinogenic drugs, such as psilocybin, are believed to be critically dependent on the user's personality, current mood state, drug pre-experiences, expectancies, and social and environmental variables. However, little is known about the order of importance of these variables and their effect sizes in comparison to drug dose. Hence, this study investigated the effects of 24 predictor variables, including age, sex, education, personality traits, drug pre-experience, mental state before drug intake, experimental setting, and drug dose on the acute response to psilocybin. The analysis was based on the pooled data of 23 controlled experimental studies involving 409 psilocybin administrations to 261 healthy volunteers. Multiple linear mixed effects models were fitted for each of 15 response variables. Although drug dose was clearly the most important predictor for all measured response variables, several non-pharmacological variables significantly contributed to the effects of psilocybin. Specifically, having a high score in the personality trait of Absorption, being in an emotionally excitable and active state immediately before drug intake, and having experienced few psychological problems in past weeks were most strongly associated with pleasant and mystical-type experiences, whereas high Emotional Excitability, low age, and an experimental setting involving positron emission tomography most strongly predicted unpleasant and/or anxious reactions to psilocybin. The results confirm that non-pharmacological variables play an important role in the effects of psilocybin. PMID:22363492

  5. Predicting allopurinol response in patients with gout

    PubMed Central

    Duffull, Stephen B.; Merriman, Tony R.; Dalbeth, Nicola; Barclay, Murray L.; Stamp, Lisa K.

    2015-01-01

    Aims The primary aim of this research was to predict the allopurinol maintenance doses required to achieve the target plasma urate of ≤0.36 mmol l−1. Methods A population analysis was conducted in nonmem using oxypurinol and urate plasma concentrations from 133 gout patients. Maintenance dose predictions to achieve the recommended plasma urate target were generated. Results The urate response was best described by a direct effects model. Renal function, diuretic use and body size were found to be significant covariates. Dose requirements increased approximately 2‐fold over a 3‐fold range of total body weight and were 1.25–2 fold higher in those taking diuretics. Renal function had only a modest impact on dose requirements. Conclusions Contrary to current guidelines, the model predicted that allopurinol dose requirements were determined primarily by differences in body size and diuretic use. A revised guide to the likely allopurinol doses to achieve the target plasma urate concentration is proposed. PMID:26451524

  6. Predicting Flutter and Forced Response in Turbomachinery

    NASA Technical Reports Server (NTRS)

    VanZante, Dale E.; Adamczyk, John J.; Srivastava, Rakesh; Bakhle, Milind A.; Shabbir, Aamir; Chen, Jen-Ping; Janus, J. Mark; To, Wai-Ming; Barter, John

    2005-01-01

    TURBO-AE is a computer code that enables detailed, high-fidelity modeling of aeroelastic and unsteady aerodynamic characteristics for prediction of flutter, forced response, and blade-row interaction effects in turbomachinery. Flow regimes that can be modeled include subsonic, transonic, and supersonic, with attached and/or separated flow fields. The three-dimensional Reynolds-averaged Navier-Stokes equations are solved numerically to obtain extremely accurate descriptions of unsteady flow fields in multistage turbomachinery configurations. Blade vibration is simulated by use of a dynamic-grid-deformation technique to calculate the energy exchange for determining the aerodynamic damping of vibrations of blades. The aerodynamic damping can be used to assess the stability of a blade row. TURBO-AE also calculates the unsteady blade loading attributable to such external sources of excitation as incoming gusts and blade-row interactions. These blade loadings, along with aerodynamic damping, are used to calculate the forced responses of blades to predict their fatigue lives. Phase-lagged boundary conditions based on the direct-store method are used to calculate nonzero interblade phase-angle oscillations; this practice eliminates the need to model multiple blade passages, and, hence, enables large savings in computational resources.

  7. Thermal shifts and intermittent linear response of aging systems.

    PubMed

    Sibani, Paolo; Christiansen, Simon

    2008-04-01

    At time t after an initial quench, an aging system responds to a perturbation turned on at time twresponse on the ratio t/tw . Further insight is obtained imposing small temperature steps, so-called T shifts. The average response as a function of t/tw,eff , where tw,eff is the effective age, is similar to the response of a system aged isothermally at the final temperature. Using an Ising model with plaquette interactions, the applicability of analytic formulas for the average isothermal magnetization is confirmed. The T -shifted aging behavior of the model is approximately described using effective ages. Large positive shifts nearly reset the effective age. Negative T shifts offer a more detailed probe of the dynamics. Assuming the marginal stability of the "current" attractor against thermal noise fluctuations, the scaling form tw,eff=tw x and the dependence of the exponent x on the aging temperatures before and after the shift are theoretically available. The predicted form of x has no adjustable parameters. Both the algebraic scaling of the effective age and the form of the exponent reasonably agree with the data. The present simulations thus confirm the crucial role of marginal stability in glassy relaxation.

  8. Coupled mechanical-electrical-thermal modeling for short-circuit prediction in a lithium-ion cell under mechanical abuse

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Santhanagopalan, Shriram; Sprague, Michael A.; Pesaran, Ahmad A.

    2015-09-01

    In order to better understand the behavior of lithium-ion batteries under mechanical abuse, a coupled modeling methodology encompassing the mechanical, electrical and thermal response is presented for predicting short-circuit under external crush. The combined mechanical-electrical-thermal response is simulated in a commercial finite element software LS-DYNA® using a representative-sandwich finite-element model, where electrical-thermal modeling is conducted after an instantaneous mechanical crush. The model includes an explicit representation of each individual component such as the active material, current collector, separator, etc., and predicts their mechanical deformation under quasi-static indentation. Model predictions show good agreement with experiments: the fracture of the battery structure under an indentation test is accurately predicted. The electrical-thermal simulation predicts the current density and temperature distribution in a reasonable manner. Whereas previously reported models consider the mechanical response exclusively, we use the electrical contact between active materials following the failure of the separator as a criterion for short-circuit. These results are used to build a lumped representative sandwich model that is computationally efficient and captures behavior at the cell level without resolving the individual layers.

  9. Seasonal and latitudinal acclimatization of cardiac transcriptome responses to thermal stress in porcelain crabs, Petrolisthes cinctipes.

    PubMed

    Stillman, Jonathon H; Tagmount, Abderrahmane

    2009-10-01

    Central predictions of climate warming models include increased climate variability and increased severity of heat waves. Physiological acclimatization in populations across large-scale ecological gradients in habitat temperature fluctuation is an important factor to consider in detecting responses to climate change related increases in thermal fluctuation. We measured in vivo cardiac thermal maxima and used microarrays to profile transcriptome heat and cold stress responses in cardiac tissue of intertidal zone porcelain crabs across biogeographic and seasonal gradients in habitat temperature fluctuation. We observed acclimatization dependent induction of heat shock proteins, as well as unknown genes with heat shock protein-like expression profiles. Thermal acclimatization had the largest effect on heat stress responses of extensin-like, beta tubulin, and unknown genes. For these genes, crabs acclimatized to thermally variable sites had higher constitutive expression than specimens from low variability sites, but heat stress dramatically induced expression in specimens from low variability sites and repressed expression in specimens from highly variable sites. Our application of ecological transcriptomics has yielded new biomarkers that may represent sensitive indicators of acclimatization to habitat temperature fluctuation. Our study also has identified novel genes whose further description may yield novel understanding of cellular responses to thermal acclimatization or thermal stress.

  10. Thermal Response of Cooled Silicon Nitride Plate Due to Thermal Conductivity Effects Analyzed

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.; Abdul-Aziz, Ali; Bhatt, Ramakrishna

    2003-01-01

    Lightweight, strong, tough high-temperature materials are required to complement efficiency improvements for next-generation gas turbine engines that can operate with minimum cooling. Because of their low density, high-temperature strength, and high thermal conductivity, ceramics are being investigated as materials to replace the nickelbase superalloys that are currently used for engine hot-section components. Ceramic structures can withstand higher operating temperatures and a harsh combustion environment. In addition, their low densities relative to metals help reduce component mass (ref. 1). To complement the effectiveness of the ceramics and their applicability for turbine engine applications, a parametric study using the finite element method is being carried out. The NASA Glenn Research Center remains very active in conducting and supporting a variety of research activities related to ceramic matrix composites through both experimental and analytical efforts (ref. 1). The objectives of this work are to develop manufacturing technology, develop a thermal and environmental barrier coating (TBC/EBC), develop an analytical modeling capability to predict thermomechanical stresses, and perform a minimal burner rig test on silicon nitride (Si3N4) and SiC/SiC turbine nozzle vanes under simulated engine conditions. Moreover, we intend to generate a detailed database of the material s property characteristics and their effects on structural response. We expect to offer a wide range of data since the modeling will account for other variables, such as cooling channel geometry and spacing. Comprehensive analyses have begun on a plate specimen with Si3N4 cooling holes.

  11. Temporal Treatment of a Thermal Response for Defect Depth Estimation

    NASA Technical Reports Server (NTRS)

    Plotnikov, Y. A.; Winfree, W. P.

    2004-01-01

    Transient thermography, which employs pulse surface heating of an inspected component followed by acquisition of the thermal decay stage, is gaining wider acceptance as a result of its remoteness and rapidness. Flaws in the component s material may induce a thermal contrast in surface thermograms. An important issue in transient thermography is estimating the depth of a subsurface flaw from the thermal response. This improves the quantitative ability of the thermal evaluation: from one scan it is possible to locate regions of anomalies in thickness (caused by corrosion) and estimate the implications of the flaw on the integrity of the structure. Our research focuses on thick composite aircraft components. A long square heating pulse and several minutes observation period are required to receive an adequate thermal response from such a component. Application of various time-related informative parameters of the thermal response for depth estimation is discussed. A three-dimensional finite difference model of heat propagation in solids in Cartesian coordinates is used to simulate the thermographic process. Typical physical properties of polymer graphite composites are assumed for the model.

  12. Performance characterization of fiber Bragg grating thermal response in space vacuum thermal environment.

    PubMed

    Jiang, Junfeng; Song, Luyao; Liu, Tiegen; Zhang, Jingchuan; Liu, Kun; Wang, Shuang; Yin, Jinde; Zhao, Peng; Xie, Jihui; Wu, Fan; Zhang, Xuezhi

    2013-12-01

    We investigated the fiber Bragg grating (FBG) thermal response in space vacuum thermal environment. The FBGs were packaged with 6061-T6 aluminum. The liquid nitrogen immersion experiment results show that its wavelength shift standard deviation is 0.76 pm for 217 h. The combination effect of vacuum and cryogenic temperature was studied by thermal cycling process in space environment simulator. The FBG sensors show accuracy better than 2% full scale, and the hysteresis errors are below 1%. It proves that these metal packaged FBG sensors can survive and meet the requirement of space measurement.

  13. Differential responses to thermal variation between fitness metrics.

    PubMed

    Clavijo-Baquet, Sabrina; Boher, Francisca; Ziegler, Lucia; Martel, Sebastián I; Estay, Sergio A; Bozinovic, Francisco

    2014-06-23

    Temperature is a major factor affecting population abundance and individual performance. Net reproductive rate (R0) and intrinsic rate of increase (r) differ in their response to different temperature regimes, and much of the difference is mediated by generation time (Tg). Here, we evaluate the effects of thermal mean and variability on R0, r and Tg, at four population densities in Drosophila melanogaster. The results show that R0, r and Tg present differential responses to thermal variation. Although temperature effects on R0 and Tg are non-linear, r response was negligible. R0 and Tg comprise a generational time scale, while r is at a chronological time scale. Thus, we argue that individuals growing under different thermal environments perform similarly on a chronological scale, but differently on a generational scale.

  14. Differential responses to thermal variation between fitness metrics

    PubMed Central

    Clavijo-Baquet, Sabrina; Boher, Francisca; Ziegler, Lucia; Martel, Sebastián I.; Estay, Sergio A.; Bozinovic, Francisco

    2014-01-01

    Temperature is a major factor affecting population abundance and individual performance. Net reproductive rate (R0) and intrinsic rate of increase (r) differ in their response to different temperature regimes, and much of the difference is mediated by generation time (Tg). Here, we evaluate the effects of thermal mean and variability on R0, r and Tg, at four population densities in Drosophila melanogaster. The results show that R0, r and Tg present differential responses to thermal variation. Although temperature effects on R0 and Tg are non-linear, r response was negligible. R0 and Tg comprise a generational time scale, while r is at a chronological time scale. Thus, we argue that individuals growing under different thermal environments perform similarly on a chronological scale, but differently on a generational scale. PMID:24954717

  15. Effect of clothing material on thermal responses of the human body

    NASA Astrophysics Data System (ADS)

    Fengzhi, Li; Yi, Li

    2005-09-01

    The influence of clothing material on thermal responses of the human body are investigated by using an integrated model of a clothed thermoregulatory human body. A modified 25-nodes model considering the sweat accumulation on the skin surface is applied to simulate the human physiological regulatory responses. The heat and moisture coupled transfer mechanisms, including water vapour diffusion, the moisture evaporation/condensation, the moisture sorbtion/desorption by fibres, liquid sweat transfer under capillary pressure, and latent heat absorption/release due to phase change, are considered in the clothing model. On comparing prediction results with the experimental data in the literature, the proposed model seems able to predict dynamic heat and moisture transfer between the human body and the clothing system. The human body's thermal responses and clothing temperature and moisture variations are compared for different clothing materials during transient periods. We concluded that the hygroscopicity of clothing materials influences the human thermoregulation process significantly during environmental transients.

  16. Thermal effect on thermoluminescence response of hydroxyapatite.

    PubMed

    Zarate-Medina, J; Sandoval-Cedeño, K J; Barrera-Villatoro, A; Lemus-Ruiz, J; Rivera Montalvo, T

    2015-06-01

    This paper presents the experimental results of the thermoluminescence (TL) induced by gamma radiation in synthetic hydroxyapatite (HAp) obtained by the precipitation method, using Ca(NO3)2·4H2O and (NH4)2HPO4 and calcined at different temperatures. The structural and morphological characterization was carried out by X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. TL response as a function of gamma radiation dose was in a wide range, where intensity was enhanced in the sample annealed at 900°C, which tricalcium diphosphate (TCP) phase appear. Fading of the TL was also studied.

  17. Thermally responsive aqueous silicate mixtures and use thereof

    SciTech Connect

    Smith, W.H.; Vinson, E.F.

    1987-02-03

    A method is described of plugging or sealing a zone in a subterranean formation comprising: (a) contacting the zone with an aqueous silicate composition consisting essentially of (i) an aqueous solution containing an alkali metal silicate; and, (ii) a thermally responsive gelation activator selected from the group consisting of lactose, dextrose, fructose, galactose, mannose, mantose, xylose and mixtures thereof; and (b) activating the gelation activator in response to a thermal change in the composition within the formation whereby the silicate composition is caused to form a gel in the zone.

  18. Switching friction with thermal- responsive gels.

    PubMed

    Wu, Yang; Cai, Meirong; Pei, Xiaowei; Liang, Yongmin; Zhou, Feng

    2013-11-01

    The thermosensitive graphene oxide (GO)/poly(N-isopropyl acrylamide) (pNIPAM) composite hydrogels are prepared, and their tribological properties in response to external stimuli are evaluated. The frictional coefficient of the hydrogels is closely related to the gel composition and ambient temperature. When the gel is in swelling state below the low critical solution temperature (LCST), it shows ultra-low friction and exhibits high friction at a shrunk state above the LCST. The huge difference of frictional coefficient under two states can be reversibly switched many times by altering the temperature. The incorporation of a nonthermal sensitive monomer into pNIPAM could change the LCST and thus the transformation point of frictional coefficient can be altered. These reversible and tunable frictional hydrogels have potential application in the design of intelligent control equipment. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Predictability of Biogeochemical Responses in Engineered Watersheds

    NASA Astrophysics Data System (ADS)

    Yaeger, M. A.; Voepel, H. E.; Basu, N. B.; Rao, P. C.; Donner, S. D.; Packman, A. I.

    2009-12-01

    Examining the impacts of large-scale human modifications of watersheds (e.g., land-use intensification for food production; hydrologic modification through extensive tile-drainage, etc.) on the hydrologic and biogeochemical responses, and ecological impacts at various scales has been the focus of monitoring and modeling studies over the past two decades. Complex interactions between hydrology and biogeochemistry and the need to predict responses across scales has led to the development of detailed process-based models that are computationally intensive and calibration-dependent. Our overall hypothesis is that human modifications and intensive management of these watersheds have led to more predictable responses, which are typical of engineered, less-complex systems rather than natural, complex systems. We examined monitoring data for nitrogen, phosphorous, silica and chloride in 25 large watersheds (10,000 km2 to 500,000 km2) in the Mississippi River Basin. This sparse dataset was complemented with nitrogen cycling and hydrology output from a whole-basin terrestrial and aquatic modeling system (IBIS-THMB). These sub-basins have diverse land uses, although agriculture still dominates (from ~30% to ~80%). Despite diversity in soils, geology, rainfall patterns, and land use, a linear relationship was observed between the annual cumulative discharge (Q; m3/yr) and the measured nitrate load (L; kg/yr). The slopes of these linear L-Q plots represent the flow-weighted annual average concentrations (Cf), and a linear L-Q relationship indicates an apparent “chemostatic” response of these large watersheds. Analysis of Mississippi River monitoring data for nitrate and IBIS-THMB simulations revealed that Cf is a strong function of land-use (eg, percent corn) that defines the chemical input function. The scatter around the L-Q plots was small for “endogenous” (generated from internal sources) solutes (eg, silica), intermediate for “hybrid” (contributions from both

  20. Modelling occupants' personal characteristics for thermal comfort prediction

    NASA Astrophysics Data System (ADS)

    Haldi, Frédéric; Robinson, Darren

    2011-09-01

    Based on results from a field survey campaign conducted in Switzerand, we show that occupants' variations in clothing choices, which are relatively unconstrained, are best described by the daily mean outdoor temperature and that major clothing adjustments occur rarely during the day. We then develop an ordinal logistic model of the probability distribution of discretised clothing levels, which results in a concise and informative expression of occupants' clothing choices. Results from both cross-validation and independent verification suggest that this model formulation may be used with confidence. Furthermore, the form of the model is readily generalisable, given the requisite calibration data, to environments where dress codes are more specific. We also observe that, for these building occupants, the prevailing metabolic activity levels are mostly constant for the whole range of surveyed environmental conditions, as their activities are relatively constrained by the tasks in hand. Occupants may compensate for this constraint, however, through the consumption of cold and hot drinks, with corresponding impacts on metabolic heat production. Indeed, cold drink consumption was found to be highly correlated with indoor thermal conditions, whilst hot drink consumption is best described by a seasonal variable. These variables can be used for predictive purposes using binary logistic models.

  1. Modelling occupants' personal characteristics for thermal comfort prediction.

    PubMed

    Haldi, Frédéric; Robinson, Darren

    2011-09-01

    Based on results from a field survey campaign conducted in Switzerand, we show that occupants' variations in clothing choices, which are relatively unconstrained, are best described by the daily mean outdoor temperature and that major clothing adjustments occur rarely during the day. We then develop an ordinal logistic model of the probability distribution of discretised clothing levels, which results in a concise and informative expression of occupants' clothing choices. Results from both cross-validation and independent verification suggest that this model formulation may be used with confidence. Furthermore, the form of the model is readily generalisable, given the requisite calibration data, to environments where dress codes are more specific. We also observe that, for these building occupants, the prevailing metabolic activity levels are mostly constant for the whole range of surveyed environmental conditions, as their activities are relatively constrained by the tasks in hand. Occupants may compensate for this constraint, however, through the consumption of cold and hot drinks, with corresponding impacts on metabolic heat production. Indeed, cold drink consumption was found to be highly correlated with indoor thermal conditions, whilst hot drink consumption is best described by a seasonal variable. These variables can be used for predictive purposes using binary logistic models.

  2. Behavioral response of Caenorhabditis elegans to localized thermal stimuli

    PubMed Central

    2013-01-01

    Background Nociception evokes a rapid withdrawal behavior designed to protect the animal from potential danger. C. elegans performs a reflexive reversal or forward locomotory response when presented with noxious stimuli at the head or tail, respectively. Here, we have developed an assay with precise spatial and temporal control of an infrared laser stimulus that targets one-fifth of the worm’s body and quantifies multiple aspects of the worm’s escape response. Results When stimulated at the head, we found that the escape response can be elicited by changes in temperature as small as a fraction of a degree Celsius, and that aspects of the escape behavior such as the response latency and the escape direction change advantageously as the amplitude of the noxious stimulus increases. We have mapped the behavioral receptive field of thermal nociception along the entire body of the worm, and show a midbody avoidance behavior distinct from the head and tail responses. At the midbody, the worm is sensitive to a change in the stimulus location as small as 80 μm. This midbody response is probabilistic, producing either a backward, forward or pause state after the stimulus. The distribution of these states shifts from reverse-biased to forward-biased as the location of the stimulus moves from the middle towards the anterior or posterior of the worm, respectively. We identified PVD as the thermal nociceptor for the midbody response using calcium imaging, genetic ablation and laser ablation. Analyses of mutants suggest the possibility that TRPV channels and glutamate are involved in facilitating the midbody noxious response. Conclusion Through high resolution quantitative behavioral analysis, we have comprehensively characterized the C. elegans escape response to noxious thermal stimuli applied along its body, and found a novel midbody response. We further identified the nociceptor PVD as required to sense noxious heat at the midbody and can spatially differentiate

  3. Experimental and theoretical analysis of a method to predict thermal runaway in Li-ion cells

    NASA Astrophysics Data System (ADS)

    Shah, Krishna; Chalise, Divya; Jain, Ankur

    2016-10-01

    Thermal runaway is a well-known safety concern in Li-ion cells. Methods to predict and prevent thermal runaway are critically needed for enhanced safety and performance. While much work has been done on understanding the kinetics of various heat generation processes during thermal runaway, relatively lesser work exists on understanding how heat removal from the cell influences thermal runaway. Through a unified analysis of heat generation and heat removal, this paper derives and experimentally validates a non-dimensional parameter whose value governs whether or not thermal runaway will occur in a Li-ion cell. This parameter is named the Thermal Runaway Number (TRN), and comprises contributions from thermal transport within and outside the cell, as well as the temperature dependence of heat generation rate. Experimental data using a 26650 thermal test cell are in good agreement with the model, and demonstrate the dependence of thermal runaway on various thermal transport and heat generation parameters. This parameter is used to predict the thermal design space in which the cell will or will not experience thermal runaway. By combining all thermal processes contributing to thermal runaway in a single parameter, this work contributes towards a unified understanding of thermal runaway, and provides the fundamental basis for design tools for safe, high-performance Li-ion batteries.

  4. THERMAL PHASE VARIATIONS OF WASP-12b: DEFYING PREDICTIONS

    SciTech Connect

    Cowan, Nicolas B.; Shekhtman, Louis M.; Machalek, Pavel; Croll, Bryce; Burrows, Adam; Deming, Drake; Greene, Tom; Hora, Joseph L.

    2012-03-01

    We report Warm Spitzer full-orbit phase observations of WASP-12b at 3.6 and 4.5 {mu}m. This extremely inflated hot Jupiter is thought to be overflowing its Roche lobe, undergoing mass loss and accretion onto its host star, and has been claimed to have a C/O ratio in excess of unity. We are able to measure the transit depths, eclipse depths, thermal and ellipsoidal phase variations at both wavelengths. The large-amplitude phase variations, combined with the planet's previously measured dayside spectral energy distribution, are indicative of non-zero Bond albedo and very poor day-night heat redistribution. The transit depths in the mid-infrared-(R{sub p} /R{sub *}){sup 2} = 0.0123(3) and 0.0111(3) at 3.6 and 4.5 {mu}m, respectively-indicate that the atmospheric opacity is greater at 3.6 than at 4.5 {mu}m, in disagreement with model predictions, irrespective of C/O ratio. The secondary eclipse depths are consistent with previous studies: F{sub day}/F{sub *} = 0.0038(4) and 0.0039(3) at 3.6 and 4.5 {mu}m, respectively. We do not detect ellipsoidal variations at 3.6 {mu}m, but our parameter uncertainties-estimated via prayer-bead Monte Carlo-keep this non-detection consistent with model predictions. At 4.5 {mu}m, on the other hand, we detect ellipsoidal variations that are much stronger than predicted. If interpreted as a geometric effect due to the planet's elongated shape, these variations imply a 3:2 ratio for the planet's longest:shortest axes and a relatively bright day-night terminator. If we instead presume that the 4.5 {mu}m ellipsoidal variations are due to uncorrected systematic noise and we fix the amplitude of the variations to zero, the best-fit 4.5 {mu}m transit depth becomes commensurate with the 3.6 {mu}m depth, within the uncertainties. The relative transit depths are then consistent with a solar composition and short scale height at the terminator. Assuming zero ellipsoidal variations also yields a much deeper 4.5 {mu}m eclipse depth, consistent with a

  5. Thermal Phase Variations of WASP-12b: Defying Predictions

    NASA Technical Reports Server (NTRS)

    Cowan, Nicolas B.; Machalek, Pavel; Croll, Bryce; Shekhtman, Louis M.; Burrows, Adam; Deming, Drake; Greene, Tom; Hora, Joseph L.

    2012-01-01

    We report Warm Spitzer full-orbit phase observations of WASP-12b at 3.6 and 4.5 micrometers. This extremely inflated hot Jupiter is thought to be overflowing its Roche lobe, undergoing mass loss and accretion onto its host star, and has been claimed to have a C/O ratio in excess of unity. We are able to measure the transit depths, eclipse depths, thermal and ellipsoidal phase variations at both wavelengths. The large-amplitude phase variations, combined with the planet's previously measured dayside spectral energy distribution, are indicative of non-zero Bond albedo and very poor day-night heat redistribution. The transit depths in the mid-infrared-(R(sub p)/R(sub *))(sup 2) = 0.0123(3) and 0.0111(3) at 3.6 and 4.5 micrometers, respectively-indicate that the atmospheric opacity is greater at 3.6 than at 4.5 micrometers, in disagreement with model predictions, irrespective of C/O ratio. The secondary eclipse depths are consistent with previous studies: F(sub day)/F(sub *) = 0.0038(4) and 0.0039(3) at 3.6 and 4.5 micrometers, respectively. We do not detect ellipsoidal variations at 3.6 micrometers, but our parameter uncertainties-estimated via prayer-bead Monte Carlo-keep this non-detection consistent with model predictions. At 4.5 micrometers, on the other hand, we detect ellipsoidal variations that are much stronger than predicted. If interpreted as a geometric effect due to the planet's elongated shape, these variations imply a 3:2 ratio for the planet's longest:shortest axes and a relatively bright day-night terminator. If we instead presume that the 4.5 micrometer ellipsoidal variations are due to uncorrected systematic noise and we fix the amplitude of the variations to zero, the best-fit 4.5 micrometer transit depth becomes commensurate with the 3.6 micrometer depth, within the uncertainties. The relative transit depths are then consistent with a solar composition and short scale height at the terminator. Assuming zero ellipsoidal variations also yields a much

  6. Thermal Phase Variations of WASP-12b: Defying Predictions

    NASA Astrophysics Data System (ADS)

    Cowan, Nicolas B.; Machalek, Pavel; Croll, Bryce; Shekhtman, Louis M.; Burrows, Adam; Deming, Drake; Greene, Tom; Hora, Joseph L.

    2012-03-01

    We report Warm Spitzer full-orbit phase observations of WASP-12b at 3.6 and 4.5 μm. This extremely inflated hot Jupiter is thought to be overflowing its Roche lobe, undergoing mass loss and accretion onto its host star, and has been claimed to have a C/O ratio in excess of unity. We are able to measure the transit depths, eclipse depths, thermal and ellipsoidal phase variations at both wavelengths. The large-amplitude phase variations, combined with the planet's previously measured dayside spectral energy distribution, are indicative of non-zero Bond albedo and very poor day-night heat redistribution. The transit depths in the mid-infrared—(Rp /R *)2 = 0.0123(3) and 0.0111(3) at 3.6 and 4.5 μm, respectively—indicate that the atmospheric opacity is greater at 3.6 than at 4.5 μm, in disagreement with model predictions, irrespective of C/O ratio. The secondary eclipse depths are consistent with previous studies: F day/F * = 0.0038(4) and 0.0039(3) at 3.6 and 4.5 μm, respectively. We do not detect ellipsoidal variations at 3.6 μm, but our parameter uncertainties—estimated via prayer-bead Monte Carlo—keep this non-detection consistent with model predictions. At 4.5 μm, on the other hand, we detect ellipsoidal variations that are much stronger than predicted. If interpreted as a geometric effect due to the planet's elongated shape, these variations imply a 3:2 ratio for the planet's longest:shortest axes and a relatively bright day-night terminator. If we instead presume that the 4.5 μm ellipsoidal variations are due to uncorrected systematic noise and we fix the amplitude of the variations to zero, the best-fit 4.5 μm transit depth becomes commensurate with the 3.6 μm depth, within the uncertainties. The relative transit depths are then consistent with a solar composition and short scale height at the terminator. Assuming zero ellipsoidal variations also yields a much deeper 4.5 μm eclipse depth, consistent with a solar composition and modest

  7. Elastic response of thermal spray deposits under indentation tests

    SciTech Connect

    Leigh, S.H.; Lin, C.K.; Berndt, C.C.

    1997-08-01

    The elastic response behavior of thermal spray deposits at Knoop indentations has been investigated using indentation techniques. The ration of hardness to elastic modulus, which is an important prerequisite for the evaluation of indentation fracture toughness, is determined by measuring the elastic recovery of the in-surface dimensions of Knoop indentations. The elastic moduli of thermal spray deposits are in the range of 12%--78% of the comparable bulk materials and reveal the anisotropic behavior of thermal spray deposits. A variety of thermal spray deposits has been examined, including Al{sub 2}O{sub 3}, yttria-stabilized ZrO{sub 2} (YSZ), and NiAl. Statistical tools have been used to evaluate the error estimates of the data.

  8. Predicting the thermal effects of dam removal on the Klamath River.

    PubMed

    Bartholow, John M; Campbell, Sharon G; Flug, Marshall

    2004-12-01

    The Klamath River once supported large runs of anadromous salmonids. Water temperature associated with multiple mainstem hydropower facilities might be one of many factors responsible for depressing Klamath salmon stocks. We combined a water quantity model and a water quality model to predict how removing the series of dams below Upper Klamath Lake might affect water temperatures, and ultimately fish survival, in the spawning and rearing portions of the mainstem Klamath. We calibrated the water quantity and quality models and applied them for the hydrometeorological conditions during a 40-year postdam period. Then, we hypothetically removed the dams and their impoundments from the models and reestimated the river's water temperatures. The principal thermal effect of dam and reservoir removal would be to restore the timing (phase) of the river's seasonal thermal signature by shifting it approximately 18 days earlier in the year, resulting in river temperatures that more rapidly track ambient air temperatures. Such a shift would likely cool thermal habitat conditions for adult fall chinook (Oncorhynchus tshawytscha) during upstream migration and benefit mainstem spawning. By contrast, spring and early summer temperatures could be warmer without dams, potentially harming chinook rearing and outmigration in the mainstem. Dam removal might affect the river's thermal regime during certain conditions for over 200 km of the mainstem.

  9. Thermally-responsive poly(ester urethane)s

    NASA Astrophysics Data System (ADS)

    Pierce, Benjamin Franklin

    Thermally-responsive materials are quite useful in the biomedical field, but their full potential has yet to be realized. For example, polyurethanes are capable of exhibiting shape-memory properties, or the ability to change shape upon the application of a stimulus, but only a few practical thermally responsive polyurethanes have been reported due to the lack of novel starting materials and optimized systems. This work describes the synthesis of several degradable polymers and the characterization of their thermally responsive behavior. First, several amorphous polyester prepolymers are synthesized and incorporated in thermoplastic poly(ester urethane)s, which are highly elastic but display impractical thermal properties. Their potential as degradable implants is investigated, as well as their bulk and surface properties. These systems are then optimized and tailored for more practical purposes, resulting in the synthesis of thermoset elastomers based on poly(1,4-cyclohexanedimethanol 1,4-cyclohexanedicarboxylate) (PCCD) prepolymers that display a broad range of useful mechanical properties, thermal properties, and shape-memory properties. A novel method for controlling a microscopic and nanoscopic topographical shape-memory phenomenon is presented. Finally, the synthesis of amine-functionalized polyesters is presented. All materials are characterized by 1H and 13C NMR, GPC, DSC, TGA, and Instron.

  10. Development of advanced modal methods for calculating transient thermal and structural response

    NASA Technical Reports Server (NTRS)

    Camarda, Charles J.

    1991-01-01

    Higher-order modal methods for predicting thermal and structural response are evaluated. More accurate methods or ones which can significantly reduce the size of complex, transient thermal and structural problems are desirable for analysis and are required for synthesis of real structures subjected to thermal and mechanical loading. A unified method is presented for deriving successively higher-order modal solutions related to previously-developed, lower-order methods such as the mode displacement and mode-acceleration methods. A new method, called the force-derivative method, is used to obtain higher-order modal solutions for both uncoupled (proportionally-damped) structural problems as well as thermal problems and coupled (non-proportionally damped) structural problems. The new method is called the force-derivative method because, analogous to the mode-acceleration method, it produces a term that depends on the forcing function and additional terms that depend on the time derivatives of the forcing function.

  11. Micro-thermocouple probe for measurement of cellular thermal responses.

    PubMed

    Watanabe, M; Kakuta, N; Mabuchi, K; Yamada, Y

    2005-01-01

    We have produced micro-thermocouple probes for the measurement of cellular thermal responses. Cells generate heat with their metabolisms and more heat with reactions to a certain physical or chemical stimulation. Therefore, the analysis of the cellular thermal responses would provide new physiological information. However, a real-time thermal measurement technique on a target of a single cell has not been established. In this study, glass micropipettes, which are widely used in bioengineering and medicine, are used for the base of the thermocouple probes. Using microfabrication techniques, the junction of two different metal films is formed at the micropipette tip with a diameter of 1 μm. This probe can inject a chemical substance into a cell and to detect its subsequent temperature changes simultaneously.

  12. Response of neutron-irradiated RPV steels to thermal annealing

    SciTech Connect

    Iskander, S.K.; Sokolov, M.A.; Nanstad, R.K.

    1997-03-01

    One of the options to mitigate the effects of irradiation on reactor pressure vessels (RPVs) is to thermally anneal them to restore the fracture toughness properties that have been degraded by neutron irradiation. This paper summarizes experimental results of work performed at the Oak Ridge National Laboratory (ORNL) to study the annealing response of several irradiated RPV steels.

  13. Measurement and Prediction of Effective Thermal Conductivity for Woven Fabric Composites

    NASA Astrophysics Data System (ADS)

    Goo, Nam Seo; Woo, Kyeongsik

    The current paper deals with the measurement and prediction of thermal conductivities for plain weave fabric composites. An experimental apparatus was setup to measure the temperature gradients from which the thermal conductivities were obtained. The thermal conductivities were also calculated using finite element analyses for plain weave unit cell models and then compared with experimental results. In addition, the effect of a phase shift and the fiber volume fraction in the tow on the thermal conductivities was addressed.

  14. Thermal response of Space Shuttle wing during reentry heating

    NASA Technical Reports Server (NTRS)

    Gong, L.; Ko, W. L.; Quinn, R. D.

    1984-01-01

    A structural performance and resizing (SPAR) finite element thermal analysis computer program was used in the heat transfer analysis of the space shuttle orbiter that was subjected to reentry aerodynamic heatings. One wing segment of the right wing (WS 240) and the whole left wing were selected for the thermal analysis. Results showed that the predicted thermal protection system (TPS) temperatures were in good agreement with the space transportation system, trajectory 5 (STS-5) flight-measured temperatures. In addition, calculated aluminum structural temperatures were in fairly good agreement with the flight data up to the point of touchdown. Results also showed that the internal free convection had a considerable effect on the change of structural temperatures after touchdown.

  15. Prediction and measurement of composite tube twist and bending due to thermal loading

    NASA Astrophysics Data System (ADS)

    Bluth, A. Marcel; Tucker, James R.; Thompson, Troy

    2013-09-01

    Composite materials are applied in precision optical metering structures because of their low thermal expansion properties in concert with high specific stiffness. Twisting and bending of long composite tubes, such as the secondary mirror support structure for the JWST telescope, requires control and verification. A stochastic modeling method was applied that simulates the manufacturing process variability and estimates ranges for expected twist and bend over the tube length from ambient to cryogenic temperatures. A development strut for the JWST secondary mirror support structure was fabricated and a metrology system was designed and implemented that measured the bend and twist response from ambient to 30 K. Modeling methods and predictions are outlined. The test metrology and results are summarized, along with a comparison between test and prediction.

  16. Validation of PICA Ablation and Thermal-Response Model at Low Heat Flux

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Chen, Yih-Kanq

    2009-01-01

    Phenolic Impregnated Carbon Ablator (PICA) was the forebody heatshield material on the Stardust sample-return capsule and is also a primary candidate material for the Mars Science Lander (MSL), the Orion Crew Module, and the SpaceX Dragon vehicle. As part of the heatshield qualification for Orion, physical and thermal properties of virgin and charred PICA were measured, and an ablation and thermal response model was developed. We validated the model by comparing it with recession and temperature data from stagnation arcjet tests conducted over a wide range of stagnation heat flux of 107 to 1102 W/sq cm. The effect of orthotropic thermal conductivity was evident in the thermal response of the arcjet models. In general, model predictions compared well with the data; however, the uncertainty of the recession prediction was greatest for heat fluxes below 200 W/sq cm. More recent MSL testing focused on the low heat flux regime of 45 to 250 W/sq cm. The new results confirm the recession uncertainty, especially for pressures below 6 kPa. In this work we focus on improving the model predictions for MSL and Orion tests below 250 W/sq cm.

  17. Validation of PICA Ablation and Thermal-Response Model at Low Heat Flux

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Chen, Yih-Kanq

    2009-01-01

    Phenolic Impregnated Carbon Ablator (PICA) was the forebody heatshield material on the Stardust sample-return capsule and is also a primary candidate material for the Mars Science Lander (MSL), the Orion Crew Module, and the SpaceX Dragon vehicle. As part of the heatshield qualification for Orion, physical and thermal properties of virgin and charred PICA were measured, and an ablation and thermal response model was developed. We validated the model by comparing it with recession and temperature data from stagnation arcjet tests conducted over a wide range of stagnation heat flux of 107 to 1102 W/sq cm. The effect of orthotropic thermal conductivity was evident in the thermal response of the arcjet models. In general, model predictions compared well with the data; however, the uncertainty of the recession prediction was greatest for heat fluxes below 200 W/sq cm. More recent MSL testing focused on the low heat flux regime of 45 to 250 W/sq cm. The new results confirm the recession uncertainty, especially for pressures below 6 kPa. In this work we focus on improving the model predictions for MSL and Orion tests below 250 W/sq cm.

  18. Predicting Thermal Conductivity Evolution of Polycrystalline Materials Under Irradiation Using Multiscale Approach

    SciTech Connect

    Li, Dongsheng; Li, Yulan; Hu, Shenyang Y.; Sun, Xin; Khaleel, Mohammad A.

    2012-03-01

    A multiscale methodology was developed to predict the evolution of thermal conductivity of polycrystalline fuel under irradiation. In the mesoscale level, phase field model was used to predict the evolution of gas bubble microstructure. Generation of gas atoms and vacancies were taken into consideration. In the macroscopic scale, a statistical continuum mechanics model was applied to predict the anisotropic thermal conductivity evolution during irradiation. Microstructure predicted by phase field model was fed into statistical continuum mechanics model to predict properties and behavior. Influence of irradiation intensity, exposition time and morphology were investigated. This approach provides a deep understanding on microstructure evolution and property prediction from a basic scientific viewpoint.

  19. The influence of microstructure on thermal response of glass ionomers.

    PubMed

    Yan, Zhuoqun; Sidhu, Sharanbir K; McCabe, John F

    2007-06-01

    This study was designed to determine the dimensional changes caused by thermal stimuli of glass ionomers with different glass/matrix ratios. Four cylindrical specimens were made for each of four powder/liquid ratios (3:1, 2.5:1, 2:1 and 1.5:1) for a conventional luting glass ionomer, two high viscosity restorative glass ionomers and a restorative resin-modified glass ionomer. The thermal characteristics were determined using a thermal mechanical analyzer (TMA) by heating the samples from 25 degrees C to 70 degrees C at 10 degrees C per minute. All glass ionomers and the resin-modified glass ionomer lost water on heating. The results of the thermal response of these materials were explained in terms of the opposing effects of thermal expansion and desiccation on heating. The contraction on heating of glass ionomer and related materials was found to relate to the glass/matrix ratio but not directly proportional to it. Materials with lower P/L ratios contracted the most when heated to 70 degrees C. The water loss from conventional and resin-modified glass ionomer with different glass/matrix ratios compensated for their thermal expansion and led to a minimal dimensional change when heated up to 50 degrees C. This outcome may be interpreted as an example of smart behaviour of these materials.

  20. Resting state functional connectivity predicts neurofeedback response

    PubMed Central

    Scheinost, Dustin; Stoica, Teodora; Wasylink, Suzanne; Gruner, Patricia; Saksa, John; Pittenger, Christopher; Hampson, Michelle

    2014-01-01

    Tailoring treatments to the specific needs and biology of individual patients—personalized medicine—requires delineation of reliable predictors of response. Unfortunately, these have been slow to emerge, especially in neuropsychiatric disorders. We have recently described a real-time functional magnetic resonance imaging (rt-fMRI) neurofeedback protocol that can reduce contamination-related anxiety, a prominent symptom of many cases of obsessive-compulsive disorder (OCD). Individual response to this intervention is variable. Here we used patterns of brain functional connectivity, as measured by baseline resting-state fMRI (rs-fMRI), to predict improvements in contamination anxiety after neurofeedback training. Activity of a region of the orbitofrontal cortex (OFC) and anterior prefrontal cortex, Brodmann area (BA) 10, associated with contamination anxiety in each subject was measured in real time and presented as a neurofeedback signal, permitting subjects to learn to modulate this target brain region. We have previously reported both enhanced OFC/BA 10 control and improved anxiety in a group of subclinically anxious subjects after neurofeedback. Five individuals with contamination-related OCD who underwent the same protocol also showed improved clinical symptomatology. In both groups, these behavioral improvements were strongly correlated with baseline whole-brain connectivity in the OFC/BA 10, computed from rs-fMRI collected several days prior to neurofeedback training. These pilot data suggest that rs-fMRI can be used to identify individuals likely to benefit from rt-fMRI neurofeedback training to control contamination anxiety. PMID:25309375

  1. Assessment of the Impact of the Measurement Precision of Thermal Properties of Materials on the Prediction of Their Thermal Behaviour

    NASA Astrophysics Data System (ADS)

    Khatun, Ayesha

    The thermal properties of the sidewall lining materials are capturing attention since the last two decades. Good prediction of the dynamic thermal behaviour of Hall Heroult cells, including precise estimation of energy losses and location of the side ledge formed by the solidification of electrolytic bath, is made possible when the sidelining materials are well characterized in function of temperature. The present work aim at measuring the thermal diffusivity, heat capacity and thermal conductivity of silicon carbide (SiC), graphitic and graphitized carbon materials and cryolite (Na3AlF 6) based on transient characterization techniques. The thermal diffusivity and the heat capacity are measured by using state-of-the-art transient laser flash analyzer and differential scanning calorimeter respectively. The thermal conductivity is calculated by assuming a constant density. The range of precision error for each thermal property is also calculated for a finite number of data sets. Empirical correlation has been drawn for each of the properties to describe the relation with temperature in mathematical terms. Thermal characterization of the latent heat evolved during the melting of ledge is also carried out. Finally, based on the calculations conducted with a 2-D numerical model, the effect of the precision errors of temperature varying thermal properties of the sidewall materials and ledge on the dynamic behaviour of a laboratory scale phase change reactor is also presented. The results, so obtained, encourage further studies on the thermal properties of materials used in the aluminium reduction cell to find out the thermal environment inside the cell, heat loss estimation and effect of the additives on the location of ledge. Key words: Thermal conductivity, thermal diffusivity, heat capacity, temperature varying properties, precision error, phase change profile, latent heat.

  2. Model for predicting thermal conductivity using transient hot wire method

    NASA Astrophysics Data System (ADS)

    Kumar, Sublania Harish; Singh K., J.; Somani A., K.

    2016-05-01

    The use of the hot wire method for estimating the thermal conductivity measurement has recently known a significant increase. However, this method is theoretically not applicable to materials. Thermal conductivity values are necessary whenever a heat transfer problem is to be evaluated.

  3. Predicting performance of coatings under thermal insulation at high temperatures

    SciTech Connect

    Lasarte, C. . Petroquimica de Venezuela); Rincon, O.T. De; Montiel, A. . Centro de Estudios de Corrosion)

    1994-10-01

    A probe was designed to evaluate coatings used under thermal insulation for temperatures of 30 to 150 C. This article describes the results obtained with various combinations of coatings (aluminum silicone, inorganic zinc, and aluminum metallizing) and thermal insulators (mineral wool, fiber glass, and calcium silicate), which were recommended in NACE Publication 6H189.

  4. Modeling thermally driven energetic response of high explosives in ALE3D

    SciTech Connect

    Aro, C.; McCallen, R.C.; Neely, R.; Nichols, A.L. III; Sharp, R.

    1998-10-01

    The authors have improved their ability to model the response of energetic materials to thermal stimuli and the processes involved in the energetic response. Traditionally, the analyses of energetic materials have involved coupled thermal transport/chemical reaction codes. This provides only a reasonable estimate of the time and location of ensuing rapid reaction. To predict the violence of the reaction, the mechanical motion must be included in the wide range of time scales associated with the thermal hazard. The ALE3D code has been modified to assess the hazards associated with heating energetic materials in weapons by coupling to thermal transport model and chemistry models. They have developed an implicit time step option to efficiently and accurately compute the hours of heating to reaction of the energetic material. Since, on these longer time scales materials can be expected to have significant motion, it is even more important to provide high-order advection for all components, including the chemical species. They show two examples of coupled thermal/mechanical/chemical models of energetic materials in thermal environments.

  5. Hydraulic characterization of aquifers by thermal response testing

    NASA Astrophysics Data System (ADS)

    Wagner, Valentin; Blum, Philipp; Bayer, Peter

    2014-05-01

    Temperature as a major physical quantity of the subsurface, and naturally occurring thermal anomalies are recognized as promising passive tracers to characterize the subsurface. Accelerated by the increasing popularity of geothermal energy, also active thermal field experiments have gained interest in hydrogeology. Such experiments involve artificial local ground heating or cooling. Among these, the thermal response test (TRT) is one of the most established field investigation techniques in shallow geothermal applications. It is a common method to investigate important subsurface heat transport parameters to design sustainable ground-source heat pump (GSHP) systems. During the test, the borehole heat exchanger (BHE) is heated up with a defined amount of energy by circulating a heat carrier fluid. By comparing temperature change between BHE inlet and outlet, the ability of the BHE to transfer heat or cold to the ambient ground is assessed. However, standard interpretation does not provide any insight into the governing processes of in-situ heat transfer. We utilize a groundwater advection sensitive TRT evaluation approach based on the analytical moving line source equation. It is shown that the TRT as a classical geothermal field test can also be used as a hydrogeological field test. Our approach benefits from the fact that thermal properties, such as thermal conductivity, of natural aquifers typically are much less variable than hydraulic properties, such as hydraulic conductivity. It is possible to determine a relatively small hydraulic conductivity range with our TRT evaluation approach, given realistic ranges for thermal conductivity, volumetric heat capacity, thermal dispersivity and thermal borehole resistance. The method is successfully tested on a large-scale geothermal laboratory experiment (9 m × 6 m × 4.5 m) and with a commercially performed TRT in the field scale. The laboratory experiment consists of a layered artificial aquifer, which is penetrated

  6. Ghosts of thermal past: reef fish exposed to historic high temperatures have heightened stress response to further stressors

    NASA Astrophysics Data System (ADS)

    Mills, S. C.; Beldade, R.; Chabanet, P.; Bigot, L.; O'Donnell, J. L.; Bernardi, G.

    2015-12-01

    Individual exposure to stressors can induce changes in physiological stress responses through modulation of the hypothalamic-pituitary-interrenal (HPI) axis. Despite theoretical predictions, little is known about how individuals will respond to unpredictable short-lived stressors, such as thermal events. We examine the primary neuroendocrine response of coral reef fish populations from the Îles Eparses rarely exposed to anthropogenic stress, but that experienced different thermal histories. Skunk anemonefish, Amphiprion akallopisos, showed different cortisol responses to a generic stressor between islands, but not along a latitudinal gradient. Those populations previously exposed to higher maximum temperatures showed greater responses of their HPI axis. Archive data reveal thermal stressor events occur every 1.92-6 yr, suggesting that modifications to the HPI axis could be adaptive. Our results highlight the potential for adaptation of the HPI axis in coral reef fish in response to a climate-induced thermal stressor.

  7. Modeling thermal/chemical/mechanical response of energetic materials

    SciTech Connect

    Baer, M.R.; Hobbs, M.L.; Gross, R.J.

    1995-07-01

    An overview of modeling at Sandia National Laboratories is presented which describes coupled thermal, chemical and mechanical response of energetic materials. This modeling addresses cookoff scenarios for safety assessment studies in systems containing energetic materials. Foundation work is discussed which establishes a method for incorporating chemistry and mechanics into multidimensional analysis. Finite element analysis offers the capabilities to simultaneously resolve reactive heat transfer and structural mechanics in complex geometries. Nonlinear conduction heat transfer, with multiple step finite-rate chemistry, is resolved using a thermal finite element code. Rate equations are solved element-by-element using a modified matrix-free stiff solver This finite element software was developed for the simulation of systems requiring large numbers of finite elements. An iterative implicit scheme, based on the conjugate gradient method, is used and a hemi-cube algorithm is employed for the determination of view factors in surface-to-surface radiation transfer The critical link between the reactive heat transfer and mechanics is the introduction of an appropriate constitutive material model providing a stress-strain relationship for quasi-static mechanics analysis. This model is formally derived from bubble nucleation theory, and parameter variations of critical model parameters indicate that a small degree of decomposition leads to significant mechanical response. Coupled thermal/chemical/mechanical analysis is presented which simulates experiments designed to probe cookoff thermal-mechanical response of energetic materials.

  8. Response Predicting LTCC Firing Shrinkage: A Response Surface Analysis Study

    SciTech Connect

    Girardi, Michael; Barner, Gregg; Lopez, Cristie; Duncan, Brent; Zawicki, Larry

    2009-02-25

    The Low Temperature Cofired Ceramic (LTCC) technology is used in a variety of applications including military/space electronics, wireless communication, MEMS, medical and automotive electronics. The use of LTCC is growing due to the low cost of investment, short development time, good electrical and mechanical properties, high reliability, and flexibility in design integration (3 dimensional (3D) microstructures with cavities are possible)). The dimensional accuracy of the resulting x/y shrinkage of LTCC substrates is responsible for component assembly problems with the tolerance effect that increases in relation to the substrate size. Response Surface Analysis was used to predict product shrinkage based on specific process inputs (metal loading, layer count, lamination pressure, and tape thickness) with the ultimate goal to optimize manufacturing outputs (NC files, stencils, and screens) in achieving the final product design the first time. Three (3) regression models were developed for the DuPont 951 tape system with DuPont 5734 gold metallization based on green tape thickness.

  9. Space Shuttle orbiter entry heating and TPS response: STS-1 predictions and flight data

    NASA Technical Reports Server (NTRS)

    Ried, R. C.; Goodrich, W. D.; Li, C. P.; Scott, C. D.; Derry, S. M.; Maraia, R. J.

    1982-01-01

    Aerothermodynamic development flight test data from the first orbital flight test of the Space Transportation System (STS) transmitted after entry blackout is given. Engineering predictions of boundary layer transition and numerical simulations of the orbiter flow field were confirmed. The data tended to substantiate preflight predictions of surface catalysis phenomena. The thermal response of the thermal protection system was as expected. The only exception is that internal free convection was found to be significant in limiting the peak temperature of the structure in areas which do not have internal insulation.

  10. Holographic thermal DC response in the hydrodynamic limit

    NASA Astrophysics Data System (ADS)

    Banks, Elliot; Donos, Aristomenis; Gauntlett, Jerome P.; Griffin, Tom; Melgar, Luis

    2017-02-01

    We consider black hole solutions of Einstein gravity that describe deformations of CFTs at finite temperature in which spatial translations have been broken explicitly. We focus on deformations that are periodic in the non-compact spatial directions, which effectively corresponds to considering the CFT on a spatial torus with a non-trivial metric. We apply a DC thermal gradient and show that in a hydrodynamic limit the linearised, local thermal currents can be determined by solving linearised, forced Navier–Stokes equations for an incompressible fluid on the torus. We also show how sub-leading corrections to the thermal current can be calculated as well as showing how the full stress tensor response that is generated by the DC source can be obtained. We also compare our results with the fluid-gravity approach.

  11. Life prediction methodology for thermal-mechanical fatigue and elevated temperature creep design

    NASA Astrophysics Data System (ADS)

    Annigeri, Ravindra

    Nickel-based superalloys are used for hot section components of gas turbine engines. Life prediction techniques are necessary to assess service damage in superalloy components resulting from thermal-mechanical fatigue (TMF) and elevated temperature creep. A new TMF life model based on continuum damage mechanics has been developed and applied to IN 738 LC substrate material with and without coating. The model also characterizes TMF failure in bulk NiCoCrAlY overlay and NiAl aluminide coatings. The inputs to the TMF life model are mechanical strain range, hold time, peak cycle temperatures and maximum stress measured from the stabilized or mid-life hysteresis loops. A viscoplastic model is used to predict the stress-strain hysteresis loops. A flow rule used in the viscoplastic model characterizes the inelastic strain rate as a function of the applied stress and a set of three internal stress variables known as back stress, drag stress and limit stress. Test results show that the viscoplastic model can reasonably predict time-dependent stress-strain response of the coated material and stress relaxation during hold times. In addition to the TMF life prediction methodology, a model has been developed to characterize the uniaxial and multiaxial creep behavior. An effective stress defined as the applied stress minus the back stress is used to characterize the creep recovery and primary creep behavior. The back stress has terms representing strain hardening, dynamic recovery and thermal recovery. Whenever the back stress is greater than the applied stress, the model predicts a negative creep rate observed during multiple stress and multiple temperature cyclic tests. The model also predicted the rupture time and the remaining life that are important for life assessment. The model has been applied to IN 738 LC, Mar-M247, bulk NiCoCrAlY overlay coating and 316 austenitic stainless steel. The proposed model predicts creep response with a reasonable accuracy for wide range of

  12. Analytical prediction of the performance of an air photovoltaic/thermal flat-plate collector

    SciTech Connect

    Raghuraman, P.

    1980-04-30

    A one-dimensional analysis developed by MIT Lincoln Laboratory predicts the electrical and thermal performance of an air photovoltaic/thermal flat-plate collector. The analysis compares well with test measurements, predicting the thermal efficiency to within 2 percent. From the analysis, the poor thermal performance of the collector is attributable, in part, to the large undulations of the cell/silicone pottant surface in contact with the flowing air that results in less effective convective heat-transfer areas between the cell and the air.

  13. Thermal Model Predictions of Advanced Stirling Radioisotope Generator Performance

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen J.; Fabanich, William Anthony; Schmitz, Paul C.

    2014-01-01

    This presentation describes the capabilities of three-dimensional thermal power model of advanced stirling radioisotope generator (ASRG). The performance of the ASRG is presented for different scenario, such as Venus flyby with or without the auxiliary cooling system.

  14. Anomalous thermal response of silicene to uniaxial stretching

    NASA Astrophysics Data System (ADS)

    Hu, Ming; Zhang, Xiaoliang; Poulikakos, Dimos

    2013-05-01

    Silicene—the silicon counterpart of graphene—has a two-dimensional structure that leads to a host of interesting physical and chemical properties of significant utility. We report here an investigation with nonequilibrium molecular dynamics simulations of thermal transport in a single-layer silicene sheet under uniaxial stretching. We discovered that, contrary to its counterpart of graphene and despite the similarity of their honeycomb lattice structure, silicene exhibits an anomalous thermal response to tensile strain: The thermal conductivity of silicene and silicene nanoribbons first increases significantly with applied tensile strain rather than decreasing and then fluctuates at an elevated plateau. By quantifying the relative contribution from different phonon polarizations, we show first that the phonon transport in silicene is dominated by the out-of-plane flexural modes, similar to graphene. We attribute subsequently the unexpected and markedly different behavior of silicene to the interplay between two competing mechanisms governing heat conduction in a stretched silicene sheet, namely, (1) uniaxial stretching modulation in the longitudinal direction significantly depressing the phonon group velocities of longitudinal and transverse modes (phonon softening) and hindering heat conduction, and (2) phonon stiffening in the flexural modes counteracting the phonon softening effect and facilitating thermal transport. The abnormal behavior of the silicene sheet is further correlated to the unique deformation characteristics of its hexagonal lattice. Our study offers perspectives of modulating the thermal properties of low-dimensional structures for applications such as thermoelectric, photovoltaic, and optoelectronic devices.

  15. Analysis of piping response to thermal and operational transients

    SciTech Connect

    Wang, C.Y.

    1987-01-01

    The reactor piping system is an extremely complex three-dimensional structure. Maintaining its structural integrity is essential to the safe operation of the reactor and the steam-supply system. In the safety analysis, various transient loads can be imposed on the piping which may cause plastic deformation and possible damage to the system, including those generated from hydrodynamic wave propagations, thermal and operational transients, as well as the seismic events. At Argonne National Laboratory (ANL), a three-dimensional (3-D) piping code, SHAPS, aimed for short-duration transients due to wave propagation, has been developed. Since 1984, the development work has been shifted to the long-duration accidents originating from the thermal and operational transient. As a result, a new version of the code, SHAPS-2, is being established. This paper describes many features related to this later development. To analyze piping response generated from thermal and operational transients, a 3-D implicit finite element algorithm has been developed for calculating the hoop, flexural, axial, and torsional deformations induced by the thermomechanical loads. The analysis appropriately accounts for stresses arising from the temperature dependence of the elastic material properties, the thermal expansion of the materials, and the changes in the temperature-dependent yield surface. Thermal softening, failure, strain rate, creep, and stress ratching can also be considered.

  16. Personality predicts brain responses to cognitive demands.

    PubMed

    Kumari, Veena; ffytche, Dominic H; Williams, Steven C R; Gray, Jeffrey A

    2004-11-24

    Eysenck (1981) proposed that the personality dimension of introversion- extraversion (E) reflects individual differences in a cortical arousal system modulated by reticulothalamic- cortical pathways: it is chronically more active in introverts relative to extraverts and influences cognitive performance in interaction with task parameters. A circuit with connections to this system, including the dorsolateral prefrontal cortex (DLPFC) and anterior cingulate (AC) cortex, has been identified in studies applying functional magnetic resonance imaging (fMRI) to a broad range of cognitive tasks. We examined the influence of E, assessed with the Eysenck Personality Questionnaire-Revised (Eysenck and Eysenck, 1991), in fMRI activity during an "n-back" task involving four memory loads (0-, 1-, 2-, and 3-back) and a rest condition in healthy men. To confirm the specificity of E effects, we also examined the effects of neuroticism and psychoticism (P) scores. We observed that, as predicted by Eysenck's model, the higher the E score, the greater the change in fMRI signal from rest to the 3-back condition in the DLPFC and AC. In addition, E scores were negatively associated with resting fMRI signals in the thalamus and Broca's area extending to Wernicke's area, supporting the hypothesized (negative) relationship between E and resting arousal. P scores negatively correlated with resting fMRI signal in the globus pallidus-putamen, extending previous findings of a negative relationship of schizotypy to striatal activity seen with older neuroimaging modalities to fMRI. These observations suggest that individual differences affect brain responses during cognitive activity and at rest and provide evidence for the hypothesized neurobiological basis of personality.

  17. Numerical modeling of Thermal Response Tests in Energy Piles

    NASA Astrophysics Data System (ADS)

    Franco, A.; Toledo, M.; Moffat, R.; Herrera, P. A.

    2013-05-01

    Nowadays, thermal response tests (TRT) are used as the main tools for the evaluation of low enthalpy geothermal systems such as heat exchangers. The results of TRT are used for estimating thermal conductivity and thermal resistance values of those systems. We present results of synthetic TRT simulations that model the behavior observed in an experimental energy pile system, which was installed at the new building of the Faculty of Engineering of Universidad de Chile. Moreover, we also present a parametric study to identify the most influent parameters in the performance of this type of tests. The modeling was developed using the finite element software COMSOL Multiphysics, which allows the incorporation of flow and heat transport processes. The modeled system consists on a concrete pile with 1 m diameter and 28 m deep, which contains a 28 mm diameter PEX pipe arranged in a closed circuit. Three configurations were analyzed: a U pipe, a triple U and a helicoid shape implemented at the experimental site. All simulations were run considering transient response in a three-dimensional domain. The simulation results provided the temperature distribution on the pile for a set of different geometry and physical properties of the materials. These results were compared with analytical solutions which are commonly used to interpret TRT data. This analysis demonstrated that there are several parameters that affect the system response in a synthetic TRT. For example, the diameter of the simulated pile affects the estimated effective thermal conductivity of the system. Moreover, the simulation results show that the estimated thermal conductivity for a 1 m diameter pile did not stabilize even after 100 hours since the beginning of the test, when it reached a value 30% below value used to set up the material properties in the simulation. Furthermore, we observed different behaviors depending on the thermal properties of concrete and soil. According to the simulations, the thermal

  18. Correlation of predicted and measured thermal stresses on an advanced aircraft structure with similar materials

    NASA Technical Reports Server (NTRS)

    Jenkins, J. M.

    1979-01-01

    A laboratory heating test simulating hypersonic heating was conducted on a heat-sink type structure to provide basic thermal stress measurements. Six NASTRAN models utilizing various combinations of bar, shear panel, membrane, and plate elements were used to develop calculated thermal stresses. Thermal stresses were also calculated using a beam model. For a given temperature distribution there was very little variation in NASTRAN calculated thermal stresses when element types were interchanged for a given grid system. Thermal stresses calculated for the beam model compared similarly to the values obtained for the NASTRAN models. Calculated thermal stresses compared generally well to laboratory measured thermal stresses. A discrepancy of signifiance occurred between the measured and predicted thermal stresses in the skin areas. A minor anomaly in the laboratory skin heating uniformity resulted in inadequate temperature input data for the structural models.

  19. Prediction of thermal strains in fibre reinforced plastic matrix by discretisation of the temperature exposure history

    NASA Astrophysics Data System (ADS)

    Ngoy, E. K.

    2016-07-01

    Prediction of environmental effects on fibre reinforced plastics habitually is made difficult due to the complex variability of the natural service environment. This paper suggests a method to predict thermal strain distribution over the material lifetime by discretisation of the exposure history. Laboratory results show a high correlation between predicted and experimentally measured strain distribution

  20. Using a historic drought and high-heat event to validate thermal exposure predictions for ground-dwelling birds.

    PubMed

    Carroll, James M; Davis, Craig A; Elmore, R Dwayne; Fuhlendorf, Samuel D

    2017-08-01

    Deviations from typical environmental conditions can provide insight into how organisms may respond to future weather extremes predicted by climate modeling. During an episodic and multimonth heat wave event (i.e., ambient temperature up to 43.4°C), we studied the thermal ecology of a ground-dwelling bird species in Western Oklahoma, USA. Specifically, we measured black bulb temperature (Tbb) and vegetation parameters at northern bobwhite (Colinus virginianus; hereafter bobwhite) adult and brood locations as well as at stratified random points in the study area. On the hottest days (i.e., ≥39°C), adults and broods obtained thermal refuge using tall woody cover that remained on average up to 16.51°C cooler than random sites on the landscape which reached >57°C. We also found that refuge sites used by bobwhites moderated thermal conditions by more than twofold compared to stratified random sites on the landscape but that Tbb commonly exceeded thermal stress thresholds for bobwhites (39°C) for several hours of the day within thermal refuges. The serendipitous high heat conditions captured in our study represent extreme heat for our study region as well as thermal stress for our study species, and subsequently allowed us to assess ground-dwelling bird responses to temperatures that are predicted to become more common in the future. Our findings confirm the critical importance of tall woody cover for moderating temperatures and functioning as important islands of thermal refuge for ground-dwelling birds, especially during extreme heat. However, the potential for extreme heat loads within thermal refuges that we observed (albeit much less extreme than the landscape) indicates that the functionality of tall woody cover to mitigate heat extremes may be increasingly limited in the future, thereby reinforcing predictions that climate change represents a clear and present danger for these species.

  1. Physiological and molecular responses of juvenile shortnose sturgeon (Acipenser brevirostrum) to thermal stress.

    PubMed

    Zhang, Yueyang; Loughery, Jennifer R; Martyniuk, Christopher J; Kieffer, James D

    2017-01-01

    The shortnose sturgeon (Acipenser brevirostrum LeSueur, 1818) is a vulnerable species that is found along the eastern coast of North America. Little is known about temperature tolerance in this species and with a rapidly changing global climate, it becomes increasingly important to define the thermal tolerance of this species to better predict population distribution. Using a modified critical thermal maximum test (CTMax), the objectives of this study were to determine the impact of heating rate (0.1, 0.2 and 0.25°Cmin(-1)) on the thermal tolerance, associated hematological responses, and oxygen consumption in juvenile sturgeon. In addition, transcripts associated with physiological stress and heat shock (i.e., heat shock proteins) were also measured. Heating rate did not alter the CTMax values of shortnose sturgeon. Neither heating rate nor thermal stress affected plasma sodium and chloride levels, nor the expression of transcripts that included catalase, glucocorticoid receptor, heat shock protein70 (hsp70), heat shock protein 90α (hsp90α) and cytochrome P450 1a (cyp1a). However, regardless of heating rate, thermal stress increased both plasma potassium and lactate concentrations. Glucose levels were increased at heating rates of 0.2 and 0.25°Cmin(-1), but not at 0.1°Cmin(-1). Overall, oxygen consumption rates increased with thermal stress, but the response patterns were not affected by heating rate. These data support the hypothesis that shortnose sturgeon can tolerate acute heat stress, as many physiological and molecular parameters measured here were non-responsive to the thermal stress.

  2. Using the thermal infrared multispectral scanner (TIMS) to estimate surface thermal responses

    NASA Astrophysics Data System (ADS)

    Luvall, J. C.; Holbo, H. R.

    1987-07-01

    A series of measurements was conducted over the H.J. Andrews, Oregon, experimental coniferous forest, using airborne thermal infrared multispectral scanner (TIMS). Flight lines overlapped, with a 28-min time difference between flight lines. Concurrent radiosonde measurements of atmospheric profiles of air temperature and moisture were used for atmospheric radiance corrections of the TIMS data. Surface temperature differences over time between flight lines were used to develop thermal response numbers (TRNs) which characterized the thermal response (in KJ/sq m/C, where K is the measured incoming solar radiation) of the different surface types. The surface types included a mature forest (canopy dominated by dense crowns of Pseudosuga menziesii, with a secondary canopy of dense Tsuga heterophylla, and also a tall shrub layer of Acer circinatum) and a two-year-old clear-cut. The temperature distribution, within TIMS thermal images was found to reflect the surface type examined. The clear-cut surface had the lowest TRN, while mature Douglas fir the highest.

  3. Computational Efficient Upscaling Methodology for Predicting Thermal Conductivity of Nuclear Waste forms

    SciTech Connect

    Li, Dongsheng; Sun, Xin; Khaleel, Mohammad A.

    2011-09-28

    This study evaluated different upscaling methods to predict thermal conductivity in loaded nuclear waste form, a heterogeneous material system. The efficiency and accuracy of these methods were compared. Thermal conductivity in loaded nuclear waste form is an important property specific to scientific researchers, in waste form Integrated performance and safety code (IPSC). The effective thermal conductivity obtained from microstructure information and local thermal conductivity of different components is critical in predicting the life and performance of waste form during storage. How the heat generated during storage is directly related to thermal conductivity, which in turn determining the mechanical deformation behavior, corrosion resistance and aging performance. Several methods, including the Taylor model, Sachs model, self-consistent model, and statistical upscaling models were developed and implemented. Due to the absence of experimental data, prediction results from finite element method (FEM) were used as reference to determine the accuracy of different upscaling models. Micrographs from different loading of nuclear waste were used in the prediction of thermal conductivity. Prediction results demonstrated that in term of efficiency, boundary models (Taylor and Sachs model) are better than self consistent model, statistical upscaling method and FEM. Balancing the computation resource and accuracy, statistical upscaling is a computational efficient method in predicting effective thermal conductivity for nuclear waste form.

  4. Thermal Response Analysis of Phospholipid Bilayers Using Ellipsometric Techniques

    PubMed Central

    González-Henríquez, Carmen M.; Villegas-Opazo, Vanessa A.; Sagredo-Oyarce, Dallits H.; Sarabia-Vallejos, Mauricio A.; Terraza, Claudio A.

    2017-01-01

    Biomimetic planar artificial membranes have been widely studied due to their multiple applications in several research fields. Their humectation and thermal response are crucial for reaching stability; these characteristics are related to the molecular organization inside the bilayer, which is affected by the aliphatic chain length, saturations, and molecule polarity, among others. Bilayer stability becomes a fundamental factor when technological devices are developed—like biosensors—based on those systems. Thermal studies were performed for different types of phosphatidylcholine (PC) molecules: two pure PC bilayers and four binary PC mixtures. These analyses were carried out through the detection of slight changes in their optical and structural parameters via Ellipsometry and Surface Plasmon Resonance (SPR) techniques. Phospholipid bilayers were prepared by Langmuir-Blodgett technique and deposited over a hydrophilic silicon wafer. Their molecular inclination degree, mobility, and stability of the different phases were detected and analyzed through bilayer thickness changes and their optical phase-amplitude response. Results show that certain binary lipid mixtures—with differences in its aliphatic chain length—present a co-existence of two thermal responses due to non-ideal mixing. PMID:28820461

  5. Thermal Response Analysis of Phospholipid Bilayers Using Ellipsometric Techniques.

    PubMed

    González-Henríquez, Carmen M; Villegas-Opazo, Vanessa A; Sagredo-Oyarce, Dallits H; Sarabia-Vallejos, Mauricio A; Terraza, Claudio A

    2017-08-18

    Biomimetic planar artificial membranes have been widely studied due to their multiple applications in several research fields. Their humectation and thermal response are crucial for reaching stability; these characteristics are related to the molecular organization inside the bilayer, which is affected by the aliphatic chain length, saturations, and molecule polarity, among others. Bilayer stability becomes a fundamental factor when technological devices are developed-like biosensors-based on those systems. Thermal studies were performed for different types of phosphatidylcholine (PC) molecules: two pure PC bilayers and four binary PC mixtures. These analyses were carried out through the detection of slight changes in their optical and structural parameters via Ellipsometry and Surface Plasmon Resonance (SPR) techniques. Phospholipid bilayers were prepared by Langmuir-Blodgett technique and deposited over a hydrophilic silicon wafer. Their molecular inclination degree, mobility, and stability of the different phases were detected and analyzed through bilayer thickness changes and their optical phase-amplitude response. Results show that certain binary lipid mixtures-with differences in its aliphatic chain length-present a co-existence of two thermal responses due to non-ideal mixing.

  6. Comparative physiological, biochemical and molecular thermal stress response profiles for two unionid freshwater mussel species.

    PubMed

    Payton, Samantha L; Johnson, Paul D; Jenny, Matthew J

    2016-11-15

    Freshwater mussels, aquatic keystone species, are in global decline. Long life spans, sedentary lifestyles, and unique reproductive strategies involving obligate parasitic stages make unionid freshwater mussels particularly sensitive to environmental perturbations resulting from global climate change. A greater understanding of the mechanisms by which closely related species differ in their response to thermal challenge is critical for successful conservation and management practices. As such, both an acute heat shock and a chronic warming simulation were conducted in order to evaluate responses between hypothesized thermally tolerant (Villosa lienosa) and thermally sensitive (Villosa nebulosa) freshwater mussels in response to predicted thermal warming. Multiple biological responses were quantified, including mortality, condition index, growth rates, glycogen and triglyceride content, and candidate gene expression. During acute heat shock, both species upregulated HSP90 and HSP70, although V. lienosa showed consistently greater transcript levels during upregulation. This pattern was consistent during the chronic warming simulation, with V. nebulosa showing greater induction of HSP60 Chronic warming stimulated increases in condition index for V. nebulosa; however, declines in growth rates during a recovery period were observed with no concurrent change in tissue glycogen levels. This contrasts with V. lienosa, where tissue glycogen significantly increased during chronic warming, although no response was observed for condition index or growth rates. These biological differences might indicate disparate thermal stress response mechanisms correlated with metabolic demands and resource utilization, and could thus be a factor influencing current ranges of these two species and their ability to cope with future persistent warming in their native habitats. © 2016. Published by The Company of Biologists Ltd.

  7. Multiphysics modelling of volume phase transition of ionic hydrogels responsive to thermal stimulus.

    PubMed

    Li, Hua; Wang, Xiaogui; Wang, Zijie; Lam, K Y

    2005-09-16

    This paper presents the analysis of the volume phase transition of ionic thermo-sensitive hydrogels to thermal stimulus through mathematical modelling. The model is termed the multi-effect-coupling thermal-stimulus (MECtherm) model and it considers the effects of multi-phases and multi-physics. Its application to steady-state analysis of the hydrogels in swelling equilibrium is validated against available experimental data for the relation between volume swelling ratio and temperature, in which very good agreement is achieved. The phenomenon of volume phase transition is studied for the thermal-stimulus responsive hydrogel. The numerical studies predict well the influences of initially fixed charge density and initial volume fraction of polymeric network on the swelling equilibrium of the hydrogels.

  8. Ablation, Thermal Response, and Chemistry Program for Analysis of Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Chen, Yih-Kanq

    2010-01-01

    In previous work, the authors documented the Multicomponent Ablation Thermochemistry (MAT) and Fully Implicit Ablation and Thermal response (FIAT) programs. In this work, key features from MAT and FIAT were combined to create the new Fully Implicit Ablation, Thermal response, and Chemistry (FIATC) program. FIATC is fully compatible with FIAT (version 2.5) but has expanded capabilities to compute the multispecies surface chemistry and ablation rate as part of the surface energy balance. This new methodology eliminates B' tables, provides blown species fractions as a function of time, and enables calculations that would otherwise be impractical (e.g. 4+ dimensional tables) such as pyrolysis and ablation with kinetic rates or unequal diffusion coefficients. Equations and solution procedures are presented, then representative calculations of equilibrium and finite-rate ablation in flight and ground-test environments are discussed.

  9. Thermally tunable grating using thermo-responsive magnetic fluid

    NASA Astrophysics Data System (ADS)

    Zaibudeen, A. W.; Philip, John

    2017-04-01

    We report a thermally tunable grating prepared using poly(N-isopropylacrylamide) and super paramagnetic iron oxide nanoparticles. The array spacing is reversibly tuned by varying the temperature between 5 and 38 °C. Here, the ability of thermo-responsive polymer brushes to alter their conformation at an interface is exploited to control the grating spacing in nanoscale. The underlying mechanism for the temperature dependent conformational changes are studied by measuring the subtle intermolecular forces between the polymer covered interfaces. It is observed that the interparticle forces are repulsive and exponentially decaying with distance. The thermo-responsive grating is simple to use and offers a wide range of applications.

  10. Predicting urban outdoor thermal comfort by the Universal Thermal Climate Index UTCI--a case study in Southern Brazil.

    PubMed

    Bröde, Peter; Krüger, Eduardo L; Rossi, Francine A; Fiala, Dusan

    2012-05-01

    Recognising that modifications to the physical attributes of urban space are able to promote improved thermal outdoor conditions and thus positively influence the use of open spaces, a survey to define optimal thermal comfort ranges for passers-by in pedestrian streets was conducted in Curitiba, Brazil. We applied general additive models to study the impact of temperature, humidity, and wind, as well as long-wave and short-wave radiant heat fluxes as summarised by the recently developed Universal Thermal Climate Index (UTCI) on the choice of clothing insulation by fitting LOESS smoothers to observations from 944 males and 710 females aged from 13 to 91 years. We further analysed votes of thermal sensation compared to predictions of UTCI. The results showed that females chose less insulating clothing in warm conditions compared to males and that observed values of clothing insulation depended on temperature, but also on season and potentially on solar radiation. The overall pattern of clothing choice was well reflected by UTCI, which also provided for good predictions of thermal sensation votes depending on the meteorological conditions. Analysing subgroups indicated that the goodness-of-fit of the UTCI was independent of gender and age, and with only limited influence of season and body composition as assessed by body mass index. This suggests that UTCI can serve as a suitable planning tool for urban thermal comfort in sub-tropical regions.

  11. Method and device for predicting wavelength dependent radiation influences in thermal systems

    DOEpatents

    Kee, Robert J.; Ting, Aili

    1996-01-01

    A method and apparatus for predicting the spectral (wavelength-dependent) radiation transport in thermal systems including interaction by the radiation with partially transmitting medium. The predicted model of the thermal system is used to design and control the thermal system. The predictions are well suited to be implemented in design and control of rapid thermal processing (RTP) reactors. The method involves generating a spectral thermal radiation transport model of an RTP reactor. The method also involves specifying a desired wafer time dependent temperature profile. The method further involves calculating an inverse of the generated model using the desired wafer time dependent temperature to determine heating element parameters required to produce the desired profile. The method also involves controlling the heating elements of the RTP reactor in accordance with the heating element parameters to heat the wafer in accordance with the desired profile.

  12. Target Predictability, Sustained Attention, and Response Inhibition

    ERIC Educational Resources Information Center

    Carter, Leonie; Russell, Paul N.; Helton, William S.

    2013-01-01

    We examined whether the sustained attention to response task is a better measure of response inhibition or sustained attention. Participants performed a number detection task for 37.3 min using either a Sustained Attention to Response Task (SART; high Go low No-Go) or a more traditionally formatted vigilance task (TFT; high No-Go low Go) response…

  13. Target Predictability, Sustained Attention, and Response Inhibition

    ERIC Educational Resources Information Center

    Carter, Leonie; Russell, Paul N.; Helton, William S.

    2013-01-01

    We examined whether the sustained attention to response task is a better measure of response inhibition or sustained attention. Participants performed a number detection task for 37.3 min using either a Sustained Attention to Response Task (SART; high Go low No-Go) or a more traditionally formatted vigilance task (TFT; high No-Go low Go) response…

  14. Human thermal physiological and psychological responses under different heating environments.

    PubMed

    Wang, Zhaojun; Ning, Haoran; Ji, Yuchen; Hou, Juan; He, Yanan

    2015-08-01

    Anecdotal evidence suggests that many residents of severely cold areas of China who use floor heating (FH) systems feel warmer but drier compared to those using radiant heating (RH) systems. However, this phenomenon has not been verified experimentally. In order to validate the empirical hypothesis, and research the differences of human physiological and psychological responses in these two asymmetrical heating environments, an experiment was designed to mimic FH and RH systems. The subjects participating in the experiment were volunteer college-students. During the experiment, the indoor air temperature, air speed, relative humidity, globe temperature, and inner surface temperatures were measured, and subjects' heart rate, blood pressure and skin temperatures were recorded. The subjects were required to fill in questionnaires about their thermal responses during testing. The results showed that the subjects' skin temperatures, heart rate and blood pressure were significantly affected by the type of heating environment. Ankle temperature had greatest impact on overall thermal comfort relative to other body parts, and a slightly cool FH condition was the most pleasurable environment for sedentary subjects. The overall thermal sensation, comfort and acceptability of FH were higher than that of RH. However, the subjects of FH felt drier than that of RH, although the relative humidity in FH environments was higher than that of the RH environment. In future environmental design, the thermal comfort of the ankles should be scrutinized, and a FH cool condition is recommended as the most comfortable thermal environment for office workers. Consequently, large amounts of heating energy could be saved in this area in the winter. The results of this study may lead to more efficient energy use for office or home heating systems.

  15. Simulating Thermal Cycling and Isothermal Deformation Response of Polycrystalline NiTi

    NASA Technical Reports Server (NTRS)

    Manchiraju, Sivom; Gaydosh, Darrell J.; Noebe, Ronald D.; Anderson, Peter M.

    2011-01-01

    A microstructure-based FEM model that couples crystal plasticity, crystallographic descriptions of the B2-B19' martensitic phase transformation, and anisotropic elasticity is used to simulate thermal cycling and isothermal deformation in polycrystalline NiTi (49.9at% Ni). The model inputs include anisotropic elastic properties, polycrystalline texture, DSC data, and a subset of isothermal deformation and load-biased thermal cycling data. A key experimental trend is captured.namely, the transformation strain during thermal cycling is predicted to reach a peak with increasing bias stress, due to the onset of plasticity at larger bias stress. Plasticity induces internal stress that affects both thermal cycling and isothermal deformation responses. Affected thermal cycling features include hysteretic width, two-way shape memory effect, and evolution of texture with increasing bias stress. Affected isothermal deformation features include increased hardening during loading and retained martensite after unloading. These trends are not captured by microstructural models that lack plasticity, nor are they all captured in a robust manner by phenomenological approaches. Despite this advance in microstructural modeling, quantitative differences exist, such as underprediction of open loop strain during thermal cycling.

  16. Analytical predictions of liquid and air photovoltaic/thermal flat-plate collector performance

    SciTech Connect

    Raghuraman, P.; Hendrie, S. D.

    1980-01-01

    Two separate one-dimensional analyses have been developed for the prediction of the thermal and electrical performance of both liquid and air flat-plate photovoltaic/thermal (PV/T) collectors. The analyses account for the temperature difference between the primary insolation absorber (the photovoltaic cells) and the secondary absorber (a thermal absorber flat plate). The results of the analyses are compared with test measurements, and therefrom, design recommendations are made to maximize the total energy extracted from the collectors.

  17. EMTA THERMAL CONDUCTIVITY PREDICTIONS FOR UNIRRADIATED AND IRRADIATED SIC/SIC COMPOSITES

    SciTech Connect

    Nguyen, Ba Nghiep; Henager, Charles H.; Kurtz, Richard J.

    2013-06-30

    The objective of this work is to achieve a predictive engineering tool to assess and tailor the thermophysical properties of unirradiated and irradiated SiC/SiC composites. Towards this objective, first, PNNL’s EMTA (Eshelby-Mori-Tanaka Approach) software was successfully applied to predict the thermal conductivity of unirradiated 2D SiC/SiC composites [1]. Next, we have extended the EMTA model reported in [1] to predict the thermal conductivity of these composites subjected to neutron irradiation at elevated temperatures and irradiation doses leading to defect saturation [2]. As EMTA thermal conductivity predictions compared well with the experimental results [1-2], in the future, a unified EMTA for SiC/SiC composites will be developed that addresses both thermal and mechanical properties.

  18. Effective thermal conductivity method for predicting spent nuclear fuel cladding temperatures in a dry fill gas

    SciTech Connect

    Bahney, Robert

    1997-12-19

    This paper summarizes the development of a reliable methodology for the prediction of peak spent nuclear fuel cladding temperature within the waste disposal package. The effective thermal conductivity method replaces other older methodologies.

  19. Analytical predictions of liquid and air photovoltaic/thermal, flat-plate collector performance

    SciTech Connect

    Raghuraman, P.

    1981-11-01

    Two separate one-dimensional analyses have been developed for the prediction of the thermal and electrical performance of both liquid and air flat-plate, photovoltaic/thermal (PV/T) collectors. The results of the analyses are compared with test measurements, and therefrom design recommendations are made to maximize the total energy extracted from the collectors. 16 refs.

  20. Thermal fluctuations, mechanical response, and hyperuniformity in jammed solids

    NASA Astrophysics Data System (ADS)

    Ikeda, Atsushi; Berthier, Ludovic

    2015-07-01

    Jamming is a geometric phase transition occurring in dense particle systems in the absence of temperature. We use computer simulations to analyze the effect of thermal fluctuations on several signatures of the transition. We show that scaling laws for bulk and shear moduli only become relevant when thermal fluctuations are extremely small, and propose their relative ratio as a quantitative signature of jamming criticality. Despite the nonequilibrium nature of the transition, we find that thermally induced fluctuations and mechanical responses obey equilibrium fluctuation-dissipation relations near jamming, provided the appropriate fluctuating component of the particle displacements is analyzed. This shows that mechanical moduli can be directly measured from particle positions in mechanically unperturbed packings, and suggests that the definition of a "nonequilibrium index" is unnecessary for amorphous materials. We find that fluctuations of particle displacements are spatially correlated, and define a transverse and a longitudinal correlation length scale which both diverge as the jamming transition is approached. We analyze the frozen component of density fluctuations and find that it displays signatures of nearly hyperuniform behavior at large length scales. This demonstrates that hyperuniformity in jammed packings is unrelated to a vanishing compressibility and explains why it appears remarkably robust against temperature and density variations. Differently from jamming criticality, obstacles preventing the observation of hyperuniformity in colloidal systems do not originate from thermal fluctuations.

  1. Numerical investigation into thermal load responses of steel railway bridge

    NASA Astrophysics Data System (ADS)

    Saravana Raja Mohan, K.; Sreemathy, J. R.; Saravanan, U.

    2017-07-01

    Bridge design requires consideration of the effects produced by temperature variations and the resultant thermal gradients in the structure. Temperature fluctuation leads to expansion and contraction of bridges and these movements are taken care by providing expansion joints and bearings. Free movements of a member can be restrained by imposing certain boundary condition but at the same time considerable allowances should be made for the stresses resulting from this restrained condition since the additional deformations and stresses produced may affect the ultimate and serviceability limit states of the structure. If the reaction force generated by the restraints is very large, then its omission can lead to unsafe design. The principal objective of this research is to study the effects of temperature variation on stresses and deflection in a steel railway bridge. A numerical model, based on finite element analysis is presented for evaluating the thermal performance of the bridge. The selected bridge is analyzed and the temperature field distribution and the corresponding thermal stresses and strains are calculated using the finite element software ABAQUS. A thorough understanding of the thermal load responses of a structure will result in safer and dependable design practices.

  2. Thermal Conductivity Prediction of Soil in Complex Plant Soil System using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Wardani, A. K.; Purqon, A.

    2016-08-01

    Thermal conductivity is one of thermal properties of soil in seed germination and plants growth. Different soil types have different thermal conductivity. One of soft-computing promising method to predict thermal conductivity of soil types is Artificial Neural Network (ANN). In this study, we estimate the thermal conductivity of soil prediction in a soil-plant complex systems using ANN. With a feed-forward multilayer trained with back-propagation with 4, 10 and 1 on the input, hidden and output layers respectively. Our input are heating time, temperature and thermal resistance with thermal conductivity of soil as a target. ANN prediction demonstrates a good agreement with Mean Squared Error-testing (MSEte) of 9.56 x 10-7 for soils with green beans and those of bare soils is 7.00 × 10-7 respectively Green beans grow only on black-clay soil with a thermal conductivity of 0.7 W/m K with a sufficient water content. Our results demonstrate that temperature, moisture content, colour, texture and structure of soil are greatly affect to the thermal conductivity of soil in seed germination and plant growth. In future, it is potentially applied to estimate more complex compositions of plant-soil systems.

  3. Differences in thermal optical response between intact diabetic and nondiabetic human skin

    NASA Astrophysics Data System (ADS)

    Yeh, Shu-Jen; Hanna, Charles F.; Kantor, Stan; Hohs, Ronald; Khalil, Omar S.

    2003-07-01

    We observed a difference in the thermal response of localized reflectance signal of human skin between type-2 diabetic and non-diabetic volunteers. We investigated the use of this thermo-optical behavior as a basis for a non-invasive method for the determination of the diabetic status of a subject. We used a two-site temperature differential method, which is predicated upon the measurement of localized reflectance from two areas on the surface of the skin, each of these areas is subjected to a different thermal perturbation. The response of skin localized reflectance to temperature was measured and used in a classification algorithm. We used a discriminant function to classify subjects as diabetics or non-diabetics. In a prediction set of 24 non-invasive tests collected from 6 diabetics and 6 non-diabetics, the sensitivity ranged between 73% and 100%, and the specificity ranged between 75% and 100%, depending on the thermal conditions and probe-skin contact time. The difference in thermo-optical response of the skin of the two groups may be explained in terms of difference in response of cutaneous microcirculation to temperature, which is manifested as a difference in the near infrared light absorption and scattering. Another factor is the difference in the temperature response of the scattering coefficient between the two groups, which may be caused by cutaneous structural differences induced by non-enzymatic glycation of skin protein fibers, and/or by the difference in blood cell aggregation.

  4. Cardiovascular disease-induced thermal responses during passive heat stress: an integrated computational study.

    PubMed

    Zhang, Xiancheng; Noda, Shigeho; Himeno, Ryutaro; Liu, Hao

    2016-11-01

    The cardiovascular system plays a crucial role in human thermoregulation; cardiovascular diseases may lead to significantly degrading the thermoregulation ability for patients during exposure to heat stress. To evaluate the thermal responses of patients with common chronic cardiovascular diseases, we here propose an integrated computational model by coupling a two-node thermoregulation model with a closed-loop, multi-compartment, lumped-parameter cardiovascular model. This bioheat transfer model is validated, capable to predict cardiovascular functions and thermal responses under varying environmental conditions. Our results demonstrate that the cardiovascular disease-induced reduction in cardiac output and skin blood flow causes extra elevation in core temperature during hyperthermic challenges. In addition, a combination of aging, obesity, and cardiovascular diseases shows a pronounced increase in core temperature during heat exposure, which implies that such combined effect may increase the risk of heat-related morbidity and mortality. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Statistical energy analysis response prediction methods for structural systems

    NASA Technical Reports Server (NTRS)

    Davis, R. F.

    1979-01-01

    The results of an effort to document methods for accomplishing response predictions for commonly encountered aerospace structural configurations is presented. Application of these methods to specified aerospace structure to provide sample analyses is included. An applications manual, with the structural analyses appended as example problems is given. Comparisons of the response predictions with measured data are provided for three of the example problems.

  6. Thermal-mechanical response to simple shear extension

    NASA Technical Reports Server (NTRS)

    Furlong, K. P.

    1985-01-01

    The mechanism of extension in the continental crust is apparently much more complex than that acting in the oceanic lithosphere. Recently, Wernicke has proposed that a significant fraction of extension in the continental lithosphere may occur by a simple shear mechanism along discrete fault/shear zones which cut the crust, and perhaps extend into the uppermost mantle. Clearly much of the surface evidence for extension supports this concept, but the depth extent of simple shear extension in the continental crust is unclear. Using numerical simulations, the thermal and associated mechanical behavior of the continental lithosphere in response to lithosphere extension along a low-angle simple shear zone which cuts through the lithospheric plate was determined in order to evaluate the resolving ability of thermal (heat flow and metamorphic P-T-time paths) and elevation observations in constraining the mode of continental extension.

  7. Thermal-mechanical response to simple shear extension

    NASA Astrophysics Data System (ADS)

    Furlong, K. P.

    The mechanism of extension in the continental crust is apparently much more complex than that acting in the oceanic lithosphere. Recently, Wernicke has proposed that a significant fraction of extension in the continental lithosphere may occur by a simple shear mechanism along discrete fault/shear zones which cut the crust, and perhaps extend into the uppermost mantle. Clearly much of the surface evidence for extension supports this concept, but the depth extent of simple shear extension in the continental crust is unclear. Using numerical simulations, the thermal and associated mechanical behavior of the continental lithosphere in response to lithosphere extension along a low-angle simple shear zone which cuts through the lithospheric plate was determined in order to evaluate the resolving ability of thermal (heat flow and metamorphic P-T-time paths) and elevation observations in constraining the mode of continental extension.

  8. Prediction of elastomer lifetimes from accelerated thermal-aging experiments

    SciTech Connect

    Gillen, K.T.; Clough, R.L.

    1997-09-01

    For elastomers that will be used in applications involving long lifetimes, it is often necessary to first carry out and model accelerated aging experiments at higher than ambient temperatures, and then extrapolate the results in order to make lifetime predictions at the use temperature. Continuing goals in such endeavors are to better understand potential problems with such modeling approaches and to find ways of improving confidence in the predictions when the data are extrapolated. In this paper we will address several important issues involved in these procedures for elastomers exposed to air (oxygen), and discuss some potentially useful techniques and approaches which can increase confidence in lifetime predictions.

  9. The Thermal Response of HMX-TATB Charges

    NASA Astrophysics Data System (ADS)

    Drake, Rod

    2015-06-01

    The use of formulations containing two explosives is one approach to achieving charge safety and performance requirements. The intention of this approach is to produce a formulation that only has the desirable features of the constituent materials. HMX and TATB have very different properties & have been used in a study to understand how the characteristics of the constituent materials affect the thermal response of a mixed formulation. A range of formulations were prepared in which the proportion and particle size distributions of the HMX and TATB were varied. Times to explosion of spherical charges were measured in the One-Dimensional Time-To-Explosion apparatus and compared to those of formulations based only on HMX and TATB. The response of the mixed formulations was found to be largely determined by the HMX. Small contributions to the responses were made by the binder type and the particle size of the TATB. Numerical models were developed and used to rationalise the results.

  10. Augmented Method to Improve Thermal Data for the Figure Drift Thermal Distortion Predictions of the JWST OTIS Cryogenic Vacuum Test

    NASA Technical Reports Server (NTRS)

    Park, Sang C.; Carnahan, Timothy M.; Cohen, Lester M.; Congedo, Cherie B.; Eisenhower, Michael J.; Ousley, Wes; Weaver, Andrew; Yang, Kan

    2017-01-01

    The JWST Optical Telescope Element (OTE) assembly is the largest optically stable infrared-optimized telescope currently being manufactured and assembled, and is scheduled for launch in 2018. The JWST OTE, including the 18 segment primary mirror, secondary mirror, and the Aft Optics Subsystem (AOS) are designed to be passively cooled and operate near 45K. These optical elements are supported by a complex composite backplane structure. As a part of the structural distortion model validation efforts, a series of tests are planned during the cryogenic vacuum test of the fully integrated flight hardware at NASA JSC Chamber A. The successful ends to the thermal-distortion phases are heavily dependent on the accurate temperature knowledge of the OTE structural members. However, the current temperature sensor allocations during the cryo-vac test may not have sufficient fidelity to provide accurate knowledge of the temperature distributions within the composite structure. A method based on an inverse distance relationship among the sensors and thermal model nodes was developed to improve the thermal data provided for the nanometer scale WaveFront Error (WFE) predictions. The Linear Distance Weighted Interpolation (LDWI) method was developed to augment the thermal model predictions based on the sparse sensor information. This paper will encompass the development of the LDWI method using the test data from the earlier pathfinder cryo-vac tests, and the results of the notional and as tested WFE predictions from the structural finite element model cases to characterize the accuracies of this LDWI method.

  11. Synthesis and characterization of thermally responsive polymer layers

    NASA Astrophysics Data System (ADS)

    Seeber, Michael

    Future devices such as biomedical and microfluidic devices, to a large extent, will depend on the interactions between the device surfaces and the contacting liquid. Further, biological liquids containing proteins call for controllable interactions between devices and such proteins, however the bulk material must retain the inherent mechanical properties from which the device was fabricated from. It is well known that surface modification is a suitable technique to tune the surface properties without sacrificing the bulk properties of the substrate. In the present study, surface properties were modified through temperature responsive polymer layers. After the modification, the surfaces gained switchability toward protein interaction as well as surface wettability properties. Poly(N-isopropylacrylamide) (PNIPAM), a well studied thermo-responsive polymer was utilized in the subsequent work. Firstly, thermally responsive brushes made from well defined block copolymers incorporating NIPAM and the surface reactive monomer, glycidyl methacrylate (GMA) were fabricated in a single step process. Reaction of the PGMA block with surface hydroxyl groups anchors the polymers to the surface yet allows PNIPAM to assemble at the interface at high enough concentration to exhibit thermally responsive properties in aqueous solutions. Surface properties of the resulting brushes prepared the 1-step process are compared to characteristics of PNIPAM brushes synthesized by already established methods. The thickness, swelling, and protein adsorption of the PNIPAM films were studied by ellipsometry. Chemical composition of the layer was studied by angle-resolved x-ray photoelectron spectroscopy. Film morphologies and forces of adhesion to fibrinogen were examined using atomic force microscopy (AFM) tapping mode and colloidal probe technique. Block copolymer (BCP) and conventional brush films were abraded and subsequently examined for changes in thermally responsive behavior. The results

  12. Mechanistic Modeling Framework for Predicting Extreme Battery Response

    SciTech Connect

    Geller, Anthony S.

    2014-11-01

    The objectives of this project are to address the root cause implications of thermal runaway of Li-ion batteries by delivering a software architecture solution that can lead to the development of predictive mechanisms that are based on identification of species.

  13. Thermal equation of state of bcc and hcp Fe: linear response quasi-harmonic lattice dynamics

    NASA Astrophysics Data System (ADS)

    Sha, Xianwei

    2005-03-01

    Linear-response Linear-Muffin-Tin-Orbital calculations have been performed to understand and predict the thermal equation of state, elasticity, and phase stability of bcc and hcp Fe, for input into dynamic shock finite-element simulations. The phonon dispersion and phonon density of states have been calculated at different volumes and various c/a axial ratios for hcp structures, which show good agreements with available experimental data. The thermal conductivity and electrical resistivity at different pressure have been calculated. Free energy functional for bcc and hcp Fe has been derived, and has been further applied to establish the thermal equation of state, bulk modulus K0, dK0/dT, and thermal expansion coefficients under high pressures and temperatures. A detailed comparison with experiment has been made. For hcp Fe, the variations of c/a ratios with temperatures and pressures have been predicted. The influence of anharmonic effects has been examined using tight-binding calculations. This work was supported by US Department of Energy ASCI/ASAP subcontract to Caltech , Grant DOE W-7405-ENG-48 (to REC).

  14. Three-Dimensional Finite Element Ablative Thermal Response and Thermostructural Design of Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Dec, John A.; Braun, Robert D.

    2011-01-01

    A finite element ablation and thermal response program is presented for simulation of three-dimensional transient thermostructural analysis. The three-dimensional governing differential equations and finite element formulation are summarized. A novel probabilistic design methodology for thermal protection systems is presented. The design methodology is an eight step process beginning with a parameter sensitivity study and is followed by a deterministic analysis whereby an optimum design can determined. The design process concludes with a Monte Carlo simulation where the probabilities of exceeding design specifications are estimated. The design methodology is demonstrated by applying the methodology to the carbon phenolic compression pads of the Crew Exploration Vehicle. The maximum allowed values of bondline temperature and tensile stress are used as the design specifications in this study.

  15. Kinetics of humoral responsiveness in severe thermal injury.

    PubMed Central

    Rapaport, F T; Bachvaroff, R J

    1976-01-01

    Severe thermal injury has the capacity to increase the rate of generation of antibody-forming cells in mice. The intensity of stimulation appears to be proportional to the extent of injury. The effect has been observed in animals burned within 1 hr before or after sensitization with test antigen(s), and persists up to 14 days after injury. Thereafter, the stimulatory effect wanes, and disappears by the 21st day after burning. Responses to T-cell (thymus derived lymphocytes) dependent antigens (sheep erythrocytes; sheep erythrocytes coupled to TNP) and to antigens not requiring T and B-cell (bone marrow derived lymphocytes) cooperation (DNP-Ficoll) appear to be equally affected by thermal injury. The mechanisms underlying this form of enhanced antibody response are not clear. The data, however, support the possibility that the burn wound may release factor(s) capable of enhancing humoral responsiveness in the injured animal. Such factor(s) do not appear to be endotoxins. PMID:945719

  16. High fidelity computational characterization of the mechanical response of thermally aged polycarbonate

    NASA Astrophysics Data System (ADS)

    Zhang, Zesheng; Zhang, Lili; Jasa, John; Li, Wenlong; Gazonas, George; Negahban, Mehrdad

    2017-07-01

    A representative all-atom molecular dynamics (MD) system of polycarbonate (PC) is built and conditioned to capture and predict the behaviours of PC in response to a broad range of thermo-mechanical loadings for various thermal aging. The PC system is constructed to have a distribution of molecular weights comparable to a widely used commercial PC (LEXAN 9034), and thermally conditioned to produce models for aged and unaged PC. The MD responses of these models are evaluated through comparisons to existing experimental results carried out at much lower loading rates, but done over a broad range of temperatures and loading modes. These experiments include monotonic extension/compression/shear, unilaterally and bilaterally confined compression, and load-reversal during shear. It is shown that the MD simulations show both qualitative and quantitative similarity with the experimental response. The quantitative similarity is evaluated by comparing the dilatational response under bilaterally confined compression, the shear flow viscosity and the equivalent yield stress. The consistency of the in silico response to real laboratory experiments strongly suggests that the current PC models are physically and mechanically relevant and potentially can be used to investigate thermo-mechanical response to loading conditions that would not easily be possible. These MD models may provide valuable insight into the molecular sources of certain observations, and could possibly offer new perspectives on how to develop constitutive models that are based on better understanding the response of PC under complex loadings. To this latter end, the models are used to predict the response of PC to complex loading modes that would normally be difficult to do or that include characteristics that would be difficult to measure. These include the responses of unaged and aged PC to unilaterally confined extension/compression, cyclic uniaxial/shear loadings, and saw-tooth extension/compression/shear.

  17. Novel use of infrared thermal imaging to predict arteriovenous fistula patency and maturation.

    PubMed

    Al Shakarchi, Julien; Hodson, James; Field, Melanie; Inston, Nicholas

    2017-07-14

    The arteriovenous fistula (AVF) is the preferred method of long-term haemodialysis. However, it has been shown to have a substantial rate of maturation failure. The formation of an AVF creates haemodynamic changes to blood flow in the arm with diversion of blood away from the distal circulation into the low pressure venous system, in turn, leading to thermal changes distally. In this study, we aimed to assess the novel use of infrared thermal imaging as a predictor of arteriovenous maturation. A prospective cohort study was conducted on 100 consecutive patients who had AVF formation from December 2015 to June 2016. Infrared thermal imaging was undertaken pre- and post-operatively on the day of surgery to assess thermal changes to the arms and to assess them as predictors of clinical patency and functional maturation. For clinical patency, infrared thermal imaging was found to have a positive predictive value of 88% and a negative predictive value of 86%. For functional maturation, it was found to have a positive predictive value of 84%, a negative predictive value of 95%. In addition, it was shown to have superiority to the commonly used intra-operative predictor of thrill as well as other independent pre-operative patient factors. Infrared thermal imaging has been found to be a very useful tool in accurately predicting fistula patency and maturation.

  18. Economic thermoregulatory response explains mismatch between thermal physiology and behaviour in newts.

    PubMed

    Gvoždík, Lumír; Kristín, Peter

    2017-03-15

    Temperature is an important factor determining distribution and abundance of organisms. Predicting the impact of warming climate on ectotherm populations requires information about species' thermal requirements, i.e. their so-called 'thermal niche'. The characterization of thermal niche remains a complicated task. We compared the applicability of two indirect approaches, based on reaction norm (aerobic scope curve) and optimality (preferred body temperature) concepts, for indirect estimation of thermal niche while using newts, Ichthyosaura alpestris, as a study system. If the two approaches are linked, then digesting newts should keep their body temperatures close to values maximizing aerobic scope for digestion. After feeding, newts maintained their body temperatures within a narrower range than did hungry individuals. The range of preferred body temperatures was well below the temperature maximizing aerobic scope for digestion. Optimal temperatures for factorial aerobic scope fell within the preferred body temperature range of digesting individuals. We conclude that digesting newts prefer body temperatures that are optimal for the maximum aerobic performance but relative to the maintenance costs. What might be termed the 'economic' thermoregulatory response explains the mismatch between thermal physiology and behaviour in this system.

  19. Study of Uncertainties of Predicting Space Shuttle Thermal Environment. [impact of heating rate prediction errors on weight of thermal protection system

    NASA Technical Reports Server (NTRS)

    Fehrman, A. L.; Masek, R. V.

    1972-01-01

    Quantitative estimates of the uncertainty in predicting aerodynamic heating rates for a fully reusable space shuttle system are developed and the impact of these uncertainties on Thermal Protection System (TPS) weight are discussed. The study approach consisted of statistical evaluations of the scatter of heating data on shuttle configurations about state-of-the-art heating prediction methods to define the uncertainty in these heating predictions. The uncertainties were then applied as heating rate increments to the nominal predicted heating rate to define the uncertainty in TPS weight. Separate evaluations were made for the booster and orbiter, for trajectories which included boost through reentry and touchdown. For purposes of analysis, the vehicle configuration is divided into areas in which a given prediction method is expected to apply, and separate uncertainty factors and corresponding uncertainty in TPS weight derived for each area.

  20. Nodal predictive error model and Bayesian approach for thermal diffusivity and heat source mapping

    NASA Astrophysics Data System (ADS)

    Massard, H.; Fudym, Olivier; Orlande, H. R. B.; Batsale, J. C.

    2010-07-01

    This article aims at solving a two-dimensional inverse heat conduction problem in order to retrieve both the thermal diffusivity and heat source field in a thin plate. A spatial random heat pulse is applied to the plate and the thermal response is analysed. The inverse approach is based on the minimisation of a nodal predictive error model, which yields a linear estimation problem. As a result of this approach, the sensitivity matrix is directly filled with experimental data, and thus is partially noisy. Bayesian estimators, such as the Maximum A Posteriori and a Markov Chain Monte Carlo approach (Metropolis-Hastings), are implemented and compared with the Ordinary Least Squares solution. Simulated temperature measurements are used in the inverse analysis. The nodal strategy relies on the availability of temperature measurements with fine spatial resolution and high frequency, typical of nowadays infrared cameras. The effects of both the measurement errors and of the model errors on the inverse problem solution are also analysed.

  1. Modeling thermal conductivity of thermal spray coatings: comparing predictions to experiments

    NASA Astrophysics Data System (ADS)

    Tan, Y.; Longtin, J. P.; Sampath, S.

    2006-12-01

    Thermal conductivity plays a critical role in the thermal transport of thermal-sprayed coatings. In this article, a combined image analysis and finite-element method approach is developed to assess thermal conductivity from high-resolution scanning electron microscopy images of the coating microstructure. Images are analyzed with a collection of image-processing algorithms to reveal the microscopic coating morphology. The processed digital image is used to generate a two-dimensional finite-element mesh in which pores, cracks, and the bulk coating material are identified. The effective thermal conductivity is then simulated using a commercial finite-element code. Results are presented for three coating material systems [yttriastabilized zirconia (YSZ), molybdenum, and NiAl], and the results are found to be in good agreement with the experimental values obtained using the laser flash method. The YSZ coatings are also annealed, and the analysis procedure was repeated to determine whether the technique can accurately assess changes in coating morphology.

  2. Quantifying deforestation and forest degradation with thermal response.

    PubMed

    Lin, Hua; Chen, Yajun; Song, Qinghai; Fu, Peili; Cleverly, James; Magliulo, Vincenzo; Law, Beverly E; Gough, Christopher M; Hörtnagl, Lukas; Di Gennaro, Filippo; Matteucci, Giorgio; Montagnani, Leonardo; Duce, Pierpaolo; Shao, Changliang; Kato, Tomomichi; Bonal, Damien; Paul-Limoges, Eugénie; Beringer, Jason; Grace, John; Fan, Zexin

    2017-12-31

    Deforestation and forest degradation cause the deterioration of resources and ecosystem services. However, there are still no operational indicators to measure forest status, especially for forest degradation. In the present study, we analysed the thermal response number (TRN, calculated by daily total net radiation divided by daily temperature range) of 163 sites including mature forest, disturbed forest, planted forest, shrubland, grassland, savanna vegetation and cropland. TRN generally increased with latitude, however the regression of TRN against latitude differed among vegetation types. Mature forests are superior as thermal buffers, and had significantly higher TRN than disturbed and planted forests. There was a clear boundary between TRN of forest and non-forest vegetation (i.e. grassland and savanna) with the exception of shrubland, whose TRN overlapped with that of forest vegetation. We propose to use the TRN of local mature forest as the optimal TRN (TRNopt). A forest with lower than 75% of TRNopt was identified as subjected to significant disturbance, and forests with 66% of TRNopt was the threshold for deforestation within the absolute latitude from 30° to 55°. Our results emphasized the irreplaceable thermal buffer capacity of mature forest. TRN can be used for early warning of deforestation and degradation risk. It is therefore a valuable tool in the effort to protect forests and prevent deforestation. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Correlation of Predicted and Observed Optical Properties of Multilayer Thermal Control Coatings

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.

    1998-01-01

    Thermal control coatings on spacecraft will be increasingly important, as spacecraft grow smaller and more compact. New thermal control coatings will be needed to meet the demanding requirements of next generation spacecraft. Computer programs are now available to design optical coatings and one such program was used to design several thermal control coatings consisting of alternating layers of WO3 and SiO2. The coatings were subsequently manufactured with electron beam evaporation and characterized with both optical and thermal techniques. Optical data were collected in both the visible region of the spectrum and the infrared. Predictions of solar absorptance and infrared emittance were successfully correlated to the observed thermal control properties. Functional performance of the coatings was verified in a bench top thermal vacuum chamber.

  4. Improvements to a Response Surface Thermal Model for Orion Mated to the International Space Station

    NASA Technical Reports Server (NTRS)

    Miller, StephenW.; Walker, William Q.

    2011-01-01

    This study is an extension of previous work to evaluate the applicability of Design of Experiments (DOE)/Response Surface Methodology to on-orbit thermal analysis. The goal was to determine if the methodology could produce a Response Surface Equation (RSE) that predicted the thermal model temperature results within +/-10 F. An RSE is a polynomial expression that can then be used to predict temperatures for a defined range of factor combinations. Based on suggestions received from the previous work, this study used a model with simpler geometry, considered polynomials up to fifth order, and evaluated orbital temperature variations to establish a minimum and maximum temperature for each component. A simplified Outer Mold Line (OML) thermal model of the Orion spacecraft was used in this study. The factors chosen were the vehicle's Yaw, Pitch, and Roll (defining the on-orbit attitude), the Beta angle (restricted to positive beta angles from 0 to 75), and the environmental constants (varying from cold to hot). All factors were normalized from their native ranges to a non-dimensional range from -1.0 to 1.0. Twenty-three components from the OML were chosen and the minimum and maximum orbital temperatures were calculated for each to produce forty-six responses for the DOE model. A customized DOE case matrix of 145 analysis cases was developed which used analysis points at the factor corners, mid-points, and center. From this data set, RSE s were developed which consisted of cubic, quartic, and fifth order polynomials. The results presented are for the fifth order RSE. The RSE results were then evaluated for agreement with the analytical model predictions to produce a +/-3(sigma) error band. Forty of the 46 responses had a +/-3(sigma) value of 10 F or less. Encouraged by this initial success, two additional sets of verification cases were selected. One contained 20 cases, the other 50 cases. These cases were evaluated both with the fifth order RSE and with the analytical

  5. Solar thermal energy predictability for the grid (STEP4Grid)

    NASA Astrophysics Data System (ADS)

    Fernández-León, Mercedes; Pacheco, Germán; Bolinaga, Beatriz; Campa, Luis; Lara-Fanego, Vicente; Valenzuela, José M.

    2016-05-01

    There is a growing concern about the importance of the improvement of efficiency, the dispatchability of thermosolar plants and the predictability of the energy production for electrical markets. In the current research, a new developed system denominated STEP4Grid is presented and their products are analyzed. Currently it is on operation in the thermosolar plant of Solúcar in Sanlúcar la Mayor, Seville, Spain. Forecasting Direct Normal Irradiance (DNI) and Forecasting Gross Production (FGP) have been provided by the system. This product generates different time horizon forecasts combining all-sky cameras, satellite and Numerical Weather Prediction Model (NWPM) forecasts. The sensors network installed all over the plant provides continuous meteorological and non-meteorological data, which act as an input for the energy production model. The whole system is viewable by plant operators with the help of a layout system. For the May and June of 2015 database, the FGP based on satellite and Numerical Weather Prediction Models (NWPM) DNI predictions have an rMAE for an hour-ahead horizon of 16 % (May) and 17 % (June) respectively. For all the horizons, the FGP increases their deviations the further it is from the real-time and the profile is similar to the evolution of DNI forecasting rMAE.

  6. The thermal response of HMX-TATB charges

    NASA Astrophysics Data System (ADS)

    Drake, R. C.

    2017-01-01

    One approach to achieving charge safety and performance requirements is to prepare formulations containing two (or more) explosives. The intention of this approach is that by judicious choice of explosives and binder the formulation will have the desirable features of the constituent materials. HMX and TATB have very different properties. In an attempt to achieve a formulation which has the safety and performance characteristics of TATB and HMX, respectively, a range of formulations were prepared. The thermal response of the formulations were measured in the One-Dimensional Time To Explosion (ODTX) configuration and compared to those of formulations containing only HMX and TATB. The response of the mixed formulations was found to be largely determined by the HMX component with the binder making a small contribution. A formulation with a Kel-F 800 binder had a much higher critical temperature than would have been expected based on the critical temperatures of formulations with HTPB-IPDI as the binder.

  7. Thermal response of various thermal barrier coatings in a high heat flux rocket engine

    NASA Technical Reports Server (NTRS)

    Nesbitt, J. A.

    1990-01-01

    Traditional APS ZrO2-Y2O3 thermal barrier coatings (TBCs) formed by air plasma spraying and low pressure and air plasma sprayed ZrO2-Y2O3/NiCrAlY cermet coatings were tested in an H2-O2 rocket engine. The test cycle was approximately 1.2 s at 1400 C in a hydrogen-rich environment. During testing, the maximum metal temperature without a coating was 1310 C. The traditional ZrO2-Y2O3 TBCs with a 100-125 micron thick ceramic layer reduced the maximum metal temperature by approximately 350 C. Increasing the ceramic layer thickness to 200-225 microns resulted in an additional metal temperature reduction of 100 C. However, the cermet coatings, consisting of a ceramic and metal mixture, exhibited a much lower thermal protection capability by reducing the maximum metal temperature by approximately 100 C. It was also found that the surface roughness of the traditional TBCs had little effect on the thermal response.

  8. Thermal equilibrium responses in Guzerat cattle raised under tropical conditions.

    PubMed

    Camerro, Leandro Zuccherato; Maia, Alex Sandro Campos; Neto, Marcos Chiquitelli; Costa, Cintia Carol de Melo; Castro, Patric André

    2016-08-01

    The literature is very sparse regarding research on the thermal equilibrium in Guzerat cattle (Bos indicus) under field conditions. Some factors can modify the physiological response of Guzerat cattle, such as the reactivity of these animals to handling. Thus, the development of a methodology to condition and select Guzerat cattle to acclimate them to the routine collection of data without altering their physiological response was the objective of the preliminary experiment. Furthermore, the animals selected were used in the main experiment to determine their thermal equilibrium according to the thermal environment. For this proposal, the metabolic heat production and heat exchange between the animal and the environment were measured simultaneously in the field with an indirect calorimetry system coupled to a facial mask. The results of the preliminary experiment showed that the respiratory rate could demonstrate that conditioning efficiently reduced the reactivity of the animals to experimental handling. Furthermore, the respiratory rate can be used to select animals with less reactivity. The results of the main experiment demonstrate that the skin, hair-coat surface and expired air temperature depend on the air temperature, whereas the rectal temperature depends on the time of day; consequently, the sensible heat flow was substantially reduced from 70 to 20Wm(-2) when the air temperature increased from 24 to 34°C. However, the respiratory latent heat flow increased from 10 to 15Wm(-2) with the same temperature increase. Furthermore, the metabolic heat production remained stable, independent of the variation of the air temperature; however, it was higher in males than in females (by approximately 25%). This fact can be explained by the variation of the ventilation rate, which had a mean value of 1.6 and 2.2Ls(-1) for females and males, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Advanced structural analysis of nanoporous materials by thermal response measurements.

    PubMed

    Oschatz, Martin; Leistner, Matthias; Nickel, Winfried; Kaskel, Stefan

    2015-04-07

    Thermal response measurements based on optical adsorption calorimetry are presented as a versatile tool for the time-saving and profound characterization of the pore structure of porous carbon-based materials. This technique measures the time-resolved temperature change of an adsorbent during adsorption of a test gas. Six carbide and carbon materials with well-defined nanopore architecture including micro- and/or mesopores are characterized by thermal response measurements based on n-butane and carbon dioxide as the test gases. With this tool, the pore systems of the model materials can be clearly distinguished and accurately analyzed. The obtained calorimetric data are correlated with the adsorption/desorption isotherms of the materials. The pore structures can be estimated from a single experiment due to different adsorption enthalpies/temperature increases in micro- and mesopores. Adsorption/desorption cycling of n-butane at 298 K/1 bar with increasing desorption time allows to determine the pore structure of the materials in more detail due to different equilibration times. Adsorption of the organic test gas at selected relative pressures reveals specific contributions of particular pore systems to the increase of the temperature of the samples and different adsorption mechanisms. The use of carbon dioxide as the test gas at 298 K/1 bar provides detailed insights into the ultramicropore structure of the materials because under these conditions the adsorption of this test gas is very sensitive to the presence of pores smaller than 0.7 nm.

  10. Evaluating the performance of thermal sensation prediction with a biophysical model.

    PubMed

    Schweiker, M; Kingma, B R M; Wagner, A

    2017-09-01

    Neutral thermal sensation is expected for a human body in heat balance in near-steady-state thermal environments. The physiological thermoneutral zone (TNZ) is defined as the range of operative temperatures where the body can maintain such heat balance by actively adjusting body tissue insulation, but without regulatory increases in metabolic rate or sweating. These basic principles led to the hypothesis that thermal sensation relates to the operative temperature distance from the thermoneutral centroid (dTNZop ). This hypothesis was confirmed by data from respiratory climate chamber experiments. This paper explores the potential of such biophysical model for the prediction of thermal sensation under increased contextual variance. Data (798 votes, 47 participants) from a controlled office environment were used to analyze the predictive performance of the dTNZop model. The results showed a similar relationship between dTNZop and thermal sensation between the dataset used here and the previously used dataset. The predictive performance had the same magnitude as that of the PMV model; however, potential benefits of using a biophysical model are discussed. In conclusion, these findings confirm the potential of the biophysical model with regard to the understanding and prediction of human thermal sensation. Further work remains to make benefit of its full potential. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Mass Law Predicts Hyperbolic Hypoxic Ventilatory Response

    NASA Astrophysics Data System (ADS)

    Severinghaus, John W.

    The hyperbolic hypoxic ventilatory response vs PaO2, HVRp, is interpreted as relecting a mass hyperbolic relationship of cytochrome PcO2 to cytochrome potential Ec, offset 32 torr by the constant diffusion gradient between arterial blood and cytochrome in CB at its constant metabolic rate dot VO_2 . Ec is taken to be a linear function of redox reduction and CB ventilatory drive. As Ec rises in hypoxia, the absolute potentials of each step in the citric acid cycle rises equally while the potential drop across each step remains constant because flux rate remains constant. A hypothetic HVRs ( dot VE vs SaO2) response curve computed from these assumptions is strikingly non linear. A hypothetic HVRp calculated from an assumed linear HVRs cannot be fit to the observed hyperbolic increase of ventilation in response to isocapnic hypoxia at PO2 less than 40 torr. The incompatibility of these results suggest that in future studies HVRs will not be found to be linear, especially below 80% SaO2 and HVRp will fail to be accurately hyperbolic.

  12. Reduced Order Methods for Prediction of Thermal-Acoustic Fatigue

    NASA Technical Reports Server (NTRS)

    Przekop, A.; Rizzi, S. A.

    2004-01-01

    The goal of this investigation is to assess the quality of high-cycle-fatigue life estimation via a reduced order method, for structures undergoing random nonlinear vibrations in a presence of thermal loading. Modal reduction is performed with several different suites of basis functions. After numerically solving the reduced order system equations of motion, the physical displacement time history is obtained by an inverse transformation and stresses are recovered. Stress ranges obtained through the rainflow counting procedure are used in a linear damage accumulation method to yield fatigue estimates. Fatigue life estimates obtained using various basis functions in the reduced order method are compared with those obtained from numerical simulation in physical degrees-of-freedom.

  13. Improving active space telescope wavefront control using predictive thermal modeling

    NASA Astrophysics Data System (ADS)

    Gersh-Range, Jessica; Perrin, Marshall D.

    2015-01-01

    Active control algorithms for space telescopes are less mature than those for large ground telescopes due to differences in the wavefront control problems. Active wavefront control for space telescopes at L2, such as the James Webb Space Telescope (JWST), requires weighing control costs against the benefits of correcting wavefront perturbations that are a predictable byproduct of the observing schedule, which is known and determined in advance. To improve the control algorithms for these telescopes, we have developed a model that calculates the temperature and wavefront evolution during a hypothetical mission, assuming the dominant wavefront perturbations are due to changes in the spacecraft attitude with respect to the sun. Using this model, we show that the wavefront can be controlled passively by introducing scheduling constraints that limit the allowable attitudes for an observation based on the observation duration and the mean telescope temperature. We also describe the implementation of a predictive controller designed to prevent the wavefront error (WFE) from exceeding a desired threshold. This controller outperforms simpler algorithms even with substantial model error, achieving a lower WFE without requiring significantly more corrections. Consequently, predictive wavefront control based on known spacecraft attitude plans is a promising approach for JWST and other future active space observatories.

  14. Geometry dependence of the electrostatic and thermal response of a carbon nanotube during field emission.

    PubMed

    Sanchez, Jaime A; Mengüç, M Pinar

    2008-02-20

    In this paper we present an analysis to simulate heating within an isolated carbon nanotube (CNT) attached to an etched tungsten tip during field emission of an electron beam. The length, radius, wall thickness and shape of the tip (closed with a hemispherical shape or open and flat) of the CNT and its separation distance from the flat surface are considered as variables. Using a finite element method, we predict the field enhancement, emission current and temperature of the CNT as a function of these parameters. The electrostatic and transient thermal analyses are integrated with the field-emission models based on the Fowler-Nordheim approximation and heating/cooling due to emitting energetic electrons (the Nottingham effect). These simulations suggest that the main mechanism responsible for heating of the CNT is Joule heating, which is significantly larger than the Nottingham effect. Results also indicate that the electrostatic characteristics of CNTs are very sensitive to the considered parameters whereas the transient thermal response is only a function of the CNT radius and wall thickness. Further, the thermal response of the CNT is independent of its geometry, meaning that, as long as a given set of geometrical conditions are present that result in a given emission current, the maximum temperature a CNT attains will be the same.

  15. A model for predicting lung cancer response to therapy

    SciTech Connect

    Seibert, Rebecca M. . E-mail: rseiber1@utk.edu; Ramsey, Chester R.; Hines, J. Wesley; Kupelian, Patrick A.; Langen, Katja M.; Meeks, Sanford L.; Scaperoth, Daniel D.

    2007-02-01

    Purpose: Volumetric computed tomography (CT) images acquired by image-guided radiation therapy (IGRT) systems can be used to measure tumor response over the course of treatment. Predictive adaptive therapy is a novel treatment technique that uses volumetric IGRT data to actively predict the future tumor response to therapy during the first few weeks of IGRT treatment. The goal of this study was to develop and test a model for predicting lung tumor response during IGRT treatment using serial megavoltage CT (MVCT). Methods and Materials: Tumor responses were measured for 20 lung cancer lesions in 17 patients that were imaged and treated with helical tomotherapy with doses ranging from 2.0 to 2.5 Gy per fraction. Five patients were treated with concurrent chemotherapy, and 1 patient was treated with neoadjuvant chemotherapy. Tumor response to treatment was retrospectively measured by contouring 480 serial MVCT images acquired before treatment. A nonparametric, memory-based locally weight regression (LWR) model was developed for predicting tumor response using the retrospective tumor response data. This model predicts future tumor volumes and the associated confidence intervals based on limited observations during the first 2 weeks of treatment. The predictive accuracy of the model was tested using a leave-one-out cross-validation technique with the measured tumor responses. Results: The predictive algorithm was used to compare predicted verse-measured tumor volume response for all 20 lesions. The average error for the predictions of the final tumor volume was 12%, with the true volumes always bounded by the 95% confidence interval. The greatest model uncertainty occurred near the middle of the course of treatment, in which the tumor response relationships were more complex, the model has less information, and the predictors were more varied. The optimal days for measuring the tumor response on the MVCT images were on elapsed Days 1, 2, 5, 9, 11, 12, 17, and 18 during

  16. Prediction modeling to determine the adequacy of medical response to urban nuclear attack.

    PubMed

    Dallas, Cham E; Bell, William C

    2007-11-01

    Government reports have persistently indicated the intent of terrorists and hostile nations to acquire and "weaponize" nuclear materials for deliberate attack on a major US metropolitan city. A modeling analysis of the effects of 20- and 550-kiloton nuclear detonations on the 2 major metropolitan centers of Los Angeles and Houston is presented with a focus on thermal casualties. Brode's work as modified by Binninger was used to calculate thermal fluence, using thermal fractions. The EM-1 and WE programs were used to calculate blast effects. Fallout radiation was calculated using the Defense Threat Reduction Agency's Hazard Prediction and Assessment Capability V404SP4 with "urban effects" turned on. The ESRI ArcView program calculated affected populations from 2000 US Census block-level data for areas affected by thermal effects. The population affected by a 550-kiloton nuclear weapon detonated in Los Angeles and Houston is staggering: surviving thermal casualties are estimated at 185,000 and 59,000, respectively. Even the 20-kiloton detonations in Los Angeles and Houston are significant: the numbers of surviving thermal casualties requiring care exceed 28,000 and 10,000, respectively. The surviving health care community postdetonation would be faced with an unprecedented burden of care for thermal casualties. A great expansion of personnel involved in emergency burn care response is critical. Bold, new approaches such as regionalization and predetermined medical air transport need to be considered.

  17. Tunable organization of cellulose nanocrystals for controlled thermal and optical response

    NASA Astrophysics Data System (ADS)

    Diaz A., Jairo A.

    The biorenewable nature of cellulose nanocrystals (CNCs) has opened up new opportunities for cost-effective, sustainable materials design. By taking advantage of their distinctive structural properties and self-assembly, promising applications have started to nurture the fields of flexible electronics, biomaterials, and nanocomposites. CNCs exhibit two fundamental characteristics: rod-like morphology (5-20 nm wide, 50-500 nm long), and lyotropic behavior (i.e., liquid crystalline mesophases formed in solvents), which offer unique opportunities for structural control and fine tuning of thermal and optical properties based on a proper understanding of their individual behavior and interactions at different length scales. In the present work, we attempt to provide an integral description of the influence of single crystals in the thermal and optical response exhibited by nanostructured films. Our approach involved the connection of experimental evidence with predictions of molecular dynamics (MD) simulations. In order to assess the effect of CNC orientation in the bulk response, we produced cellulose nanostructured films under two different mechanisms, namely, self-organization and shear orientation. Self-organized nanostructured films exhibited the typical iridescent optical reflection generated by chiral nematic organization. Shear oriented films disrupted the cholesteric organization, generating highly aligned structures with high optical transparency. The resultant CNC organization present in all nanostructured films was estimated by a second order statistical orientational distribution based on two- dimensional XRD signals. A new method to determine the coefficient of thermal expansion (CTE) in a contact-free fashion was developed to properly characterize the thermal expansion of thin soft films by excluding other thermally activated phenomena. The method can be readily extended to other soft materials to accurately measure thermal strains in a non

  18. Thermal response of radiantly heated Kevlar and graphite/epoxy composites

    SciTech Connect

    Fanucci, J.P.

    1987-02-01

    The response of Kevlar and graphite/epoxy composites subjected to simulated nuclear or laser thermal loads was measured. A solar furnace was used to radiantly heat samples at flux rates of up to 55 cal/sq cm per sec and total fluences of approximately 100 cal/sq cm. An iterative numerical technique was used to estimate the thermophysical properties of the materials by matching observed temperature-time histories with analytical predictions. Comparison of results obtained during this program with previously published data suggests that free stream velocity, which affects smoke blockage and char layer removal, is a critical design parameter. 8 references.

  19. Thermal-mechanical cyclic stress-strain responses of cast B-1900 + Hf

    NASA Technical Reports Server (NTRS)

    Marchand, N.; Pelloux, R. M.; L'Esperance, G.

    1988-01-01

    The fatigue response of B-1900 + Hf superalloy is investigated experimentally under combined thermal and mechanical strain cycling in air, and the results are compared with the existing thermomechanical data on B-1900 + Hf and with the results of a comprehensive study of the fatigue behavior of the alloy under isothermal conditions. It is found that the cyclic stress-strain behavior of the alloy under thermomechanical fatigue is different from the isothermal behavior, with more hardening observed both at high and low temperatures. It is concluded that the synergistic coupling between cyclic strains and temperature cannot be ignored in predicting the cyclic stress-strain behavior of the alloy under realistic conditions.

  20. Thermal conductivity predictions of herringbone graphite nanofibers using molecular dynamics simulations.

    PubMed

    Khadem, Masoud H; Wemhoff, Aaron P

    2013-02-28

    Non-equilibrium molecular dynamics (NEMD) simulations are used to investigate the thermal conductivity of herringbone graphite nanofibers (GNFs) at room temperature by breaking down the axial and transverse conductivity values into intralayer and interlayer components. The optimized Tersoff potential is used to account for intralayer carbon-carbon interactions while the Lennard-Jones potential is used to model the interlayer carbon-carbon interactions. The intralayer thermal conductivity of the graphene layers near room temperature is calculated for different crease angles and number of layers using NEMD with a constant applied heat flux. The edge effect on a layer's thermal conductivity is investigated by computing the thermal conductivity values in both zigzag and armchair directions of the heat flow. The interlayer thermal conductivity is also predicted by imposing hot and cold Nosé-Hoover thermostats on two layers. The limiting case of a 90° crease angle is used to compare the results with those of single-layer graphene and few-layer graphene. The axial and transverse thermal conductivities are then calculated using standard trigonometric conversions of the calculated intralayer and interlayer thermal conductivities, along with calculations of few-layer graphene without a crease. The results show a large influence of the crease angle on the intralayer thermal conductivity, and the saturation of thermal conductivity occurs when number of layers is more than three. The axial thermal conductivity, transverse thermal conductivity in the crease direction, and transverse thermal conductivity normal to the crease for the case of a five-layer herringbone GNF with a 45° crease angle are calculated to be 27 W∕m K, 263 W∕m K, and 1500 W∕m K, respectively, where the axial thermal conductivity is in good agreement with experimental measurements.

  1. Motor cortex activity predicts response alternation during sensorimotor decisions

    PubMed Central

    Pape, Anna-Antonia; Siegel, Markus

    2016-01-01

    Our actions are constantly guided by decisions based on sensory information. The motor cortex is traditionally viewed as the final output stage in this process, merely executing motor responses based on these decisions. However, it is not clear if, beyond this role, the motor cortex itself impacts response selection. Here, we report activity fluctuations over motor cortex measured using MEG, which are unrelated to choice content and predict responses to a visuomotor task seconds before decisions are made. These fluctuations are strongly influenced by the previous trial's response and predict a tendency to switch between response alternatives for consecutive decisions. This alternation behaviour depends on the size of neural signals still present from the previous response. Our results uncover a response-alternation bias in sensorimotor decision making. Furthermore, they suggest that motor cortex is more than an output stage and instead shapes response selection during sensorimotor decision making. PMID:27713396

  2. Zebrafish Locomotor Responses Predict Irritant Potential of ...

    EPA Pesticide Factsheets

    Over the past few decades, the drying and warming trends of global climate change have increased wildland fire (WF) season length, as well as geographic area impacted. Consequently, exposures to WF fine particulate matter (PM2.5; aerodynamic diameter <2.5 µm) are likely to increase in frequency and duration, contributing to a growing public health burden. Given the influence of fuel type and combustion conditions on WFPM2.5 composition, there is pressing need to identify the biomass fuel sources and emission constituents that drive toxicity. Previously, we reported the utility of 6-day post-fertilization (dpf) zebrafish larvae in evaluating diesel exhaust PM-induced irritation, demonstrating responses analogous to those in mammals. In the present study, combustions, separated by smoldering or flaming conditions, of pine needles, red oak, pine, eucalyptus, and peat were achieved using an automated tube furnace paired with a cryo-trapping apparatus to collect condensates of emissions. The condensates were extracted and prepared for use in zebrafish assays. We hypothesized that 1) the extractable organic fractions of biomass smoke PM will elicit dose-dependent irritant responses in 6-dpf zebrafish larvae, and 2) the relative potencies will vary across biomass emissions, potentially driven by varying chemical composition of fuel sources. Six-dpf zebrafish (n= 28-32/group) were exposed acutely to PM extracts (5 concentrations; 0.3-30 µg/ml; half-log intervals) and

  3. Vaporization response of evaporating drops with finite thermal conductivity

    NASA Technical Reports Server (NTRS)

    Agosta, V. D.; Hammer, S. S.

    1975-01-01

    A numerical computing procedure was developed for calculating vaporization histories of evaporating drops in a combustor in which travelling transverse oscillations occurred. The liquid drop was assumed to have a finite thermal conductivity. The system of equations was solved by using a finite difference method programmed for solution on a high speed digital computer. Oscillations in the ratio of vaporization of an array of repetitivity injected drops in the combustor were obtained from summation of individual drop histories. A nonlinear in-phase frequency response factor for the entire vaporization process to oscillations in pressure was evaluated. A nonlinear out-of-phase response factor, in-phase and out-of-phase harmonic response factors, and a Princeton type 'n' and 'tau' were determined. The resulting data was correlated and is presented in graphical format. Qualitative agreement with the open literature is obtained in the behavior of the in-phase response factor. Quantitatively the results of the present finite conductivity spray analysis do not correlate with the results of a single drop model.

  4. Thermal plasticity is related to the hardening response of heat shock protein expression in two Bactrocera fruit flies.

    PubMed

    Hu, Jun-tao; Chen, Bing; Li, Zhi-hong

    2014-08-01

    It is generally believed that widely distributed species differ in their thermal plasticity from narrowly distributed species, but how differences in thermal plasticity are regulated at the molecular level remains largely unknown. Here, we conducted a comparative study of two closely related invasive fruit fly species, Bactrocera correcta and Bactroceradorsalis, in China. The two species had overlapping distributions, but B. dorsalis had a much wider range throughout the country and a longer invasive history than B. correcta. We first examined the effects of thermal acclimation on the ability of the two fruit flies to survive heat stress. The heat shock tolerance of B. dorsalis was significantly enhanced by heat hardening at 35, 37, 39 and 41°C, but that of B. correcta was only enhanced by heat hardening at 39°C and 41°C. Thus, the more widespread species has a higher thermal plasticity than the narrowly distributed species. We then determined the expression of Hsp70 and Hsp90 during different developmental stages and their responses to thermal hardening. The expression of both Hsp70 and Hsp90 in larvae was upregulated in response to heat hardening, starting at 35°C for B. dorsalis and at 39°C for B. correcta. The two species exhibited a highly consistent pattern of thermal response in terms of their heat shock survival rates and levels of Hsp gene expression. The results suggest that the difference in thermal plasticity may be responsible for the different distributions of the two species and that Hsp expression may be involved in the regulation of thermal plasticity. Our findings have important implications for the prediction of the thermal limits and ecological responses of related species in nature.

  5. Prediction of air temperature for thermal comfort of people in outdoor environments

    NASA Astrophysics Data System (ADS)

    Huang, Jianhua

    2007-05-01

    Current thermal comfort indices do not take into account the effects of wind and body movement on the thermal resistance and vapor resistance of clothing. This may cause public health problem, e.g. cold-related mortality. Based on the energy balance equation and heat exchanges between a clothed body and the outdoor environment, a mathematical model was developed to determine the air temperature at which an average adult, wearing a specific outdoor clothing and engaging in a given activity, attains thermal comfort under outdoor environment condition. The results indicated low clothing insulation, less physical activity and high wind speed lead to high air temperature prediction for thermal comfort. More accurate air temperature prediction is able to prevent wearers from hypothermia under cold conditions.

  6. Prediction of thermal acoustic oscillations (TAOs) in the CLAES solid CO2/neon system

    NASA Technical Reports Server (NTRS)

    Spradley, I. E.; Yuan, S. W. K.

    1991-01-01

    Results are presented of a study initiated to investigate the possibility that the existence of thermal acoustic oscillations (TAOs) in the Cryogenic Limb Atmospheric Etalon Spectrometer (CLAES) neon plumbing system ground configuration could be the cause of higher-than-predicted heat rates measured during thermal ground testing. Tests were conducted between warm boundary temperatures ranging from 40 to 100 K, which simulated the actual test conditions of the CLAES CO2/neon system. TAOs were observed between 6 and 106 Torr, which agreed with the analytical predictions, and verified the possible existence of TAOs in the CLAES system during ground testing. The presence of TAOs was eventually confirmed in the CLAES system during a subsequent thermal test and were determined to have caused the higher heat rates measured during the prior thermal test.

  7. Prediction of clothing thermal insulation and moisture vapour resistance of the clothed body walking in wind.

    PubMed

    Qian, Xiaoming; Fan, Jintu

    2006-11-01

    Clothing thermal insulation and moisture vapour resistance are the two most important parameters in thermal environmental engineering, functional clothing design and end use of clothing ensembles. In this study, clothing thermal insulation and moisture vapour resistance of various types of clothing ensembles were measured using the walking-able sweating manikin, Walter, under various environmental conditions and walking speeds. Based on an extensive experimental investigation and an improved understanding of the effects of body activities and environmental conditions, a simple but effective direct regression model has been established, for predicting the clothing thermal insulation and moisture vapour resistance under wind and walking motion, from those when the manikin was standing in still air. The model has been validated by using experimental data reported in the previous literature. It has shown that the new models have advantages and provide very accurate prediction.

  8. Prediction of air temperature for thermal comfort of people in outdoor environments.

    PubMed

    Huang, Jianhua

    2007-05-01

    Current thermal comfort indices do not take into account the effects of wind and body movement on the thermal resistance and vapor resistance of clothing. This may cause public health problem, e.g. cold-related mortality. Based on the energy balance equation and heat exchanges between a clothed body and the outdoor environment, a mathematical model was developed to determine the air temperature at which an average adult, wearing a specific outdoor clothing and engaging in a given activity, attains thermal comfort under outdoor environment condition. The results indicated low clothing insulation, less physical activity and high wind speed lead to high air temperature prediction for thermal comfort. More accurate air temperature prediction is able to prevent wearers from hypothermia under cold conditions.

  9. Prediction of thermal acoustic oscillations (TAOs) in the CLAES solid CO2/neon system

    NASA Technical Reports Server (NTRS)

    Spradley, I. E.; Yuan, S. W. K.

    1991-01-01

    Results are presented of a study initiated to investigate the possibility that the existence of thermal acoustic oscillations (TAOs) in the Cryogenic Limb Atmospheric Etalon Spectrometer (CLAES) neon plumbing system ground configuration could be the cause of higher-than-predicted heat rates measured during thermal ground testing. Tests were conducted between warm boundary temperatures ranging from 40 to 100 K, which simulated the actual test conditions of the CLAES CO2/neon system. TAOs were observed between 6 and 106 Torr, which agreed with the analytical predictions, and verified the possible existence of TAOs in the CLAES system during ground testing. The presence of TAOs was eventually confirmed in the CLAES system during a subsequent thermal test and were determined to have caused the higher heat rates measured during the prior thermal test.

  10. Dopamine neurons share common response function for reward prediction error

    PubMed Central

    Eshel, Neir; Tian, Ju; Bukwich, Michael; Uchida, Naoshige

    2016-01-01

    Dopamine neurons are thought to signal reward prediction error, or the difference between actual and predicted reward. How dopamine neurons jointly encode this information, however, remains unclear. One possibility is that different neurons specialize in different aspects of prediction error; another is that each neuron calculates prediction error in the same way. We recorded from optogenetically-identified dopamine neurons in the lateral ventral tegmental area (VTA) while mice performed classical conditioning tasks. Our tasks allowed us to determine the full prediction error functions of dopamine neurons and compare them to each other. We found striking homogeneity among individual dopamine neurons: their responses to both unexpected and expected rewards followed the same function, just scaled up or down. As a result, we could describe both individual and population responses using just two parameters. Such uniformity ensures robust information coding, allowing each dopamine neuron to contribute fully to the prediction error signal. PMID:26854803

  11. Thermal Predictions of the Cooling of Waste Glass Canisters

    SciTech Connect

    Donna Post Guillen

    2014-11-01

    Radioactive liquid waste from five decades of weapons production is slated for vitrification at the Hanford site. The waste will be mixed with glass forming additives and heated to a high temperature, then poured into canisters within a pour cave where the glass will cool and solidify into a stable waste form for disposal. Computer simulations were performed to predict the heat rejected from the canisters and the temperatures within the glass during cooling. Four different waste glass compositions with different thermophysical properties were evaluated. Canister centerline temperatures and the total amount of heat transfer from the canisters to the surrounding air are reported.

  12. Prediction of thermal conductivity of polyvinylpyrrolidone (PVP) electrospun nanocomposite fibers using artificial neural network and prey-predator algorithm.

    PubMed

    Khan, Waseem S; Hamadneh, Nawaf N; Khan, Waqar A

    2017-01-01

    In this study, multilayer perception neural network (MLPNN) was employed to predict thermal conductivity of PVP electrospun nanocomposite fibers with multiwalled carbon nanotubes (MWCNTs) and Nickel Zinc ferrites [(Ni0.6Zn0.4) Fe2O4]. This is the second attempt on the application of MLPNN with prey predator algorithm for the prediction of thermal conductivity of PVP electrospun nanocomposite fibers. The prey predator algorithm was used to train the neural networks to find the best models. The best models have the minimal of sum squared error between the experimental testing data and the corresponding models results. The minimal error was found to be 0.0028 for MWCNTs model and 0.00199 for Ni-Zn ferrites model. The predicted artificial neural networks (ANNs) responses were analyzed statistically using z-test, correlation coefficient, and the error functions for both inclusions. The predicted ANN responses for PVP electrospun nanocomposite fibers were compared with the experimental data and were found in good agreement.

  13. Linking physiological and cellular responses to thermal stress: β-adrenergic blockade reduces the heat shock response in fish.

    PubMed

    Templeman, Nicole M; LeBlanc, Sacha; Perry, Steve F; Currie, Suzanne

    2014-08-01

    When faced with stress, animals use physiological and cellular strategies to preserve homeostasis. We were interested in how these high-level stress responses are integrated at the level of the whole animal. Here, we investigated the capacity of the physiological stress response, and specifically the β-adrenergic response, to affect the induction of the cellular heat shock proteins, HSPs, following a thermal stress in vivo. We predicted that blocking β-adrenergic stimulation during an acute heat stress in the whole animal would result in reduced levels of HSPs in red blood cells (RBCs) of rainbow trout compared to animals where adrenergic signaling remained intact. We first determined that a 1 h heat shock at 25 °C in trout acclimated to 13 °C resulted in RBC adrenergic stimulation as determined by a significant increase in cell swelling, a hallmark of the β-adrenergic response. A whole animal injection with the β2-adrenergic antagonist, ICI-118,551, successfully reduced this heat-induced RBC swelling. The acute heat shock caused a significant induction of HSP70 in RBCs of 13 °C-acclimated trout as well as a significant increase in plasma catecholamines. When heat-shocked fish were treated with ICI-118,551, we observed a significant attenuation of the HSP70 response. We conclude that circulating catecholamines influence the cellular heat shock response in rainbow trout RBCs, demonstrating physiological/hormonal control of the cellular stress response.

  14. A Computer Model Predicting the Thermal Response to Microwave Radiation

    DTIC Science & Technology

    1982-12-01

    RSQ-X(I+1 )**2)/ 2023 IF (Y(J+1).LT, OIYCIL=-YC1 2024 GO TO 280 2025 YC1=Y(J)+S*(Y’J+1 )-Y(J)) 2027 280 XC 1 =X I1). 2028 JE=%) 2030 GO TO 310 2-031 285...STARTING POINT (INCHES) 2123 YPAGE Y COORDINATE OF STARTING POINT (INCHES) 2124 FPN NUMBER TO BE PLOTTED 2125 ND IF 1O.**-ND <= FPN < 1O.**ND, THE

  15. Life Prediction of Atmospheric Plasma-Sprayed Thermal Barrier Coatings Using Temperature-Dependent Model Parameters

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Chen, Kuiying; Baddour, N.; Patnaik, P. C.

    2017-06-01

    The failure analysis and life prediction of atmospheric plasma-sprayed thermal barrier coatings (APS-TBCs) were carried out for a thermal cyclic process. A residual stress model for the top coat of APS-TBC was proposed and then applied to life prediction. This residual stress model shows an inversion characteristic versus thickness of thermally grown oxide. The capability of the life model was demonstrated using temperature-dependent model parameters. Using existing life data, a comparison of fitting approaches of life model parameters was performed. A larger discrepancy was found for the life predicted using linearized fitting parameters versus temperature compared to those using non-linear fitting parameters. A method for integrating the residual stress was proposed by using the critical time of stress inversion. The role of the residual stresses distributed at each individual coating layer was explored and their interplay on the coating's delamination was analyzed.

  16. A quasi-physical model for predicting the thermal insulation and moisture vapour resistance of clothing.

    PubMed

    Qian, Xiaoming; Fan, Jintu

    2009-07-01

    Based on the improved understanding of the effects of wind and walking motion on the thermal insulation and moisture vapour resistance of clothing induced by air ventilation in the clothing system, a new model has been derived based on fundamental mechanisms of heat and mass transfer, which include conduction, diffusion, radiation and natural convection, wind penetration and air ventilation. The model predicts thermal insulation of clothing under body movement and windy conditions from the thermal insulation of clothing measured when the person is standing in the still air. The effects of clothing characteristics such as fabric air permeability, garment style, garment fitting and construction have been considered in the model through the key prediction parameters. With the new model, an improved prediction accuracy is achieved with a percentage of fit being as high as 0.96.

  17. Integrative model for predicting thermal balance in exercising horses.

    PubMed

    Mostert, H J; Lund, R J; Guthrie, A J; Cilliers, P J

    1996-07-01

    A theoretical integrative model was developed to determine the heat balance of horses working in a given environment. This model included the following parameters: metabolic heat gain, solar heat gain, evaporative heat loss due to sweating, respiratory tract heat loss, radiation from the body and heat gain or loss due to convection and conduction. The model developed in this study includes an unique approach for estimating heat loss via evaporation of sweat from the animal's skin surface. Previous studies modelling evaporative heat dissipation were based on the volume of sweat loss. While it is known that the ambient conditions affect evaporation rate, these effects have not been adequately described. The present model assumes the horse's skin surface is adequately represented by a body of water and it describes the interaction of that water body with the atmosphere. It is assumed that sweat has thermodynamic characteristics equivalent to distilled water. Sweat, however, has high electrolyte and protein concentrations and anecdotal evidence has shown that the thermodynamic characteristics may be significantly affected. Further research is, therefore, required to confirm these characteristics for equine sweat. The model describes all factors known to affect the thermal balance of the horse working in a given environment. The relative significance of the various variables on the whole integrative model has been illustrated. The effect of ambient temperature and humidity on the evaporative heat loss, the most significant and critical avenue of heat dissipation, is defined and quantified. The model illustrates clearly how increasing relative humidity limits evaporative heat loss, which can be further compromised when horses exercise on treadmills with no air movement.

  18. Model Reduction and Thermal Regulation by Model Predictive Control of a New Cylindricity Measuring Machine

    NASA Astrophysics Data System (ADS)

    Bouderbala, K.; Girault, M.; Videcoq, E.; Nouira, H.; Salgado, J.; Petit, D.

    2015-08-01

    This paper deals with the thermal regulation at the 10 level of a high-accuracy cylindricity measurement machine subject to thermal disturbances, generated by four heat sources (laser interferometers). A reduced model identified from simulated data using the modal identification method was associated with a model predictive controller (MPC). The control was applied to minimize the thermal perturbation effects on the principal organ of the cylindricity measurement machine. A parametric study of the penalization coefficient was conducted, which validated the robustness of the controller. The association of both reduced model and MPC allowed significant reduction of the effects of the disturbances on the temperature, a promising result for future applications.

  19. Predictability of steel containment response near failure

    SciTech Connect

    Costello, J.F.; Ludwigsen, J.S.; Luk, V.K.; Hessheimer, M.F.

    2000-01-06

    The Nuclear Power Engineering Corporation of Japan and the US Nuclear Regulatory Commission Office of Nuclear Regulatory Research, are co-sponsoring and jointly funding a Cooperative Containment Research Program at Sandia National Laboratories, Albuquerque, New Mexico, USA. As a part of this program, a steel containment vessel model and contact structure assembly was tested to failure with over pressurization at Sandia on December 11--12, 1996. The steel containment vessel model was a mixed-scale model (1:10 in geometry and 1:4 in shell thickness) of a steel containment for an improved Mark-II Boiling Water Reactor plant in Japan. The contact structure, which is a thick, bell-shaped steel shell separated at a nominally uniform distance from the model, provides a simplified representation of features of the concrete reactor shield building in the actual plant. The objective of the internal pressurization test was to provide measurement data of the structural response of the model up to its failure in order to validate analytical modeling, to find its pressure capacity, and to observe the failure model and mechanisms.

  20. Validation of a Three-Dimensional Ablation and Thermal Response Simulation Code

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kanq; Milos, Frank S.; Gokcen, Tahir

    2010-01-01

    The 3dFIAT code simulates pyrolysis, ablation, and shape change of thermal protection materials and systems in three dimensions. The governing equations, which include energy conservation, a three-component decomposition model, and a surface energy balance, are solved with a moving grid system to simulate the shape change due to surface recession. This work is the first part of a code validation study for new capabilities that were added to 3dFIAT. These expanded capabilities include a multi-block moving grid system and an orthotropic thermal conductivity model. This paper focuses on conditions with minimal shape change in which the fluid/solid coupling is not necessary. Two groups of test cases of 3dFIAT analyses of Phenolic Impregnated Carbon Ablator in an arc-jet are presented. In the first group, axisymmetric iso-q shaped models are studied to check the accuracy of three-dimensional multi-block grid system. In the second group, similar models with various through-the-thickness conductivity directions are examined. In this group, the material thermal response is three-dimensional, because of the carbon fiber orientation. Predictions from 3dFIAT are presented and compared with arcjet test data. The 3dFIAT predictions agree very well with thermocouple data for both groups of test cases.

  1. Linking transcriptional responses to organismal tolerance reveals mechanisms of thermal sensitivity in a mesothermal endangered fish.

    PubMed

    Komoroske, Lisa M; Connon, Richard E; Jeffries, Ken M; Fangue, Nann A

    2015-10-01

    Forecasting species' responses to climate change requires understanding the underlying mechanisms governing environmental stress tolerance, including acclimation capacity and acute stress responses. Current knowledge of these physiological processes in aquatic ectotherms is largely drawn from eurythermal or extreme stenothermal species. Yet many species of conservation concern exhibit tolerance windows and acclimation capacities in between these extremes. We linked transcriptome profiles to organismal tolerance in a mesothermal endangered fish, the delta smelt (Hypomesus transpacificus), to quantify the cellular processes, sublethal thresholds and effects of thermal acclimation on acute stress responses. Delta smelt initiated rapid molecular changes in line with expectations of theoretical thermal limitation models, but also exhibited diminished capacity to modify the expression of some genes and cellular mechanisms key to coping with acute thermal stress found in eurytherms. Sublethal critical thresholds occurred 4-6 °C below their upper tolerance limits, and thermal acclimation shifted the onset of acute thermal stress and tolerance as predicted. However, we found evidence that delta smelt's limited thermal plasticity may be partially due to an inability of individuals to effectively make physiological adjustments to truly achieve new homoeostasis under heightened temperatures, resulting in chronic thermal stress. These findings provide insight into the physiological basis of the diverse patterns of thermal tolerances observed in nature. Moreover, understanding how underlying molecular mechanisms shape thermal acclimation capacity, acute stress responses and ultimately differential phenotypes contributes to a predictive framework to deduce species' responses in situ to changes in selective pressures due to climate change.

  2. Experiment and Artificial Neural Network Prediction of Thermal Conductivity and Viscosity for Alumina-Water Nanofluids

    PubMed Central

    Zhao, Ningbo; Li, Zhiming

    2017-01-01

    To effectively predict the thermal conductivity and viscosity of alumina (Al2O3)-water nanofluids, an artificial neural network (ANN) approach was investigated in the present study. Firstly, using a two-step method, four Al2O3-water nanofluids were prepared respectively by dispersing different volume fractions (1.31%, 2.72%, 4.25%, and 5.92%) of nanoparticles with the average diameter of 30 nm. On this basis, the thermal conductivity and viscosity of the above nanofluids were analyzed experimentally under various temperatures ranging from 296 to 313 K. Then a radial basis function (RBF) neural network was constructed to predict the thermal conductivity and viscosity of Al2O3-water nanofluids as a function of nanoparticle volume fraction and temperature. The experimental results showed that both nanoparticle volume fraction and temperature could enhance the thermal conductivity of Al2O3-water nanofluids. However, the viscosity only depended strongly on Al2O3 nanoparticle volume fraction and was increased slightly by changing temperature. In addition, the comparative analysis revealed that the RBF neural network had an excellent ability to predict the thermal conductivity and viscosity of Al2O3-water nanofluids with the mean absolute percent errors of 0.5177% and 0.5618%, respectively. This demonstrated that the ANN provided an effective way to predict the thermophysical properties of nanofluids with limited experimental data. PMID:28772913

  3. Experiment and Artificial Neural Network Prediction of Thermal Conductivity and Viscosity for Alumina-Water Nanofluids.

    PubMed

    Zhao, Ningbo; Li, Zhiming

    2017-05-19

    To effectively predict the thermal conductivity and viscosity of alumina (Al₂O₃)-water nanofluids, an artificial neural network (ANN) approach was investigated in the present study. Firstly, using a two-step method, four Al₂O₃-water nanofluids were prepared respectively by dispersing different volume fractions (1.31%, 2.72%, 4.25%, and 5.92%) of nanoparticles with the average diameter of 30 nm. On this basis, the thermal conductivity and viscosity of the above nanofluids were analyzed experimentally under various temperatures ranging from 296 to 313 K. Then a radial basis function (RBF) neural network was constructed to predict the thermal conductivity and viscosity of Al₂O₃-water nanofluids as a function of nanoparticle volume fraction and temperature. The experimental results showed that both nanoparticle volume fraction and temperature could enhance the thermal conductivity of Al₂O₃-water nanofluids. However, the viscosity only depended strongly on Al₂O₃ nanoparticle volume fraction and was increased slightly by changing temperature. In addition, the comparative analysis revealed that the RBF neural network had an excellent ability to predict the thermal conductivity and viscosity of Al₂O₃-water nanofluids with the mean absolute percent errors of 0.5177% and 0.5618%, respectively. This demonstrated that the ANN provided an effective way to predict the thermophysical properties of nanofluids with limited experimental data.

  4. Nonequilibrium thermal transport and its relation to linear response

    NASA Astrophysics Data System (ADS)

    Karrasch, C.; Ilan, R.; Moore, J. E.

    2013-11-01

    We study the real-time dynamics of spin chains driven out of thermal equilibrium by an initial temperature gradient TL≠TR using density matrix renormalization group methods. We demonstrate that the nonequilibrium energy current saturates fast to a finite value if the linear-response thermal conductivity is infinite, i.e., if the Drude weight D is nonzero. Our data suggest that a nonintegrable dimerized chain might support such dissipationless transport (D>0). We show that the steady-state value JE of the current for arbitrary TL≠TR is of the functional form JE=f(TL)-f(TR), i.e., it is completely determined by the linear conductance. We argue for this functional form, which is essentially a Stefan-Boltzmann law in this integrable model; for the XXX ferromagnet, f can be computed via the thermodynamic Bethe ansatz in good agreement with the numerics. Inhomogeneous systems exhibiting different bulk parameters as well as Luttinger liquid boundary physics induced by single impurities are discussed briefly.

  5. Osmotic Heat Engine Using Thermally Responsive Ionic Liquids.

    PubMed

    Zhong, Yujiang; Wang, Xinbo; Feng, Xiaoshuang; Telalovic, Selvedin; Gnanou, Yves; Huang, Kuo-Wei; Hu, Xiao; Lai, Zhiping

    2017-08-15

    The osmotic heat engine (OHE) is a promising technology for converting low grade heat to electricity. Most of the existing studies have focused on thermolytic salt systems. Herein, for the first time, we proposed to use thermally responsive ionic liquids (TRIL) that have either an upper critical solution temperature (UCST) or lower critical solution temperature (LCST) type of phase behavior as novel thermolytic osmotic agents. Closed-loop TRIL-OHEs were designed based on these unique phase behaviors to convert low grade heat to work or electricity. Experimental studies using two UCST-type TRILs, protonated betaine bis(trifluoromethyl sulfonyl)imide ([Hbet][Tf2N]) and choline bis(trifluoromethylsulfonyl)imide ([choline][Tf2N]) showed that (1) the specific energy of the TRIL-OHE system could reach as high as 4.0 times that of the seawater and river water system, (2) the power density measured from a commercial FO membrane reached up to 2.3 W/m(2), and (3) the overall energy efficiency reached up to 2.6% or 18% of the Carnot efficiency at no heat recovery and up to 10.5% or 71% of the Carnet efficiency at 70% heat recovery. All of these results clearly demonstrated the great potential of using TRILs as novel osmotic agents to design high efficient OHEs for recovery of low grade thermal energy to work or electricity.

  6. Transient response of a thermal buffer: a study for ISABELLE

    SciTech Connect

    Schneider. W.J.

    1981-01-01

    Operation of the superconducting magnets in ISABELLE may necessitate rapid cooldown and warmup from ambient (300K) to liquid helium temperature (3K) to meet the requirements of the experimental program. Similarly, unprogrammed temperature excursions can also occur due to operator error or equipment malfunction. The coal bore tube of the magnets has a small mass relative to the more massive iron laminations and the stainless steel support tube. In addition the magnet coil, in thermal contact with the cold bore tube, has excellent heat transfer to the helium flowing through it compared to the iron mass. These two factors, mass and heat transfer, dictate that the cold bore tube will follow the temperature of the coolant more closely than the iron and hence substantial temperature gradients can exist. If the temperature difference between the coolant and the iron in the magnet exceeds 44K stress failure may occur to either the cold bore tube or the magnet dewar end cap. To preclude such failures from occuring at least two options are available. One method is to modify the magnet design by introducing flexibility between the bore tube and the end plate. Another is to introduce an insensitive thermal mass or buffer as has been suggested by Shutt, at the inlet of a sextant ahead of the first magnets. This paper describes the latter method, the design and transient response of a buffer during cooldown.

  7. Thermal Response of Human Skin to Microwave Energy: A Critical Review.

    PubMed

    Foster, Kenneth R; Ziskin, Marvin C; Balzano, Quirino

    2016-12-01

    This is a review/modeling study of heating of tissue by microwave energy in the frequency range from 3 GHz through the millimeter frequency range (30-300 GHz). The literature was reviewed to identify studies that reported RF-induced increases in skin temperature. A simple thermal model, based on a simplified form of Pennes' bioheat equation (BHTE), was developed, using parameter values taken from the literature with no further adjustment. The predictions of the model were in excellent agreement with available data. A parametric analysis of the model shows that there are two heating regimes with different dominant mechanisms of heat transfer. For small irradiated areas (less than about 0.5-1 cm in radius) the temperature increase at the skin surface is chiefly limited by conduction of heat into deeper tissue layers, while for larger irradiated areas, the steady-state temperature increase is limited by convective cooling by blood perfusion. The results support the use of this simple thermal model to aid in the development and evaluation of RF safety limits at frequencies above 3 GHz and for millimeter waves, particularly when the irradiated area of skin is small. However, very limited thermal response data are available, particularly for exposures lasting more than a few minutes to areas of skin larger than 1-2 cm in diameter. The paper concludes with comments about possible uses and limitations of thermal modeling for setting exposure limits in the considered frequency range.

  8. Thermal acclimation of interactions: differential responses to temperature change alter predator-prey relationship.

    PubMed

    Grigaltchik, Veronica S; Ward, Ashley J W; Seebacher, Frank

    2012-10-07

    Different species respond differently to environmental change so that species interactions cannot be predicted from single-species performance curves. We tested the hypothesis that interspecific difference in the capacity for thermal acclimation modulates predator-prey interactions. Acclimation of locomotor performance in a predator (Australian bass, Macquaria novemaculeata) was qualitatively different to that of its prey (eastern mosquitofish, Gambusia holbrooki). Warm (25°C) acclimated bass made more attacks than cold (15°C) acclimated fish regardless of acute test temperatures (10-30°C), and greater frequency of attacks was associated with increased prey capture success. However, the number of attacks declined at the highest test temperature (30°C). Interestingly, escape speeds of mosquitofish during predation trials were greater than burst speeds measured in a swimming arena, whereas attack speeds of bass were lower than burst speeds. As a result, escape speeds of mosquitofish were greater at warm temperatures (25°C and 30°C) than attack speeds of bass. The decline in the number of attacks and the increase in escape speed of prey means that predation pressure decreases at high temperatures. We show that differential thermal responses affect species interactions even at temperatures that are within thermal tolerance ranges. This thermal sensitivity of predator-prey interactions can be a mechanism by which global warming affects ecological communities.

  9. Thermomechanical response of metal foam sandwich panels for structural thermal protection systems in hypersonic vehicles

    NASA Astrophysics Data System (ADS)

    Rakow, Joseph F.

    Sandwich panels with metal foam cores are proposed for load-bearing structural components in actively cooled thermal protection systems for aerospace vehicles. Prototype acreage metal foam sandwich panels (MFSP's) are constructed and analyzed with the central goal of characterizing the thermomechanical response of the system. MFSP's are subjected to uniform temperature fields and equibiaxial loading in a novel experimental load frame. The load frame exploits the mismatch of coefficients of thermal expansion and allows for thermostructural experimentation without the endemic conflict of thermal and mechanical boundary conditions. Back-to-back strain gages and distributed thermocouples capture the in-plane response of the panels, including buckling and elastic-plastic post-buckling. The out-of-plane response is captured via moire interferometry, which provides a visualization of evolving mode shapes throughout the post-buckling regime. The experimental results agree with an analytical prediction for critical temperatures in sandwich panels based on a Rayleigh-Ritz minimization of the energy functional for a Reissner-Mindlin plate. In addition, a three-dimensional finite element model of the non-linear thermomechanical response of the panel-frame experimental system is developed and the results are shown to agree well with the experimentally identified response of MFSP's. Central to analytical and numerical characterization of MFSP's is an understanding of the response of metal foam under shear loading. The shear response of metal foam is captured experimentally, providing density-dependent relationships for material stiffness, strength, and energy absorption. Speckle photography is employed to identify microstructural size effects in the distribution of strain throughout metal foam under shear loading. In addition, a micromechanical model is established for the density-dependent shear modulus of metal foam, which allows for the coupling of cell-level imperfections

  10. Comparison of Orbiter STS-2 development flight instrumentation data with thermal math model predictions

    NASA Technical Reports Server (NTRS)

    Norman, I.; Rochelle, W. C.; Kimbrough, B. S.; Ritrivi, C. A.; Ting, P. C.; Dotts, R. L.

    1982-01-01

    Thermal performance verification of Reusable Surface Insulation (RSI) has been accomplished by comparisons of STS-2 Orbiter Flight Test (OFT) data with Thermal Math Model (TMM) predictions. The OFT data was obtained from Development Flight Instrumentation RSI plug and gap thermocouples. Quartertile RSI TMMs were developed using measured flight data for surface temperature and pressure environments. Reference surface heating rates, derived from surface temperature data, were multiplied by gap heating ratios to obtain tile sidewall heating rates. This TMM analysis resulted in good agreement of predicted temperatures with flight data for thermocouples located in the RSI, Strain Isolation Pad, filler bar and structure.

  11. Comparison of Orbiter STS-2 development flight instrumentation data with thermal math model predictions

    NASA Technical Reports Server (NTRS)

    Norman, I.; Rochelle, W. C.; Kimbrough, B. S.; Ritrivi, C. A.; Ting, P. C.; Dotts, R. L.

    1982-01-01

    Thermal performance verification of Reusable Surface Insulation (RSI) has been accomplished by comparisons of STS-2 Orbiter Flight Test (OFT) data with Thermal Math Model (TMM) predictions. The OFT data was obtained from Development Flight Instrumentation RSI plug and gap thermocouples. Quartertile RSI TMMs were developed using measured flight data for surface temperature and pressure environments. Reference surface heating rates, derived from surface temperature data, were multiplied by gap heating ratios to obtain tile sidewall heating rates. This TMM analysis resulted in good agreement of predicted temperatures with flight data for thermocouples located in the RSI, Strain Isolation Pad, filler bar and structure.

  12. Life prediction of thermal-mechanical fatigue using strain-range partitioning

    NASA Technical Reports Server (NTRS)

    Halford, G. R.; Manson, S. S.

    1975-01-01

    The applicability is described of the method of Strainrange Partitioning to the life prediction of thermal-mechanical strain-cycling fatigue. An in-phase test on 316 stainless steel is analyzed as an illustrative example. The observed life is in excellent agreement with the life predicted by the method using the recently proposed Step-Stress Method of experimental partitioning, the Interation Damage Rule, and the life relationships determined at an isothermal temperature of 705 C. Implications of the study are discussed relative to the general thermal fatigue problem.

  13. Thermal response of rigid and flexible insulations and reflective coating in an aeroconvective heating environment

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Chiu, S. A.; Iverson, D. J.; Lowe, D. M.

    1992-01-01

    Described here is the thermal performance of rigid and flexible thermal protection systems considered for potential use in future Aeroassist Space Transfer Vehicles. The thermal response of these materials subjected to aeroconvective heating from a plasma arc is described. Properties that were measured included the thermal conductivity of both rigid and flexible insulations at various temperatures and pressures and the emissivity of the fabrics used in the flexible insulations. The results from computerized thermal analysis models describing the thermal response of these materials subjected to flight conditions are included.

  14. Final Scientific Technical Report: INTEGRATED PREDICTIVE DEMAND RESPONSE CONTROLLER FOR COMMERCIAL BUILDINGS

    SciTech Connect

    Wenzel, Mike

    2013-10-14

    This project provides algorithms to perform demand response using the thermal mass of a building. Using the thermal mass of the building is an attractive method for performing demand response because there is no need for capital expenditure. The algorithms rely on the thermal capacitance inherent in the building?s construction materials. A near-optimal ?day ahead? predictive approach is developed that is meant to keep the building?s electrical demand constant during the high cost periods. This type of approach is appropriate for both time-of-use and critical peak pricing utility rate structures. The approach uses the past days data in order to determine the best temperature setpoints for the building during the high price periods on the next day. A second ?model predictive approach? (MPC) uses a thermal model of the building to determine the best temperature for the next sample period. The approach uses constant feedback from the building and is capable of appropriately handling real time pricing. Both approaches are capable of using weather forecasts to improve performance.

  15. Probabilistic prediction of barrier-island response to hurricanes

    USGS Publications Warehouse

    Plant, Nathaniel G.; Stockdon, Hilary F.

    2012-01-01

    Prediction of barrier-island response to hurricane attack is important for assessing the vulnerability of communities, infrastructure, habitat, and recreational assets to the impacts of storm surge, waves, and erosion. We have demonstrated that a conceptual model intended to make qualitative predictions of the type of beach response to storms (e.g., beach erosion, dune erosion, dune overwash, inundation) can be reformulated in a Bayesian network to make quantitative predictions of the morphologic response. In an application of this approach at Santa Rosa Island, FL, predicted dune-crest elevation changes in response to Hurricane Ivan explained about 20% to 30% of the observed variance. An extended Bayesian network based on the original conceptual model, which included dune elevations, storm surge, and swash, but with the addition of beach and dune widths as input variables, showed improved skill compared to the original model, explaining 70% of dune elevation change variance and about 60% of dune and shoreline position change variance. This probabilistic approach accurately represented prediction uncertainty (measured with the log likelihood ratio), and it outperformed the baseline prediction (i.e., the prior distribution based on the observations). Finally, sensitivity studies demonstrated that degrading the resolution of the Bayesian network or removing data from the calibration process reduced the skill of the predictions by 30% to 40%. The reduction in skill did not change conclusions regarding the relative importance of the input variables, and the extended model's skill always outperformed the original model.

  16. The SupraThermal Ion Monitor for space weather predictions.

    PubMed

    Allegrini, F; Desai, M I; Livi, S; McComas, D J; Ho, G C

    2014-05-01

    Measurement of suprathermal energy ions in the heliosphere has always been challenging because (1) these ions are situated in the energy regime only a few times higher than the solar wind plasma, where intensities are orders of magnitude higher and (2) ion energies are below or close to the threshold of state-of-art solid-state detectors. Suprathermal ions accelerated at coronal mass ejection-driven shocks propagate out ahead of the shocks. These shocks can cause geomagnetic storms in the Earth's magnetosphere that can affect spacecraft and ground-based power and communication systems. An instrument with sufficient sensitivity to measure these ions can be used to predict the arrival of the shocks and provide an advance warning for potentially geo-effective space weather. In this paper, we present a novel energy analyzer concept, the Suprathermal Ion Monitor (STIM) that is designed to measure suprathermal ions with high sensitivity. We show results from a laboratory prototype and demonstrate the feasibility of the concept. A list of key performances is given, as well as a discussion of various possible detectors at the back end. STIM is an ideal candidate for a future space weather monitor in orbit upstream of the near-earth environment, for example, around L1. A scaled-down version is suitable for a CubeSat mission. Such a platform allows proofing the concept and demonstrating its performance in the space environment.

  17. Research study: Thermal curtain permeability and thermal response test for SRB reentry

    NASA Technical Reports Server (NTRS)

    Fuller, C. E.; Levie, J. K., III; Powell, R. T.

    1978-01-01

    Nine inch diameter samples of the material which will provide thermal and acoustic protection between the nozzle and outer skirt on the space shuttle solid rocket boosters were subjected to heating tests to determine the porosity of the material and the thermal response to a step change in heating. For the porosity measurements a steady state flow of air at 70 F, 500 F, and 1000 F was passed through a sample of the curtain material and measurements of the flow rates were made at different pressure drops across the sample. For the transient measurements, a sample of the curtain material was subjected to a step change in temperature as air was passed through the sample. Measurements of the heat flow through the sample were made as a function of time after the input of the heat pulse. The sample consisted of three layers of curtain panels. Each panel was made of combinations of quartz and fiberglass cloth between which a fiberfrax filler material had been stitched. The hardware design and test procedures were described. Data are provided in engineering units for the flow conditions and and temperatures at which measurements were conducted.

  18. Thermoelastic response of metal matrix composites with large-diameter fibers subjected to thermal gradients

    NASA Technical Reports Server (NTRS)

    Aboudi, Jacob; Pindera, Marek-Jerzy; Arnold, Steven M.

    1993-01-01

    A new micromechanical theory is presented for the response of heterogeneous metal matrix composites subjected to thermal gradients. In contrast to existing micromechanical theories that utilize classical homogenization schemes in the course of calculating microscopic and macroscopic field quantities, in the present approach the actual microstructural details are explicitly coupled with the macrostructure of the composite. Examples are offered that illustrate limitations of the classical homogenization approach in predicting the response of thin-walled metal matrix composites with large-diameter fibers when subjected to thermal gradients. These examples include composites with a finite number of fibers in the thickness direction that may be uniformly or nonuniformly spaced, thus admitting so-called functionally gradient composites. The results illustrate that the classical approach of decoupling micromechanical and macromechanical analyses in the presence of a finite number of large-diameter fibers, finite dimensions of the composite, and temperature gradient may produce excessively conservative estimates for macroscopic field quantities, while both underestimating and overestimating the local fluctuations of the microscopic quantities in different regions of the composite. Also demonstrated is the usefulness of the present approach in generating favorable stress distributions in the presence of thermal gradients by appropriately tailoring the internal microstructure details of the composite.

  19. Thermally activated post-glitch response of the neutron star inner crust and core. I. Theory

    SciTech Connect

    Link, Bennett

    2014-07-10

    Pinning of superfluid vortices is predicted to prevail throughout much of a neutron star. Based on the idea of Alpar et al., I develop a description of the coupling between the solid and liquid components of a neutron star through thermally activated vortex slippage, and calculate the response to a spin glitch. The treatment begins with a derivation of the vortex velocity from the vorticity equations of motion. The activation energy for vortex slippage is obtained from a detailed study of the mechanics and energetics of vortex motion. I show that the 'linear creep' regime introduced by Alpar et al. and invoked in fits to post-glitch response is not realized for physically reasonable parameters, a conclusion that strongly constrains the physics of a post-glitch response through thermal activation. Moreover, a regime of 'superweak pinning', crucial to the theory of Alpar et al. and its extensions, is probably precluded by thermal fluctuations. The theory given here has a robust conclusion that can be tested by observations: for a glitch in the spin rate of magnitude Δν, pinning introduces a delay in the post-glitch response time. The delay time is t{sub d} = 7(t{sub sd}/10{sup 4} yr)((Δν/ν)/10{sup –6}) d, where t{sub sd} is the spin-down age; t{sub d} is typically weeks for the Vela pulsar and months in older pulsars, and is independent of the details of vortex pinning. Post-glitch response through thermal activation cannot occur more quickly than this timescale. Quicker components of post-glitch response, as have been observed in some pulsars, notably, the Vela pulsar, cannot be due to thermally activated vortex motion but must represent a different process, such as drag on vortices in regions where there is no pinning. I also derive the mutual friction force for a pinned superfluid at finite temperature for use in other studies of neutron star hydrodynamics.

  20. Estimation of tropical forest canopy temperatures, thermal response numbers, and evapotranspiration using an aircraft-based thermal sensor

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey C.; Lieberman, Diana; Lieberman, Milton; Hartshorn, Gary S.; Peralta, Rodolfo

    1990-01-01

    Thermal infrared Multispectral Scanner (TIMS) data were collected at a resolution of 5 to 10 m from a tropical rain forest over an elevation gradient from 35 to 2700 m in the Braulio Carrillo National Park in Costa Rica. Flight lines were repeated with a 15 to 30 minute time difference for measurement of forest canopy thermal response over time. Concurrent radiosonde measurements of atmospheric profiles of air temperature and moisture provided inputs to LOWTRAN6 for atmospheric radiance corrections of the TIMS data. Techniques for using calibrated aircraft-based thermal scanner data to examine tropical forest canopy thermal properties are described. Forest canopy temperature changes over time assessed between repeated, duplicated flight lines were combined with estimates of surface radiative energy measurements from towers above the forest canopy to determine temperature spatial variability, calculate Thermal Response Numbers (TRN), and estimate evapotranspiration along the elevation gradient from selected one hectare forest inventory plots.

  1. Prediction of Geomechanical Properties from Thermal Conductivity of Low-Permeable Reservoirs

    NASA Astrophysics Data System (ADS)

    Chekhonin, Evgeny; Popov, Evgeny; Popov, Yury; Spasennykh, Mikhail; Ovcharenko, Yury; Zhukov, Vladislav; Martemyanov, Andrey

    2016-04-01

    A key to assessing a sedimentary basin's hydrocarbon prospect is correct reconstruction of thermal and structural evolution. It is impossible without adequate theory and reliable input data including among other factors thermal and geomechanical rock properties. Both these factors are also important in geothermal reservoirs evaluation and carbon sequestration problem. Geomechanical parameters are usually estimated from sonic logging and rare laboratory measurements, but sometimes it is not possible technically (low quality of the acoustic signal, inappropriate borehole and mud conditions, low core quality). No wonder that there are attempts to correlate the thermal and geomechanical properties of rock, but no one before did it with large amount of high quality thermal conductivity data. Coupling results of sonic logging and non-destructive non-contact thermal core logging opens wide perspectives for studying a relationship between the thermal and geomechanical properties. More than 150 m of full size cores have been measured at core storage with optical scanning technique. Along with results of sonic logging performed with Sonic Scanner in different wells drilled in low permeable formations in West Siberia (Russia) it provided us with unique data set. It was established a strong correlation between components of thermal conductivity (measured perpendicular and parallel to bedding) and compressional and shear acoustic velocities in Bazhen formation. As a result, prediction of geomechanical properties via thermal conductivity data becomes possible, corresponding results was demonstrated. The work was supported by the Russian Ministry of Education and Science, project No. RFMEFI58114X0008.

  2. A unified thermal and vertical trajectory model for the prediction of high altitude balloon performance

    NASA Technical Reports Server (NTRS)

    Carlson, L. A.; Horn, W. J.

    1981-01-01

    A computer model for the prediction of the trajectory and thermal behavior of zero-pressure high altitude balloon was developed. In accord with flight data, the model permits radiative emission and absorption of the lifting gas and daytime gas temperatures above that of the balloon film. It also includes ballasting, venting, and valving. Predictions obtained with the model are compared with flight data from several flights and newly discovered features are discussed.

  3. Coral bleaching response index: a new tool to standardize and compare susceptibility to thermal bleaching

    PubMed Central

    SWAIN, TIMOTHY D.; VEGA-PERKINS, JESSE B.; OESTREICH, WILLIAM K.; TRIEBOLD, CONRAD; DUBOIS, EMILY; HENSS, JILLIAN; BAIRD, ANDREW; SIPLE, MARGARET; BACKMAN, VADIM; MARCELINO, LUISA

    2017-01-01

    As coral bleaching events become more frequent and intense, our ability to predict and mitigate future events depends upon our capacity to interpret patterns within previous episodes. Responses to thermal stress vary among coral species; however the diversity of coral assemblages, environmental conditions, assessment protocols, and severity criteria applied in the global effort to document bleaching patterns creates challenges for the development of a systemic metric of taxon-specific response. Here, we describe and validate a novel framework to standardize bleaching response records and estimate their measurement uncertainties. Taxon-specific bleaching and mortality records (2036) of 374 coral taxa (during 1982–2006) at 316 sites were standardized to average percent tissue area affected and a taxon-specific bleaching response index (taxon-BRI) was calculated by averaging taxon-specific response over all sites where a taxon was present. Differential bleaching among corals was widely variable (mean taxon-BRI = 25.06 ± 18.44%, ± SE). Coral response may differ because holobionts are biologically different (intrinsic factors), they were exposed to different environmental conditions (extrinsic factors), or inconsistencies in reporting (measurement uncertainty). We found that both extrinsic and intrinsic factors have comparable influence within a given site and event (60% and 40% of bleaching response variance of all records explained, respectively). However, when responses of individual taxa are averaged across sites to obtain taxon-BRI, differential response was primarily driven by intrinsic differences among taxa (65% of taxon-BRI variance explained), not conditions across sites (6% explained), nor measurement uncertainty (29% explained). Thus, taxon-BRI is a robust metric of intrinsic susceptibility of coral taxa. Taxon-BRI provides a broadly applicable framework for standardization and error estimation for disparate historical records and collection of novel

  4. Coral bleaching response index: a new tool to standardize and compare susceptibility to thermal bleaching.

    PubMed

    Swain, Timothy D; Vega-Perkins, Jesse B; Oestreich, William K; Triebold, Conrad; DuBois, Emily; Henss, Jillian; Baird, Andrew; Siple, Margaret; Backman, Vadim; Marcelino, Luisa

    2016-07-01

    As coral bleaching events become more frequent and intense, our ability to predict and mitigate future events depends upon our capacity to interpret patterns within previous episodes. Responses to thermal stress vary among coral species; however the diversity of coral assemblages, environmental conditions, assessment protocols, and severity criteria applied in the global effort to document bleaching patterns creates challenges for the development of a systemic metric of taxon-specific response. Here, we describe and validate a novel framework to standardize bleaching response records and estimate their measurement uncertainties. Taxon-specific bleaching and mortality records (2036) of 374 coral taxa (during 1982-2006) at 316 sites were standardized to average percent tissue area affected and a taxon-specific bleaching response index (taxon-BRI) was calculated by averaging taxon-specific response over all sites where a taxon was present. Differential bleaching among corals was widely variable (mean taxon-BRI = 25.06 ± 18.44%, ±SE). Coral response may differ because holobionts are biologically different (intrinsic factors), they were exposed to different environmental conditions (extrinsic factors), or inconsistencies in reporting (measurement uncertainty). We found that both extrinsic and intrinsic factors have comparable influence within a given site and event (60% and 40% of bleaching response variance of all records explained, respectively). However, when responses of individual taxa are averaged across sites to obtain taxon-BRI, differential response was primarily driven by intrinsic differences among taxa (65% of taxon-BRI variance explained), not conditions across sites (6% explained), nor measurement uncertainty (29% explained). Thus, taxon-BRI is a robust metric of intrinsic susceptibility of coral taxa. Taxon-BRI provides a broadly applicable framework for standardization and error estimation for disparate historical records and collection of novel

  5. Non-thermal modification of heat-loss responses during exercise in humans.

    PubMed

    Kondo, Narihiko; Nishiyasu, Takeshi; Inoue, Yoshimitsu; Koga, Shunsaku

    2010-10-01

    This review focuses on the characteristics of heat-loss responses during exercise with respect to non-thermal factors. In addition, the effects of physical training on non-thermal heat-loss responses are discussed. When a subject is already sweating the sweating rate increases at the onset of dynamic exercise without changes in core temperature, while cutaneous vascular conductance (skin blood flow) is temporarily decreased. Although exercise per se does not affect the threshold for the onset of sweating, it is possible that an increase in exercise intensity induces a higher sensitivity of the sweating response. Exercise increases the threshold for cutaneous vasodilation, and at higher exercise intensities, the sensitivity of the skin-blood-flow response decreases. Facilitation of the sweating response with increased exercise intensity may be due to central command, peripheral reflexes in the exercising muscle, and mental stimuli, whereas the attenuation of skin-blood-flow responses with decreased cutaneous vasodilation is related to many non-thermal factors. Most non-thermal factors have negative effects on magnitude of cutaneous vasodilation; however, several of these factors have positive effects on the sweating response. Moreover, thermal and non-thermal factors interact in controlling heat-loss responses, with non-thermal factors having a greater impact until core temperature elevations become significant, after which core temperature primarily would control heat loss. Finally, as with thermally induced sweating responses, physical training seems to also affect sweating responses governed by non-thermal factors.

  6. The use of the principle of superposition in measuring and predicting the thermal characteristics of an electronic equipment operated in a space environment

    NASA Technical Reports Server (NTRS)

    Gale, E. H.

    1980-01-01

    The advantages and possible pitfalls of using a generalized method of measuring and, based on these measurements, predicting the transient or steady-state thermal response characteristics of an electronic equipment designed to operate in a space environment are reviewed. The method requires generation of a set of thermal influence coefficients by test measurement in vacuo. A implified thermal mockup isused in this test. Once this data set is measured, temperatures resulting from arbitrary steady-state or time varying power profiles can be economically calculated with the aid of a digital computer.

  7. Predicting Formation Damage in Aquifer Thermal Energy Storage Systems Utilizing a Coupled Hydraulic-Thermal-Chemical Reservoir Model

    NASA Astrophysics Data System (ADS)

    Müller, Daniel; Regenspurg, Simona; Milsch, Harald; Blöcher, Guido; Kranz, Stefan; Saadat, Ali

    2014-05-01

    In aquifer thermal energy storage (ATES) systems, large amounts of energy can be stored by injecting hot water into deep or intermediate aquifers. In a seasonal production-injection cycle, water is circulated through a system comprising the porous aquifer, a production well, a heat exchanger and an injection well. This process involves large temperature and pressure differences, which shift chemical equilibria and introduce or amplify mechanical processes. Rock-fluid interaction such as dissolution and precipitation or migration and deposition of fine particles will affect the hydraulic properties of the porous medium and may lead to irreversible formation damage. In consequence, these processes determine the long-term performance of the ATES system and need to be predicted to ensure the reliability of the system. However, high temperature and pressure gradients and dynamic feedback cycles pose challenges on predicting the influence of the relevant processes. Within this study, a reservoir model comprising a coupled hydraulic-thermal-chemical simulation was developed based on an ATES demonstration project located in the city of Berlin, Germany. The structural model was created with Petrel, based on data available from seismic cross-sections and wellbores. The reservoir simulation was realized by combining the capabilities of multiple simulation tools. For the reactive transport model, COMSOL Multiphysics (hydraulic-thermal) and PHREEQC (chemical) were combined using the novel interface COMSOL_PHREEQC, developed by Wissmeier & Barry (2011). It provides a MATLAB-based coupling interface between both programs. Compared to using COMSOL's built-in reactive transport simulator, PHREEQC additionally calculates adsorption and reaction kinetics and allows the selection of different activity coefficient models in the database. The presented simulation tool will be able to predict the most important aspects of hydraulic, thermal and chemical transport processes relevant to

  8. NECAP 4.1: NASA's Energy Cost Analysis Program thermal response factor routine

    NASA Technical Reports Server (NTRS)

    Weise, M. R.

    1982-01-01

    A thermal response factor is described and calculation sequences and flowcharts for RESFAC2 are provided. RESFAC is used by NASA's (NECAP) to calculate hourly heat transfer coefficients (thermal response factors) for each unique delayed surface. NECAP uses these response factors to compute each spaces' hourly heat gain/loss.

  9. Improving rational thermal comfort prediction by using subpopulation characteristics: A case study at Hermitage Amsterdam

    PubMed Central

    Kramer, Rick; Schellen, Lisje; Schellen, Henk; Kingma, Boris

    2017-01-01

    ABSTRACT This study aims to improve the prediction accuracy of the rational standard thermal comfort model, known as the Predicted Mean Vote (PMV) model, by (1) calibrating one of its input variables “metabolic rate,” and (2) extending it by explicitly incorporating the variable running mean outdoor temperature (RMOT) that relates to adaptive thermal comfort. The analysis was performed with survey data (n = 1121) and climate measurements of the indoor and outdoor environment from a one year-long case study undertaken at Hermitage Amsterdam museum in the Netherlands. The PMVs were calculated for 35 survey days using (1) an a priori assumed metabolic rate, (2) a calibrated metabolic rate found by fitting the PMVs to the thermal sensation votes (TSVs) of each respondent using an optimization routine, and (3) extending the PMV model by including the RMOT. The results show that the calibrated metabolic rate is estimated to be 1.5 Met for this case study that was predominantly visited by elderly females. However, significant differences in metabolic rates have been revealed between adults and elderly showing the importance of differentiating between subpopulations. Hence, the standard tabular values, which only differentiate between various activities, may be oversimplified for many cases. Moreover, extending the PMV model with the RMOT substantially improves the thermal sensation prediction, but thermal sensation toward extreme cool and warm sensations remains partly underestimated. PMID:28680934

  10. DSF method optimization and its application in predicting protein thermal aggregation kinetics.

    PubMed

    Shi, Shuai; Semple, Andrew; Cheung, Jason; Shameem, Mohammed

    2013-08-01

    Differential scanning fluorimetry (DSF) has gained wide acceptance in the therapeutic protein development. However, the effects of dyes and surfactants that may affect structural transitions have not been studied thoroughly to date. We therefore first optimized the DSF method by studying surfactant-containing formulations and found that the presence of surfactants generally required medium-to-high protein concentrations and that high SYPRO® Orange concentration in a DSF experiment may lower protein thermal transitions. We also benchmarked DSF against differential scanning calorimetry (DSC) and evaluated the capability of thermal parameters (from DSF/DSC) to predict real-time thermal aggregation kinetics monitored by size exclusion chromatography (SEC) and analytical ultracentrifugation (AUC) in different scenarios. For monoclonal antibody (MAb) fragment, both DSF and DSC were predictive of thermal aggregation rate. For MAb3, a good correlation was observed between DSF and DSC, none of which was, however, indicative of protein aggregation kinetics. In a surfactant ranging study, DSF did not agree with DSC and was not predictive of the aggregation kinetics of the MAb fragment. The concentration-dependent thermal behavior was also studied by DSF. Although higher concentration, in general, tends to lower protein transition temperature, case where it was independent of protein concentration was also presented. Copyright © 2013 Wiley Periodicals, Inc.

  11. Is the Ultimate Treatment Response Predictable with Early Response in Major Depressive Episode?

    PubMed Central

    ÇİFTÇİ, Aslı; ULAŞ, Halis; TOPUZOĞLU, Ahmet; TUNCA, Zeliha

    2016-01-01

    Introduction New evidence suggests that the efficacy of antidepressants occurs within the first weeks of treatment and this early response predicts the later response. The purpose of the present study was to investigate if the partial response in the first week predicts the response at the end of treatment in patients with major depressive disorder who are treated with either antidepressant medication or electroconvulsive therapy. Methods Inpatients from Dokuz Eylül University Hospital with a major depressive episode, treated with antidepressant medication (n=52) or electroconvulsive therapy (ECT) (n=48), were recruited for the study. The data were retrospectively collected to decide whether a 25% decrease in the Hamilton Depression Rating Scale (HDRS) score at the first week of treatment predicts a 50% decrease at the third week using validity analysis. In addition, the effects of socio-demographic and clinical variables on the treatment response were assessed. Results A 25% decrease in the HDRS score in the first week of treatment predicted a 50% decrease in the HDRS score in the third week with a 78.3% positive predictive value, 62.1% negative predictive value, 62.1% sensitivity, and 78.3% specificity for antidepressant medications and an 88% positive predictive value, 52.2% negative predictive value, 66.7% sensitivity, and 80% specificity for ECT. The number of previous hospitalizations, comorbid medical illnesses, number of depressive episodes, duration of illness, and duration of the current episode were related to the treatment response. Conclusion Treatment response in the first week predicted the response in the third week with a high specificity and a high positive predictive value. Close monitoring of the response from the first week of treatment may thus help the clinician to predict the subsequent response. PMID:28373802

  12. Using physiology to predict the responses of ants to climatic warming.

    PubMed

    Diamond, Sarah E; Penick, Clint A; Pelini, Shannon L; Ellison, Aaron M; Gotelli, Nicholas J; Sanders, Nathan J; Dunn, Robert R

    2013-12-01

    Physiological intolerance of high temperatures places limits on organismal responses to the temperature increases associated with global climatic change. Because ants are geographically widespread, ecologically diverse, and thermophilic, they are an ideal system for exploring the extent to which physiological tolerance can predict responses to environmental change. Here, we expand on simple models that use thermal tolerance to predict the responses of ants to climatic warming. We investigated the degree to which changes in the abundance of ants under warming reflect reductions in the thermal niche space for their foraging. In an eastern deciduous forest system in the United States with approximately 40 ant species, we found that for some species, the loss of thermal niche space for foraging was related to decreases in abundance with increasing experimental climatic warming. However, many ant species exhibited no loss of thermal niche space. For one well-studied species, Temnothorax curvispinosus, we examined both survival of workers and growth of colonies (a correlate of reproductive output) as functions of temperature in the laboratory, and found that the range of thermal tolerances for colony growth was much narrower than for survival of workers. We evaluated these functions in the context of experimental climatic warming and found that the difference in the responses of these two attributes to temperature generates differences in the means and especially the variances of expected fitness under warming. The expected mean growth of colonies was optimized at intermediate levels of warming (2-4°C above ambient); yet, the expected variance monotonically increased with warming. In contrast, the expected mean and variance of the survival of workers decreased when warming exceeded 4°C above ambient. Together, these results for T. curvispinosus emphasize the importance of measuring reproduction (colony growth) in the context of climatic change: indeed, our examination

  13. Early prediction of blonanserin response in Japanese patients with schizophrenia

    PubMed Central

    Kishi, Taro; Matsuda, Yuki; Fujita, Kiyoshi; Iwata, Nakao

    2014-01-01

    Background Blonanserin is a second-generation antipsychotic used for the treatment of schizophrenia in Japan and Korea. The present study aimed to examine early prediction of blonanserin in patients with schizophrenia. Methods An 8-week, prospective, single-arm, flexible-dose clinical trial of blonanserin in patients with schizophrenia was conducted under real-world conditions. The inclusion criteria were antipsychotic naïve, and first-episode schizophrenia patients or schizophrenia patients with no consumption of any antipsychotic medication for more than 4 weeks before enrollment in this study. The positive predictive value, negative predictive value, sensitivity, specificity, and predictive power were calculated for the response status at week 4 to predict the subsequent response at week 8. Results Thirty-seven patients were recruited (56.8% of them had first-episode schizophrenia), and 28 (75.7%) completed the trial. At week 8, blonanserin was associated with a significant improvement in the Positive and Negative Syndrome Scale (PANSS) total score (P<0.0001) and in positive (P<0.0001), negative (P<0.0001), and general subscale scores (P<0.0001). In terms of percentage improvement of PANSS total scores from baseline to week 8, 64.9% of patients showed a ≥20% reduction in the PANSS total score and 48.6% showed a ≥30% reduction. However, 8.1% of patients experienced at least one adverse event. Using the 20% reduction in the PANSS total score at week 4 as a definition of an early response, the negative predictive values for later responses (ie, reductions of ≥30 and ≥40 in the PANSS total scores) were 88.9% and 94.1%, respectively. The specificities were 80.0% and 51.6%, respectively. Conclusion Our results suggest that the blonanserin response at week 4 could predict the later response at week 8. PMID:25285009

  14. Early prediction of blonanserin response in Japanese patients with schizophrenia.

    PubMed

    Kishi, Taro; Matsuda, Yuki; Fujita, Kiyoshi; Iwata, Nakao

    2014-01-01

    Blonanserin is a second-generation antipsychotic used for the treatment of schizophrenia in Japan and Korea. The present study aimed to examine early prediction of blonanserin in patients with schizophrenia. An 8-week, prospective, single-arm, flexible-dose clinical trial of blonanserin in patients with schizophrenia was conducted under real-world conditions. The inclusion criteria were antipsychotic naïve, and first-episode schizophrenia patients or schizophrenia patients with no consumption of any antipsychotic medication for more than 4 weeks before enrollment in this study. The positive predictive value, negative predictive value, sensitivity, specificity, and predictive power were calculated for the response status at week 4 to predict the subsequent response at week 8. Thirty-seven patients were recruited (56.8% of them had first-episode schizophrenia), and 28 (75.7%) completed the trial. At week 8, blonanserin was associated with a significant improvement in the Positive and Negative Syndrome Scale (PANSS) total score (P<0.0001) and in positive (P<0.0001), negative (P<0.0001), and general subscale scores (P<0.0001). In terms of percentage improvement of PANSS total scores from baseline to week 8, 64.9% of patients showed a ≥20% reduction in the PANSS total score and 48.6% showed a ≥30% reduction. However, 8.1% of patients experienced at least one adverse event. Using the 20% reduction in the PANSS total score at week 4 as a definition of an early response, the negative predictive values for later responses (ie, reductions of ≥30 and ≥40 in the PANSS total scores) were 88.9% and 94.1%, respectively. The specificities were 80.0% and 51.6%, respectively. Our results suggest that the blonanserin response at week 4 could predict the later response at week 8.

  15. Predicting the Coefficient of Thermal Expansion of Pultruded Composites with a Natural-Fiber Reinforcement

    NASA Astrophysics Data System (ADS)

    Zamri, M. H.; Akil, H. Md; Safiee, S.; Ishak, Z. A. M.; Bakar, A. A.

    2014-11-01

    Thermal expansion problems for unidirectional pultruded composite samples were studied. The composite materials were subjected to temperatures ranging from 0 to 200°C in order to simulate service conditions. A thermal-mechanical analyzer was employed for gathering experimental data, and the results were compared with those generated using the ANSYS software and micromechanical models. A finite-element analysis (FEA) by utilizing ANSYS was also carried out. The thermal behavior of pultruded jute-fiber-reinforced unsaturated polyester composites was simulated, and the results obtained were then compared with experimental data and predictions provided by several micromechanical models. It is found that the Schapery and Chamis micromechanical models are more efficient in predicting the value of CTE in the longitudinal and transverse directions, respectively.

  16. Prediction of the effects of thermal ageing on the embrittlement of reactor pressure vessel steels

    NASA Astrophysics Data System (ADS)

    Margolin, B. Z.; Yurchenko, E. V.; Morozov, A. M.; Chistyakov, D. A.

    2014-04-01

    A new method has been proposed for prediction of the effects of thermal ageing on the embrittlement of reactor pressure vessel (RPV) steels. The method is based on the test results for materials in two conditions, namely, aged at temperatures of temper embrittlement and annealed after irradiation. The prediction is based on the McLean's equation and the dependencies describing thermally activated and radiation-enhanced phosphorus diffusion. Experimental studies have been carried out for estimation of thermal ageing of the WWER-1000 RPV 2Cr-Ni-Mo-V steel. The ductile to brittle transition temperature shift ΔTk due to phosphorus segregation has been estimated on the basis of experimental data processed by the proposed method for the time t = 5 × 105 h (more than 60 years of operation) for the base and weld metals of the WWER-1000 RPV.

  17. Incorporating Retention Time to Refine Models Predicting Thermal Regimes of Stream Networks Across New England

    EPA Science Inventory

    Thermal regimes are a critical factor in models predicting effects of watershed management activities on fish habitat suitability. We have assembled a database of lotic temperature time series across New England (> 7000 station-year combinations) from state and Federal data s...

  18. Network-based Prediction of Lotic Thermal Regimes Across New England

    EPA Science Inventory

    Thermal regimes are a critical factor in models predicting effects of watershed management activities on fish habitat suitability. We have assembled a database of lotic temperature time series across New England (> 7000 station-year combinations) from state and Federal data sour...

  19. Network-based Prediction of Lotic Thermal Regimes Across New England

    EPA Science Inventory

    Thermal regimes are a critical factor in models predicting effects of watershed management activities on fish habitat suitability. We have assembled a database of lotic temperature time series across New England (> 7000 station-year combinations) from state and Federal data sour...

  20. Incorporating Retention Time to Refine Models Predicting Thermal Regimes of Stream Networks Across New England

    EPA Science Inventory

    Thermal regimes are a critical factor in models predicting effects of watershed management activities on fish habitat suitability. We have assembled a database of lotic temperature time series across New England (> 7000 station-year combinations) from state and Federal data s...

  1. Predicting thermal regimes of stream networks across the Chesapeake Bay Watershed: Natural and anthropogenic influences

    EPA Science Inventory

    Thermal regimes are a critical factor in models predicting joint effects of watershed management activities and climate change on fish habitat suitability. We have compiled a database of lotic temperature time series across the Chesapeake Bay Watershed (725 station-year combinat...

  2. Predicting Thermal Regimes of Stream Networks Across New England: Natural and Anthropogenic Influences

    EPA Science Inventory

    Thermal regime is a critical factor in models predicting joint effects of watershed management activities and climate change on habitat suitability for fish. We used a database of lotic temperature time series across New England (> 7000 station-year combinations) from state a...

  3. Predicting Thermal Regimes of Stream Networks Across New England: Natural and Anthropogenic Influences

    EPA Science Inventory

    Thermal regime is a critical factor in models predicting joint effects of watershed management activities and climate change on habitat suitability for fish. We used a database of lotic temperature time series across New England (> 7000 station-year combinations) from state a...

  4. Predicting thermal regimes of stream networks across the Chesapeake Bay Watershed: Natural and anthropogenic influences

    EPA Science Inventory

    Thermal regimes are a critical factor in models predicting joint effects of watershed management activities and climate change on fish habitat suitability. We have compiled a database of lotic temperature time series across the Chesapeake Bay Watershed (725 station-year combinat...

  5. Selecting an Informative/Discriminating Multivariate Response for Inverse Prediction

    DOE PAGES

    Thomas, Edward V.; Lewis, John. R.; Anderson-Cook, Christine Michaela; ...

    2017-07-01

    The inverse prediction is important in a variety of scientific and engineering applications, such as to predict properties/characteristics of an object by using multiple measurements obtained from it. Inverse prediction can be accomplished by inverting parameterized forward models that relate the measurements (responses) to the properties/characteristics of interest. Sometimes forward models are computational/science based; but often, forward models are empirically based response surface models, obtained by using the results of controlled experimentation. For empirical models, it is important that the experiments provide a sound basis to develop accurate forward models in terms of the properties/characteristics (factors). And while nature dictatesmore » the causal relationships between factors and responses, experimenters can control the complexity, accuracy, and precision of forward models constructed via selection of factors, factor levels, and the set of trials that are performed. Recognition of the uncertainty in the estimated forward models leads to an errors-in-variables approach for inverse prediction. The forward models (estimated by experiments or science based) can also be used to analyze how well candidate responses complement one another for inverse prediction over the range of the factor space of interest. Furthermore, one may find that some responses are complementary, redundant, or noninformative. Simple analysis and examples illustrate how an informative and discriminating subset of responses could be selected among candidates in cases where the number of responses that can be acquired during inverse prediction is limited by difficulty, expense, and/or availability of material.« less

  6. Brain Connectivity Predicts Placebo Response across Chronic Pain Clinical Trials

    PubMed Central

    Tétreault, Pascal; Mansour, Ali; Vachon-Presseau, Etienne; Schnitzer, Thomas J.; Apkarian, A. Vania

    2016-01-01

    Placebo response in the clinical trial setting is poorly understood and alleged to be driven by statistical confounds, and its biological underpinnings are questioned. Here we identified and validated that clinical placebo response is predictable from resting-state functional magnetic-resonance-imaging (fMRI) brain connectivity. This also led to discovering a brain region predicting active drug response and demonstrating the adverse effect of active drug interfering with placebo analgesia. Chronic knee osteoarthritis (OA) pain patients (n = 56) underwent pretreatment brain scans in two clinical trials. Study 1 (n = 17) was a 2-wk single-blinded placebo pill trial. Study 2 (n = 39) was a 3-mo double-blinded randomized trial comparing placebo pill to duloxetine. Study 3, which was conducted in additional knee OA pain patients (n = 42), was observational. fMRI-derived brain connectivity maps in study 1 were contrasted between placebo responders and nonresponders and compared to healthy controls (n = 20). Study 2 validated the primary biomarker and identified a brain region predicting drug response. In both studies, approximately half of the participants exhibited analgesia with placebo treatment. In study 1, right midfrontal gyrus connectivity best identified placebo responders. In study 2, the same measure identified placebo responders (95% correct) and predicted the magnitude of placebo’s effectiveness. By subtracting away linearly modeled placebo analgesia from duloxetine response, we uncovered in 6/19 participants a tendency of duloxetine enhancing predicted placebo response, while in another 6/19, we uncovered a tendency for duloxetine to diminish it. Moreover, the approach led to discovering that right parahippocampus gyrus connectivity predicts drug analgesia after correcting for modeled placebo-related analgesia. Our evidence is consistent with clinical placebo response having biological underpinnings and shows that the method can also reveal that active

  7. Brain Connectivity Predicts Placebo Response across Chronic Pain Clinical Trials.

    PubMed

    Tétreault, Pascal; Mansour, Ali; Vachon-Presseau, Etienne; Schnitzer, Thomas J; Apkarian, A Vania; Baliki, Marwan N

    2016-10-01

    Placebo response in the clinical trial setting is poorly understood and alleged to be driven by statistical confounds, and its biological underpinnings are questioned. Here we identified and validated that clinical placebo response is predictable from resting-state functional magnetic-resonance-imaging (fMRI) brain connectivity. This also led to discovering a brain region predicting active drug response and demonstrating the adverse effect of active drug interfering with placebo analgesia. Chronic knee osteoarthritis (OA) pain patients (n = 56) underwent pretreatment brain scans in two clinical trials. Study 1 (n = 17) was a 2-wk single-blinded placebo pill trial. Study 2 (n = 39) was a 3-mo double-blinded randomized trial comparing placebo pill to duloxetine. Study 3, which was conducted in additional knee OA pain patients (n = 42), was observational. fMRI-derived brain connectivity maps in study 1 were contrasted between placebo responders and nonresponders and compared to healthy controls (n = 20). Study 2 validated the primary biomarker and identified a brain region predicting drug response. In both studies, approximately half of the participants exhibited analgesia with placebo treatment. In study 1, right midfrontal gyrus connectivity best identified placebo responders. In study 2, the same measure identified placebo responders (95% correct) and predicted the magnitude of placebo's effectiveness. By subtracting away linearly modeled placebo analgesia from duloxetine response, we uncovered in 6/19 participants a tendency of duloxetine enhancing predicted placebo response, while in another 6/19, we uncovered a tendency for duloxetine to diminish it. Moreover, the approach led to discovering that right parahippocampus gyrus connectivity predicts drug analgesia after correcting for modeled placebo-related analgesia. Our evidence is consistent with clinical placebo response having biological underpinnings and shows that the method can also reveal that active

  8. Prediction of effective thermal conductivity of porous consolidated media as a function of temperature: a test example of limestones

    NASA Astrophysics Data System (ADS)

    Aurangzeb; Khan, Liaqat Ali; Maqsood, Asghari

    2007-08-01

    The thermal conductivity, thermal diffusivity and heat capacity per unit volume of sedimentary rocks (limestones) taken from Nammal Gorge sections, Western Salt Range, Pakistan, have been measured simultaneously using the transient plane source technique. The temperature dependence of thermal transport properties was studied in the temperature range 293 to 443 K. Different relations for the estimation of thermal conductivity are applied. A proposal for the prediction of thermal conductivity as a function of temperature is also given. It is observed that the values of effective thermal conductivity predicted by the proposed model are in agreement with the experimental thermal conductivity data within 8%. Furthermore, the errors in experimental calculations of thermal conductivity, thermal diffusivity and volumetric heat capacity are around 5%, 7% and 10%, respectively.

  9. Development and Life Prediction of Erosion Resistant Turbine Low Conductivity Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.; Kuczmarski, Maria A.

    2010-01-01

    Future rotorcraft propulsion systems are required to operate under highly-loaded conditions and in harsh sand erosion environments, thereby imposing significant material design and durability issues. The incorporation of advanced thermal barrier coatings (TBC) in high pressure turbine systems enables engine designs with higher inlet temperatures, thus improving the engine efficiency, power density and reliability. The impact and erosion resistance of turbine thermal barrier coating systems are crucial to the turbine coating technology application, because a robust turbine blade TBC system is a prerequisite for fully utilizing the potential coating technology benefit in the rotorcraft propulsion. This paper describes the turbine blade TBC development in addressing the coating impact and erosion resistance. Advanced thermal barrier coating systems with improved performance have also been validated in laboratory simulated engine erosion and/or thermal gradient environments. A preliminary life prediction modeling approach to emphasize the turbine blade coating erosion is also presented.

  10. Thermal response of ceramic components during electron beam brazing

    SciTech Connect

    Voth, T.E.; Gianoulakis, S.E.; Halbleib, J.A.

    1996-03-01

    Ceramics are being used increasingly in applications where high temperatures are encountered such as automobile and gas turbine engines. However, the use of ceramics is limited by a lack of methods capable of producing strong, high temperature joints. This is because most ceramic-ceramic joining techniques, such as brazing, require that the entire assembly be exposed to high temperatures in order to assure that the braze material melts. Alternatively, localized heating using high energy electron beams may be used to selectively heat the braze material. In this work, high energy electron beam brazing of a ceramic part is modeled numerically. The part considered consists of a ceramic cylinder and disk between which is sandwiched an annular washer of braze material. An electron beam impinges on the disk, melting the braze metal. The resulting coupled electron and thermal transport equations are solved using Monte Carlo and finite element techniques. Results indicate that increased electron beam current decreases time to melt as well as required cooling time. Vacuum furnace brazing was also simulated and predicted results indicate increased processing times relative to electron beam brazing.

  11. Prediction of Antichollintergic Drug Response Using a Thermoregulatory Exchange Index

    DTIC Science & Technology

    2000-01-01

    M.A. Kolka/ Journal of Thermal Biology 25 (2000) 157-163 One contributor to the decreased homeostatic com- pensation in such individuals chronically...response) and obesity . When chal- lenged exogenously by environmental heat stress, or endogenously via fever or exercise, a person’s facility to maintain...occur which would offset any imbalances in evaporative heat loss (Kolka et al., 1994). Some evidence using an ani- mal model indicates that preoptic

  12. The Thermal Response of TATB-Based PBXs

    SciTech Connect

    Dickson, Peter; Parker, Gary Robert; Rae, Philip John

    2015-01-21

    In the design mode of operation, TATB-­based PBXs, such as PBX 9502 or LX-­17, are promptly initiated by a detonator and booster system. In abnormal situations, such as accidents, a wide variety of non-­design-­mode insults can arise and it is desirable that these do not produce detonation but rather that, at most, they lead to a low chemical energy release. The most significant abnormal hazard is the direct shock initiation threat arising from high-­velocity fragment impact. This is quite well defined and may result in a detonative response if the fragment is large enough and fast enough. However, it is of considerably greater significance to the safety envelope of these explosives whether they are at all capable of DDT (deflagration-­to-­detonation transition), either at ambient or elevated temperatures since accidental insults to the explosive, either mechanical or thermal, that may produce local burning are both more numerous and more likely than shock loading. The purpose of this document is to demonstrate, based on the accumulated body of conservative experimental testing, that in explosive geometries and masses relevant to the Weapons Program, TATB-­based PBXs do not present a deflagration-­to-­detonation transition (DDT) hazard at any temperature. This is a significant statement since it removes detonative outcome concerns from the majority of insult scenarios on TATB-­based charges. It does not address the response of included detonator and booster assemblies, the response of which must be considered separately.

  13. Prediction and measurement of thermal transport across interfaces between isotropic solids and graphitic materials.

    SciTech Connect

    Norris, Pamela M.; Smoyer, Justin L.; Duda, John Charles.; Hopkins, Patrick E.

    2010-06-01

    Due to the high intrinsic thermal conductivity of carbon allotropes, there have been many attempts to incorporate such structures into existing thermal abatement technologies. In particular, carbon nanotubes (CNTs) and graphitic materials (i.e., graphite and graphene flakes or stacks) have garnered much interest due to the combination of both their thermal and mechanical properties. However, the introduction of these carbon-based nanostructures into thermal abatement technologies greatly increases the number of interfaces per unit length within the resulting composite systems. Consequently, thermal transport in these systems is governed as much by the interfaces between the constituent materials as it is by the materials themselves. This paper reports the behavior of phononic thermal transport across interfaces between isotropic thin films and graphite substrates. Elastic and inelastic diffusive transport models are formulated to aid in the prediction of conductance at a metal-graphite interface. The temperature dependence of the thermal conductance at Au-graphite interfaces is measured via transient thermoreflectance from 78 to 400 K. It is found that different substrate surface preparations prior to thin film deposition have a significant effect on the conductance of the interface between film and substrate.

  14. Prediction and measurement of thermal transport across interfaces between isotropic solids and graphitic materials.

    SciTech Connect

    Norris, Pamela M.; Smoyer, Justin L.; Duda, John Charles.; Hopkins, Patrick E.

    2010-06-01

    Due to the high intrinsic thermal conductivity of carbon allotropes, there have been many attempts to incorporate such structures into existing thermal abatement technologies. In particular, carbon nanotubes (CNTs) and graphitic materials (i.e., graphite and graphene flakes or stacks) have garnered much interest due to the combination of both their thermal and mechanical properties. However, the introduction of these carbon-based nanostructures into thermal abatement technologies greatly increases the number of interfaces per unit length within the resulting composite systems. Consequently, thermal transport in these systems is governed as much by the interfaces between the constituent materials as it is by the materials themselves. This paper reports the behavior of phononic thermal transport across interfaces between isotropic thin films and graphite substrates. Elastic and inelastic diffusive transport models are formulated to aid in the prediction of conductance at a metal-graphite interface. The temperature dependence of the thermal conductance at Au-graphite interfaces is measured via transient thermoreflectance from 78 to 400 K. It is found that different substrate surface preparations prior to thin film deposition have a significant effect on the conductance of the interface between film and substrate.

  15. Measurement and Prediction of the Thermomechanical Response of Shape Memory Alloy Hybrid Composite Beams

    NASA Technical Reports Server (NTRS)

    Davis, Brian; Turner, Travis L.; Seelecke, Stefan

    2008-01-01

    An experimental and numerical investigation into the static and dynamic responses of shape memory alloy hybrid composite (SMAHC) beams is performed to provide quantitative validation of a recently commercialized numerical analysis/design tool for SMAHC structures. The SMAHC beam specimens consist of a composite matrix with embedded pre-strained SMA actuators, which act against the mechanical boundaries of the structure when thermally activated to adaptively stiffen the structure. Numerical results are produced from the numerical model as implemented into the commercial finite element code ABAQUS. A rigorous experimental investigation is undertaken to acquire high fidelity measurements including infrared thermography and projection moire interferometry for full-field temperature and displacement measurements, respectively. High fidelity numerical results are also obtained from the numerical model and include measured parameters, such as geometric imperfection and thermal load. Excellent agreement is achieved between the predicted and measured results of the static and dynamic thermomechanical response, thereby providing quantitative validation of the numerical tool.

  16. Measurement and Prediction of the Thermomechanical Response of Shape Memory Alloy Hybrid Composite Beams

    NASA Technical Reports Server (NTRS)

    Davis, Brian; Turner, Travis L.; Seelecke, Stefan

    2008-01-01

    An experimental and numerical investigation into the static and dynamic responses of shape memory alloy hybrid composite (SMAHC) beams is performed to provide quantitative validation of a recently commercialized numerical analysis/design tool for SMAHC structures. The SMAHC beam specimens consist of a composite matrix with embedded pre-strained SMA actuators, which act against the mechanical boundaries of the structure when thermally activated to adaptively stiffen the structure. Numerical results are produced from the numerical model as implemented into the commercial finite element code ABAQUS. A rigorous experimental investigation is undertaken to acquire high fidelity measurements including infrared thermography and projection moire interferometry for full-field temperature and displacement measurements, respectively. High fidelity numerical results are also obtained from the numerical model and include measured parameters, such as geometric imperfection and thermal load. Excellent agreement is achieved between the predicted and measured results of the static and dynamic thermomechanical response, thereby providing quantitative validation of the numerical tool.

  17. Image-guided genomic analysis of tissue response to laser-induced thermal stress

    PubMed Central

    Mackanos, Mark A.; Helms, Mike; Kalish, Flora; Contag, Christopher H.

    2011-01-01

    The cytoprotective response to thermal injury is characterized by transcriptional activation of “heat shock proteins” (hsp) and proinflammatory proteins. Expression of these proteins may predict cellular survival. Microarray analyses were performed to identify spatially distinct gene expression patterns responding to thermal injury. Laser injury zones were identified by expression of a transgene reporter comprised of the 70 kD hsp gene and the firefly luciferase coding sequence. Zones included the laser spot, the surrounding region where hsp70-luc expression was increased, and a region adjacent to the surrounding region. A total of 145 genes were up-regulated in the laser irradiated region, while 69 were up-regulated in the adjacent region. At 7 hours the chemokine Cxcl3 was the highest expressed gene in the laser spot (24 fold) and adjacent region (32 fold). Chemokines were the most common up-regulated genes identified. Microarray gene expression was successfully validated using qRT- polymerase chain reaction for selected genes of interest. The early response genes are likely involved in cytoprotection and initiation of the healing response. Their regulatory elements will benefit creating the next generation reporter mice and controlling expression of therapeutic proteins. The identified genes serve as drug development targets that may prevent acute tissue damage and accelerate healing. PMID:21639585

  18. Image-guided genomic analysis of tissue response to laser-induced thermal stress

    NASA Astrophysics Data System (ADS)

    Mackanos, Mark A.; Helms, Mike; Kalish, Flora; Contag, Christopher H.

    2011-05-01

    The cytoprotective response to thermal injury is characterized by transcriptional activation of ``heat shock proteins'' (hsp) and proinflammatory proteins. Expression of these proteins may predict cellular survival. Microarray analyses were performed to identify spatially distinct gene expression patterns responding to thermal injury. Laser injury zones were identified by expression of a transgene reporter comprised of the 70 kD hsp gene and the firefly luciferase coding sequence. Zones included the laser spot, the surrounding region where hsp70-luc expression was increased, and a region adjacent to the surrounding region. A total of 145 genes were up-regulated in the laser irradiated region, while 69 were up-regulated in the adjacent region. At 7 hours the chemokine Cxcl3 was the highest expressed gene in the laser spot (24 fold) and adjacent region (32 fold). Chemokines were the most common up-regulated genes identified. Microarray gene expression was successfully validated using qRT- polymerase chain reaction for selected genes of interest. The early response genes are likely involved in cytoprotection and initiation of the healing response. Their regulatory elements will benefit creating the next generation reporter mice and controlling expression of therapeutic proteins. The identified genes serve as drug development targets that may prevent acute tissue damage and accelerate healing.

  19. Nonlinear vs. bolometric radiation response and phonon thermal conductance in graphene-superconductor junctions

    SciTech Connect

    Vora, Heli; Nielsen, Bent; Du, Xu

    2014-02-21

    Graphene is a promising candidate for building fast and ultra-sensitive bolometric detectors due to its weak electron-phonon coupling and low heat capacity. In order to realize a practical graphene-based bolometer, several important issues, including the nature of radiation response, coupling efficiency to the radiation and the thermal conductance need to be carefully studied. Addressing these issues, we present graphene-superconductor junctions as a viable option to achieve efficient and sensitive bolometers, with the superconductor contacts serving as hot electron barriers. For a graphene-superconductor device with highly transparent interfaces, the resistance readout in the presence of radio frequency radiation is dominated by non-linear response. On the other hand, a graphene-superconductor tunnel device shows dominantly bolometric response to radiation. For graphene devices fabricated on SiO{sub 2} substrates, we confirm recent theoretical predictions of T{sup 2} temperature dependence of phonon thermal conductance in the presence of disorder in the graphene channel at low temperatures.

  20. Nonlinear vs. bolometric radiation response and phonon thermal conductance in graphene-superconductor junctions

    NASA Astrophysics Data System (ADS)

    Vora, Heli; Nielsen, Bent; Du, Xu

    2014-02-01

    Graphene is a promising candidate for building fast and ultra-sensitive bolometric detectors due to its weak electron-phonon coupling and low heat capacity. In order to realize a practical graphene-based bolometer, several important issues, including the nature of radiation response, coupling efficiency to the radiation and the thermal conductance need to be carefully studied. Addressing these issues, we present graphene-superconductor junctions as a viable option to achieve efficient and sensitive bolometers, with the superconductor contacts serving as hot electron barriers. For a graphene-superconductor device with highly transparent interfaces, the resistance readout in the presence of radio frequency radiation is dominated by non-linear response. On the other hand, a graphene-superconductor tunnel device shows dominantly bolometric response to radiation. For graphene devices fabricated on SiO2 substrates, we confirm recent theoretical predictions of T2 temperature dependence of phonon thermal conductance in the presence of disorder in the graphene channel at low temperatures.

  1. Integrating metabolic performance, thermal tolerance, and plasticity enables for more accurate predictions on species vulnerability to acute and chronic effects of global warming.

    PubMed

    Magozzi, Sarah; Calosi, Piero

    2015-01-01

    Predicting species vulnerability to global warming requires a comprehensive, mechanistic understanding of sublethal and lethal thermal tolerances. To date, however, most studies investigating species physiological responses to increasing temperature have focused on the underlying physiological traits of either acute or chronic tolerance in isolation. Here we propose an integrative, synthetic approach including the investigation of multiple physiological traits (metabolic performance and thermal tolerance), and their plasticity, to provide more accurate and balanced predictions on species and assemblage vulnerability to both acute and chronic effects of global warming. We applied this approach to more accurately elucidate relative species vulnerability to warming within an assemblage of six caridean prawns occurring in the same geographic, hence macroclimatic, region, but living in different thermal habitats. Prawns were exposed to four incubation temperatures (10, 15, 20 and 25 °C) for 7 days, their metabolic rates and upper thermal limits were measured, and plasticity was calculated according to the concept of Reaction Norms, as well as Q10 for metabolism. Compared to species occupying narrower/more stable thermal niches, species inhabiting broader/more variable thermal environments (including the invasive Palaemon macrodactylus) are likely to be less vulnerable to extreme acute thermal events as a result of their higher upper thermal limits. Nevertheless, they may be at greater risk from chronic exposure to warming due to the greater metabolic costs they incur. Indeed, a trade-off between acute and chronic tolerance was apparent in the assemblage investigated. However, the invasive species P. macrodactylus represents an exception to this pattern, showing elevated thermal limits and plasticity of these limits, as well as a high metabolic control. In general, integrating multiple proxies for species physiological acute and chronic responses to increasing

  2. Determining predictability and accuracy of thermal and electrical dental pulp tests: An in vivo study

    PubMed Central

    Salgar, Avinash Ramchandra; Singh, Shishir H.; Podar, Rajesh S.; Kulkarni, Gaurav P.; Babel, Shashank N.

    2017-01-01

    Introduction: Pulp sensitivity testing, even with its limitations and shortcomings, has been and still remains a very helpful aid in endodontic diagnosis. Pulp sensitivity tests extrapolate pulpal health from the sensory response. The aim of the present study was to identify the sensitivity, specificity, positive and negative predictive values (NPVs) of thermal and electrical tests of pulp sensitivity. Materials and Methods: Pulp tests studied were two cold and heat tests respectively and electrical test. A total of 330 teeth were tested: 198 teeth with vital pulp and 132 teeth with necrotic pulps (disease prevalence of 40%). The ideal standard was established by observing bleeding within the pulp chamber. Results: Sensitivity values of the diagnostic tests were 0.89 and 0.94 for cold test, 0.84 and 0.87 for the heat tests, and 0.75 for electrical pulp test and the specificity values of the diagnostic tests were 0.91 and 0.93 for the cold tests, 0.86 and 0.84 for the heat tests, and 0.90 for electrical pulp test. The NPVs were 0.91 and 0.96 for the cold tests, 0.89 and 0.91 for the heat tests, and 0.84 for electrical pulp test. The positive predictive values were 0.89 and 0.90 for the cold tests, 0.80 and 0.79 for the heat tests and 0.88 for electrical pulp test. The highest accuracy (0.9393) was observed with cold test (icy spray). Conclusions: The cold test done with icy spray was the most accurate method for sensitivity testing. PMID:28761253

  3. Determining predictability and accuracy of thermal and electrical dental pulp tests: An in vivo study.

    PubMed

    Salgar, Avinash Ramchandra; Singh, Shishir H; Podar, Rajesh S; Kulkarni, Gaurav P; Babel, Shashank N

    2017-01-01

    Pulp sensitivity testing, even with its limitations and shortcomings, has been and still remains a very helpful aid in endodontic diagnosis. Pulp sensitivity tests extrapolate pulpal health from the sensory response. The aim of the present study was to identify the sensitivity, specificity, positive and negative predictive values (NPVs) of thermal and electrical tests of pulp sensitivity. Pulp tests studied were two cold and heat tests respectively and electrical test. A total of 330 teeth were tested: 198 teeth with vital pulp and 132 teeth with necrotic pulps (disease prevalence of 40%). The ideal standard was established by observing bleeding within the pulp chamber. Sensitivity values of the diagnostic tests were 0.89 and 0.94 for cold test, 0.84 and 0.87 for the heat tests, and 0.75 for electrical pulp test and the specificity values of the diagnostic tests were 0.91 and 0.93 for the cold tests, 0.86 and 0.84 for the heat tests, and 0.90 for electrical pulp test. The NPVs were 0.91 and 0.96 for the cold tests, 0.89 and 0.91 for the heat tests, and 0.84 for electrical pulp test. The positive predictive values were 0.89 and 0.90 for the cold tests, 0.80 and 0.79 for the heat tests and 0.88 for electrical pulp test. The highest accuracy (0.9393) was observed with cold test (icy spray). The cold test done with icy spray was the most accurate method for sensitivity testing.

  4. Measurement and Prediction of the Thermomechanical Response of Shape Memory Alloy Hybrid Composite Beams

    NASA Technical Reports Server (NTRS)

    Davis, Brian; Turner, Travis L.; Seelecke, Stefan

    2005-01-01

    Previous work at NASA Langley Research Center (LaRC) involved fabrication and testing of composite beams with embedded, pre-strained shape memory alloy (SMA) ribbons within the beam structures. That study also provided comparison of experimental results with numerical predictions from a research code making use of a new thermoelastic model for shape memory alloy hybrid composite (SMAHC) structures. The previous work showed qualitative validation of the numerical model. However, deficiencies in the experimental-numerical correlation were noted and hypotheses for the discrepancies were given for further investigation. The goal of this work is to refine the experimental measurement and numerical modeling approaches in order to better understand the discrepancies, improve the correlation between prediction and measurement, and provide rigorous quantitative validation of the numerical analysis/design tool. The experimental investigation is refined by a more thorough test procedure and incorporation of higher fidelity measurements such as infrared thermography and projection moire interferometry. The numerical results are produced by a recently commercialized version of the constitutive model as implemented in ABAQUS and are refined by incorporation of additional measured parameters such as geometric imperfection. Thermal buckling, post-buckling, and random responses to thermal and inertial (base acceleration) loads are studied. The results demonstrate the effectiveness of SMAHC structures in controlling static and dynamic responses by adaptive stiffening. Excellent agreement is achieved between the predicted and measured results of the static and dynamic thermomechanical response, thereby providing quantitative validation of the numerical tool.

  5. Measurement and Prediction of the Thermomechanical Response of Shape Memory Alloy Hybrid Composite Beams

    NASA Technical Reports Server (NTRS)

    Davis, Brian; Turner, Travis L.; Seelecke, Stefan

    2005-01-01

    Previous work at NASA Langley Research Center (LaRC) involved fabrication and testing of composite beams with embedded, pre-strained shape memory alloy (SMA) ribbons within the beam structures. That study also provided comparison of experimental results with numerical predictions from a research code making use of a new thermoelastic model for shape memory alloy hybrid composite (SMAHC) structures. The previous work showed qualitative validation of the numerical model. However, deficiencies in the experimental-numerical correlation were noted and hypotheses for the discrepancies were given for further investigation. The goal of this work is to refine the experimental measurement and numerical modeling approaches in order to better understand the discrepancies, improve the correlation between prediction and measurement, and provide rigorous quantitative validation of the numerical analysis/design tool. The experimental investigation is refined by a more thorough test procedure and incorporation of higher fidelity measurements such as infrared thermography and projection moire interferometry. The numerical results are produced by a recently commercialized version of the constitutive model as implemented in ABAQUS and are refined by incorporation of additional measured parameters such as geometric imperfection. Thermal buckling, post-buckling, and random responses to thermal and inertial (base acceleration) loads are studied. The results demonstrate the effectiveness of SMAHC structures in controlling static and dynamic responses by adaptive stiffening. Excellent agreement is achieved between the predicted and measured results of the static and dynamic thermomechanical response, thereby providing quantitative validation of the numerical tool.

  6. Prediction of thermal coagulation from the instantaneous strain distribution induced by high-intensity focused ultrasound

    NASA Astrophysics Data System (ADS)

    Iwasaki, Ryosuke; Takagi, Ryo; Tomiyasu, Kentaro; Yoshizawa, Shin; Umemura, Shin-ichiro

    2017-07-01

    The targeting of the ultrasound beam and the prediction of thermal lesion formation in advance are the requirements for monitoring high-intensity focused ultrasound (HIFU) treatment with safety and reproducibility. To visualize the HIFU focal zone, we utilized an acoustic radiation force impulse (ARFI) imaging-based method. After inducing displacements inside tissues with pulsed HIFU called the push pulse exposure, the distribution of axial displacements started expanding and moving. To acquire RF data immediately after and during the HIFU push pulse exposure to improve prediction accuracy, we attempted methods using extrapolation estimation and applying HIFU noise elimination. The distributions going back in the time domain from the end of push pulse exposure are in good agreement with tissue coagulation at the center. The results suggest that the proposed focal zone visualization employing pulsed HIFU entailing the high-speed ARFI imaging method is useful for the prediction of thermal coagulation in advance.

  7. Physical and JIT Model Based Hybrid Modeling Approach for Building Thermal Load Prediction

    NASA Astrophysics Data System (ADS)

    Iino, Yutaka; Murai, Masahiko; Murayama, Dai; Motoyama, Ichiro

    Energy conservation in building fields is one of the key issues in environmental point of view as well as that of industrial, transportation and residential fields. The half of the total energy consumption in a building is occupied by HVAC (Heating, Ventilating and Air Conditioning) systems. In order to realize energy conservation of HVAC system, a thermal load prediction model for building is required. This paper propose a hybrid modeling approach with physical and Just-in-Time (JIT) model for building thermal load prediction. The proposed method has features and benefits such as, (1) it is applicable to the case in which past operation data for load prediction model learning is poor, (2) it has a self checking function, which always supervises if the data driven load prediction and the physical based one are consistent or not, so it can find if something is wrong in load prediction procedure, (3) it has ability to adjust load prediction in real-time against sudden change of model parameters and environmental conditions. The proposed method is evaluated with real operation data of an existing building, and the improvement of load prediction performance is illustrated.

  8. Prediction and control of neural responses to pulsatile electrical stimulation

    NASA Astrophysics Data System (ADS)

    Campbell, Luke J.; Sly, David James; O'Leary, Stephen John

    2012-04-01

    This paper aims to predict and control the probability of firing of a neuron in response to pulsatile electrical stimulation of the type delivered by neural prostheses such as the cochlear implant, bionic eye or in deep brain stimulation. Using the cochlear implant as a model, we developed an efficient computational model that predicts the responses of auditory nerve fibers to electrical stimulation and evaluated the model's accuracy by comparing the model output with pooled responses from a group of guinea pig auditory nerve fibers. It was found that the model accurately predicted the changes in neural firing probability over time to constant and variable amplitude electrical pulse trains, including speech-derived signals, delivered at rates up to 889 pulses s-1. A simplified version of the model that did not incorporate adaptation was used to adaptively predict, within its limitations, the pulsatile electrical stimulus required to cause a desired response from neurons up to 250 pulses s-1. Future stimulation strategies for cochlear implants and other neural prostheses may be enhanced using similar models that account for the way that neural responses are altered by previous stimulation.

  9. Prediction and control of neural responses to pulsatile electrical stimulation.

    PubMed

    Campbell, Luke J; Sly, David James; O'Leary, Stephen John

    2012-04-01

    This paper aims to predict and control the probability of firing of a neuron in response to pulsatile electrical stimulation of the type delivered by neural prostheses such as the cochlear implant, bionic eye or in deep brain stimulation. Using the cochlear implant as a model, we developed an efficient computational model that predicts the responses of auditory nerve fibers to electrical stimulation and evaluated the model's accuracy by comparing the model output with pooled responses from a group of guinea pig auditory nerve fibers. It was found that the model accurately predicted the changes in neural firing probability over time to constant and variable amplitude electrical pulse trains, including speech-derived signals, delivered at rates up to 889 pulses s(-1). A simplified version of the model that did not incorporate adaptation was used to adaptively predict, within its limitations, the pulsatile electrical stimulus required to cause a desired response from neurons up to 250 pulses s(-1). Future stimulation strategies for cochlear implants and other neural prostheses may be enhanced using similar models that account for the way that neural responses are altered by previous stimulation.

  10. Dynamic response analysis of an aircraft structure under thermal-acoustic loads

    NASA Astrophysics Data System (ADS)

    Cheng, H.; Li, H. B.; Zhang, W.; Wu, Z. Q.; Liu, B. R.

    2016-09-01

    Future hypersonic aircraft will be exposed to extreme combined environments includes large magnitude thermal and acoustic loads. It presents a significant challenge for the integrity of these vehicles. Thermal-acoustic test is used to test structures for dynamic response and sonic fatigue due to combined loads. In this research, the numerical simulation process for the thermal acoustic test is presented, and the effects of thermal loads on vibro-acoustic response are investigated. To simulate the radiation heating system, Monte Carlo theory and thermal network theory was used to calculate the temperature distribution. Considering the thermal stress, the high temperature modal parameters are obtained with structural finite element methods. Based on acoustic finite element, modal-based vibro-acoustic analysis is carried out to compute structural responses. These researches are very vital to optimum thermal-acoustic test and structure designs for future hypersonic vehicles structure

  11. Thermal conductivity of abnormally behaving liquids: Prediction methods and their applicability in microgravity conditions

    NASA Astrophysics Data System (ADS)

    Latini, G.; Passerini, G.

    1999-01-01

    Most organic and inorganic liquids show a general decrease of the thermal conductivity but very few compounds show an increase of thermal conductivity with temperature. Hydrogen and Water show an even more abnormal behavior since their thermal conductivity increases from the melting point to a reduced temperature of about 0.65-0.70 then decreases at higher temperatures. Due to their peculiar behavior, none of the general prediction methods developed for organic and inorganic liquids are effective for such substances in their saturated liquid state over the whole temperature range, from melting point to near the critical point. In this paper we present an estimation method able to evaluate thermal conductivity of Hydrogen and Water in their saturated liquid state from the melting point near to the critical point. The equation we present, as a new result of a previously introduced prediction method, links the thermal conductivity of water and Hydrogen with the reduced temperature. Tests, performed against experimental data, show a good accuracy of the method being the deviations generally less than 3% with peak deviations less than 10%.

  12. An engineering model to simulate the thermal response of electronic devices during pulsed Nd:YAG laser welding

    SciTech Connect

    Gianoulakis, S.E.; Voth, T.E.; Fuerschbach, P.W.; Prinzbach, J.H.

    1996-12-31

    A model is developed to predict the thermal response of real electronic devices during pulsed Nd:YAG laser welding. Modeling laser-part interaction requires incorporation of weld pool hydrodynamics, and laser-metal vapor and laser-surface interactions. Although important information can be obtained from these models, they are not appropriate for use in design of actual components due to computational limitations. In lieu of solving for these detailed physics, a simple model is constructed. In this model, laser-part interactions are accounted for through an empirically determined energy transfer efficiency which is developed through the use of modeling and experiments. This engineering model is appropriate since part thermal response near the weld pool and weld pool shape is not of interest here. Reasonable agreement between predictions and experimental measurements for welding of real components are indicated.

  13. Response of thermal ions to electromagnetic ion cyclotron waves

    NASA Technical Reports Server (NTRS)

    Anderson, B. J.; Fuselier, S. A.

    1994-01-01

    Electromagnetic ion cyclotron waves generated by 10 - 50 keV protons in the Earth's equatorial magnetosphere will interact with the ambient low-energy ions also found in this region. We examine H(+) and He(+) distribution functions from approx. equals 1 to 160 eV using the Hot Plasma Composition Experiment instrument on AMPTE/CCE to investigate the thermal ion response to the waves. A total of 48 intervals were chosen on the basis of electromagnetic ion cyclotron (EMIC) wave activity: 24 with prevalent EMIC waves and 24 with no EMIC waves observed on the orbit. There is a close correlation between EMIC waves and perpendicular heated ion distributions. For protons the perpendicular temperature increase is modest, about 5 eV, and is always observed at 90 deg pitch angles. This is consistent with a nonresonant interaction near the equator. By contrast, He(+) temperatures during EMIC wave events averaged 35 eV and sometimes exceeded 100 eV, indicating stronger interaction with the waves. Furthermore, heated He(+) ions have X-type distributions with maximum fluxes occurring at pitch angles intermediate between field-aligned and perpendicular directions. The X-type He(+) distributions are consistent with a gyroresonant interaction off the equator. The concentration of He(+) relative to H(+) is found to correlate with EMIC wave activity, but it is suggested that the preferential heating of He(+) accounts for the apparent increase in relative He(+) concentration by increasing the proportion of He(+) detected by the ion instrument.

  14. Response of thermal ions to electromagnetic ion cyclotron waves

    NASA Astrophysics Data System (ADS)

    Anderson, B. J.; Fuselier, S. A.

    1994-10-01

    Electromagnetic ion cyclotron waves generated by 10 - 50 keV protons in the Earth's equatorial magnetosphere will interact with the ambient low-energy ions also found in this region. We examine H(+) and He(+) distribution functions from approx. equals 1 to 160 eV using the Hot Plasma Composition Experiment instrument on AMPTE/CCE to investigate the thermal ion response to the waves. A total of 48 intervals were chosen on the basis of electromagnetic ion cyclotron (EMIC) wave activity: 24 with prevalent EMIC waves and 24 with no EMIC waves observed on the orbit. There is a close correlation between EMIC waves and perpendicular heated ion distributions. For protons the perpendicular temperature increase is modest, about 5 eV, and is always observed at 90 deg pitch angles. This is consistent with a nonresonant interaction near the equator. By contrast, He(+) temperatures during EMIC wave events averaged 35 eV and sometimes exceeded 100 eV, indicating stronger interaction with the waves. Furthermore, heated He(+) ions have X-type distributions with maximum fluxes occurring at pitch angles intermediate between field-aligned and perpendicular directions. The X-type He(+) distributions are consistent with a gyroresonant interaction off the equator. The concentration of He(+) relative to H(+) is found to correlate with EMIC wave activity, but it is suggested that the preferential heating of He(+) accounts for the apparent increase in relative He(+) concentration by increasing the proportion of He(+) detected by the ion instrument.

  15. Response of thermal ions to electromagnetic ion cyclotron waves

    NASA Technical Reports Server (NTRS)

    Anderson, B. J.; Fuselier, S. A.

    1994-01-01

    Electromagnetic ion cyclotron waves generated by 10 - 50 keV protons in the Earth's equatorial magnetosphere will interact with the ambient low-energy ions also found in this region. We examine H(+) and He(+) distribution functions from approx. equals 1 to 160 eV using the Hot Plasma Composition Experiment instrument on AMPTE/CCE to investigate the thermal ion response to the waves. A total of 48 intervals were chosen on the basis of electromagnetic ion cyclotron (EMIC) wave activity: 24 with prevalent EMIC waves and 24 with no EMIC waves observed on the orbit. There is a close correlation between EMIC waves and perpendicular heated ion distributions. For protons the perpendicular temperature increase is modest, about 5 eV, and is always observed at 90 deg pitch angles. This is consistent with a nonresonant interaction near the equator. By contrast, He(+) temperatures during EMIC wave events averaged 35 eV and sometimes exceeded 100 eV, indicating stronger interaction with the waves. Furthermore, heated He(+) ions have X-type distributions with maximum fluxes occurring at pitch angles intermediate between field-aligned and perpendicular directions. The X-type He(+) distributions are consistent with a gyroresonant interaction off the equator. The concentration of He(+) relative to H(+) is found to correlate with EMIC wave activity, but it is suggested that the preferential heating of He(+) accounts for the apparent increase in relative He(+) concentration by increasing the proportion of He(+) detected by the ion instrument.

  16. Thermal responses in the body during snowmobile driving.

    PubMed

    Virokannas, H; Anttonen, H

    1994-01-01

    Thermal responses were examined in 12 healthy men during snowmobile driving (tests for 1 1/2-2 1/2 hours) in mild winter conditions. Ambient temperature ranged from -1 to -13 degrees C and average wind chill index from 1,050 to 1,520 kcal*m2/h. The subjects (23-49 years old) wore their ordinary winter clothing (insulation 1.7 - 2.4 clo). Work rate during the driving was 280-350 W. Rectal temperature increased slightly during driving, and mean skin temperature decreased quickly and fluctuated afterwards at a level 2-3 degrees C lower. Mean body temperature decreased by 1.2 degrees C in the most extreme case. Local cooling on the face and on the peripheral area of the extremities was considered the most serious problem: those temperatures were often below the limit of performance degradation and indicated occasionally the risk of frostbite. The winter conditions were mild in the present study, and on colder days cooling problems will be more severe, as the high incidence of frost injuries reported earlier indicates.

  17. Different arrangements of simplified models to predict effective thermal conductivity of open-cell foams

    NASA Astrophysics Data System (ADS)

    Kumar, Prashant; Topin, Frédéric

    2017-02-01

    It is often desirable to predict the effective thermal conductivity (ETC) of a homogenous material like open-cell foams based on its composition, particularly when variations in composition are expected. A combination of five fundamental simplified thermal conductivity bounds and models (series, parallel, Hashin-Shtrikman, effective medium theory, and reciprocity models) is proposed to predict ETC of open-cell foams. Usually, these models use a parameter as the weighted mean to account the proportion of each bound arranged in arithmetic and geometric schemes. Based on ETC data obtained on numerous virtual Kelvin-like foam samples, the dependence of this parameter has been deduced as a function of morphology and phase thermal conductivity ratio. Various effective thermal conductivity correlations are derived based on material properties and foam structure. This is valid for open-cell foams filled with any arbitrary working fluid over a solid conductivity of materials range (λs /λf = 10-30,000) and over a wide range of porosity (0.60 < &epsilono < 0.95). Arrangement of series and parallel models together using the simplest models for both, arithmetic and geometric schemes, is found to predict excellent results among all the generic combinations.

  18. Predicting macroscopic thermal expansion of metastable liquid metals with only one thousand atoms

    NASA Astrophysics Data System (ADS)

    Wang, HaiPeng; Yang, ShangJing; Wei, BingBo

    2014-12-01

    Results of thermal expansion prediction from atomic scale for metastable liquid metals are reported herein. Three pure liquid metals Ni, Fe, and Cu together with ternary Ni60Fe20Cu20 alloy are used as models. The pair distribution functions were employed to monitor the atomic structure. This indicates that the simulated systems are ordered in atomic short range and disordered in long range. The thermal expansion coefficient was computed as functions of temperature and atom cutoff radius, which tends to maintain a constant when the cutoff radius increases to approximately 15 Å. In such a case, slightly more than 1000 atoms are required for liquid Ni, Cu, Fe and Ni60Fe20Cu20 alloy, that is, the macroscopic thermal expansion can be predicted from the volume change of such a tiny cell. Furthermore, the expansion behaviors of the three types of atoms in liquid Ni60Fe20Cu20 alloy are revealed by the calculated partial expansion coefficient. This provides a fundamental method to predict the macroscopic thermal expansion from the atomic scale for liquid alloys, especially in the undercooled regime.

  19. Thermal time constant: optimising the skin temperature predictive modelling in lower limb prostheses using Gaussian processes

    PubMed Central

    Buis, Arjan

    2016-01-01

    Elevated skin temperature at the body/device interface of lower-limb prostheses is one of the major factors that affect tissue health. The heat dissipation in prosthetic sockets is greatly influenced by the thermal conductive properties of the hard socket and liner material employed. However, monitoring of the interface temperature at skin level in lower-limb prosthesis is notoriously complicated. This is due to the flexible nature of the interface liners used which requires consistent positioning of sensors during donning and doffing. Predicting the residual limb temperature by monitoring the temperature between socket and liner rather than skin and liner could be an important step in alleviating complaints on increased temperature and perspiration in prosthetic sockets. To predict the residual limb temperature, a machine learning algorithm – Gaussian processes is employed, which utilizes the thermal time constant values of commonly used socket and liner materials. This Letter highlights the relevance of thermal time constant of prosthetic materials in Gaussian processes technique which would be useful in addressing the challenge of non-invasively monitoring the residual limb skin temperature. With the introduction of thermal time constant, the model can be optimised and generalised for a given prosthetic setup, thereby making the predictions more reliable. PMID:27695626

  20. Different arrangements of simplified models to predict effective thermal conductivity of open-cell foams

    NASA Astrophysics Data System (ADS)

    Kumar, Prashant; Topin, Frédéric

    2017-08-01

    It is often desirable to predict the effective thermal conductivity (ETC) of a homogenous material like open-cell foams based on its composition, particularly when variations in composition are expected. A combination of five fundamental simplified thermal conductivity bounds and models (series, parallel, Hashin-Shtrikman, effective medium theory, and reciprocity models) is proposed to predict ETC of open-cell foams. Usually, these models use a parameter as the weighted mean to account the proportion of each bound arranged in arithmetic and geometric schemes. Based on ETC data obtained on numerous virtual Kelvin-like foam samples, the dependence of this parameter has been deduced as a function of morphology and phase thermal conductivity ratio. Various effective thermal conductivity correlations are derived based on material properties and foam structure. This is valid for open-cell foams filled with any arbitrary working fluid over a solid conductivity of materials range (λs /λf = 10-30,000) and over a wide range of porosity (0.60 < ɛo < 0.95). Arrangement of series and parallel models together using the simplest models for both, arithmetic and geometric schemes, is found to predict excellent results among all the generic combinations.

  1. Thermal sensitivity predicts the establishment success of nonnative species in a mesocosm warming experiment.

    PubMed

    Fey, Samuel B; Cottingham, Kathryn L

    2012-11-01

    While climate change is likely to modify biological interactions between species, it is not clear how altered biotic interactions will influence specific processes such as community assembly. We show that small increases in water temperature can alter the establishment success of the nonnative, tropical zooplankton species, Daphnia lumholtzi, and suggest a general framework for understanding species establishment in the context of climate change. We compared the establishment success of D. lumholtzi and the native congener D. pulex in a mesocosm experiment manipulating temperature, food conditions, and the identity of the resident vs. establishing species. To understand if our mesocosm results could have been predicted by thermal physiology, we characterized the thermal sensitivity of each species' population growth rate and estimated the temperatures at which each species would outperform the other. As predicted by the thermal sensitivities, invading D. lumholtzi were able to establish regardless of temperature and food resources, and established more rapidly in heated mesocosms. Invading D. pulex reached higher initial abundances in ambient-temperature mesocosms but failed to establish in any heated mesocosms. These findings suggest that thermal sensitivity may predict how altered interactions between species can influence community assembly, and that higher lake temperatures will likely aid the future establishment of nonnative D. lumholtzi in North America.

  2. Modeling and predicting community responses to events using cultural demographics

    NASA Astrophysics Data System (ADS)

    Jaenisch, Holger M.; Handley, James W.; Hicklen, Michael L.

    2007-04-01

    This paper describes a novel capability for modeling and predicting community responses to events (specifically military operations) related to demographics. Demographics in the form of words and/or numbers are used. As an example, State of Alabama annual demographic data for retail sales, auto registration, wholesale trade, shopping goods, and population were used; from which we determined a ranked estimate of the sensitivity of the demographic parameters on the cultural group response. Our algorithm and results are summarized in this paper.

  3. Implicit Learning Abilities Predict Treatment Response in Autism Spectrum Disorders

    DTIC Science & Technology

    2015-09-01

    2 AWARD NUMBER: W81XWH-14-1-0261 TITLE: Implicit Learning Abilities Predict Treatment Response in Autism Spectrum Disorders PRINCIPAL...Treatment Response in Autism Spectrum Disorders 5b. GRANT NUMBER W81XWH-14-1-0261 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER...for Autism Spectrum Disorder (ASD), but almost half of the children do not make significant gains. Implicit learning skills are integral to

  4. Prediction of response to tapentadol in chronic low back pain.

    PubMed

    Reimer, M; Hüllemann, P; Hukauf, M; Keller, T; Binder, A; Gierthmühlen, J; Baron, R

    2017-02-01

    Many chronic low back pain (cLBP) patients do not satisfactorily respond to treatment. The knowledge of responders and non-responders before initiating treatment would improve decision making and reduce health care costs. The aims of this exploratory prediction study in cLBP patients treated with tapentadol were to identify predictors of treatment outcome based on baseline characteristics, to evaluate quality-of-life and functionality as alternative outcome parameters and to develop nomograms to calculate the individual probability of response. In a retrospective analysis of an open-label phase 3b trial, 46 baseline characteristics were included into statistical prediction modelling. One hundred and twenty-one patients were followed up during the titration and treatment period and 67 patients were analysed who discontinued the trial. Demographic data were not relevant for response prediction. Nine baseline co-variables were robust: painDETECT score, intensity of burning and painful attacks, SF36 Health Survey score (MCS, PCS), EuroQol-5, Hospital Anxiety/Depression Scale. Gender had a minor influence. Alternative outcomes (quality-of-life, functionality) were more important for response prediction than conventional pain intensity measures. Neuropathic symptoms (high painDETECT score) had a positive predictive validity. Painful attacks and classical yellow flags (depression, anxiety) negatively influenced the treatment response. High depression scores, female gender and low burning predicted discontinuation during titration. In this exploratory study, predictive baseline characteristics have been identified that can be used to calculate the individual probability of tapentadol response in cLBP. The small sample size in relation to the number of initial variables is a limitation of this approach. Predictors for treatment response of tapentadol were identified in patients with chronic low back pain based on clinical pre-treatment characteristics that can guide

  5. Hot limpets: predicting body temperature in a conductance-mediated thermal system.

    PubMed

    Denny, Mark W; Harley, Christopher D G

    2006-07-01

    Living at the interface between the marine and terrestrial environments, intertidal organisms may serve as a bellwether for environmental change and a test of our ability to predict its biological consequences. However, current models do not allow us to predict the body temperature of intertidal organisms whose heat budgets are strongly affected by conduction to and from the substratum. Here, we propose a simple heat-budget model of one such animal, the limpet Lottia gigantea, and test the model against measurements made in the field. Working solely from easily measured physical and meteorological inputs, the model predicts the daily maximal body temperatures of live limpets within a fraction of a degree, suggesting that it may be a useful tool for exploring the thermal biology of limpets and for predicting effects of climate change. The model can easily be adapted to predict the temperatures of chitons, acorn barnacles, keyhole limpets, and encrusting animals and plants.

  6. Thermal fluctuation within nests and predicted sex ratio of Morelet's Crocodile.

    PubMed

    Escobedo-Galván, Armando H; López-Luna, Marco A; Cupul-Magaña, Fabio G

    2016-05-01

    Understanding the interplay between thermal variations and sex ratio in reptiles with temperature-dependent sex determination is the first step for developing long-term conservation strategies. In case of crocodilians, the information is fragmentary and insufficient for establishing a general framework to consider how thermal fluctuation influence sex determination under natural conditions. The main goal of this study was to analyze thermal variation in nests of Crocodylus moreletii and to discuss the potential implications for predicting offspring sex ratio. The study was carried out at the Centro de Estudios Tecnológicos del Mar N° 2 and at the Sistemas Productivos Cocodrilo, Campeche, Mexico. Data was collected in the nesting season of Morelet's Crocodiles during three consecutive seasons (2007-2009). Thermal fluctuations for multiple areas of the nest chamber were registered by data loggers. We calculate the constant temperature equivalent based on thermal profiles among nests to assess whether there are differences between the nest temperature and its equivalent to constant temperature. We observed that mean nest temperature was only different among nests, while daily thermal fluctuations vary depending on the depth position within the nest chamber, years and nests. The constant temperature equivalent was different among and within nests, but not among survey years. We observed differences between constant temperature equivalent and mean nest temperature both at the top and in the middle of the nest cavities, but were not significantly different at the bottom of nest cavities. Our results enable examine and discuss the relevance of daily thermal fluctuations to predict sex ratio of the Morelet's Crocodile. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Predicting thermal conductivity of rocks from the Los Azufres geothermal field, Mexico, from easily measurable properties

    SciTech Connect

    Garcia, Alfonso; Contreras, Enrique; Dominquez, Bernardo A.

    1988-01-01

    A correlation is developed to predict thermal conductivity of drill cores from the Los Azufres geothermal field. Only andesites are included as they are predominant. Thermal conductivity of geothermal rocks is in general scarce and its determination is not simple. Almost all published correlations were developed for sedimentary rocks. Typically, for igneous rocks, chemical or mineral analyses are used for estimating conductivity by using some type of additive rule. This requires specialized analytical techniques and the procedure may not be sufficiently accurate if, for instance, a chemical analysis is to be changed into a mineral analysis. Thus a simple and accurate estimation method would be useful for engineering purposes. The present correlation predicts thermal conductivity from a knowledge of bulk density and total porosity, properties which provide basic rock characterization and are easy to measure. They may be determined from drill cores or cuttings, and the procedures represent a real advantage given the cost and low availability of cores. The multivariate correlation proposed is a quadratic polynomial and represents a useful tool to estimate thermal conductivity of igneous rocks since data on this property is very limited. For porosities between 0% and 25%, thermal conductivity is estimated with a maximum deviation of 22% and a residual mean square deviation of 4.62E-3 n terms of the log{sub 10}(k{rho}{sub b}) variable. The data were determined as part of a project which includes physical, thermal and mechanical properties of drill cores from Los Azufres. For the correlation, sixteen determinations of thermal conductivity, bulk density and total porosity are included. The conductivity data represent the first determinations ever made on these rocks.

  8. Radiogenomics predicting tumor responses to radiotherapy in lung cancer.

    PubMed

    Das, Amit K; Bell, Marcus H; Nirodi, Chaitanya S; Story, Michael D; Minna, John D

    2010-07-01

    The recently developed ability to interrogate genome-wide data arrays has provided invaluable insights into the molecular pathogenesis of lung cancer. These data have also provided information for developing targeted therapy in lung cancer patients based on the identification of cancer-specific vulnerabilities and set the stage for molecular biomarkers that provide information on clinical outcome and response to treatment. In addition, there are now large panels of lung cancer cell lines, both non-small-cell lung cancer and small-cell lung cancer, that have distinct chemotherapy and radiation response phenotypes. We anticipate that the integration of molecular data with therapy response data will allow for the generation of biomarker signatures that predict response to therapy. These signatures will need to be validated in clinical studies, at first retrospective analyses and then prospective clinical trials, to show that the use of these biomarkers can aid in predicting patient outcomes (eg, in the case of radiation therapy for local control and survival). This review highlights recent advances in molecular profiling of tumor responses to radiotherapy and identifies challenges and opportunities in developing molecular biomarker signatures for predicting radiation response for individual patients with lung cancer. Copyright 2010 Elsevier Inc. All rights reserved.

  9. Radiogenomics- predicting tumor responses to radiotherapy in lung cancer

    PubMed Central

    Das, Amit K.; Bell, Marcus H.; Nirodi, Chaitanya S.; Story, Michael D.; Minna, John D.

    2010-01-01

    The recently developed ability to interrogate genome wide data arrays has provided invaluable insights into the molecular pathogenesis of lung cancer. These data have also provided information for developing targeted therapy in lung cancer patients based upon identification of cancer specific vulnerabilities and set the stage for molecular biomarkers that provide information on clinical outcome and response to treatment. In addition, there are now large panels of lung cancer cell lines, both non small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), which have distinct chemotherapy and radiation response phenotypes. We anticipate that the integration of molecular data with therapy response data will allow for the generation of biomarker signatures that predict response to therapy. These signatures will need to be validated in clinical studies, at first retrospective analyses and then prospective clinical trials to show that the use of these biomarkers can aid in predicting patient outcomes (e.g. in the case of radiation therapy for local control and survival). This review highlights recent advances in molecular profiling of tumor responses to radiotherapy and identifies challenges and opportunities in developing molecular biomarker signatures for predicting radiation response for individual patients with lung cancer. PMID:20685577

  10. Predicting neuropathic ulceration: analysis of static temperature distributions in thermal images

    NASA Astrophysics Data System (ADS)

    Kaabouch, Naima; Hu, Wen-Chen; Chen, Yi; Anderson, Julie W.; Ames, Forrest; Paulson, Rolf

    2010-11-01

    Foot ulcers affect millions of Americans annually. Conventional methods used to assess skin integrity, including inspection and palpation, may be valuable approaches, but they usually do not detect changes in skin integrity until an ulcer has already developed. We analyze the feasibility of thermal imaging as a technique to assess the integrity of the skin and its many layers. Thermal images are analyzed using an asymmetry analysis, combined with a genetic algorithm, to examine the infrared images for early detection of foot ulcers. Preliminary results show that the proposed technique can reliably and efficiently detect inflammation and hence effectively predict potential ulceration.

  11. On the prediction of thermal conductivity of gas mixtures at low temperatures

    NASA Astrophysics Data System (ADS)

    Sheng, W.; Lu, B. C.-Y.

    Thermal conductivity of pure gases were correlated by means of an extended form of the modified Enskog theory together with a modified volume-translated Peng-Robinson equation of state at low temperatures and at pressures up to 370 bar. Two different approaches were used in the correlation. A substance and temperature dependent parameter was introduced in both correlations. The pure-component parameters thus obtained were used to predict the thermal conductivity of five binary mixtures (Ar-He, Ar-N2, Ar-Ne, He-N2 and N2-Ne) without using any binary adjustable parameters with various degrees of success.

  12. Non-climatic thermal adaptation: implications for species' responses to climate warming

    PubMed Central

    Marshall, David J.; McQuaid, Christopher D.; Williams, Gray A.

    2010-01-01

    There is considerable interest in understanding how ectothermic animals may physiologically and behaviourally buffer the effects of climate warming. Much less consideration is being given to how organisms might adapt to non-climatic heat sources in ways that could confound predictions for responses of species and communities to climate warming. Although adaptation to non-climatic heat sources (solar and geothermal) seems likely in some marine species, climate warming predictions for marine ectotherms are largely based on adaptation to climatically relevant heat sources (air or surface sea water temperature). Here, we show that non-climatic solar heating underlies thermal resistance adaptation in a rocky–eulittoral-fringe snail. Comparisons of the maximum temperatures of the air, the snail's body and the rock substratum with solar irradiance and physiological performance show that the highest body temperature is primarily controlled by solar heating and re-radiation, and that the snail's upper lethal temperature exceeds the highest climatically relevant regional air temperature by approximately 22°C. Non-climatic thermal adaptation probably features widely among marine and terrestrial ectotherms and because it could enable species to tolerate climatic rises in air temperature, it deserves more consideration in general and for inclusion into climate warming models. PMID:20375046

  13. Core thermal response and hydrogen generation of the N Reactor hydrogen mitigation design basis accident

    SciTech Connect

    White, M.D.; Lombardo, N.J.; Heard, F.J.; Ogden, D.M.; Quapp, W.J.

    1988-04-01

    Calculations were performed to determine core heatup, core damage, and subsequent hydrogen production of a hypothetical loss-of-cooling accident at the Department of Energy's N Reactor. The thermal transient response of the reactor core was solved using the TRUMP-BD computer program. Estimates of whole-core thermal damage and hydrogen production were made by weighting the results of multiple half-length pressure tube simulations at various power levels. The Baker-Just and Wilson parabolic rate equations for the metal-water chemical reactions modeled the key phenomena of chemical energy and hydrogen evolution. Unlimited steam was assumed available for continuous oxidation of exposed Zircaloy-2 surfaces and for uranium metal with fuel cladding beyond the failure temperature (1038 C). Intact fuel geometry was modeled. Maximum fuel temperatures (1181 C) in the cooled central regions of the core were predicted to occur one-half hour into the accident scenario. Maximum fuel temperatures of 1447 C occurred in the core GSCS-regions at the end of the 10-h transient. After 10-h 26% of the fuel inventory was predicted to have failed. Peak hydrogen evolution equaled 42 g/s, while 10-h integrated hydrogen evolution equaled 167 kg. 12 refs., 12 figs., 2 tabs.

  14. Non-climatic thermal adaptation: implications for species' responses to climate warming.

    PubMed

    Marshall, David J; McQuaid, Christopher D; Williams, Gray A

    2010-10-23

    There is considerable interest in understanding how ectothermic animals may physiologically and behaviourally buffer the effects of climate warming. Much less consideration is being given to how organisms might adapt to non-climatic heat sources in ways that could confound predictions for responses of species and communities to climate warming. Although adaptation to non-climatic heat sources (solar and geothermal) seems likely in some marine species, climate warming predictions for marine ectotherms are largely based on adaptation to climatically relevant heat sources (air or surface sea water temperature). Here, we show that non-climatic solar heating underlies thermal resistance adaptation in a rocky-eulittoral-fringe snail. Comparisons of the maximum temperatures of the air, the snail's body and the rock substratum with solar irradiance and physiological performance show that the highest body temperature is primarily controlled by solar heating and re-radiation, and that the snail's upper lethal temperature exceeds the highest climatically relevant regional air temperature by approximately 22°C. Non-climatic thermal adaptation probably features widely among marine and terrestrial ectotherms and because it could enable species to tolerate climatic rises in air temperature, it deserves more consideration in general and for inclusion into climate warming models.

  15. Selective responses of benthic foraminifera to thermal pollution

    NASA Astrophysics Data System (ADS)

    Titelboim, Danna; Almogi-Labin, Ahuva; Herut, Barak; Kucera, Michal; Schmidt, Christiane; Hyams-Kaphzan, Orit; Ovadia, Ofer; Abramovich, Sigal

    2016-04-01

    Predictions of future climate and recent observations point towards a trend of rising temperatures in the Middle East region. The temperature rise propagates into the marine environment, with shallow, coastal ecosystems being most affected. An ideal model system to study the effect of increased temperatures in coastal ecosystems is presented by benthic foraminifera. The persistent of thermohaline pollution at a site along the northern coast of Israel, attributed to a power and desalination plant, is used as a natural laboratory to evaluate the effects of rising temperature and salinity on benthic foraminifera living in shallow hard bottom habitats. Biomonitoring of the disturbed area and a control station shows that elevated temperature is a more significant stressor than salinity. The deleterious effect of extreme temperatures is indicated by a decrease in numerical abundances and reduced species richness, eventually leading to substantial changes in community composition. Critical temperature thresholds were observed at 30° C and 35° C, the latter observed by the most thermally tolerant species Pararotalia calcariformata, the only symbiont bearing species observed within the heated area. Common species of the shallow hard bottom habitats are almost absent from the most extreme site indicating that they presently live very close to their upper temperature threshold, and that excess warming will likely impede their future survival in the Eastern Mediterranean. Several of these species are either proven or suspected to be tropical Lessepsian. Thus, considering present models of expected north-western future expansion of Lessepsian species in the Mediterranean, our study show that it is important to consider excess warming as a major stressor that will limit their distribution.

  16. Thermal vibration of a single-layered graphene with initial stress predicted by semiquantum molecular dynamics

    NASA Astrophysics Data System (ADS)

    Liu, Rumeng; Wang, Lifeng; Jiang, Jingnong

    2016-09-01

    Thermal vibration of a rectangular single-layered graphene sheet (RSLGS) with initial stress is investigated by a semiquantum molecular dynamics (SQMD) method on the basis of modified Langevin dynamics. The quantum effect in the thermal vibration of RSLGS is accounted by introducing a quantum thermal bath. The spectrum of the thermal vibration of RSLGSs is obtained both by SQMD and classical molecular dynamics (CMD). The RSLGS vibrates with the same frequencies via both the SQMD simulation and the CMD simulation. The root of mean squared (rms) amplitude obtained via the CMD is greater than that obtained via the SQMD. The energy in high order mode is frozen at very low temperature if quantum effect is taken into consideration. An elastic plate model with initial stress considering quantum effects is established to describe the thermal vibration of the RSLGS. The rms amplitude of RSLGS calculated by plate model with the law of energy equipartition and that obtained from the CMD coincide very well. The plate model considering the quantum effects provides accurate prediction of the rms amplitude of the RSLGS obtained from the SQMD. These results indicate that quantum effects cannot be neglected in the thermal vibration of the RSLGS at low temperature case.

  17. Thermal conductivity prediction of magnetic composite sheet for near-field electromagnetic absorption

    SciTech Connect

    Lee, Joonsik; Nam, Baekil; Ko, Frank K.; Kim, Ki Hyeon

    2015-05-07

    The magnetic composite sheets were designed by using core-shell structured magnetic fillers instead of uncoated magnetic fillers to resolve concurrently the electromagnetic interference and thermal radiation problems. To predict the thermal conductivity of composite sheet, we calculated the thermal conductivity of the uncoated magnetic fillers and core-shell structured fillers. And then, the thermal conductivity of the magnetic composites sheet filled with core-shell structured magnetic fillers was calculated and compared with that of the uncoated magnetic fillers filled in composite sheet. The magnetic core and shell material are employed the typical Fe-Al-Si flake (60 μm × 60 μm × 1 μm) and 250 nm-thick AlN with high thermal conductivity, respectively. The longitudinal thermal conductivity of the core-shell structured magnetic composite sheet (2.45 W/m·K) enhanced about 33.4% in comparison with that of uncoated magnetic fillers (1.83 W/m·K) for the 50 vol. % magnetic filler in polymer matrix.

  18. The role of heater thermal response in reactor thermal limits during oscillartory two-phase flows

    SciTech Connect

    Ruggles, A.E.; Brown, N.W.; Vasil`ev, A.D.; Wendel, M.W.

    1995-09-01

    Analytical and numerical investigations of critical heat flux (CHF) and reactor thermal limits are conducted for oscillatory two-phase flows often associated with natural circulation conditions. It is shown that the CHF and associated thermal limits depend on the amplitude of the flow oscillations, the period of the flow oscillations, and the thermal properties and dimensions of the heater. The value of the thermal limit can be much lower in unsteady flow situations than would be expected using time average flow conditions. It is also shown that the properties of the heater strongly influence the thermal limit value in unsteady flow situations, which is very important to the design of experiments to evaluate thermal limits for reactor fuel systems.

  19. A signature microRNA expression profile for the cellular response to thermal stress

    NASA Astrophysics Data System (ADS)

    Wilmink, Gerald J.; Roth, Caleb C.; Ketchum, Norma; Ibey, Bennett L.; Waterworth, Angela; Suarez, Maria; Roach, William P.

    2009-02-01

    Recently, an extensive layer of intra-cellular signals was discovered that was previously undetected by genetic radar. It is now known that this layer consists primarily of a class of short noncoding RNA species that are referred to as microRNAs (miRNAs). MiRNAs regulate protein synthesis at the post-transcriptional level, and studies have shown that they are involved in many fundamental cellular processes. In this study, we hypothesized that miRNAs may be involved in cellular stress response mechanisms, and that cells exposed to thermal stress may exhibit a signature miRNA expression profile indicative of their functional involvement in such mechanisms. To test our hypothesis, human dermal fibroblasts were exposed to an established hyperthermic protocol, and the ensuing miRNA expression levels were evaluated 4 hr post-exposure using microRNA microarray gene chips. The microarray data shows that 123 miRNAs were differentially expressed in cells exposed to thermal stress. We collectively refer to these miRNAs as thermalregulated microRNAs (TRMs). Since miRNA research is in its infancy, it is interesting to note that only 27 of the 123 TRMs are currently annotated in the Sanger miRNA registry. Prior to publication, we plan to submit the remaining novel 96 miRNA gene sequences for proper naming. Computational and thermodynamic modeling algorithms were employed to identify putative mRNA targets for the TRMs, and these studies predict that TRMs regulate the mRNA expression of various proteins that are involved in the cellular stress response. Future empirical studies will be conducted to validate these theoretical predictions, and to further examine the specific role that TRMs play in the cellular stress response.

  20. Analytical prediction of thermal performance of hypervapotron and its application to ITER

    SciTech Connect

    Baxi, C.B.; Falter, H.

    1992-09-01

    A hypervapotron (HV) is a water cooled device made of high thermal conductivity material such as copper. A surface heat flux of up to 30 MW/m{sup 2} has been achieved in copper hypervapotrans cooled by water at a velocity of 10 m/s and at a pressure of six bar. Hypervapotrons have been used in the past as beam dumps at the Joint European Torus (JET). It is planned to use them for diverter cooling during Mark II upgrade of the JET. Although a large amount of experimental data has been collected on these devices, an analytical performance prediction has not been done before due to the complexity of the heat transfer mechanisms. A method to analytically predict the thermal performance of the hypervapotron is described. The method uses a combination of a number of thermal hydraulic correlations and a finite element analysis. The analytical prediction shows an excellent agreement with experimental results over a wide range of velocities, pressures, subcooling, and geometries. The method was used to predict the performance of hypervapotron made of beryllium. Merits for the use of hypervapotrons for International Thermonuclear Experimental Reactor (ITER) and Tokamak Physics Experiment (TPX) are discussed.

  1. Coupled melt flow and thermal stress predictions for Czochralski crystal growth

    SciTech Connect

    Zou, Y.F.; Zhang, H.; Prasad, V.

    1995-12-31

    A coupled finite volume-finite element algorithm is developed to simulate the melt flows and predict the temperature distributions and thermal stresses in the Czochralski grown crystals. The computer model employs a multizone adaptive grid generation scheme together with curvilinear finite column discretization (MASTRAPP) to predict the transport phenomena associated with the crystal growth processes as well as the nonplanar melt/crystal interface shape and its dynamics (Zhang and Prasad, 1995a). The MASTRAPP has proven to be a robust and efficient scheme for the problems involving moving interfaces and free surfaces. Thermal stresses in the crystal are obtained by using a commercial finite element code, ALGOR, that uses the curvilinear mesh generated by the MASTRAPP. The numerical results show that the melt flows have a strong influence on thermal stresses in the crystal near the melt/crystal interface, and hence, melt convection must be included in the computer model for accurate stress predictions. The predicted stress phenomena agrees qualitatively with the report results.

  2. Posterior Predictive Assessment of Item Response Theory Models

    ERIC Educational Resources Information Center

    Sinharay, Sandip; Johnson, Matthew S.; Stern, Hal S.

    2006-01-01

    Model checking in item response theory (IRT) is an underdeveloped area. There is no universally accepted tool for checking IRT models. The posterior predictive model-checking method is a popular Bayesian model-checking tool because it has intuitive appeal, is simple to apply, has a strong theoretical basis, and can provide graphical or numerical…

  3. Posterior Predictive Model Checking for Multidimensionality in Item Response Theory

    ERIC Educational Resources Information Center

    Levy, Roy; Mislevy, Robert J.; Sinharay, Sandip

    2009-01-01

    If data exhibit multidimensionality, key conditional independence assumptions of unidimensional models do not hold. The current work pursues posterior predictive model checking, a flexible family of model-checking procedures, as a tool for criticizing models due to unaccounted for dimensions in the context of item response theory. Factors…

  4. Characteristics Predicting Children's Responses to Sexual Encounters with Other Children.

    ERIC Educational Resources Information Center

    Haugaard, Jeffrey J.; Tilly, Christina

    1988-01-01

    Undergraduates (N=1000) were surveyed concerning childhood sexual encounters. Forty-two percent of subjects reported a childhood sexual encounter with another child. High levels of coercion from the other child, homosexual encounters, and encounters with those other than friends predicted a more negative response by the child. (Author/DB)

  5. Predicting the response of populations to environmental change

    SciTech Connect

    Ives, A.R.

    1995-04-01

    When subject to long-term directional environmental perturbations, changes in population densities depend on the positive and negative feedbacks operating through interactions within and among species in a community. This paper develops techniques to predict the long-term responses of population densities to environmental changes using data on short-term population fluctuations driven by short-term environmental variability. In addition to giving quantitative predictions, the techniques also reveal how different qualitative patterns of species interactions either buffer or accentuate population responses to environmental trends. All of the predictions are based on regression coefficients extracted from time series data, and they can therefore be applied with a minimum of mathematical and statistical gymnastics. 48 refs., 10 figs., 4 tabs.

  6. Advanced Computational Modeling Approaches for Shock Response Prediction

    NASA Technical Reports Server (NTRS)

    Derkevorkian, Armen; Kolaini, Ali R.; Peterson, Lee

    2015-01-01

    Motivation: (1) The activation of pyroshock devices such as explosives, separation nuts, pin-pullers, etc. produces high frequency transient structural response, typically from few tens of Hz to several hundreds of kHz. (2) Lack of reliable analytical tools makes the prediction of appropriate design and qualification test levels a challenge. (3) In the past few decades, several attempts have been made to develop methodologies that predict the structural responses to shock environments. (4) Currently, there is no validated approach that is viable to predict shock environments overt the full frequency range (i.e., 100 Hz to 10 kHz). Scope: (1) Model, analyze, and interpret space structural systems with complex interfaces and discontinuities, subjected to shock loads. (2) Assess the viability of a suite of numerical tools to simulate transient, non-linear solid mechanics and structural dynamics problems, such as shock wave propagation.

  7. Validation of predictive factors of dysphagia risk following thermal burns: a prospective cohort study.

    PubMed

    Rumbach, Anna F; Ward, Elizabeth C; Heaton, Sarah; Bassett, Lynell V; Webster, Anne; Muller, Michael J

    2014-06-01

    The objective of this study was to prospectively evaluate the validity and reliability of a risk factor model developed for use in predicting dysphagia risk within the first 24 h after injury/hospitalisation in patients with thermal burns. Three hundred and fifty six patients with thermal burns, with or without inhalation injury, who were consecutively admitted to and received management at a quaternary state-wide burn center over a 12 month period, were included. Patients were reviewed for dysphagia risk by nursing staff using an established set of predictive factors. If risk factors for dysphagia were present, referral to speech-language pathology was initiated to investigate swallow function. Of the 356 admissions, 83 patients were identified as meeting one or more risk criteria for dysphagia after burn. Of these, 24.9% (n = 30; 8.42% of the total cohort) presented with dysphagia. Using these criteria, sensitivity and specificity for detection of dysphagia risk were high (100% and 83.74%, respectively). The criteria over identify patients who may be at risk of dysphagia and who require dysphagia assessment (positive predictive value = 36.14%). However, as a set of predictors of dysphagia risk when thermal burn is the only complaint, a negative result reassures that a patient does not have dysphagia (negative predictive value = 100%). Overall, the risk factor model provided a valid measure for predicting dysphagia risk. Incorporating these criteria into a dysphagia screening assessment can ensure an evidence-based pathway for early detection and timely referral to speech-language pathology for patients at risk of dysphagia after thermal burns. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.

  8. Prediction of the mortality dose-response relationship in man

    SciTech Connect

    Morris, M.D.; Jones, T.D.

    1987-01-01

    Based upon an extensive data base including 100 separate animal studies, an estimate of the mortality dose-response relationship due to continuous photon radiation is predicted for 70 kg man. The model used in this prediction exercise includes fixed terms accounting for effects of body weight and dose rate, and random terms accounting for inter- and intra-species variation and experimental error. Point predictions and 95% prediction intervals are given for the LD/sub 05/, LD/sub 10/, LD/sub 25/, LD/sub 50/, LD/sub 75/, LD/sub 90/, and LD/sub 95/, for dose rates ranging from 1 to 50 R/min. 6 refs., 5 tabs.

  9. Response to thermal and physical strain during flashover training in Croatian firefighters.

    PubMed

    Ljubičić, Anita; Varnai, Veda M; Petrinec, Branko; Macan, Jelena

    2014-05-01

    Flashover training (FOT) for firefighters is a simulation of the flashover phenomenon under controlled conditions. This study assessed arterial blood pressure (BP) and its response to thermal and physical strain during FOT in 48 professional and 18 volunteer firefighters. A high prevalence of obesity (27%), basal hypertensive (53%) and prehypertensive (33%) BP values was found. FOT induced mild hyperthermia and physical strain (average increase of 1.1 °C in tympanic temperature and 61% of the maximal heart beat predicted for age). Compared to professional firefighters, FOT in the volunteers induced a higher increase in pulse (P = 0.050) and tympanic temperature (P = 0.025). Systolic BP did not vary significantly, and diastolic BP slightly decreased in both groups. Results confirm that FOT induced only physiological cardiovascular responses to thermal and physical strain in firefighters. High prevalence of obesity and elevated BP values indicate the need for better physical fitness and BP control among firefighters. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  10. A theoretical study of electrical and thermal response in resistance spot welding

    SciTech Connect

    Na, S.J.; Park, S.W.

    1996-08-01

    The effect of contact resistance including constriction and contamination resistance has been a major hurdle for the thermoelectrical analysis of the resistance spot welding process. In this paper, a simple model was suggested and used for calculating the electrical and thermal response of the resistance spot welding process to investigate the influence of contacting forces on the formation of weld nuggets. The electrode surface of the contact interface was assumed to be axisymmetric and its microasperities to have a trapezoidal cross-section. These microasperities were considered as the one-dimensional contact resistance elements in the finite element formulation. The contamination film was assumed to be a nonconducting oxide layer, which is very brittle, so that it is broken to some number of pieces when a contacting pressure is being applied. The crushed films were assumed to be distributed at regular intervals and to conserve their size and number during the welding process. The simulation results revealed that the proposed model can be successfully used to predict the effect of the contact resistance on the electrical and thermal response of the resistance spot welding process.

  11. Random response and fatigue life of aircraft panels subjected to severe acoustic and thermal loads

    NASA Astrophysics Data System (ADS)

    Yang, Bo

    The focus of this investigation is on the prediction of the fatigue life of aircraft panels subject to thermal effects and a severe random acoustic excitation. The prototypical equations for this problem, i.e. the single and double well Duffing oscillators subjected to a bandlimited white noise, are first considered. A review of some currently available spectral approaches, i.e. the Rayleigh approximation and the single spectral moment method both with and without Gaussianity correction, strongly suggests that an accurate prediction of the fatigue life for this nonlinear system requires a dedicated model. To this end, an approximation of the probability density function of the peaks of the stationary response of the Duffing oscillators is derived. This model is then used in conjunction with either a narrowband assumption or the single spectral moment methodology to yield a prediction of the fatigue life. The application of this approach to simulation data from a single/double well Duffing oscillator, as well as on the experimental response of an unbuckled panel, demonstrates the reliability of this novel approximation. Spectral approaches typically make use of the values of specific spectral moments and thus their application necessitates the availability of a reliable approximation of the power spectral density of the response considered (displacement or stress). Although of fundamental importance, the determination of the power spectrum of the response of nonlinear systems is a very difficult problem and it is only recently that successful techniques have been devised to estimate this function. Two such approaches are assessed here for the single degree of freedom Duffing oscillator and are modified to improve their accuracy and ease of use.

  12. The alanine detector in BNCT dosimetry: dose response in thermal and epithermal neutron fields.

    PubMed

    Schmitz, T; Bassler, N; Blaickner, M; Ziegner, M; Hsiao, M C; Liu, Y H; Koivunoro, H; Auterinen, I; Serén, T; Kotiluoto, P; Palmans, H; Sharpe, P; Langguth, P; Hampel, G

    2015-01-01

    The response of alanine solid state dosimeters to ionizing radiation strongly depends on particle type and energy. Due to nuclear interactions, neutron fields usually also consist of secondary particles such as photons and protons of diverse energies. Various experiments have been carried out in three different neutron beams to explore the alanine dose response behavior and to validate model predictions. Additionally, application in medical neutron fields for boron neutron capture therapy is discussed. Alanine detectors have been irradiated in the thermal neutron field of the research reactor TRIGA Mainz, Germany, in five experimental conditions, generating different secondary particle spectra. Further irradiations have been made in the epithermal neutron beams at the research reactors FiR 1 in Helsinki, Finland, and Tsing Hua open pool reactor in HsinChu, Taiwan ROC. Readout has been performed with electron spin resonance spectrometry with reference to an absorbed dose standard in a (60)Co gamma ray beam. Absorbed doses and dose components have been calculated using the Monte Carlo codes fluka and mcnp. The relative effectiveness (RE), linking absorbed dose and detector response, has been calculated using the Hansen & Olsen alanine response model. The measured dose response of the alanine detector in the different experiments has been evaluated and compared to model predictions. Therefore, a relative effectiveness has been calculated for each dose component, accounting for its dependence on particle type and energy. Agreement within 5% between model and measurement has been achieved for most irradiated detectors. Significant differences have been observed in response behavior between thermal and epithermal neutron fields, especially regarding dose composition and depth dose curves. The calculated dose components could be verified with the experimental results in the different primary and secondary particle fields. The alanine detector can be used without

  13. The alanine detector in BNCT dosimetry: Dose response in thermal and epithermal neutron fields

    SciTech Connect

    Schmitz, T.; Bassler, N.; Blaickner, M.; Ziegner, M.; Hsiao, M. C.; Liu, Y. H.; Koivunoro, H.; Auterinen, I.; Serén, T.; Kotiluoto, P.; Palmans, H.; Sharpe, P.; Langguth, P.; Hampel, G.

    2015-01-15

    Purpose: The response of alanine solid state dosimeters to ionizing radiation strongly depends on particle type and energy. Due to nuclear interactions, neutron fields usually also consist of secondary particles such as photons and protons of diverse energies. Various experiments have been carried out in three different neutron beams to explore the alanine dose response behavior and to validate model predictions. Additionally, application in medical neutron fields for boron neutron capture therapy is discussed. Methods: Alanine detectors have been irradiated in the thermal neutron field of the research reactor TRIGA Mainz, Germany, in five experimental conditions, generating different secondary particle spectra. Further irradiations have been made in the epithermal neutron beams at the research reactors FiR 1 in Helsinki, Finland, and Tsing Hua open pool reactor in HsinChu, Taiwan ROC. Readout has been performed with electron spin resonance spectrometry with reference to an absorbed dose standard in a {sup 60}Co gamma ray beam. Absorbed doses and dose components have been calculated using the Monte Carlo codes FLUKA and MCNP. The relative effectiveness (RE), linking absorbed dose and detector response, has been calculated using the Hansen and Olsen alanine response model. Results: The measured dose response of the alanine detector in the different experiments has been evaluated and compared to model predictions. Therefore, a relative effectiveness has been calculated for each dose component, accounting for its dependence on particle type and energy. Agreement within 5% between model and measurement has been achieved for most irradiated detectors. Significant differences have been observed in response behavior between thermal and epithermal neutron fields, especially regarding dose composition and depth dose curves. The calculated dose components could be verified with the experimental results in the different primary and secondary particle fields. Conclusions: The

  14. Simplified Analysis Model for Predicting Pyroshock Responses on Composite Panel

    NASA Astrophysics Data System (ADS)

    Iwasa, Takashi; Shi, Qinzhong

    A simplified analysis model based on the frequency response analysis and the wave propagation analysis was established for predicting Shock Response Spectrum (SRS) on the composite panel subjected to pyroshock loadings. The complex composite panel was modeled as an isotropic single layer panel defined in NASA Lewis Method. Through the conductance of an impact excitation test on a composite panel with no equipment mounted on, it was presented that the simplified analysis model could estimate the SRS as well as the acceleration peak values in both near and far field in an accurate way. In addition, through the simulation for actual pyroshock tests on an actual satellite system, the simplified analysis model was proved to be applicable in predicting the actual pyroshock responses, while bringing forth several technical issues to estimate the pyroshock test specifications in early design stages.

  15. Prenatal cortisol exposure predicts infant cortisol response to acute stress.

    PubMed

    O'Connor, Thomas G; Bergman, Kristin; Sarkar, Pampa; Glover, Vivette

    2013-03-01

    Experimental animal findings suggest that early stress and glucocorticoid exposure may program the function of the hypothalamic-pituitary-adrenal (HPA) axis in the offspring. The extension of these findings to human development is not yet clear. A prospective longitudinal study was conducted on 125 mothers and their normally developing children. Amniotic fluid was obtained at, on average, 17.2 weeks gestation; infant behavior and cortisol response to a separation-reunion stress was assessed at 17 months. Amniotic fluid cortisol predicted infant cortisol response to separation-reunion stress: infants who were exposed to higher levels of cortisol in utero showed higher pre-stress cortisol values and blunted response to stress exposure. The association was independent of prenatal, obstetric, and socioeconomic factors and child-parent attachment. The findings provide some of the strongest data in humans that HPA axis functioning in the child may be predicted from prenatal cortisol exposure.

  16. Description of a computerized method for predicting thermal fatigue life of metals

    NASA Technical Reports Server (NTRS)

    Spera, D. A.; Cox, E. C.

    1975-01-01

    A computer program called TFLIFE is described which can be used to predict the thermal fatigue life of metals and structural components from conventional metal properties. This program is used as a subroutine with a main program supplied by the user. The main program calculates input cycles of temperature and total strain for TFLIFE which then calculates a stress cycle, creep and plastic strain damage, and cyclic life. A unique feature of TFLIFE is that it calculates lives according to several different failure criteria for the same input data. These criteria are surface crack initiation, interior crack initiation, and complete fracture of both unnotched and notched fatigue specimens. Results are presented for two typical problems: thermal-mechanical fatigue of bar specimens of the tantalum alloy T-111 and thermal-stress fatigue of wedge specimens of the nickel alloy B-1900. The computer program is now ready for more extensive evaluation on structural components and additional laboratory specimens.

  17. Modeling of thermal runoff response from an asphalt-paved plot in the framework of the mass response functions

    NASA Astrophysics Data System (ADS)

    Kim, Kyunghyun; Thompson, Anita M.; Botter, Gianluca

    2008-11-01

    During hot summer months, impervious surfaces within urban areas may store significant amounts of thermal energy, which may be rapidly transferred to stream waters during runoff events. Modeling of heat release from impervious areas to stream waters thus represents a first, necessary step to quantify possible negative impacts of increased stream water temperature on nearby aquatic ecosystems. In this paper, a stochastic Lagrangian approach is developed to simulate heat transfer from an impermeable surface to runoff. The approach is based on the framework of the mass response functions (MRFs), which was originally developed for modeling nonpoint source pollutant transport in watersheds. The MRF approach has been adapted to describe heat transfer from impervious surfaces to runoff by coupling a heat balance at the asphalt/water interface and a one-dimensional heat diffusion equation within the asphalt. The model incorporates a simplified, physically based description of all the heat fluxes possibly affecting the ensuing thermal response of impervious areas (e.g., solar radiation and evaporation). The model was applied to an asphalt-paved plot of 90 m2 where it was able to accurately reproduce the temperature variation of the asphalt surface and runoff during an artificially produced rainfall event. Model prediction uncertainty introduced by the estimate of some key parameters involved in the heat balance is analyzed by sensitivity analysis and by checking a posteriori the consistency of the estimated heat fluxes through an overall heat conservation equation. The effect of the heat diffusivity on the surface temperature response to rainfall input was also examined, showing that the effect could be significant depending on vertical temperature distributions of the plot.

  18. Apoptosis and other immune biomarkers predict influenza vaccine responsiveness

    PubMed Central

    Furman, David; Jojic, Vladimir; Kidd, Brian; Shen-Orr, Shai; Price, Jordan; Jarrell, Justin; Tse, Tiffany; Huang, Huang; Lund, Peder; Maecker, Holden T; Utz, Paul J; Dekker, Cornelia L; Koller, Daphne; Davis, Mark M

    2013-01-01

    Despite the importance of the immune system in many diseases, there are currently no objective benchmarks of immunological health. In an effort to identifying such markers, we used influenza vaccination in 30 young (20–30 years) and 59 older subjects (60 to >89 years) as models for strong and weak immune responses, respectively, and assayed their serological responses to influenza strains as well as a wide variety of other parameters, including gene expression, antibodies to hemagglutinin peptides, serum cytokines, cell subset phenotypes and in vitro cytokine stimulation. Using machine learning, we identified nine variables that predict the antibody response with 84% accuracy. Two of these variables are involved in apoptosis, which positively associated with the response to vaccination and was confirmed to be a contributor to vaccine responsiveness in mice. The identification of these biomarkers provides new insights into what immune features may be most important for immune health. PMID:23591775

  19. Photo-, thermally, and pH-responsive microgels.

    PubMed

    Garcia, Antonio; Marquez, Manuel; Cai, Tong; Rosario, Rohit; Hu, Zhibing; Gust, Devens; Hayes, Mark; Vail, Sean A; Park, Choong-Do

    2007-01-02

    Microgels with photo-, thermally, and pH-responsive properties in aqueous suspension have been synthesized and characterized using dynamic light scattering and UV-visible spectroscopy. The new route involved first preparing poly(N-isopropylacrylamide) (PNIPAM)-allylamine copolymer microgels and a spiropyran photochrome (SP) bearing a carboxylic acid group. Then the functionalized spiropyran was coupled to the microgel via an amide bond. The dark-equilibrated gel particles feature spiropyran molecules in the polar, merocyanine form. After irradiation of visible light, the particle size becomes smaller because spiropyran changes to the relatively nonpolar, closed spiro form. The PNIPAM-SP microgels undergo a volume phase transition in water from a swollen state to a collapsed state with increasing temperature under all light conditions. However, the transition temperature range of the PNIPAM-SP is much broader than that for the PNIPAM without SP. The PNIPAM-SP microgels are monodisperse and self-assemble into a crystalline lattice while in suspension. The UV-visible spectra of an aqueous suspension of PNIPAM-SP microgel in the dark-adapted, merocyanine form showed both an absorption peak around 512 nm due to the merocyanine (giving a reddish color to the suspension) and two sharp peaks from Bragg diffraction of colloidal crystallites. Upon visible irradiation, the 512-nm band bleached significantly due to spiropyran photoisomerization. The spiropyran photoisomerization and accompanying color changes of the suspension were reversible upon alternating dark, UV, and visible light irradiation. Due to the residues of amine groups, the swelling capability of PNIPAM-SP microgels reduces as the pH value is changed from 7 to 10.

  20. Predicting thermal stability of organic solar cells through real-time capacitive techniques (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Tessarolo, Marta; Guerrero, Antonio; Seri, Mirko; Prosa, Mario; Bolognesi, Margherita; Garcia Belmonte, Germà

    2015-10-01

    Bulk Heterojunction (BHJ) solar cells have reached Power Conversion Efficiencies (PCE) over 10% but to be a competitive product long lifetimes are mandatory. In this view, guidelines for the prediction and optimization of the device stability are crucial to generate improved materials for efficient and stable BHJ devices. For encapsulated cells, degradation mechanisms can be mainly ascribed to external agents such as light and temperature. In particular, thermal degradation appears to be related not only to the BHJ morphology but also to the adjacent interfaces. Therefore, in order to have a complete description of the thermal stability of a BHJ cell, it is necessary to consider the entire stack degradation processes by using techniques enabling a direct investigation on working devices. Here, five different donor polymers were selected and the OPV performance of the corresponding BHJ devices were monitored during the thermal degradation at 85°C, showing an exponential decay of the corresponding PCEs. In parallel, we measured the geometrical capacitance of analogous OPV devices as a function of temperature and we observed that at a defined temperature (TMAX), typical for each polymer-based device, the capacitance starts to decrease. Combining all these results we found an evident and direct correlation between TMAX and the PCE decay parameters (obtained from capacitance-temperature an thermal measurements, respectively). This implies that the capacitance-method here presented is a fast, reliable and relatively simple method to predict the thermal stability of BHJ solar cells without the need to perform time-consuming thermal degradation tests.

  1. Thermographer-friendly equipment design for predictive maintenance: baseline thermograms, thermal modeling, and emissivity

    NASA Astrophysics Data System (ADS)

    Madding, Robert P.

    1999-03-01

    For years predictive maintenance thermographers have been challenged by industrial targets to determine whether they had a problem, and if they did how big was it. We have struggled with low emissivity and unknown emissivity targets. We have observed thermal patterns and temperatures and asked whether the target was operating normally or if the heat patterns indicated a problem condition. Through years of experience, we have built a body of knowledge. Conferences such as Thermosense are where we share that knowledge with others. From this, we realize that much more could be done if our targets were thermographer-friendly. Now it is time to ask the equipment manufacturers to step up to the plate and acknowledge the viability of thermography as a predictive maintenance and non-destructive test tool. They build the targets we look at. They can help us in a least three areas: (1) We need to work with them to specify a baseline thermal signature for their equipment operating under normal conditions. Thermograms would be included with the operating manual or equipment test results. Thermography would be part of acceptance and installation testing. (2) We need to ask them to include high emissivity coatings in their designs for certain targets. (3) We need to work with them to develop thermal models that will indicate thermal signatures under all types of environmental conditions for both normal and abnormal operation. Thermal modeling programs developed by the defense community that will display a surface thermal image are available for PCs. With the help of target equipment manufacturers, we can significantly advance the state-of-the- art of thermography applications. We can be even more confident of our recommendations. We can evaluate targets that couldn't be evaluated before, expanding our applications. We can have backup on criticality calls with manufacturers' data. In short, we can do our job better.

  2. Thermal boundary resistance predictions from molecular dynamics simulations and theoretical calculations

    NASA Astrophysics Data System (ADS)

    Landry, E. S.; McGaughey, A. J. H.

    2009-10-01

    The accuracies of two theoretical expressions for thermal boundary resistance are assessed by comparing their predictions to independent predictions from molecular dynamics (MD) simulations. In one expression (RE) , the phonon distributions are assumed to follow the equilibrium, Bose-Einstein distribution, while in the other expression (RNE) , the phonons are assumed to have nonequilibrium, but bulk-like distributions. The phonon properties are obtained using lattice dynamics-based methods, which assume that the phonon interface scattering is specular and elastic. We consider (i) a symmetrically strained Si/Ge interface, and (ii) a series of interfaces between Si and “heavy-Si,” which differs from Si only in mass. All of the interfaces are perfect, justifying the assumption of specular scattering. The MD-predicted Si/Ge thermal boundary resistance is temperature independent and equal to 3.1×10-9m2-K/W below a temperature of ˜500K , indicating that the phonon scattering is elastic, as required for the validity of the theoretical calculations. At higher-temperatures, the MD-predicted Si/Ge thermal boundary resistance decreases with increasing temperature, a trend we attribute to inelastic scattering. For the Si/Ge interface and the Si/heavy-Si interfaces with mass ratios greater than two, RE is in good agreement with the corresponding MD-predicted values at temperatures where the interface scattering is elastic. When applied to a system containing no interface, RE is erroneously nonzero due to the assumption of equilibrium phonon distributions on either side of the interface. While RNE is zero for a system containing no interface, it is 40%-60% less than the corresponding MD-predicted values for the Si/Ge interface and the Si/heavy-Si interfaces at temperatures where the interface scattering is elastic. This inaccuracy is attributed to the assumption of bulk-like phonon distributions on either side of the interface.

  3. A finite-element model predicts thermal damage in cutaneous contact burns.

    PubMed

    Orgill, D P; Solari, M G; Barlow, M S; O'Connor, N E

    1998-01-01

    Thermal injury results from exposure of skin elements to an externally applied heat source. Finite-element analysis of heat transfer in cutaneous burns allows for an accurate prediction of tissue time-temperature relationships throughout the exposed tissue. A two-dimensional, axisymmetric, finite-element model of a contact burn was constructed, and damage integrals were calculated by applying the Arrhenius equation to the time-temperature profiles at each point. The epidermis, dermis, and subcutaneous fat were modeled as uniform elements with distinct thermal properties. Heated aluminum blocks were applied to Yorkshire pigs for 10 to 80 seconds to produce contact burns. Wound biopsies taken at 1, 24, and 48 hours were examined histologically and measured for the depth of burn. A significant deepening of the gelatinized tissue was observed in tissue taken from 1 hour to 24 hours. The finite-element prediction of cutaneous contact burn damage correlated well with histologic observations in this porcine model.

  4. Model Based Predictive Control of Thermal Comfort for Integrated Building System

    NASA Astrophysics Data System (ADS)

    Georgiev, Tz.; Jonkov, T.; Yonchev, E.; Tsankov, D.

    2011-12-01

    This article deals with the indoor thermal control problem in HVAC (heating, ventilation and air conditioning) systems. Important outdoor and indoor variables in these systems are: air temperature, global and diffuse radiations, wind speed and direction, temperature, relative humidity, mean radiant temperature, and so on. The aim of this article is to obtain the thermal comfort optimisation by model based predictive control algorithms (MBPC) of an integrated building system. The control law is given by a quadratic programming problem and the obtained control action is applied to the process. The derived models and model based predictive control algorithms are investigated based on real—live data. All researches are derived in MATLAB environment. The further research will focus on synthesis of robust energy saving control algorithms.

  5. Crack prediction in EB-PVD thermal barrier coatings based on the simulation of residual stresses

    NASA Astrophysics Data System (ADS)

    Chen, J. W.; Zhao, Y.; Liu, S.; Zhang, Z. Z.; Ma, J.

    2016-07-01

    Thermal barrier coatings systems (TBCs) are widely used in the field of aerospace. The durability and insulating ability of TBCs are highly dependent on the residual stresses of top coatings, thus the investigation of the residual stresses is helpful to understand the failure mechanisms of TBCs. The simulation of residual stresses evolution in electron beam physical vapor deposition (EB-PVD) TBCs is described in this work. The interface morphology of TBCs subjected to cyclic heating and cooling is observed using scanning electron microscope (SEM). An interface model of TBCs is established based on thermal elastic-plastic finite method. Residual stress distributions in TBCs are obtained to reflect the influence of interfacial roughness. Both experimental and simulation results show that it is feasible to predict the crack location by stress analysis, which is crucial to failure prediction.

  6. Computational Prediction of Pressure and Thermal Environments in the Flame Trench With Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Brehm, Christoph; Sozer, Emre; Barad, Michael F.; Housman, Jeffrey A.; Kiris, Cetin C.; Moini-Yekta, Shayan; Vu, Bruce T.; Parlier, Christopher R.

    2014-01-01

    One of the key objectives for the development of the 21st Century Space Launch Com- plex is to provide the exibility needed to support evolving launch vehicles and spacecrafts with enhanced range capacity. The launch complex needs to support various proprietary and commercial vehicles with widely di erent needs. The design of a multi-purpose main ame de ector supporting many di erent launch vehicles becomes a very challenging task when considering that even small geometric changes may have a strong impact on the pressure and thermal environment. The physical and geometric complexity encountered at the launch site require the use of state-of-the-art Computational Fluid Dynamics (CFD) tools to predict the pressure and thermal environments. Due to harsh conditions encountered in the launch environment, currently available CFD methods which are frequently employed for aerodynamic and ther- mal load predictions in aerospace applications, reach their limits of validity. This paper provides an in-depth discussion on the computational and physical challenges encountered when attempting to provide a detailed description of the ow eld in the launch environ- ment. Several modeling aspects, such as viscous versus inviscid calculations, single-species versus multiple-species ow models, and calorically perfect gas versus thermally perfect gas, are discussed. The Space Shuttle and the Falcon Heavy launch vehicles are used to study di erent engine and geometric con gurations. Finally, we provide a discussion on traditional analytical tools which have been used to provide estimates on the expected pressure and thermal loads.

  7. Daily thermal predictions of the AGR-1 experiment with gas gaps varying with time

    SciTech Connect

    Hawkes, G.; Sterbentz, J.; Maki, J.; Pham, B.

    2012-07-01

    A new daily as-run thermal analysis was performed at the Idaho National Laboratory on the Advanced Gas Reactor (AGR) test experiment number one at the Advanced Test Reactor (ATR). This thermal analysis incorporates gas gaps changing with time during the irradiation experiment. The purpose of this analysis was to calculate the daily average temperatures of each compact to compare with experimental results. Post irradiation examination (PIE) measurements of the graphite holder and fuel compacts showed the gas gaps changed from the beginning of life. The control temperature gas gap and the fuel compact - graphite holder gas gaps were modeled with a linear change from the original fabrication gap dimensions to the end of irradiation measurements. A steady-state thermal analysis was performed for each daily calculation with the commercial finite element heat transfer code ABAQUS. These new thermal predictions more closely match the experimental data taken during the experiment than previous analyses. Results are presented comparing normalized compact average temperatures to normalized log(R/B) Kr-85m. The R/B term is the measured release rate divided by the predicted birth rate for the isotope Kr-85m. Correlations between these two normalized values are presented. (authors)

  8. Daily Thermal Predictions of the AGR-1 Experiment with Gas Gaps Varying with Time

    SciTech Connect

    Grant Hawkes; James Sterbentz; John Maki; Binh Pham

    2012-06-01

    A new daily as-run thermal analysis was performed at the Idaho National Laboratory on the Advanced Gas Reactor (AGR) test experiment number one at the Advanced Test Reactor (ATR). This thermal analysis incorporates gas gaps changing with time during the irradiation experiment. The purpose of this analysis was to calculate the daily average temperatures of each compact to compare with experimental results. Post irradiation examination (PIE) measurements of the graphite holder and fuel compacts showed the gas gaps varying from the beginning of life. The control temperature gas gap and the fuel compact – graphite holder gas gaps were linearly changed from the original fabrication dimensions, to the end of irradiation measurements. A steady-state thermal analysis was performed for each daily calculation. These new thermal predictions more closely match the experimental data taken during the experiment than previous analyses. Results are presented comparing normalized compact average temperatures to normalized log(R/B) Kr-85m. The R/B term is the measured release rate divided by the predicted birth rate for the isotope Kr-85m. Correlations between these two normalized values are presented.

  9. How important is thermal expansion for predicting molecular crystal structures and thermochemistry at finite temperatures?

    PubMed

    Heit, Yonaton N; Beran, Gregory J O

    2016-08-01

    Molecular crystals expand appreciably upon heating due to both zero-point and thermal vibrational motion, yet this expansion is often neglected in molecular crystal modeling studies. Here, a quasi-harmonic approximation is coupled with fragment-based hybrid many-body interaction calculations to predict thermal expansion and finite-temperature thermochemical properties in crystalline carbon dioxide, ice Ih, acetic acid and imidazole. Fragment-based second-order Möller-Plesset perturbation theory (MP2) and coupled cluster theory with singles, doubles and perturbative triples [CCSD(T)] predict the thermal expansion and the temperature dependence of the enthalpies, entropies and Gibbs free energies of sublimation in good agreement with experiment. The errors introduced by neglecting thermal expansion in the enthalpy and entropy cancel somewhat in the Gibbs free energy. The resulting ∼ 1-2 kJ mol(-1) errors in the free energy near room temperature are comparable to or smaller than the errors expected from the electronic structure treatment, but they may be sufficiently large to affect free-energy rankings among energetically close polymorphs.

  10. Nondiffusive thermal transport and prediction of the breakdown of Fourier's law in nanograting experiments

    NASA Astrophysics Data System (ADS)

    Qu, Zhengxian; Wang, Dadong; Ma, Yanbao

    2017-01-01

    An appropriate heat conduction model is indispensable for experimental data analysis in nanothermometry in order to extract parameters of interests and to achieve a fundamental understanding of phonon-mediated heat transfer in nanostructures and across interfaces. Recently, nanoscale periodic metallic gratings are used as a group of distributed heaters as well as transducers in nanothermometry. However, in this technique, there are coupled hotspot-size-dependent effective thermal conductivity (ETC) and hotspot-size-dependent thermal interface resistivity, which posts a challenge for experimental data analysis using Fourier's law that fails to extract both ETC and thermal interface resistivity simultaneously. To overcome this challenge, a novel two-parameter nondiffusive heat conduction (TPHC) model, which has been successfully applied to data analysis in different types of pump-probe experiments, is applied to analyze laser-induced nondiffusive heat transfer in nanoscale metallic grating experiments. Since the hotspot-size-dependent ETC is automatically captured by the TPHC model, the hotspot-size-dependent interface resistivity becomes the only parameter to be determined from experiments through data fitting. Thus, the hotspot-size-dependent thermal interface resistivity can be determined from experiments without the impact from the hotspot-size-dependent ETC. Currently, there is a lack of a criterion to predict when Fourier's law breaks down in nanoscale heat transfer. To fill this gap, a criterion based the TPHC model is identified to predict the valid range of Fourier's law, which is validated in both theoretical analyses and nanoscale metallic grating experiments.

  11. Prediction methods of skin burn for performance evaluation of thermal protective clothing.

    PubMed

    Zhai, Li-Na; Li, Jun

    2015-11-01

    Most test methods use skin burn prediction to evaluate the thermal protective performance of clothing. In this paper, we reviewed different burn prediction methods used in clothing evaluation. The empirical criterion and the mathematical model were analyzed in detail as well as their relationship and limitations. Using an empirical criterion, the onset of skin burn is determined by the accumulated skin surface energy in certain periods. On the other hand, the mathematical model, which indicates denatured collagen, is more complex, which involves a heat transfer model and a burn model. Further studies should be conducted to examine the situations where the prediction methods are derived. New technologies may be used in the future to explore precise or suitable prediction methods for both flash fire tests and increasingly lower-intensity tests.

  12. Prediction of air temperature for thermal comfort of people using sleeping bags: a review

    NASA Astrophysics Data System (ADS)

    Huang, Jianhua

    2008-11-01

    Six models for determining air temperatures for thermal comfort of people using sleeping bags were reviewed. These models were based on distinctive metabolic rates and mean skin temperatures. All model predictions of air temperatures are low when the insulation values of the sleeping bag are high. Nevertheless, prediction variations are greatest for the sleeping bags with high insulation values, and there is a high risk of hypothermia if an inappropriate sleeping bag is chosen for the intended conditions of use. There is, therefore, a pressing need to validate the models by wear trial and determine which one best reflects ordinary consumer needs.

  13. Physicochemical vs. Vibrational Descriptors for Prediction of Odor Receptor Responses.

    PubMed

    Gabler, Stephan; Soelter, Jan; Hussain, Taufia; Sachse, Silke; Schmuker, Michael

    2013-10-01

    Responses of olfactory receptors (ORs) can be predicted by applying machine learning methods on a multivariate encoding of an odorant's chemical structure. Physicochemical descriptors that encode features of the molecular graph are a popular choice for such an encoding. Here, we explore the EVA descriptor set, which encodes features derived from the vibrational spectrum of a molecule. We assessed the performance of Support Vector Regression (SVR) and Random Forest Regression (RFR) to predict the gradual response of Drosophila ORs. We compared a 27-dimensional variant of the EVA descriptor against a set of 1467 descriptors provided by the eDragon software package, and against a 32-dimensional subset thereof that has been proposed as the basis for an odor metric consisting of 32 descriptors (HADDAD). The best prediction performance was reproducibly achieved using SVR on the highest-dimensional feature set. The low-dimensional EVA and HADDAD feature sets predicted odor-OR interactions with similar accuracy. Adding charge and polarizability information to the EVA descriptor did not improve the results but rather decreased predictive power. Post-hoc in vivo measurements confirmed these results. Our findings indicate that EVA provides a meaningful low-dimensional representation of odor space, although EVA hardly outperformed "classical" descriptor sets.

  14. Application of remote sensing for prediction and detection of thermal pollution

    NASA Technical Reports Server (NTRS)

    Veziroglu, T. N.; Lee, S. S.

    1974-01-01

    The first phase is described of a three year project for the development of a mathematical model for predicting thermal pollution by use of remote sensing measurements. A rigid-lid model was developed, and results were obtained for different wind conditions at Biscayne Bay in South Florida. The design of the measurement system was completed, and instruments needed for the first stage of experiment were acquired, tested, and calibrated. A preliminary research flight was conducted.

  15. Correlation of predicted and measured thermal stresses on a truss-type aircraft structure

    NASA Technical Reports Server (NTRS)

    Jenkins, J. M.; Schuster, L. S.; Carter, A. L.

    1978-01-01

    A test structure representing a portion of a hypersonic vehicle was instrumented with strain gages and thermocouples. This test structure was then subjected to laboratory heating representative of supersonic and hypersonic flight conditions. A finite element computer model of this structure was developed using several types of elements with the NASA structural analysis (NASTRAN) computer program. Temperature inputs from the test were used to generate predicted model thermal stresses and these were correlated with the test measurements.

  16. Predicting thermally stressful events in rivers with a strategy to evaluate management alternatives

    USGS Publications Warehouse

    Maloney, K.O.; Cole, J.C.; Schmid, M.

    2016-01-01

    Water temperature is an important factor in river ecology. Numerous models have been developed to predict river temperature. However, many were not designed to predict thermally stressful periods. Because such events are rare, traditionally applied analyses are inappropriate. Here, we developed two logistic regression models to predict thermally stressful events in the Delaware River at the US Geological Survey gage near Lordville, New York. One model predicted the probability of an event >20.0 °C, and a second predicted an event >22.2 °C. Both models were strong (independent test data sensitivity 0.94 and 1.00, specificity 0.96 and 0.96) predicting 63 of 67 events in the >20.0 °C model and all 15 events in the >22.2 °C model. Both showed negative relationships with released volume from the upstream Cannonsville Reservoir and positive relationships with difference between air temperature and previous day's water temperature at Lordville. We further predicted how increasing release volumes from Cannonsville Reservoir affected the probabilities of correctly predicted events. For the >20.0 °C model, an increase of 0.5 to a proportionally adjusted release (that accounts for other sources) resulted in 35.9% of events in the training data falling below cutoffs; increasing this adjustment by 1.0 resulted in 81.7% falling below cutoffs. For the >22.2 °C these adjustments resulted in 71.1% and 100.0% of events falling below cutoffs. Results from these analyses can help managers make informed decisions on alternative release scenarios.

  17. Baseline Brain Activity Predicts Response to Neuromodulatory Pain Treatment

    PubMed Central

    Jensen, Mark P.; Sherlin, Leslie H.; Fregni, Felipe; Gianas, Ann; Howe, Jon D.; Hakimian, Shahin

    2015-01-01

    Objectives The objective of this study was to examine the associations between baseline electroencephalogram (EEG)-assessed brain oscillations and subsequent response to four neuromodulatory treatments. Based on available research, we hypothesized that baseline theta oscillations would prospectively predict response to hypnotic analgesia. Analyses involving other oscillations and the other treatments (meditation, neurofeedback, and both active and sham transcranial direct current stimulation) were viewed as exploratory, given the lack of previous research examining brain oscillations as predictors of response to these other treatments. Design Randomized controlled study of single sessions of four neuromodulatory pain treatments and a control procedure. Methods Thirty individuals with spinal cord injury and chronic pain had their EEG recorded before each session of four active treatments (hypnosis, meditation, EEG biofeedback, transcranial direct current stimulation) and a control procedure (sham transcranial direct stimulation). Results As hypothesized, more presession theta power was associated with greater response to hypnotic analgesia. In exploratory analyses, we found that less baseline alpha power predicted pain reduction with meditation. Conclusions The findings support the idea that different patients respond to different pain treatments and that between-person treatment response differences are related to brain states as measured by EEG. The results have implications for the possibility of enhancing pain treatment response by either 1) better patient/treatment matching or 2) influencing brain activity before treatment is initiated in order to prepare patients to respond. Research is needed to replicate and confirm the findings in additional samples of individuals with chronic pain. PMID:25287554

  18. Baseline brain activity predicts response to neuromodulatory pain treatment.

    PubMed

    Jensen, Mark P; Sherlin, Leslie H; Fregni, Felipe; Gianas, Ann; Howe, Jon D; Hakimian, Shahin

    2014-12-01

    The objective of this study was to examine the associations between baseline electroencephalogram (EEG)-assessed brain oscillations and subsequent response to four neuromodulatory treatments. Based on available research, we hypothesized that baseline theta oscillations would prospectively predict response to hypnotic analgesia. Analyses involving other oscillations and the other treatments (meditation, neurofeedback, and both active and sham transcranial direct current stimulation) were viewed as exploratory, given the lack of previous research examining brain oscillations as predictors of response to these other treatments. Randomized controlled study of single sessions of four neuromodulatory pain treatments and a control procedure. Thirty individuals with spinal cord injury and chronic pain had their EEG recorded before each session of four active treatments (hypnosis, meditation, EEG biofeedback, transcranial direct current stimulation) and a control procedure (sham transcranial direct stimulation). As hypothesized, more presession theta power was associated with greater response to hypnotic analgesia. In exploratory analyses, we found that less baseline alpha power predicted pain reduction with meditation. The findings support the idea that different patients respond to different pain treatments and that between-person treatment response differences are related to brain states as measured by EEG. The results have implications for the possibility of enhancing pain treatment response by either 1) better patient/treatment matching or 2) influencing brain activity before treatment is initiated in order to prepare patients to respond. Research is needed to replicate and confirm the findings in additional samples of individuals with chronic pain. Wiley Periodicals, Inc.

  19. Improving Thermal Model Prediction Through Statistical Analysis of Irradiation and Post-Irradiation Data from AGR Experiments

    SciTech Connect

    Dr. Binh T. Pham; Grant L. Hawkes; Jeffrey J. Einerson

    2012-10-01

    As part of the Research and Development program for Next Generation High Temperature Reactors (HTR), a series of irradiation tests, designated as Advanced Gas-cooled Reactor (AGR), have been defined to support development and qualification of fuel design, fabrication process, and fuel performance under normal operation and accident conditions. The AGR tests employ fuel compacts placed in a graphite cylinder shrouded by a steel capsule and instrumented with thermocouples (TC) embedded in graphite blocks enabling temperature control. The data representing the crucial test fuel conditions (e.g., temperature, neutron fast fluence, and burnup) while impossible to obtain from direct measurements are calculated by physics and thermal models. The irradiation and post-irradiation examination (PIE) experimental data are used in model calibration effort to reduce the inherent uncertainty of simulation results. This paper is focused on fuel temperature predicted by the ABAQUS code’s finite element-based thermal models. The work follows up on a previous study, in which several statistical analysis methods were adapted, implemented in the NGNP Data Management and Analysis System (NDMAS), and applied for improving qualification of AGR-1 thermocouple data. The present work exercises the idea that the abnormal trends of measured data observed from statistical analysis may be caused by either measuring instrument deterioration or physical mechanisms in capsules that may have shifted the system thermal response. As an example, the uneven reduction of the control gas gap in Capsule 5 revealed by the capsule metrology measurements in PIE helps justify the reduction in TC readings instead of TC drift. This in turn prompts modification of thermal model to better fit with experimental data, thus help increase confidence, and in other word reduce model uncertainties in thermal simulation results of the AGR-1 test.

  20. An experimental correlation approach for predicting thermal conductivity of water-EG based nanofluids of zinc oxide

    NASA Astrophysics Data System (ADS)

    Ahmadi Nadooshan, Afshin

    2017-03-01

    In this study, the effects of temperature (20 °Cthermal conductivity of zinc oxide/ethylene glycol-water nanofluid have been presented. Nanofluid samples were prepared by a two-step method and thermal conductivity measurements were performed by a KD2 pro instrument. Results showed that the thermal conductivity increases uniformly with increasing solid volume fraction and temperature. The results also revealed that the thermal conductivity of nanofluids significantly increases with increasing solid volume fraction at higher temperatures. Moreover, it can be seen that for more concentrated samples, the effect of temperature was more tangible. Experimental thermal conductivity enhancement of the nanofluid in comparison with the Maxwell model indicated that Maxwell model was unable to predict the thermal conductivity of the present nanofluid. Therefore, a new correlation was presented for predicting the thermal conductivity of ZnO/EG-water nanofluid.

  1. Capturing anharmonicity in a lattice thermal conductivity model for high-throughput predictions

    DOE PAGES

    Miller, Samuel A.; Gorai, Prashun; Ortiz, Brenden R.; ...

    2017-01-06

    High-throughput, low-cost, and accurate predictions of thermal properties of new materials would be beneficial in fields ranging from thermal barrier coatings and thermoelectrics to integrated circuits. To date, computational efforts for predicting lattice thermal conductivity (κL) have been hampered by the complexity associated with computing multiple phonon interactions. In this work, we develop and validate a semiempirical model for κL by fitting density functional theory calculations to experimental data. Experimental values for κL come from new measurements on SrIn2O4, Ba2SnO4, Cu2ZnSiTe4, MoTe2, Ba3In2O6, Cu3TaTe4, SnO, and InI as well as 55 compounds from across the published literature. Here, to capturemore » the anharmonicity in phonon interactions, we incorporate a structural parameter that allows the model to predict κL within a factor of 1.5 of the experimental value across 4 orders of magnitude in κL values and over a diverse chemical and structural phase space, with accuracy similar to or better than that of computationally more expensive models.« less

  2. Model-based planning and real-time predictive control for laser-induced thermal therapy.

    PubMed

    Feng, Yusheng; Fuentes, David

    2011-01-01

    In this article, the major idea and mathematical aspects of model-based planning and real-time predictive control for laser-induced thermal therapy (LITT) are presented. In particular, a computational framework and its major components developed by authors in recent years are reviewed. The framework provides the backbone for not only treatment planning but also real-time surgical monitoring and control with a focus on MR thermometry enabled predictive control and applications to image-guided LITT, or MRgLITT. Although this computational framework is designed for LITT in treating prostate cancer, it is further applicable to other thermal therapies in focal lesions induced by radio-frequency (RF), microwave and high-intensity-focused ultrasound (HIFU). Moreover, the model-based dynamic closed-loop predictive control algorithms in the framework, facilitated by the coupling of mathematical modelling and computer simulation with real-time imaging feedback, has great potential to enable a novel methodology in thermal medicine. Such technology could dramatically increase treatment efficacy and reduce morbidity.

  3. Model-based planning and real-time predictive control for laser-induced thermal therapy

    PubMed Central

    Feng, Yusheng; Fuentes, David

    2014-01-01

    In this article, the major idea and mathematical aspects of model-based planning and real-time predictive control for laser-induced thermal therapy (LITT) are presented. In particular, a computational framework and its major components developed by authors in recent years are reviewed. The framework provides the backbone for not only treatment planning but also real-time surgical monitoring and control with a focus on MR thermometry enabled predictive control and applications to image-guided LITT, or MRgLITT. Although this computational framework is designed for LITT in treating prostate cancer, it is further applicable to other thermal therapies in focal lesions induced by radio-frequency (RF), microwave and high-intensity-focused ultrasound (HIFU). Moreover, the model-based dynamic closed-loop predictive control algorithms in the framework, facilitated by the coupling of mathematical modelling and computer simulation with real-time imaging feedback, has great potential to enable a novel methodology in thermal medicine. Such technology could dramatically increase treatment efficacy and reduce morbidity. PMID:22098360

  4. Use of thermal inertia determined by HCMM to predict nocturnal cold prone areas in Florida

    NASA Technical Reports Server (NTRS)

    Allen, L. H., Jr. (Principal Investigator)

    1983-01-01

    Pairs of HCMM day-night thermal infrared (IR) data were selected during the 1978-79 winter to examine patterns of surface temperature and thermal inertia (TI) of peninsular Florida. The GOES and NOAA-6 thermal IR, as well as National Climatic Center temperatures and rainfall, were also used. The HCMM apparent thermal inertia (ATI) images closely corresponded to the general soil map of Florida, based on soil drainage classes. Areas with low ATI overlay well-drained soils, such as deep sands and drained organic soils, whereas with high ATI overlay areas with wetlands and bodies of water. The HCMM ATI images also corresponded well with GOES-detected winter nocturnal cold-prone areas. Use of HCMM data with Carlson's energy balance model showed both high moisture availability (MA) and high thermal inertia (TI) of wetland-type surfaces and low MA and low TI of upland, well-drained soils. Since soil areas with low TI develop higher temperatures during the day, then antecedent patterns of highest maximum daytime surface temperature can also be used to predict nocturnal cold-prone areas in Florida.

  5. Prediction of the thermal imaging minimum resolvable (circle) temperature difference with neural network application.

    PubMed

    Fang, Yi-Chin; Wu, Bo-Wen

    2008-12-01

    Thermal imaging is an important technology in both national defense and the private sector. An advantage of thermal imaging is its ability to be deployed while fully engaged in duties, not limited by weather or the brightness of indoor or outdoor conditions. However, in an outdoor environment, many factors, including atmospheric decay, target shape, great distance, fog, temperature out of range and diffraction limits can lead to bad image formation, which directly affects the accuracy of object recognition. The visual characteristics of the human eye mean that it has a much better capacity for picture recognition under normal conditions than artificial intelligence does. However, conditions of interference significantly reduce this capacity for picture recognition for instance, fatigue impairs human eyesight. Hence, psychological and physiological factors can affect the result when the human eye is adopted to measure MRTD (minimum resolvable temperature difference) and MRCTD (minimum resolvable circle temperature difference). This study explores thermal imaging recognition, and presents a method for effectively choosing the characteristic values and processing the images fully. Neural network technology is successfully applied to recognize thermal imaging and predict MRTD and MRCTD (Appendix A), exceeding thermal imaging recognition under fatigue and the limits of the human eye.

  6. An empirical propellant response function for combustion stability predictions

    NASA Technical Reports Server (NTRS)

    Hessler, R. O.

    1980-01-01

    An empirical response function model was developed for ammonium perchlorate propellants to supplant T-burner testing at the preliminary design stage. The model was developed by fitting a limited T-burner data base, in terms of oxidizer size and concentration, to an analytical two parameter response function expression. Multiple peaks are predicted, but the primary effect is of a single peak for most formulations, with notable bulges for the various AP size fractions. The model was extended to velocity coupling with the assumption that dynamic response was controlled primarily by the solid phase described by the two parameter model. The magnitude of velocity coupling was then scaled using an erosive burning law. Routine use of the model for stability predictions on a number of propulsion units indicates that the model tends to overpredict propellant response. It is concluded that the model represents a generally conservative prediction tool, suited especially for the preliminary design stage when T-burner data may not be readily available. The model work included development of a rigorous summation technique for pseudopropellant properties and of a concept for modeling ordered packing of particulates.

  7. Specific molecular signatures predict decitabine response in chronic myelomonocytic leukemia.

    PubMed

    Meldi, Kristen; Qin, Tingting; Buchi, Francesca; Droin, Nathalie; Sotzen, Jason; Micol, Jean-Baptiste; Selimoglu-Buet, Dorothée; Masala, Erico; Allione, Bernardino; Gioia, Daniela; Poloni, Antonella; Lunghi, Monia; Solary, Eric; Abdel-Wahab, Omar; Santini, Valeria; Figueroa, Maria E

    2015-05-01

    Myelodysplastic syndromes and chronic myelomonocytic leukemia (CMML) are characterized by mutations in genes encoding epigenetic modifiers and aberrant DNA methylation. DNA methyltransferase inhibitors (DMTis) are used to treat these disorders, but response is highly variable, with few means to predict which patients will benefit. Here, we examined baseline differences in mutations, DNA methylation, and gene expression in 40 CMML patients who were responsive or resistant to decitabine (DAC) in order to develop a molecular means of predicting response at diagnosis. While somatic mutations did not differentiate responders from nonresponders, we identified 167 differentially methylated regions (DMRs) of DNA at baseline that distinguished responders from nonresponders using next-generation sequencing. These DMRs were primarily localized to nonpromoter regions and overlapped with distal regulatory enhancers. Using the methylation profiles, we developed an epigenetic classifier that accurately predicted DAC response at the time of diagnosis. Transcriptional analysis revealed differences in gene expression at diagnosis between responders and nonresponders. In responders, the upregulated genes included those that are associated with the cell cycle, potentially contributing to effective DAC incorporation. Treatment with CXCL4 and CXCL7, which were overexpressed in nonresponders, blocked DAC effects in isolated normal CD34+ and primary CMML cells, suggesting that their upregulation contributes to primary DAC resistance.

  8. Does including physiology improve species distribution model predictions of responses to recent climate change?

    PubMed

    Buckley, Lauren B; Waaser, Stephanie A; MacLean, Heidi J; Fox, Richard

    2011-12-01

    Thermal constraints on development are often invoked to predict insect distributions. These constraints tend to be characterized in species distribution models (SDMs) by calculating development time based on a constant lower development temperature (LDT). Here, we assessed whether species-specific estimates of LDT based on laboratory experiments can improve the ability of SDMs to predict the distribution shifts of six U.K. butterflies in response to recent climate warming. We find that species-specific and constant (5 degrees C) LDT degree-day models perform similarly at predicting distributions during the period of 1970-1982. However, when the models for the 1970-1982 period are projected to predict distributions in 1995-1999 and 2000-2004, species-specific LDT degree-day models modestly outperform constant LDT degree-day models. Our results suggest that, while including species-specific physiology in correlative models may enhance predictions of species' distribution responses to climate change, more detailed models may be needed to adequately account for interspecific physiological differences.

  9. Dopamine Reward Prediction Error Responses Reflect Marginal Utility

    PubMed Central

    Stauffer, William R.; Lak, Armin; Schultz, Wolfram

    2014-01-01

    Summary Background Optimal choices require an accurate neuronal representation of economic value. In economics, utility functions are mathematical representations of subjective value that can be constructed from choices under risk. Utility usually exhibits a nonlinear relationship to physical reward value that corresponds to risk attitudes and reflects the increasing or decreasing marginal utility obtained with each additional unit of reward. Accordingly, neuronal reward responses coding utility should robustly reflect this nonlinearity. Results In two monkeys, we measured utility as a function of physical reward value from meaningful choices under risk (that adhered to first- and second-order stochastic dominance). The resulting nonlinear utility functions predicted the certainty equivalents for new gambles, indicating that the functions’ shapes were meaningful. The monkeys were risk seeking (convex utility function) for low reward and risk avoiding (concave utility function) with higher amounts. Critically, the dopamine prediction error responses at the time of reward itself reflected the nonlinear utility functions measured at the time of choices. In particular, the reward response magnitude depended on the first derivative of the utility function and thus reflected the marginal utility. Furthermore, dopamine responses recorded outside of the task reflected the marginal utility of unpredicted reward. Accordingly, these responses were sufficient to train reinforcement learning models to predict the behaviorally defined expected utility of gambles. Conclusions These data suggest a neuronal manifestation of marginal utility in dopamine neurons and indicate a common neuronal basis for fundamental explanatory constructs in animal learning theory (prediction error) and economic decision theory (marginal utility). PMID:25283778

  10. Growth form-dependent response to physical disturbance and thermal stress in Acropora corals

    NASA Astrophysics Data System (ADS)

    Muko, S.; Arakaki, S.; Nagao, M.; Sakai, Kazuhiko

    2013-03-01

    To predict the community structure in response to changing environmental conditions, it is necessary to know the species-specific reaction and relative impact strength of each disturbance. We investigated the coral communities in two sites, an exposed and a protected site, at Iriomote Island, Japan, from 2005 to 2008. During the study period, a cyclone and thermal stress were observed. All Acropora colonies, classified into four morphologies (arborescent, tabular, corymbose, and digitate), were identified and tracked through time to calculate the annual mortality and growth rate. The mortality of all Acropora colonies in the protected site was lower than that in the exposed site during the period without disturbances. Extremely higher mortality due to bleaching was observed in tabular and corymbose Acropora, compared to other growth forms, at the protected sites after thermal stress. In contrast, physical disturbance by a tropical cyclone induced the highest mortality in arborescent and digitate corals at the exposed site. Moreover, arborescent corals exhibited a remarkable decline 1 year after the tropical cyclone at the exposed site. The growth of colonies that survived coral bleaching did not decrease in the following year compared to previous year for all growth forms, but the growth of arborescent and tabular remnant corals at the exposed site declined severely after the tropical cyclone compared to previous year. The delayed mortality and lowered growth rate after the tropical cyclone were probably due to the damage caused by the tropical cyclone. These results indicate that the cyclone had a greater impact on fragile corals than expected. This study provides useful information for the evaluation of Acropora coral response to progressing global warming conditions, which are predicted to increase in frequency and intensity in the near future.

  11. Procedure to Determine Thermal Characteristics and Groundwater Influence in Heterogeneous Subsoil by an Enhanced Thermal Response Test and Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Aranzabal, Nordin; Martos, Julio; Montero, Álvaro; Monreal, Llúcia; Soret, Jesús; Torres, José; García-Olcina, Raimundo

    2016-04-01

    Ground thermal conductivity and borehole thermal resistance are indispensable parameters for the optimal design of subsoil thermal processes and energy storage characterization. The standard method to determine these parameters is the Thermal Response Test (TRT) which results are evaluated by models considering the ground being homogeneous and isotropic. This method obtains an effective ground thermal conductivity which represents an average of the thermal conductivity along the different layers crossed by perforation. In order to obtain a ground thermal conductivity profile as a function of depth two additional key factors are required, first, a new significant data set: a temperature profile along the borehole; and second, a new analysis procedure to extract ground heterogeneity from the recorded data. This research work presents the results of an analysis procedure, complementing the standard TRT analysis, which allows to estimate the thermal conductivity profile from a temperature profile measured along the borehole during a TRT. In the analysis procedure, a 3D Finite Element Model (FEM) is used to fit simulation results with experimental data, by a set of iterative simulations. This methodology is applied to a data set obtained throughout a TRT of 1kW heat power injection in a 30m depth Borehole Heat Exchange (BHE) facility. A highly conductive layer have been detected and located at 25 m depth. In addition, a novel automated device to obtain temperature profiles along geothermal pipes with or without fluid flow is presented. This sensor system is intended to improve the standard TRT and it allows the collection of depth depending thermal characteristics of the subsoil geological structure. Currently, some studies are being conducted in double U-pipe borehole installations in order to improve previously introduced analysis procedure. From a numerical model simulation that takes into account advective effects is pretended to estimate underground water velocity

  12. Predictive Optimal Control of Active and Passive Building Thermal Storage Inventory

    SciTech Connect

    Gregor P. Henze; Moncef Krarti

    2003-12-17

    Cooling of commercial buildings contributes significantly to the peak demand placed on an electrical utility grid. Time-of-use electricity rates encourage shifting of electrical loads to off-peak periods at night and weekends. Buildings can respond to these pricing signals by shifting cooling-related thermal loads either by precooling the building's massive structure or the use of active thermal energy storage systems such as ice storage. While these two thermal batteries have been engaged separately in the past, this project investigates the merits of harnessing both storage media concurrently in the context of predictive optimal control. This topical report describes the demonstration of the model-based predictive optimal control for active and passive building thermal storage inventory in a test facility in real-time using time-of-use differentiated electricity prices without demand charges. The laboratory testing findings presented in this topical report cover the second of three project phases. The novel supervisory controller successfully executed a three-step procedure consisting of (1) short-term weather prediction, (2) optimization of control strategy over the next planning horizon using a calibrated building model, and (3) post-processing of the optimal strategy to yield a control command for the current time step that can be executed in the test facility. The primary and secondary building mechanical systems were effectively orchestrated by the model-based predictive optimal controller in real-time while observing comfort and operational constraints. The findings reveal that when the optimal controller is given imperfect weather fore-casts and when the building model used for planning control strategies does not match the actual building perfectly, measured utility costs savings relative to conventional building operation can be substantial. This requires that the facility under control lends itself to passive storage utilization and the building model

  13. Thermal Plasticity of Photosynthesis: the Role of Acclimation in Forest Responses to a Warming Climate

    SciTech Connect

    Gunderson, Carla A; O'Hara, Keiran H; Campion, Christina M; Walker, Ashley V; Edwards, Nelson T

    2010-01-01

    The increasing air temperatures central to climate change predictions have the potential to alter forest ecosystem function and structure by exceeding temperatures optimal for carbon gain. Such changes are projected to threaten survival of sensitive species, leading to local extinctions, range migrations, and altered forest composition. This study investigated photosynthetic sensitivity to temperature and the potential for acclimation in relation to the climatic provenance of five species of deciduous trees, Liquidambar styraciflua, Quercus rubra, Quercus falcata, Betula alleghaniensis, and Populus grandidentata. Open-top chambers supplied three levels of warming (+0, +2, and +4 C above ambient) over 3 years, tracking natural temperature variability. Optimal temperature for CO2 assimilation was strongly correlated with daytime temperature in all treatments, but assimilation rates at those optima were comparable. Adjustment of thermal optima was confirmed in all species, whether temperatures varied with season or treatment, and regardless of climate in the species' range or provenance of the plant material. Temperature optima from 17 to 34 were observed. Across species, acclimation potentials varied from 0.55 C to 1.07 C per degree change in daytime temperature. Responses to the temperature manipulation were not different from the seasonal acclimation observed in mature indigenous trees, suggesting that photosynthetic responses should not be modeled using static temperature functions, but should incorporate an adjustment to account for acclimation. The high degree of homeostasis observed indicates that direct impacts of climatic warming on forest productivity, species survival, and range limits may be less than predicted by existing models.

  14. Perturbation Predictability Can Influence the Long-Latency Stretch Response

    PubMed Central

    Forgaard, Christopher J.; Franks, Ian M.; Maslovat, Dana; Chua, Romeo

    2016-01-01

    Perturbations applied to the upper limbs elicit short (M1: 25–50 ms) and long-latency (M2: 50–100 ms) responses in the stretched muscle. M1 is produced by a spinal reflex loop, and M2 receives contribution from multiple spinal and supra-spinal pathways. While M1 is relatively immutable to voluntary intention, the remarkable feature of M2 is that its size can change based on intention or goal of the participant (e.g., increasing when resisting the perturbation and decreasing when asked to let-go or relax following the perturbation). While many studies have examined modulation of M2 between passive and various active conditions, through the use of constant foreperiods (interval between warning signal and a perturbation), it has also been shown that the magnitude of the M2 response in a passive condition can change based on factors such as habituation and anticipation of perturbation delivery. To prevent anticipation of a perturbation, most studies have used variable foreperiods; however, the range of possible foreperiod duration differs between experiments. The present study examined the influence of different variable foreperiods on modulation of the M2 response. Fifteen participants performed active and passive responses to a perturbation that stretched wrist flexors. Each block of trials had either a short (2.5–3.5 seconds; high predictability) or long (2.5–10.5 seconds; low predictability) variable foreperiod. As expected, no differences were found between any conditions for M1, while M2 was larger in the active rather than passive conditions. Interestingly, within the two passive conditions, the long variable foreperiods resulted in greater activity at the end of the M2 response than the trials with short foreperiods. These results suggest that perturbation predictability, even when using a variable foreperiod, can influence circuitry contributing to the long-latency stretch response. PMID:27727293

  15. Perturbation Predictability Can Influence the Long-Latency Stretch Response.

    PubMed

    Forgaard, Christopher J; Franks, Ian M; Maslovat, Dana; Chua, Romeo

    2016-01-01

    Perturbations applied to the upper limbs elicit short (M1: 25-50 ms) and long-latency (M2: 50-100 ms) responses in the stretched muscle. M1 is produced by a spinal reflex loop, and M2 receives contribution from multiple spinal and supra-spinal pathways. While M1 is relatively immutable to voluntary intention, the remarkable feature of M2 is that its size can change based on intention or goal of the participant (e.g., increasing when resisting the perturbation and decreasing when asked to let-go or relax following the perturbation). While many studies have examined modulation of M2 between passive and various active conditions, through the use of constant foreperiods (interval between warning signal and a perturbation), it has also been shown that the magnitude of the M2 response in a passive condition can change based on factors such as habituation and anticipation of perturbation delivery. To prevent anticipation of a perturbation, most studies have used variable foreperiods; however, the range of possible foreperiod duration differs between experiments. The present study examined the influence of different variable foreperiods on modulation of the M2 response. Fifteen participants performed active and passive responses to a perturbation that stretched wrist flexors. Each block of trials had either a short (2.5-3.5 seconds; high predictability) or long (2.5-10.5 seconds; low predictability) variable foreperiod. As expected, no differences were found between any conditions for M1, while M2 was larger in the active rather than passive conditions. Interestingly, within the two passive conditions, the long variable foreperiods resulted in greater activity at the end of the M2 response than the trials with short foreperiods. These results suggest that perturbation predictability, even when using a variable foreperiod, can influence circuitry contributing to the long-latency stretch response.

  16. Effects of desiccation and starvation on thermal tolerance and the heat-shock response in forest ants.

    PubMed

    Nguyen, Andrew D; DeNovellis, Kerri; Resendez, Skyler; Pustilnik, Jeremy D; Gotelli, Nicholas J; Parker, Joel D; Cahan, Sara Helms

    2017-04-24

    Temperature increases associated with global climate change are likely to be accompanied by additional environmental stressors such as desiccation and food limitation, which may alter how temperature impacts organismal performance. To investigate how interactions between stressors influence thermal tolerance in the common forest ant, Aphaenogaster picea, we compared the thermal resistance of workers to heat shock with and without pre-exposure to desiccation or starvation stress. Knockdown (KD) time at 40.5 °C of desiccated ants was reduced 6% compared to controls, although longer exposure to desiccation did not further reduce thermal tolerance. Starvation, in contrast, had an increasingly severe effect on thermal tolerance: at 21 days, average KD time of starved ants was reduced by 65% compared to controls. To test whether reduction in thermal tolerance results from impairment of the heat-shock response, we measured basal gene expression and transcriptional induction of two heat-shock proteins (hsp70 and hsp40) in treated and control ants. We found no evidence that either stressor impaired the Hsp response: both desiccation and starvation slightly increased basal Hsp expression under severe stress conditions and did not affect the magnitude of induction under heat shock. These results suggest that the co-occurrence of multiple environmental stressors predicted by climate change models may make populations more vulnerable to future warming than is suggested by the results of single-factor heating experiments.

  17. Pragmatic hydraulic theory predicts stomatal responses to climatic water deficits.

    PubMed

    Sperry, John S; Wang, Yujie; Wolfe, Brett T; Mackay, D Scott; Anderegg, William R L; McDowell, Nate G; Pockman, William T

    2016-11-01

    Ecosystem models have difficulty predicting plant drought responses, partially from uncertainty in the stomatal response to water deficits in soil and atmosphere. We evaluate a 'supply-demand' theory for water-limited stomatal behavior that avoids the typical scaffold of empirical response functions. The premise is that canopy water demand is regulated in proportion to threat to supply posed by xylem cavitation and soil drying. The theory was implemented in a trait-based soil-plant-atmosphere model. The model predicted canopy transpiration (E), canopy diffusive conductance (G), and canopy xylem pressure (Pcanopy ) from soil water potential (Psoil ) and vapor pressure deficit (D). Modeled responses to D and Psoil were consistent with empirical response functions, but controlling parameters were hydraulic traits rather than coefficients. Maximum hydraulic and diffusive conductances and vulnerability to loss in hydraulic conductance dictated stomatal sensitivity and hence the iso- to anisohydric spectrum of regulation. The model matched wide fluctuations in G and Pcanopy across nine data sets from seasonally dry tropical forest and piñon-juniper woodland with < 26% mean error. Promising initial performance suggests the theory could be useful in improving ecosystem models. Better understanding of the variation in hydraulic properties along the root-stem-leaf continuum will simpl