Predictive Temperature Equations for Three Sites at the Grand Canyon
NASA Astrophysics Data System (ADS)
McLaughlin, Katrina Marie Neitzel
Climate data collected at a number of automated weather stations were used to create a series of predictive equations spanning from December 2009 to May 2010 in order to better predict the temperatures along hiking trails within the Grand Canyon. The central focus of this project is how atmospheric variables interact and can be combined to predict the weather in the Grand Canyon at the Indian Gardens, Phantom Ranch, and Bright Angel sites. Through the use of statistical analysis software and data regression, predictive equations were determined. The predictive equations are simple or multivariable best fits that reflect the curvilinear nature of the data. With data analysis software curves resulting from the predictive equations were plotted along with the observed data. Each equation's reduced chi2 was determined to aid the visual examination of the predictive equations' ability to reproduce the observed data. From this information an equation or pair of equations was determined to be the best of the predictive equations. Although a best predictive equation for each month and season was determined for each site, future work may refine equations to result in a more accurate predictive equation.
7 CFR 610.12 - Equations for predicting soil loss due to water erosion.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 6 2012-01-01 2012-01-01 false Equations for predicting soil loss due to water... ASSISTANCE Soil Erosion Prediction Equations § 610.12 Equations for predicting soil loss due to water erosion. (a) The equation for predicting soil loss due to erosion for both the USLE and the RUSLE is A = R × K...
7 CFR 610.12 - Equations for predicting soil loss due to water erosion.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 6 2014-01-01 2014-01-01 false Equations for predicting soil loss due to water... ASSISTANCE Soil Erosion Prediction Equations § 610.12 Equations for predicting soil loss due to water erosion. (a) The equation for predicting soil loss due to erosion for both the USLE and the RUSLE is A = R × K...
7 CFR 610.12 - Equations for predicting soil loss due to water erosion.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 6 2011-01-01 2011-01-01 false Equations for predicting soil loss due to water... ASSISTANCE Soil Erosion Prediction Equations § 610.12 Equations for predicting soil loss due to water erosion. (a) The equation for predicting soil loss due to erosion for both the USLE and the RUSLE is A = R × K...
7 CFR 610.12 - Equations for predicting soil loss due to water erosion.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 6 2013-01-01 2013-01-01 false Equations for predicting soil loss due to water... ASSISTANCE Soil Erosion Prediction Equations § 610.12 Equations for predicting soil loss due to water erosion. (a) The equation for predicting soil loss due to erosion for both the USLE and the RUSLE is A = R × K...
7 CFR 610.12 - Equations for predicting soil loss due to water erosion.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 6 2010-01-01 2010-01-01 false Equations for predicting soil loss due to water... ASSISTANCE Soil Erosion Prediction Equations § 610.12 Equations for predicting soil loss due to water erosion. (a) The equation for predicting soil loss due to erosion for both the USLE and the RUSLE is A = R × K...
Adjustment of regional regression equations for urban storm-runoff quality using at-site data
Barks, C.S.
1996-01-01
Regional regression equations have been developed to estimate urban storm-runoff loads and mean concentrations using a national data base. Four statistical methods using at-site data to adjust the regional equation predictions were developed to provide better local estimates. The four adjustment procedures are a single-factor adjustment, a regression of the observed data against the predicted values, a regression of the observed values against the predicted values and additional local independent variables, and a weighted combination of a local regression with the regional prediction. Data collected at five representative storm-runoff sites during 22 storms in Little Rock, Arkansas, were used to verify, and, when appropriate, adjust the regional regression equation predictions. Comparison of observed values of stormrunoff loads and mean concentrations to the predicted values from the regional regression equations for nine constituents (chemical oxygen demand, suspended solids, total nitrogen as N, total ammonia plus organic nitrogen as N, total phosphorus as P, dissolved phosphorus as P, total recoverable copper, total recoverable lead, and total recoverable zinc) showed large prediction errors ranging from 63 percent to more than several thousand percent. Prediction errors for 6 of the 18 regional regression equations were less than 100 percent and could be considered reasonable for water-quality prediction equations. The regression adjustment procedure was used to adjust five of the regional equation predictions to improve the predictive accuracy. For seven of the regional equations the observed and the predicted values are not significantly correlated. Thus neither the unadjusted regional equations nor any of the adjustments were appropriate. The mean of the observed values was used as a simple estimator when the regional equation predictions and adjusted predictions were not appropriate.
Validity of one-repetition maximum predictive equations in men with spinal cord injury.
Ribeiro Neto, F; Guanais, P; Dornelas, E; Coutinho, A C B; Costa, R R G
2017-10-01
Cross-sectional study. The study aimed (a) to test the cross-validation of current one-repetition maximum (1RM) predictive equations in men with spinal cord injury (SCI); (b) to compare the current 1RM predictive equations to a newly developed equation based on the 4- to 12-repetition maximum test (4-12RM). SARAH Rehabilitation Hospital Network, Brasilia, Brazil. Forty-five men aged 28.0 years with SCI between C6 and L2 causing complete motor impairment were enrolled in the study. Volunteers were tested, in a random order, in 1RM test or 4-12RM with 2-3 interval days. Multiple regression analysis was used to generate an equation for predicting 1RM. There were no significant differences between 1RM test and the current predictive equations. ICC values were significant and were classified as excellent for all current predictive equations. The predictive equation of Lombardi presented the best Bland-Altman results (0.5 kg and 12.8 kg for mean difference and interval range around the differences, respectively). The two created equation models for 1RM demonstrated the same and a high adjusted R 2 (0.971, P<0.01), but different SEE of measured 1RM (2.88 kg or 5.4% and 2.90 kg or 5.5%). All 1RM predictive equations are accurate to assess individuals with SCI at the bench press exercise. However, the predictive equation of Lombardi presented the best associated cross-validity results. A specific 1RM prediction equation was also elaborated for individuals with SCI. The created equation should be tested in order to verify whether it presents better accuracy than the current ones.
ten Haaf, Twan; Weijs, Peter J. M.
2014-01-01
Introduction Resting energy expenditure (REE) is expected to be higher in athletes because of their relatively high fat free mass (FFM). Therefore, REE predictive equation for recreational athletes may be required. The aim of this study was to validate existing REE predictive equations and to develop a new recreational athlete specific equation. Methods 90 (53M, 37F) adult athletes, exercising on average 9.1±5.0 hours a week and 5.0±1.8 times a week, were included. REE was measured using indirect calorimetry (Vmax Encore n29), FFM and FM were measured using air displacement plethysmography. Multiple linear regression analysis was used to develop a new FFM-based and weight-based REE predictive equation. The percentage accurate predictions (within 10% of measured REE), percentage bias, root mean square error and limits of agreement were calculated. Results The Cunningham equation and the new weight-based equation and the new FFM-based equation performed equally well. De Lorenzo's equation predicted REE less accurate, but better than the other generally used REE predictive equations. Harris-Benedict, WHO, Schofield, Mifflin and Owen all showed less than 50% accuracy. Conclusion For a population of (Dutch) recreational athletes, the REE can accurately be predicted with the existing Cunningham equation. Since body composition measurement is not always possible, and other generally used equations fail, the new weight-based equation is advised for use in sports nutrition. PMID:25275434
Achamrah, Najate; Jésus, Pierre; Grigioni, Sébastien; Rimbert, Agnès; Petit, André; Déchelotte, Pierre; Folope, Vanessa; Coëffier, Moïse
2018-01-01
Predictive equations have been specifically developed for obese patients to estimate resting energy expenditure (REE). Body composition (BC) assessment is needed for some of these equations. We assessed the impact of BC methods on the accuracy of specific predictive equations developed in obese patients. REE was measured (mREE) by indirect calorimetry and BC assessed by bioelectrical impedance analysis (BIA) and dual-energy X-ray absorptiometry (DXA). mREE, percentages of prediction accuracy (±10% of mREE) were compared. Predictive equations were studied in 2588 obese patients. Mean mREE was 1788 ± 6.3 kcal/24 h. Only the Müller (BIA) and Harris & Benedict (HB) equations provided REE with no difference from mREE. The Huang, Müller, Horie-Waitzberg, and HB formulas provided a higher accurate prediction (>60% of cases). The use of BIA provided better predictions of REE than DXA for the Huang and Müller equations. Inversely, the Horie-Waitzberg and Lazzer formulas provided a higher accuracy using DXA. Accuracy decreased when applied to patients with BMI ≥ 40, except for the Horie-Waitzberg and Lazzer (DXA) formulas. Müller equations based on BIA provided a marked improvement of REE prediction accuracy than equations not based on BC. The interest of BC to improve REE predictive equations accuracy in obese patients should be confirmed. PMID:29320432
7 CFR 610.13 - Equations for predicting soil loss due to wind erosion.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 6 2014-01-01 2014-01-01 false Equations for predicting soil loss due to wind erosion... RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Soil Erosion Prediction Equations § 610.13 Equations for predicting soil loss due to wind erosion. (a) The...
7 CFR 610.13 - Equations for predicting soil loss due to wind erosion.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 6 2010-01-01 2010-01-01 false Equations for predicting soil loss due to wind erosion... RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Soil Erosion Prediction Equations § 610.13 Equations for predicting soil loss due to wind erosion. (a) The...
7 CFR 610.13 - Equations for predicting soil loss due to wind erosion.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 6 2012-01-01 2012-01-01 false Equations for predicting soil loss due to wind erosion... RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Soil Erosion Prediction Equations § 610.13 Equations for predicting soil loss due to wind erosion. (a) The...
7 CFR 610.13 - Equations for predicting soil loss due to wind erosion.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 6 2011-01-01 2011-01-01 false Equations for predicting soil loss due to wind erosion... RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Soil Erosion Prediction Equations § 610.13 Equations for predicting soil loss due to wind erosion. (a) The...
7 CFR 610.13 - Equations for predicting soil loss due to wind erosion.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 6 2013-01-01 2013-01-01 false Equations for predicting soil loss due to wind erosion... RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Soil Erosion Prediction Equations § 610.13 Equations for predicting soil loss due to wind erosion. (a) The...
Kozieł, Sławomir M; Malina, Robert M
2018-01-01
Predicted maturity offset and age at peak height velocity are increasingly used with youth athletes, although validation studies of the equations indicated major limitations. The equations have since been modified and simplified. The objective of this study was to validate the new maturity offset prediction equations in independent longitudinal samples of boys and girls. Two new equations for boys with chronological age and sitting height and chronological age and stature as predictors, and one equation for girls with chronological age and stature as predictors were evaluated in serial data from the Wrocław Growth Study, 193 boys (aged 8-18 years) and 198 girls (aged 8-16 years). Observed age at peak height velocity for each youth was estimated with the Preece-Baines Model 1. The original prediction equations were included for comparison. Predicted age at peak height velocity was the difference between chronological age at prediction and maturity offset. Predicted ages at peak height velocity with the new equations approximated observed ages at peak height velocity in average maturing boys near the time of peak height velocity; a corresponding window for average maturing girls was not apparent. Compared with observed age at peak height velocity, predicted ages at peak height velocity with the new and original equations were consistently later in early maturing youth and earlier in late maturing youth of both sexes. Predicted ages at peak height velocity with the new equations had reduced variation compared with the original equations and especially observed ages at peak height velocity. Intra-individual variation in predicted ages at peak height velocity with all equations was considerable. The new equations are useful for average maturing boys close to the time of peak height velocity; there does not appear to be a clear window for average maturing girls. The new and original equations have major limitations with early and late maturing boys and girls.
Debeaumont, D; Tardif, C; Folope, V; Castres, I; Lemaitre, F; Tourny, C; Dechelotte, P; Thill, C; Darmon, A; Coquart, J B
2016-06-01
The aims were to: (1) compare peak oxygen uptake ([Formula: see text]peak) predicted from four standard equations to actual [Formula: see text]peak measured from a cardiopulmonary exercise test (CPET) in obese patients with metabolic syndrome (MetS), and (2) develop a new equation to accurately estimate [Formula: see text]peak in obese women with MetS. Seventy-five obese patients with MetS performed a CPET. Anthropometric data were also collected for each participant. [Formula: see text]peak was predicted from four prediction equations (from Riddle et al., Hansen et al., Wasserman et al. or Gläser et al.) and then compared with the actual [Formula: see text]peak measured during the CPET. The accuracy of the predictions was determined with the Bland-Altman method. When accuracy was low, a new prediction equation including anthropometric variables was proposed. [Formula: see text]peak predicted from the equation of Wasserman et al. was not significantly different from actual [Formula: see text]peak in women. Moreover, a significant correlation was found between the predicted and actual values (p < 0.001, r = 0.69). In men, no significant difference was noted between actual [Formula: see text]peak and [Formula: see text]peak predicted from the prediction equation of Gläser et al., and these two values were also correlated (p = 0.03, r = 0.44). However, the LoA95% was wide, whatever the prediction equation or gender. Regression analysis suggested a new prediction equation derived from age and height for obese women with MetS. The methods of Wasserman et al. and Gläser et al. are valid to predict [Formula: see text]peak in obese women and men with MetS, respectively. However, the accuracy of the predictions was low for both methods. Consequently, a new prediction equation including age and height was developed for obese women with MetS. However, new prediction equation remains to develop in obese men with MetS.
ten Haaf, Twan; Weijs, Peter J M
2014-01-01
Resting energy expenditure (REE) is expected to be higher in athletes because of their relatively high fat free mass (FFM). Therefore, REE predictive equation for recreational athletes may be required. The aim of this study was to validate existing REE predictive equations and to develop a new recreational athlete specific equation. 90 (53 M, 37 F) adult athletes, exercising on average 9.1 ± 5.0 hours a week and 5.0 ± 1.8 times a week, were included. REE was measured using indirect calorimetry (Vmax Encore n29), FFM and FM were measured using air displacement plethysmography. Multiple linear regression analysis was used to develop a new FFM-based and weight-based REE predictive equation. The percentage accurate predictions (within 10% of measured REE), percentage bias, root mean square error and limits of agreement were calculated. Results: The Cunningham equation and the new weight-based equation REE(kJ / d) = 49.940* weight(kg) + 2459.053* height(m) - 34.014* age(y) + 799.257* sex(M = 1,F = 0) + 122.502 and the new FFM-based equation REE(kJ / d) = 95.272*FFM(kg) + 2026.161 performed equally well. De Lorenzo's equation predicted REE less accurate, but better than the other generally used REE predictive equations. Harris-Benedict, WHO, Schofield, Mifflin and Owen all showed less than 50% accuracy. For a population of (Dutch) recreational athletes, the REE can accurately be predicted with the existing Cunningham equation. Since body composition measurement is not always possible, and other generally used equations fail, the new weight-based equation is advised for use in sports nutrition.
Furushima, Taishi; Miyachi, Motohiko; Iemitsu, Motoyuki; Murakami, Haruka; Kawano, Hiroshi; Gando, Yuko; Kawakami, Ryoko; Sanada, Kiyoshi
2017-08-29
This study aimed to develop and cross-validate prediction equations for estimating appendicular skeletal muscle mass (ASM) and to examine the relationship between sarcopenia defined by the prediction equations and risk factors for cardiovascular diseases (CVD) or osteoporosis in Japanese men and women. Subjects were healthy men and women aged 20-90 years, who were randomly allocated to the following two groups: the development group (D group; 257 men, 913 women) and the cross-validation group (V group; 119 men, 112 women). To develop prediction equations, stepwise multiple regression analyses were performed on data obtained from the D group, using ASM measured by dual-energy X-ray absorptiometry (DXA) as a dependent variable and five easily obtainable measures (age, height, weight, waist circumference, and handgrip strength) as independent variables. When the prediction equations for ASM estimation were applied to the V group, a significant correlation was found between DXA-measured ASM and predicted ASM in both men and women (R 2 = 0.81 and R 2 = 0.72). Our prediction equations had higher R 2 values compared to previously developed equations (R 2 = 0.75-0.59 and R 2 = 0.69-0.40) in both men and women. Moreover, sarcopenia defined by predicted ASM was related to risk factors for osteoporosis and CVD, as well as sarcopenia defined by DXA-measured ASM. In this study, novel prediction equations were developed and cross-validated in Japanese men and women. Our analyses validated the clinical significance of these prediction equations and showed that previously reported equations were not applicable in a Japanese population.
Validation of Accelerometer Prediction Equations in Children with Chronic Disease.
Stephens, Samantha; Takken, Tim; Esliger, Dale W; Pullenayegum, Eleanor; Beyene, Joseph; Tremblay, Mark; Schneiderman, Jane; Biggar, Doug; Longmuir, Pat; McCrindle, Brian; Abad, Audrey; Ignas, Dan; Van Der Net, Janjaap; Feldman, Brian
2016-02-01
The purpose of this study was to assess the criterion validity of existing accelerometer-based energy expenditure (EE) prediction equations among children with chronic conditions, and to develop new prediction equations. Children with congenital heart disease (CHD), cystic fibrosis (CF), dermatomyositis (JDM), juvenile arthritis (JA), inherited muscle disease (IMD), and hemophilia (HE) completed 7 tasks while EE was measured using indirect calorimetry with counts determined by accelerometer. Agreement between predicted EE and measured EE was assessed. Disease-specific equations and cut points were developed and cross-validated. In total, 196 subjects participated. One participant dropped out before testing due to time constraints, while 15 CHD, 32 CF, 31 JDM, 31 JA, 30 IMD, 28 HE, and 29 healthy controls completed the study. Agreement between predicted and measured EE varied across disease group and ranged from (ICC) .13-.46. Disease-specific prediction equations exhibited a range of results (ICC .62-.88) (SE 0.45-0.78). In conclusion, poor agreement was demonstrated using current prediction equations in children with chronic conditions. Disease-specific equations and cut points were developed.
Predictive Variables of Half-Marathon Performance for Male Runners.
Gómez-Molina, Josué; Ogueta-Alday, Ana; Camara, Jesus; Stickley, Christoper; Rodríguez-Marroyo, José A; García-López, Juan
2017-06-01
The aims of this study were to establish and validate various predictive equations of half-marathon performance. Seventy-eight half-marathon male runners participated in two different phases. Phase 1 (n = 48) was used to establish the equations for estimating half-marathon performance, and Phase 2 (n = 30) to validate these equations. Apart from half-marathon performance, training-related and anthropometric variables were recorded, and an incremental test on a treadmill was performed, in which physiological (VO 2max , speed at the anaerobic threshold, peak speed) and biomechanical variables (contact and flight times, step length and step rate) were registered. In Phase 1, half-marathon performance could be predicted to 90.3% by variables related to training and anthropometry (Equation 1), 94.9% by physiological variables (Equation 2), 93.7% by biomechanical parameters (Equation 3) and 96.2% by a general equation (Equation 4). Using these equations, in Phase 2 the predicted time was significantly correlated with performance (r = 0.78, 0.92, 0.90 and 0.95, respectively). The proposed equations and their validation showed a high prediction of half-marathon performance in long distance male runners, considered from different approaches. Furthermore, they improved the prediction performance of previous studies, which makes them a highly practical application in the field of training and performance.
Frankenfield, David; Roth-Yousey, Lori; Compher, Charlene
2005-05-01
An assessment of energy needs is a necessary component in the development and evaluation of a nutrition care plan. The metabolic rate can be measured or estimated by equations, but estimation is by far the more common method. However, predictive equations might generate errors large enough to impact outcome. Therefore, a systematic review of the literature was undertaken to document the accuracy of predictive equations preliminary to deciding on the imperative to measure metabolic rate. As part of a larger project to determine the role of indirect calorimetry in clinical practice, an evidence team identified published articles that examined the validity of various predictive equations for resting metabolic rate (RMR) in nonobese and obese people and also in individuals of various ethnic and age groups. Articles were accepted based on defined criteria and abstracted using evidence analysis tools developed by the American Dietetic Association. Because these equations are applied by dietetics practitioners to individuals, a key inclusion criterion was research reports of individual data. The evidence was systematically evaluated, and a conclusion statement and grade were developed. Four prediction equations were identified as the most commonly used in clinical practice (Harris-Benedict, Mifflin-St Jeor, Owen, and World Health Organization/Food and Agriculture Organization/United Nations University [WHO/FAO/UNU]). Of these equations, the Mifflin-St Jeor equation was the most reliable, predicting RMR within 10% of measured in more nonobese and obese individuals than any other equation, and it also had the narrowest error range. No validation work concentrating on individual errors was found for the WHO/FAO/UNU equation. Older adults and US-residing ethnic minorities were underrepresented both in the development of predictive equations and in validation studies. The Mifflin-St Jeor equation is more likely than the other equations tested to estimate RMR to within 10% of that measured, but noteworthy errors and limitations exist when it is applied to individuals and possibly when it is generalized to certain age and ethnic groups. RMR estimation errors would be eliminated by valid measurement of RMR with indirect calorimetry, using an evidence-based protocol to minimize measurement error. The Expert Panel advises clinical judgment regarding when to accept estimated RMR using predictive equations in any given individual. Indirect calorimetry may be an important tool when, in the judgment of the clinician, the predictive methods fail an individual in a clinically relevant way. For members of groups that are greatly underrepresented by existing validation studies of predictive equations, a high level of suspicion regarding the accuracy of the equations is warranted.
Comparison of Eight Equations That Predict Percent Body Fat Using Skinfolds in American Youth
Roberts, Amy; Cai, Jianwen; Berge, Jerica M.; Stevens, June
2016-01-01
Abstract Background: Skinfolds are often used in equations to predict percent body fat (PBF) in youth. Although there are numerous such equations published, there is limited information to help researchers determine which equation to use for their sample. Methods: Using data from the 1999–2006 National Health and Nutrition Examination Surveys (NHANES), we compared eight published equations for prediction of PBF. These published equations all included triceps and/or subscapular skinfold measurements. We examined the PBF equations in a nationally representative sample of American youth that was matched by age, sex, and race/ethnicity to the original equation development population and a full sample of 8- to 18-year-olds. We compared the equation-predicted PBF to the dual-emission X-ray absorptiometry (DXA)-measured PBF. The adjusted R2, root mean square error (RMSE), and mean signed difference (MSD) were compared. The MSDs were used to examine accuracy and differential bias by age, sex, and race/ethnicity. Results: When applied to the full range of 8- 18-year-old youth, the R2 values ranged from 0.495 to 0.738. The MSD between predicted and DXA-measured PBF indicated high average accuracy (MSD between −1.0 and 1.0) for only three equations (Bray subscapular equation and Dezenberg equations [with and without race/ethnicity]). The majority of the equations showed differential bias by sex, race/ethnicity, weight status, or age. Conclusions: These findings indicate that investigators should use caution in the selection of an equation to predict PBF in youth given that results may vary systematically in important subgroups. PMID:27045618
Comparison of Eight Equations That Predict Percent Body Fat Using Skinfolds in American Youth.
Truesdale, Kimberly P; Roberts, Amy; Cai, Jianwen; Berge, Jerica M; Stevens, June
2016-08-01
Skinfolds are often used in equations to predict percent body fat (PBF) in youth. Although there are numerous such equations published, there is limited information to help researchers determine which equation to use for their sample. Using data from the 1999-2006 National Health and Nutrition Examination Surveys (NHANES), we compared eight published equations for prediction of PBF. These published equations all included triceps and/or subscapular skinfold measurements. We examined the PBF equations in a nationally representative sample of American youth that was matched by age, sex, and race/ethnicity to the original equation development population and a full sample of 8- to 18-year-olds. We compared the equation-predicted PBF to the dual-emission X-ray absorptiometry (DXA)-measured PBF. The adjusted R(2), root mean square error (RMSE), and mean signed difference (MSD) were compared. The MSDs were used to examine accuracy and differential bias by age, sex, and race/ethnicity. When applied to the full range of 8- 18-year-old youth, the R(2) values ranged from 0.495 to 0.738. The MSD between predicted and DXA-measured PBF indicated high average accuracy (MSD between -1.0 and 1.0) for only three equations (Bray subscapular equation and Dezenberg equations [with and without race/ethnicity]). The majority of the equations showed differential bias by sex, race/ethnicity, weight status, or age. These findings indicate that investigators should use caution in the selection of an equation to predict PBF in youth given that results may vary systematically in important subgroups.
Prediction of Carcass Composition Using Carcass Grading Traits in Hanwoo Steers.
Lee, Jooyoung; Won, Seunggun; Lee, Jeongkoo; Kim, Jongbok
2016-09-01
The prediction of carcass composition in Hanwoo steers is very important for value-based marketing, and the improvement of prediction accuracy and precision can be achieved through the analyses of independent variables using a prediction equation with a sufficient dataset. The present study was conducted to develop a prediction equation for Hanwoo carcass composition for which data was collected from 7,907 Hanwoo steers raised at a private farm in Gangwon Province, South Korea, and slaughtered in the period between January 2009 and September 2014. Carcass traits such as carcass weight (CWT), back fat thickness (BFT), eye-muscle area (EMA), and marbling score (MAR) were used as independent variables for the development of a prediction equation for carcass composition, such as retail cut weight and percentage (RC, and %RC, respectively), trimmed fat weight and percentage (FAT, and %FAT, respectively), and separated bone weight and percentage (BONE, and %BONE), and its feasibility for practical use was evaluated using the estimated retail yield percentage (ELP) currently used in Korea. The equations were functions of all the variables, and the significance was estimated via stepwise regression analyses. Further, the model equations were verified by means of the residual standard deviation and the coefficient of determination (R(2)) between the predicted and observed values. As the results of stepwise analyses, CWT was the most important single variable in the equation for RC and FAT, and BFT was the most important variable for the equation of %RC and %FAT. The precision and accuracy of three variable equation consisting CWT, BFT, and EMA were very similar to those of four variable equation that included all for independent variables (CWT, BFT, EMA, and MAR) in RC and FAT, while the three variable equations provided a more accurate prediction for %RC. Consequently, the three-variable equation might be more appropriate for practical use than the four-variable equation based on its easy and cost-effective measurement. However, a relatively high average difference for the ELP in absolute value implies a revision of the official equation may be required, although the current official equation for predicting RC with three variables is still valid.
Prediction of stream volatilization coefficients
Rathbun, Ronald E.
1990-01-01
Equations are developed for predicting the liquid-film and gas-film reference-substance parameters for quantifying volatilization of organic solutes from streams. Molecular weight and molecular-diffusion coefficients of the solute are used as correlating parameters. Equations for predicting molecular-diffusion coefficients of organic solutes in water and air are developed, with molecular weight and molal volume as parameters. Mean absolute errors of prediction for diffusion coefficients in water are 9.97% for the molecular-weight equation, 6.45% for the molal-volume equation. The mean absolute error for the diffusion coefficient in air is 5.79% for the molal-volume equation. Molecular weight is not a satisfactory correlating parameter for diffusion in air because two equations are necessary to describe the values in the data set. The best predictive equation for the liquid-film reference-substance parameter has a mean absolute error of 5.74%, with molal volume as the correlating parameter. The best equation for the gas-film parameter has a mean absolute error of 7.80%, with molecular weight as the correlating parameter.
Evaluation of abutment scour prediction equations with field data
Benedict, S.T.; Deshpande, N.; Aziz, N.M.
2007-01-01
The U.S. Geological Survey, in cooperation with FHWA, compared predicted abutment scour depths, computed with selected predictive equations, with field observations collected at 144 bridges in South Carolina and at eight bridges from the National Bridge Scour Database. Predictive equations published in the 4th edition of Evaluating Scour at Bridges (Hydraulic Engineering Circular 18) were used in this comparison, including the original Froehlich, the modified Froehlich, the Sturm, the Maryland, and the HIRE equations. The comparisons showed that most equations tended to provide conservative estimates of scour that at times were excessive (as large as 158 ft). Equations also produced underpredictions of scour, but with less frequency. Although the equations provide an important resource for evaluating abutment scour at bridges, the results of this investigation show the importance of using engineering judgment in conjunction with these equations.
Development of 1RM Prediction Equations for Bench Press in Moderately Trained Men.
Macht, Jordan W; Abel, Mark G; Mullineaux, David R; Yates, James W
2016-10-01
Macht, JW, Abel, MG, Mullineaux, DR, and Yates, JW. Development of 1RM prediction equations for bench press in moderately trained men. J Strength Cond Res 30(10): 2901-2906, 2016-There are a variety of established 1 repetition maximum (1RM) prediction equations, however, very few prediction equations use anthropometric characteristics exclusively or in part, to estimate 1RM strength. Therefore, the purpose of this study was to develop an original 1RM prediction equation for bench press using anthropometric and performance characteristics in moderately trained male subjects. Sixty male subjects (21.2 ± 2.4 years) completed a 1RM bench press and were randomly assigned a load to complete as many repetitions as possible. In addition, body composition, upper-body anthropometric characteristics, and handgrip strength were assessed. Regression analysis was used to develop a performance-based 1RM prediction equation: 1RM = 1.20 repetition weight + 2.19 repetitions to fatigue - 0.56 biacromial width (cm) + 9.6 (R = 0.99, standard error of estimate [SEE] = 3.5 kg). Regression analysis to develop a nonperformance-based 1RM prediction equation yielded: 1RM (kg) = 0.997 cross-sectional area (CSA) (cm) + 0.401 chest circumference (cm) - 0.385%fat - 0.185 arm length (cm) + 36.7 (R = 0.81, SEE = 13.0 kg). The performance prediction equations developed in this study had high validity coefficients, minimal mean bias, and small limits of agreement. The anthropometric equations had moderately high validity coefficient but larger limits of agreement. The practical applications of this study indicate that the inclusion of anthropometric characteristics and performance variables produce a valid prediction equation for 1RM strength. In addition, the CSA of the arm uses a simple nonperformance method of estimating the lifter's 1RM. This information may be used to predict the starting load for a lifter performing a 1RM prediction protocol or a 1RM testing protocol.
de Luis, D A; Aller, R; Izaola, O; Romero, E
2006-01-01
The aim of our study was to evaluate the accuracy of the equations to estimate REE in obese patents and develop a new equation in our obese population. A population of 200 obesity outpatients was analyzed in a prospective way. The following variables were specifically recorded: age, weight, body mass index (BMI), waist circumference, and waist-to-hip ratio. Basal glucose, insulin, and TSH (thyroid-stimulating hormone) were measured. An indirect calorimetry and a tetrapolar electrical bioimpedance were performed. REE measured by indirect calorimetry was compared with REE obtained by prediction equations to obese or nonobese patients. The mean age was 44.8 +/- 16.81 years and the mean BMI 34.4 +/- 5.3. Indirect calorimetry showed that, as compared to women, men had higher resting energy expenditure (REE) (1,998.1 +/- 432 vs. 1,663.9 +/- 349 kcal/day; p < 0.05) and oxygen consumption (284.6 +/- 67.7 vs. 238.6 +/- 54.3 ml/min; p < 0.05). Correlation analysis among REE obtained by indirect calorimetry and REE predicted by prediction equations showed the next data; Berstein's equation (r = 0.65; p < 0.05), Harris Benedict's equation (r = 0.58; p < 0.05), Owen's equation (r = 0.56; p < 0.05), Ireton's equation (r = 0.58; p < 0.05) and WHO's equation (r = 0.57; p < 0.05). Both the Berstein's and the Ireton's equations overpredicted REE and showed nonsignificant mean differences form measured REE. The Owen's, WHO's, and Harris Benedict's equations underpredicted REE. Our male prediction equation was REE = 58.6 + (6.1 x weight (kg)) + (1,023.7 x height (m)) - (9.5 x age). The female model was REE = 1,272.5 + (9.8 x weight (kg)) - (61.6 x height (m)) - (8.2 x age). Our prediction equations showed a nonsignificant difference with REE measured (-3.7 kcal/day) with a significant correlation coefficient (r = 0.67; p < 0.05). Previously developed prediction equations overestimated and underestimated REE measured. WHO equation developed in normal weight individuals provided the closest values. The two new equations (male and female equations) developed in our study had a good accuracy. Copyright 2006 S. Karger AG, Basel.
Hill, Rebecca J; Lewindon, Peter J; Withers, Geoffrey D; Connor, Frances L; Ee, Looi C; Cleghorn, Geoffrey J; Davies, Peter S W
2011-07-01
Paediatric onset inflammatory bowel disease (IBD) may cause alterations in energy requirements and invalidate the use of standard prediction equations. Our aim was to evaluate four commonly used prediction equations for resting energy expenditure (REE) in children with IBD. Sixty-three children had repeated measurements of REE as part of a longitudinal research study yielding a total of 243 measurements. These were compared with predicted REE from Schofield, Oxford, FAO/WHO/UNU, and Harris-Benedict equations using the Bland-Altman method. Mean (±SD) age of the patients was 14.2 (2.4) years. Mean measured REE was 1566 (336) kcal per day compared with 1491 (236), 1441 (255), 1481 (232), and 1435 (212) kcal per day calculated from Schofield, Oxford, FAO/WHO/UNU, and Harris-Benedict, respectively. While the Schofield equation demonstrated the least difference between measured and predicted REE, it, along with the other equations tested, did not perform uniformly across all subjects, indicating greater errors at either end of the spectrum of energy expenditure. Smaller differences were found for all prediction equations for Crohn's disease compared with ulcerative colitis. Of the commonly used equations, the equation of Schofield should be used in pediatric patients with IBD when measured values are not able to be obtained. Copyright © 2010 Crohn's & Colitis Foundation of America, Inc.
Validity of Bioelectrical Impedance Analysis to Estimation Fat-Free Mass in the Army Cadets.
Langer, Raquel D; Borges, Juliano H; Pascoa, Mauro A; Cirolini, Vagner X; Guerra-Júnior, Gil; Gonçalves, Ezequiel M
2016-03-11
Bioelectrical Impedance Analysis (BIA) is a fast, practical, non-invasive, and frequently used method for fat-free mass (FFM) estimation. The aims of this study were to validate predictive equations of BIA to FFM estimation in Army cadets and to develop and validate a specific BIA equation for this population. A total of 396 males, Brazilian Army cadets, aged 17-24 years were included. The study used eight published predictive BIA equations, a specific equation in FFM estimation, and dual-energy X-ray absorptiometry (DXA) as a reference method. Student's t-test (for paired sample), linear regression analysis, and Bland-Altman method were used to test the validity of the BIA equations. Predictive BIA equations showed significant differences in FFM compared to DXA (p < 0.05) and large limits of agreement by Bland-Altman. Predictive BIA equations explained 68% to 88% of FFM variance. Specific BIA equations showed no significant differences in FFM, compared to DXA values. Published BIA predictive equations showed poor accuracy in this sample. The specific BIA equations, developed in this study, demonstrated validity for this sample, although should be used with caution in samples with a large range of FFM.
Predictive Variables of Half-Marathon Performance for Male Runners
Gómez-Molina, Josué; Ogueta-Alday, Ana; Camara, Jesus; Stickley, Christoper; Rodríguez-Marroyo, José A.; García-López, Juan
2017-01-01
The aims of this study were to establish and validate various predictive equations of half-marathon performance. Seventy-eight half-marathon male runners participated in two different phases. Phase 1 (n = 48) was used to establish the equations for estimating half-marathon performance, and Phase 2 (n = 30) to validate these equations. Apart from half-marathon performance, training-related and anthropometric variables were recorded, and an incremental test on a treadmill was performed, in which physiological (VO2max, speed at the anaerobic threshold, peak speed) and biomechanical variables (contact and flight times, step length and step rate) were registered. In Phase 1, half-marathon performance could be predicted to 90.3% by variables related to training and anthropometry (Equation 1), 94.9% by physiological variables (Equation 2), 93.7% by biomechanical parameters (Equation 3) and 96.2% by a general equation (Equation 4). Using these equations, in Phase 2 the predicted time was significantly correlated with performance (r = 0.78, 0.92, 0.90 and 0.95, respectively). The proposed equations and their validation showed a high prediction of half-marathon performance in long distance male runners, considered from different approaches. Furthermore, they improved the prediction performance of previous studies, which makes them a highly practical application in the field of training and performance. Key points The present study obtained four equations involving anthropometric, training, physiological and biomechanical variables to estimate half-marathon performance. These equations were validated in a different population, demonstrating narrows ranges of prediction than previous studies and also their consistency. As a novelty, some biomechanical variables (i.e. step length and step rate at RCT, and maximal step length) have been related to half-marathon performance. PMID:28630571
Predicting basal metabolic rates in Malaysian adult elite athletes.
Wong, Jyh Eiin; Poh, Bee Koon; Nik Shanita, Safii; Izham, Mohd Mohamad; Chan, Kai Quin; Tai, Meng De; Ng, Wei Wei; Ismail, Mohd Noor
2012-11-01
This study aimed to measure the basal metabolic rate (BMR) of elite athletes and develop a gender specific predictive equation to estimate their energy requirements. 92 men and 33 women (aged 18-31 years) from 15 sports, who had been training six hours daily for at least one year, were included in the study. Body composition was measured using the bioimpedance technique, and BMR by indirect calorimetry. The differences between measured and estimated BMR using various predictive equations were calculated. The novel equation derived from stepwise multiple regression was evaluated using Bland and Altman analysis. The predictive equations of Cunningham and the Food and Agriculture Organization/World Health Organization/United Nations University either over- or underestimated the measured BMR by up to ± 6%, while the equations of Ismail et al, developed from the local non-athletic population, underestimated the measured BMR by 14%. The novel predictive equation for the BMR of athletes was BMR (kcal/day) = 669 + 13 (weight in kg) + 192 (gender: 1 for men and 0 for women) (R2 0.548; standard error of estimates 163 kcal). Predicted BMRs of elite athletes by this equation were within 1.2% ± 9.5% of the measured BMR values. The novel predictive equation presented in this study can be used to calculate BMR for adult Malaysian elite athletes. Further studies may be required to validate its predictive capabilities for other sports, nationalities and age groups.
Prediction of Fat-Free Mass in Kidney Transplant Recipients.
Størset, Elisabet; von Düring, Marit Elizabeth; Godang, Kristin; Bergan, Stein; Midtvedt, Karsten; Åsberg, Anders
2016-08-01
Individualization of drug doses is essential in kidney transplant recipients. For many drugs, the individual dose is better predicted when using fat-free mass (FFM) as a scaling factor. Multiple equations have been developed to predict FFM based on healthy subjects. These equations have not been evaluated in kidney transplant recipients. The objectives of this study were to develop a kidney transplant specific equation for FFM prediction and to evaluate its predictive performance compared with previously published equations. Ten weeks after transplantation, FFM was measured by dual-energy X-ray absorptiometry. Data from a consecutive cohort of 369 kidney transplant recipients were randomly assigned to an equation development data set (n = 245) or an evaluation data set (n = 124). Prediction equations were developed using linear and nonlinear regression analysis. The predictive performance of the developed equation and previously published equations in the evaluation data set was assessed. The following equation was developed: FFM (kg) = {FFMmax × body weight (kg)/[81.3 + body weight (kg)]} × [1 + height (cm) × 0.052] × [1-age (years) × 0.0007], where FFMmax was estimated to be 11.4 in males and 10.2 in females. This equation provided an unbiased, precise prediction of FFM in the evaluation data set: mean error (ME) (95% CI), -0.71 kg (-1.60 to 0.19 kg) in males and -0.36 kg (-1.52 to 0.80 kg) in females, root mean squared error 4.21 kg (1.65-6.77 kg) in males and 3.49 kg (1.15-5.84 kg) in females. Using previously published equations, FFM was systematically overpredicted in kidney-transplanted males [ME +1.33 kg (0.40-2.25 kg) to +5.01 kg (4.06-5.95 kg)], but not in females [ME -2.99 kg (-4.07 to -1.90 kg) to +3.45 kg (2.29-4.61) kg]. A new equation for FFM prediction in kidney transplant recipients has been developed. The equation may be used for population pharmacokinetic modeling and clinical dose selection in kidney transplant recipients.
Ground Motion Prediction Equations Empowered by Stress Drop Measurement
NASA Astrophysics Data System (ADS)
Miyake, H.; Oth, A.
2015-12-01
Significant variation of stress drop is a crucial issue for ground motion prediction equations and probabilistic seismic hazard assessment, since only a few ground motion prediction equations take into account stress drop. In addition to average and sigma studies of stress drop and ground motion prediction equations (e.g., Cotton et al., 2013; Baltay and Hanks, 2014), we explore 1-to-1 relationship for each earthquake between stress drop and between-event residual of a ground motion prediction equation. We used the stress drop dataset of Oth (2013) for Japanese crustal earthquakes ranging 0.1 to 100 MPa and K-NET/KiK-net ground motion dataset against for several ground motion prediction equations with volcanic front treatment. Between-event residuals for ground accelerations and velocities are generally coincident with stress drop, as investigated by seismic intensity measures of Oth et al. (2015). Moreover, we found faster attenuation of ground acceleration and velocities for large stress drop events for the similar fault distance range and focal depth. It may suggest an alternative parameterization of stress drop to control attenuation distance rate for ground motion prediction equations. We also investigate 1-to-1 relationship and sigma for regional/national-scale stress drop variation and current national-scale ground motion equations.
Scribbans, T D; Berg, K; Narazaki, K; Janssen, I; Gurd, B J
2015-09-01
There is currently little information regarding the ability of metabolic prediction equations to accurately predict oxygen uptake and exercise intensity from heart rate (HR) during intermittent sport. The purpose of the present study was to develop and, cross-validate equations appropriate for accurately predicting oxygen cost (VO2) and energy expenditure from HR during intermittent sport participation. Eleven healthy adult males (19.9±1.1yrs) were recruited to establish the relationship between %VO2peak and %HRmax during low-intensity steady state endurance (END), moderate-intensity interval (MOD) and high intensity-interval exercise (HI), as performed on a cycle ergometer. Three equations (END, MOD, and HI) for predicting %VO2peak based on %HRmax were developed. HR and VO2 were directly measured during basketball games (6 male, 20.8±1.0 yrs; 6 female, 20.0±1.3yrs) and volleyball drills (12 female; 20.8±1.0yrs). Comparisons were made between measured and predicted VO2 and energy expenditure using the 3 equations developed and 2 previously published equations. The END and MOD equations accurately predicted VO2 and energy expenditure, while the HI equation underestimated, and the previously published equations systematically overestimated VO2 and energy expenditure. Intermittent sport VO2 and energy expenditure can be accurately predicted from heart rate data using either the END (%VO2peak=%HRmax x 1.008-17.17) or MOD (%VO2peak=%HRmax x 1.2-32) equations. These 2 simple equations provide an accessible and cost-effective method for accurate estimation of exercise intensity and energy expenditure during intermittent sport.
Fuster, Casilda Olveira; Fuster, Gabriel Olveira; Galindo, Antonio Dorado; Galo, Alicia Padilla; Verdugo, Julio Merino; Lozano, Francisco Miralles
2007-07-01
Undernutrition, which implies an imbalance between energy intake and energy requirements, is common in patients with cystic fibrosis. The aim of this study was to compare resting energy expenditure determined by indirect calorimetry with that obtained with commonly used predictive equations in adults with cystic fibrosis and to assess the influence of clinical variables on the values obtained. We studied 21 patients with clinically stable cystic fibrosis, obtaining data on anthropometric variables, hand grip dynamometry, electrical bioimpedance, and resting energy expenditure by indirect calorimetry. We used the intraclass correlation coefficient (ICC) and the Bland-Altman method to assess agreement between the values obtained for resting energy expenditure measured by indirect calorimetry and those obtained with the World Health Organization (WHO) and Harris-Benedict prediction equations. The prediction equations underestimated resting energy expenditure in more than 90% of cases. The agreement between the value obtained by indirect calorimetry and that calculated with the prediction equations was poor (ICC for comparisons with the WHO and Harris-Benedict equations, 0.47 and 0.41, respectively). Bland-Altman analysis revealed a variable bias between the results of indirect calorimetry and those obtained with prediction equations, irrespective of the resting energy expenditure. The difference between the values measured by indirect calorimetry and those obtained with the WHO equation was significantly larger in patients homozygous for the DeltaF508 mutation and in those with exocrine pancreatic insufficiency. The WHO and Harris-Benedict prediction equations underestimate resting energy expenditure in adults with cystic fibrosis. There is poor agreement between the values for resting energy expenditure determined by indirect calorimetry and those estimated with prediction equations. Underestimation was greater in patients with exocrine pancreatic insufficiency and patients who were homozygous for DeltaF508.
Trends of Abutment-Scour Prediction Equations Applied to 144 Field Sites in South Carolina
Benedict, Stephen T.; Deshpande, Nikhil; Aziz, Nadim M.; Conrads, Paul
2006-01-01
The U.S. Geological Survey conducted a study in cooperation with the Federal Highway Administration in which predicted abutment-scour depths computed with selected predictive equations were compared with field measurements of abutment-scour depth made at 144 bridges in South Carolina. The assessment used five equations published in the Fourth Edition of 'Evaluating Scour at Bridges,' (Hydraulic Engineering Circular 18), including the original Froehlich, the modified Froehlich, the Sturm, the Maryland, and the HIRE equations. An additional unpublished equation also was assessed. Comparisons between predicted and observed scour depths are intended to illustrate general trends and order-of-magnitude differences for the prediction equations. Field measurements were taken during non-flood conditions when the hydraulic conditions that caused the scour generally are unknown. The predicted scour depths are based on hydraulic conditions associated with the 100-year flow at all sites and the flood of record for 35 sites. Comparisons showed that predicted scour depths frequently overpredict observed scour and at times were excessive. The comparison also showed that underprediction occurred, but with less frequency. The performance of these equations indicates that they are poor predictors of abutment-scour depth in South Carolina, and it is probable that poor performance will occur when the equations are applied in other geographic regions. Extensive data and graphs used to compare predicted and observed scour depths in this study were compiled into spreadsheets and are included in digital format with this report. In addition to the equation-comparison data, Water-Surface Profile Model tube-velocity data, soil-boring data, and selected abutment-scour data are included in digital format with this report. The digital database was developed as a resource for future researchers and is especially valuable for evaluating the reasonableness of future equations that may be developed.
Ejlerskov, Katrine T.; Jensen, Signe M.; Christensen, Line B.; Ritz, Christian; Michaelsen, Kim F.; Mølgaard, Christian
2014-01-01
For 3-year-old children suitable methods to estimate body composition are sparse. We aimed to develop predictive equations for estimating fat-free mass (FFM) from bioelectrical impedance (BIA) and anthropometry using dual-energy X-ray absorptiometry (DXA) as reference method using data from 99 healthy 3-year-old Danish children. Predictive equations were derived from two multiple linear regression models, a comprehensive model (height2/resistance (RI), six anthropometric measurements) and a simple model (RI, height, weight). Their uncertainty was quantified by means of 10-fold cross-validation approach. Prediction error of FFM was 3.0% for both equations (root mean square error: 360 and 356 g, respectively). The derived equations produced BIA-based prediction of FFM and FM near DXA scan results. We suggest that the predictive equations can be applied in similar population samples aged 2–4 years. The derived equations may prove useful for studies linking body composition to early risk factors and early onset of obesity. PMID:24463487
Ejlerskov, Katrine T; Jensen, Signe M; Christensen, Line B; Ritz, Christian; Michaelsen, Kim F; Mølgaard, Christian
2014-01-27
For 3-year-old children suitable methods to estimate body composition are sparse. We aimed to develop predictive equations for estimating fat-free mass (FFM) from bioelectrical impedance (BIA) and anthropometry using dual-energy X-ray absorptiometry (DXA) as reference method using data from 99 healthy 3-year-old Danish children. Predictive equations were derived from two multiple linear regression models, a comprehensive model (height(2)/resistance (RI), six anthropometric measurements) and a simple model (RI, height, weight). Their uncertainty was quantified by means of 10-fold cross-validation approach. Prediction error of FFM was 3.0% for both equations (root mean square error: 360 and 356 g, respectively). The derived equations produced BIA-based prediction of FFM and FM near DXA scan results. We suggest that the predictive equations can be applied in similar population samples aged 2-4 years. The derived equations may prove useful for studies linking body composition to early risk factors and early onset of obesity.
Kilburn, K H; Warshaw, R H; Thornton, J C; Thornton, K; Miller, A
1992-01-01
BACKGROUND: Published predicted values for total lung capacity and residual volume are often based on a small number of subjects and derive from different populations from predicted spirometric values. Equations from the only two large studies gave smaller predicted values for total lung capacity than the smaller studies. A large number of subjects have been studied from a population which has already provided predicted values for spirometry and transfer factor for carbon monoxide. METHODS: Total lung capacity was measured from standard posteroanterior and lateral chest radiographs and forced vital capacity by spirometry in a population sample of 771 subjects. Prediction equations were developed for total lung capacity (TLC), residual volume (RV) and RV/TLC in two groups--normal and total. Subjects with signs or symptoms of cardiopulmonary disease were combined with the normal subjects and equations for all subjects were also modelled. RESULTS: Prediction equations for TLC and RV in non-smoking normal men and women were square root transformations which included height and weight but not age. They included a coefficient for duration of smoking in current smokers. The predictive equation for RV/TLC included weight, age, age and duration of smoking for current smokers and ex-smokers of both sexes. For the total population the equations took the same form but the height coefficients and constants were slightly different. CONCLUSION: These population based prediction equations for TLC, RV and RV/TLC provide reference standards in a population that has provided reference standards for spirometry and single breath transfer factor for carbon monoxide. PMID:1412094
Double-Plate Penetration Equations
NASA Technical Reports Server (NTRS)
Hayashida, K. B.; Robinson, J. H.
2000-01-01
This report compares seven double-plate penetration predictor equations for accuracy and effectiveness of a shield design. Three of the seven are the Johnson Space Center original, modified, and new Cour-Palais equations. The other four are the Nysmith, Lundeberg-Stern-Bristow, Burch, and Wilkinson equations. These equations, except the Wilkinson equation, were derived from test results, with the velocities ranging up to 8 km/sec. Spreadsheet software calculated the projectile diameters for various velocities for the different equations. The results were plotted on projectile diameter versus velocity graphs for the expected orbital debris impact velocities ranging from 2 to 15 km/sec. The new Cour-Palais double-plate penetration equation was compared to the modified Cour-Palais single-plate penetration equation. Then the predictions from each of the seven double-plate penetration equations were compared to each other for a chosen shield design. Finally, these results from the equations were compared with test results performed at the NASA Marshall Space Flight Center. Because the different equations predict a wide range of projectile diameters at any given velocity, it is very difficult to choose the "right" prediction equation for shield configurations other than those exactly used in the equations' development. Although developed for various materials, the penetration equations alone cannot be relied upon to accurately predict the effectiveness of a shield without using hypervelocity impact tests to verify the design.
Hofsteenge, Geesje H; Chinapaw, Mai J M; Weijs, Peter J M
2015-10-15
In clinical practice, patient friendly methods to assess body composition in obese adolescents are needed. Therefore, the bioelectrical impedance analysis (BIA) related fat-free mass (FFM) prediction equations (FFM-BIA) were evaluated in obese adolescents (age 11-18 years) compared to FFM measured by dual-energy x-ray absorptiometry (FFM-DXA) and a new population specific FFM-BIA equation is developed. After an overnight fast, the subjects attended the outpatient clinic. After measuring height and weight, a full body scan by dual-energy x-ray absorptiometry (DXA) and a BIA measurement was performed. Thirteen predictive FFM-BIA equations based on weight, height, age, resistance, reactance and/or impedance were systematically selected and compared to FFM-DXA. Accuracy of FFM-BIA equations was evaluated by the percentage adolescents predicted within 5% of FFM-DXA measured, the mean percentage difference between predicted and measured values (bias) and the Root Mean Squared prediction Error (RMSE). Multiple linear regression was conducted to develop a new BIA equation. Validation was based on 103 adolescents (60% girls), age 14.5 (sd1.7) years, weight 94.1 (sd15.6) kg and FFM-DXA of 56.1 (sd9.8) kg. The percentage accurate estimations varied between equations from 0 to 68%; bias ranged from -29.3 to +36.3% and RMSE ranged from 2.8 to 12.4 kg. An alternative prediction equation was developed: FFM = 0.527 * H(cm)(2)/Imp + 0.306 * weight - 1.862 (R(2) = 0.92, SEE = 2.85 kg). Percentage accurate prediction was 76%. Compared to DXA, the Gray equation underestimated the FFM with 0.4 kg (55.7 ± 8.3), had an RMSE of 3.2 kg, 63% accurate prediction and the smallest bias of (-0.1%). When split by sex, the Gray equation had the narrowest range in accurate predictions, bias, and RMSE. For the assessment of FFM with BIA, the Gray-FFM equation appears to be the most accurate, but 63% is still not at an acceptable accuracy level for obese adolescents. The new equation appears to be appropriate but await further validation. DXA measurement remains the method of choice for FFM in obese adolescents. Netherlands Trial Register ( ISRCTN27626398).
David. C. Chojnacky
2012-01-01
An update of the Jenkins et al. (2003) biomass estimation equations for North American tree species resulted in 35 generalized equations developed from published equations. These 35 equations, which predict aboveground biomass of individual species grouped according to a taxa classification (based on genus or family and sometimes specific gravity), generally predicted...
Jeffrey J. Barry; John M. Buffington; Peter Goodwin; John .G. King; William W. Emmett
2008-01-01
Previous studies assessing the accuracy of bed-load transport equations have considered equation performance statistically based on paired observations of measured and predicted bed-load transport rates. However, transport measurements were typically taken during low flows, biasing the assessment of equation performance toward low discharges, and because equation...
Cleary, Jane; Daniells, Suzie; Okely, Anthony D; Batterham, Marijka; Nicholls, Jessie
2008-01-01
Bioelectrical impedance equations are frequently used by food and nutrition professionals to estimate percent fat mass in overweight and obese children. However, it is not known whether they are accurate for such children, as they have been primarily developed for children of varying body weights. The aim of this cross-sectional study was to evaluate the predictive validity of four previously published prediction equations developed for the pediatric population, among a sample of overweight and obese children. Thirty overweight or obese children (mean age=7.57+/-1.28 years) underwent measurement of fat mass, percent fat mass, and fat-free mass using dual-energy x-ray absorptiometry (DEXA) and bioelectrical impedance analysis (BIA). Impedance values from the BIA were entered into the four prediction equations and Pearson correlations used to determine the significance of associations between each of the BIA prediction equations and DEXA for percent fat mass, fat mass, and fat-free mass. For percent fat mass, paired t tests were used to assess differences between the methods and the technique of Bland and Altman was used to determine bias and error. Results showed that the mean percent fat mass as determined by DEXA for this age group was 40.79%. In comparison with other BIA prediction equations, the Schaefer equation had the closest mean value of 41.98%, and was the only equation not to significantly differ from the DEXA (P=0.121). This study suggests that the Schaefer equation is the only accurate BIA prediction equation for assessing percent fat mass in this sample of overweight and obese children from primarily white backgrounds.
Methods for estimating flood frequency in Montana based on data through water year 1998
Parrett, Charles; Johnson, Dave R.
2004-01-01
Annual peak discharges having recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years (T-year floods) were determined for 660 gaged sites in Montana and in adjacent areas of Idaho, Wyoming, and Canada, based on data through water year 1998. The updated flood-frequency information was subsequently used in regression analyses, either ordinary or generalized least squares, to develop equations relating T-year floods to various basin and climatic characteristics, equations relating T-year floods to active-channel width, and equations relating T-year floods to bankfull width. The equations can be used to estimate flood frequency at ungaged sites. Montana was divided into eight regions, within which flood characteristics were considered to be reasonably homogeneous, and the three sets of regression equations were developed for each region. A measure of the overall reliability of the regression equations is the average standard error of prediction. The average standard errors of prediction for the equations based on basin and climatic characteristics ranged from 37.4 percent to 134.1 percent. Average standard errors of prediction for the equations based on active-channel width ranged from 57.2 percent to 141.3 percent. Average standard errors of prediction for the equations based on bankfull width ranged from 63.1 percent to 155.5 percent. In most regions, the equations based on basin and climatic characteristics generally had smaller average standard errors of prediction than equations based on active-channel or bankfull width. An exception was the Southeast Plains Region, where all equations based on active-channel width had smaller average standard errors of prediction than equations based on basin and climatic characteristics or bankfull width. Methods for weighting estimates derived from the basin- and climatic-characteristic equations and the channel-width equations also were developed. The weights were based on the cross correlation of residuals from the different methods and the average standard errors of prediction. When all three methods were combined, the average standard errors of prediction ranged from 37.4 percent to 120.2 percent. Weighting of estimates reduced the standard errors of prediction for all T-year flood estimates in four regions, reduced the standard errors of prediction for some T-year flood estimates in two regions, and provided no reduction in average standard error of prediction in two regions. A computer program for solving the regression equations, weighting estimates, and determining reliability of individual estimates was developed and placed on the USGS Montana District World Wide Web page. A new regression method, termed Region of Influence regression, also was tested. Test results indicated that the Region of Influence method was not as reliable as the regional equations based on generalized least squares regression. Two additional methods for estimating flood frequency at ungaged sites located on the same streams as gaged sites also are described. The first method, based on a drainage-area-ratio adjustment, is intended for use on streams where the ungaged site of interest is located near a gaged site. The second method, based on interpolation between gaged sites, is intended for use on streams that have two or more streamflow-gaging stations.
Prediction of unsteady transonic flow around missile configurations
NASA Technical Reports Server (NTRS)
Nixon, D.; Reisenthel, P. H.; Torres, T. O.; Klopfer, G. H.
1990-01-01
This paper describes the preliminary development of a method for predicting the unsteady transonic flow around missiles at transonic and supersonic speeds, with the final goal of developing a computer code for use in aeroelastic calculations or during maneuvers. The basic equations derived for this method are an extension of those derived by Klopfer and Nixon (1989) for steady flow and are a subset of the Euler equations. In this approach, the five Euler equations are reduced to an equation similar to the three-dimensional unsteady potential equation, and a two-dimensional Poisson equation. In addition, one of the equations in this method is almost identical to the potential equation for which there are well tested computer codes, allowing the development of a prediction method based in part on proved technology.
New body fat prediction equations for severely obese patients.
Horie, Lilian Mika; Barbosa-Silva, Maria Cristina Gonzalez; Torrinhas, Raquel Susana; de Mello, Marco Túlio; Cecconello, Ivan; Waitzberg, Dan Linetzky
2008-06-01
Severe obesity imposes physical limitations to body composition assessment. Our aim was to compare body fat (BF) estimations of severely obese patients obtained by bioelectrical impedance (BIA) and air displacement plethysmography (ADP) for development of new equations for BF prediction. Severely obese subjects (83 female/36 male, mean age=41.6+/-11.6 years) had BF estimated by BIA and ADP. The agreement of the data was evaluated using Bland-Altman's graphic and concordance correlation coefficient (CCC). A multivariate regression analysis was performed to develop and validate new predictive equations. BF estimations from BIA (64.8+/-15 kg) and ADP (65.6+/-16.4 kg) did not differ (p>0.05, with good accuracy, precision, and CCC), but the Bland- Altman graphic showed a wide limit of agreement (-10.4; 8.8). The standard BIA equation overestimated BF in women (-1.3 kg) and underestimated BF in men (5.6 kg; p<0.05). Two BF new predictive equations were generated after BIA measurement, which predicted BF with higher accuracy, precision, CCC, and limits of agreement than the standard BIA equation. Standard BIA equations were inadequate for estimating BF in severely obese patients. Equations developed especially for this population provide more accurate BF assessment.
Martin, S E; Bradley, J M; Buick, J B; Bradbury, I; Elborn, J S
2007-06-01
Predictive equations have been proposed as a simpler alternative to hypoxic challenge testing (HCT) for determining the risk of in-flight hypoxia. To assess agreement between hypoxic challenge testing (HCT) and predictive equations for assessment of in-flight hypoxia. Retrospective study. Patients with chronic obstructive pulmonary disease (COPD) (n = 15), interstitial lung disease (ILD) (n = 15) and cystic fibrosis (CF) (n = 15) were studied. Spirometry was recorded prior to hypoxic inhalation and oxygen saturations (SpO2) were recorded before, after and during hypoxic inhalation. Blood gases were analysed before and after hypoxic inhalation and when SpO2 = 85%. An HCT was performed using the Ventimask method. The PaO2 at altitude was estimated for each group using four published predictive equations, which use values of PaO2 (ground) and lung function measurements to predict altitude PaO2. Results were interpreted using the BTS recommendations for prescription of in-flight oxygen post HCT. The Stuart Maxwell test of overall homogeneity was used to assess agreement between HCT results and each of the predictive equations. Ground PaO2 was significantly greater in patients with CF than either ILD or COPD (p < 0.05). PaO2 in all three groups significantly decreased following HCT. With the exception of equation 3, significantly fewer patients in each group would require in-flight O2 if prescription was based on HCT, compared to predictive equations (p < 0.05). Predictive equations considerably overestimate the need for in-flight O2, compared to HCT.
Development of demi-span equations for predicting height among the Malaysian elderly.
Ngoh, H J; Sakinah, H; Harsa Amylia, M S
2012-08-01
This study aimed to develop demi-span equations for predicting height in the Malaysian elderly and to explore the applicability of previous published demi-span equations derived from adult populations to the elderly. A cross-sectional study was conducted on Malaysian elderly aged 60 years and older. Subjects were residents of eight shelter homes in Peninsular Malaysia; 204 men and 124 women of Malay, Chinese and Indian ethnicity were included. Measurements of weight, height and demi-span were obtained using standard procedures. Statistical analyses were performed using SPSS version 18.0. The demi-span equations obtained were as follows: Men: Height (cm) = 67.51 + (1.29 x demi-span) - (0.12 x age) + 4.13; Women: Height (cm) = 67.51 + (1.29 x demi-span) - (0.12 x age). Height predicted from these new equations demonstrated good agreement with measured height and no significant differences were found between the mean values of predicted and measured heights in either gender (p>0.05). However, the heights predicted from previous published adult-derived demi-span equations failed to yield good agreement with the measured height of the elderly; significant over-estimation and underestimation of heights tended to occur (p>0.05). The new demi-span equations allow prediction of height with sufficient accuracy in the Malaysian elderly. However, further validation on other elderly samples is needed. Also, we recommend caution when using adult-derived demi-span equations to predict height in elderly people.
NASA Astrophysics Data System (ADS)
Zhang, Zhilin; Savenije, Hubert H. G.
2017-07-01
The practical value of the surprisingly simple Van der Burgh equation in predicting saline water intrusion in alluvial estuaries is well documented, but the physical foundation of the equation is still weak. In this paper we provide a connection between the empirical equation and the theoretical literature, leading to a theoretical range of Van der Burgh's coefficient of 1/2 < K < 2/3 for density-driven mixing which falls within the feasible range of 0 < K < 1. In addition, we developed a one-dimensional predictive equation for the dispersion of salinity as a function of local hydraulic parameters that can vary along the estuary axis, including mixing due to tide-driven residual circulation. This type of mixing is relevant in the wider part of alluvial estuaries where preferential ebb and flood channels appear. Subsequently, this dispersion equation is combined with the salt balance equation to obtain a new predictive analytical equation for the longitudinal salinity distribution. Finally, the new equation was tested and applied to a large database of observations in alluvial estuaries, whereby the calibrated K values appeared to correspond well to the theoretical range.
[Comparison of three stand-level biomass estimation methods].
Dong, Li Hu; Li, Feng Ri
2016-12-01
At present, the forest biomass methods of regional scale attract most of attention of the researchers, and developing the stand-level biomass model is popular. Based on the forestry inventory data of larch plantation (Larix olgensis) in Jilin Province, we used non-linear seemly unrelated regression (NSUR) to estimate the parameters in two additive system of stand-level biomass equations, i.e., stand-level biomass equations including the stand variables and stand biomass equations including the biomass expansion factor (i.e., Model system 1 and Model system 2), listed the constant biomass expansion factor for larch plantation and compared the prediction accuracy of three stand-level biomass estimation methods. The results indicated that for two additive system of biomass equations, the adjusted coefficient of determination (R a 2 ) of the total and stem equations was more than 0.95, the root mean squared error (RMSE), the mean prediction error (MPE) and the mean absolute error (MAE) were smaller. The branch and foliage biomass equations were worse than total and stem biomass equations, and the adjusted coefficient of determination (R a 2 ) was less than 0.95. The prediction accuracy of a constant biomass expansion factor was relatively lower than the prediction accuracy of Model system 1 and Model system 2. Overall, although stand-level biomass equation including the biomass expansion factor belonged to the volume-derived biomass estimation method, and was different from the stand biomass equations including stand variables in essence, but the obtained prediction accuracy of the two methods was similar. The constant biomass expansion factor had the lower prediction accuracy, and was inappropriate. In addition, in order to make the model parameter estimation more effective, the established stand-level biomass equations should consider the additivity in a system of all tree component biomass and total biomass equations.
Quantification of cardiorespiratory fitness in healthy nonobese and obese men and women.
Lorenzo, Santiago; Babb, Tony G
2012-04-01
The quantification and interpretation of cardiorespiratory fitness (CRF) in obesity is important for adequately assessing cardiovascular conditioning, underlying comorbidities, and properly evaluating disease risk. We retrospectively compared peak oxygen uptake (VO(2)peak) (ie, CRF) in absolute terms, and relative terms (% predicted) using three currently suggested prediction equations (Equations R, W, and G). There were 19 nonobese and 66 obese participants. Subjects underwent hydrostatic weighing and incremental cycling to exhaustion. Subject characteristics were analyzed by independent t test, and % predicted VO(2)peak by a two-way analysis of variance (group and equation) with repeated measures on one factor (equation). VO(2)peak (L/min) was not different between nonobese and obese adults (2.35 ± 0.80 [SD] vs 2.39 ± 0.68 L/min). VO(2)peak was higher (P < .02) relative to body mass and lean body mass in the nonobese (34 ± 8 mL/min/kg vs 22 ± 5 mL/min/kg, 42 ± 9 mL/min/lean body mass vs 37 ± 6 mL/min/lean body mass). Cardiorespiratory fitness assessed as % predicted was not different in the nonobese and obese (91% ± 17% predicted vs 95% ± 15% predicted) using Equation R, while using Equation W and G, CRF was lower (P < .05) but within normal limits in the obese (94 ± 15 vs 87 ± 11; 101% ± 17% predicted vs 90% ± 12% predicted, respectively), depending somewhat on sex. Traditional methods of reporting VO(2)peak do not allow adequate assessment and quantification of CRF in obese adults. Predicted VO(2)peak does allow a normalized evaluation of CRF in the obese, although care must be taken in selecting the most appropriate prediction equation, especially in women. In general, otherwise healthy obese are not grossly deconditioned as is commonly believed, although CRF may be slightly higher in nonobese subjects depending on the uniqueness of the prediction equation.
Development of a traveltime prediction equation for streams in Arkansas
Funkhouser, Jaysson E.; Barks, C. Shane
2004-01-01
During 1971 and 1981 and 2001 and 2003, traveltime measurements were made at 33 sample sites on 18 streams throughout northern and western Arkansas using fluorescent dye. Most measurements were made during steady-state base-flow conditions with the exception of three measurements made during near steady-state medium-flow conditions (for the study described in this report, medium-flow is approximately 100-150 percent of the mean monthly streamflow during the month the dye trace was conducted). These traveltime data were compared to the U.S. Geological Survey?s national traveltime prediction equation and used to develop a specific traveltime prediction equation for Arkansas streams. In general, the national traveltime prediction equation yielded results that over-predicted the velocity of the streams for 29 of the 33 sites measured. The standard error for the national traveltime prediction equation was 105 percent. The coefficient of determination was 0.78. The Arkansas prediction equation developed from a regression analysis of dye-tracing results was a significant improvement over the national prediction equation. This regression analysis yielded a standard error of 46 percent and a coefficient of determination of 0.74. The predicted velocities using this equation compared better to measured velocities. Using the variables in a regression analysis, the Arkansas prediction equation derived for the peak velocity in feet per second was: (Actual Equation Shown in report) In addition to knowing when the peak concentration will arrive at a site, it is of great interest to know when the leading edge of a contaminant plume will arrive. The traveltime of the leading edge of a contaminant plume indicates when a potential problem might first develop and also defines the overall shape of the concentration response function. Previous USGS reports have shown no significant relation between any of the variables and the time from injection to the arrival of the leading edge of the dye plume. For this report, the analysis of the dye-tracing data yielded a significant correlation between traveltime of the leading edge and traveltime of the peak concentration with an R2 value of 0.99. These data indicate that the traveltime of the leading edge can be estimated from: (Actual Equation Shown in Report)
Roche, Nicolas; Dalmay, François; Perez, Thierry; Kuntz, Claude; Vergnenègre, Alain; Neukirch, Françoise; Giordanella, Jean-Pierre; Huchon, Gérard
2008-11-01
Little is known on the long-term validity of reference equations used in the calculation of FEV(1) and FEV(1)/FVC predicted values. This survey assessed the prevalence of chronic airflow obstruction in a population-based sample and how it is influenced by: (i) the definition of airflow obstruction; and (ii) equations used to calculate predicted values. Subjects aged 45 or more were recruited in health prevention centers, performed spirometry and fulfilled a standardized ECRHS-derived questionnaire. Previously diagnosed cases and risk factors were identified. Prevalence of airflow obstruction was calculated using: (i) ATS-GOLD definition (FEV(1)/FVC<0.70); and (ii) ERS definition (FEV(1)/FVC
Prediction of light aircraft interior sound pressure level using the room equation
NASA Technical Reports Server (NTRS)
Atwal, M.; Bernhard, R.
1984-01-01
The room equation is investigated for predicting interior sound level. The method makes use of an acoustic power balance, by equating net power flow into the cabin volume to power dissipated within the cabin using the room equation. The sound power level transmitted through the panels was calculated by multiplying the measured space averaged transmitted intensity for each panel by its surface area. The sound pressure level was obtained by summing the mean square sound pressures radiated from each panel. The data obtained supported the room equation model in predicting the cabin interior sound pressure level.
Predicting ad libitum dry matter intake and yields of Jersey cows.
Holter, J B; West, J W; McGilliard, M L; Pell, A N
1996-05-01
Two data files were used that contained weekly mean values for ad libitum DMI of lactating Jersey cows along with appropriate cow, ration, and environmental traits for predicting DMI. One data file (n = 666) was used to develop prediction equations for DMI because that file represented a number of separate experiments and contained more diversity in potential predictors, especially those related to ration, such as forage type. The other data file (n = 1613) was used primarily to verify these equations. Milk protein yield displaced 4% FCM output as a prediction variable and improved the R2 by several units but was not used in the final equations, however, for the sake of simplicity. All equations contained adjustments for the effects of heat stress, parity (1 vs. > 1), DIM > 15, BW, use of recombinant bST, and other significant independent variables. Equations were developed to predict DMI of cows fed individually or in groups and to predict daily yields of 4% FCM and milk protein; equations accounted for 0.69, 0.74, 0.81, and 0.76 of the variation in the dependent variables with standard deviations of 1.7, 1.6, 2.7, and 0.084 kg/ d, respectively. These equations should be applied to the development of software for computerized dairy ration balancing.
Comparison of total body water estimates from O-18 and bioelectrical response prediction equations
NASA Technical Reports Server (NTRS)
Barrows, Linda H.; Inners, L. Daniel; Stricklin, Marcella D.; Klein, Peter D.; Wong, William W.; Siconolfi, Steven F.
1993-01-01
Identification of an indirect, rapid means to measure total body water (TBW) during space flight may aid in quantifying hydration status and assist in countermeasure development. Bioelectrical response testing and hydrostatic weighing were performed on 27 subjects who ingested O-18, a naturally occurring isotope of oxygen, to measure true TBW. TBW estimates from three bioelectrical response prediction equations and fat-free mass (FFM) were compared to TBW measured from O-18. A repeated measures MANOVA with post-hoc Dunnett's Test indicated a significant (p less than 0.05) difference between TBW estimates from two of the three bioelectrical response prediction equations and O-18. TBW estimates from FFM and the Kushner & Schoeller (1986) equation yielded results that were similar to those given by O-18. Strong correlations existed between each prediction method and O-18; however, standard errors, identified through regression analyses, were higher for the bioelectrical response prediction equations compared to those derived from FFM. These findings suggest (1) the Kushner & Schoeller (1986) equation may provide a valid measure of TBW, (2) other TBW prediction equations need to be identified that have variability similar to that of FFM, and (3) bioelectrical estimates of TBW may prove valuable in quantifying hydration status during space flight.
NASA Astrophysics Data System (ADS)
Lakzian, Esmail; Masoudifar, Amir; Saghi, Hassan
2017-03-01
In this paper, a novel explicit equation is presented for the friction factor prediction in the annular flow with drag reducing polymer (DRP). By using dimensional analyses and curve fitting on the published experimental data, the suggested equation is derived based on the logarithmic velocity profiles and power law in boundary layers. In the next step, a least squares method is used to calibrate the presented equation. Then, the equation is used to friction factor prediction of the gas-liquid mixture with DRP and the results are compared with the experimental data and the Al-Sarkhi ones. Finally, drag reduction (DR) is applied as the ratio of the friction factor reduction using DRP to the friction factor without DRP. The DR results show that the suggested equation has a better agreement with the experimental data in comparison with the pervious equations. The results also show that DR prediction decreases with the increase of the gas superficial velocity.
Demura, S; Sato, S; Kitabayashi, T
2006-06-01
This study examined a method of predicting body density based on hydrostatic weighing without head submersion (HWwithoutHS). Donnelly and Sintek (1984) developed a method to predict body density based on hydrostatic weight without head submersion. This method predicts the difference (D) between HWwithoutHS and hydrostatic weight with head submersion (HWwithHS) from anthropometric variables (head length and head width), and then calculates body density using D as a correction factor. We developed several prediction equations to estimate D based on head anthropometry and differences between the sexes, and compared their prediction accuracy with Donnelly and Sintek's equation. Thirty-two males and 32 females aged 17-26 years participated in the study. Multiple linear regression analysis was performed to obtain the prediction equations, and the systematic errors of their predictions were assessed by Bland-Altman plots. The best prediction equations obtained were: Males: D(g) = -164.12X1 - 125.81X2 - 111.03X3 + 100.66X4 + 6488.63, where X1 = head length (cm), X2 = head circumference (cm), X3 = head breadth (cm), X4 = head thickness (cm) (R = 0.858, R2 = 0.737, adjusted R2 = 0.687, standard error of the estimate = 224.1); Females: D(g) = -156.03X1 - 14.03X2 - 38.45X3 - 8.87X4 + 7852.45, where X1 = head circumference (cm), X2 = body mass (g), X3 = head length (cm), X4 = height (cm) (R = 0.913, R2 = 0.833, adjusted R2 = 0.808, standard error of the estimate = 137.7). The effective predictors in these prediction equations differed from those of Donnelly and Sintek's equation, and head circumference and head length were included in both equations. The prediction accuracy was improved by statistically selecting effective predictors. Since we did not assess cross-validity, the equations cannot be used to generalize to other populations, and further investigation is required.
Predicting Diameter at Breast Height from Stump Diameters for Northeastern Tree Species
Eric H. Wharton; Eric H. Wharton
1984-01-01
Presents equations to predict diameter at breast height from stump diameter measurements for 17 northeastern tree species. Simple linear regression was used to develop the equations. Application of the equations is discussed.
Simonton, D K
2001-06-01
For more than 2 decades, researchers have tried to identify the variables that predict the overall performance of U.S. presidents. In 1986, there emerged a 6-variable prediction equation (D. K. Simonton, 1986c, 1987b) that has been replicated repeatedly. The predictors are years in office, war years, scandal, assassination, heroism in war, and intellectual brilliance. The author again replicated the equation on recent rankings of all presidents from George Washington through William Jefferson Clinton according to a survey of 719 experts (W. R. Ridings, Jr., & S. B. McIver, 1997). The original 6-variable equation successfully predicted both the overall rankings as well as the 5 core components of the rankings (leadership qualities, accomplishment, political skill, appointments, character and integrity). The predictive value of the equation was illustrated for the presidencies of Ronald W. Reagan, George H. W. Bush, and Clinton.
Prediction Equations Overestimate the Energy Requirements More for Obesity-Susceptible Individuals.
McLay-Cooke, Rebecca T; Gray, Andrew R; Jones, Lynnette M; Taylor, Rachael W; Skidmore, Paula M L; Brown, Rachel C
2017-09-13
Predictive equations to estimate resting metabolic rate (RMR) are often used in dietary counseling and by online apps to set energy intake goals for weight loss. It is critical to know whether such equations are appropriate for those susceptible to obesity. We measured RMR by indirect calorimetry after an overnight fast in 26 obesity susceptible (OSI) and 30 obesity resistant (ORI) individuals, identified using a simple 6-item screening tool. Predicted RMR was calculated using the FAO/WHO/UNU (Food and Agricultural Organisation/World Health Organisation/United Nations University), Oxford and Miflin-St Jeor equations. Absolute measured RMR did not differ significantly between OSI versus ORI (6339 vs. 5893 kJ·d -1 , p = 0.313). All three prediction equations over-estimated RMR for both OSI and ORI when measured RMR was ≤5000 kJ·d -1 . For measured RMR ≤7000 kJ·d -1 there was statistically significant evidence that the equations overestimate RMR to a greater extent for those classified as obesity susceptible with biases ranging between around 10% to nearly 30% depending on the equation. The use of prediction equations may overestimate RMR and energy requirements particularly in those who self-identify as being susceptible to obesity, which has implications for effective weight management.
Kiang, Tony K L; Ensom, Mary H H
2016-04-01
In settings where free phenytoin concentrations are not available, the Sheiner-Tozer equation-Corrected total phenytoin concentration = Observed total phenytoin concentration/[(0.2 × Albumin) + 0.1]; phenytoin in µg/mL, albumin in g/dL-and its derivative equations are commonly used to correct for altered phenytoin binding to albumin. The objective of this article was to provide a comprehensive and updated review on the predictive performance of these equations in various patient populations. A literature search of PubMed, EMBASE, and Google Scholar was conducted using combinations of the following terms: Sheiner-Tozer, Winter-Tozer, phenytoin, predictive equation, precision, bias, free fraction. All English-language articles up to November 2015 (excluding abstracts) were evaluated. This review shows the Sheiner-Tozer equation to be biased and imprecise in various critical care, head trauma, and general neurology patient populations. Factors contributing to bias and imprecision include the following: albumin concentration, free phenytoin assay temperature, experimental conditions (eg, timing of concentration sampling, steady-state dosing conditions), renal function, age, concomitant medications, and patient type. Although derivative equations using varying albumin coefficients have improved accuracy (without much improvement in precision) in intensive care and elderly patients, these equations still require further validation. Further experiments are also needed to yield derivative equations with good predictive performance in all populations as well as to validate the equations' impact on actual patient efficacy and toxicity outcomes. More complex, multivariate predictive equations may be required to capture all variables that can potentially affect phenytoin pharmacokinetics and clinical therapeutic outcomes. © The Author(s) 2016.
Jeffrey J. Barry; John M. Buffington; John G. King
2005-01-01
We thank Michel [2005] for the opportunity to improve our bed load transport equation [Barry et al., 2004, equation (6)] and to resolve the dimensional complexity that he identified. However, we do not believe that the alternative bed load transport equation proposed by Michel [2005] provides either the mechanistic insight or predictive power of our transport equation...
Prediction of properties of intraply hybrid composites
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Sinclair, J. H.
1979-01-01
Equations based on the mixtures rule are presented for predicting the physical, thermal, hygral, and mechanical properties of unidirectional intraply hybrid composites (UIHC) from the corresponding properties of their constituent composites. Bounds were derived for uniaxial longitudinal strengths, tension, compression, and flexure of UIHC. The equations predict shear and flexural properties which agree with experimental data from UIHC. Use of these equations in a composites mechanics computer code predicted flexural moduli which agree with experimental data from various intraply hybrid angleplied laminates (IHAL). It is indicated, briefly, how these equations can be used in conjunction with composite mechanics and structural analysis during the analysis/design process.
Joseph, Mini; Gupta, Riddhi Das; Prema, L; Inbakumari, Mercy; Thomas, Nihal
2017-01-01
The accuracy of existing predictive equations to determine the resting energy expenditure (REE) of professional weightlifters remains scarcely studied. Our study aimed at assessing the REE of male Asian Indian weightlifters with indirect calorimetry and to compare the measured REE (mREE) with published equations. A new equation using potential anthropometric variables to predict REE was also evaluated. REE was measured on 30 male professional weightlifters aged between 17 and 28 years using indirect calorimetry and compared with the eight formulas predicted by Harris-Benedicts, Mifflin-St. Jeor, FAO/WHO/UNU, ICMR, Cunninghams, Owen, Katch-McArdle, and Nelson. Pearson correlation coefficient, intraclass correlation coefficient, and multiple linear regression analysis were carried out to study the agreement between the different methods, association with anthropometric variables, and to formulate a new prediction equation for this population. Pearson correlation coefficients between mREE and the anthropometric variables showed positive significance with suprailiac skinfold thickness, lean body mass (LBM), waist circumference, hip circumference, bone mineral mass, and body mass. All eight predictive equations underestimated the REE of the weightlifters when compared with the mREE. The highest mean difference was 636 kcal/day (Owen, 1986) and the lowest difference was 375 kcal/day (Cunninghams, 1980). Multiple linear regression done stepwise showed that LBM was the only significant determinant of REE in this group of sportspersons. A new equation using LBM as the independent variable for calculating REE was computed. REE for weightlifters = -164.065 + 0.039 (LBM) (confidence interval -1122.984, 794.854]. This new equation reduced the mean difference with mREE by 2.36 + 369.15 kcal/day (standard error = 67.40). The significant finding of this study was that all the prediction equations underestimated the REE. The LBM was the sole determinant of REE in this population. In the absence of indirect calorimetry, the REE equation developed by us using LBM is a better predictor for calculating REE of professional male weightlifters of this region.
Escobar-Bahamondes, P; Oba, M; Beauchemin, K A
2017-01-01
The study determined the performance of equations to predict enteric methane (CH4) from beef cattle fed forage- and grain-based diets. Many equations are available to predict CH4 from beef cattle and the predictions vary substantially among equations. The aims were to (1) construct a database of CH4 emissions for beef cattle from published literature, and (2) identify the most precise and accurate extant CH4 prediction models for beef cattle fed diets varying in forage content. The database was comprised of treatment means of CH4 production from in vivo beef studies published from 2000 to 2015. Criteria to include data in the database were as follows: animal description, intakes, diet composition and CH4 production. In all, 54 published equations that predict CH4 production from diet composition were evaluated. Precision and accuracy of the equations were evaluated using the concordance correlation coefficient (r c ), root mean square prediction error (RMSPE), model efficiency and analysis of errors. Equations were ranked using a combined index of the various statistical assessments based on principal component analysis. The final database contained 53 studies and 207 treatment means that were divided into two data sets: diets containing ⩾400 g/kg dry matter (DM) forage (n=116) and diets containing ⩽200 g/kg DM forage (n=42). Diets containing between ⩽400 and ⩾200 g/kg DM forage were not included in the analysis because of their limited numbers (n=6). Outliers, treatment means where feed was fed restrictively and diets with CH4 mitigation additives were omitted (n=43). Using the high-forage dataset the best-fit equations were the International Panel on Climate Change Tier 2 method, 3 equations for steers that considered gross energy intake (GEI) and body weight and an equation that considered dry matter intake and starch:neutral detergent fiber with r c ranging from 0.60 to 0.73 and RMSPE from 35.6 to 45.9 g/day. For the high-grain diets, the 5 best-fit equations considered intakes of metabolisable energy, cellulose, hemicellulose and fat, or for steers GEI and body weight, with r c ranging from 0.35 to 0.52 and RMSPE from 47.4 to 62.9 g/day. Ranking of extant CH4 prediction equations for their accuracy and precision differed with forage content of the diet. When used for cattle fed high-grain diets, extant CH4 prediction models were generally imprecise and lacked accuracy.
Cross-validation of resting metabolic rate prediction equations
USDA-ARS?s Scientific Manuscript database
Background: Knowledge of the resting metabolic rate (RMR) is necessary for determining individual total energy requirements. Measurement of RMR is time consuming and requires specialized equipment. Prediction equations provide an easy method to estimate RMR; however, the accuracy of these equations...
Quantification of Cardiorespiratory Fitness in Healthy Nonobese and Obese Men and Women
Lorenzo, Santiago
2012-01-01
Background: The quantification and interpretation of cardiorespiratory fitness (CRF) in obesity is important for adequately assessing cardiovascular conditioning, underlying comorbidities, and properly evaluating disease risk. We retrospectively compared peak oxygen uptake (V˙o2peak) (ie, CRF) in absolute terms, and relative terms (% predicted) using three currently suggested prediction equations (Equations R, W, and G). Methods: There were 19 nonobese and 66 obese participants. Subjects underwent hydrostatic weighing and incremental cycling to exhaustion. Subject characteristics were analyzed by independent t test, and % predicted V˙o2peak by a two-way analysis of variance (group and equation) with repeated measures on one factor (equation). Results: V˙o2peak (L/min) was not different between nonobese and obese adults (2.35 ± 0.80 [SD] vs 2.39 ± 0.68 L/min). V˙o2peak was higher (P < .02) relative to body mass and lean body mass in the nonobese (34 ± 8 mL/min/kg vs 22 ± 5 mL/min/kg, 42 ± 9 mL/min/lean body mass vs 37 ± 6 mL/min/lean body mass). Cardiorespiratory fitness assessed as % predicted was not different in the nonobese and obese (91% ± 17% predicted vs 95% ± 15% predicted) using Equation R, while using Equation W and G, CRF was lower (P < .05) but within normal limits in the obese (94 ± 15 vs 87 ± 11; 101% ± 17% predicted vs 90% ± 12% predicted, respectively), depending somewhat on sex. Conclusions: Traditional methods of reporting V˙o2peak do not allow adequate assessment and quantification of CRF in obese adults. Predicted V˙o2peak does allow a normalized evaluation of CRF in the obese, although care must be taken in selecting the most appropriate prediction equation, especially in women. In general, otherwise healthy obese are not grossly deconditioned as is commonly believed, although CRF may be slightly higher in nonobese subjects depending on the uniqueness of the prediction equation. PMID:21940772
Height prediction equations for even-aged upland oak stands
Donald E. Hilt; Martin E. Dale
1982-01-01
Forest growth models that use predicted tree diameters or diameter distributions require a reliable height-prediction model to obtain volume estimates because future height-diameter relationships will not necessarily be the same as the present height-diameter relationship. A total tree height prediction equation for even-aged upland oak stands is presented. Predicted...
Soriano, Vincent V; Tesoro, Eljim P; Kane, Sean P
2017-08-01
The Winter-Tozer (WT) equation has been shown to reliably predict free phenytoin levels in healthy patients. In patients with end-stage renal disease (ESRD), phenytoin-albumin binding is altered and, thus, affects interpretation of total serum levels. Although an ESRD WT equation was historically proposed for this population, there is a lack of data evaluating its accuracy. The objective of this study was to determine the accuracy of the ESRD WT equation in predicting free serum phenytoin concentration in patients with ESRD on hemodialysis (HD). A retrospective analysis of adult patients with ESRD on HD and concurrent free and total phenytoin concentrations was conducted. Each patient's true free phenytoin concentration was compared with a calculated value using the ESRD WT equation and a revised version of the ESRD WT equation. A total of 21 patients were included for analysis. The ESRD WT equation produced a percentage error of 75% and a root mean square error of 1.76 µg/mL. Additionally, 67% of the samples had an error >50% when using the ESRD WT equation. A revised equation was found to have high predictive accuracy, with only 5% of the samples demonstrating >50% error. The ESRD WT equation was not accurate in predicting free phenytoin concentration in patients with ESRD on HD. A revised ESRD WT equation was found to be significantly more accurate. Given the small study sample, further studies are required to fully evaluate the clinical utility of the revised ESRD WT equation.
New Equation for Prediction of Martensite Start Temperature in High Carbon Ferrous Alloys
NASA Astrophysics Data System (ADS)
Park, Jihye; Shim, Jae-Hyeok; Lee, Seok-Jae
2018-02-01
Since previous equations fail to predict M S temperature of high carbon ferrous alloys, we first propose an equation for prediction of M S temperature of ferrous alloys containing > 2 wt pct C. The presence of carbides (Fe3C and Cr-rich M 7C3) is thermodynamically considered to estimate the C concentration in austenite. Especially, equations individually specialized for lean and high Cr alloys very accurately reproduce experimental results. The chemical driving force for martensitic transformation is quantitatively analyzed based on the calculation of T 0 temperature.
Santorelli, Gillian; Petherick, Emily S; Wright, John; Wilson, Brad; Samiei, Haider; Cameron, Noël; Johnson, William
2013-01-01
Advancements in knowledge of obesity aetiology and mobile phone technology have created the opportunity to develop an electronic tool to predict an infant's risk of childhood obesity. The study aims were to develop and validate equations for the prediction of childhood obesity and integrate them into a mobile phone application (App). Anthropometry and childhood obesity risk data were obtained for 1868 UK-born White or South Asian infants in the Born in Bradford cohort. Logistic regression was used to develop prediction equations (at 6 ± 1.5, 9 ± 1.5 and 12 ± 1.5 months) for risk of childhood obesity (BMI at 2 years >91(st) centile and weight gain from 0-2 years >1 centile band) incorporating sex, birth weight, and weight gain as predictors. The discrimination accuracy of the equations was assessed by the area under the curve (AUC); internal validity by comparing area under the curve to those obtained in bootstrapped samples; and external validity by applying the equations to an external sample. An App was built to incorporate six final equations (two at each age, one of which included maternal BMI). The equations had good discrimination (AUCs 86-91%), with the addition of maternal BMI marginally improving prediction. The AUCs in the bootstrapped and external validation samples were similar to those obtained in the development sample. The App is user-friendly, requires a minimum amount of information, and provides a risk assessment of low, medium, or high accompanied by advice and website links to government recommendations. Prediction equations for risk of childhood obesity have been developed and incorporated into a novel App, thereby providing proof of concept that childhood obesity prediction research can be integrated with advancements in technology.
Nellessen, Aline Gonçalves; Donária, Leila; Hernandes, Nidia Aparecida; Pitta, Fabio
2015-01-01
Abstract Objective: To compare equations for predicting peak quadriceps femoris (QF) muscle force; to determine the agreement among the equations in identifying QF muscle weakness in COPD patients; and to assess the differences in characteristics among the groups of patients classified as having or not having QF muscle weakness by each equation. Methods: Fifty-six COPD patients underwent assessment of peak QF muscle force by dynamometry (maximal voluntary isometric contraction of knee extension). Predicted values were calculated with three equations: an age-height-weight-gender equation (Eq-AHWG); an age-weight-gender equation (Eq-AWG); and an age-fat-free mass-gender equation (Eq-AFFMG). Results: Comparison of the percentage of predicted values obtained with the three equations showed that the Eq-AHWG gave higher values than did the Eq-AWG and Eq-AFFMG, with no difference between the last two. The Eq-AHWG showed moderate agreement with the Eq-AWG and Eq-AFFMG, whereas the last two also showed moderate, albeit lower, agreement with each other. In the sample as a whole, QF muscle weakness (< 80% of predicted) was identified by the Eq-AHWG, Eq-AWG, and Eq-AFFMG in 59%, 68%, and 70% of the patients, respectively (p > 0.05). Age, fat-free mass, and body mass index are characteristics that differentiate between patients with and without QF muscle weakness. Conclusions: The three equations were statistically equivalent in classifying COPD patients as having or not having QF muscle weakness. However, the Eq-AHWG gave higher peak force values than did the Eq-AWG and the Eq-AFFMG, as well as showing greater agreement with the other equations. PMID:26398750
Kokkinos, Peter; Kaminsky, Leonard A; Arena, Ross; Zhang, Jiajia; Myers, Jonathan
2017-08-15
Impaired cardiorespiratory fitness (CRF) is closely linked to chronic illness and associated with adverse events. The American College of Sports Medicine (ACSM) regression equations (ACSM equations) developed to estimate oxygen uptake have known limitations leading to well-documented overestimation of CRF, especially at higher work rates. Thus, there is a need to explore alternative equations to more accurately predict CRF. We assessed maximal oxygen uptake (VO 2 max) obtained directly by open-circuit spirometry in 7,983 apparently healthy subjects who participated in the Fitness Registry and the Importance of Exercise National Database (FRIEND). We randomly sampled 70% of the participants from each of the following age categories: <40, 40 to 50, 50 to 70, and ≥70 and used the remaining 30% for validation. Multivariable linear regression analysis was applied to identify the most relevant variables and construct the best prediction model for VO 2 max. Treadmill speed and treadmill speed × grade were considered in the final model as predictors of measured VO 2 max and the following equation was generated: VO 2 max in ml O 2 /kg/min = speed (m/min) × (0.17 + fractional grade × 0.79) + 3.5. The FRIEND equation predicted VO 2 max with an overall error >4 times lower than the error associated with the traditional ACSM equations (5.1 ± 18.3% vs 21.4 ± 24.9%, respectively). Overestimation associated with the ACSM equation was accentuated when different protocols were considered separately. In conclusion, The FRIEND equation predicts VO 2 max more precisely than the traditional ACSM equations with an overall error >4 times lower than that associated with the ACSM equations. Published by Elsevier Inc.
New equations improve NIR prediction of body fat among high school wrestlers.
Oppliger, R A; Clark, R R; Nielsen, D H
2000-09-01
Methodologic study to derive prediction equations for percent body fat (%BF). To develop valid regression equations using NIR to assess body composition among high school wrestlers. Clinicians need a portable, fast, and simple field method for assessing body composition among wrestlers. Near-infrared photospectrometry (NIR) meets these criteria, but its efficacy has been challenged. Subjects were 150 high school wrestlers from 2 Midwestern states with mean +/- SD age of 16.3 +/- 1.1 yrs, weight of 69.5 +/- 11.7 kg, and height of 174.4 +/- 7.0 cm. Relative body fatness (%BF) determined from hydrostatic weighing was the criterion measure, and NIR optical density (OD) measurements at multiple sites, plus height, weight, and body mass index (BMI) were the predictor variables. Four equations were developed with multiple R2s that varied from .530 to .693, root mean squared errors varied from 2.8% BF to 3.4% BF, and prediction errors varied from 2.9% BF to 3.1% BF. The best equation used OD measurements at the biceps, triceps, and thigh sites, BMI, and age. The root mean squared error and prediction error for all 4 equations were equal to or smaller than for a skinfold equation commonly used with wrestlers. The results substantiate the validity of NIR for predicting % BF among high school wrestlers. Cross-validation of these equations is warranted.
Skouroliakou, Maria; Giannopoulou, Ifigenia; Kostara, Christina; Vasilopoulou, Melanie
2009-02-01
The prediction of resting metabolic rate (RMR) is important to determine the energy expenditure of obese patients with severe mental illnesses (SMIs). However, there is lack of research concerning the most accurate RMR predictive equations. The purpose of this study was to compare the validity of four RMR equations on patients with SMIs taking olanzapine. One hundred twenty-eight obese (body mass index >30 kg/m(2)) patients with SMIs (41 men and 87 women) treated with olanzapine were tested from 2005 to 2008. Measurements of anthropometric parameters (height, weight, body mass index, waist circumference) and body composition (using the BodPod) were performed at the beginning of the study. RMR was measured using indirect calorimetry. Comparisons between measured and estimated RMRs from four equations (Harris-Benedict adjusted and current body weights, Schofield, and Mifflin-St. Jeor) were performed using Pearson's correlation coefficient and Bland-Altman analysis. Significant correlations were found between the measured and predicted RMRs with all four equations (P < 0.001), with the Mifflin-St. Jeor equation demonstrating the strongest correlation in men and women (r = 0.712, P < 0.001). In men and women, the Bland-Altman analysis revealed no significant bias in the RMR prediction using the Harris-Benedict adjusted body weight and the Mifflin equations (P > 0.05). However, in men and women, the Harris-Benedict current body weight and the Schofield equations showed significant overestimation error in the RMR prediction (P < 0.001). When estimating RMR in men and women with SMIs taking olanzapine, the Mifflin-St. Jeor and Harris-Benedict adjusted body weight equations appear to be the most appropriate for clinical use.
Development and validation of a predictive equation for lean body mass in children and adolescents.
Foster, Bethany J; Platt, Robert W; Zemel, Babette S
2012-05-01
Lean body mass (LBM) is not easy to measure directly in the field or clinical setting. Equations to predict LBM from simple anthropometric measures, which account for the differing contributions of fat and lean to body weight at different ages and levels of adiposity, would be useful to both human biologists and clinicians. To develop and validate equations to predict LBM in children and adolescents across the entire range of the adiposity spectrum. Dual energy X-ray absorptiometry was used to measure LBM in 836 healthy children (437 females) and linear regression was used to develop sex-specific equations to estimate LBM from height, weight, age, body mass index (BMI) for age z-score and population ancestry. Equations were validated using bootstrapping methods and in a local independent sample of 332 children and in national data collected by NHANES. The mean difference between measured and predicted LBM was - 0.12% (95% limits of agreement - 11.3% to 8.5%) for males and - 0.14% ( - 11.9% to 10.9%) for females. Equations performed equally well across the entire adiposity spectrum, as estimated by BMI z-score. Validation indicated no over-fitting. LBM was predicted within 5% of measured LBM in the validation sample. The equations estimate LBM accurately from simple anthropometric measures.
NASA Technical Reports Server (NTRS)
Ko, William L.; Fleischer, Van Tran
2011-01-01
The Ko displacement theory originally developed for shape predictions of straight beams is extended to shape predictions of curved beams. The surface strains needed for shape predictions were analytically generated from finite-element nodal stress outputs. With the aid of finite-element displacement outputs, mathematical functional forms for curvature-effect correction terms are established and incorporated into straight-beam deflection equations for shape predictions of both cantilever and two-point supported curved beams. The newly established deflection equations for cantilever curved beams could provide quite accurate shape predictions for different cantilever curved beams, including the quarter-circle cantilever beam. Furthermore, the newly formulated deflection equations for two-point supported curved beams could provide accurate shape predictions for a range of two-point supported curved beams, including the full-circular ring. Accuracy of the newly developed curved-beam deflection equations is validated through shape prediction analysis of curved beams embedded in the windward shallow spherical shell of a generic crew exploration vehicle. A single-point collocation method for optimization of shape predictions is discussed in detail
Estimation of fat-free mass in Asian neonates using bioelectrical impedance analysis
Tint, Mya-Thway; Ward, Leigh C; Soh, Shu E; Aris, Izzuddin M; Chinnadurai, Amutha; Saw, Seang Mei; Gluckman, Peter D; Godfrey, Keith M; Chong, Yap-Seng; Kramer, Michael S; Yap, Fabian; Lingwood, Barbara; Lee, Yung Seng
2016-01-01
The aims of this study were to develop and validate a prediction equation of fat-free mass (FFM) based on bioelectrical impedance analysis (BIA) and anthropometry using air displacement plethysmography (ADP) as a reference in Asian neonates and to test the applicability of the prediction equations in independent Western cohort. A total of 173 neonates at birth and 140 at week-2 of age were included. Multiple linear regression analysis was performed to develop the prediction equations in a two-third randomly selected subset and validated on the remaining one-third subset at each time point and in an independent Queensland cohort. FFM measured by ADP was the dependent variable and anthropometric measures, sex and impedance quotient (L2/R50) were independent variables in the model. Accuracy of prediction equations were assessed using intra-class correlation and Bland-Altman analyses. L2/R50 was the significant predictor of FFM at week-2 but not at birth. Compared to the model using weight, sex and length, including L2/R50 slightly improved the prediction with a bias of 0.01kg with 2SD limits of agreement (LOA) (0.18, −0.20). Prediction explained 88.9% of variation but not beyond that of anthropometry. Applying these equations to Queensland cohort provided similar performance at the appropriate age. However, when the Queensland equations were applied to our cohort, the bias increased slightly but with similar LOA. BIA appears to have limited use in predicting FFM in the first few weeks of life compared to simple anthropometry in Asian populations. There is a need for population and age appropriate FFM prediction equations. PMID:26856420
Nazemi, S Majid; Amini, Morteza; Kontulainen, Saija A; Milner, Jaques S; Holdsworth, David W; Masri, Bassam A; Wilson, David R; Johnston, James D
2017-01-01
Quantitative computed tomography based subject-specific finite element modeling has potential to clarify the role of subchondral bone alterations in knee osteoarthritis initiation, progression, and pain. However, it is unclear what density-modulus equation(s) should be applied with subchondral cortical and subchondral trabecular bone when constructing finite element models of the tibia. Using a novel approach applying neural networks, optimization, and back-calculation against in situ experimental testing results, the objective of this study was to identify subchondral-specific equations that optimized finite element predictions of local structural stiffness at the proximal tibial subchondral surface. Thirteen proximal tibial compartments were imaged via quantitative computed tomography. Imaged bone mineral density was converted to elastic moduli using multiple density-modulus equations (93 total variations) then mapped to corresponding finite element models. For each variation, root mean squared error was calculated between finite element prediction and in situ measured stiffness at 47 indentation sites. Resulting errors were used to train an artificial neural network, which provided an unlimited number of model variations, with corresponding error, for predicting stiffness at the subchondral bone surface. Nelder-Mead optimization was used to identify optimum density-modulus equations for predicting stiffness. Finite element modeling predicted 81% of experimental stiffness variance (with 10.5% error) using optimized equations for subchondral cortical and trabecular bone differentiated with a 0.5g/cm 3 density. In comparison with published density-modulus relationships, optimized equations offered improved predictions of local subchondral structural stiffness. Further research is needed with anisotropy inclusion, a smaller voxel size and de-blurring algorithms to improve predictions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Estimation of fat-free mass in Asian neonates using bioelectrical impedance analysis.
Tint, Mya-Thway; Ward, Leigh C; Soh, Shu E; Aris, Izzuddin M; Chinnadurai, Amutha; Saw, Seang Mei; Gluckman, Peter D; Godfrey, Keith M; Chong, Yap-Seng; Kramer, Michael S; Yap, Fabian; Lingwood, Barbara; Lee, Yung Seng
2016-03-28
The aims of this study were to develop and validate a prediction equation of fat-free mass (FFM) based on bioelectrical impedance analysis (BIA) and anthropometry using air-displacement plethysmography (ADP) as a reference in Asian neonates and to test the applicability of the prediction equations in an independent Western cohort. A total of 173 neonates at birth and 140 at two weeks of age were included. Multiple linear regression analysis was performed to develop the prediction equations in a two-third randomly selected subset and validated on the remaining one-third subset at each time point and in an independent Queensland cohort. FFM measured by ADP was the dependent variable, and anthropometric measures, sex and impedance quotient (L2/R50) were independent variables in the model. Accuracy of prediction equations was assessed using intra-class correlation and Bland-Altman analyses. L2/R50 was the significant predictor of FFM at week two but not at birth. Compared with the model using weight, sex and length, including L2/R50 slightly improved the prediction with a bias of 0·01 kg with 2 sd limits of agreement (LOA) (0·18, -0·20). Prediction explained 88·9 % of variation but not beyond that of anthropometry. Applying these equations to the Queensland cohort provided similar performance at the appropriate age. However, when the Queensland equations were applied to our cohort, the bias increased slightly but with similar LOA. BIA appears to have limited use in predicting FFM in the first few weeks of life compared with simple anthropometry in Asian populations. There is a need for population- and age-appropriate FFM prediction equations.
Regression Simulation Model. Appendix X. Users Manual,
1981-03-01
change as the prediction equations become refined. Whereas no notice will be provided when the changes are made, the programs will be modified such that...NATIONAL BUREAU Of STANDARDS 1963 A ___,_ __ _ __ _ . APPENDIX X ( R4/ EGRESSION IMULATION ’jDEL. Ape’A ’) 7 USERS MANUA submitted to The Great River...regression analysis and to establish a prediction equation (model). The prediction equation contains the partial regression coefficients (B-weights) which
Sex-specific lean body mass predictive equations are accurate in the obese paediatric population
Jackson, Lanier B.; Henshaw, Melissa H.; Carter, Janet; Chowdhury, Shahryar M.
2015-01-01
Background The clinical assessment of lean body mass (LBM) is challenging in obese children. A sex-specific predictive equation for LBM derived from anthropometric data was recently validated in children. Aim The purpose of this study was to independently validate these predictive equations in the obese paediatric population. Subjects and methods Obese subjects aged 4–21 were analysed retrospectively. Predicted LBM (LBMp) was calculated using equations previously developed in children. Measured LBM (LBMm) was derived from dual-energy x-ray absorptiometry. Agreement was expressed as [(LBMm-LBMp)/LBMm] with 95% limits of agreement. Results Of 310 enrolled patients, 195 (63%) were females. The mean age was 11.8 ± 3.4 years and mean BMI Z-score was 2.3 ± 0.4. The average difference between LBMm and LBMp was −0.6% (−17.0%, 15.8%). Pearson’s correlation revealed a strong linear relationship between LBMm and LBMp (r=0.97, p<0.01). Conclusion This study validates the use of these clinically-derived sex-specific LBM predictive equations in the obese paediatric population. Future studies should use these equations to improve the ability to accurately classify LBM in obese children. PMID:26287383
NASA Technical Reports Server (NTRS)
Atwal, Mahabir S.; Heitman, Karen E.; Crocker, Malcolm J.
1986-01-01
The validity of the room equation of Crocker and Price (1982) for predicting the cabin interior sound pressure level was experimentally tested using a specially constructed setup for simultaneous measurements of transmitted sound intensity and interior sound pressure levels. Using measured values of the reverberation time and transmitted intensities, the equation was used to predict the space-averaged interior sound pressure level for three different fuselage conditions. The general agreement between the room equation and experimental test data is considered good enough for this equation to be used for preliminary design studies.
Langer, Raquel D; Matias, Catarina N; Borges, Juliano H; Cirolini, Vagner X; Páscoa, Mauro A; Guerra-Júnior, Gil; Gonçalves, Ezequiel M
2018-03-26
Bioelectrical impedance analysis (BIA) is a practical and rapid method for making a longitudinal analysis of changes in body composition. However, most BIA validation studies have been performed in a clinical population and only at one moment, or point in time (cross-sectional study). The aim of this study is to investigate the accuracy of predictive equations based on BIA with regard to the changes in fat-free mass (FFM) in Brazilian male army cadets after 7 mo of military training. The values used were determined using dual-energy X-ray absorptiometry (DXA) as a reference method. The study included 310 male Brazilian Army cadets (aged 17-24 yr). FFM was measured using eight general predictive BIA equations, with one equation specifically applied to this population sample, and the values were compared with results obtained using DXA. The student's t-test, adjusted coefficient of determination (R2), standard error of estimation (SEE), Lin's approach, and the Bland-Altman test were used to determine the accuracy of the predictive BIA equations used to estimate FFM in this population and between the two moments (pre- and post-moment). The FFM measured using the nine predictive BIA equations, and determined using DXA at the post-moment, showed a significant increase when compared with the pre-moment (p < 0.05). All nine predictive BIA equations were able to detect FFM changes in the army cadets between the two moments in a very similar way to the reference method (DXA). However, only the one BIA equation specific to this population showed no significant differences in the FFM estimation between DXA at pre- and post-moment of military routine. All predictive BIA equations showed large limits of agreement using the Bland-Altman approach. The eight general predictive BIA equations used in this study were not found to be valid for analyzing the FFM changes in the Brazilian male army cadets, after a period of approximately 7 mo of military training. Although the BIA equation specific to this population is dependent on the amount of FFM, it appears to be a good alternative to DXA for assessing FFM in Brazilian male army cadets.
How accurate are resting energy expenditure prediction equations in obese trauma and burn patients?
Stucky, Chee-Chee H; Moncure, Michael; Hise, Mary; Gossage, Clint M; Northrop, David
2008-01-01
While the prevalence of obesity continues to increase in our society, outdated resting energy expenditure (REE) prediction equations may overpredict energy requirements in obese patients. Accurate feeding is essential since overfeeding has been demonstrated to adversely affect outcomes. The first objective was to compare REE calculated by prediction equations to the measured REE in obese trauma and burn patients. Our hypothesis was that an equation using fat-free mass would give a more accurate prediction. The second objective was to consider the effect of a commonly used injury factor on the predicted REE. A retrospective chart review was performed on 28 patients. REE was measured using indirect calorimetry and compared with the Harris-Benedict and Cunningham equations, and an equation using type II diabetes as a factor. Statistical analyses used were paired t test, +/-95% confidence interval, and the Bland-Altman method. Measured average REE in trauma and burn patients was 21.37 +/- 5.26 and 21.81 +/- 3.35 kcal/kg/d, respectively. Harris-Benedict underpredicted REE in trauma and burn patients to the least extent, while the Cunningham equation underpredicted REE in both populations to the greatest extent. Using an injury factor of 1.2, Cunningham continued to underestimate REE in both populations, while the Harris-Benedict and Diabetic equations overpredicted REE in both populations. The measured average REE is significantly less than current guidelines. This finding suggests that a hypocaloric regimen is worth considering for ICU patients. Also, if an injury factor of 1.2 is incorporated in certain equations, patients may be given too many calories.
Estimation of basal metabolic rate in Chinese: are the current prediction equations applicable?
Camps, Stefan G; Wang, Nan Xin; Tan, Wei Shuan Kimberly; Henry, C Jeyakumar
2016-08-31
Measurement of basal metabolic rate (BMR) is suggested as a tool to estimate energy requirements. Therefore, BMR prediction equations have been developed in multiple populations because indirect calorimetry is not always feasible. However, there is a paucity of data on BMR measured in overweight and obese adults living in Asia and equations developed for this group of interest. The aim of this study was to develop a new BMR prediction equation for Chinese adults applicable for a large BMI range and compare it with commonly used prediction equations. Subjects were 121 men and 111 women (age: 21-67 years, BMI: 16-41 kg/m(2)). Height, weight, and BMR were measured. Continuous open-circuit indirect calorimetry using a ventilated hood system for 30 min was used to measure BMR. A regression equation was derived using stepwise regression and accuracy was compared to 6 existing equations (Harris-Benedict, Henry, Liu, Yang, Owen and Mifflin). Additionally, the newly derived equation was cross-validated in a separate group of 70 Chinese subjects (26 men and 44 women, age: 21-69 years, BMI: 17-39 kg/m(2)). The equation developed from our data was: BMR (kJ/d) = 52.6 x weight (kg) + 828 x gender + 1960 (women = 0, men = 1; R(2) = 0.81). The accuracy rate (within 10 % accurate) was 78 % which compared well to Owen (70 %), Henry (67 %), Mifflin (67 %), Liu (58 %), Harris-Benedict (45 %) and Yang (37 %) for the whole range of BMI. For a BMI greater than 23, the Singapore equation reached an accuracy rate of 76 %. Cross-validation proved an accuracy rate of 80 %. To date, the newly developed Singapore equation is the most accurate BMR prediction equation in Chinese and is applicable for use in a large BMI range including those overweight and obese.
Single wall penetration equations
NASA Technical Reports Server (NTRS)
Hayashida, K. B.; Robinson, J. H.
1991-01-01
Five single plate penetration equations are compared for accuracy and effectiveness. These five equations are two well-known equations (Fish-Summers and Schmidt-Holsapple), two equations developed by the Apollo project (Rockwell and Johnson Space Center (JSC), and one recently revised from JSC (Cour-Palais). They were derived from test results, with velocities ranging up to 8 km/s. Microsoft Excel software was used to construct a spreadsheet to calculate the diameters and masses of projectiles for various velocities, varying the material properties of both projectile and target for the five single plate penetration equations. The results were plotted on diameter versus velocity graphs for ballistic and spallation limits using Cricket Graph software, for velocities ranging from 2 to 15 km/s defined for the orbital debris. First, these equations were compared to each other, then each equation was compared with various aluminum projectile densities. Finally, these equations were compared with test results performed at JSC for the Marshall Space Flight Center. These equations predict a wide variety of projectile diameters at a given velocity. Thus, it is very difficult to choose the 'right' prediction equation. The thickness of a single plate could have a large variation by choosing a different penetration equation. Even though all five equations are empirically developed with various materials, especially for aluminum alloys, one cannot be confident in the shield design with the predictions obtained by the penetration equations without verifying by tests.
Biot-Gassmann theory for velocities of gas hydrate-bearing sediments
Lee, M.W.
2002-01-01
Elevated elastic velocities are a distinct physical property of gas hydrate-bearing sediments. A number of velocity models and equations (e.g., pore-filling model, cementation model, effective medium theories, weighted equations, and time-average equations) have been used to describe this effect. In particular, the weighted equation and effective medium theory predict reasonably well the elastic properties of unconsolidated gas hydrate-bearing sediments. A weakness of the weighted equation is its use of the empirical relationship of the time-average equation as one element of the equation. One drawback of the effective medium theory is its prediction of unreasonably higher shear-wave velocity at high porosities, so that the predicted velocity ratio does not agree well with the observed velocity ratio. To overcome these weaknesses, a method is proposed, based on Biot-Gassmann theories and assuming the formation velocity ratio (shear to compressional velocity) of an unconsolidated sediment is related to the velocity ratio of the matrix material of the formation and its porosity. Using the Biot coefficient calculated from either the weighted equation or from the effective medium theory, the proposed method accurately predicts the elastic properties of unconsolidated sediments with or without gas hydrate concentration. This method was applied to the observed velocities at the Mallik 2L-39 well, Mackenzie Delta, Canada.
Carlsohn, Anja; Scharhag-Rosenberger, Friederike; Cassel, Michael; Mayer, Frank
2011-01-01
Athletes may differ in their resting metabolic rate (RMR) from the general population. However, to estimate the RMR in athletes, prediction equations that have not been validated in athletes are often used. The purpose of this study was therefore to verify the applicability of commonly used RMR predictions for use in athletes. The RMR was measured by indirect calorimetry in 17 highly trained rowers and canoeists of the German national teams (BMI 24 ± 2 kg/m(2), fat-free mass 69 ± 15 kg). In addition, the RMR was predicted using Cunningham (CUN) and Harris-Benedict (HB) equations. A two-way repeated measures ANOVA was calculated to test for differences between predicted and measured RMR (α = 0.05). The root mean square percentage error (RMSPE) was calculated and the Bland-Altman procedure was used to quantify the bias for each prediction. Prediction equations significantly underestimated the RMR in males (p < 0.001). The RMSPE was calculated to be 18.4% (CUN) and 20.9% (HB) in the entire group. The bias was 133 kcal/24 h for CUN and 202 kcal/24 h for HB. Predictions significantly underestimate the RMR in male heavyweight endurance athletes but not in females. In athletes with a high fat-free mass, prediction equations might therefore not be applicable to estimate energy requirements. Instead, measurement of the resting energy expenditure or specific prediction equations might be needed for the individual heavyweight athlete. Copyright © 2011 S. Karger AG, Basel.
Cross-validation of recent and longstanding resting metabolic rate prediction equations
USDA-ARS?s Scientific Manuscript database
Resting metabolic rate (RMR) measurement is time consuming and requires specialized equipment. Prediction equations provide an easy method to estimate RMR; however, their accuracy likely varies across individuals. Understanding the factors that influence predicted RMR accuracy at the individual lev...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narlesky, Joshua Edward; Kelly, Elizabeth J.
2015-09-10
This report documents the new PG calibration regression equation. These calibration equations incorporate new data that have become available since revision 1 of “A Calibration to Predict the Concentrations of Impurities in Plutonium Oxide by Prompt Gamma Analysis” was issued [3] The calibration equations are based on a weighted least squares (WLS) approach for the regression. The WLS method gives each data point its proper amount of influence over the parameter estimates. This gives two big advantages, more precise parameter estimates and better and more defensible estimates of uncertainties. The WLS approach makes sense both statistically and experimentally because themore » variances increase with concentration, and there are physical reasons that the higher measurements are less reliable and should be less influential. The new magnesium calibration includes a correction for sodium and separate calibration equation for items with and without chlorine. These additional calibration equations allow for better predictions and smaller uncertainties for sodium in materials with and without chlorine. Chlorine and sodium have separate equations for RICH materials. Again, these equations give better predictions and smaller uncertainties chlorine and sodium for RICH materials.« less
Basal metabolic rate studies in humans: measurement and development of new equations.
Henry, C J K
2005-10-01
To facilitate the Food and Agriculture Organization/World Health Organization/United Nations University Joint (FAO/WHO/UNU) Expert Consultation on Energy and Protein Requirements which met in Rome in 1981, Schofield et al. reviewed the literature and produced predictive equations for both sexes for the following ages: 0-3, 3-10, 10-18, 18-30, 30-60 and >60 years. These formed the basis for the equations used in 1985 FAO/WHO/UNU document, Energy and Protein Requirements. While Schofield's analysis has served a significant role in re-establishing the importance of using basal metabolic rate (BMR) to predict human energy requirements, recent workers have subsequently queried the universal validity and application of these equations. A survey of the most recent studies (1980-2000) in BMR suggests that in most cases the current FAO/WHO/UNU predictive equations overestimate BMR in many communities. The FAO/WHO/UNU equations to predict BMR were developed using a database that contained a disproportionate number--3388 out of 7173 (47%)--of Italian subjects. The Schofield database contained relatively few subjects from the tropical region. The objective here is to review the historical development in the measurement and application of BMR and to critically review the Schofield et al. BMR database presenting a series of new equations to predict BMR. This division, while arbitrary, will enable readers who wish to omit the historical review of BMR to concentrate on the evolution of the new BMR equations. BMR data collected from published and measured values. A series of new equations (Oxford equations) have been developed using a data set of 10,552 BMR values that (1) excluded all the Italian subjects and (2) included a much larger number (4018) of people from the tropics. In general, the Oxford equations tend to produce lower BMR values than the current FAO/WHO/UNU equations in 18-30 and 30-60 year old males and in all females over 18 years of age. This is an opportune moment to re-examine the role and place of BMR measurements in estimating total energy requirements today. The Oxford equations' future use and application will surely depend on their ability to predict more accurately the BMR in contemporary populations.
McNair, Peter J; Colvin, Matt; Reid, Duncan
2011-02-01
To compare the accuracy of 12 maximal strength (1-repetition maximum [1-RM]) equations for predicting quadriceps strength in people with osteoarthritis (OA) of the knee joint. Eighteen subjects with OA of the knee joint attended a rehabilitation gymnasium on 3 occasions: 1) a familiarization session, 2) a session where the 1-RM of the quadriceps was established using a weights machine for an open-chain knee extension exercise and a leg press exercise, and 3) a session where the subjects performed with a load at which they could lift for approximately 10 repetitions only. The data were used in 12 prediction equations to calculate 1-RM strength and compared to the actual 1-RM data. Data were examined using Bland and Altman graphs and statistics, intraclass correlation coefficients (ICCs), and typical error values between the actual 1-RM and the respective 1-RM prediction equation data. Difference scores (predicted 1-RM--actual 1-RM) across the injured and control legs were also compared. For the knee extension exercise, the Brown, Brzycki, Epley, Lander, Mayhew et al, Poliquin, and Wathen prediction equations demonstrated the greatest levels of predictive accuracy. All of the ICCs were high (range 0.96–0.99), and typical errors were between 3% and 4%. For the knee press exercise, the Adams, Berger, Kemmler et al, and O'Conner et al equations demonstrated the greatest levels of predictive accuracy. All of the ICCs were high (range 0.95-0.98), and the typical errors ranged from 5.9-6.3%. This study provided evidence supporting the use of prediction equations to assess maximal strength in individuals with a knee joint with OA.
The Pandolf equation under-predicts the metabolic rate of contemporary military load carriage.
Drain, Jace R; Aisbett, Brad; Lewis, Michael; Billing, Daniel C
2017-11-01
This investigation assessed the accuracy of error of the Pandolf load carriage energy expenditure equation when simulating contemporary military conditions (load distribution, external load and walking speed). Within-participant design. Sixteen male participants completed 10 trials comprised of five walking speeds (2.5, 3.5, 4.5, 5.5 and 6.5km·h -1 ) and two external loads (22.7 and 38.4kg). The Pandolf equation demonstrated poor predictive precision, with a mean bias of 124.9W and -48.7 to 298.5W 95% limits of agreement. Furthermore, the Pandolf equation systematically under-predicted metabolic rate (p<0.05) across the 10 speed-load combinations. Predicted metabolic rate error ranged from 12-33% across all conditions with the 'moderate' walking speeds (i.e. 4.5-5.5km·h -1 ) yielding less prediction error (12-17%) when compared to the slower and faster walking speeds (21-33%). Factors such as mechanical efficiency and load distribution contribute to the impaired predictive accuracy. The authors suggest the Pandolf equation should be applied to military load carriage with caution. Copyright © 2017 Sports Medicine Australia. All rights reserved.
Yang, Xueli; Li, Jianxin; Hu, Dongsheng; Chen, Jichun; Li, Ying; Huang, Jianfeng; Liu, Xiaoqing; Liu, Fangchao; Cao, Jie; Shen, Chong; Yu, Ling; Lu, Fanghong; Wu, Xianping; Zhao, Liancheng; Wu, Xigui; Gu, Dongfeng
2016-11-08
The accurate assessment of individual risk can be of great value to guiding and facilitating the prevention of atherosclerotic cardiovascular disease (ASCVD). However, prediction models in common use were formulated primarily in white populations. The China-PAR project (Prediction for ASCVD Risk in China) is aimed at developing and validating 10-year risk prediction equations for ASCVD from 4 contemporary Chinese cohorts. Two prospective studies followed up together with a unified protocol were used as the derivation cohort to develop 10-year ASCVD risk equations in 21 320 Chinese participants. The external validation was evaluated in 2 independent Chinese cohorts with 14 123 and 70 838 participants. Furthermore, model performance was compared with the Pooled Cohort Equations reported in the American College of Cardiology/American Heart Association guideline. Over 12 years of follow-up in the derivation cohort with 21 320 Chinese participants, 1048 subjects developed a first ASCVD event. Sex-specific equations had C statistics of 0.794 (95% confidence interval, 0.775-0.814) for men and 0.811 (95% confidence interval, 0.787-0.835) for women. The predicted rates were similar to the observed rates, as indicated by a calibration χ 2 of 13.1 for men (P=0.16) and 12.8 for women (P=0.17). Good internal and external validations of our equations were achieved in subsequent analyses. Compared with the Chinese equations, the Pooled Cohort Equations had lower C statistics and much higher calibration χ 2 values in men. Our project developed effective tools with good performance for 10-year ASCVD risk prediction among a Chinese population that will help to improve the primary prevention and management of cardiovascular disease. © 2016 American Heart Association, Inc.
Choi, Ji Ho; Jun, Young Joon; Oh, Jeong In; Jung, Jong Yoon; Hwang, Gyu Ho; Kwon, Soon Young; Lee, Heung Man; Kim, Tae Hoon; Lee, Sang Hag; Lee, Seung Hoon
2013-05-01
The aims of the present study were twofold. We sought to compare two methods of titrating the level of continuous positive airway pressure (CPAP) - auto-adjusting titration and titration using a predictive equation - with full-night manual titration used as the benchmark. We also investigated the reliability of the two methods in patients with obstructive sleep apnea syndrome (OSAS). Twenty consecutive adult patients with OSAS who had successful, full-night manual and auto-adjusting CPAP titration participated in this study. The titration pressure level was calculated with a previously developed predictive equation based on body mass index and apnea-hypopnea index. The mean titration pressure levels obtained with the manual, auto-adjusting, and predictive equation methods were 9.0 +/- 3.6, 9.4 +/- 3.0, and 8.1 +/- 1.6 cm H2O,respectively. There was a significant difference in the concordance within the range of +/- 2 cm H2O (p = 0.019) between both the auto-adjusting titration and the titration using the predictive equation compared to the full-night manual titration. However, there was no significant difference in the concordance within the range of +/- 1 cm H2O (p > 0.999). When compared to full-night manual titration as the standard method, auto-adjusting titration appears to be more reliable than using a predictive equation for determining the optimal CPAP level in patients with OSAS.
Hicks, C; Schinckel, A P; Forrest, J C; Akridge, J T; Wagner, J R; Chen, W
1998-09-01
Carcass and live measurements of 165 market hogs that represented seven genotypes were used to investigate genotype and sex biases associated with the prediction of fat-free lean mass (FFLM) and carcass value. Carcass value was determined as the sum of the product of weight of individual cuts and their average unit prices adjusted for slaughter and processing costs. Independent variables used in the prediction equations included carcass measurements, such as optical probe, midline ruler, ribbed carcass measurements, and electromagnetic scanning (EMSCAN), and live animal ultrasonic scanning. The effect of including subpopulation mean values of independent variables in the prediction equations for FFLM and carcass value was also investigated. Genotype and sex biases were found in equations in which midline backfat, ribbed carcass, EMSCAN, and live ultrasonic scanning were used as single technology sets of measurements. The prediction equations generally undervalued genotypes with above-average carcass value. Biases were reduced when measurements of combined technologies and mean adjusted variables were used. The FFLM and carcass value of gilts were underestimated, and they were overestimated of barrows. Equations that combined OP and EMSCAN technologies were the most accurate and least biased for both FFLM and carcass value. Equations that included carcass weight and midline last-rib backfat thickness measurements were the least accurate and most biased. Genotype and sex biases must be considered when predicting FFLM and carcass value.
Predicting fire frequency with chemistry and climate
Richard P. Guyette; Michael C. Stambaugh; Daniel C. Dey; Rose-Marie Muzika
2012-01-01
A predictive equation for estimating fire frequency was developed from theories and data in physical chemistry, ecosystem ecology, and climatology. We refer to this equation as the Physical Chemistry Fire Frequency Model (PC2FM). The equation was calibrated and validated with North American fire data (170 sites) prior to widespread industrial influences (before ...
A Volume and Taper Prediction System for Bald Cypress
Bernard R. Parresol; James E. Hotvedt; Quang V. Cao
1987-01-01
A volume and taper prediction system based on d10 and consisting of a total volume equation, two volume ratio equations (one for diameter limits, the other for height limits), and a taper equation was developed for bald cypress using sample tree data collected in Louisiana. Normal diameter (dn), a subjective variable-...
The Empirical Derivation of Equations for Predicting Subjective Textual Information. Final Report.
ERIC Educational Resources Information Center
Kauffman, Dan; And Others
A study was made to derive an equation for predicting the "subjective" textual information contained in a text of material written in the English language. Specifically, this investigation describes, by a mathematical equation, the relationship between the "subjective" information content of written textual material and the relative number of…
Nusdwinuringtyas, Nury; Widjajalaksmi; Yunus, Faisal; Alwi, Idrus
2014-04-01
to develop a reference equation for prediction of the total distance walk using Indonesian anthropometrics of sedentary healthy subjects. Subsequently, the prediction obtained was compared to those calculated by the Caucasian-based Enright prediction equation. the cross-sectional study was conducted among 123 healthy Indonesian adults with sedentary life style (58 male and 65 female subjects in an age range between 18 and 50 years). Heart rate was recorded using Polar with expectation in the sub-maximal zone (120-170 beats per minute). The subjects performed two six-minute walk tests, the first one on a 15-meter track according to the protocol developed by the investigator. The second walk was carried out on Biodex®gait trainer as gold standard. an average total distance of 547±54.24 m was found, not significantly different from the gold standard of 544.72±54.11 m (p>0.05). Multiple regression analysis was performed to develop the new equation. the reference equation for prediction of the total distance using Indonesian anthropometrics is more applicable in Indonesia.
Piernas Sánchez, C M; Morales Falo, E M; Zamora Navarro, S; Garaulet Aza, M
2010-01-01
The excess of visceral abdominal adipose tissue is one of the major concerns in obesity and its clinical treatment. To apply the two-dimensional predictive equation proposed by Garaulet et al. to determine the abdominal fat distribution and to compare the results with the body composition obtained by multi-frequency bioelectrical impedance analysis (M-BIA). We studied 230 women, who underwent anthropometry and M-BIA. The predictive equation was applied. Multivariate lineal and partial correlation analyses were performed with control for BMI and % body fat, using SPSS 15.0 with statistical significance P < 0.05. Overall, women were considered as having subcutaneous distribution of abdominal fat. Truncal fat, regional fat and muscular mass were negatively associated with VA/SA(predicted), while the visceral index obtained by M-BIA was positively correlated with VA/SA(predicted). The predictive equation may be useful in the clinical practice to obtain an accurate, costless and safe classification of abdominal obesity.
Considerations of the Use of 3-D Geophysical Models to Predict Test Ban Monitoring Observables
2007-09-01
predict first P arrival times. Since this is a 3-D model, the travel times are predicted with a 3-D finite-difference code solving the eikonal equations...for the eikonal wave equation should provide more accurate predictions of travel-time from 3D models. These techniques and others are being
Scour assessments and sediment-transport simulation for selected bridge sites in South Dakota
Niehus, C.A.
1996-01-01
Scour at bridges is a major concern in the design of new bridges and in the evaluation of structural stability of existing bridges. Equations for estimating pier, contraction, and abutment scour have been developed from numerous laboratory studies using sand-bed flumes, but little verification of these scour equations has been done for actual rivers with various bed conditions. This report describes the results of reconnaissance and detailed scour assessments and a sediment-transport simulation for selected bridge sites in South Dakota. Reconnaissance scour assessments were done during 1991 for 32 bridge sites. The reconnaissance assessments for each bridge site included compilation of general and structural data, field inspection to record and measure pertinent scour variables, and evaluation of scour susceptibility using various scour-index forms. Observed pier scour at the 32 sites ranged from 0 to 7 feet, observed contraction scour ranged from 0 to 4 feet, and observed abutment scour ranged from 0 to 10 feet. Thirteen bridge sites having high potential for scour were selected for detailed assessments, which were accomplished during 1992-95. These detailed assessments included prediction of scour depths for 2-, 100-, and 500-year flows using selected published scour equations; measurement of scour during high flows; comparison of measured and predicted scour; and identification of which scour equations best predict actual scour. The medians of predicted pier-scour depth at each of the 13 bridge sites (using 13 scour equations) ranged from 2.4 to 6.8 feet for the 2-year flows and ranged from 3.4 to 13.3 feet for the 500-year flows. The maximum pier scour measured during high flows ranged from 0 to 8.5 feet. Statistical comparison (Spearman rank correlation) of predicted pier-scour depths (using flow data col- lected during scour measurements) indicate that the Laursen, Shen (method b), Colorado State University, and Blench (method b) equations correlate closer with measured scour than do the other prediction equations. The predicted pier-scour depths using the Varzeliotis and Carstens equations have weak statistical rela- tions with measured scour depths. Medians of predicted pier-scour depth from the Shen (method a), Chitale, Bata, and Carstens equations are statistically equal to the median of measured pier-scour depths, based on the Wilcoxon signed-ranks test. The medians of contraction scour depth at each of the 13 bridge sites (using one equation) ranged from -0.1 foot for the 2- year flows to 23.2 feet for the 500-year flows. The maximum contraction scour measured during high flows ranged from 0 to 3.0 feet. The contraction- scour prediction equation substantially overestimated the scour depths in almost all comparisons with the measured scour depths. A significant reason for this discrepancy is due to the wide flood plain (as wide as 5,000 feet) at most of the bridge sites that were investigated. One possible way to reduce this effect for bridge design is to make a decision on what is the effective approach section and thereby limit the size of the bridge flow approach width. The medians of abutment-scour depth at each of the 13 bridge sites (using five equations) ranged from 8.2 to 16.5 feet for the 2-year flows and ranged from 5.7 to 41 feet for the 500-year flows. The maximum abutment scour measured during high flows ranged from 0 to 4.0 feet. The abutment-scour prediction equations also substantially overestimated the scour depths in almost all comparisons with the measured scour depths. The Liu and others (live bed) equation predicted abutment-scour depths substantially lower than the other four abutment-scour equations and closer to the actual measured scour depths. However, this equation at times predicted greater scour depths for 2-year flows than it did for 500-year flows, making its use highly questionable. Again, limiting the bridge flow approach width would produce more reasonable predicted abutment scour.
Stochastic Prediction and Feedback Control of Router Queue Size in a Virtual Network Environment
2014-09-18
predictor equations, while the update equations for measurement can be thought of as corrector equations. 11 2.3.1.1 Predict Equations In the... Adaptive Filters and Self -Learning Systems. Springer London, 2005. [11] Zarchan, P., and Musoff, H. Fundamentals of Kalman filtering: A Practical...iv AFIT-ENG-T-14-S-10 Abstract Modern congestion and routing management algorithms work well for networks with static topologies and moderate
Ground-Motion Prediction Equations (GMPEs) from a global dataset: the PEERPEER NGA equations
Boore, David M.; Akkar, Sinan; Gulkan, Polat; van Eck, Torild
2011-01-01
The PEER NGA ground-motion prediction equation s (GMPEs) were derived by five developer teams over several years, resulting in five sets of GMPEs. The teams used various subsets of a global database of ground motions and metadata from shallow earthquakes in tectonically active regions in the development of the equations. Since their publication, the predicted motions from these GMPEs have been compared with data from various parts of the world – data that largely were not used in the development of the GMPEs. The comparisons suggest that the NGA GMPEs are applicable globally for shallow earthquakes in tectonically active regions.
Prediction equations of forced oscillation technique: the insidious role of collinearity.
Narchi, Hassib; AlBlooshi, Afaf
2018-03-27
Many studies have reported reference data for forced oscillation technique (FOT) in healthy children. The prediction equation of FOT parameters were derived from a multivariable regression model examining the effect of age, gender, weight and height on each parameter. As many of these variables are likely to be correlated, collinearity might have affected the accuracy of the model, potentially resulting in misleading, erroneous or difficult to interpret conclusions.The aim of this work was: To review all FOT publications in children since 2005 to analyze whether collinearity was considered in the construction of the published prediction equations. Then to compare these prediction equations with our own study. And to analyse, in our study, how collinearity between the explanatory variables might affect the predicted equations if it was not considered in the model. The results showed that none of the ten reviewed studies had stated whether collinearity was checked for. Half of the reports had also included in their equations variables which are physiologically correlated, such as age, weight and height. The predicted resistance varied by up to 28% amongst these studies. And in our study, multicollinearity was identified between the explanatory variables initially considered for the regression model (age, weight and height). Ignoring it would have resulted in inaccuracies in the coefficients of the equation, their signs (positive or negative), their 95% confidence intervals, their significance level and the model goodness of fit. In Conclusion with inaccurately constructed and improperly reported models, understanding the results and reproducing the models for future research might be compromised.
Energy prediction equations are inadequate for obese Hispanic youth.
Klein, Catherine J; Villavicencio, Stephan A; Schweitzer, Amy; Bethepu, Joel S; Hoffman, Heather J; Mirza, Nazrat M
2011-08-01
Assessing energy requirements is a fundamental activity in clinical dietetics practice. A study was designed to determine whether published linear regression equations were accurate for predicting resting energy expenditure (REE) in fasted Hispanic children with obesity (aged 7 to 15 years). REE was measured using indirect calorimetry; body composition was estimated with whole-body air displacement plethysmography. REE was predicted using four equations: Institute of Medicine for healthy-weight children (IOM-HW), IOM for overweight and obese children (IOM-OS), Harris-Benedict, and Schofield. Accuracy of the prediction was calculated as the absolute value of the difference between the measured and predicted REE divided by the measured REE, expressed as a percentage. Predicted values within 85% to 115% of measured were defined as accurate. Participants (n=58; 53% boys) were mean age 11.8±2.1 years, had 43.5%±5.1% body fat, and had a body mass index of 31.5±5.8 (98.6±1.1 body mass index percentile). Measured REE was 2,339±680 kcal/day; predicted REE was 1,815±401 kcal/day (IOM-HW), 1,794±311 kcal/day (IOM-OS), 1,151±300 kcal/day (Harris-Benedict), and, 1,771±316 kcal/day (Schofield). Measured REE adjusted for body weight averaged 32.0±8.4 kcal/kg/day (95% confidence interval 29.8 to 34.2). Published equations predicted REE within 15% accuracy for only 36% to 40% of 58 participants, except for Harris-Benedict, which did not achieve accuracy for any participant. The most frequently accurate values were obtained using IOM-HW, which predicted REE within 15% accuracy for 55% (17/31) of boys. Published equations did not accurately predict REE for youth in the study sample. Further studies are warranted to formulate accurate energy prediction equations for this population. Copyright © 2011 American Dietetic Association. Published by Elsevier Inc. All rights reserved.
Thompson, Ronald E.; Hoffman, Scott A.
2006-01-01
A suite of 28 streamflow statistics, ranging from extreme low to high flows, was computed for 17 continuous-record streamflow-gaging stations and predicted for 20 partial-record stations in Monroe County and contiguous counties in north-eastern Pennsylvania. The predicted statistics for the partial-record stations were based on regression analyses relating inter-mittent flow measurements made at the partial-record stations indexed to concurrent daily mean flows at continuous-record stations during base-flow conditions. The same statistics also were predicted for 134 ungaged stream locations in Monroe County on the basis of regression analyses relating the statistics to GIS-determined basin characteristics for the continuous-record station drainage areas. The prediction methodology for developing the regression equations used to estimate statistics was developed for estimating low-flow frequencies. This study and a companion study found that the methodology also has application potential for predicting intermediate- and high-flow statistics. The statistics included mean monthly flows, mean annual flow, 7-day low flows for three recurrence intervals, nine flow durations, mean annual base flow, and annual mean base flows for two recurrence intervals. Low standard errors of prediction and high coefficients of determination (R2) indicated good results in using the regression equations to predict the statistics. Regression equations for the larger flow statistics tended to have lower standard errors of prediction and higher coefficients of determination (R2) than equations for the smaller flow statistics. The report discusses the methodologies used in determining the statistics and the limitations of the statistics and the equations used to predict the statistics. Caution is indicated in using the predicted statistics for small drainage area situations. Study results constitute input needed by water-resource managers in Monroe County for planning purposes and evaluation of water-resources availability.
Internally electrodynamic particle model: Its experimental basis and its predictions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng-Johansson, J. X., E-mail: jxzj@iofpr.or
2010-03-15
The internally electrodynamic (IED) particle model was derived based on overall experimental observations, with the IED process itself being built directly on three experimental facts: (a) electric charges present with all material particles, (b) an accelerated charge generates electromagnetic waves according to Maxwell's equations and Planck energy equation, and (c) source motion produces Doppler effect. A set of well-known basic particle equations and properties become predictable based on first principles solutions for the IED process; several key solutions achieved are outlined, including the de Broglie phase wave, de Broglie relations, Schroedinger equation, mass, Einstein mass-energy relation, Newton's law of gravity,more » single particle self interference, and electromagnetic radiation and absorption; these equations and properties have long been broadly experimentally validated or demonstrated. A conditioned solution also predicts the Doebner-Goldin equation which emerges to represent a form of long-sought quantum wave equation including gravity. A critical review of the key experiments is given which suggests that the IED process underlies the basic particle equations and properties not just sufficiently but also necessarily.« less
Internally electrodynamic particle model: Its experimental basis and its predictions
NASA Astrophysics Data System (ADS)
Zheng-Johansson, J. X.
2010-03-01
The internally electrodynamic (IED) particle model was derived based on overall experimental observations, with the IED process itself being built directly on three experimental facts: (a) electric charges present with all material particles, (b) an accelerated charge generates electromagnetic waves according to Maxwell’s equations and Planck energy equation, and (c) source motion produces Doppler effect. A set of well-known basic particle equations and properties become predictable based on first principles solutions for the IED process; several key solutions achieved are outlined, including the de Broglie phase wave, de Broglie relations, Schrödinger equation, mass, Einstein mass-energy relation, Newton’s law of gravity, single particle self interference, and electromagnetic radiation and absorption; these equations and properties have long been broadly experimentally validated or demonstrated. A conditioned solution also predicts the Doebner-Goldin equation which emerges to represent a form of long-sought quantum wave equation including gravity. A critical review of the key experiments is given which suggests that the IED process underlies the basic particle equations and properties not just sufficiently but also necessarily.
A near-wall four-equation turbulence model for compressible boundary layers
NASA Technical Reports Server (NTRS)
Sommer, T. P.; So, R. M. C.; Zhang, H. S.
1992-01-01
A near-wall four-equation turbulence model is developed for the calculation of high-speed compressible turbulent boundary layers. The four equations used are the k-epsilon equations and the theta(exp 2)-epsilon(sub theta) equations. These equations are used to define the turbulent diffusivities for momentum and heat fluxes, thus allowing the assumption of dynamic similarity between momentum and heat transport to be relaxed. The Favre-averaged equations of motion are solved in conjunction with the four transport equations. Calculations are compared with measurements and with another model's predictions where the assumption of the constant turbulent Prandtl number is invoked. Compressible flat plate turbulent boundary layers with both adiabatic and constant temperature wall boundary conditions are considered. Results for the range of low Mach numbers and temperature ratios investigated are essentially the same as those obtained using an identical near-wall k-epsilon model. In general, the numerical predictions are in very good agreement with measurements and there are significant improvements in the predictions of mean flow properties at high Mach numbers.
Walker, Christopher S; Yapuncich, Gabriel S; Sridhar, Shilpa; Cameron, Noël; Churchill, Steven E
2018-02-01
Body mass is an ecologically and biomechanically important variable in the study of hominin biology. Regression equations derived from recent human samples allow for the reasonable prediction of body mass of later, more human-like, and generally larger hominins from hip joint dimensions, but potential differences in hip biomechanics across hominin taxa render their use questionable with some earlier taxa (i.e., Australopithecus spp.). Morphometric prediction equations using stature and bi-iliac breadth avoid this problem, but their applicability to early hominins, some of which differ in both size and proportions from modern adult humans, has not been demonstrated. Here we use mean stature, bi-iliac breadth, and body mass from a global sample of human juveniles ranging in age from 6 to 12 years (n = 530 age- and sex-specific group annual means from 33 countries/regions) to evaluate the accuracy of several published morphometric prediction equations when applied to small humans. Though the body proportions of modern human juveniles likely differ from those of small-bodied early hominins, human juveniles (like fossil hominins) often differ in size and proportions from adult human reference samples and, accordingly, serve as a useful model for assessing the robustness of morphometric prediction equations. Morphometric equations based on adults systematically underpredict body mass in the youngest age groups and moderately overpredict body mass in the older groups, which fall in the body size range of adult Australopithecus (∼26-46 kg). Differences in body proportions, notably the ratio of lower limb length to stature, influence predictive accuracy. Ontogenetic changes in these body proportions likely influence the shift in prediction error (from under- to overprediction). However, because morphometric equations are reasonably accurate when applied to this juvenile test sample, we argue these equations may be used to predict body mass in small-bodied hominins, despite the potential for some error induced by differing body proportions and/or extrapolation beyond the original reference sample range. Copyright © 2017 Elsevier Ltd. All rights reserved.
Predicting logging residues: an interim equation for Appalachian oak sawtimber
A. Jeff Martin
1975-01-01
An equation, using dbh, dbh², bole length, and sawlog height to predict the cubic-foot volume of logging residue per tree, was developed from data collected on 36 mixed oaks in southwestern Virginia. The equation produced reliable results for small sawtimber trees, but additional research is needed for other species, sites, and utilization practices.
Validation of a New Skinfold Prediction Equation Based on Dual-Energy X-Ray Absorptiometry
ERIC Educational Resources Information Center
Ball, Stephen; Cowan, Celsi; Thyfault, John; LaFontaine, Tom
2014-01-01
Skinfold prediction equations recommended by the American College of Sports Medicine underestimate body fat percentage. The purpose of this research was to validate an alternative equation for men created from dual energy x-ray absorptiometry. Two hundred ninety-seven males, aged 18-65, completed a skinfold assessment and dual energy x-ray…
J.B. St. Clair
1993-01-01
Logarithmic regression equations were developed to predict component biomass and leaf area for an 18-yr-old genetic test of Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco var. menziesii) based on stem diameter or cross-sectional sapwood area. Equations did not differ among open-pollinated families in slope, but intercepts...
Five-equation and robust three-equation methods for solution verification of large eddy simulation
NASA Astrophysics Data System (ADS)
Dutta, Rabijit; Xing, Tao
2018-02-01
This study evaluates the recently developed general framework for solution verification methods for large eddy simulation (LES) using implicitly filtered LES of periodic channel flows at friction Reynolds number of 395 on eight systematically refined grids. The seven-equation method shows that the coupling error based on Hypothesis I is much smaller as compared with the numerical and modeling errors and therefore can be neglected. The authors recommend five-equation method based on Hypothesis II, which shows a monotonic convergence behavior of the predicted numerical benchmark ( S C ), and provides realistic error estimates without the need of fixing the orders of accuracy for either numerical or modeling errors. Based on the results from seven-equation and five-equation methods, less expensive three and four-equation methods for practical LES applications were derived. It was found that the new three-equation method is robust as it can be applied to any convergence types and reasonably predict the error trends. It was also observed that the numerical and modeling errors usually have opposite signs, which suggests error cancellation play an essential role in LES. When Reynolds averaged Navier-Stokes (RANS) based error estimation method is applied, it shows significant error in the prediction of S C on coarse meshes. However, it predicts reasonable S C when the grids resolve at least 80% of the total turbulent kinetic energy.
Predicting one repetition maximum equations accuracy in paralympic rowers with motor disabilities.
Schwingel, Paulo A; Porto, Yuri C; Dias, Marcelo C M; Moreira, Mônica M; Zoppi, Cláudio C
2009-05-01
Predicting one repetition maximum equations accuracy in paralympic rowers Resistance training intensity is prescribed using percentiles of the maximum strength, defined as the maximum tension generated for a muscle or muscular group. This value is found through the application of the one maximal repetition (1RM) test. One maximal repetition test demands time and still is not appropriate for some populations because of the risk it offers. In recent years, the prediction of maximal strength, through predicting equations, has been used to prevent the inconveniences of the 1RM test. The purpose of this study was to verify the accuracy of 12 1RM predicting equations for disabled rowers. Nine male paralympic rowers (7 one-leg amputated rowers and 2 cerebral paralyzed rowers; age, 30 +/- 7.9 years; height, 175.1 +/- 5.9 cm; weight, 69 +/- 13.6 kg) performed 1RM test for lying T-bar row and flat barbell bench press exercises to determine upper-body strength and leg press exercise to determine lower-body strength. One maximal repetition test was performed, and based on submaximal repetitions loads, several linear and exponential equations models were tested with regard of their accuracy. We did not find statistical differences for lying T-bar row and bench press exercises between measured and predicted 1RM values (p = 0.84 and 0.23 for lying T-bar row and flat barbell bench press, respectively); however, leg press exercise reached a high significant difference between measured and predicted values (p < 0.01). In conclusion, rowers with motor disabilities tolerate 1RM testing procedures, and predicting 1RM equations are accurate for bench press and lying T-bar row, but not for leg press, in this kind of athlete.
An artificial neural network to predict resting energy expenditure in obesity.
Disse, Emmanuel; Ledoux, Séverine; Bétry, Cécile; Caussy, Cyrielle; Maitrepierre, Christine; Coupaye, Muriel; Laville, Martine; Simon, Chantal
2017-09-01
The resting energy expenditure (REE) determination is important in nutrition for adequate dietary prescription. The gold standard i.e. indirect calorimetry is not available in clinical settings. Thus, several predictive equations have been developed, but they lack of accuracy in subjects with extreme weight including obese populations. Artificial neural networks (ANN) are useful predictive tools in the area of artificial intelligence, used in numerous clinical fields. The aim of this study was to determine the relevance of ANN in predicting REE in obesity. A Multi-Layer Perceptron (MLP) feed-forward neural network with a back propagation algorithm was created and cross-validated in a cohort of 565 obese subjects (BMI within 30-50 kg m -2 ) with weight, height, sex and age as clinical inputs and REE measured by indirect calorimetry as output. The predictive performances of ANN were compared to those of 23 predictive REE equations in the training set and in two independent sets of 100 and 237 obese subjects for external validation. Among the 23 established prediction equations for REE evaluated, the Harris & Benedict equations recalculated by Roza were the most accurate for the obese population, followed by the USA DRI, Müller and the original Harris & Benedict equations. The final 5-fold cross-validated three-layer 4-3-1 feed-forward back propagation ANN model developed in that study improved precision and accuracy of REE prediction over linear equations (precision = 68.1%, MAPE = 8.6% and RMSPE = 210 kcal/d), independently from BMI subgroups within 30-50 kg m -2 . External validation confirmed the better predictive performances of ANN model (precision = 73% and 65%, MAPE = 7.7% and 8.6%, RMSPE = 187 kcal/d and 200 kcal/d in the 2 independent datasets) for the prediction of REE in obese subjects. We developed and validated an ANN model for the prediction of REE in obese subjects that is more precise and accurate than established REE predictive equations independent from BMI subgroups. For convenient use in clinical settings, we provide a simple ANN-REE calculator available at: https://www.crnh-rhone-alpes.fr/fr/ANN-REE-Calculator. Copyright © 2017 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Validation of predictive equations for weight and height using a metric tape.
Rabito, E I; Mialich, M S; Martínez, E Z; García, R W D; Jordao, A A; Marchini, J S
2008-01-01
Weight and height measurements are important data for the evaluation of nutritional status but some situations prevent the execution of these measurements in the standard manner, using special equipment or an estimate by predictive equations. Predictive equations of height and weight requiring only a metric tape as an instrument have been recently developed. To validate three predictive equations for weight and two for height by Rabito and evaluating their agreement with the equations proposed by Chumlea. The following data were collected: sex, age and anthropometric measurements, ie, weight (kg), height (m), subscapular skinfold (mm), calf (cm), arm (cm) and abdominal (cm) circumferences, arm length (cm), and half span (cm). Data were analyzed statistically using the Lin coefficient to test the agreement between the equations and the St. Laurent coefficient to compare the estimated weight and height values with real values. 100 adults (age 48 +/- 18 years) admitted to the University Hospital (HCFMRP/USP) were evaluated. Equations I: W(kg) = 0.5030 (AC) + 0.5634 (AbC) + 1.3180 (CC) +0.0339 (SSSF) - 43.1560 and II: W (kg) = 0.4808 (AC) + 0.5646 (AbC) +1.3160 (CC) - 42.2450 showed the highest coefficients of agreement for weight and equations IV and V showed the highest coefficients of agreement for height. The St. Laurent coefficient indicated that equations III and V were valid for weight and height, respectively. Among the validated equations, the number III W (kg) = 0.5759 (AC) + 0.5263 (AbC) +1.2452 (CC) - 4.8689 (S) - 32.9241 and VH (m) = 63,525 -3,237(S) - 0,06904 (A) + 1,293 (HS) are recommended for height or weight because of their easy use for hospitalized patients and the equations be validated in other situations.
Siervo, Mario; Bunn, Diane; Prado, Carla M; Hooper, Lee
2014-01-01
Background: Serum osmolality is an accurate indicator of hydration status in older adults. Glucose, urea, and electrolyte concentrations are used to calculate serum osmolarity, which is an indirect estimate of serum osmolality, but which serum osmolarity equations best predict serum osmolality in the elderly is unclear. Objective: We assessed the agreement of measured serum osmolality with calculated serum osmolarity equations in older people. Design: Serum osmolality was measured by using freezing point depression in a cross-sectional study. Plasma glucose, urea, and electrolytes were analyzed and entered into 38 serum osmolarity-prediction equations. The Bland-Altman method was used to evaluate the agreement and differential bias between measured osmolality and calculated osmolarity. The sensitivity and specificity of the most-promising equations were examined against serum osmolality (reference standard). Results: A total of 186 people living in UK residential care took part in the Dehydration Recognition In our Elders study (66% women; mean ± SD age: 85.8 ± 7.9 y; with a range of cognitive and physical impairments) and were included in analyses. Forty-six percent of participants had impending or current dehydration (serum osmolality ≥295 mmol/kg). Participants with diabetes (n = 33; 18%) had higher glucose (P < 0.001) and serum osmolality (P < 0.01). Of 38 predictive equations used to calculate osmolarity, 4 equations showed reasonable agreement with measured osmolality. One [calculated osmolarity = 1.86 × (Na+ + K+) + 1.15 × glucose + urea +14; all in mmol/L] was characterized by narrower limits of agreement and the capacity to predict serum osmolality within 2% in >80% of participants, regardless of diabetes or hydration status. The equation's sensitivity (79%) and specificity (89%) for impending dehydration (≥295 mmol/kg) and current dehydration (>300 mmol/kg) (69% and 93%, respectively) were reasonable. Conclusions: The assessment of a panel of equations for the prediction of serum osmolarity led to identification of one formula with a greater diagnostic performance. This equation may be used to predict hydration status in frail older people (as a first-stage screening) or to estimate hydration status in population studies. This trial was registered at the Research Register for Social Care (http://www.researchregister.org.uk) as 122273. PMID:25030781
Validation of Field Methods to Assess Body Fat Percentage in Elite Youth Soccer Players.
Munguia-Izquierdo, Diego; Suarez-Arrones, Luis; Di Salvo, Valter; Paredes-Hernandez, Victor; Alcazar, Julian; Ara, Ignacio; Kreider, Richard; Mendez-Villanueva, Alberto
2018-05-01
This study determined the most effective field method for quantifying body fat percentage in male elite youth soccer players and developed prediction equations based on anthropometric variables. Forty-four male elite-standard youth soccer players aged 16.3-18.0 years underwent body fat percentage assessments, including bioelectrical impedance analysis and the calculation of various skinfold-based prediction equations. Dual X-ray absorptiometry provided a criterion measure of body fat percentage. Correlation coefficients, bias, limits of agreement, and differences were used as validity measures, and regression analyses were used to develop soccer-specific prediction equations. The equations from Sarria et al. (1998) and Durnin & Rahaman (1967) reached very large correlations and the lowest biases, and they reached neither the practically worthwhile difference nor the substantial difference between methods. The new youth soccer-specific skinfold equation included a combination of triceps and supraspinale skinfolds. None of the practical methods compared in this study are adequate for estimating body fat percentage in male elite youth soccer players, except for the equations from Sarria et al. (1998) and Durnin & Rahaman (1967). The new youth soccer-specific equation calculated in this investigation is the only field method specifically developed and validated in elite male players, and it shows potentially good predictive power. © Georg Thieme Verlag KG Stuttgart · New York.
Pazzianotto-Forti, Eli M; Peixoto-Souza, Fabiana S; Piconi-Mendes, Camila; Rasera-Junior, Irineu; Barbalho-Moulim, Marcela
2012-01-01
Studies on the behavior of respiratory muscle strength (RMS) in morbidly obese patients have found conflicting results. To evaluate RMS in morbidly obese women and to compare the results by using different predictive equations. This is a cross-sectional study that recruited 30 morbidly obese women and a control group of 30 normal-weight women. The subjects underwent anthropometric and maximal respiratory pressure measurement. Visual inspection of the Bland-Altman plots was performed to evaluate the correlation between the different equations, with a p value lower than 0.05 considered as statistically significant. The obese women showed a significant increase in maximal inspiratory pressure (MIP) values (-87.83±21.40 cmH(2)O) compared with normal-weight women (-72±15.23 cmH(2)O) and a significant reduction of MIP (-87.83±21.40 cmH(2)O) according to the values predicted by the EHarik equation (-130.71±11.98 cmH(2)O). Regarding the obtained maximal expiratory pressure (MEP), there were no between-group differences (p>0.05), and no agreeement was observed between obtained and predicted values of MEP and the ENeder and ECosta equations. Inspiratory muscle strength was greater in the morbidly obese subjects. The most appropriate equation for calculating the predicted MIP values for the morbidly obese seems to be Harik-Khan equation. There seem to be similarities between the respiratory muscle strength behavior of morbidly obese and normal-weight women, however, these findings are still inconclusive.
Applicability of the Tanaka-Johnston and Moyers mixed dentition analyses in Northeast Han Chinese.
Sherpa, Jangbu; Sah, Gopal; Rong, Zeng; Wu, Lipeng
2015-06-01
To assess applicability of the Tanaka-Johnston and Moyers prediction methods in a Han ethnic group from Northeast China and to develop prediction equations for this same population. Cross-sectional study. Department of Orthodontics, School of Stomatology, Jiamusi University, Heilongjiang, China. A total of 130 subjects (65 male and 65 female) aged 16-21 years from a Han ethnic group of Northeast China were recruited from dental students and patients seeking orthodontic treatment. Ethnicity was verified by questionnaire. Mesio-distal tooth width was measured using Digital Vernier calipers. Predicted values were obtained from the Tanaka-Johnston and Moyers methods in both arches were compared with the actual measured widths. Based on regression analysis, prediction equations were developed. Tanaka-Johnston equations were not precise, except for the upper arch in males. However, the Moyers 85th percentile in the upper arch and 75th percentile in the lower arch predicted the sum precisely in males. For females, the Moyers 75th percentile predicted the sum precisely for the upper arch, but none of the Moyers percentiles predicted in the lower arch. Both the Tanaka-Johnston and Moyers method may not be applied universally without question. Hence, it may be safer to develop regression equations for specific populations. Validating studies must be conducted to confirm the precision of these newly developed regression equations.
Biomass estimation for five shrubs from northeastern Minnesota.
Lewis F. Ohmann; David F. Grigal; Robert B. Brander
1976-01-01
Describes the derivation and use of biomass prediction equations for five shrub species from northeastern Minnesota. The various equations predict four weight variables based on four shrub dimensions used as independent variables.
Residual stress effects on the impact resistance and strength of fiber composites
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1973-01-01
Equations have been derived to predict degradation effects of microresidual stresses on impact resistance of unidirectional fiber composites. Equations also predict lamination residual stresses in multilayered angle ply composites.
Prediction equation for calculating fat mass in young Indian adults.
Sandhu, Jaspal Singh; Gupta, Giniya; Shenoy, Shweta
2010-06-01
Accurate measurement or prediction of fat mass is useful in physiology, nutrition and clinical medicine. Most predictive equations currently used to assess percentage of body fat or fat mass, using simple anthropometric measurements were derived from people in western societies and they may not be appropriate for individuals with other genotypic and phenotypic characteristics. We developed equations to predict fat mass from anthropometric measurements in young Indian adults. Fat mass was measured in 60 females and 58 males, aged 20 to 29 yrs by using hydrostatic weighing and by simultaneous measurement of residual lung volume. Anthropometric measure included weight (kg), height (m) and 4 skinfold thickness [STs (mm)]. Sex specific linear regression model was developed with fat mass as the dependent variable and all anthropometric measures as independent variables. The prediction equation obtained for fat mass (kg) for males was 8.46+0.32 (weight) - 15.16 (height) + 9.54 (log of sum of 4 STs) (R2= 0. 53, SEE=3.42 kg) and - 20.22 + 0.33 (weight) + 3.44 (height) + 7.66 (log of sum of 4 STs) (R2=0.72, SEE=3.01kg) for females. A new prediction equation for the measurement of fat mass was derived and internally validated in young Indian adults using simple anthropometric measurements.
Galindo-Romero, Marta; Lippert, Tristan; Gavrilov, Alexander
2015-12-01
This paper presents an empirical linear equation to predict peak pressure level of anthropogenic impulsive signals based on its correlation with the sound exposure level. The regression coefficients are shown to be weakly dependent on the environmental characteristics but governed by the source type and parameters. The equation can be applied to values of the sound exposure level predicted with a numerical model, which provides a significant improvement in the prediction of the peak pressure level. Part I presents the analysis for airgun arrays signals, and Part II considers the application of the empirical equation to offshore impact piling noise.
Prediction of oxygen consumption in cardiac rehabilitation patients performing leg ergometry
NASA Astrophysics Data System (ADS)
Alvarez, John Gershwin
The purpose of this study was two-fold. First, to determine the validity of the ACSM leg ergometry equation in the prediction of steady-state oxygen consumption (VO2) in a heterogeneous population of cardiac patients. Second, to determine whether a more accurate prediction equation could be developed for use in the cardiac population. Thirty-one cardiac rehabilitation patients participated in the study of which 24 were men and 7 were women. Biometric variables (mean +/- sd) of the participants were as follows: age = 61.9 +/- 9.5 years; height = 172.6 +/- 1.6 cm; and body mass = 82.3 +/- 10.6 kg. Subjects exercised on a MonarchTM cycle ergometer at 0, 180, 360, 540 and 720 kgm ˙ min-1. The length of each stage was five minutes. Heart rate, ECG, and VO2 were continuously monitored. Blood pressure and heart rate were collected at the end of each stage. Steady state VO 2 was calculated for each stage using the average of the last two minutes. Correlation coefficients, standard error of estimate, coefficient of determination, total error, and mean bias were used to determine the accuracy of the ACSM equation (1995). The analysis found the ACSM equation to be a valid means of estimating VO2 in cardiac patients. Simple linear regression was used to develop a new equation. Regression analysis found workload to be a significant predictor of VO2. The following equation is the result: VO2 = (1.6 x kgm ˙ min-1) + 444 ml ˙ min-1. The r of the equation was .78 (p < .05) and the standard error of estimate was 211 ml ˙ min-1. Analysis of variance was used to determine significant differences between means for actual and predicted VO2 values for each equation. The analysis found the ACSM and new equation to significantly (p < .05) under predict VO2 during unloaded pedaling. Furthermore, the ACSM equation was found to significantly (p < .05) under predict VO 2 during the first loaded stage of exercise. When the accuracy of the ACSM and new equations were compared based on correlation coefficients, coefficients of determinations, SEEs, total error, and mean bias the new equation was found to have equal or better accuracy at all workloads. The final form of the new equation is: VO2 (ml ˙ min-1) = (kgm ˙ min-1 x 1.6 ml ˙ kgm-1) + (3.5 ml ˙ kg-1 ˙ min-1 x body mass in kg) + 156 ml ˙ min-1.
Gaeuman, David; Andrews, E.D.; Krause, Andreas; Smith, Wes
2009-01-01
Bed load samples from four locations in the Trinity River of northern California are analyzed to evaluate the performance of the Wilcock‐Crowe bed load transport equations for predicting fractional bed load transport rates. Bed surface particles become smaller and the fraction of sand on the bed increases with distance downstream from Lewiston Dam. The dimensionless reference shear stress for the mean bed particle size (τ*rm) is largest near the dam, but varies relatively little between the more downstream locations. The relation between τ*rm and the reference shear stresses for other size fractions is constant across all locations. Total bed load transport rates predicted with the Wilcock‐Crowe equations are within a factor of 2 of sampled transport rates for 68% of all samples. The Wilcock‐Crowe equations nonetheless consistently under‐predict the transport of particles larger than 128 mm, frequently by more than an order of magnitude. Accurate prediction of the transport rates of the largest particles is important for models in which the evolution of the surface grain size distribution determines subsequent bed load transport rates. Values of τ*rm estimated from bed load samples are up to 50% larger than those predicted with the Wilcock‐Crowe equations, and sampled bed load transport approximates equal mobility across a wider range of grain sizes than is implied by the equations. Modifications to the Wilcock‐Crowe equation for determining τ*rm and the hiding function used to scale τ*rm to other grain size fractions are proposed to achieve the best fit to observed bed load transport in the Trinity River.
Wright, Glenn A; Pustina, Andrew A; Mikat, Richard P; Kernozek, Thomas W
2012-03-01
The purpose of this study was to determine the efficacy of estimating peak lower body power from a maximal jump squat using 3 different vertical jump prediction equations. Sixty physically active college students (30 men, 30 women) performed jump squats with a weighted bar's applied load of 20, 40, and 60% of body mass across the shoulders. Each jump squat was simultaneously monitored using a force plate and a contact mat. Peak power (PP) was calculated using vertical ground reaction force from the force plate data. Commonly used equations requiring body mass and vertical jump height to estimate PP were applied such that the system mass (mass of body + applied load) was substituted for body mass. Jump height was determined from flight time as measured with a contact mat during a maximal jump squat. Estimations of PP (PP(est)) for each load and for each prediction equation were compared with criterion PP values from a force plate (PP(FP)). The PP(est) values had high test-retest reliability and were strongly correlated to PP(FP) in both men and women at all relative loads. However, only the Harman equation accurately predicted PP(FP) at all relative loads. It can therefore be concluded that the Harman equation may be used to estimate PP of a loaded jump squat knowing the system mass and peak jump height when more precise (and expensive) measurement equipment is unavailable. Further, high reliability and correlation with criterion values suggest that serial assessment of power production across training periods could be used for relative assessment of change by either of the prediction equations used in this study.
Comparison of Anthropometry to Dual Energy X-Ray Absorptiometry: A New Prediction Equation for Women
ERIC Educational Resources Information Center
Ball, Stephen; Swan, Pamela D.; DeSimone, Rosemarie
2004-01-01
The purpose of this study was to assess the accuracy of three recommended anthropometric equations for women and then develop an updated prediction equation using dual energy x-ray absorptiometry (DXA). The percentage of body fat (%BF) by anthropometry was significantly correlated (r = .896-. 929; p [is less than] .01) with DXA, but each equation…
Williams, KM; Hnatiuk, O; Mitchell, SA; Baird, K; Gadalla, SM; Steinberg, SM; Shelhamer, J; Carpenter, A; Avila, D; Taylor, T; Grkovic, L; Pulanic, D; Comis, LE; Blacklock-Schuver, B; Gress, RE; Pavletic, SZ
2017-01-01
Bronchiolitis obliterans syndrome (BOS) is a serious complication of chronic GVHD (cGVHD) following HSCT (hematopoietic SCT). The clinical diagnosis of BOS is based on pulmonary function test (PFT) abnormalities including: FEV1<75% predicted and obstructive FEV1/VC ratio, calculated using reference equations. We sought to determine if the frequency of clinical diagnoses and severity of BOS would be altered by using the recommended NHANES III vs older equations (Morris/Goldman/Bates, MGB) in 166 cGVHD patients, median age 48 (range: 12–67). We found that NHANES III equations significantly increased the prevalence of BOS, with an additional 11% (18/166) meeting diagnostic criteria by revealing low FEV1 (<75%) (P<0.0001), and six additional patients by obstructive ratio (vs MBG). Collectively, this led to an increase of BOS incidence from 17 (29/166) to 29% (41/166). For patients with severe BOS, (FEV1<35%), NHANES III equations correctly predicted death 71.4% vs 50% using MGB. In conclusion, the use of NHANES III equations markedly increases the proportion of cases meeting diagnostic criteria for BOS and improves prediction of survival. PMID:24419526
NASA Astrophysics Data System (ADS)
Wills, John M.; Mattsson, Ann E.
2012-02-01
Density functional theory (DFT) provides a formally predictive base for equation of state properties. Available approximations to the exchange/correlation functional provide accurate predictions for many materials in the periodic table. For heavy materials however, DFT calculations, using available functionals, fail to provide quantitative predictions, and often fail to be even qualitative. This deficiency is due both to the lack of the appropriate confinement physics in the exchange/correlation functional and to approximations used to evaluate the underlying equations. In order to assess and develop accurate functionals, it is essential to eliminate all other sources of error. In this talk we describe an efficient first-principles electronic structure method based on the Dirac equation and compare the results obtained with this method with other methods generally used. Implications for high-pressure equation of state of relativistic materials are demonstrated in application to Ce and the light actinides. Sandia National Laboratories is a multi-program laboratory managed andoperated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
A new mathematical solution for predicting char activation reactions
Rafsanjani, H.H.; Jamshidi, E.; Rostam-Abadi, M.
2002-01-01
The differential conservation equations that describe typical gas-solid reactions, such as activation of coal chars, yield a set of coupled second-order partial differential equations. The solution of these coupled equations by exact analytical methods is impossible. In addition, an approximate or exact solution only provides predictions for either reaction- or diffusion-controlling cases. A new mathematical solution, the quantize method (QM), was applied to predict the gasification rates of coal char when both chemical reaction and diffusion through the porous char are present. Carbon conversion rates predicted by the QM were in closer agreement with the experimental data than those predicted by the random pore model and the simple particle model. ?? 2002 Elsevier Science Ltd. All rights reserved.
Frazee, Lawrence A; Bourguet, Claire C; Gutierrez, Wilson; Elder-Arrington, Jacinta; Elackattu, Alphi E P; Haller, Nairmeen Awad
2008-01-01
In the United States, fresh-frozen plasma (FFP) is commonly used for urgent reversal of warfarin; however, dosage recommendations are difficult to find. If validated, a proposed method that uses a nonlinear relationship between international normalized ratio (INR) and clotting factor activity (CFa) would be useful. This study retrospectively evaluated a proposed equation with adult medical inpatients who received FFP for warfarin reversal. For each patient the equation was used to predict the dose of FFP required to achieve the observed change in INR, which was then compared to the actual dose. The equation was considered successful if the predicted dose was within +/-20% of the actual dose. Subgroup analyses included subjects who received concomitant vitamin K; subjects with supratherapeutic INRs (>3); and subjects with significantly elevated INRs (>5). Of the 209 patients screened, 91 met criteria for inclusion in the study. Use of the equation to calculate the predicted dose of FFP was successful in 11 patients (12.1%) with use of actual body weight for prediction and in 23 patients (25.3%) with use of ideal body weight (P = 0.02). The equation performed similarly in all subgroups analyzed. The mean predicted FFP dose was significantly greater than the actual dose in all patients when actual body weight was used (925.2 mL vs. 620.6 mL; P < 0.001). Least-squares regression modeling of repeat INR (converted to CFa) produced a model that accounted for 57% of the variance in repeat INR. The value predicted from the model was closer to the actual CFa than was the value predicted from the published equation in every comparison, but it was statistically different only when actual body weight was used. This study revealed that a published equation for calculation of FFP dose to reverse oral anticoagulation resulted in doses that were significantly higher than the actual dose. Use of ideal body weight improved accuracy but was still not successful for the majority of patients. Until trials are able to prospectively demonstrate the accuracy of a dose-prediction model for FFP, dosing will remain largely empiric.
NASA Technical Reports Server (NTRS)
West, Jeff; Yang, H. Q.; Brodnick, Jacob; Sansone, Marco; Westra, Douglas
2016-01-01
The Miles equation has long been used to predict slosh damping in liquid propellant tanks due to ring baffles. The original work by Miles identifies defined limits to its range of application. Recent evaluations of the Space Launch System identified that the Core Stage baffle designs resulted in violating the limits of the application of the Miles equation. This paper describes the work conducted by NASA/MSFC to develop methods to predict slosh damping from ring baffles for conditions for which Miles equation is not applicable. For asymptotically small slosh amplitudes or conversely large baffle widths, an asymptotic expression for slosh damping was developed and calibrated using historical experimental sub-scale slosh damping data. For the parameter space that lies between region of applicability of the asymptotic expression and the Miles equation, Computational Fluid Dynamics simulations of slosh damping were used to develop an expression for slosh damping. The combined multi-regime slosh prediction methodology is shown to be smooth at regime boundaries and consistent with both sub-scale experimental slosh damping data and the results of validated Computational Fluid Dynamics predictions of slosh damping due to ring baffles.
Depoliticizing Minority Admissions through Predicted Graduation Equations. AIR Forum 1982 Paper.
ERIC Educational Resources Information Center
Sanford, Timothy R.
The way that the University of North Carolina, Chapel Hill, has tried to depoliticize minority admissions through the use of predicted graduation equations that are race specific is examined. Multiple regression and discriminant analyses were used with nine independent variables (primarily academic) to predict graduation status of 1974 entering…
Prediction of Energy Expenditure during Walking in Adults with Down Syndrome
ERIC Educational Resources Information Center
Agiovlasitis, Stamatis; Mendonca, Goncalo V.; McCubbin, Jeffrey A.; Fernhall, Bo
2018-01-01
Background: When developing walking programmes for improving health in adults with Down syndrome (DS), physical activity professionals are in need of an equation for predicting energy expenditure. We therefore developed and cross-validated an equation for predicting the rate of oxygen uptake (VO[subscript 2]; an index of energy expenditure) for…
Progress Toward Improving Jet Noise Predictions in Hot Jets
NASA Technical Reports Server (NTRS)
Khavaran, Abbas; Kenzakowski, Donald C.
2007-01-01
An acoustic analogy methodology for improving noise predictions in hot round jets is presented. Past approaches have often neglected the impact of temperature fluctuations on the predicted sound spectral density, which could be significant for heated jets, and this has yielded noticeable acoustic under-predictions in such cases. The governing acoustic equations adopted here are a set of linearized, inhomogeneous Euler equations. These equations are combined into a single third order linear wave operator when the base flow is considered as a locally parallel mean flow. The remaining second-order fluctuations are regarded as the equivalent sources of sound and are modeled. It is shown that the hot jet effect may be introduced primarily through a fluctuating velocity/enthalpy term. Modeling this additional source requires specialized inputs from a RANS-based flowfield simulation. The information is supplied using an extension to a baseline two equation turbulence model that predicts total enthalpy variance in addition to the standard parameters. Preliminary application of this model to a series of unheated and heated subsonic jets shows significant improvement in the acoustic predictions at the 90 degree observer angle.
Diffusion coefficients in organic-water solutions and comparison with Stokes-Einstein predictions
NASA Astrophysics Data System (ADS)
Evoy, E.; Kamal, S.; Bertram, A. K.
2017-12-01
Diffusion coefficients of organic species in particles containing secondary organic material (SOM) are necessary for predicting the growth and reactivity of these particles in the atmosphere. Previously, the Stokes-Einstein equation combined with viscosity measurements have been used to predict these diffusion coefficients. However, the accuracy of the Stokes-Einstein equation for predicting diffusion coefficients in SOM-water particles has not been quantified. To test the Stokes-Einstein equation, diffusion coefficients of fluorescent organic probe molecules were measured in citric acid-water and sorbitol-water solutions. These solutions were used as proxies for SOM-water particles found in the atmosphere. Measurements were performed as a function of water activity, ranging from 0.26-0.86, and as a function of viscosity ranging from 10-3 to 103 Pa s. Diffusion coefficients were measured using fluorescence recovery after photobleaching. The measured diffusion coefficients were compared with predictions made using the Stokes-Einstein equation combined with literature viscosity data. Within the uncertainties of the measurements, the measured diffusion coefficients agreed with the predicted diffusion coefficients, in all cases.
Chan, Dorothy F Y; Li, Albert M; Chan, Michael H M; So, Hung Kwan; Chan, Iris H S; Yin, Jane A T; Lam, Christopher W K; Fok, Tai Fai; Nelson, Edmund A S
2009-01-01
(1) To examine the validity of existing prediction equations (PREE) for estimating resting energy expenditure (REE) in obese Chinese children, (2) to correlate the measured REE (MREE) with anthropometric and biochemical parameters and (3) to derive a new PREE for local use. Cross-sectional study. 100 obese children (71 boys) were studied. All subjects underwent physical examination and anthropometric measurement. Upper and central body fat distribution was signified by centrality and conicity index respectively, and REE was measured by indirect calorimetry. Fat free mass (FFM) were measured by DEXA scan. Thirteen existing prediction equations for estimating REE were compared with MREE among these obese children. Fasting blood for glucose, lipid profile and insulin were obtained. The overall, male and female median MREEs were 7.1 mJ/d (IR 6.2-8.4), 7.3 mJ/d (IR 6.3-9.7) and 6.9 mJ/d (IR 5.6-8.1) respectively. No sex difference was noted in MREE (p=0.203). Most of the equations except Schofield equation underestimated REE of our children. By multiple linear regression, MREE was positively correlated with FFM (p<0.0001), conicity index (p<0.001) and centrality index (p=0.001). A new equation for estimating REE for local use was derived as: REE=(17.4*logFFM)+(11.4*conicity index)-(2.4*centrality index)-31.3. The mean difference of new PREE-MREE was -0.011 mJ/d (SD 1.51) with an interclass correlation coefficient of 0.91. None of the existing prediction equations were accurate in their estimation of REE, when applied to obese Chinese children. A new prediction equation has been derived for local use.
Eastwood, Sophie V; Tillin, Therese; Wright, Andrew; Heasman, John; Willis, Joseph; Godsland, Ian F; Forouhi, Nita; Whincup, Peter; Hughes, Alun D; Chaturvedi, Nishi
2013-01-01
South Asians and African Caribbeans experience more cardiometabolic disease than Europeans. Risk factors include visceral (VAT) and subcutaneous abdominal (SAT) adipose tissue, which vary with ethnicity and are difficult to quantify using anthropometry. We developed and cross-validated ethnicity and gender-specific equations using anthropometrics to predict VAT and SAT. 669 Europeans, 514 South Asians and 227 African Caribbeans (70 ± 7 years) underwent anthropometric measurement and abdominal CT scanning. South Asian and African Caribbean participants were first-generation migrants living in London. Prediction equations were derived for CT-measured VAT and SAT using stepwise regression, then cross-validated by comparing actual and predicted means. South Asians had more and African Caribbeans less VAT than Europeans. For basic VAT prediction equations (age and waist circumference), model fit was better in men (R(2) range 0.59-0.71) than women (range 0.35-0.59). Expanded equations (+ weight, height, hip and thigh circumference) improved fit for South Asian and African Caribbean women (R(2) 0.35 to 0.55, and 0.43 to 0.56 respectively). For basic SAT equations, R(2) was 0.69-0.77, and for expanded equations it was 0.72-0.86. Cross-validation showed differences between actual and estimated VAT of <7%, and SAT of <8% in all groups, apart from VAT in South Asian women which disagreed by 16%. We provide ethnicity- and gender-specific VAT and SAT prediction equations, derived from a large tri-ethnic sample. Model fit was reasonable for SAT and VAT in men, while basic VAT models should be used cautiously in South Asian and African Caribbean women. These equations will aid studies of mechanisms of cardiometabolic disease in later life, where imaging data are not available.
Turbulence Modeling Effects on the Prediction of Equilibrium States of Buoyant Shear Flows
NASA Technical Reports Server (NTRS)
Zhao, C. Y.; So, R. M. C.; Gatski, T. B.
2001-01-01
The effects of turbulence modeling on the prediction of equilibrium states of turbulent buoyant shear flows were investigated. The velocity field models used include a two-equation closure, a Reynolds-stress closure assuming two different pressure-strain models and three different dissipation rate tensor models. As for the thermal field closure models, two different pressure-scrambling models and nine different temperature variance dissipation rate, Epsilon(0) equations were considered. The emphasis of this paper is focused on the effects of the Epsilon(0)-equation, of the dissipation rate models, of the pressure-strain models and of the pressure-scrambling models on the prediction of the approach to equilibrium turbulence. Equilibrium turbulence is defined by the time rate (if change of the scaled Reynolds stress anisotropic tensor and heat flux vector becoming zero. These conditions lead to the equilibrium state parameters. Calculations show that the Epsilon(0)-equation has a significant effect on the prediction of the approach to equilibrium turbulence. For a particular Epsilon(0)-equation, all velocity closure models considered give an equilibrium state if anisotropic dissipation is accounted for in one form or another in the dissipation rate tensor or in the Epsilon(0)-equation. It is further found that the models considered for the pressure-strain tensor and the pressure-scrambling vector have little or no effect on the prediction of the approach to equilibrium turbulence.
Prediction of Maximal Oxygen Uptake by Six-Minute Walk Test and Body Mass Index in Healthy Boys.
Jalili, Majid; Nazem, Farzad; Sazvar, Akbar; Ranjbar, Kamal
2018-05-14
To develop an equation to predict maximal oxygen uptake (VO2max) based on the 6-minute walk test (6MWT) and body composition in healthy boys. Direct VO2max, 6-minute walk distance, and anthropometric characteristics were measured in 349 healthy boys (12.49 ± 2.72 years). Multiple regression analysis was used to generate VO2max prediction equations. Cross-validation of the VO2max prediction equations was assessed with predicted residual sum of squares statistics. Pearson correlation was used to assess the correlation between measured and predicted VO2max. Objectively measured VO2max had a significant correlation with demographic and 6MWT characteristics (R = 0.11-0.723, P < .01). Multiple regression analysis revealed the following VO2max prediction equation: VO2max (mL/kg/min) = 12.701 + (0.06 × 6-minute walk distance m ) - (0.732 × body mass index kg/m2 ) (R 2 = 0.79, standard error of the estimate [SEE] = 2.91 mL/kg/min, %SEE = 6.9%). There was strong correlation between measured and predicted VO2max (r = 0.875, P < .001). Cross-validation revealed minimal shrinkage (R 2 p = 0.78 and predicted residual sum of squares SEE = 2.99 mL/kg/min). This study provides a relatively accurate and convenient VO2max prediction equation based on the 6MWT and body mass index in healthy boys. This model can be used for evaluation of cardiorespiratory fitness of boys in different settings. Copyright © 2018 Elsevier Inc. All rights reserved.
Diffusion Coefficients from Molecular Dynamics Simulations in Binary and Ternary Mixtures
NASA Astrophysics Data System (ADS)
Liu, Xin; Schnell, Sondre K.; Simon, Jean-Marc; Krüger, Peter; Bedeaux, Dick; Kjelstrup, Signe; Bardow, André; Vlugt, Thijs J. H.
2013-07-01
Multicomponent diffusion in liquids is ubiquitous in (bio)chemical processes. It has gained considerable and increasing interest as it is often the rate limiting step in a process. In this paper, we review methods for calculating diffusion coefficients from molecular simulation and predictive engineering models. The main achievements of our research during the past years can be summarized as follows: (1) we introduced a consistent method for computing Fick diffusion coefficients using equilibrium molecular dynamics simulations; (2) we developed a multicomponent Darken equation for the description of the concentration dependence of Maxwell-Stefan diffusivities. In the case of infinite dilution, the multicomponent Darken equation provides an expression for [InlineEquation not available: see fulltext.] which can be used to parametrize the generalized Vignes equation; and (3) a predictive model for self-diffusivities was proposed for the parametrization of the multicomponent Darken equation. This equation accurately describes the concentration dependence of self-diffusivities in weakly associating systems. With these methods, a sound framework for the prediction of mutual diffusion in liquids is achieved.
Jotterand Chaparro, Corinne; Taffé, Patrick; Moullet, Clémence; Laure Depeyre, Jocelyne; Longchamp, David; Perez, Marie-Hélène; Cotting, Jacques
2017-05-01
To determine, based on indirect calorimetry measurements, the biases of predictive equations specifically developed recently for estimating resting energy expenditure (REE) in ventilated critically ill children, or developed for healthy populations but used in critically ill children. A secondary analysis study was performed using our data on REE measured in a previous prospective study on protein and energy needs in pediatric intensive care unit. We included 75 ventilated critically ill children (median age, 21 months) in whom 407 indirect calorimetry measurements were performed. Fifteen predictive equations were used to estimate REE: the equations of White, Meyer, Mehta, Schofield, Henry, the World Health Organization, Fleisch, and Harris-Benedict and the tables of Talbot. Their differential and proportional biases (with 95% CIs) were computed and the bias plotted in graphs. The Bland-Altman method was also used. Most equations underestimated and overestimated REE between 200 and 1000 kcal/day. The equations of Mehta, Schofield, and Henry and the tables of Talbot had a bias ≤10%, but the 95% CI was large and contained values by far beyond ±10% for low REE values. Other specific equations for critically ill children had even wider biases. In ventilated critically ill children, none of the predictive equations tested met the performance criteria for the entire range of REE between 200 and 1000 kcal/day. Even the equations with the smallest bias may entail a risk of underfeeding or overfeeding, especially in the youngest children. Indirect calorimetry measurement must be preferred. Copyright © 2016 Elsevier Inc. All rights reserved.
Kulkarni, Bharati; Kuper, Hannah; Taylor, Amy; Wells, Jonathan C; Radhakrishna, K V; Kinra, Sanjay; Ben-Shlomo, Yoav; Smith, George Davey; Ebrahim, Shah; Byrne, Nuala M; Hills, Andrew P
2013-10-15
Lean body mass (LBM) and muscle mass remain difficult to quantify in large epidemiological studies due to the unavailability of inexpensive methods. We therefore developed anthropometric prediction equations to estimate the LBM and appendicular lean soft tissue (ALST) using dual-energy X-ray absorptiometry (DXA) as a reference method. Healthy volunteers (n = 2,220; 36% women; age 18-79 yr), representing a wide range of body mass index (14-44 kg/m(2)), participated in this study. Their LBM, including ALST, was assessed by DXA along with anthropometric measurements. The sample was divided into prediction (60%) and validation (40%) sets. In the prediction set, a number of prediction models were constructed using DXA-measured LBM and ALST estimates as dependent variables and a combination of anthropometric indices as independent variables. These equations were cross-validated in the validation set. Simple equations using age, height, and weight explained >90% variation in the LBM and ALST in both men and women. Additional variables (hip and limb circumferences and sum of skinfold thicknesses) increased the explained variation by 5-8% in the fully adjusted models predicting LBM and ALST. More complex equations using all of the above anthropometric variables could predict the DXA-measured LBM and ALST accurately, as indicated by low standard error of the estimate (LBM: 1.47 kg and 1.63 kg for men and women, respectively), as well as good agreement by Bland-Altman analyses (Bland JM, Altman D. Lancet 1: 307-310, 1986). These equations could be a valuable tool in large epidemiological studies assessing these body compartments in Indians and other population groups with similar body composition.
Kuper, Hannah; Taylor, Amy; Wells, Jonathan C.; Radhakrishna, K. V.; Kinra, Sanjay; Ben-Shlomo, Yoav; Smith, George Davey; Ebrahim, Shah; Byrne, Nuala M.; Hills, Andrew P.
2013-01-01
Lean body mass (LBM) and muscle mass remain difficult to quantify in large epidemiological studies due to the unavailability of inexpensive methods. We therefore developed anthropometric prediction equations to estimate the LBM and appendicular lean soft tissue (ALST) using dual-energy X-ray absorptiometry (DXA) as a reference method. Healthy volunteers (n = 2,220; 36% women; age 18-79 yr), representing a wide range of body mass index (14–44 kg/m2), participated in this study. Their LBM, including ALST, was assessed by DXA along with anthropometric measurements. The sample was divided into prediction (60%) and validation (40%) sets. In the prediction set, a number of prediction models were constructed using DXA-measured LBM and ALST estimates as dependent variables and a combination of anthropometric indices as independent variables. These equations were cross-validated in the validation set. Simple equations using age, height, and weight explained >90% variation in the LBM and ALST in both men and women. Additional variables (hip and limb circumferences and sum of skinfold thicknesses) increased the explained variation by 5–8% in the fully adjusted models predicting LBM and ALST. More complex equations using all of the above anthropometric variables could predict the DXA-measured LBM and ALST accurately, as indicated by low standard error of the estimate (LBM: 1.47 kg and 1.63 kg for men and women, respectively), as well as good agreement by Bland-Altman analyses (Bland JM, Altman D. Lancet 1: 307–310, 1986). These equations could be a valuable tool in large epidemiological studies assessing these body compartments in Indians and other population groups with similar body composition. PMID:23950165
Qiu, Mingfeng; Bailey, Brian N.; Stoll, Rob
2014-01-01
The validity of the compressible Reynolds equation to predict the local pressure in a gas-lubricated, textured parallel slider bearing is investigated. The local bearing pressure is numerically simulated using the Reynolds equation and the Navier-Stokes equations for different texture geometries and operating conditions. The respective results are compared and the simplifying assumptions inherent in the application of the Reynolds equation are quantitatively evaluated. The deviation between the local bearing pressure obtained with the Reynolds equation and the Navier-Stokes equations increases with increasing texture aspect ratio, because a significant cross-film pressure gradient and a large velocity gradient in the sliding direction develop in the lubricant film. Inertia is found to be negligible throughout this study. PMID:25049440
Zemski, Adam J; Broad, Elizabeth M; Slater, Gary J
2018-01-01
Body composition in elite rugby union athletes is routinely assessed using surface anthropometry, which can be utilized to provide estimates of absolute body composition using regression equations. This study aims to assess the ability of available skinfold equations to estimate body composition in elite rugby union athletes who have unique physique traits and divergent ethnicity. The development of sport-specific and ethnicity-sensitive equations was also pursued. Forty-three male international Australian rugby union athletes of Caucasian and Polynesian descent underwent surface anthropometry and dual-energy X-ray absorptiometry (DXA) assessment. Body fat percent (BF%) was estimated using five previously developed equations and compared to DXA measures. Novel sport and ethnicity-sensitive prediction equations were developed using forward selection multiple regression analysis. Existing skinfold equations provided unsatisfactory estimates of BF% in elite rugby union athletes, with all equations demonstrating a 95% prediction interval in excess of 5%. The equations tended to underestimate BF% at low levels of adiposity, whilst overestimating BF% at higher levels of adiposity, regardless of ethnicity. The novel equations created explained a similar amount of variance to those previously developed (Caucasians 75%, Polynesians 90%). The use of skinfold equations, including the created equations, cannot be supported to estimate absolute body composition. Until a population-specific equation is established that can be validated to precisely estimate body composition, it is advocated to use a proven method, such as DXA, when absolute measures of lean and fat mass are desired, and raw anthropometry data routinely to derive an estimate of body composition change.
Linda S. Heath; Mark Hansen; James E. Smith; Patrick D. Miles
2009-01-01
The official U.S. forest carbon inventories (U.S. EPA 2008) have relied on tree biomass estimates that utilize diameter based prediction equations from Jenkins and others (2003), coupled with U.S. Forest Service, Forest Inventory and Analysis (FIA) sample tree measurements and forest area estimates. However, these biomass prediction equations are not the equations used...
Development of one-equation transition/turbulence models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, J.R.; Roy, C.J.; Blottner, F.G.
2000-01-14
This paper reports on the development of a unified one-equation model for the prediction of transitional and turbulent flows. An eddy viscosity--transport equation for nonturbulent fluctuation growth based on that proposed by Warren and Hassan is combined with the Spalart-Allmaras one-equation model for turbulent fluctuation growth. Blending of the two equations is accomplished through a multidimensional intermittency function based on the work of Dhawan and Narasimha. The model predicts both the onset and extent of transition. Low-speed test cases include transitional flow over a flat plate, a single element airfoil, and a multi-element airfoil in landing configuration. High-speed test casesmore » include transitional Mach 3.5 flow over a 5{degree} cone and Mach 6 flow over a flared-cone configuration. Results are compared with experimental data, and the grid-dependence of selected predictions is analyzed.« less
The impact of fraction magnitude knowledge on algebra performance and learning.
Booth, Julie L; Newton, Kristie J; Twiss-Garrity, Laura K
2014-02-01
Knowledge of fractions is thought to be crucial for success with algebra, but empirical evidence supporting this conjecture is just beginning to emerge. In the current study, Algebra 1 students completed magnitude estimation tasks on three scales (0-1 [fractions], 0-1,000,000, and 0-62,571) just before beginning their unit on equation solving. Results indicated that fraction magnitude knowledge, and not whole number knowledge, was especially related to students' pretest knowledge of equation solving and encoding of equation features. Pretest fraction knowledge was also predictive of students' improvement in equation solving and equation encoding skills. Students' placement of unit fractions (e.g., those with a numerator of 1) was not especially useful for predicting algebra performance and learning in this population. Placement of non-unit fractions was more predictive, suggesting that proportional reasoning skills might be an important link between fraction knowledge and learning algebra. Copyright © 2013 Elsevier Inc. All rights reserved.
An Individual-Tree Growth and Yield Prediction System for Even-Aged Natural Shortleaf Pine Forests
Thomas B. Lynch; Kenneth L. Hitch; Michael M. Huebschmann; Paul A. Murphy
1999-01-01
The development of a system of equations that model the growth and development of even-aged natural shortleaf (Pinus echinata Mill.) pine forests is described. The growth prediction system is a distance-independent individual-tree simulator containing equations that predict basal-area growth, survival, total and merchantable heights, and total and...
Almajwal, Ali M; Williams, Peter G; Batterham, Marijka J
2011-07-01
To assess the accuracy of resting energy expenditure (REE) measurement in a sample of overweight and obese Saudi males, using the BodyGem device (BG) with whole room calorimetry (WRC) as a reference, and to evaluate the accuracy of predictive equations. Thirty-eight subjects (mean +/- SD, age 26.8+/- 3.7 years, body mass index 31.0+/- 4.8) were recruited during the period from 5 February 2007 to 28 March 2008. Resting energy expenditure was measured using a WRC and BG device, and also calculated using 7 prediction equations. Mean differences, bias, percent of bias (%bias), accurate estimation, underestimation and overestimation were calculated. Repeated measures with the BG were not significantly different (accurate prediction: 81.6%; %bias 1.1+/- 6.3, p>0.24) with limits of agreement ranging from +242 to -200 kcal. Resting energy expenditure measured by BG was significantly less than WRC values (accurate prediction: 47.4%; %bias: 11.0+/- 14.6, p = 0.0001) with unacceptably wide limits of agreement. Harris-Benedict, Schofield and World Health Organization equations were the most accurate, estimating REE within 10% of measured REE, but none seem appropriate to predict the REE of individuals. There was a poor agreement between the REE measured by WRC compared to BG or predictive equations. The BG assessed REE accurately in 47.4% of the subjects on an individual level.
Berman, A
2004-05-01
Published data were used to develop improved equations to predict tissue insulation (TI) and external insulation (EI) and their effects on maintenance requirements of Holstein cattle. These are used to calculate lower critical temperature (LCT), energy cost of exposure to temperatures below LCT, and excess heat accumulating in the body at temperatures above LCT. The National Research Council classifies TI by age groups and body condition score; and in the EI equation air velocity effects are linear and coat insulation values are derived from beef animals in cold climates. These lead to low LCT values, which are not compatible with known effects of environment on the performance of Holsteins in warm climates. Equations were developed to present TI as a function of body weight, improving prediction of TI for animals of similar age but differing in body weight. An equation was developed to predict rate of decrease of TI at ambient temperatures above LCT. Nonlinear equations were developed that account for wind effects as boundary layer insulation effects dependent on body weight and air velocity. Published data were used to develop adjustments for hair coat effects on EI in Holstein cows. While by NRC equations, wind has negligible effects on heat loss, the recalculated effects of air velocity on heat loss were consistent with published effects of forced ventilation on the responses of the Holstein cow. The derived LCT was higher by 10 to 20 degrees C than that calculated by NRC (2001) and accounted for known Holstein performance in temperate and warm climates. These equations pointed to tentative significant effects of cold (-10 degrees C) on energy requirements (7 Mcal/d) further increased by 1 m/s wind (15 Mcal/d), even in high-producing cows. Needs for increased heat dissipation and estimating heat stress development at ambient temperatures above the LCT are predicted. These equations can be used to revise NRC equations for heat exchange.
Whitton, Clare; Gay, Gibson Ming Wei; Lim, Raymond Boon Tar; Tan, Linda Wei Lin; Lim, Wei-Yen; van Dam, Rob M
2016-08-01
The collection of 24-h urine samples for the estimation of sodium intake is burdensome, and the utility of spot urine samples in Southeast Asian populations is unclear. We aimed to assess the validity of prediction equations with the use of spot urine concentrations. A sample of 144 Singapore residents of Chinese, Malay, and Indian ethnicity aged 18-79 y were recruited from the Singapore Health 2 Study conducted in 2014. Participants collected urine for 24 h in multiple small bottles on a single day. To determine the optimal collection time for a spot urine sample, a 1-mL sample was taken from a random bottle collected in the morning, afternoon, and evening. Published equations and a newly derived equation were used to predict 24-h sodium excretion from spot urine samples. The mean ± SD concentration of sodium from the 24-h urine sample was 125 ± 53.4 mmol/d, which is equivalent to 7.2 ± 3.1 g salt. Bland-Altman plots showed good agreement at the group level between estimated and actual 24-h sodium excretion, with biases for the morning period of -3.5 mmol (95% CI: -14.8, 7.8 mmol; new equation) and 1.46 mmol (95% CI: -10.0, 13.0 mmol; Intersalt equation). A larger bias of 25.7 mmol (95% CI: 12.2, 39.3 mmol) was observed for the Tanaka equation in the morning period. The prediction accuracy did not differ significantly for spot urine samples collected at different times of the day or at a random time of day (P = 0.11-0.76). This study suggests that the application of both our own newly derived equation and the Intersalt equation to spot urine concentrations may be useful in predicting group means for 24-h sodium excretion in urban Asian populations. © 2016 American Society for Nutrition.
NASA Astrophysics Data System (ADS)
Thomas, Philipp; Straube, Arthur V.; Grima, Ramon
2011-11-01
It is commonly believed that, whenever timescale separation holds, the predictions of reduced chemical master equations obtained using the stochastic quasi-steady-state approximation are in very good agreement with the predictions of the full master equations. We use the linear noise approximation to obtain a simple formula for the relative error between the predictions of the two master equations for the Michaelis-Menten reaction with substrate input. The reduced approach is predicted to overestimate the variance of the substrate concentration fluctuations by as much as 30%. The theoretical results are validated by stochastic simulations using experimental parameter values for enzymes involved in proteolysis, gluconeogenesis, and fermentation.
Estimation of lipids and lean mass of migrating sandpipers
Skagen, Susan K.; Knopf, Fritz L.; Cade, Brian S.
1993-01-01
Estimation of lean mass and lipid levels in birds involves the derivation of predictive equations that relate morphological measurements and, more recently, total body electrical conductivity (TOBEC) indices to known lean and lipid masses. Using cross-validation techniques, we evaluated the ability of several published and new predictive equations to estimate lean and lipid mass of Semipalmated Sandpipers (Calidris pusilla) and White-rumped Sandpipers (C. fuscicollis). We also tested ideas of Morton et al. (1991), who stated that current statistical approaches to TOBEC methodology misrepresent precision in estimating body fat. Three published interspecific equations using TOBEC indices predicted lean and lipid masses of our sample of birds with average errors of 8-28% and 53-155%, respectively. A new two-species equation relating lean mass and TOBEC indices revealed average errors of 4.6% and 23.2% in predicting lean and lipid mass, respectively. New intraspecific equations that estimate lipid mass directly from body mass, morphological measurements, and TOBEC indices yielded about a 13% error in lipid estimates. Body mass and morphological measurements explained a substantial portion of the variance (about 90%) in fat mass of both species. Addition of TOBEC indices improved the predictive model more for the smaller than for the larger sandpiper. TOBEC indices explained an additional 7.8% and 2.6% of the variance in fat mass and reduced the minimum breadth of prediction intervals by 0.95 g (32%) and 0.39 g (13%) for Semipalmated and White-rumped Sandpipers, respectively. The breadth of prediction intervals for models used to predict fat levels of individual birds must be considered when interpreting the resultant lipid estimates.
NASA Astrophysics Data System (ADS)
Motoyama, Yuichi; Shiga, Hidetoshi; Sato, Takeshi; Kambe, Hiroshi; Yoshida, Makoto
2017-06-01
Recovery behavior (recovery) and strain-rate dependence of the stress-strain curve (strain-rate dependence) are incorporated into constitutive equations of alloys to predict residual stress and thermal stress during casting. Nevertheless, few studies have systematically investigated the effects of these metallurgical phenomena on the prediction accuracy of thermal stress in a casting. This study compares the thermal stress analysis results with in situ thermal stress measurement results of an Al-Si-Cu specimen during casting. The results underscore the importance for the alloy constitutive equation of incorporating strain-rate dependence to predict thermal stress that develops at high temperatures where the alloy shows strong strain-rate dependence of the stress-strain curve. However, the prediction accuracy of the thermal stress developed at low temperatures did not improve by considering the strain-rate dependence. Incorporating recovery into the constitutive equation improved the accuracy of the simulated thermal stress at low temperatures. Results of comparison implied that the constitutive equation should include strain-rate dependence to simulate defects that develop from thermal stress at high temperatures, such as hot tearing and hot cracking. Recovery should be incorporated into the alloy constitutive equation to predict the casting residual stress and deformation caused by the thermal stress developed mainly in the low temperature range.
Prediction Equation for Calculating Fat Mass in Young Indian Adults
Sandhu, Jaspal Singh; Gupta, Giniya; Shenoy, Shweta
2010-01-01
Purpose Accurate measurement or prediction of fat mass is useful in physiology, nutrition and clinical medicine. Most predictive equations currently used to assess percentage of body fat or fat mass, using simple anthropometric measurements were derived from people in western societies and they may not be appropriate for individuals with other genotypic and phenotypic characteristics. We developed equations to predict fat mass from anthropometric measurements in young Indian adults. Methods Fat mass was measured in 60 females and 58 males, aged 20 to 29 yrs by using hydrostatic weighing and by simultaneous measurement of residual lung volume. Anthropometric measure included weight (kg), height (m) and 4 skinfold thickness [STs (mm)]. Sex specific linear regression model was developed with fat mass as the dependent variable and all anthropometric measures as independent variables. Results The prediction equation obtained for fat mass (kg) for males was 8.46+0.32 (weight) − 15.16 (height) + 9.54 (log of sum of 4 STs) (R2= 0. 53, SEE=3.42 kg) and − 20.22 + 0.33 (weight) + 3.44 (height) + 7.66 (log of sum of 4 STs) (R2=0.72, SEE=3.01kg) for females. Conclusion A new prediction equation for the measurement of fat mass was derived and internally validated in young Indian adults using simple anthropometric measurements. PMID:22375197
Smith, B; Hassen, A; Hinds, M; Rice, D; Jones, D; Sauber, T; Iiams, C; Sevenich, D; Allen, R; Owens, F; McNaughton, J; Parsons, C
2015-03-01
The DE values of corn grain for pigs will differ among corn sources. More accurate prediction of DE may improve diet formulation and reduce diet cost. Corn grain sources ( = 83) were assayed with growing swine (20 kg) in DE experiments with total collection of feces, with 3-wk-old broiler chick in nitrogen-corrected apparent ME (AME) trials and with cecectomized adult roosters in nitrogen-corrected true ME (TME) studies. Additional AME data for the corn grain source set was generated based on an existing near-infrared transmittance prediction model (near-infrared transmittance-predicted AME [NIT-AME]). Corn source nutrient composition was determined by wet chemistry methods. These data were then used to 1) test the accuracy of predicting swine DE of individual corn sources based on available literature equations and nutrient composition and 2) develop models for predicting DE of sources from nutrient composition and the cross-species information gathered above (AME, NIT-AME, and TME). The overall measured DE, AME, NIT-AME, and TME values were 4,105 ± 11, 4,006 ± 10, 4,004 ± 10, and 4,086 ± 12 kcal/kg DM, respectively. Prediction models were developed using 80% of the corn grain sources; the remaining 20% was reserved for validation of the developed prediction equation. Literature equations based on nutrient composition proved imprecise for predicting corn DE; the root mean square error of prediction ranged from 105 to 331 kcal/kg, an equivalent of 2.6 to 8.8% error. Yet among the corn composition traits, 4-variable models developed in the current study provided adequate prediction of DE (model ranging from 0.76 to 0.79 and root mean square error [RMSE] of 50 kcal/kg). When prediction equations were tested using the validation set, these models had a 1 to 1.2% error of prediction. Simple linear equations from AME, NIT-AME, or TME provided an accurate prediction of DE for individual sources ( ranged from 0.65 to 0.73 and RMSE ranged from 50 to 61 kcal/kg). Percentage error of prediction based on the validation data set was greater (1.4%) for the TME model than for the NIT-AME or AME models (1 and 1.2%, respectively), indicating that swine DE values could be accurately predicted by using AME or NIT-AME. In conclusion, regression equations developed from broiler measurements or from analyzed nutrient composition proved adequate to reliably predict the DE of commercially available corn hybrids for growing pigs.
Analytical Equations for Orbital Transfer Maneuvers of a Vehicle Using Constant Low Thrust
1981-12-01
136auks" ,b , .. .. a. AFIT/GA/AA/81D -3 ANALITICAL EQUATIOIS FOR OR.BITAL TRASFER MANIUVRS OF A V 1CI, USING CONSTANT LOW THRUST THESIS AFIT/GA/AA...nondimensional radius ( )m - specified values vii. AFIT/GA/AA/81D -3 Abstract The object of this study is to derive a set of equations which predict the...study is to derive a set of equations which predict the results of orbital maneuvers of vehicles using constant low thrust. These equations are
Pylypchuk, Romana; Wells, Sue; Kerr, Andrew; Poppe, Katrina; Riddell, Tania; Harwood, Matire; Exeter, Dan; Mehta, Suneela; Grey, Corina; Wu, Billy P; Metcalf, Patricia; Warren, Jim; Harrison, Jeff; Marshall, Roger; Jackson, Rod
2018-05-12
Most cardiovascular disease risk prediction equations in use today were derived from cohorts established last century and with participants at higher risk but less socioeconomically and ethnically diverse than patients they are now applied to. We recruited a nationally representative cohort in New Zealand to develop equations relevant to patients in contemporary primary care and compared the performance of these new equations to equations that are recommended in the USA. The PREDICT study automatically recruits participants in routine primary care when general practitioners in New Zealand use PREDICT software to assess their patients' risk profiles for cardiovascular disease, which are prospectively linked to national ICD-coded hospitalisation and mortality databases. The study population included male and female patients in primary care who had no prior cardiovascular disease, renal disease, or congestive heart failure. New equations predicting total cardiovascular disease risk were developed using Cox regression models, which included clinical predictors plus an area-based deprivation index and self-identified ethnicity. Calibration and discrimination performance of the equations were assessed and compared with 2013 American College of Cardiology/American Heart Association Pooled Cohort Equations (PCEs). The additional predictors included in new PREDICT equations were also appended to the PCEs to determine whether they were independent predictors in the equations from the USA. Outcome events were derived for 401 752 people aged 30-74 years at the time of their first PREDICT risk assessment between Aug 27, 2002, and Oct 12, 2015, representing about 90% of the eligible population. The mean follow-up was 4·2 years, and a third of participants were followed for 5 years or more. 15 386 (4%) people had cardiovascular disease events (1507 [10%] were fatal, and 8549 [56%] met the PCEs definition of hard atherosclerotic cardiovascular disease) during 1 685 521 person-years follow-up. The median 5-year risk of total cardiovascular disease events predicted by the new equations was 2·3% in women and 3·2% in men. Multivariable adjusted risk increased by about 10% per quintile of socioeconomic deprivation. Māori, Pacific, and Indian patients were at 13-48% higher risk of cardiovascular disease than Europeans, and Chinese or other Asians were at 25-33% lower risk of cardiovascular disease than Europeans. The PCEs overestimated of hard atherosclerotic cardiovascular disease by about 40% in men and by 60% in women, and the additional predictors in the new equations were also independent predictors in the PCEs. The new equations were significantly better than PCEs on all performance metrics. We constructed a large prospective cohort study representing typical patients in primary care in New Zealand who were recommended for cardiovascular disease risk assessment. Most patients are now at low risk of cardiovascular disease, which explains why the PCEs based mainly on old cohorts substantially overestimate risk. Although the PCEs and many other equations will need to be recalibrated to mitigate overtreatment of the healthy majority, they also need new predictors that include measures of socioeconomic deprivation and multiple ethnicities to identify vulnerable high-risk subpopulations that might otherwise be undertreated. Health Research Council of New Zealand, Heart Foundation of New Zealand, and Healthier Lives National Science Challenge. Copyright © 2018 Elsevier Ltd. All rights reserved.
Al-Gindan, Yasmin Y.; Hankey, Catherine R.; Govan, Lindsay; Gallagher, Dympna; Heymsfield, Steven B.; Lean, Michael E. J.
2017-01-01
The reference organ-level body composition measurement method is MRI. Practical estimations of total adipose tissue mass (TATM), total adipose tissue fat mass (TATFM) and total body fat are valuable for epidemiology, but validated prediction equations based on MRI are not currently available. We aimed to derive and validate new anthropometric equations to estimate MRI-measured TATM/TATFM/total body fat and compare them with existing prediction equations using older methods. The derivation sample included 416 participants (222 women), aged between 18 and 88 years with BMI between 15·9 and 40·8 (kg/m2). The validation sample included 204 participants (110 women), aged between 18 and 86 years with BMI between 15·7 and 36·4 (kg/m2). Both samples included mixed ethnic/racial groups. All the participants underwent whole-body MRI to quantify TATM (dependent variable) and anthropometry (independent variables). Prediction equations developed using stepwise multiple regression were further investigated for agreement and bias before validation in separate data sets. Simplest equations with optimal R2 and Bland–Altman plots demonstrated good agreement without bias in the validation analyses: men: TATM (kg) = 0·198 weight (kg) + 0·478 waist (cm) − 0·147 height (cm) − 12·8 (validation: R2 0·79, CV = 20 %, standard error of the estimate (SEE)=3·8 kg) and women: TATM (kg)=0·789 weight (kg) + 0·0786 age (years) − 0·342 height (cm) + 24·5 (validation: R2 0·84, CV = 13 %, SEE = 3·0 kg). Published anthropometric prediction equations, based on MRI and computed tomographic scans, correlated strongly with MRI-measured TATM: (R2 0·70 – 0·82). Estimated TATFM correlated well with published prediction equations for total body fat based on underwater weighing (R2 0·70–0·80), with mean bias of 2·5–4·9 kg, correctable with log-transformation in most equations. In conclusion, new equations, using simple anthropometric measurements, estimated MRI-measured TATM with correlations and agreements suitable for use in groups and populations across a wide range of fatness. PMID:26435103
NASA Astrophysics Data System (ADS)
Fujimura, Toshio; Takeshita, Kunimasa; Suzuki, Ryosuke O.
2018-04-01
An analytical approximate solution to non-linear solute- and heat-transfer equations in the unsteady-state mushy zone of Fe-C plain steel has been obtained, assuming a linear relationship between the solid fraction and the temperature of the mushy zone. The heat transfer equations for both the solid and liquid zone along with the boundary conditions have been linked with the equations to solve the whole equations. The model predictions ( e.g., the solidification constants and the effective partition ratio) agree with the generally accepted values and with a separately performed numerical analysis. The solidus temperature predicted by the model is in the intermediate range of the reported formulas. The model and Neuman's solution are consistent in the low carbon range. A conventional numerical heat analysis ( i.e., an equivalent specific heat method using the solidus temperature predicted by the model) is consistent with the model predictions for Fe-C plain steels. The model presented herein simplifies the computations to solve the solute- and heat-transfer simultaneous equations while searching for a solidus temperature as a part of the solution. Thus, this model can reduce the complexity of analyses considering the heat- and solute-transfer phenomena in the mushy zone.
Estimating Flow-Duration and Low-Flow Frequency Statistics for Unregulated Streams in Oregon
Risley, John; Stonewall, Adam J.; Haluska, Tana
2008-01-01
Flow statistical datasets, basin-characteristic datasets, and regression equations were developed to provide decision makers with surface-water information needed for activities such as water-quality regulation, water-rights adjudication, biological habitat assessment, infrastructure design, and water-supply planning and management. The flow statistics, which included annual and monthly period of record flow durations (5th, 10th, 25th, 50th, and 95th percent exceedances) and annual and monthly 7-day, 10-year (7Q10) and 7-day, 2-year (7Q2) low flows, were computed at 466 streamflow-gaging stations at sites with unregulated flow conditions throughout Oregon and adjacent areas of neighboring States. Regression equations, created from the flow statistics and basin characteristics of the stations, can be used to estimate flow statistics at ungaged stream sites in Oregon. The study area was divided into 10 regression modeling regions based on ecological, topographic, geologic, hydrologic, and climatic criteria. In total, 910 annual and monthly regression equations were created to predict the 7 flow statistics in the 10 regions. Equations to predict the five flow-duration exceedance percentages and the two low-flow frequency statistics were created with Ordinary Least Squares and Generalized Least Squares regression, respectively. The standard errors of estimate of the equations created to predict the 5th and 95th percent exceedances had medians of 42.4 and 64.4 percent, respectively. The standard errors of prediction of the equations created to predict the 7Q2 and 7Q10 low-flow statistics had medians of 51.7 and 61.2 percent, respectively. Standard errors for regression equations for sites in western Oregon were smaller than those in eastern Oregon partly because of a greater density of available streamflow-gaging stations in western Oregon than eastern Oregon. High-flow regression equations (such as the 5th and 10th percent exceedances) also generally were more accurate than the low-flow regression equations (such as the 95th percent exceedance and 7Q10 low-flow statistic). The regression equations predict unregulated flow conditions in Oregon. Flow estimates need to be adjusted if they are used at ungaged sites that are regulated by reservoirs or affected by water-supply and agricultural withdrawals if actual flow conditions are of interest. The regression equations are installed in the USGS StreamStats Web-based tool (http://water.usgs.gov/osw/streamstats/index.html, accessed July 16, 2008). StreamStats provides users with a set of annual and monthly flow-duration and low-flow frequency estimates for ungaged sites in Oregon in addition to the basin characteristics for the sites. Prediction intervals at the 90-percent confidence level also are automatically computed.
Cardiovascular risk prediction tools for populations in Asia.
Barzi, F; Patel, A; Gu, D; Sritara, P; Lam, T H; Rodgers, A; Woodward, M
2007-02-01
Cardiovascular risk equations are traditionally derived from the Framingham Study. The accuracy of this approach in Asian populations, where resources for risk factor measurement may be limited, is unclear. To compare "low-information" equations (derived using only age, systolic blood pressure, total cholesterol and smoking status) derived from the Framingham Study with those derived from the Asian cohorts, on the accuracy of cardiovascular risk prediction. Separate equations to predict the 8-year risk of a cardiovascular event were derived from Asian and Framingham cohorts. The performance of these equations, and a subsequently "recalibrated" Framingham equation, were evaluated among participants from independent Chinese cohorts. Six cohort studies from Japan, Korea and Singapore (Asian cohorts); six cohort studies from China; the Framingham Study from the US. 172,077 participants from the Asian cohorts; 25,682 participants from Chinese cohorts and 6053 participants from the Framingham Study. In the Chinese cohorts, 542 cardiovascular events occurred during 8 years of follow-up. Both the Asian cohorts and the Framingham equations discriminated cardiovascular risk well in the Chinese cohorts; the area under the receiver-operator characteristic curve was at least 0.75 for men and women. However, the Framingham risk equation systematically overestimated risk in the Chinese cohorts by an average of 276% among men and 102% among women. The corresponding average overestimation using the Asian cohorts equation was 11% and 10%, respectively. Recalibrating the Framingham risk equation using cardiovascular disease incidence from the non-Chinese Asian cohorts led to an overestimation of risk by an average of 4% in women and underestimation of risk by an average of 2% in men. A low-information Framingham cardiovascular risk prediction tool, which, when recalibrated with contemporary data, is likely to estimate future cardiovascular risk with similar accuracy in Asian populations as tools developed from data on local cohorts.
Predicting Eight Grade Students' Equation Solving Performances via Concepts of Variable and Equality
ERIC Educational Resources Information Center
Ertekin, Erhan
2017-01-01
This study focused on how two algebraic concepts- equality and variable- predicted 8th grade students' equation solving performance. In this study, predictive design as a correlational research design was used. Randomly selected 407 eight-grade students who were from the central districts of a city in the central region of Turkey participated in…
Predicting Fatigue Lives Of Metal-Matrix/Fiber Composites
NASA Technical Reports Server (NTRS)
Bartolotta, Paul A.
1994-01-01
Method of prediction of fatigue lives of intermetallic-matrix/fiber composite parts at high temperatures styled after method of universal slopes. It suffices to perform relatively small numbers of fatigue tests. Data from fatigue tests correlated with tensile-test data by fitting universal-slopes equation to both sets of data. Thereafter, universal-slopes equation used to predict fatigue lives from tensile properties.
Keller, Frieder; Hartmann, Bertram; Czock, David
2009-12-01
To describe nonlinear, saturable pharmacokinetics, the Michaelis-Menten equation is frequently used. However, the Michaelis-Menten equation has no integrated solution for concentrations but only for the time factor. Application of the Lambert W function was proposed recently to obtain an integrated solution of the Michaelis-Menten equation. As an alternative to the Michaelis-Menten equation, a 1 - exp equation has been used to describe saturable kinetics, with the advantage that the integrated 1 - exp equation has an explicit solution for concentrations. We used the integrated 1 - exp equation to predict the accumulation kinetics and the nonlinear concentration decline for a proposed fictive drug. In agreement with the recently proposed method, we found that for the integrated 1 - exp equation no steady state is obtained if the maximum rate of change in concentrations (Vmax) within interval (Tau) is less than the difference between peak and trough concentrations (Vmax x Tau < C peak - C trough).
White, R R; Roman-Garcia, Y; Firkins, J L; VandeHaar, M J; Armentano, L E; Weiss, W P; McGill, T; Garnett, R; Hanigan, M D
2017-05-01
Evaluation of ration balancing systems such as the National Research Council (NRC) Nutrient Requirements series is important for improving predictions of animal nutrient requirements and advancing feeding strategies. This work used a literature data set (n = 550) to evaluate predictions of total-tract digested neutral detergent fiber (NDF), fatty acid (FA), crude protein (CP), and nonfiber carbohydrate (NFC) estimated by the NRC (2001) dairy model. Mean biases suggested that the NRC (2001) lactating cow model overestimated true FA and CP digestibility by 26 and 7%, respectively, and under-predicted NDF digestibility by 16%. All NRC (2001) estimates had notable mean and slope biases and large root mean squared prediction error (RMSPE), and concordance (CCC) ranged from poor to good. Predicting NDF digestibility with independent equations for legumes, corn silage, other forages, and nonforage feeds improved CCC (0.85 vs. 0.76) compared with the re-derived NRC (2001) equation form (NRC equation with parameter estimates re-derived against this data set). Separate FA digestion coefficients were derived for different fat supplements (animal fats, oils, and other fat types) and for the basal diet. This equation returned improved (from 0.76 to 0.94) CCC compared with the re-derived NRC (2001) equation form. Unique CP digestibility equations were derived for forages, animal protein feeds, plant protein feeds, and other feeds, which improved CCC compared with the re-derived NRC (2001) equation form (0.74 to 0.85). New NFC digestibility coefficients were derived for grain-specific starch digestibilities, with residual organic matter assumed to be 98% digestible. A Monte Carlo cross-validation was performed to evaluate repeatability of model fit. In this procedure, data were randomly subsetted 500 times into derivation (60%) and evaluation (40%) data sets, and equations were derived using the derivation data and then evaluated against the independent evaluation data. Models derived with random study effects demonstrated poor repeatability of fit in independent evaluation. Similar equations derived without random study effects showed improved fit against independent data and little evidence of biased parameter estimates associated with failure to include study effects. The equations derived in this analysis provide interesting insight into how NDF, starch, FA, and CP digestibilities are affected by intake, feed type, and diet composition. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
External intermittency prediction using AMR solutions of RANS turbulence and transported PDF models
NASA Astrophysics Data System (ADS)
Olivieri, D. A.; Fairweather, M.; Falle, S. A. E. G.
2011-12-01
External intermittency in turbulent round jets is predicted using a Reynolds-averaged Navier-Stokes modelling approach coupled to solutions of the transported probability density function (pdf) equation for scalar variables. Solutions to the descriptive equations are obtained using a finite-volume method, combined with an adaptive mesh refinement algorithm, applied in both physical and compositional space. This method contrasts with conventional approaches to solving the transported pdf equation which generally employ Monte Carlo techniques. Intermittency-modified eddy viscosity and second-moment turbulence closures are used to accommodate the effects of intermittency on the flow field, with the influence of intermittency also included, through modifications to the mixing model, in the transported pdf equation. Predictions of the overall model are compared with experimental data on the velocity and scalar fields in a round jet, as well as against measurements of intermittency profiles and scalar pdfs in a number of flows, with good agreement obtained. For the cases considered, predictions based on the second-moment turbulence closure are clearly superior, although both turbulence models give realistic predictions of the bimodal scalar pdfs observed experimentally.
Finite Difference Formulation for Prediction of Water Pollution
NASA Astrophysics Data System (ADS)
Johari, Hanani; Rusli, Nursalasawati; Yahya, Zainab
2018-03-01
Water is an important component of the earth. Human being and living organisms are demand for the quality of water. Human activity is one of the causes of the water pollution. The pollution happened give bad effect to the physical and characteristic of water contents. It is not practical to monitor all aspects of water flow and transport distribution. So, in order to help people to access to the polluted area, a prediction of water pollution concentration must be modelled. This study proposed a one-dimensional advection diffusion equation for predicting the water pollution concentration transport. The numerical modelling will be produced in order to predict the transportation of water pollution concentration. In order to approximate the advection diffusion equation, the implicit Crank Nicolson is used. For the purpose of the simulation, the boundary condition and initial condition, the spatial steps and time steps as well as the approximations of the advection diffusion equation have been encoded. The results of one dimensional advection diffusion equation have successfully been used to predict the transportation of water pollution concentration by manipulating the velocity and diffusion parameters.
NASA Technical Reports Server (NTRS)
Suzen, Y. Bora; Huang, P. G.; Hultgren, Lennart S.; Ashpis, David E.
2001-01-01
A new transport equation for the intermittency factor was proposed to predict separated and transitional boundary layers under low-pressure turbine airfoil conditions. The intermittent behavior of the transitional flows is taken into account and incorporated into computations by modifying the eddy viscosity, mu(sub t), with the intermittency factor, gamma. Turbulent quantities are predicted by using Menter's two-equation turbulence model (SST). The intermittency factor is obtained from a transport equation model, which not only can reproduce the experimentally observed streamwise variation of the intermittency in the transition zone, but also can provide a realistic cross-stream variation of the intermittency profile. In this paper, the intermittency model is used to predict a recent separated and transitional boundary layer experiment under low pressure turbine airfoil conditions. The experiment provides detailed measurements of velocity, turbulent kinetic energy and intermittency profiles for a number of Reynolds numbers and freestream turbulent intensity conditions and is suitable for validation purposes. Detailed comparisons of computational results with experimental data are presented and good agreements between the experiments and predictions are obtained.
NASA Technical Reports Server (NTRS)
Suzen, Y. B.; Huang, P. G.; Hultgren, Lennart S.; Ashpis, David E.
2003-01-01
A new transport equation for the intermittency factor was proposed to predict separated and transitional boundary layers under low-pressure turbine airfoil conditions. The intermittent behavior of the transitional flows is taken into account and incorporated into computations by modifying the eddy viscosity, t , with the intermittency factor, y. Turbulent quantities are predicted by using Menter s two-equation turbulence model (SST). The intermittency factor is obtained from a transport equation model, which not only can reproduce the experimentally observed streamwise variation of the intermittency in the transition zone, but also can provide a realistic cross-stream variation of the intermittency profile. In this paper, the intermittency model is used to predict a recent separated and transitional boundary layer experiment under low pressure turbine airfoil conditions. The experiment provides detailed measurements of velocity, turbulent kinetic energy and intermittency profiles for a number of Reynolds numbers and freestream turbulent intensity conditions and is suitable for validation purposes. Detailed comparisons of computational results with experimental data are presented and good agreements between the experiments and predictions are obtained.
A New Approach to Modeling Densities and Equilibria of Ice and Gas Hydrate Phases
NASA Astrophysics Data System (ADS)
Zyvoloski, G.; Lucia, A.; Lewis, K. C.
2011-12-01
The Gibbs-Helmholtz Constrained (GHC) equation is a new cubic equation of state that was recently derived by Lucia (2010) and Lucia et al. (2011) by constraining the energy parameter in the Soave form of the Redlich-Kwong equation to satisfy the Gibbs-Helmholtz equation. The key attributes of the GHC equation are: 1) It is a multi-scale equation because it uses the internal energy of departure, UD, as a natural bridge between the molecular and bulk phase length scales. 2) It does not require acentric factors, volume translation, regression of parameters to experimental data, binary (kij) interaction parameters, or other forms of empirical correlations. 3) It is a predictive equation of state because it uses a database of values of UD determined from NTP Monte Carlo simulations. 4) It can readily account for differences in molecular size and shape. 5) It has been successfully applied to non-electrolyte mixtures as well as weak and strong aqueous electrolyte mixtures over wide ranges of temperature, pressure and composition to predict liquid density and phase equilibrium with up to four phases. 6) It has been extensively validated with experimental data. 7) The AAD% error between predicted and experimental liquid density is 1% while the AAD% error in phase equilibrium predictions is 2.5%. 8) It has been used successfully within the subsurface flow simulation program FEHM. In this work we describe recent extensions of the multi-scale predictive GHC equation to modeling the phase densities and equilibrium behavior of hexagonal ice and gas hydrates. In particular, we show that radial distribution functions, which can be determined by NTP Monte Carlo simulations, can be used to establish correct standard state fugacities of 1h ice and gas hydrates. From this, it is straightforward to determine both the phase density of ice or gas hydrates as well as any equilibrium involving ice and/or hydrate phases. A number of numerical results for mixtures of N2, O2, CH4, CO2, water, and NaCl in permafrost conditions are presented to illustrate the predictive capabilities of the multi-scale GHC equation. In particular, we show that the GHC equation correctly predicts 1) The density of 1h ice and methane hydrate to within 1%. 2) The melting curve for hexagonal ice. 3) The hydrate-gas phase co-existence curve. 4) Various phase equilibrium involving ice and hydrate phases. We also show that the GHC equation approach can be readily incorporated into subsurface flow simulation programs like FEHM to predict the behavior of permafrost and other reservoirs where ice and/or hydrates are present. Many geometric illustrations are used to elucidate key concepts. References A. Lucia, A Multi-Scale Gibbs Helmholtz Constrained Cubic Equation of State. J. Thermodynamics: Special Issue on Advances in Gas Hydrate Thermodynamics and Transport Properties. Available on-line [doi:10.1155/2010/238365]. A. Lucia, B.M. Bonk, A. Roy and R.R. Waterman, A Multi-Scale Framework for Multi-Phase Equilibrium Flash. Comput. Chem. Engng. In press.
Equations for predicting biomass of six introduced tree species, island of Hawaii
Thomas H. Schukrt; Robert F. Strand; Thomas G. Cole; Katharine E. McDuffie
1988-01-01
Regression equations to predict total and stem-only above-ground dry biomass for six species (Acacia melanoxylon, Albizio falcataria, Eucalyptus globulus, E. grandis, E. robusta, and E. urophylla) were developed by felling and measuring 2- to 6-year-old...
Cherian, Keren Susan; Shahkar, Faaiza; Sainoji, Ashok; Balakrishna, Nagalla; Yagnambhatt, Venkata Ramana
2018-01-01
Owing to a dearth of research related to Resting Metabolic Rate (RMR) among adolescent athletes in India, our study aimed to document RMR among junior soccer players (JSP) and to identify suitable RMR predictive models for JSP from nine existing equations. Forty Indian JSP (Boys = 21, Girls = 19) representing the under-12 and under-16 age categories were assessed for body composition (skinfold technique) and RMR (oxycon mobile). Two-way ANOVA and ANCOVA were used to examine the differences across age and sex. Bland-Altman plot was used to test agreement between measured vs. predicted RMR using the equations of Cunningham (, The American Journal of Clinical Nutrition, 33), Soares et al. (, European Journal of Clinical Nutrition, 47; 1998, British Journal of Nutrition, 79), Henry (, Public Health Nutrition, 8), and Patil and Bharadwaj (, Journal of Postgraduate Medicine, 59) for non-athletic populations and the equations of De Lorenzo et al. (, The Journal of Sports Medicine and Physical Fitness, 39), Wong et al. (, Singapore Medical Journal, 53), and ten Haaf & Weijs (, PloS One, 9) for adult athletes. RMR showed significant (P < .01) sex differences (Boys: 1343 ± 297.1; Girls: 1135 ± 116.7 kcal·day -1 ). While RMR values adjusted for fat-free mass (FFM) were similar across age and sex. The equation of Soares et al. (, British Journal of Nutrition, 79) for girls and Wong et al. (, Singapore Medical Journal, 53) for boys showed better RMR predictability. FFM explained variation in RMR across age and sex. The FFM-based Soares et al. (, British Journal of Nutrition, 79) equation for girls and body weight-based Wong et al. (, Singapore Medical Journal, 53) equation for boys are best suited for predicting RMR. © 2017 Wiley Periodicals, Inc.
Isenring, E; Colombo, M; Cross, G; Kellett, E; Swaney, L
2009-02-01
Bioelectrical impedance spectroscopy (BIS) may be more accurate in determining total body water (TBW) than bioelectrical impedance analysis (BIA). The present study compared the agreement between three TBW prediction equations developed using BIA and BIS-derived TBW in oncology outpatients. A cross-sectional, observational study was conducted in 37 outpatients receiving radiotherapy (27 males/10 females, aged 68.3 +/- 10.2 years). TBW was estimated by BIS (TBW(BIS)) and three BIA TBW prediction equations (TBW(ca-u): underweight cancer patients; TBW(ca-n): normal-weight cancer patients; and TBW(rad): patients receiving radiotherapy). Bland-Altman analyses determined agreement between methods. BIS-derived TBW using new resistivity constants was calculated. The mean +/- SD of TBW estimated by BIS was 39.8 +/- 8.3 L, which was significantly different from the prediction equations; TBW(rad) 35.1 +/- 7.9 L, TBW(ca-u) 33.1 +/- 7.5 L and TBW(ca-n) 32.3 +/- 7.3 L, (P < 0.001). Using new resistivity constants, TBW was 36.2 +/- 8.1 L but this still differed from the equations (P < 0.001). Bias between TBW(BIS) and that predicted by the equations was in the range 4.7-7.4 L or 1.1-3.9 L using new resistivity constants. TBW estimated by BIS cannot be directly compared with oncology-specific BIA equations, suggesting that BIS cannot be used at the group level in outpatients receiving radiotherapy. There was a reduced bias with BIS using new resistivity constants; however, further research should determine any advantage of BIS over BIA in this population.
Navier-Stokes Dynamics by a Discrete Boltzmann Model
NASA Technical Reports Server (NTRS)
Rubinstein, Robet
2010-01-01
This work investigates the possibility of particle-based algorithms for the Navier-Stokes equations and higher order continuum approximations of the Boltzmann equation; such algorithms would generalize the well-known Pullin scheme for the Euler equations. One such method is proposed in the context of a discrete velocity model of the Boltzmann equation. Preliminary results on shock structure are consistent with the expectation that the shock should be much broader than the near discontinuity predicted by the Pullin scheme, yet narrower than the prediction of the Boltzmann equation. We discuss the extension of this essentially deterministic method to a stochastic particle method that, like DSMC, samples the distribution function rather than resolving it completely.
Jung, Keum Ji; Jang, Yangsoo; Oh, Dong Joo; Oh, Byung-Hee; Lee, Sang Hoon; Park, Seong-Wook; Seung, Ki-Bae; Kim, Hong-Kyu; Yun, Young Duk; Choi, Sung Hee; Sung, Jidong; Lee, Tae-Yong; Kim, Sung Hi; Koh, Sang Baek; Kim, Moon Chan; Chang Kim, Hyeon; Kimm, Heejin; Nam, Chungmo; Park, Sungha; Jee, Sun Ha
2015-09-01
To evaluate the performance of the American College of Cardiology/American Heart Association (ACC/AHA) 2013 Pooled Cohort Equations in the Korean Heart Study (KHS) population and to develop a Korean Risk Prediction Model (KRPM) for atherosclerotic cardiovascular disease (ASCVD) events. The KHS cohort included 200,010 Korean adults aged 40-79 years who were free from ASCVD at baseline. Discrimination, calibration, and recalibration of the ACC/AHA Equations in predicting 10-year ASCVD risk in the KHS cohort were evaluated. The KRPM was derived using Cox model coefficients, mean risk factor values, and mean incidences from the KHS cohort. In the discriminatory analysis, the ACC/AHA Equations' White and African-American (AA) models moderately distinguished cases from non-cases, and were similar to the KRPM: For men, the area under the receiver operating characteristic curve (AUROCs) were 0.727 (White model), 0.725 (AA model), and 0.741 (KRPM); for women, the corresponding AUROCs were 0.738, 0.739, and 0.745. Absolute 10-year ASCVD risk for men in the KHS cohort was overestimated by 56.5% (White model) and 74.1% (AA model), while the risk for women was underestimated by 27.9% (White model) and overestimated by 29.1% (AA model). Recalibration of the ACC/AHA Equations did not affect discriminatory ability but improved calibration substantially, especially in men in the White model. Of the three ASCVD risk prediction models, the KRPM showed best calibration. The ACC/AHA Equations should not be directly applied for ASCVD risk prediction in a Korean population. The KRPM showed best predictive ability for ASCVD risk. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Prediction of parenteral nutrition osmolarity by digital refractometry.
Chang, Wei-Kuo; Yeh, Ming-Kung
2011-05-01
Infusion of high-osmolarity parenteral nutrition (PN) formulations into a peripheral vein will damage the vessel. In this study, the authors developed a refractometric method to predict PN formulation osmolarity for patients receiving PN. Nutrients in PN formulations were prepared for Brix value and osmolality measurement. Brix value and osmolality measurement of the dextrose, amino acids, and electrolytes were used to evaluate the limiting factor of PN osmolarity prediction. A best-fit equation was generated to predict PN osmolarity (mOsm/L): 81.05 × Brix value--116.33 (R(2) > 0.99). To validate the PN osmolarity prediction by these 4 equations, a total of 500 PN admixtures were tested. The authors found strong linear relationships between the Brix values and the osmolality measurement of dextrose (R(2) = 0.97), amino acids (R(2) = 0.99), and electrolytes (R(2) > 0.96). When PN-measured osmolality was between 600 and 900 mOsm/kg, approximately 43%, 29%, 43%, and 0% of the predicted osmolarity obtained by equations 1, 2, 3, and 4 were outside the acceptable 90% to 110% confidence interval range, respectively. When measured osmolality was between 900 and 1,500 mOsm/kg, 31%, 100%, 85%, and 15% of the predicted osmolarity by equations 1, 2, 3, and 4 were outside the acceptable 90% to 110% confidence interval range, respectively. The refractive method permits accurate PN osmolarity prediction and reasonable quality assurance before PN formulation administration.
New equations for predicting postoperative risk in patients with hip fracture.
Hirose, Jun; Ide, Junji; Irie, Hiroki; Kikukawa, Kenshi; Mizuta, Hiroshi
2009-12-01
Predicting the postoperative course of patients with hip fractures would be helpful for surgical planning and risk management. We therefore established equations to predict the morbidity and mortality rates in candidates for hip fracture surgery using the Estimation of Physiologic Ability and Surgical Stress (E-PASS) risk-scoring system. First we evaluated the correlation between the E-PASS scores and postoperative morbidity and mortality rates in all 722 patients surgically treated for hip fractures during the study period (Group A). Next we established equations to predict morbidity and mortality rates. We then applied these equations to all 633 patients with hip fractures treated at seven other hospitals (Group B) and compared the predicted and actual morbidity and mortality rates to assess the predictive ability of the E-PASS and Physiological and Operative Severity Score for the enUmeration of Mortality and Morbidity (POSSUM) systems. The ratio of actual to predicted morbidity and mortality rates was closer to 1.0 with the E-PASS than the POSSUM system. Our data suggest the E-PASS scoring system is useful for defining postoperative risk and its underlying algorithm accurately predicts morbidity and mortality rates in patients with hip fractures before surgery. This information then can be used to manage their condition and potentially improve treatment outcomes. Level II, prognostic study. See the Guidelines for Authors for a complete description of levels of evidence.
Lera, Lydia; Albala, Cecilia; Ángel, Bárbara; Sánchez, Hugo; Picrin, Yaisy; Hormazabal, María José; Quiero, Andrea
2014-03-01
To develop a predictive model of appendicular skeletal muscle mass (ASM) based on anthropometric measurements in elderly from Santiago, Chile. 616 community dwelling, non-disabled subjects ≥ 60 years (mean 69.9 ± 5.2 years) living in Santiago, 64.6% female, participating in ALEXANDROS study. Anthropometric measurements, handgrip strength, mobility tests and DEXA were performed. Step by step linear regression models were used to associate ASM from DEXA with anthropometric variables, age and sex. The sample was divided at random into two to obtain prediction equations for both subsamples, which were mutually validated by double cross-validation. The high correlation between the values of observed and predicted MMAE in both sub-samples and the low degree of shrinkage allowed developing the final prediction equation with the total sample. The cross-validity coefficient between prediction models from the subsamples (0.941 and 0.9409) and the shrinkage (0.004 and 0.006) were similar in both equations. The final prediction model obtained from the total sample was: ASM (kg) = 0.107(weight in kg) + 0.251( knee height in cm) + 0.197 (Calf Circumference in cm) +0.047 (dynamometry in kg) - 0.034 (Hip Circumference in cm) + 3.417 (Man) - 0.020 (age years) - 7.646 (R2 = 0.89). The mean ASM obtained by the prediction equation and the DEXA measurement were similar (16.8 ± 4.0 vs 16.9 ± 3.7) and highly concordant according Bland and Altman (95% CI: -2.6 -2.7) and Lin (concordance correlation coefficient = 0.94) methods. We obtained a low cost anthropometric equation to determine the appendicular skeletal muscle mass useful for the screening of sarcopenia in older adults. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
[Prediction equations for fat percentage from body circumferences in prepubescent children].
Gómez Campos, Rossana; De Marco, Ademir; de Arruda, Miguel; Martínez Salazar, Cristian; Margarita Salazar, Ciria; Valgas, Carmen; Fuentes, José Damián; Cossio-Bolaños, Marco Antonio
2013-01-01
The analysis of body composition through direct and indirect methods allows the study of the various components of the human body, becoming the central hub for assessing nutritional status. The objective of the study was to develop equations for predicting body fat% from circumferential body arm, waist and calf and propose percentiles to diagnose the nutritional status of school children of both sexes aged 4-10 years. We selected intentionally (non-probabilistic) 515 children, 261 children and 254 being girls belonging to Program interaction and development of children and adolescents from the State University of Campinas (Sao Paulo, Brazil). Anthropometric variables were evaluated for weight, height, triceps and subscapular skinfolds and body circumferences of arm, waist and calf, and the% fat determined by the equation proposed by Boileau, Lohman and Slaughter (1985). Through regression method 2 were generated equations to predict the percentage of fat from the body circumferences, the equations 1 and 2 were validated by cross validation method. The equations showed high predictive values ranging with a R² = 64-69%. In cross validation between the criterion and the regression equation proposed no significant difference (p > 0.05) and there was a high level of agreement to a 95% CI. It is concluded that the proposals are validated and shown as an alternative to assess the percentage of fat in school children of both sexes aged 4-10 years in the region of Campinas, SP (Brazil). Copyright © AULA MEDICA EDICIONES 2013. Published by AULA MEDICA. All rights reserved.
Dang, Mia; Ramsaran, Kalinda D; Street, Melissa E; Syed, S Noreen; Barclay-Goddard, Ruth; Stratford, Paul W; Miller, Patricia A
2011-01-01
To estimate the predictive accuracy and clinical usefulness of the Chedoke-McMaster Stroke Assessment (CMSA) predictive equations. A longitudinal prognostic study using historical data obtained from 104 patients admitted post cerebrovascular accident was undertaken. Data were abstracted for all patients undergoing rehabilitation post stroke who also had documented admission and discharge CMSA scores. Published predictive equations were used to determine predicted outcomes. To determine the accuracy and clinical usefulness of the predictive model, shrinkage coefficients and predictions with 95% confidence bands were calculated. Complete data were available for 74 patients with a mean age of 65.3±12.4 years. The shrinkage values for the six Impairment Inventory (II) dimensions varied from -0.05 to 0.09; the shrinkage value for the Activity Inventory (AI) was 0.21. The error associated with predictive values was greater than ±1.5 stages for the II dimensions and greater than ±24 points for the AI. This study shows that the large error associated with the predictions (as defined by the confidence band) for the CMSA II and AI limits their clinical usefulness as a predictive measure. Further research to establish predictive models using alternative statistical procedures is warranted.
Prediction equations for maximal respiratory pressures of Brazilian adolescents.
Mendes, Raquel E F; Campos, Tania F; Macêdo, Thalita M F; Borja, Raíssa O; Parreira, Verônica F; Mendonça, Karla M P P
2013-01-01
The literature emphasizes the need for studies to provide reference values and equations able to predict respiratory muscle strength of Brazilian subjects at different ages and from different regions of Brazil. To develop prediction equations for maximal respiratory pressures (MRP) of Brazilian adolescents. In total, 182 healthy adolescents (98 boys and 84 girls) aged between 12 and 18 years, enrolled in public and private schools in the city of Natal-RN, were evaluated using an MVD300 digital manometer (Globalmed®) according to a standardized protocol. Statistical analysis was performed using SPSS Statistics 17.0 software, with a significance level of 5%. Data normality was verified using the Kolmogorov-Smirnov test, and descriptive analysis results were expressed as the mean and standard deviation. To verify the correlation between the MRP and the independent variables (age, weight, height and sex), the Pearson correlation test was used. To obtain the prediction equations, stepwise multiple linear regression was used. The variables height, weight and sex were correlated to MRP. However, weight and sex explained part of the variability of MRP, and the regression analysis in this study indicated that these variables contributed significantly in predicting maximal inspiratory pressure, and only sex contributed significantly to maximal expiratory pressure. This study provides reference values and two models of prediction equations for maximal inspiratory and expiratory pressures and sets the necessary normal lower limits for the assessment of the respiratory muscle strength of Brazilian adolescents.
Si, Guo-Ning; Chen, Lan; Li, Bao-Guo
2014-04-01
Base on the Kawakita powder compression equation, a general theoretical model for predicting the compression characteristics of multi-components pharmaceutical powders with different mass ratios was developed. The uniaxial flat-face compression tests of powder lactose, starch and microcrystalline cellulose were carried out, separately. Therefore, the Kawakita equation parameters of the powder materials were obtained. The uniaxial flat-face compression tests of the powder mixtures of lactose, starch, microcrystalline cellulose and sodium stearyl fumarate with five mass ratios were conducted, through which, the correlation between mixture density and loading pressure and the Kawakita equation curves were obtained. Finally, the theoretical prediction values were compared with experimental results. The analysis showed that the errors in predicting mixture densities were less than 5.0% and the errors of Kawakita vertical coordinate were within 4.6%, which indicated that the theoretical model could be used to predict the direct compaction characteristics of multi-component pharmaceutical powders.
Invited commentary: on population subgroups, mathematics, and interventions.
Jacobs, David R; Meyer, Katie A
2011-02-15
New sex-specific equations, each with race/ethnic-specific intercept, for predicted lung function illustrate a methodological point, that complex differences between groups may not imply interactions with other predictors, such as age and height. The new equations find that race/ethnic identity does not interact with either age or height in the prediction equations, although there are race/ethnic-specific offsets. Further study is warranted of the effect of possible small race/ethnic interactions on disease classification. Additional study of repeated measures of lung function is warranted, given that the new equations were developed in cross-sectional designs. Predicting lung function is more than a methodological exercise. Predicted values are important in disease diagnosis and monitoring. It is suggested that measurement and tracking of lung function throughout young adulthood could be used to provide an early warning of potential long-term lung function losses to encourage improvement of risky behaviors including smoking and failure to maintain normal body weight in the general population.
Body composition in elderly people: effect of criterion estimates on predictive equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baumgartner, R.N.; Heymsfield, S.B.; Lichtman, S.
1991-06-01
The purposes of this study were to determine whether there are significant differences between two- and four-compartment model estimates of body composition, whether these differences are associated with aqueous and mineral fractions of the fat-free mass (FFM); and whether the differences are retained in equations for predicting body composition from anthropometry and bioelectric resistance. Body composition was estimated in 98 men and women aged 65-94 y by using a four-compartment model based on hydrodensitometry, {sup 3}H{sub 2}O dilution, and dual-photon absorptiometry. These estimates were significantly different from those obtained by using Siri's two-compartment model. The differences were associated significantly (Pmore » less than 0.0001) with variation in the aqueous fraction of FFM. Equations for predicting body composition from anthropometry and resistance, when calibrated against two-compartment model estimates, retained these systematic errors. Equations predicting body composition in elderly people should be calibrated against estimates from multicompartment models that consider variability in FFM composition.« less
Eastwood, Sophie V.; Tillin, Therese; Wright, Andrew; Heasman, John; Willis, Joseph; Godsland, Ian F.; Forouhi, Nita; Whincup, Peter; Hughes, Alun D.; Chaturvedi, Nishi
2013-01-01
Background South Asians and African Caribbeans experience more cardiometabolic disease than Europeans. Risk factors include visceral (VAT) and subcutaneous abdominal (SAT) adipose tissue, which vary with ethnicity and are difficult to quantify using anthropometry. Objective We developed and cross-validated ethnicity and gender-specific equations using anthropometrics to predict VAT and SAT. Design 669 Europeans, 514 South Asians and 227 African Caribbeans (70±7 years) underwent anthropometric measurement and abdominal CT scanning. South Asian and African Caribbean participants were first-generation migrants living in London. Prediction equations were derived for CT-measured VAT and SAT using stepwise regression, then cross-validated by comparing actual and predicted means. Results South Asians had more and African Caribbeans less VAT than Europeans. For basic VAT prediction equations (age and waist circumference), model fit was better in men (R2 range 0.59-0.71) than women (range 0.35-0.59). Expanded equations (+ weight, height, hip and thigh circumference) improved fit for South Asian and African Caribbean women (R2 0.35 to 0.55, and 0.43 to 0.56 respectively). For basic SAT equations, R2 was 0.69-0.77, and for expanded equations it was 0.72-0.86. Cross-validation showed differences between actual and estimated VAT of <7%, and SAT of <8% in all groups, apart from VAT in South Asian women which disagreed by 16%. Conclusion We provide ethnicity- and gender-specific VAT and SAT prediction equations, derived from a large tri-ethnic sample. Model fit was reasonable for SAT and VAT in men, while basic VAT models should be used cautiously in South Asian and African Caribbean women. These equations will aid studies of mechanisms of cardiometabolic disease in later life, where imaging data are not available. PMID:24069381
Villa, Chiara; Brůžek, Jaroslav
2017-01-01
Background Estimating volumes and masses of total body components is important for the study and treatment monitoring of nutrition and nutrition-related disorders, cancer, joint replacement, energy-expenditure and exercise physiology. While several equations have been offered for estimating total body components from MRI slices, no reliable and tested method exists for CT scans. For the first time, body composition data was derived from 41 high-resolution whole-body CT scans. From these data, we defined equations for estimating volumes and masses of total body AT and LT from corresponding tissue areas measured in selected CT scan slices. Methods We present a new semi-automatic approach to defining the density cutoff between adipose tissue (AT) and lean tissue (LT) in such material. An intra-class correlation coefficient (ICC) was used to validate the method. The equations for estimating the whole-body composition volume and mass from areas measured in selected slices were modeled with ordinary least squares (OLS) linear regressions and support vector machine regression (SVMR). Results and Discussion The best predictive equation for total body AT volume was based on the AT area of a single slice located between the 4th and 5th lumbar vertebrae (L4-L5) and produced lower prediction errors (|PE| = 1.86 liters, %PE = 8.77) than previous equations also based on CT scans. The LT area of the mid-thigh provided the lowest prediction errors (|PE| = 2.52 liters, %PE = 7.08) for estimating whole-body LT volume. We also present equations to predict total body AT and LT masses from a slice located at L4-L5 that resulted in reduced error compared with the previously published equations based on CT scans. The multislice SVMR predictor gave the theoretical upper limit for prediction precision of volumes and cross-validated the results. PMID:28533960
Lacoste Jeanson, Alizé; Dupej, Ján; Villa, Chiara; Brůžek, Jaroslav
2017-01-01
Estimating volumes and masses of total body components is important for the study and treatment monitoring of nutrition and nutrition-related disorders, cancer, joint replacement, energy-expenditure and exercise physiology. While several equations have been offered for estimating total body components from MRI slices, no reliable and tested method exists for CT scans. For the first time, body composition data was derived from 41 high-resolution whole-body CT scans. From these data, we defined equations for estimating volumes and masses of total body AT and LT from corresponding tissue areas measured in selected CT scan slices. We present a new semi-automatic approach to defining the density cutoff between adipose tissue (AT) and lean tissue (LT) in such material. An intra-class correlation coefficient (ICC) was used to validate the method. The equations for estimating the whole-body composition volume and mass from areas measured in selected slices were modeled with ordinary least squares (OLS) linear regressions and support vector machine regression (SVMR). The best predictive equation for total body AT volume was based on the AT area of a single slice located between the 4th and 5th lumbar vertebrae (L4-L5) and produced lower prediction errors (|PE| = 1.86 liters, %PE = 8.77) than previous equations also based on CT scans. The LT area of the mid-thigh provided the lowest prediction errors (|PE| = 2.52 liters, %PE = 7.08) for estimating whole-body LT volume. We also present equations to predict total body AT and LT masses from a slice located at L4-L5 that resulted in reduced error compared with the previously published equations based on CT scans. The multislice SVMR predictor gave the theoretical upper limit for prediction precision of volumes and cross-validated the results.
The Application of a Boundary Integral Equation Method to the Prediction of Ducted Fan Engine Noise
NASA Technical Reports Server (NTRS)
Dunn, M. H.; Tweed, J.; Farassat, F.
1999-01-01
The prediction of ducted fan engine noise using a boundary integral equation method (BIEM) is considered. Governing equations for the BIEM are based on linearized acoustics and describe the scattering of incident sound by a thin, finite-length cylindrical duct in the presence of a uniform axial inflow. A classical boundary value problem (BVP) is derived that includes an axisymmetric, locally reacting liner on the duct interior. Using potential theory, the BVP is recast as a system of hypersingular boundary integral equations with subsidiary conditions. We describe the integral equation derivation and solution procedure in detail. The development of the computationally efficient ducted fan noise prediction program TBIEM3D, which implements the BIEM, and its utility in conducting parametric noise reduction studies are discussed. Unlike prediction methods based on spinning mode eigenfunction expansions, the BIEM does not require the decomposition of the interior acoustic field into its radial and axial components which, for the liner case, avoids the solution of a difficult complex eigenvalue problem. Numerical spectral studies are presented to illustrate the nexus between the eigenfunction expansion representation and BIEM results. We demonstrate BIEM liner capability by examining radiation patterns for several cases of practical interest.
NASA Technical Reports Server (NTRS)
Dardner, B. R.; Blad, B. L.; Thompson, D. R.; Henderson, K. E.
1985-01-01
Reflectance and agronomic Thematic Mapper (TM) data were analyzed to determine possible data transformations for evaluating several plant parameters of corn. Three transformation forms were used: the ratio of two TM bands, logarithms of two-band ratios, and normalized differences of two bands. Normalized differences and logarithms of two-band ratios responsed similarly in the equations for estimating the plant growth parameters evaluated in this study. Two-term equations were required to obtain the maximum predictability of percent ground cover, canopy moisture content, and total wet phytomass. Standard error of estimate values were 15-26 percent lower for two-term estimates of these parameters than for one-term estimates. The terms log(TM4/TM2) and (TM4/TM5) produced the maximum predictability for leaf area and dry green leaf weight, respectively. The middle infrared bands TM5 and TM7 are essential for maximizing predictability for all measured plant parameters except leaf area index. The estimating models were evaluated over bare soil to discriminate between equations which are statistically similar. Qualitative interpretations of the resulting prediction equations are consistent with general agronomic and remote sensing theory.
Fuller, L.M.; Jodoin, R.S.; Minnerick, R.J.
2011-01-01
Inland lakes are an important economic and environmental resource for Michigan. The U.S. Geological Survey and the Michigan Department of Natural Resources and Environment have been cooperatively monitoring the quality of selected lakes in Michigan through the Lake Water Quality Assessment program. Sampling for this program began in 2001; by 2010, 730 of Michigan’s 11,000 inland lakes are expected to have been sampled once. Volunteers coordinated by the Michigan Department of Natural Resources and Environment began sampling lakes in 1974 and continue to sample (in 2010) approximately 250 inland lakes each year through the Michigan Cooperative Lakes Monitoring Program. Despite these sampling efforts, it still is impossible to physically collect measurements for all Michigan inland lakes; however, Landsat-satellite imagery has been used successfully in Minnesota, Wisconsin, Michigan, and elsewhere to predict the trophic state of unsampled inland lakes greater than 20 acres by producing regression equations relating in-place Secchi-disk measurements to Landsat bands. This study tested three alternatives to methods previously used in Michigan to improve results for predicted statewide Trophic State Index (TSI) computed from Secchi-disk transparency (TSI (SDT)). The alternative methods were used on 14 Landsat-satellite scenes with statewide TSI (SDT) for two time periods (2003– 05 and 2007–08). Specifically, the methods were (1) satellitedata processing techniques to remove areas affected by clouds, cloud shadows, haze, shoreline, and dense vegetation for inland lakes greater than 20 acres in Michigan; (2) comparison of the previous method for producing a single open-water predicted TSI (SDT) value (which was based on an area of interest (AOI) and lake-average approach) to an alternative Gethist method for identifying open-water areas in inland lakes (which follows the initial satellite-data processing and targets the darkest pixels, representing the deepest water, before regression equations are created); and (3) checking to see whether the predicted TSI (SDT) values compared well between two regression equations, one previously used in Michigan and an alternative equation from the hydrologic literature. The combination of improved satellite-data processing techniques and the Gethist method to identify open-water areas in inland lakes during 2003–05 and 2007–08 provided a stronger relation and statistical significance between predicted TSI (SDT) and measured TSI than did the AOI lake-average method; differences in results for the two methods were significant at the 99-percent confidence level. With regard to the comparison of the regression equations, there were no statistically significant differences at the 95-percent confidence level between results from the two equations. The previously used equation, in combination with the Gethist method, yielded coefficient of determination (R2) values of 0.71 and 0.77 for the periods 2003–05 and 2007–08, respectively. The alternative equation, in combination with the Gethist method, yielded R2 values of 0.74 and 0.75 for 2003–05 and 2007–08, respectively. Predicted TSI (SDT) and measured TSI (SDT) values for lakes used in the regression equations compared well, with R2 values of 0.95 and 0.96 for predicted TSI (SDT) for 2003–05 and 2007–08, respectively. The R2 values for statewide predicted TSI (SDT) for all inland lakes with available open-water areas for 2003–05 and 2007–08 were 0.91 and 0.93, respectively. Although the two equations predicted similar trophic-state classes, the alternative equation is planned to be used for future prediction of TSI (SDT) values for Michigan inland lakes, to promote consistency in comparing predicted values between States and for potential use in trend analysis.
Investigation of a Coupled Arrhenius-Type/Rossard Equation of AH36 Material.
Qin, Qin; Tian, Ming-Liang; Zhang, Peng
2017-04-13
High-temperature tensile testing of AH36 material in a wide range of temperatures (1173-1573 K) and strain rates (10 -4 -10 -2 s -1 ) has been obtained by using a Gleeble system. These experimental stress-strain data have been adopted to develop the constitutive equation. The constitutive equation of AH36 material was suggested based on the modified Arrhenius-type equation and the modified Rossard equation respectively. The results indicate that the constitutive equation is strongly influenced by temperature and strain, especially strain. Moreover, there is a good agreement between the predicted data of the modified Arrhenius-type equation and the experimental results when the strain is greater than 0.02. There is also good agreement between the predicted data of the Rossard equation and the experimental results when the strain is less than 0.02. Therefore, a coupled equation where the modified Arrhenius-type equation and Rossard equation are combined has been proposed to describe the constitutive equation of AH36 material according to the different strain values in order to improve the accuracy. The correlation coefficient between the computed and experimental flow stress data was 0.998. The minimum value of the average absolute relative error shows the high accuracy of the coupled equation compared with the two modified equations.
Impact of switching from Caucasian to Indian reference equations for spirometry interpretation.
Chhabra, S K; Madan, M
2018-03-01
In the absence of ethnically appropriate prediction equations, spirometry data in Indian subjects are often interpreted using equations for other ethnic populations. To evaluate the impact of switching from Caucasian (National Health and Nutrition Examination Survey III [NHANES III] and Global Lung Function Initiative [GLI]) equations to the recently published North Indian equations on spirometric interpretation, and to examine the suitability of GLI-Mixed equations for this population. Spirometry data on 12 323 North Indian patients were analysed using the North Indian equations as well as NHANES III, GLI-Caucasian and GLI-Mixed equations. Abnormalities and ventilatory patterns were categorised and agreement in interpretation was evaluated. The NHANES III and GLI-Caucasian equations and, to a lesser extent, the GLI-Mixed equations, predicted higher values and labelled more measurements as abnormal. In up to one third of the patients, these differed from Indian equations in the categorisation of ventilatory patterns, with more patients classified as having restrictive and mixed disease. The NHANES III and GLI-Caucasian equations substantially overdiagnose abnormalities and misclassify ventilatory patterns on spirometry in Indian patients. Such errors of interpretation, although less common with the GLI-Mixed equations, remain substantial and are clinically unacceptable. A switch to Indian equations will have a major impact on interpretation.
Development of a One-Equation Transition/Turbulence Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
EDWARDS,JACK R.; ROY,CHRISTOPHER J.; BLOTTNER,FREDERICK G.
2000-09-26
This paper reports on the development of a unified one-equation model for the prediction of transitional and turbulent flows. An eddy viscosity - transport equation for non-turbulent fluctuation growth based on that proposed by Warren and Hassan (Journal of Aircraft, Vol. 35, No. 5) is combined with the Spalart-Allmaras one-equation model for turbulent fluctuation growth. Blending of the two equations is accomplished through a multidimensional intermittence function based on the work of Dhawan and Narasimha (Journal of Fluid Mechanics, Vol. 3, No. 4). The model predicts both the onset and extent of transition. Low-speed test cases include transitional flow overmore » a flat plate, a single element airfoil, and a multi-element airfoil in landing configuration. High-speed test cases include transitional Mach 3.5 flow over a 5{degree} cone and Mach 6 flow over a flared-cone configuration. Results are compared with experimental data, and the spatial accuracy of selected predictions is analyzed.« less
NASA Astrophysics Data System (ADS)
Cai, Jun; Wang, Kuaishe; Shi, Jiamin; Wang, Wen; Liu, Yingying
2018-01-01
Constitutive analysis for hot working of BFe10-1-2 alloy was carried out by using experimental stress-strain data from isothermal hot compression tests, in a wide range of temperature of 1,023 1,273 K, and strain rate range of 0.001 10 s-1. A constitutive equation based on modified double multiple nonlinear regression was proposed considering the independent effects of strain, strain rate, temperature and their interrelation. The predicted flow stress data calculated from the developed equation was compared with the experimental data. Correlation coefficient (R), average absolute relative error (AARE) and relative errors were introduced to verify the validity of the developed constitutive equation. Subsequently, a comparative study was made on the capability of strain-compensated Arrhenius-type constitutive model. The results showed that the developed constitutive equation based on modified double multiple nonlinear regression could predict flow stress of BFe10-1-2 alloy with good correlation and generalization.
NASA Astrophysics Data System (ADS)
Simmons, B. E.
1981-08-01
This report derives equations predicting satellite ephemeris error as a function of measurement errors of space-surveillance sensors. These equations lend themselves to rapid computation with modest computer resources. They are applicable over prediction times such that measurement errors, rather than uncertainties of atmospheric drag and of Earth shape, dominate in producing ephemeris error. This report describes the specialization of these equations underlying the ANSER computer program, SEEM (Satellite Ephemeris Error Model). The intent is that this report be of utility to users of SEEM for interpretive purposes, and to computer programmers who may need a mathematical point of departure for limited generalization of SEEM.
Vicente-Pérez, Ricardo; Avendaño-Reyes, Leonel; Mejía-Vázquez, Ángel; Álvarez-Valenzuela, F Daniel; Correa-Calderón, Abelardo; Mellado, Miguel; Meza-Herrera, Cesar A; Guerra-Liera, Juan E; Robinson, P H; Macías-Cruz, Ulises
2016-01-01
Rectal temperature (RT) is the foremost physiological variable indicating if an animal is suffering hyperthermia. However, this variable is traditionally measured by invasive methods, which may compromise animal welfare. Models to predict RT have been developed for growing pigs and lactating dairy cows, but not for pregnant heat-stressed ewes. Our aim was to develop a prediction equation for RT using non-invasive physiological variables in pregnant ewes under heat stress. A total of 192 records of respiratory frequency (RF) and hair coat temperature in various body regions (i.e., head, rump, flank, shoulder, and belly) obtained from 24 Katahdin × Pelibuey pregnant multiparous ewes were collected during the last third of gestation (i.e., d 100 to lambing) with a 15 d sampling interval. Hair coat temperatures were taken using infrared thermal imaging technology. Initially, a Pearson correlation analysis examined the relationship among variables, and then multiple linear regression analysis was used to develop the prediction equations. All predictor variables were positively correlated (P<0.01; r=0.59-0.67) with RT. The adjusted equation which best predicted RT (P<0.01; Radj(2)=56.15%; CV=0.65%) included as predictors RF and head and belly temperatures. Comparison of predicted and observed values for RT indicates a suitable agreement (P<0.01) between them with moderate accuracy (Radj(2)=56.15%) when RT was calculated with the adjusted equation. In general, the final equation does not violate any assumption of multiple regression analysis. The RT in heat-stressed pregnant ewes can be predicted with an adequate accuracy using non-invasive physiologic variables, and the final equation was: RT=35.57+0.004 (RF)+0.067 (heat temperature)+0.028 (belly temperature). Copyright © 2015 Elsevier Ltd. All rights reserved.
Spears, Karen E; Kim, Hyunsook; Behall, Kay M; Conway, Joan M
2009-05-01
To compare standardized prediction equations to a hand-held indirect calorimeter in estimating resting energy and total energy requirements in overweight women. Resting energy expenditure (REE) was measured by hand-held indirect calorimeter and calculated by prediction equations Harris-Benedict, Mifflin-St Jeor, World Health Organization/Food and Agriculture Organization/United Nations University (WHO), and Dietary Reference Intakes (DRI). Physical activity level, assessed by questionnaire, was used to estimate total energy expenditure (TEE). Subjects (n=39) were female nonsmokers older than 25 years of age with body mass index more than 25. Repeated measures analysis of variance, Bland-Altman plot, and fitted regression line of difference. A difference within +/-10% of two methods indicated agreement. Significant proportional bias was present between hand-held indirect calorimeter and prediction equations for REE and TEE (P<0.01); prediction equations overestimated at lower values and underestimated at higher values. Mean differences (+/-standard error) for REE and TEE between hand-held indirect calorimeter and Harris-Benedict were -5.98+/-46.7 kcal/day (P=0.90) and 21.40+/-75.7 kcal/day (P=0.78); between hand-held indirect calorimeter and Mifflin-St Jeor were 69.93+/-46.7 kcal/day (P=0.14) and 116.44+/-75.9 kcal/day (P=0.13); between hand-held indirect calorimeter and WHO were -22.03+/-48.4 kcal/day (P=0.65) and -15.8+/-77.9 kcal/day (P=0.84); and between hand-held indirect calorimeter and DRI were 39.65+/-47.4 kcal/day (P=0.41) and 56.36+/-85.5 kcal/day (P=0.51). Less than 50% of predictive equation values were within +/-10% of hand-held indirect calorimeter values, indicating poor agreement. A significant discrepancy between predicted and measured energy expenditure was observed. Further evaluation of hand-held indirect calorimeter research screening is needed.
Castilhos, A M; Francisco, C L; Branco, R H; Bonilha, S F M; Mercadante, M E Z; Meirelles, P R L; Pariz, C M; Jorge, A M
2018-05-04
Evaluation of the body chemical composition of beef cattle can only be measured postmortem and those data cannot be used in real production scenarios to adjust nutritional plans. The objective of this study was to develop multiple linear regression equations from in vivo measurements, such as ultrasound parameters [backfat thickness (uBFT, mm), rump fat thickness (uRF, mm), and ribeye area (uLMA, cm2)], shrunk body weight (SBW, kg), age (AG, d), hip height (HH, m), as well as from postmortem measurements (composition of the 9th to 11th rib section) to predict the empty body and carcass chemical composition for Nellore cattle. Thirty-three young bulls were used (339 ± 36.15 kg and 448 ± 17.78 d for initial weight and age, respectively). Empty body chemical composition (protein, fat, water, and ash in kg) was obtained by combining noncarcass and carcass components. Data were analyzed using the PROC REG procedure of SAS software. Mallows' Cp values were close to the ideal value of number of independent variables in the prediction equations plus one. Equations to predict chemical components of both empty body and carcass using in vivo measurements presented higher R2 values than those determined by postmortem measurements. Chemical composition of the empty body using in vivo measurements was predicted with R2 > 0.73. Equations to predict chemical composition of the carcass from in vivo measurements showed R2 lower (R2< 0.68) than observed for empty body, except for the water (R2 = 0.84). The independent variables SBW, uRF, and AG were sufficient to predict the fat, water, energy components of the empty body, whereas for estimation of protein content the uRF, HH, and SBW were satisfactory. For the calculation of the ash, the SBW variable in the equation was sufficient. Chemical compounds from components of the empty body of Nellore cattle can be calculated by the following equations: protein (kg) = 47.92 + 0.18 × SBW - 1.46 × uRF - 30.72 × HH (R2 = 0.94, RMSPE = 1.79); fat (kg) = 11.33 + 0.16 × SBW + 2.09 × uRF - 0.06 × AG (R2 = 0.74, RMSPE = 4.18); water (kg) = - 34.00 + 0.55 × SBW + 0.10 × AG - 2.34 × uRF (R2 = 0.96, RMSPE = 5.47). In conclusion, the coefficients of determination (for determining the chemical composition of the empty body) of the equations derived from in vivo measures were higher than those of the equations obtained from rib section measurements taken postmortem, and better than coefficients of determination of the equations to predict the chemical composition of the carcass.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gehrer, A.; Jericha, H.
External heat transfer predictions are performed for two-dimensional turbine blade cascades. The Reynolds-averaged Navier-Stokes equations with algebraic (Arnone and Pacciani, 1998), one-equation (Spalart and Allmaras, 1994), and two-equation (low-Re {kappa}-{epsilon}, Biswas and Fukuyama, 1994) turbulence closures are solved with a fully implicit time-marching finite volume method. Comparisons with measurements (Arts et al., 1990; Arts, 1994) for a highly loaded transonic turbine nozzle guide vane cascade show good agreement in some cases, but also reveal problems with transition prediction and turbulence modeling. Special attention has been focused on the low-Re {kappa}-{epsilon} model concerning the influence of the inlet boundary condition formore » the {epsilon}-equation and problems in the stagnation point region.« less
[Cardiorespiratory fitness and cardiometabolic risk in young adults].
Secchi, Jeremías D; García, Gastón C
2013-01-01
The assessment of VO₂max allow classify subjects according to the health risk. However the factors that may affect the classifications have been little studied. The main purpose was to determine whether the type of VO₂max prediction equation and the Fitnessgram criterion-referenced standards modified the proportion of young adults classified with a level of aerobic capacity cardiometabolic risk indicative. The study design was observational, cross-sectional and relational. Young adults (n= 240) participated voluntarily. The VO₂max was estimated by 20-m shuttle run test applying 9 predictive equations. The differences in the classifications were analyzed with the Cochran Q and McNemar tests. The level of aerobic capacity indicative of cardiometabolic risk ranged between 7.1% and 70.4% depending on the criterion-referenced standards and predictive equation used (p<0.001). A higher percentage of women were classified with an unhealthy level in all equations (women: 29.4% to 85.3% vs 4.8% to 51% in men), regardless of the criterion-referenced standards (p<0.001). Both sexes and irrespective of the equation applied the old criterion-referenced standards classified a lower proportion of subjects (men: 4.8% to 48.1% and women: 39.4% a 68.4%) with unhealthy aerobic capacity (p ≤ 0.004). The type of VO₂max prediction equation and Fitnessgram criterion-referenced standards changed classifications young adults with a level of aerobic capacity of cardiometabolic risk indicative.
Kappus, Rebecca M.; Ranadive, Sushant M.; Yan, Huimin; Lane, Abbi D.; Cook, Marc D.; Hall, Grenita; Harvey, I. Shevon; Wilund, Kenneth R.; Woods, Jeffrey A.; Fernhall, Bo
2012-01-01
Objective Left ventricular end systolic pressure (LV ESP) is important in assessing left ventricular performance. LV ESP is usually derived from prediction equations. It is unknown whether these equations are accurate at rest or following exercise in a young, healthy population. Design We compared measured LV ESP versus LV ESP values from the prediction equations at rest, 15 minutes and 30 minutes following peak aerobic exercise in 60 participants. Methods LV ESP was obtained by applanation tonometry at rest, 15 minutes post and 30 minutes post peak cycle exercise. Results Measured LV ESP was significantly lower (p<0.05) at all time points in comparison to the two calculated values. Measured LV ESP decreased significantly from rest at both the post15 and post30 time points (p<0.05) and changed differently in comparison to the calculated values (significant interaction; p<0.05). The two LV ESP equations were also significantly different from each other (p<0.05) and changed differently over time (significant interaction; p<0.05). Conclusions These data indicate that the two prediction equations commonly used did not accurately predict either resting or post exercise LV ESP in a young, healthy population. Thus, LV ESP needs to be individually determined in young healthy participants. Non-invasive measurement through applanation tonometry appears to allow for a more accurate determination of LV ESP. PMID:22721862
Kappus, Rebecca M; Ranadive, Sushant M; Yan, Huimin; Lane, Abbi D; Cook, Marc D; Hall, Grenita; Harvey, I Shevon; Wilund, Kenneth R; Woods, Jeffrey A; Fernhall, Bo
2013-01-01
Left ventricular end systolic pressure (LV ESP) is important in assessing left ventricular performance and is usually derived from prediction equations. It is unknown whether these equations are accurate at rest or following exercise in a young, healthy population. Measured LV ESP vs. LV ESP values from the prediction equations were compared at rest, 15 min and 30 min following peak aerobic exercise in 60 participants. LV ESP was obtained by applanation tonometry at rest, 15 min post and 30 min post peak cycle exercise. Measured LV ESP was significantly lower (p<0.05) at all time points in comparison to the two calculated values. Measured LV ESP decreased significantly from rest at both the post15 and post30 time points (p<0.05) and changed differently in comparison to the calculated values (significant interaction; p<0.05). The two LV ESP equations were also significantly different from each other (p<0.05) and changed differently over time (significant interaction; p<0.05). The two commonly used prediction equations did not accurately predict either resting or post exercise LV ESP in a young, healthy population. Thus, LV ESP needs to be individually determined in young, healthy participants. Non-invasive measurement through applanation tonometry appears to allow for a more accurate determination of LV ESP. Copyright © 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
2012-01-01
Background Most resting energy expenditure (REE) predictive equations for adults were derived from research conducted in western populations; whether they can also be used in Chinese young people is still unclear. Therefore, we conducted this study to determine the best REE predictive equation in Chinese normal weight young adults. Methods Forty-three (21 male, 22 female) healthy college students between the age of 18 and 25 years were recruited. REE was measured by the indirect calorimetry (IC) method. Harris-Benedict, World Health Organization (WHO), Owen, Mifflin and Liu’s equations were used to predictREE (REEe). REEe that was within 10% of measured REE (REEm) was defined as accurate. Student’s t test, Wilcoxon Signed Ranks Test, McNemar Test and the Bland-Altman method were used for data analysis. Results REEm was significantly lower (P < 0.05 or P < 0.01) than REEe from equations, except for Liu’s, Liu’s-s, Owen, Owen-s and Mifflin in men and Liu’s and Owen in women. REEe calculated by ideal body weight was significantly higher than REEe calculated by current body weight ( P < 0.01), the only exception being Harris-Benedict equation in men. Bland-Altman analysis showed that the Owen equation with current body weight generated the least bias. The biases of REEe from Owen with ideal body weight and Mifflin with both current and ideal weights were also lower. Conclusions Liu’s, Owen, and Mifflin equations are appropriate for the prediction of REE in young Chinese adults. However, the use of ideal body weight did not increase the accuracy of REEe. PMID:22937737
Prediction and experimental observation of damage dependent damping in laminated composite beams
NASA Technical Reports Server (NTRS)
Allen, D. H.; Harris, C. E.; Highsmith, A. L.
1987-01-01
The equations of motion are developed for laminated composite beams with load-induced matrix cracking. The damage is accounted for by utilizing internal state variables. The net result of these variables on the field equations is the introduction of both enhanced damping, and degraded stiffness. Both quantities are history dependent and spatially variable, thus resulting in nonlinear equations of motion. It is explained briefly how these equations may be quasi-linearized for laminated polymeric composites under certain types of structural loading. The coupled heat conduction equation is developed, and it is shown that an enhanced Zener damping effect is produced by the introduction of microstructural damage. The resulting equations are utilized to demonstrate how damage dependent material properties may be obtained from dynamic experiments. Finaly, experimental results are compared to model predictions for several composite layups.
A unique set of micromechanics equations for high temperature metal matrix composites
NASA Technical Reports Server (NTRS)
Hopkins, D. A.; Chamis, C. C.
1985-01-01
A unique set of micromechanic equations is presented for high temperature metal matrix composites. The set includes expressions to predict mechanical properties, thermal properties and constituent microstresses for the unidirectional fiber reinforced ply. The equations are derived based on a mechanics of materials formulation assuming a square array unit cell model of a single fiber, surrounding matrix and an interphase to account for the chemical reaction which commonly occurs between fiber and matrix. A three-dimensional finite element analysis was used to perform a preliminary validation of the equations. Excellent agreement between properties predicted using the micromechanics equations and properties simulated by the finite element analyses are demonstrated. Implementation of the micromechanics equations as part of an integrated computational capability for nonlinear structural analysis of high temperature multilayered fiber composites is illustrated.
Reid, Clare L
2007-10-01
A wide variation in 24h energy expenditure has been demonstrated previously in intensive care unit (ICU) patients. The accuracy of equations used to predict energy expenditure in critically ill patients is frequently compared with single or short-duration indirect calorimetry measurements, which may not represent the total energy expenditure (TEE) of these patients. To take into account this variability in energy expenditure, estimates have been compared with continuous indirect calorimetry measurements. Continuous (24h/day for 5 days) indirect calorimetry measurements were made in patients requiring mechanical ventilation for 5 days. The Harris-Benedict, Schofield and Ireton-Jones equations and the American College of Chest Physicians recommendation of 25 kcal/kg/day were used to estimate energy requirements. A total of 192 days of measurements, in 27 patients, were available for comparison with the different equations. Agreement between the equations and measured values was poor. The Harris-Benedict, Schofield and ACCP equations provided more estimates (66%, 66% and 65%, respectively) within 80% and 110% of TEE values. However, each of these equations would have resulted in clinically significant underfeeding (<80% of TEE) in 16%, 15% and 22% of patients, respectively, and overfeeding (>110% of TEE) in 18%, 19% and 13% of patients, respectively. Limits of agreement between the different equations and TEE values were unacceptably wide. Prediction equations may result in significant under or overfeeding in the clinical setting.
Fateen, Seif-Eddeen K; Khalil, Menna M; Elnabawy, Ahmed O
2013-03-01
Peng-Robinson equation of state is widely used with the classical van der Waals mixing rules to predict vapor liquid equilibria for systems containing hydrocarbons and related compounds. This model requires good values of the binary interaction parameter kij . In this work, we developed a semi-empirical correlation for kij partly based on the Huron-Vidal mixing rules. We obtained values for the adjustable parameters of the developed formula for over 60 binary systems and over 10 categories of components. The predictions of the new equation system were slightly better than the constant-kij model in most cases, except for 10 systems whose predictions were considerably improved with the new correlation.
Improved Bond Equations for Fiber-Reinforced Polymer Bars in Concrete.
Pour, Sadaf Moallemi; Alam, M Shahria; Milani, Abbas S
2016-08-30
This paper explores a set of new equations to predict the bond strength between fiber reinforced polymer (FRP) rebar and concrete. The proposed equations are based on a comprehensive statistical analysis and existing experimental results in the literature. Namely, the most effective parameters on bond behavior of FRP concrete were first identified by applying a factorial analysis on a part of the available database. Then the database that contains 250 pullout tests were divided into four groups based on the concrete compressive strength and the rebar surface. Afterward, nonlinear regression analysis was performed for each study group in order to determine the bond equations. The results show that the proposed equations can predict bond strengths more accurately compared to the other previously reported models.
Prediction of half-marathon race time in recreational female and male runners.
Knechtle, Beat; Barandun, Ursula; Knechtle, Patrizia; Zingg, Matthias A; Rosemann, Thomas; Rüst, Christoph A
2014-01-01
Half-marathon running is of high popularity. Recent studies tried to find predictor variables for half-marathon race time for recreational female and male runners and to present equations to predict race time. The actual equations included running speed during training for both women and men as training variable but midaxillary skinfold for women and body mass index for men as anthropometric variable. An actual study found that percent body fat and running speed during training sessions were the best predictor variables for half-marathon race times in both women and men. The aim of the present study was to improve the existing equations to predict half-marathon race time in a larger sample of male and female half-marathoners by using percent body fat and running speed during training sessions as predictor variables. In a sample of 147 men and 83 women, multiple linear regression analysis including percent body fat and running speed during training units as independent variables and race time as dependent variable were performed and an equation was evolved to predict half-marathon race time. For men, half-marathon race time might be predicted by the equation (r(2) = 0.42, adjusted r(2) = 0.41, SE = 13.3) half-marathon race time (min) = 142.7 + 1.158 × percent body fat (%) - 5.223 × running speed during training (km/h). The predicted race time correlated highly significantly (r = 0.71, p < 0.0001) to the achieved race time. For women, half-marathon race time might be predicted by the equation (r(2) = 0.68, adjusted r(2) = 0.68, SE = 9.8) race time (min) = 168.7 + 1.077 × percent body fat (%) - 7.556 × running speed during training (km/h). The predicted race time correlated highly significantly (r = 0.89, p < 0.0001) to the achieved race time. The coefficients of determination of the models were slightly higher than for the existing equations. Future studies might include physiological variables to increase the coefficients of determination of the models.
A data-driven approach for modeling post-fire debris-flow volumes and their uncertainty
Friedel, Michael J.
2011-01-01
This study demonstrates the novel application of genetic programming to evolve nonlinear post-fire debris-flow volume equations from variables associated with a data-driven conceptual model of the western United States. The search space is constrained using a multi-component objective function that simultaneously minimizes root-mean squared and unit errors for the evolution of fittest equations. An optimization technique is then used to estimate the limits of nonlinear prediction uncertainty associated with the debris-flow equations. In contrast to a published multiple linear regression three-variable equation, linking basin area with slopes greater or equal to 30 percent, burn severity characterized as area burned moderate plus high, and total storm rainfall, the data-driven approach discovers many nonlinear and several dimensionally consistent equations that are unbiased and have less prediction uncertainty. Of the nonlinear equations, the best performance (lowest prediction uncertainty) is achieved when using three variables: average basin slope, total burned area, and total storm rainfall. Further reduction in uncertainty is possible for the nonlinear equations when dimensional consistency is not a priority and by subsequently applying a gradient solver to the fittest solutions. The data-driven modeling approach can be applied to nonlinear multivariate problems in all fields of study.
Jeffrey J. Barry; John M. Buffington; John G. King
2007-01-01
In the paper "A general power equation for predicting bed load transport rates in gravel bed rivers" by Jeffrey J. Barry et al. (Water Resources Research, 40, W10401, doi:10.1029/2004WR003190, 2004), the y axis for Figures 5 and 10 was incorrectly labeled and should have read "log10 (predicted transport) - log10 (observed transport)." In addition,...
Who Will Win?: Predicting the Presidential Election Using Linear Regression
ERIC Educational Resources Information Center
Lamb, John H.
2007-01-01
This article outlines a linear regression activity that engages learners, uses technology, and fosters cooperation. Students generated least-squares linear regression equations using TI-83 Plus[TM] graphing calculators, Microsoft[C] Excel, and paper-and-pencil calculations using derived normal equations to predict the 2004 presidential election.…
Predicting volumes in four Hawaii hardwoods...first multivariate equations developed
David A. Sharpnack
1966-01-01
Multivariate regression equations were developed for predicting board-foot (Int. 1/ 4-inch log rule ) and cubic-foot volumes in each 8.15-foot section of trees of four Hawaii hardwood species. The species are koa (Acacia koa), ohia (Metrosideros polymorpha), robusta eucalyptus (Eucalyptus robusta), and...
Model development and applications at the USDA-ARS National Soil Erosion Research Laboratory
USDA-ARS?s Scientific Manuscript database
The United States Department of Agriculture (USDA) has a long history of development of soil erosion prediction technology, initially with empirical equations like the Universal Soil Loss Equation (USLE), and more recently with process-based models such as the Water Erosion Prediction Project (WEPP)...
Predicting lumber volume and value of young-growth true firs: user's guide.
Susan Ernst; W.Y. Pong
1982-01-01
Equations are presented for predicting the volume and value of young-growth red, white, and grand firs. Examples of how to use them are also given. These equations were developed on trees less than 140 years old from areas in southern Oregon, northern California, and Idaho.
Grant, R. Stephen; Skavroneck, Steven
1980-01-01
The top five ranking predictive equations were as follows: Tsivoglou-Neal with 18 percent mean error, Negulescu-Rojanski with 21 percent, Padden-Gloyna with 23 percent, Thackston-Krenkel with 29 percent, and Bansal with 32 percent. (USGS).
Comparing Three Methods of Geometrical Approach in Visualizing Differential Equations
ERIC Educational Resources Information Center
KarimiFardinpour, Younes; Gooya, Zahra
2018-01-01
This paper concerns "planes-coordination" and "long-term-prediction" difficulties. These are specifically the case when students attempt to visualize solution curves of autonomous differential equations for predicting the long-term behavior of various initial conditions. To address these issues, a study was conducted in which…
Marchello, M J; McLennan, J E; Dhuyvetter, D V; Slanger, W D
1999-11-01
Two experiments were performed to develop prediction equations of saleable beef and to validate the prediction equations. In Exp. 1, 50 beef cattle were finished to typical slaughter weights, and multiple linear regression equations were developed to predict kilograms of trimmed boneless, retail product of live cattle, and hot and cold carcasses. A four-terminal bioelectrical impedance analyzer (BIA) was used to measure resistance (Rs) and reactance (Xc) on each animal and processed carcass. The IMPS cuts plus trim were weighed and recorded. Distance between detector terminals (Lg) and carcass temperature (Tp) at time of BIA readings were recorded. Other variables included live weight (BW), hot carcass weight (HCW), cold carcass weight (CCW), and volume (Lg2/Rs). Regression equations for predicting kilograms of saleable product were [11.87 + (.409 x BW) - (.335 x Lg) + (.0518 x volume)] for live (R2 = .80); [-58.83 + (.589 x HCW) - (.846 x Rs) + (1.152 x Xc) + (.142 x Lg) + (2.608 x Tp)] for hot carcass (R2 = .95); and [32.15 + (.633 x CCW) + (.33 x Xc) - (.83 x Lg) + (.677 x volume)] for cold carcass (R2 = .93). In Exp. 2, 27 beef cattle were finished in a manner similar to Exp. 1, and the prediction equations from Exp. 1 were used to predict the saleable product of these animals. The Pearson correlations between actual saleable product and the predictions based on live and cold carcass data were .91 and .95, respectively. The Spearman and Kendall rank correlations were .95 and .83, respectively, for the cold carcass data. These results provide a practical application of bioelectrical impedance for market-based pricing. They complement previous studies that assessed fat-free mass.
O'Connor, Jean E; Coyle, Joseph; Bogue, Conor; Spence, Liam D; Last, Jason
2014-01-01
Age estimation in living subjects is primarily achieved through assessment of a hand-wrist radiograph and comparison with a standard reference atlas. Recently, maturation of other regions of the skeleton has also been assessed in an attempt to refine the age estimates. The current study presents a method to predict bone age directly from the knee in a modern Irish sample. Ten maturity indicators (A-J) at the knee were examined from radiographs of 221 subjects (137 males; 84 females). Each indicator was assigned a maturity score. Scores for indicators A-G, H-J and A-J, respectively, were totalled to provide a cumulative maturity score for change in morphology of the epiphyses (AG), epiphyseal union (HJ) and the combination of both (AJ). Linear regression equations to predict age from the maturity scores (AG, HJ, AJ) were constructed for males and females. For males, equation-AJ demonstrated the greatest predictive capability (R(2)=0.775) while for females equation-HJ had the strongest capacity for prediction (R(2)=0.815). When equation-AJ for males and equation-HJ for females were applied to the current sample, the predicted age of 90% of subjects was within ±1.5 years of actual age for male subjects and within +2.0 to -1.9 years of actual age for female subjects. The regression formulae and associated charts represent the most contemporary method of age prediction currently available for an Irish population, and provide a further technique which can contribute to a multifactorial approach to age estimation in non-adults. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
2013-01-01
Background This study aims to improve accuracy of Bioelectrical Impedance Analysis (BIA) prediction equations for estimating fat free mass (FFM) of the elderly by using non-linear Back Propagation Artificial Neural Network (BP-ANN) model and to compare the predictive accuracy with the linear regression model by using energy dual X-ray absorptiometry (DXA) as reference method. Methods A total of 88 Taiwanese elderly adults were recruited in this study as subjects. Linear regression equations and BP-ANN prediction equation were developed using impedances and other anthropometrics for predicting the reference FFM measured by DXA (FFMDXA) in 36 male and 26 female Taiwanese elderly adults. The FFM estimated by BIA prediction equations using traditional linear regression model (FFMLR) and BP-ANN model (FFMANN) were compared to the FFMDXA. The measuring results of an additional 26 elderly adults were used to validate than accuracy of the predictive models. Results The results showed the significant predictors were impedance, gender, age, height and weight in developed FFMLR linear model (LR) for predicting FFM (coefficient of determination, r2 = 0.940; standard error of estimate (SEE) = 2.729 kg; root mean square error (RMSE) = 2.571kg, P < 0.001). The above predictors were set as the variables of the input layer by using five neurons in the BP-ANN model (r2 = 0.987 with a SD = 1.192 kg and relatively lower RMSE = 1.183 kg), which had greater (improved) accuracy for estimating FFM when compared with linear model. The results showed a better agreement existed between FFMANN and FFMDXA than that between FFMLR and FFMDXA. Conclusion When compared the performance of developed prediction equations for estimating reference FFMDXA, the linear model has lower r2 with a larger SD in predictive results than that of BP-ANN model, which indicated ANN model is more suitable for estimating FFM. PMID:23388042
NASA Technical Reports Server (NTRS)
Homicz, G. F.; Moselle, J. R.
1985-01-01
A hybrid numerical procedure is presented for the prediction of the aerodynamic and acoustic performance of advanced turboprops. A hybrid scheme is proposed which in principle leads to a consistent simultaneous prediction of both fields. In the inner flow a finite difference method, the Approximate-Factorization Alternating-Direction-Implicit (ADI) scheme, is used to solve the nonlinear Euler equations. In the outer flow the linearized acoustic equations are solved via a Boundary-Integral Equation (BIE) method. The two solutions are iteratively matched across a fictitious interface in the flow so as to maintain continuity. At convergence the resulting aerodynamic load prediction will automatically satisfy the appropriate free-field boundary conditions at the edge of the finite difference grid, while the acoustic predictions will reflect the back-reaction of the radiated field on the magnitude of the loading source terms, as well as refractive effects in the inner flow. The equations and logic needed to match the two solutions are developed and the computer program implementing the procedure is described. Unfortunately, no converged solutions were obtained, due to unexpectedly large running times. The reasons for this are discussed and several means to alleviate the situation are suggested.
Agaba, Emmanuel I; Wigwe, Chinyere M; Agaba, Patricia A; Tzamaloukas, Antonios H
2009-01-01
Estimation of the glomerular filtration rate (GFR) is required in the assessment of patients with chronic kidney disease (CKD) in order to provide information regarding the functional status of the kidneys. Current guidelines advocate the use of prediction equations, such as the Cockcroft-Gault (CG) formula and the Modification of Diet in Renal Disease (MDRD) study-derived equations, over clearance of endogenous creatinine (Ccr) in achieving this aim. We were interested in knowing the accuracy of these equations in predicting the GFR in adult Nigerians with CKD. We conducted a review of records of patients who were evaluated for CKD at the Nephrology Clinic of the Jos University Teaching Hospital between 2001 and 2003. We compared the CG and MDRD equations against the Ccr in predicting the GFR in 130 patients (88 males and 42 females) with CKD. The means +/- standard deviation (SD) for the measured and predicted GFR by the CG and MDRD equations were similar (17.6 +/- 25.8 ml/min, 19.9 +/- 24.0 ml/min and 21.5 +/- 28.2 ml/min, respectively; analysis of variance [ANOVA], F = 0.68, P = 0.5). The mean difference between CG and Ccr was -2.2 +/- 14.8 ml/min, with discordance at Ccr values >25 ml/min. The mean difference between MDRD and Ccr was -3.9 +/- 18.1 ml/min, with discordance at Ccr values >40 ml/min. The CG and MDRD equations provide reliable alternatives to measured Ccr in the estimation of the GFR in Nigerian patients with CKD.
Yang, Chuanlei; Wang, Yinyan; Wang, Hechun
2018-01-01
To achieve a much more extensive intake air flow range of the diesel engine, a variable-geometry compressor (VGC) is introduced into a turbocharged diesel engine. However, due to the variable diffuser vane angle (DVA), the prediction for the performance of the VGC becomes more difficult than for a normal compressor. In the present study, a prediction model comprising an elliptical equation and a PLS (partial least-squares) model was proposed to predict the performance of the VGC. The speed lines of the pressure ratio map and the efficiency map were fitted with the elliptical equation, and the coefficients of the elliptical equation were introduced into the PLS model to build the polynomial relationship between the coefficients and the relative speed, the DVA. Further, the maximal order of the polynomial was investigated in detail to reduce the number of sub-coefficients and achieve acceptable fit accuracy simultaneously. The prediction model was validated with sample data and in order to present the superiority of compressor performance prediction, the prediction results of this model were compared with those of the look-up table and back-propagation neural networks (BPNNs). The validation and comparison results show that the prediction accuracy of the new developed model is acceptable, and this model is much more suitable than the look-up table and the BPNN methods under the same condition in VGC performance prediction. Moreover, the new developed prediction model provides a novel and effective prediction solution for the VGC and can be used to improve the accuracy of the thermodynamic model for turbocharged diesel engines in the future. PMID:29410849
Li, Xu; Yang, Chuanlei; Wang, Yinyan; Wang, Hechun
2018-01-01
To achieve a much more extensive intake air flow range of the diesel engine, a variable-geometry compressor (VGC) is introduced into a turbocharged diesel engine. However, due to the variable diffuser vane angle (DVA), the prediction for the performance of the VGC becomes more difficult than for a normal compressor. In the present study, a prediction model comprising an elliptical equation and a PLS (partial least-squares) model was proposed to predict the performance of the VGC. The speed lines of the pressure ratio map and the efficiency map were fitted with the elliptical equation, and the coefficients of the elliptical equation were introduced into the PLS model to build the polynomial relationship between the coefficients and the relative speed, the DVA. Further, the maximal order of the polynomial was investigated in detail to reduce the number of sub-coefficients and achieve acceptable fit accuracy simultaneously. The prediction model was validated with sample data and in order to present the superiority of compressor performance prediction, the prediction results of this model were compared with those of the look-up table and back-propagation neural networks (BPNNs). The validation and comparison results show that the prediction accuracy of the new developed model is acceptable, and this model is much more suitable than the look-up table and the BPNN methods under the same condition in VGC performance prediction. Moreover, the new developed prediction model provides a novel and effective prediction solution for the VGC and can be used to improve the accuracy of the thermodynamic model for turbocharged diesel engines in the future.
Validity of predictive equations for 24-h urinary sodium excretion in adults aged 18–39 y12345
Wang, Chia-Yih; Chen, Te-Ching; Pfeiffer, Christine M; Elliott, Paul; Gillespie, Cathleen D; Carriquiry, Alicia L; Sempos, Christopher T; Liu, Kiang; Perrine, Cria G; Swanson, Christine A; Caldwell, Kathleen L; Loria, Catherine M
2013-01-01
Background: Collecting a 24-h urine sample is recommended for monitoring the mean population sodium intake, but implementation can be difficult. Objective: The objective was to assess the validity of published equations by using spot urinary sodium concentrations to predict 24-h sodium excretion. Design: This was a cross-sectional study, conducted from June to August 2011 in metropolitan Washington, DC, of 407 adults aged 18–39 y, 48% black, who collected each urine void in a separate container for 24 h. Four timed voids (morning, afternoon, evening, and overnight) were selected from each 24-h collection. Published equations were used to predict 24-h sodium excretion with spot urine by specimen timing and race-sex subgroups. We examined mean differences with measured 24-h sodium excretion (bias) and individual differences with the use of Bland-Altman plots. Results: Across equations and specimens, mean bias in predicting 24-h sodium excretion for all participants ranged from −267 to 1300 mg (Kawasaki equation). Bias was least with International Cooperative Study on Salt, Other Factors, and Blood Pressure (INTERSALT) equations with morning (−165 mg; 95% CI: −295, 36 mg), afternoon (−90 mg; −208, 28 mg), and evening (−120 mg; −230, −11 mg) specimens. With overnight specimens, mean bias was least when the Tanaka (−23 mg; 95% CI: −141, 95 mg) or Mage (−145 mg; −314, 25 mg) equations were used but was statistically significant when using the Tanaka equations among females (216 to 243 mg) and the Mage equations among races other than black (−554 to −372 mg). Significant over- and underprediction occurred across individual sodium excretion concentrations. Conclusions: Using a single spot urine, INTERSALT equations may provide the least biased information about population mean sodium intakes among young US adults. None of the equations evaluated provided unbiased estimates of individual 24-h sodium excretion. This trial was registered at clinicaltrials.gov as NCT01631240. PMID:24047921
Regularized Moment Equations and Shock Waves for Rarefied Granular Gas
NASA Astrophysics Data System (ADS)
Reddy, Lakshminarayana; Alam, Meheboob
2016-11-01
It is well-known that the shock structures predicted by extended hydrodynamic models are more accurate than the standard Navier-Stokes model in the rarefied regime, but they fail to predict continuous shock structures when the Mach number exceeds a critical value. Regularization or parabolization is one method to obtain smooth shock profiles at all Mach numbers. Following a Chapman-Enskog-like method, we have derived the "regularized" version 10-moment equations ("R10" moment equations) for inelastic hard-spheres. In order to show the advantage of R10 moment equations over standard 10-moment equations, the R10 moment equations have been employed to solve the Riemann problem of plane shock waves for both molecular and granular gases. The numerical results are compared between the 10-moment and R10-moment models and it is found that the 10-moment model fails to produce continuous shock structures beyond an upstream Mach number of 1 . 34 , while the R10-moment model predicts smooth shock profiles beyond the upstream Mach number of 1 . 34 . The density and granular temperature profiles are found to be asymmetric, with their maxima occurring within the shock-layer.
The Pendulum and the Calculus.
ERIC Educational Resources Information Center
Sworder, Steven C.
A pair of experiments, appropriate for the lower division fourth semester calculus or differential equations course, are presented. The second order differential equation representing the equation of motion of a simple pendulum is derived. The period of oscillation for a particular pendulum can be predicted from the solution to this equation. As a…
Dang, Mia; Ramsaran, Kalinda D.; Street, Melissa E.; Syed, S. Noreen; Barclay-Goddard, Ruth; Miller, Patricia A.
2011-01-01
ABSTRACT Purpose: To estimate the predictive accuracy and clinical usefulness of the Chedoke–McMaster Stroke Assessment (CMSA) predictive equations. Method: A longitudinal prognostic study using historical data obtained from 104 patients admitted post cerebrovascular accident was undertaken. Data were abstracted for all patients undergoing rehabilitation post stroke who also had documented admission and discharge CMSA scores. Published predictive equations were used to determine predicted outcomes. To determine the accuracy and clinical usefulness of the predictive model, shrinkage coefficients and predictions with 95% confidence bands were calculated. Results: Complete data were available for 74 patients with a mean age of 65.3±12.4 years. The shrinkage values for the six Impairment Inventory (II) dimensions varied from −0.05 to 0.09; the shrinkage value for the Activity Inventory (AI) was 0.21. The error associated with predictive values was greater than ±1.5 stages for the II dimensions and greater than ±24 points for the AI. Conclusions: This study shows that the large error associated with the predictions (as defined by the confidence band) for the CMSA II and AI limits their clinical usefulness as a predictive measure. Further research to establish predictive models using alternative statistical procedures is warranted. PMID:22654239
Capillary Rise: Validity of the Dynamic Contact Angle Models.
Wu, Pingkeng; Nikolov, Alex D; Wasan, Darsh T
2017-08-15
The classical Lucas-Washburn-Rideal (LWR) equation, using the equilibrium contact angle, predicts a faster capillary rise process than experiments in many cases. The major contributor to the faster prediction is believed to be the velocity dependent dynamic contact angle. In this work, we investigated the dynamic contact angle models for their ability to correct the dynamic contact angle effect in the capillary rise process. We conducted capillary rise experiments of various wetting liquids in borosilicate glass capillaries and compared the model predictions with our experimental data. The results show that the LWR equations modified by the molecular kinetic theory and hydrodynamic model provide good predictions on the capillary rise of all the testing liquids with fitting parameters, while the one modified by Joos' empirical equation works for specific liquids, such as silicone oils. The LWR equation modified by molecular self-layering model predicts well the capillary rise of carbon tetrachloride, octamethylcyclotetrasiloxane, and n-alkanes with the molecular diameter or measured solvation force data. The molecular self-layering model modified LWR equation also has good predictions on the capillary rise of silicone oils covering a wide range of bulk viscosities with the same key parameter W(0), which results from the molecular self-layering. The advantage of the molecular self-layering model over the other models reveals the importance of the layered molecularly thin wetting film ahead of the main meniscus in the energy dissipation associated with dynamic contact angle. The analysis of the capillary rise of silicone oils with a wide range of bulk viscosities provides new insights into the capillary dynamics of polymer melts.
Slanger, W D; Marchello, M J; Busboom, J R; Meyer, H H; Mitchell, L A; Hendrix, W F; Mills, R R; Warnock, W D
1994-06-01
Data of sixty finished, crossbred lambs were used to develop prediction equations of total weight of retail-ready cuts (SUM). These cuts were the leg, sirloin, loin, rack, shoulder, neck, riblets, shank, and lean trim (85/15). Measurements were taken on live lambs and on both hot and cold carcasses. A four-terminal bioelectrical impedance analyzer (BIA) was used to measure resistance (Rs, ohms) and reactance (Xc, ohms). Distances between detector terminals (L, centimeters) were recorded. Carcass temperatures (T, degrees C) at time of BIA readings were also recorded. The equation predicting SUM from cold carcass measurements (n = 53, R2 = .97) was .093 + .621 x weight-.0219 x Rs + .0248 x Xc + .182 x L-.338 x T. Resistance accounted for variability in SUM over and above weight and L (P = .0016). The above equation was used to rank cold carcasses in descending order of predicted SUM. An analogous ranking was obtained from a prediction equation that used weight only (R2 = .88). These rankings were divided into five categories: top 25%, middle 50%, bottom 25%, top 50%, and bottom 50%. Within-category differences in average fat cover, yield grade, and SUM as a percentage of cold carcass weight of carcasses not placed in the same category by both prediction equations were quantified with independent t-tests. These differences were statistically significant for all categories except middle 50%. This shows that BIA located those lambs that could more efficiently contribute to SUM because a higher portion of their weight was lean.
Simplified combustion noise theory yielding a prediction of fluctuating pressure level
NASA Technical Reports Server (NTRS)
Huff, R. G.
1984-01-01
The first order equations for the conservation of mass and momentum in differential form are combined for an ideal gas to yield a single second order partial differential equation in one dimension and time. Small perturbation analysis is applied. A Fourier transformation is performed that results in a second order, constant coefficient, nonhomogeneous equation. The driving function is taken to be the source of combustion noise. A simplified model describing the energy addition via the combustion process gives the required source information for substitution in the driving function. This enables the particular integral solution of the nonhomogeneous equation to be found. This solution multiplied by the acoustic pressure efficiency predicts the acoustic pressure spectrum measured in turbine engine combustors. The prediction was compared with the overall sound pressure levels measured in a CF6-50 turbofan engine combustor and found to be in excellent agreement.
Prediction of elemental creep. [steady state and cyclic data from regression analysis
NASA Technical Reports Server (NTRS)
Davis, J. W.; Rummler, D. R.
1975-01-01
Cyclic and steady-state creep tests were performed to provide data which were used to develop predictive equations. These equations, describing creep as a function of stress, temperature, and time, were developed through the use of a least squares regression analyses computer program for both the steady-state and cyclic data sets. Comparison of the data from the two types of tests, revealed that there was no significant difference between the cyclic and steady-state creep strains for the L-605 sheet under the experimental conditions investigated (for the same total time at load). Attempts to develop a single linear equation describing the combined steady-state and cyclic creep data resulted in standard errors of estimates higher than obtained for the individual data sets. A proposed approach to predict elemental creep in metals uses the cyclic creep equation and a computer program which applies strain and time hardening theories of creep accumulation.
Navier-Stokes turbine heat transfer predictions using two-equation turbulence closures
NASA Technical Reports Server (NTRS)
Ameri, Ali A.; Arnone, Andrea
1992-01-01
Navier-Stokes calculations were carried out in order to predict the heat-transfer rates on turbine blades. The calculations were performed using TRAF2D which is a k-epsilon, explicit, finite volume mass-averaged Navier-Stokes solver. Turbulence was modeled using Coakley's q-omega and Chien's k-epsilon two-equation models and the Baldwin-Lomax algebraic model. The model equations along with the flow equations were solved explicitly on a nonperiodic C grid. Implicit residual smoothing (IRS) or a combination of multigrid technique and IRS was applied to enhance convergence rates. Calculations were performed to predict the Stanton number distributions on the first stage vane and blade row as well as the second stage vane row of the SSME high-pressure fuel turbine. The comparison serves to highlight the weaknesses of the turbulence models for use in turbomachinery heat-transfer calculations.
Investigation of a Coupled Arrhenius-Type/Rossard Equation of AH36 Material
Qin, Qin; Tian, Ming-Liang; Zhang, Peng
2017-01-01
High-temperature tensile testing of AH36 material in a wide range of temperatures (1173–1573 K) and strain rates (10−4–10−2 s−1) has been obtained by using a Gleeble system. These experimental stress-strain data have been adopted to develop the constitutive equation. The constitutive equation of AH36 material was suggested based on the modified Arrhenius-type equation and the modified Rossard equation respectively. The results indicate that the constitutive equation is strongly influenced by temperature and strain, especially strain. Moreover, there is a good agreement between the predicted data of the modified Arrhenius-type equation and the experimental results when the strain is greater than 0.02. There is also good agreement between the predicted data of the Rossard equation and the experimental results when the strain is less than 0.02. Therefore, a coupled equation where the modified Arrhenius-type equation and Rossard equation are combined has been proposed to describe the constitutive equation of AH36 material according to the different strain values in order to improve the accuracy. The correlation coefficient between the computed and experimental flow stress data was 0.998. The minimum value of the average absolute relative error shows the high accuracy of the coupled equation compared with the two modified equations. PMID:28772767
THE STABILITY OF THE PINCH WITH ANISOTROPIC PRESSURE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaggi, R.K.
1961-12-01
A dispersion equation was obtained for the stability of the pinch from the hydromagnetic equations supplemented by an equation for the pressure tensor of the ions. The dispersion equation was obtained for the marginal instability case only. It was observed that this dispersion equation coincides with the dispersion equation obtained from the Chew, Goldberger, and Low equations for the marginal instability case. It was concluded that the region of stability predicted from the equations that were used is slightly more than given by the kinetic equation used by Chandrasekhar, Kaufmann, and Watson. (auth)
Stem Profile for Southern Equations for Southern Tree Species
Alexander Clark; Ray A. Souter; Bryce E. Schlaegel
1991-01-01
Form-class segmented-profile equations for 58 southern tree species and species groups are presented.The profile equations are based on taper data for 13,469 trees sampled in natural stands in many locations across the South.The profile equations predict diameter at any given height, height to give diameter, and volume between two heights.Equation coefficients for use...
Evaluation of Maryland abutment scour equation through selected threshold velocity methods
Benedict, S.T.
2010-01-01
The U.S. Geological Survey, in cooperation with the Maryland State Highway Administration, used field measurements of scour to evaluate the sensitivity of the Maryland abutment scour equation to the critical (or threshold) velocity variable. Four selected methods for estimating threshold velocity were applied to the Maryland abutment scour equation, and the predicted scour to the field measurements were compared. Results indicated that performance of the Maryland abutment scour equation was sensitive to the threshold velocity with some threshold velocity methods producing better estimates of predicted scour than did others. In addition, results indicated that regional stream characteristics can affect the performance of the Maryland abutment scour equation with moderate-gradient streams performing differently from low-gradient streams. On the basis of the findings of the investigation, guidance for selecting threshold velocity methods for application to the Maryland abutment scour equation are provided, and limitations are noted.
McDowell, J J; Calvin, Olivia L; Hackett, Ryan; Klapes, Bryan
2017-07-01
Two competing predictions of matching theory and an evolutionary theory of behavior dynamics, and one additional prediction of the evolutionary theory, were tested in a critical experiment in which human participants worked on concurrent schedules for money (Dallery et al., 2005). The three predictions concerned the descriptive adequacy of matching theory equations, and of equations describing emergent equilibria of the evolutionary theory. Tests of the predictions falsified matching theory and supported the evolutionary theory. Copyright © 2017 Elsevier B.V. All rights reserved.
The use of the logistic model in space motion sickness prediction
NASA Technical Reports Server (NTRS)
Lin, Karl K.; Reschke, Millard F.
1987-01-01
The one-equation and the two-equation logistic models were used to predict subjects' susceptibility to motion sickness in KC-135 parabolic flights using data from other ground-based motion sickness tests. The results show that the logistic models correctly predicted substantially more cases (an average of 13 percent) in the data subset used for model building. Overall, the logistic models ranged from 53 to 65 percent predictions of the three endpoint parameters, whereas the Bayes linear discriminant procedure ranged from 48 to 65 percent correct for the cross validation sample.
Improved Bond Equations for Fiber-Reinforced Polymer Bars in Concrete
Pour, Sadaf Moallemi; Alam, M. Shahria; Milani, Abbas S.
2016-01-01
This paper explores a set of new equations to predict the bond strength between fiber reinforced polymer (FRP) rebar and concrete. The proposed equations are based on a comprehensive statistical analysis and existing experimental results in the literature. Namely, the most effective parameters on bond behavior of FRP concrete were first identified by applying a factorial analysis on a part of the available database. Then the database that contains 250 pullout tests were divided into four groups based on the concrete compressive strength and the rebar surface. Afterward, nonlinear regression analysis was performed for each study group in order to determine the bond equations. The results show that the proposed equations can predict bond strengths more accurately compared to the other previously reported models. PMID:28773859
Explicit frequency equations of free vibration of a nonlocal Timoshenko beam with surface effects
NASA Astrophysics Data System (ADS)
Zhao, Hai-Sheng; Zhang, Yao; Lie, Seng-Tjhen
2018-02-01
Considerations of nonlocal elasticity and surface effects in micro- and nanoscale beams are both important for the accurate prediction of natural frequency. In this study, the governing equation of a nonlocal Timoshenko beam with surface effects is established by taking into account three types of boundary conditions: hinged-hinged, clamped-clamped and clamped-hinged ends. For a hinged-hinged beam, an exact and explicit natural frequency equation is obtained. However, for clamped-clamped and clamped-hinged beams, the solutions of corresponding frequency equations must be determined numerically due to their transcendental nature. Hence, the Fredholm integral equation approach coupled with a curve fitting method is employed to derive the approximate fundamental frequency equations, which can predict the frequency values with high accuracy. In short, explicit frequency equations of the Timoshenko beam for three types of boundary conditions are proposed to exhibit directly the dependence of the natural frequency on the nonlocal elasticity, surface elasticity, residual surface stress, shear deformation and rotatory inertia, avoiding the complicated numerical computation.
Constitutive Equation with Varying Parameters for Superplastic Flow Behavior
NASA Astrophysics Data System (ADS)
Guan, Zhiping; Ren, Mingwen; Jia, Hongjie; Zhao, Po; Ma, Pinkui
2014-03-01
In this study, constitutive equations for superplastic materials with an extra large elongation were investigated through mechanical analysis. From the view of phenomenology, firstly, some traditional empirical constitutive relations were standardized by restricting some strain paths and parameter conditions, and the coefficients in these relations were strictly given new mechanical definitions. Subsequently, a new, general constitutive equation with varying parameters was theoretically deduced based on the general mechanical equation of state. The superplastic tension test data of Zn-5%Al alloy at 340 °C under strain rates, velocities, and loads were employed for building a new constitutive equation and examining its validity. Analysis results indicated that the constitutive equation with varying parameters could characterize superplastic flow behavior in practical superplastic forming with high prediction accuracy and without any restriction of strain path or deformation condition, showing good industrial or scientific interest. On the contrary, those empirical equations have low prediction capabilities due to constant parameters and poor applicability because of the limit of special strain path or parameter conditions based on strict phenomenology.
Volume and biomass for curlleaf cercocarpus in Nevada
David C. Chojnacky
1984-01-01
Volume and biomass equations were developed for curlleaf cercocarpus (Cercocarpus ledifolius Nutt.) in the Egan and Schell Mountains near Ely, NV. The equations predict cubic foot volume of wood and bark for variable minimum branch diameters. Wood density factors are given to convert volume predictions to pounds of fiber biomass. The reliability of...
An Individual-Tree Growth and Yield Prediction System for Uneven-Aged Shortleaf Pine Stands
Michael M. Huebschmann; Lawrence R. Gering; Thomas B. Lynch; Onesphore Bitoki; Paul A. Murphy
2000-01-01
A system of equations modeling the growth and development of uneven-aged shortleaf pine (Pinus echinata Mill.) stands is described. The prediction system consists of two main components: (1) a distance-independent, individual-tree simulator containing equations that forecast ingrowth, basal-area growth, probability of survival, total and...
Zhang, Keda; Abraham, Michael H; Liu, Xiangli
2017-04-15
Experimental values of permeability coefficients, as log K p , of chemical compounds across human skin were collected by carefully screening the literature, and adjusted to 37°C for the effect of temperature. The values of log K p for partially ionized acids and bases were separated into those for their neutral and ionic species, forming a total data set of 247 compounds and species (including 35 ionic species). The obtained log K p values have been regressed against Abraham solute descriptors to yield a correlation equation with R 2 =0.866 and SD=0.432 log units. The equation can provide valid predictions for log K p of neutral molecules, ions and ionic species, with predictive R 2 =0.858 and predictive SD=0.445 log units calculated by the leave-one-out statistics. The predicted log K p values for Na + and Et 4 N + are in good agreement with the observed values. We calculated the values of log K p of ketoprofen as a function of the pH of the donor solution, and found that log K p markedly varies only when ketoprofen is largely ionized. This explains why models that neglect ionization of permeants still yield reasonable statistical results. The effect of skin thickness on log K p was investigated by inclusion of two indicator variables, one for intermediate thickness skin and one for full thickness skin, into the above equation. The newly obtained equations were found to be statistically very close to the above equation. Therefore, the thickness of human skin used makes little difference to the experimental values of log K p . Copyright © 2017 Elsevier B.V. All rights reserved.
Liu, A; Byrne, N M; Ma, G; Nasreddine, L; Trinidad, T P; Kijboonchoo, K; Ismail, M N; Kagawa, M; Poh, B K; Hills, A P
2011-12-01
To develop and cross-validate bioelectrical impedance analysis (BIA) prediction equations of total body water (TBW) and fat-free mass (FFM) for Asian pre-pubertal children from China, Lebanon, Malaysia, Philippines and Thailand. Height, weight, age, gender, resistance and reactance measured by BIA were collected from 948 Asian children (492 boys and 456 girls) aged 8-10 years from the five countries. The deuterium dilution technique was used as the criterion method for the estimation of TBW and FFM. The BIA equations were developed using stepwise multiple regression analysis and cross-validated using the Bland-Altman approach. The BIA prediction equation for the estimation of TBW was as follows: TBW=0.231 × height(2)/resistance+0.066 × height+0.188 × weight+0.128 × age+0.500 × sex-0.316 × Thais-4.574 (R (2)=88.0%, root mean square error (RMSE)=1.3 kg), and for the estimation of FFM was as follows: FFM=0.299 × height(2)/resistance+0.086 × height+0.245 × weight+0.260 × age+0.901 × sex-0.415 × ethnicity (Thai ethnicity =1, others = 0)-6.952 (R (2)=88.3%, RMSE=1.7 kg). No significant difference between measured and predicted values for the whole cross-validation sample was found. However, the prediction equation for estimation of TBW/FFM tended to overestimate TBW/FFM at lower levels whereas underestimate at higher levels of TBW/FFM. Accuracy of the general equation for TBW and FFM was also valid at each body mass index category. Ethnicity influences the relationship between BIA and body composition in Asian pre-pubertal children. The newly developed BIA prediction equations are valid for use in Asian pre-pubertal children.
Jo, Bum Seak; Myong, Jun Pyo; Rhee, Chin Kook; Yoon, Hyoung Kyu; Koo, Jung Wan; Kim, Hyoung Ryoul
2018-01-15
The present study aimed to update the prediction equations for spirometry and their lower limits of normal (LLN) by using the lambda, mu, sigma (LMS) method and to compare the outcomes with the values of previous spirometric reference equations. Spirometric data of 10,249 healthy non-smokers (8,776 females) were extracted from the fourth and fifth versions of the Korea National Health and Nutrition Examination Survey (KNHANES IV, 2007-2009; V, 2010-2012). Reference equations were derived using the LMS method which allows modeling skewness (lambda [L]), mean (mu [M]), and coefficient of variation (sigma [S]). The outcome equations were compared with previous reference values. Prediction equations were presented in the following form: predicted value = e{a + b × ln(height) + c × ln(age) + M - spline}. The new predicted values for spirometry and their LLN derived using the LMS method were shown to more accurately reflect transitions in pulmonary function in young adults than previous prediction equations derived using conventional regression analysis in 2013. There were partial discrepancies between the new reference values and the reference values from the Global Lung Function Initiative in 2012. The results should be interpreted with caution for young adults and elderly males, particularly in terms of the LLN for forced expiratory volume in one second/forced vital capacity in elderly males. Serial spirometry follow-up, together with correlations with other clinical findings, should be emphasized in evaluating the pulmonary function of individuals. Future studies are needed to improve the accuracy of reference data and to develop continuous reference values for spirometry across all ages. © 2018 The Korean Academy of Medical Sciences.
Leahy, Siobhan; O'Neill, Cian; Sohun, Rhoda; Toomey, Clodagh; Jakeman, Philip
2013-02-28
Anthropometric data indicate that the human phenotype is changing. Today's adult is greater in stature, body mass and fat mass. Accurate measurement of body composition is necessary to maintain surveillance of obesity within the population and to evaluate associated interventions. The aim of the present study was to construct and validate generalised equations for percentage body fat (%BF) prediction from anthropometry in 1136 adult men and women. Reference values for %BF were obtained using dual-energy X-ray absorptiometry. Skinfold thickness (SF) at ten sites and girth (G) at seven sites were measured on 736 men and women aged 18-81 years (%BF 5·1-56·8%). Quantile regression was employed to construct prediction equations from age and log-transformed SF and G measures. These equations were then cross-validated on a cohort of 400 subjects of similar age and fatness. The following generalised equations were found to most accurately predict %BF: Men: (age x 0·1) + (logtricepsSF x 7·6) + (logmidaxillaSF x 8·8) + (logsuprspinaleSF x 11·9) - 11·3 (standard error of the estimate: 2·5%, 95% limits of agreement: - 4·8, + 4·9) Women: (age x 0·1) + (logabdominalG x 39·4) + (logmidaxillaSF x 4·9) + (logbicepsSF x 11·0) + (logmedialcalfSF x 9·1) - 73·5 (standard error of the estimate: 3·0%, 95% limits of agreement: - 5·7, + 5·9) These generalised anthropometric equations accurately predict %BF and are suitable for the measurement of %BF in adult men and women of varying levels of fatness across the lifespan.
Modeling of the heat transfer in bypass transitional boundary-layer flows
NASA Technical Reports Server (NTRS)
Simon, Frederick F.; Stephens, Craig A.
1991-01-01
A low Reynolds number k-epsilon turbulence model and conditioned momentum, energy and turbulence equations were used to predict bypass transition heat transfer on a flat plate in a high-disturbance environment with zero pressure gradient. The use of conditioned equations was demonstrated to be an improvement over the use of the global-time-averaged equations for the calculation of velocity profiles and turbulence intensity profiles in the transition region of a boundary layer. The approach of conditioned equations is extended to include heat transfer and a modeling of transition events is used to predict transition onset and the extent of transition on a flat plate. The events, which describe the boundary layer at the leading edge, result in boundary-layer regions consisting of: (1) the laminar, (2) pseudolaminar, (3) transitional, and (4) turbulent boundary layers. The modeled transition events were incorporated into the TEXSTAN 2-D boundary-layer code which is used to numerically predict the heat transfer. The numerical predictions in general compared well with the experimental data and revealed areas where additional experimental information is needed.
The Rangeland Hydrology and Erosion Model: A Dynamic Approach for Predicting Soil Loss on Rangelands
NASA Astrophysics Data System (ADS)
Hernandez, Mariano; Nearing, Mark A.; Al-Hamdan, Osama Z.; Pierson, Frederick B.; Armendariz, Gerardo; Weltz, Mark A.; Spaeth, Kenneth E.; Williams, C. Jason; Nouwakpo, Sayjro K.; Goodrich, David C.; Unkrich, Carl L.; Nichols, Mary H.; Holifield Collins, Chandra D.
2017-11-01
In this study, we present the improved Rangeland Hydrology and Erosion Model (RHEM V2.3), a process-based erosion prediction tool specific for rangeland application. The article provides the mathematical formulation of the model and parameter estimation equations. Model performance is assessed against data collected from 23 runoff and sediment events in a shrub-dominated semiarid watershed in Arizona, USA. To evaluate the model, two sets of primary model parameters were determined using the RHEM V2.3 and RHEM V1.0 parameter estimation equations. Testing of the parameters indicated that RHEM V2.3 parameter estimation equations provided a 76% improvement over RHEM V1.0 parameter estimation equations. Second, the RHEM V2.3 model was calibrated to measurements from the watershed. The parameters estimated by the new equations were within the lowest and highest values of the calibrated parameter set. These results suggest that the new parameter estimation equations can be applied for this environment to predict sediment yield at the hillslope scale. Furthermore, we also applied the RHEM V2.3 to demonstrate the response of the model as a function of foliar cover and ground cover for 124 data points across Arizona and New Mexico. The dependence of average sediment yield on surface ground cover was moderately stronger than that on foliar cover. These results demonstrate that RHEM V2.3 predicts runoff volume, peak runoff, and sediment yield with sufficient accuracy for broad application to assess and manage rangeland systems.
Formenti, Federico; Minetti, Alberto E; Borrani, Fabio
2015-01-01
Estimation of human oxygen uptake () during exercise is often used as an alternative when its direct measurement is not feasible. The American College of Sports Medicine (ACSM) suggests estimating human during exercise on a cycle ergometer through an equation that considers individual's body mass and external work rate, but not pedaling rate (PR). We hypothesized that including PR in the ACSM equation would improve its prediction accuracy. Ten healthy male participants’ (age 19–48 years) were recruited and their steady-state was recorded on a cycle ergometer for 16 combinations of external work rates (0, 50, 100, and 150 W) and PR (50, 70, 90, and 110 revolutions per minute). was calculated by means of a new equation, and by the ACSM equation for comparison. Kinematic data were collected by means of an infrared 3-D motion analysis system in order to explore the mechanical determinants of . Including PR in the ACSM equation improved the accuracy for prediction of sub-maximal during exercise (mean bias 1.9 vs. 3.3 mL O2 kg−1 min−1) but it did not affect the accuracy for prediction of maximal (P > 0.05). Confirming the validity of this new equation, the results were replicated for data reported in the literature in 51 participants. We conclude that PR is an important determinant of human during cycling exercise, and it should be considered when predicting oxygen consumption. PMID:26371230
Applying new Magee equations for predicting the Oncotype Dx recurrence score.
Sughayer, Maher; Alaaraj, Rolla; Alsughayer, Ahmad
2018-04-24
Breast cancer is one of the most prevalent cancers in women. Oncotype Dx is a multi-gene assay frequently used to predict the recurrence risk for estrogen receptor-positive early breast cancer, with values < 18 considered low risk; ≥ 18 and ≤ 30, intermediate risk; and > 30, high risk. Patients at a high risk for recurrence are more likely to benefit from chemotherapy treatment. In this study, clinicopathological parameters for 37 cases of early breast cancer with available Oncotype Dx results were used to estimate the recurrence score using the three new Magee equations. Correlation studies with Oncotype Dx results were performed. Applying the same cutoff points as Oncotype Dx, patients were categorized into low-, intermediate- and high-risk groups according to their estimated recurrence scores. Pearson correlation coefficient (R) values between estimated and actual recurrence score were 0.73, 0.66, and 0.70 for Magee equations 1, 2 and 3, respectively. The concordance values between actual and estimated recurrence scores were 57.6%, 52.9%, and 57.6% for Magee equations 1, 2 and 3, respectively. Using standard pathologic measures and immunohistochemistry scores in these three linear Magee equations, most low and high recurrence risk cases can be predicted with a strong positive correlation coefficient, high concordance and negligible two-step discordance. Magee equations are user-friendly and can be used to predict the recurrence score in early breast cancer cases.
Iannetta, Danilo; Fontana, Federico Y; Maturana, Felipe Mattioni; Inglis, Erin Calaine; Pogliaghi, Silvia; Keir, Daniel A; Murias, Juan M
2018-05-23
The maximal lactate steady state (MLSS) represents the highest exercise intensity at which an elevated blood lactate concentration ([Lac] b ) is stabilized above resting values. MLSS quantifies the boundary between the heavy-to-very-heavy intensity domains but its determination is not widely performed due to the number of trials required. This study aimed to: (i) develop a mathematical equation capable of predicting MLSS using variables measured during a single ramp-incremental cycling test and (ii) test the accuracy of the optimized mathematical equation. The predictive MLSS equation was determined by stepwise backward regression analysis of twelve independent variables measured in sixty individuals who had previously performed ramp-incremental exercise and in whom MLSS was known (MLSS obs ). Next, twenty-nine different individuals were prospectively recruited to test the accuracy of the equation. These participants performed ramp-incremental exercise to exhaustion and two-to-three 30-min constant-power output cycling bouts with [Lac] b sampled at regular intervals for determination of MLSS obs . Predicted MLSS (MLSS pred ) and MLSS obs in both phases of the study were compared by paired t-test, major-axis regression and Bland-Altman analysis. The predictor variables of MLSS were: respiratory compensation point (Wkg -1 ), peak oxygen uptake (V˙O 2peak ) (mlkg -1 min -1 ) and body mass (kg). MLSS pred was highly correlated with MLSS obs (r=0.93; p<0.01). When this equation was tested on the independent group, MLSS pred was not different from MLSS obs (234±43 vs. 234±44W; SEE 4.8W; r=0.99; p<0.01). These data support the validity of the predictive MLSS equation. We advocate its use as a time-efficient alternative to traditional MLSS testing in cycling. Copyright © 2018 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Prediction of Airfoil Characteristics With Higher Order Turbulence Models
NASA Technical Reports Server (NTRS)
Gatski, Thomas B.
1996-01-01
This study focuses on the prediction of airfoil characteristics, including lift and drag over a range of Reynolds numbers. Two different turbulence models, which represent two different types of models, are tested. The first is a standard isotropic eddy-viscosity two-equation model, and the second is an explicit algebraic stress model (EASM). The turbulent flow field over a general-aviation airfoil (GA(W)-2) at three Reynolds numbers is studied. At each Reynolds number, predicted lift and drag values at different angles of attack are compared with experimental results, and predicted variations of stall locations with Reynolds number are compared with experimental data. Finally, the size of the separation zone predicted by each model is analyzed, and correlated with the behavior of the lift coefficient near stall. In summary, the EASM model is able to predict the lift and drag coefficients over a wider range of angles of attack than the two-equation model for the three Reynolds numbers studied. However, both models are unable to predict the correct lift and drag behavior near the stall angle, and for the lowest Reynolds number case, the two-equation model did not predict separation on the airfoil near stall.
New predictive equations for Arias intensity from crustal earthquakes in New Zealand
NASA Astrophysics Data System (ADS)
Stafford, Peter J.; Berrill, John B.; Pettinga, Jarg R.
2009-01-01
Arias Intensity (Arias, MIT Press, Cambridge MA, pp 438-483, 1970) is an important measure of the strength of a ground motion, as it is able to simultaneously reflect multiple characteristics of the motion in question. Recently, the effectiveness of Arias Intensity as a predictor of the likelihood of damage to short-period structures has been demonstrated, reinforcing the utility of Arias Intensity for use in both structural and geotechnical applications. In light of this utility, Arias Intensity has begun to be considered as a ground-motion measure suitable for use in probabilistic seismic hazard analysis (PSHA) and earthquake loss estimation. It is therefore timely to develop predictive equations for this ground-motion measure. In this study, a suite of four predictive equations, each using a different functional form, is derived for the prediction of Arias Intensity from crustal earthquakes in New Zealand. The provision of a suite of models is included to allow for epistemic uncertainty to be considered within a PSHA framework. Coefficients are presented for four different horizontal-component definitions for each of the four models. The ground-motion dataset for which the equations are derived include records from New Zealand crustal earthquakes as well as near-field records from worldwide crustal earthquakes. The predictive equations may be used to estimate Arias Intensity for moment magnitudes between 5.1 and 7.5 and for distances (both rjb and rrup) up to 300 km.
NASA Astrophysics Data System (ADS)
Reaver, N.; Kaplan, D. A.; Jawitz, J. W.
2017-12-01
The Budyko hypothesis states that a catchment's long-term water and energy balances are dependent on two relatively easy to measure quantities: rainfall depth and potential evaporation. This hypothesis is expressed as a simple function, the Budyko equation, which allows for the prediction of a catchment's actual evapotranspiration and discharge from measured rainfall depth and potential evaporation, data which are widely available. However, the two main analytically derived forms of the Budyko equation contain a single unknown watershed parameter, whose value varies across catchments; variation in this parameter has been used to explain the hydrological behavior of different catchments. The watershed parameter is generally thought of as a lumped quantity that represents the influence of all catchment biophysical features (e.g. soil type and depth, vegetation type, timing of rainfall, etc). Previous work has shown that the parameter is statistically correlated with catchment properties, but an explicit expression has been elusive. While the watershed parameter can be determined empirically by fitting the Budyko equation to measured data in gauged catchments where actual evapotranspiration can be estimated, this limits the utility of the framework for predicting impacts to catchment hydrology due to changing climate and land use. In this study, we developed an analytical solution for the lumped catchment parameter for both forms of the Budyko equation. We combined these solutions with a statistical soil moisture model to obtain analytical solutions for the Budyko equation parameter as a function of measurable catchment physical features, including rooting depth, soil porosity, and soil wilting point. We tested the predictive power of these solutions using the U.S. catchments in the MOPEX database. We also compared the Budyko equation parameter estimates generated from our analytical solutions (i.e. predicted parameters) with those obtained through the calibration of the Budyko equation to discharge data (i.e. empirical parameters), and found good agreement. These results suggest that it is possible to predict the Budyko equation watershed parameter directly from physical features, even for ungauged catchments.
Shara, Nawar M; Resnick, Helaine E; Lu, Li; Xu, Jiaqiong; Vupputuri, Suma; Howard, Barbara V; Umans, Jason G
2009-01-01
Kidney function, expressed as glomerular filtration rate (GFR), is commonly estimated from serum creatinine (Scr) and, when decreased, may serve as a nonclassical risk factor for incident cardiovascular disease (CVD). The ability of estimated GFR (eGFR) to predict CVD events during 5-10 years of follow-up is assessed using data from the Strong Heart Study (SHS), a large cohort with a high prevalence of diabetes. eGFRs were calculated with the abbreviated Modification of Diet in Renal Disease study (MDRD) and the Cockcroft-Gault (CG) equations. These estimates were compared in participants with normal and abnormal Scr. The association between eGFR and incident CVD was assessed. More subjects were labeled as having low eGFR (<60 ml/min per 1.73 m2) by the MDRD or CG equation, than by Scr alone. When Scr was in the normal range, both equations labeled similar numbers of participants as having low eGFRs, although concordance between the equations was poor. However, when Scr was elevated, the MDRD equation labeled more subjects as having low eGFR. Persons with low eGFR had increased risk of CVD. The MDRD and CG equations labeled more participants as having decreased GFR than did Scr alone. Decreased eGFR was predictive of CVD in this American Indian population with a high prevalence of obesity and type 2 diabetes mellitus.
Toledo-Martín, Eva María; Font, Rafael; Obregón-Cano, Sara; De Haro-Bailón, Antonio; Villatoro-Pulido, Myriam; Del Río-Celestino, Mercedes
2017-05-20
The potential of visible-near infrared spectroscopy to predict glucosinolates and total phenolic content in rocket ( Eruca vesicaria ) leaves has been evaluated. Accessions of the E. vesicaria species were scanned by NIRS as ground leaf, and their reference values regressed against different spectral transformations by modified partial least squares (MPLS) regression. The coefficients of determination in the external validation (R²VAL) for the different quality components analyzed in rocket ranged from 0.59 to 0.84, which characterize those equations as having from good to excellent quantitative information. These results show that the total glucosinolates, glucosativin and glucoerucin equations obtained, can be used to identify those samples with low and high contents. The glucoraphanin equation obtained can be used for rough predictions of samples and in case of total phenolic content, the equation showed good correlation. The standard deviation (SD) to standard error of prediction ratio (RPD) and SD to range (RER) were variable for the different quality compounds and showed values that were characteristic of equations suitable for screening purposes or to perform accurate analyses. From the study of the MPLS loadings of the first three terms of the different equations, it can be concluded that some major cell components such as protein and cellulose, highly participated in modelling the equations for glucosinolates.
Proposed Framework for Determining Added Mass of Orion Drogue Parachutes
NASA Technical Reports Server (NTRS)
Fraire, Usbaldo, Jr.; Dearman, James; Morris, Aaron
2011-01-01
The Crew Exploration Vehicle (CEV) Parachute Assembly System (CPAS) project is executing a program to qualify a parachute system for a next generation human spacecraft. Part of the qualification process involves predicting parachute riser tension during system descent with flight simulations. Human rating the CPAS hardware requires a high degree of confidence in the simulation models used to predict parachute loads. However, uncertainty exists in the heritage added mass models used for loads predictions due to a lack of supporting documentation and data. Even though CPAS anchors flight simulation loads predictions to flight tests, extrapolation of these models outside the test regime carries the risk of producing non-bounding loads. A set of equations based on empirically derived functions of skirt radius is recommended as the simplest and most viable method to test and derive an enhanced added mass model for an inflating parachute. This will increase confidence in the capability to predict parachute loads. The selected equations are based on those published in A Simplified Dynamic Model of Parachute Inflation by Dean Wolf. An Ames 80x120 wind tunnel test campaign is recommended to acquire the reefing line tension and canopy photogrammetric data needed to quantify the terms in the Wolf equations and reduce uncertainties in parachute loads predictions. Once the campaign is completed, the Wolf equations can be used to predict loads in a typical CPAS Drogue Flight test. Comprehensive descriptions of added mass test techniques from the Apollo Era to the current CPAS project are included for reference.
Lee, Jane J; Freeland-Graves, Jeanne H; Pepper, M Reese; Yao, Ming; Xu, Bugao
2013-01-01
Objective Abdominal visceral adiposity is related to risks for insulin resistance and metabolic perturbations. Magnetic resonance imaging (MRI) and computed tomography are advanced instruments that quantify abdominal adiposity; yet field use is constrained by their bulkiness and costliness. The purpose of this study is to develop prediction equations for total abdominal, subcutaneous, and visceral adiposity via anthropometrics, stereovision body imaging (SBI), and MRI. Design and Methods Participants (67 men and 55 women) were measured for anthropometrics, and abdominal adiposity volumes evaluated by MRI umbilicus scans. Body circumferences and central obesity were obtained via SBI. Prediction models were developed via multiple linear regression analysis, utilizing body measurements and demographics as independent predictors, and abdominal adiposity as a dependent variable. Cross-validation was performed by the data-splitting method. Results The final total abdominal adiposity prediction equation was –470.28+7.10waist circumference–91.01gender+5.74sagittal diameter (R²=89.9%); subcutaneous adiposity was –172.37+8.57waist circumference–62.65gender–450.16stereovision waist-to-hip ratio (R²=90.4%); and visceral adiposity was –96.76+11.48central obesity depth–5.09 central obesity width+204.74stereovision waist-to-hip ratio–18.59gender (R²=71.7%). R² significantly improved for predicting visceral fat when SBI variables were included, but not for total abdominal or subcutaneous adiposity. Conclusions SBI is effective for predicting visceral adiposity and the prediction equations derived from SBI measurements can assess obesity. PMID:23613161
Lee, Jane J; Freeland-Graves, Jeanne H; Pepper, M Reese; Yao, Ming; Xu, Bugao
2014-03-01
Abdominal visceral adiposity is related to risks for insulin resistance and metabolic perturbations. Magnetic resonance imaging (MRI) and computed tomography are advanced instruments that quantify abdominal adiposity; yet field use is constrained by their bulkiness and costliness. The purpose of this study is to develop prediction equations for total abdominal, subcutaneous, and visceral adiposity via anthropometrics, stereovision body imaging (SBI), and MRI. Participants (67 men and 55 women) were measured for anthropometrics and abdominal adiposity volumes evaluated by MRI umbilicus scans. Body circumferences and central obesity were obtained via SBI. Prediction models were developed via multiple linear regression analysis, utilizing body measurements and demographics as independent predictors, and abdominal adiposity as a dependent variable. Cross-validation was performed by the data-splitting method. The final total abdominal adiposity prediction equation was -470.28 + 7.10 waist circumference - 91.01 gender + 5.74 sagittal diameter (R2 = 89.9%), subcutaneous adiposity was -172.37 + 8.57 waist circumference - 62.65 gender - 450.16 stereovision waist-to-hip ratio (R2 =90.4%), and visceral adiposity was -96.76 + 11.48 central obesity depth - 5.09 central obesity width + 204.74 stereovision waist-to-hip ratio - 18.59 gender (R2 = 71.7%). R2 significantly improved for predicting visceral fat when SBI variables were included, but not for total abdominal or subcutaneous adiposity. SBI is effective for predicting visceral adiposity and the prediction equations derived from SBI measurements can assess obesity. Copyright © 2013 The Obesity Society.
De Campeneere, S; Fiems, L O; Van de Voorde, G; Vanacker, J M; Boucque, C V; Demeyer, D I
1999-01-01
Characteristics from the 8th rib cut: chemical composition, tissue composition after dissection, specific gravity (SG) and m. longissimus thoracis (LT) composition, collected on 17 Belgian Blue double-muscled fattening bulls were used to generate equations for predicting chemical carcass composition. Carcass composition was best predicted from chemical analysis of the 8th rib cut and the empty body weight (EBW) of the bull. Carcass chemical fat content (CCF, kg) was predicted from the 8th rib cut fat content (ether extract, 8RF, kg) by the following regression: CCF=1.94+27.37 8RF (R(2)=0.957, RSD =9.89%). A higher coefficient was found for carcass water (CCW, kg) predicted from 8RF and EBW: CCW=-2.26+0.28 EBW-34.28 8RF (R(2)=0.997, RSD=1.48%). No parameter was found to improve the prediction of CCP from EBW solely: CCP=-0.86+0.08 EBW (R(2) =0.992, RSD=2.61%). Prediction equations based solely on LT composition had low R(2) values of between 0.38 and 0.67, whereas no significant equations were found using SG. However, equations based on EBW had R(2) values between 0.78 and 0.99. Chemical components of the 8th rib cut in combination with EBW are most useful in predicting the chemical composition of the carcass of Belgian-Blue double-muscled bulls.
Is Directivity Still Effective in a PSHA Framework?
NASA Astrophysics Data System (ADS)
Spagnuolo, E.; Herrero, A.; Cultrera, G.
2008-12-01
Source rupture parameters, like directivity, modulate the energy release causing variations in the radiated signal amplitude. Thus they affect the empirical predictive equations and as a consequence the seismic hazard assessment. Classical probabilistic hazard evaluations, e.g. Cornell (1968), use very simple predictive equations only based on magnitude and distance which do not account for variables concerning the rupture process. However nowadays, a few predictive equations (e.g. Somerville 1997, Spudich and Chiou 2008) take into account for rupture directivity. Also few implementations have been made in a PSHA framework (e.g. Convertito et al. 2006, Rowshandel 2006). In practice, these new empirical predictive models incorporate quantitatively the rupture propagation effects through the introduction of variables like rake, azimuth, rupture velocity and laterality. The contribution of all these variables is summarized in corrective factors derived from measuring differences between the real data and the predicted ones Therefore, it's possible to keep the older computation, making use of a simple predictive model, and besides, to incorporate the directivity effect through the corrective factors. Any single supplementary variable meaning a new integral in the parametric space. However the difficulty consists of the constraints on parameter distribution functions. We present the preliminary result for ad hoc distributions (Gaussian, uniform distributions) in order to test the impact of incorporating directivity into PSHA models. We demonstrate that incorporating directivity in PSHA by means of the new predictive equations may lead to strong percentage variations in the hazard assessment.
Estimation of height and body mass index from demi-span in elderly individuals.
Weinbrenner, Tanja; Vioque, Jesús; Barber, Xavier; Asensio, Laura
2006-01-01
Obtaining accurate height and, consequently, body mass index (BMI) measurements in elderly subjects can be difficult due to changes in posture and loss of height during ageing. Measurements of other body segments can be used as an alternative to estimate standing height, but population- and age-specific equations are necessary. Our objectives were to validate existing equations, to develop new simple equations to predict height in an elderly Spanish population and to assess the accuracy of the BMI calculated by estimated height from the new equations. We measured height and demi-span in a representative sample of 592 individuals, 271 men and 321 women, 65 years and older (mean +/- SD, 73.8 +/- 6.3 years). We suggested equations to predict height from demi-span by multiple regression analyses and performed an agreement analysis between measured and estimated indices. Height estimated from demi-span correlated significantly (p < 0.001) with measured height (men: r = 0.708, women: r = 0.625). The best prediction equations were as follows: men, height (in cm) = 77.821 + (1.132 x demi-span in cm) + (-0.215 x 5-year age category); women: height (in cm) = 88.854 + (0.899 x demi-span in cm) + (-0.692 x 5-year age category). No significant differences between the mean values of estimated and measured heights were found for men (-0.03 +/- 4.6 cm) or women (-0.02 +/- 4.1 cm). The BMI derived from measured height did not differ significantly from the BMI derived from estimated height either. Predicted height values from equations based on demi-span and age may be acceptable surrogates to derive accurate nutritional indices such as the BMI, particularly in elderly populations, where height may be difficult to measure accurately.
Equating accelerometer estimates among youth: the Rosetta Stone 2
Brazendale, Keith; Beets, Michael W.; Bornstein, Daniel B.; Moore, Justin B.; Pate, Russell R.; Weaver, Robert G.; Falck, Ryan S.; Chandler, Jessica L.; Andersen, Lars B.; Anderssen, Sigmund A.; Cardon, Greet; Cooper, Ashley; Davey, Rachel; Froberg, Karsten; Hallal, Pedro C.; Janz, Kathleen F.; Kordas, Katarzyna; Kriemler, Susi; Puder, Jardena J.; Reilly, John J.; Salmon, Jo; Sardinha, Luis B.; Timperio, Anna; van Sluijs, Esther MF
2017-01-01
Objectives Different accelerometer cutpoints used by different researchers often yields vastly different estimates of moderate-to-vigorous intensity physical activity (MVPA). This is recognized as cutpoint non-equivalence (CNE), which reduces the ability to accurately compare youth MVPA across studies. The objective of this research is to develop a cutpoint conversion system that standardizes minutes of MVPA for six different sets of published cutpoints. Design Secondary data analysis Methods Data from the International Children’s Accelerometer Database (ICAD; Spring 2014) consisting of 43,112 Actigraph accelerometer data files from 21 worldwide studies (children 3-18 years, 61.5% female) were used to develop prediction equations for six sets of published cutpoints. Linear and non-linear modeling, using a leave one out cross-validation technique, was employed to develop equations to convert MVPA from one set of cutpoints into another. Bland Altman plots illustrate the agreement between actual MVPA and predicted MVPA values. Results Across the total sample, mean MVPA ranged from 29.7 MVPA min.d-1 (Puyau) to 126.1 MVPA min.d-1 (Freedson 3 METs). Across conversion equations, median absolute percent error was 12.6% (range: 1.3 to 30.1) and the proportion of variance explained ranged from 66.7% to 99.8%. Mean difference for the best performing prediction equation (VC from EV) was -0.110 min.d-1 (limits of agreement (LOA), -2.623 to 2.402). The mean difference for the worst performing prediction equation (FR3 from PY) was 34.76 min.d-1 (LOA, -60.392 to 129.910). Conclusions For six different sets of published cutpoints, the use of this equating system can assist individuals attempting to synthesize the growing body of literature on Actigraph, accelerometry-derived MVPA. PMID:25747468
NASA Technical Reports Server (NTRS)
Bellmore, C. P.; Reid, R. L.
1980-01-01
Presented herein is a method of including density fluctuations in the equations of turbulent transport. Results of a numerical analysis indicate that the method may be used to predict heat transfer for the case of near-critical para-hydrogen in turbulent upflow inside vertical tubes. Wall temperatures, heat transfer coefficients, and velocities obtained by coupling the equations of turbulent momentum and heat transfer with a perturbed equation of state show good agreement with experiment for inlet reduced pressures of 1.28-5.83.
2014-07-01
Labs uses parameterized Hammett -type equations to describe 1500 possible combinations of more than 650 ionizable functional groups. The change in...of the form ⋯ , ⋯ Equation (1) where Ypred is the predicted property, c0 is a constant, c1 to cn are coefficients from the...regression to the training set of measurements, X1 to Xn represent molecular or fragment or field-based descriptors, and the final term in Equation 1
Calculating the Solubilities of Drugs and Drug-Like Compounds in Octanol.
Alantary, Doaa; Yalkowsky, Samuel
2016-09-01
A modification of the Van't Hoff equation is used to predict the solubility of organic compounds in dry octanol. The new equation describes a linear relationship between the logarithm of the solubility of a solute in octanol to its melting temperature. More than 620 experimentally measured octanol solubilities, collected from the literature, are used to validate the equation without using any regression or fitting. The average absolute error of the prediction is 0.66 log units. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Nakagawa, Yoshihide; Amino, Mari; Inokuchi, Sadaki; Hayashi, Satoshi; Wakabayashi, Tsutomu; Noda, Tatsuya
2017-04-01
Amplitude spectral area (AMSA), an index for analysing ventricular fibrillation (VF) waveforms, is thought to predict the return of spontaneous circulation (ROSC) after electric shocks, but its validity is unconfirmed. We developed an equation to predict ROSC, where the change in AMSA (ΔAMSA) is added to AMSA measured immediately before the first shock (AMSA1). We examine the validity of this equation by comparing it with the conventional AMSA1-only equation. We retrospectively investigated 285 VF patients given prehospital electric shocks by emergency medical services. ΔAMSA was calculated by subtracting AMSA1 from last AMSA immediately before the last prehospital electric shock. Multivariate logistic regression analysis was performed using post-shock ROSC as a dependent variable. Analysis data were subjected to receiver operating characteristic curve analysis, goodness-of-fit testing using a likelihood ratio test, and the bootstrap method. AMSA1 (odds ratio (OR) 1.151, 95% confidence interval (CI) 1.086-1.220) and ΔAMSA (OR 1.289, 95% CI 1.156-1.438) were independent factors influencing ROSC induction by electric shock. Area under the curve (AUC) for predicting ROSC was 0.851 for AMSA1-only and 0.891 for AMSA1+ΔAMSA. Compared with the AMSA1-only equation, the AMSA1+ΔAMSA equation had significantly better goodness-of-fit (likelihood ratio test P<0.001) and showed good fit in the bootstrap method. Post-shock ROSC was accurately predicted by adding ΔAMSA to AMSA1. AMSA-based ROSC prediction enables application of electric shock to only those patients with high probability of ROSC, instead of interrupting chest compressions and delivering unnecessary shocks to patients with low probability of ROSC. Copyright © 2017 Elsevier B.V. All rights reserved.
A Hybrid Ground-Motion Prediction Equation for Earthquakes in Western Alberta
NASA Astrophysics Data System (ADS)
Spriggs, N.; Yenier, E.; Law, A.; Moores, A. O.
2015-12-01
Estimation of ground-motion amplitudes that may be produced by future earthquakes constitutes the foundation of seismic hazard assessment and earthquake-resistant structural design. This is typically done by using a prediction equation that quantifies amplitudes as a function of key seismological variables such as magnitude, distance and site condition. In this study, we develop a hybrid empirical prediction equation for earthquakes in western Alberta, where evaluation of seismic hazard associated with induced seismicity is of particular interest. We use peak ground motions and response spectra from recorded seismic events to model the regional source and attenuation attributes. The available empirical data is limited in the magnitude range of engineering interest (M>4). Therefore, we combine empirical data with a simulation-based model in order to obtain seismologically informed predictions for moderate-to-large magnitude events. The methodology is two-fold. First, we investigate the shape of geometrical spreading in Alberta. We supplement the seismic data with ground motions obtained from mining/quarry blasts, in order to gain insights into the regional attenuation over a wide distance range. A comparison of ground-motion amplitudes for earthquakes and mining/quarry blasts show that both event types decay at similar rates with distance and demonstrate a significant Moho-bounce effect. In the second stage, we calibrate the source and attenuation parameters of a simulation-based prediction equation to match the available amplitude data from seismic events. We model the geometrical spreading using a trilinear function with attenuation rates obtained from the first stage, and calculate coefficients of anelastic attenuation and site amplification via regression analysis. This provides a hybrid ground-motion prediction equation that is calibrated for observed motions in western Alberta and is applicable to moderate-to-large magnitude events.
Model parameter uncertainty analysis for an annual field-scale P loss model
NASA Astrophysics Data System (ADS)
Bolster, Carl H.; Vadas, Peter A.; Boykin, Debbie
2016-08-01
Phosphorous (P) fate and transport models are important tools for developing and evaluating conservation practices aimed at reducing P losses from agricultural fields. Because all models are simplifications of complex systems, there will exist an inherent amount of uncertainty associated with their predictions. It is therefore important that efforts be directed at identifying, quantifying, and communicating the different sources of model uncertainties. In this study, we conducted an uncertainty analysis with the Annual P Loss Estimator (APLE) model. Our analysis included calculating parameter uncertainties and confidence and prediction intervals for five internal regression equations in APLE. We also estimated uncertainties of the model input variables based on values reported in the literature. We then predicted P loss for a suite of fields under different management and climatic conditions while accounting for uncertainties in the model parameters and inputs and compared the relative contributions of these two sources of uncertainty to the overall uncertainty associated with predictions of P loss. Both the overall magnitude of the prediction uncertainties and the relative contributions of the two sources of uncertainty varied depending on management practices and field characteristics. This was due to differences in the number of model input variables and the uncertainties in the regression equations associated with each P loss pathway. Inspection of the uncertainties in the five regression equations brought attention to a previously unrecognized limitation with the equation used to partition surface-applied fertilizer P between leaching and runoff losses. As a result, an alternate equation was identified that provided similar predictions with much less uncertainty. Our results demonstrate how a thorough uncertainty and model residual analysis can be used to identify limitations with a model. Such insight can then be used to guide future data collection and model development and evaluation efforts.
Predicting phase equilibria in one-component systems
NASA Astrophysics Data System (ADS)
Korchuganova, M. R.; Esina, Z. N.
2015-07-01
It is shown that Simon equation coefficients for n-alkanes and n-alcohols can be modeled using critical and triple point parameters. Predictions of the phase liquid-vapor, solid-vapor, and liquid-solid equilibria in one-component systems are based on the Clausius-Clapeyron relation, Van der Waals and Simon equations, and the principle of thermodynamic similarity.
Cell membrane temperature rate sensitivity predicted from the Nernst equation.
Barnes, F S
1984-01-01
A hyperpolarized current is predicted from the Nernst equation for conditions of positive temperature derivatives with respect to time. This ion current, coupled with changes in membrane channel conductivities, is expected to contribute to a transient potential shift across the cell membrane for silent cells and to a change in firing rate for pacemaker cells.
ERIC Educational Resources Information Center
Hafner, Lawrence E.
A study developed a multiple regression prediction equation for each of six selected achievement variables in a popular standardized test of achievement. Subjects, 42 fourth-grade pupils randomly selected across several classes in a large elementary school in a north Florida city, were administered several standardized tests to determine predictor…
Ten-year risk-rating systems for California red fir and white fir: development and use
George T. Ferrell
1989-01-01
Logistic regression equations predicting the probability that a tree will die from natural causes--insects, diseases, intertree competition--within 10 years have been developed for California red fir (Abies magnifica) and white fir (A. concolor). The equations, like those with a 5-year prediction period already developed for these...
Development of equations for predicting Puerto Rican subtropical dry forest biomass and volume
Thomas J. Brandeis; Matthew Delaney; Bernard R. Parresol; Larry Royer
2006-01-01
Carbon accounting, forest health monitoring and sustainable management of the subtropical dry forests of Puerto Rico and other Caribbean Islands require an accurate assessment of forest aboveground biomass (AGB) and stem volume. One means of improving assessment accuracy is the development of predictive equations derived from locally collected data. Forest inventory...
Development of equations for predicting Puerto Rican subtropical dry forest biomass and volume.
Thomas J. Brandeis; Matthew Delaney; Bernard R. Parresol; Larry Royer
2006-01-01
Carbon accounting, forest health monitoring and sustainable management of the subtropical dry forests of Puerto Rico and other Caribbean Islands require an accurate assessment of forest aboveground biomass (AGB) and stem volume. One means of improving assessment accuracy is the development of predictive equations derived from locally collected data. Forest inventory...
Growth and yield of quaking aspen in North-central Minnesota.
Bryce E. Schlaegel
1971-01-01
Summaries of total and merchantable stand data from 34 permanent sample plots were used to derive equations for predicting present and future stand volumes. Equations are presented for predicting total cubic-foot volume, ratio of merchantable volume to total volume, and future stand diameter, heights, and basal area. Yield tables are given for total stand volume and...
NASA Trapezoidal Wing Simulation Using Stress-w and One- and Two-Equation Turbulence Models
NASA Technical Reports Server (NTRS)
Rodio, J. J.; Xiao, X; Hassan, H. A.; Rumsey, C. L.
2014-01-01
The Wilcox 2006 stress-omega model (also referred to as WilcoxRSM-w2006) has been implemented in the NASA Langley code CFL3D and used to study a variety of 2-D and 3-D configurations. It predicted a variety of basic cases reasonably well, including secondary flow in a supersonic rectangular duct. One- and two-equation turbulence models that employ the Boussinesq constitutive relation were unable to predict this secondary flow accurately because it is driven by normal turbulent stress differences. For the NASA trapezoidal wing at high angles of attack, the WilcoxRSM-w2006 model predicted lower maximum lift than experiment, similar to results of a two-equation model.
Abnormal formation velocities and applications to pore pressure prediction
NASA Astrophysics Data System (ADS)
Liu, Libin; Shen, Guoqiang; Wang, Zhentao; Yang, Hongwei; Han, Hongwei; Cheng, Yuanfeng
2018-06-01
The pore pressure is a vital concept to the petroleum industry and cannot be ignored by either reservoir engineers or geoscientists. Based on theoretical analyses of effective stresses and the grain packing model, a new equation is proposed for predicting pore pressures from formation velocity data. The predictions agree well with both measured pressures and estimations using Eaton's empirical equation, but the application of the new equation to seismic data is simple and convenient. One application example shows that the identification of sweet spots is much easier using pore pressure data than with inverted seismic velocity data. In another application example using field seismic data, a distribution of overpressured strata is revealed, which is a crucial clue for petroleum generation and accumulation. Still, the accuracy of pore pressure prediction is hardly always guaranteed, mainly owing to the complexity of the real geology and the suitability of specific assumptions about the underlying rock physics.
NASA Technical Reports Server (NTRS)
Balakrishnan, L.; Abdol-Hamid, Khaled S.
1992-01-01
Compressible jet plumes were studied using a two-equation turbulence model. A space marching procedure based on an upwind numerical scheme was used to solve the governing equations and turbulence transport equations. The computed results indicate that extending the space marching procedure for solving supersonic/subsonic mixing problems can be stable, efficient and accurate. Moreover, a newly developed correction for compressible dissipation has been verified in fully expanded and underexpanded jet plumes. For a sonic jet plume, no improvement in results over the standard two-equation model was seen. However for a supersonic jet plume, the correction due to compressible dissipation successfully predicted the reduced spreading rate of the jet compared to the sonic case. The computed results were generally in good agreement with the experimental data.
Additive nonlinear biomass equations: A likelihood-based approach
David L. R. Affleck; Ulises Dieguez-Aranda
2016-01-01
Since Parresolâs (Can. J. For. Res. 31:865-878, 2001) seminal article on the topic, it has become standard to develop nonlinear tree biomass equations to ensure compatibility among total and component predictions and to fit these equations using multistep generalized least-squares methods. In particular, many studies have specified equations for total tree...
Flood-frequency prediction methods for unregulated streams of Tennessee, 2000
Law, George S.; Tasker, Gary D.
2003-01-01
Up-to-date flood-frequency prediction methods for unregulated, ungaged rivers and streams of Tennessee have been developed. Prediction methods include the regional-regression method and the newer region-of-influence method. The prediction methods were developed using stream-gage records from unregulated streams draining basins having from 1 percent to about 30 percent total impervious area. These methods, however, should not be used in heavily developed or storm-sewered basins with impervious areas greater than 10 percent. The methods can be used to estimate 2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence-interval floods of most unregulated rural streams in Tennessee. A computer application was developed that automates the calculation of flood frequency for unregulated, ungaged rivers and streams of Tennessee. Regional-regression equations were derived by using both single-variable and multivariable regional-regression analysis. Contributing drainage area is the explanatory variable used in the single-variable equations. Contributing drainage area, main-channel slope, and a climate factor are the explanatory variables used in the multivariable equations. Deleted-residual standard error for the single-variable equations ranged from 32 to 65 percent. Deleted-residual standard error for the multivariable equations ranged from 31 to 63 percent. These equations are included in the computer application to allow easy comparison of results produced by the different methods. The region-of-influence method calculates multivariable regression equations for each ungaged site and recurrence interval using basin characteristics from 60 similar sites selected from the study area. Explanatory variables that may be used in regression equations computed by the region-of-influence method include contributing drainage area, main-channel slope, a climate factor, and a physiographic-region factor. Deleted-residual standard error for the region-of-influence method tended to be only slightly smaller than those for the regional-regression method and ranged from 27 to 62 percent.
Efficient modeling of phase jitter in dispersion-managed soliton systems.
McKinstrie, C J; Xie, C; Lakoba, T I
2002-11-01
The variational method is used to derive correlation equations that model phase jitter in dispersion-managed soliton systems. The predictions of these correlation equations are consistent with numerical solutions of the nonlinear Schrödinger equation on which they are based.
Ahearn, Elizabeth A.
2010-01-01
Multiple linear regression equations for determining flow-duration statistics were developed to estimate select flow exceedances ranging from 25- to 99-percent for six 'bioperiods'-Salmonid Spawning (November), Overwinter (December-February), Habitat Forming (March-April), Clupeid Spawning (May), Resident Spawning (June), and Rearing and Growth (July-October)-in Connecticut. Regression equations also were developed to estimate the 25- and 99-percent flow exceedances without reference to a bioperiod. In total, 32 equations were developed. The predictive equations were based on regression analyses relating flow statistics from streamgages to GIS-determined basin and climatic characteristics for the drainage areas of those streamgages. Thirty-nine streamgages (and an additional 6 short-term streamgages and 28 partial-record sites for the non-bioperiod 99-percent exceedance) in Connecticut and adjacent areas of neighboring States were used in the regression analysis. Weighted least squares regression analysis was used to determine the predictive equations; weights were assigned based on record length. The basin characteristics-drainage area, percentage of area with coarse-grained stratified deposits, percentage of area with wetlands, mean monthly precipitation (November), mean seasonal precipitation (December, January, and February), and mean basin elevation-are used as explanatory variables in the equations. Standard errors of estimate of the 32 equations ranged from 10.7 to 156 percent with medians of 19.2 and 55.4 percent to predict the 25- and 99-percent exceedances, respectively. Regression equations to estimate high and median flows (25- to 75-percent exceedances) are better predictors (smaller variability of the residual values around the regression line) than the equations to estimate low flows (less than 75-percent exceedance). The Habitat Forming (March-April) bioperiod had the smallest standard errors of estimate, ranging from 10.7 to 20.9 percent. In contrast, the Rearing and Growth (July-October) bioperiod had the largest standard errors, ranging from 30.9 to 156 percent. The adjusted coefficient of determination of the equations ranged from 77.5 to 99.4 percent with medians of 98.5 and 90.6 percent to predict the 25- and 99-percent exceedances, respectively. Descriptive information on the streamgages used in the regression, measured basin and climatic characteristics, and estimated flow-duration statistics are provided in this report. Flow-duration statistics and the 32 regression equations for estimating flow-duration statistics in Connecticut are stored on the U.S. Geological Survey World Wide Web application ?StreamStats? (http://water.usgs.gov/osw/streamstats/index.html). The regression equations developed in this report can be used to produce unbiased estimates of select flow exceedances statewide.
1991-07-01
predicted by equation using actual chart response obtained from each calibration gas response. (Concentration of cal. gas,l Calibration error, % span • ppm...Analyzer predicted by cali- Col. gas Chart divisions equation* bration Cylinder conc., error,** Drift,***INo. ppm or % Pretest Posttest Pretest Posttest...2m ~J * Correlation coef. * qgq’jq **Analyzer ca.error, % spn (Cal. gas conc. conc. predicted ) x 1003 cal spanSpan value Acceptable limit x ɚ% of
Corrections to the Shapiro Equation used to Predict Sweating and Water Requirements
2008-01-01
Nishi, Y., and A. P. Gagge. Effective temperature scale useful for hypobaric and hyperbaric environments. Aviat. Space Environ. Med. 48: 97-107, 1977...time series predictions of specific variables (35). Comparison of the original Shapiro equation predicting sweat loss and water requirements was...40 60 80 100 % O ff (+ ,m od el u nd er pr ed ic ts ;-, ov er pr ed ic ts ) It is clear from Figure 2’s plot of the residual values ( comparison
A numerical solution of Duffing's equations including the prediction of jump phenomena
NASA Technical Reports Server (NTRS)
Moyer, E. T., Jr.; Ghasghai-Abdi, E.
1987-01-01
Numerical methodology for the solution of Duffing's differential equation is presented. Algorithms for the prediction of multiple equilibrium solutions and jump phenomena are developed. In addition, a filtering algorithm for producing steady state solutions is presented. The problem of a rigidly clamped circular plate subjected to cosinusoidal pressure loading is solved using the developed algorithms (the plate is assumed to be in the geometrically nonlinear range). The results accurately predict regions of solution multiplicity and jump phenomena.
Khan, I.; Hawlader, Sophie Mohammad Delwer Hossain; Arifeen, Shams El; Moore, Sophie; Hills, Andrew P.; Wells, Jonathan C.; Persson, Lars-Åke; Kabir, Iqbal
2012-01-01
The aim of this study was to investigate the validity of the Tanita TBF 300A leg-to-leg bioimpedance analyzer for estimating fat-free mass (FFM) in Bangladeshi children aged 4-10 years and to develop novel prediction equations for use in this population, using deuterium dilution as the reference method. Two hundred Bangladeshi children were enrolled. The isotope dilution technique with deuterium oxide was used for estimation of total body water (TBW). FFM estimated by Tanita was compared with results of deuterium oxide dilution technique. Novel prediction equations were created for estimating FFM, using linear regression models, fitting child's height and impedance as predictors. There was a significant difference in FFM and percentage of body fat (BF%) between methods (p<0.01), Tanita underestimating TBW in boys (p=0.001) and underestimating BF% in girls (p<0.001). A basic linear regression model with height and impedance explained 83% of the variance in FFM estimated by deuterium oxide dilution technique. The best-fit equation to predict FFM from linear regression modelling was achieved by adding weight, sex, and age to the basic model, bringing the adjusted R2 to 89% (standard error=0.90, p<0.001). These data suggest Tanita analyzer may be a valid field-assessment technique in Bangladeshi children when using population-specific prediction equations, such as the ones developed here. PMID:23082630
Differentiation of subspecies and sexes of Beringian Dunlins using morphometric measures
Gates, H. River; Yezerinac, Stephen; Powell, Abby N.; Tomkovich, Pavel S.; Valchuk, Olga P.; Lanctot, Richard B.
2013-01-01
Five subspecies of Dunlins (Calidris alpina) that breed in Beringia are potentially sympatric during the non-breeding season. Studying their ecology during this period requires techniques to distinguish individuals by subspecies. Our objectives were to determine (1) if five morphometric measures (body mass, culmen, head, tarsus, and wing chord) differed between sexes and among subspecies (C. a. actites, arcticola, kistchinski, pacifica, and sakhalina), and (2) if these differences were sufficient to allow for correct classification of individuals using equations derived from discriminant function analyses. We conducted analyses using morphometric data from 10 Dunlin populations breeding in northern Russia and Alaska, USA. Univariate tests revealed significant differences between sexes in most morphometric traits of all subspecies, and discriminant function equations predicted the sex of individuals with an accuracy of 83–100% for each subspecies. We provide equations to determine sex and subspecies of individuals in mixed subspecies groups, including the (1) Western Alaska group of arcticola and pacifica (known to stage together in western Alaska) and (2) East Asia group of arcticola, actites, kistchinski, and sakhalina (known to winter together in East Asia). Equations that predict the sex of individuals in mixed groups had classification accuracies between 75% and 87%, yielding reliable classification equations. We also provide equations that predict the subspecies of individuals with an accuracy of 22–96% for different mixed subspecies groups. When the sex of individuals can be predetermined, the accuracy of these equations is increased substantially. Investigators are cautioned to consider limitations due to age and feather wear when using these equations during the non-breeding season. These equations will allow determination of sexual and subspecies segregation in non-breeding areas, allowing implementation of taxonomic-specific conservation actions.
Carpenter, Andrea; Ng, Vicky Lee; Chapman, Karen; Ling, Simon C; Mouzaki, Marialena
2017-03-01
Malnutrition is common in children with end-stage liver disease (ESLD) and is associated with increased morbidity and mortality. The inability to accurately estimate energy needs of these patients may contribute to their poor nutrition status. In clinical practice, predictive equations are used to calculate resting energy expenditure (cREE). The objective of this study is to assess the accuracy of commonly used equations in pediatric patients with ESLD. Retrospective study performed at the Hospital for Sick Children. Clinical, laboratory, and indirect calorimetry data from children listed for liver transplant between February 2013 and December 2014 were reviewed. Calorimetry results were compared with cREE estimated using the Food and Agriculture Organization/World Health Organization/United Nations University (FAO/WHO/UNU), Schofield [weight], and Schofield [weight and height] equations. Forty-five patients were included in this study. The median age was 9 months, and the most common indication for transplantation was biliary atresia (64%). The Schofield [weight and height], FAO/WHO/UNU, and Schofield [weight] equations were compared with indirect calorimetry and found to have a mean (SD) difference of 48.8 (344.0), 59.3 (229.8), and 206.5 (502.6) kcal/d, respectively. The FAO/WHO/UNU, Schofield [weight], and Schofield [weight and height] equations introduced a mean error of 21%, 38%, and 76%, respectively. The FAO/WHO/UNU equation tended to underestimate, whereas the Schofield equations overestimated the REE. Commonly used predictive equations perform poorly in infants and young children with ESLD. Indirect calorimetry should be used when available to guide energy provision, particularly in children who are already malnourished.
de Souza E Silva, Christina G; Kaminsky, Leonard A; Arena, Ross; Christle, Jeffrey W; Araújo, Claudio Gil S; Lima, Ricardo M; Ashley, Euan A; Myers, Jonathan
2018-05-01
Background Maximal oxygen uptake (VO 2 max) is a powerful predictor of health outcomes. Valid and portable reference values are integral to interpreting measured VO 2 max; however, available reference standards lack validation and are specific to exercise mode. This study was undertaken to develop and validate a single equation for normal standards for VO 2 max for the treadmill or cycle ergometer in men and women. Methods Healthy individuals ( N = 10,881; 67.8% men, 20-85 years) who performed a maximal cardiopulmonary exercise test on either a treadmill or a cycle ergometer were studied. Of these, 7617 and 3264 individuals were randomly selected for development and validation of the equation, respectively. A Brazilian sample (1619 individuals) constituted a second validation cohort. The prediction equation was determined using multiple regression analysis, and comparisons were made with the widely-used Wasserman and European equations. Results Age, sex, weight, height and exercise mode were significant predictors of VO 2 max. The regression equation was: VO 2 max (ml kg -1 min -1 ) = 45.2 - 0.35*Age - 10.9*Sex (male = 1; female = 2) - 0.15*Weight (pounds) + 0.68*Height (inches) - 0.46*Exercise Mode (treadmill = 1; bike = 2) ( R = 0.79, R 2 = 0.62, standard error of the estimate = 6.6 ml kg -1 min -1 ). Percentage predicted VO 2 max for the US and Brazilian validation cohorts were 102.8% and 95.8%, respectively. The new equation performed better than traditional equations, particularly among women and individuals ≥60 years old. Conclusion A combined equation was developed for normal standards for VO 2 max for different exercise modes derived from a US national registry. The equation provided a lower average error between measured and predicted VO 2 max than traditional equations even when applied to an independent cohort. Additional studies are needed to determine its portability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burley, J.B.; Polakowski, K.J.; Fowler, G.
Surface mine reclamation specialists have been searching for predictive methods to assess the capability of disturbed soils to support vegetation growth. We conducted a study to develop a vegetation productivity equation for reclaiming surface mines in Oliver County, North Dakota, thereby allowing investigators to quantitatively determine the plant growth potential of a reclaimed soil. The study examined the predictive modeling potential for both agronomic crops and woody plants, including: wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), oat (Avena sativa L.), corn (Zea mays L.), grass and legume mixtures, Eastern red cedar (Juniperus virginiana L.), Black Hills spruce (Picea glaucamore » var. densata Bailey), Colorado spruce (Picea pungens Engelm.), ponderosa pine (Pinus ponderosa var. scope Engelm.), green ash (Fraxinus pennsylvanica Marsh.), Eastern cottonwood Populus deltoides (Bart. ex Marsh.), Siberian elm (Ulmus pumila L.), Siberian peashrub (Caragana arborescens Lam), American plum (Prunus americans Marsh.), and chokecherry ( Prunus virginiana L.). An equation was developed which is highly significant (p<0.0001), explaining 81.08% of the variance (coefficient of multiple determination=0.8108), with all regressors significant (p{le}0.048, Type II Sums of Squares). The measurement of seven soil parameters are required to predict soil vegetation productivity: percent slope, available water holding capacity, percent rock fragments, topographic position, electrical conductivity, pH, and percent organic matter. While the equation was developed from data on undisturbed soils, the equation`s predictions were positively correlated (0.71424, p{le}0.0203) with a small data set (n=10) from reclaimed soils.« less
Berg, E P; Neary, M K; Forrest, J C; Thomas, D L; Kauffman, R G
1996-11-01
Market weight lambs, average weight 52.5 kg (+/-6.1), were used to evaluate nontraditional live animal measurements as predictors of carcass composition. The sample population (n = 106) represented U.S. market lambs and transcended geographic location, breed, carcass weight, yield grade, and production system. Realtime ultrasonic (RU) measurements and bioelectrical impedance analysis (BIA) were used for development and evaluation of prediction equations for % boneless, closely trimmed primal cuts (BCTPC), weight or % of dissected lean tissue (TDL), and chemically derived weight or % fat-free lean (FFL). Longitudinal ultrasonic images were obtained parallel to the longissimus thoracis et lumborum (LTL), positioning the last costae in the center of the transducer head. Images were saved and fat and LTL depths were derived from printed images of the ultrasonic scans. Bioelectrical impedance analysis was administered via a four-terminal impedance plethysmograph operating at 800 microA at 50 kHz. Impedance measurements of whole-body resistance and reactance were recorded. Prediction equations including common linear measurements of live weight, heart girth, hindsaddle length, and shoulder height were also evaluated. All measurements were taken just before slaughter. Bioelectrical impedance measurements (as compared to RU and linear measurements) provided equations for %BCTPC, TDL, %TDL, FFL and %FFL with the highest R2 and lowest root mean square error. Even though BIA provided the best equations of the three methodologies tested, prediction of proportional yield (%BCTPC, %TDL, and %FFL) was marginal (R2 = .296, .551, and .551, respectively). Equations combining BIA, RU, and linear measurements greatly improved equations for prediction of proportional lean yield.
On the Connection Between One-and Two-Equation Models of Turbulence
NASA Technical Reports Server (NTRS)
Menter, F. R.; Rai, Man Mohan (Technical Monitor)
1994-01-01
A formalism will be presented that allows the transformation of two-equation eddy viscosity turbulence models into one-equation models. The transformation is based on an assumption that is widely accepted over a large range of boundary layer flows and that has been shown to actually improve predictions when incorporated into two-equation models of turbulence. Based on that assumption, a new one-equation turbulence model will be derived. The new model will be tested in great detail against a previously introduced one-equation model and against its parent two-equation model.
Dong, Hong-ba; Yang, Yan-wen; Wang, Ying; Hong, Li
2012-11-01
Energy metabolism of critically ill children has its own characteristics, especially for those undergoing mechanical ventilation. We tried to assess the energy expenditure status and evaluate the use of predictive equations in such children. Moreover, the characteristics of the energy metabolism among various situation were explored. Fifty critically ill children undergoing mechanical ventilation were selected in this study. Data produced during the 24 hours of mechanical ventilation were collected for computation of severity of illness. Resting energy expenditure (REE) was determined at 24 hours after mechanical ventilation (MREE). Predictive resting energy expenditure (PREE) was calculated for each subject using age-appropriate equations (Schofield-HTWT, White). The study was approved by the hospital medical ethics committee and obtained parental written informed consent. The pediatric risk of mortality score 3 (PRISM3) and pediatric critical illness score (PCIS) were (7 ± 3) and (82 ± 4), respectively. MREE, Schofield-HTWT equation PREE and White equation PREE were (404.80 ± 178.28), (462.82 ± 160.38) and (427.97 ± 152.30) kcal/d, respectively; 70% were hypometabolic and 10% were hypermetabolic. MREE and PREE which were calculated using Schofield-HTWT equation and White equation, both were higher than MREE (P = 0.029). Correlation analysis was performed between PRISM3 and PCIS with MREE. There were no statistically significant correlation (P > 0.05). The hypometabolic response is apparent in critically ill children with mechanical ventilation; Schofield-HTWT equation and White equation could not predict energy requirements within acceptable clinical accuracy. In critically ill children undergoing mechanical ventilation, the energy expenditure is not correlated with the severity of illness.
Abtahi, Shirin; Abtahi, Farhad; Ellegård, Lars; Johannsson, Gudmundur; Bosaeus, Ingvar
2015-01-01
For several decades electrical bioimpedance (EBI) has been used to assess body fluid distribution and body composition. Despite the development of several different approaches for assessing total body water (TBW), it remains uncertain whether bioimpedance spectroscopic (BIS) approaches are more accurate than single frequency regression equations. The main objective of this study was to answer this question by calculating the expected accuracy of a single measurement for different EBI methods. The results of this study showed that all methods produced similarly high correlation and concordance coefficients, indicating good accuracy as a method. Even the limits of agreement produced from the Bland-Altman analysis indicated that the performance of single frequency, Sun's prediction equations, at population level was close to the performance of both BIS methods; however, when comparing the Mean Absolute Percentage Error value between the single frequency prediction equations and the BIS methods, a significant difference was obtained, indicating slightly better accuracy for the BIS methods. Despite the higher accuracy of BIS methods over 50 kHz prediction equations at both population and individual level, the magnitude of the improvement was small. Such slight improvement in accuracy of BIS methods is suggested insufficient to warrant their clinical use where the most accurate predictions of TBW are required, for example, when assessing over-fluidic status on dialysis. To reach expected errors below 4-5%, novel and individualized approaches must be developed to improve the accuracy of bioimpedance-based methods for the advent of innovative personalized health monitoring applications. PMID:26137489
Kaplowitz, Stan A; Perlstadt, Harry; D'Onofrio, Gail; Melnick, Edward R; Baum, Carl R; Kirrane, Barbara M; Post, Lori A
2012-01-01
We derived a clinical decision rule for determining which young children need testing for lead poisoning. We developed an equation that combines lead exposure self-report questions with the child's census-block housing and socioeconomic characteristics, personal demographic characteristics, and Medicaid status. This equation better predicts elevated blood lead level (EBLL) than one using ZIP code and Medicaid status. A survey regarding potential lead exposure was administered from October 2001 to January 2003 to Michigan parents at pediatric clinics (n=3,396). These self-report survey data were linked to a statewide clinical registry of blood lead level (BLL) tests. Sensitivity and specificity were calculated and then used to estimate the cost-effectiveness of the equation. The census-block group prediction equation explained 18.1% of the variance in BLLs. Replacing block group characteristics with the self-report questions and dichotomized ZIP code risk explained only 12.6% of the variance. Adding three self-report questions to the census-block group model increased the variance explained to 19.9% and increased specificity with no loss in sensitivity in detecting EBLLs of ≥ 10 micrograms per deciliter. Relying solely on self-reports of lead exposure predicted BLL less effectively than the block group model. However, adding three of 13 self-report questions to our clinical decision rule significantly improved prediction of which children require a BLL test. Using the equation as the clinical decision rule would annually eliminate more than 7,200 unnecessary tests in Michigan and save more than $220,000.
Orientation-dependent integral equation theory for a two-dimensional model of water
NASA Astrophysics Data System (ADS)
Urbič, T.; Vlachy, V.; Kalyuzhnyi, Yu. V.; Dill, K. A.
2003-03-01
We develop an integral equation theory that applies to strongly associating orientation-dependent liquids, such as water. In an earlier treatment, we developed a Wertheim integral equation theory (IET) that we tested against NPT Monte Carlo simulations of the two-dimensional Mercedes Benz model of water. The main approximation in the earlier calculation was an orientational averaging in the multidensity Ornstein-Zernike equation. Here we improve the theory by explicit introduction of an orientation dependence in the IET, based upon expanding the two-particle angular correlation function in orthogonal basis functions. We find that the new orientation-dependent IET (ODIET) yields a considerable improvement of the predicted structure of water, when compared to the Monte Carlo simulations. In particular, ODIET predicts more long-range order than the original IET, with hexagonal symmetry, as expected for the hydrogen bonded ice in this model. The new theoretical approximation still errs in some subtle properties; for example, it does not predict liquid water's density maximum with temperature or the negative thermal expansion coefficient.
Predicting mixture phase equilibria and critical behavior using the SAFT-VRX approach.
Sun, Lixin; Zhao, Honggang; Kiselev, Sergei B; McCabe, Clare
2005-05-12
The SAFT-VRX equation of state combines the SAFT-VR equation with a crossover function that smoothly transforms the classical equation into a nonanalytical form close to the critical point. By a combinination of the accuracy of the SAFT-VR approach away from the critical region with the asymptotic scaling behavior seen at the critical point of real fluids, the SAFT-VRX equation can accurately describe the global fluid phase diagram. In previous work, we demonstrated that the SAFT-VRX equation very accurately describes the pvT and phase behavior of both nonassociating and associating pure fluids, with a minimum of fitting to experimental data. Here, we present a generalized SAFT-VRX equation of state for binary mixtures that is found to accurately predict the vapor-liquid equilibrium and pvT behavior of the systems studied. In particular, we examine binary mixtures of n-alkanes and carbon dioxide + n-alkanes. The SAFT-VRX equation accurately describes not only the gas-liquid critical locus for these systems but also the vapor-liquid equilibrium phase diagrams and thermal properties in single-phase regions.
The breakdown of the weakly-nonlinear regime for kinetic instabilities
NASA Astrophysics Data System (ADS)
Sanz-Orozco, David; Berk, Herbert; Wang, Ge
2017-10-01
The evolution of marginally-unstable waves that interact resonantly with populations of energetic particles is governed by a well-known cubic integro-differential equation for the mode amplitude. One of the outcomes predicted by the equation is the so-called ``explosive'' regime, where the amplitude grows indefinitely, eventually taking the equation outside of its domain of validity. Beyond this point, only full Vlasov simulations will accurately describe the evolution of the mode amplitude. In this work, we study the breakdown of the cubic equation in detail. We find that, while the cubic equation is still valid, the distribution function of the energetic particles locally flattens or ``folds'' in phase space. This feature is unexpected in view of the assumptions of the theory that are given in. We also derive fifth-order terms in the wave equation, which not only give us a more accurate description of the marginally-unstable modes, but they also allow us to predict the breakdown of the cubic equation. Our findings allow us to better understand the transition between weakly-nonlinear modes and the long-term chirping modes that ultimately emerge.
Sabounchi, Nasim S.; Rahmandad, Hazhir; Ammerman, Alice
2014-01-01
Basal Metabolic Rate (BMR) represents the largest component of total energy expenditure and is a major contributor to energy balance. Therefore, accurately estimating BMR is critical for developing rigorous obesity prevention and control strategies. Over the past several decades, numerous BMR formulas have been developed targeted to different population groups. A comprehensive literature search revealed 248 BMR estimation equations developed using diverse ranges of age, gender, race, fat free mass, fat mass, height, waist-to-hip ratio, body mass index, and weight. A subset of 47 studies included enough detail to allow for development of meta-regression equations. Utilizing these studies, meta-equations were developed targeted to twenty specific population groups. This review provides a comprehensive summary of available BMR equations and an estimate of their accuracy. An accompanying online BMR prediction tool (available at http://www.sdl.ise.vt.edu/tutorials.html) was developed to automatically estimate BMR based on the most appropriate equation after user-entry of individual age, race, gender, and weight. PMID:23318720
Uncertainty Analysis in Humidity Measurements by the Psychrometer Method
Chen, Jiunyuan; Chen, Chiachung
2017-01-01
The most common and cheap indirect technique to measure relative humidity is by using psychrometer based on a dry and a wet temperature sensor. In this study, the measurement uncertainty of relative humidity was evaluated by this indirect method with some empirical equations for calculating relative humidity. Among the six equations tested, the Penman equation had the best predictive ability for the dry bulb temperature range of 15–50 °C. At a fixed dry bulb temperature, an increase in the wet bulb depression increased the error. A new equation for the psychrometer constant was established by regression analysis. This equation can be computed by using a calculator. The average predictive error of relative humidity was <0.1% by this new equation. The measurement uncertainty of the relative humidity affected by the accuracy of dry and wet bulb temperature and the numeric values of measurement uncertainty were evaluated for various conditions. The uncertainty of wet bulb temperature was the main factor on the RH measurement uncertainty. PMID:28216599
Uncertainty Analysis in Humidity Measurements by the Psychrometer Method.
Chen, Jiunyuan; Chen, Chiachung
2017-02-14
The most common and cheap indirect technique to measure relative humidity is by using psychrometer based on a dry and a wet temperature sensor. In this study, the measurement uncertainty of relative humidity was evaluated by this indirect method with some empirical equations for calculating relative humidity. Among the six equations tested, the Penman equation had the best predictive ability for the dry bulb temperature range of 15-50 °C. At a fixed dry bulb temperature, an increase in the wet bulb depression increased the error. A new equation for the psychrometer constant was established by regression analysis. This equation can be computed by using a calculator. The average predictive error of relative humidity was <0.1% by this new equation. The measurement uncertainty of the relative humidity affected by the accuracy of dry and wet bulb temperature and the numeric values of measurement uncertainty were evaluated for various conditions. The uncertainty of wet bulb temperature was the main factor on the RH measurement uncertainty.
Prediction of Skin Temperature Distribution in Cosmetic Laser Surgery
NASA Astrophysics Data System (ADS)
Ting, Kuen; Chen, Kuen-Tasnn; Cheng, Shih-Feng; Lin, Wen-Shiung; Chang, Cheng-Ren
2008-01-01
The use of lasers in cosmetic surgery has increased dramatically in the past decade. To achieve minimal damage to tissues, the study of the temperature distribution of skin in laser irradiation is very important. The phenomenon of the thermal wave effect is significant due to the highly focused light energy of lasers in very a short time period. The conventional Pennes equation does not take the thermal wave effect into account, which the thermal relaxation time (τ) is neglected, so it is not sufficient to solve instantaneous heating and cooling problem. The purpose of this study is to solve the thermal wave equation to determine the realistic temperature distribution during laser surgery. The analytic solutions of the thermal wave equation are compared with those of the Pennes equation. Moreover, comparisons are made between the results of the above equations and the results of temperature measurement using an infrared thermal image instrument. The thermal wave equation could likely to predict the skin temperature distribution in cosmetic laser surgery.
A Longitudinal Study on Human Outdoor Decomposition in Central Texas.
Suckling, Joanna K; Spradley, M Katherine; Godde, Kanya
2016-01-01
The development of a methodology that estimates the postmortem interval (PMI) from stages of decomposition is a goal for which forensic practitioners strive. A proposed equation (Megyesi et al. 2005) that utilizes total body score (TBS) and accumulated degree days (ADD) was tested using longitudinal data collected from human remains donated to the Forensic Anthropology Research Facility (FARF) at Texas State University-San Marcos. Exact binomial tests examined the rate of the equation to successfully predict ADD. Statistically significant differences were found between ADD estimated by the equation and the observed value for decomposition stage. Differences remained significant after carnivore scavenged donations were removed from analysis. Low success rates for the equation to predict ADD from TBS and the wide standard errors demonstrate the need to re-evaluate the use of this equation and methodology for PMI estimation in different environments; rather, multivariate methods and equations should be derived that are environmentally specific. © 2015 American Academy of Forensic Sciences.
Validation of equations for pleural effusion volume estimation by ultrasonography.
Hassan, Maged; Rizk, Rana; Essam, Hatem; Abouelnour, Ahmed
2017-12-01
To validate the accuracy of previously published equations that estimate pleural effusion volume using ultrasonography. Only equations using simple measurements were tested. Three measurements were taken at the posterior axillary line for each case with effusion: lateral height of effusion ( H ), distance between collapsed lung and chest wall ( C ) and distance between lung and diaphragm ( D ). Cases whose effusion was aspirated to dryness were included and drained volume was recorded. Intra-class correlation coefficient (ICC) was used to determine the predictive accuracy of five equations against the actual volume of aspirated effusion. 46 cases with effusion were included. The most accurate equation in predicting effusion volume was ( H + D ) × 70 (ICC 0.83). The simplest and yet accurate equation was H × 100 (ICC 0.79). Pleural effusion height measured by ultrasonography gives a reasonable estimate of effusion volume. Incorporating distance between lung base and diaphragm into estimation improves accuracy from 79% with the first method to 83% with the latter.
Errors in calculated oncotic pressure of dog plasma.
Gabel, J C; Scott, R L; Adair, T H; Drake, R E; Traber, D L
1980-12-01
Several equations to calculate plasma oncotic pressure (pi) from the total protein concentration (C) have been previously described. These equations were derived empirically from samples with a wide range of C obtained by diluting or concentrating normal plasma samples. To test these equations over a range of naturally occurring C, we measured C and pi of plasma samples from 40 dogs. C ranged from 5.3 to 8.7 g/dl and averaged 6.5 +/- 0.1 (mean +/- SE) and pi averaged 17.9 +/- 0.3 mmHg. The regression equation was pi = 78.14 + 1.67 C (r = 0.74). pi increased with C much less than predicted with the commonly used equations. The albumin-to-globulin concentration ratios (A/G), determined in 27 of the dogs, decreased with increasing C (A/G = 1.56-0.128 C, r = 0.62). The lower A/G at the higher C's could cause the lower than predicted increase in pi with C, because the equations were developed from data in which A/G was constant.
Prediction of the elastic modulus of wood flour/kenaf fibre/polypropylene hybrid composites
Jamal Mirbagheri; Mehdi Tajvidi; Ismaeil Ghasemi; John C. Hermanson
2007-01-01
The prediction of the elastic modulus of short natural fibre hybrid composites has been investigated by using the properties of the pure composites through the rule of hybrid mixtures (RoHM) equation. In this equation, a hybrid natural fibre composite assumed as a system consisting of two separate single systems, namely particle/polymer and short-fibre/polymer systems...
NASA Technical Reports Server (NTRS)
Baker, A. J.; Manhardt, P. D.; Orzechowski, J. A.
1979-01-01
A numerical solution algorithm is established for prediction of subsonic turbulent three-dimensional flows in aerodynamic configuration juncture regions. A turbulence closure model is established using the complete Reynolds stress. Pressure coupling is accomplished using the concepts of complementary and particular solutions to a Poisson equation. Specifications for data input juncture geometry modification are presented.
Equations for predicting uncompacted crown ratio based on compacted crown ratio and tree attributes.
Vicente J. Monleon; David Azuma; Donald Gedney
2004-01-01
Equations to predict uncompacted crown ratio as a function of compacted crown ratio, tree diameter, and tree height are developed for the main tree species in Oregon, Washington, and California using data from the Forest Health Monitoring Program, USDA Forest Service. The uncompacted crown ratio was modeled with a logistic function and fitted using weighted, nonlinear...
Height-diameter equations for thirteen midwestern bottomland hardwood species
Kenneth C. Colbert; David R. Larsen; James R. Lootens
2002-01-01
Height-diameter equations are often used to predict the mean total tree height for trees when only diameter at breast height (dbh) is measured. Measuring dbh is much easier and is subject to less measurement error than total tree height. However, predicted heights only reflect the average height for trees of a particular diameter. In this study, we present a set of...
NASA Astrophysics Data System (ADS)
Khan, Irfan; Costeux, Stephane; Adrian, David; Cristancho, Diego
2013-11-01
Due to environmental regulations carbon-dioxide (CO2) is increasingly being used to replace traditional blowing agents in thermoplastic foams. CO2 is dissolved in the polymer matrix under supercritical conditions. In order to predict the effect of process parameters on foam properties using numerical modeling, the P-V-T relationship of the blowing agents should accurately be represented at the supercritical state. Previous studies in the area of foam modeling have all used ideal gas equation of state to predict the behavior of the blowing agent. In this work the Peng-Robinson equation of state is being used to model the blowing agent during its diffusion into the growing bubble. The model is based on the popular ``Influence Volume Approach,'' which assumes a growing boundary layer with depleted blowing agent surrounds each bubble. Classical nucleation theory is used to predict the rate of nucleation of bubbles. By solving the mass balance, momentum balance and species conservation equations for each bubble, the model is capable of predicting average bubble size, bubble size distribution and bulk porosity. The effect of the improved model on the bubble growth and foam properties are discussed.
Lawrence, Stephen J.
2012-01-01
Regression analyses show that E. coli density in samples was strongly related to turbidity, streamflow characteristics, and season at both sites. The regression equation chosen for the Norcross data showed that 78 percent of the variability in E. coli density (in log base 10 units) was explained by the variability in turbidity values (in log base 10 units), streamflow event (dry-weather flow or stormflow), season (cool or warm), and an interaction term that is the cross product of streamflow event and turbidity. The regression equation chosen for the Atlanta data showed that 76 percent of the variability in E. coli density (in log base 10 units) was explained by the variability in turbidity values (in log base 10 units), water temperature, streamflow event, and an interaction term that is the cross product of streamflow event and turbidity. Residual analysis and model confirmation using new data indicated the regression equations selected at both sites predicted E. coli density within the 90 percent prediction intervals of the equations and could be used to predict E. coli density in real time at both sites.
Implementing statistical equating for MRCP(UK) Parts 1 and 2.
McManus, I C; Chis, Liliana; Fox, Ray; Waller, Derek; Tang, Peter
2014-09-26
The MRCP(UK) exam, in 2008 and 2010, changed the standard-setting of its Part 1 and Part 2 examinations from a hybrid Angoff/Hofstee method to statistical equating using Item Response Theory, the reference group being UK graduates. The present paper considers the implementation of the change, the question of whether the pass rate increased amongst non-UK candidates, any possible role of Differential Item Functioning (DIF), and changes in examination predictive validity after the change. Analysis of data of MRCP(UK) Part 1 exam from 2003 to 2013 and Part 2 exam from 2005 to 2013. Inspection suggested that Part 1 pass rates were stable after the introduction of statistical equating, but showed greater annual variation probably due to stronger candidates taking the examination earlier. Pass rates seemed to have increased in non-UK graduates after equating was introduced, but was not associated with any changes in DIF after statistical equating. Statistical modelling of the pass rates for non-UK graduates found that pass rates, in both Part 1 and Part 2, were increasing year on year, with the changes probably beginning before the introduction of equating. The predictive validity of Part 1 for Part 2 was higher with statistical equating than with the previous hybrid Angoff/Hofstee method, confirming the utility of IRT-based statistical equating. Statistical equating was successfully introduced into the MRCP(UK) Part 1 and Part 2 written examinations, resulting in higher predictive validity than the previous Angoff/Hofstee standard setting. Concerns about an artefactual increase in pass rates for non-UK candidates after equating were shown not to be well-founded. Most likely the changes resulted from a genuine increase in candidate ability, albeit for reasons which remain unclear, coupled with a cognitive illusion giving the impression of a step-change immediately after equating began. Statistical equating provides a robust standard-setting method, with a better theoretical foundation than judgemental techniques such as Angoff, and is more straightforward and requires far less examiner time to provide a more valid result. The present study provides a detailed case study of introducing statistical equating, and issues which may need to be considered with its introduction.
Suen, J; Thomas, J M; Delaney, C L; Spark, J I; Miller, M D
2016-12-01
Malnutrition is prevalent in vascular surgical patients who commonly seek tertiary care at advanced stages of disease. Adjunct nutrition support is therefore pertinent to optimise patient outcomes. To negate consequences related to excessive or suboptimal dietary energy intake, it is essential to accurately determine energy expenditure and subsequent requirements. This study aims to compare resting energy expenditure (REE) measured by indirect calorimetry, a commonly used comparator, to REE estimated by predictive equations (Schofield, Harris-Benedict equations and Miller equation) to determine the most suitable equation for vascular surgery patients. Data were collected from four studies that measured REE in 77 vascular surgery patients. Bland-Altman analyses were conducted to explore agreement. Presence of fixed or proportional bias was assessed by linear regression analyses. In comparison to measured REE, on average REE was overestimated when Schofield (+857 kJ/day), Harris-Benedict (+801 kJ/day) and Miller (+71 kJ/day) equations were used. Wide limits of agreement led to an over or underestimation from 1552 to 1755 kJ. Proportional bias was absent in Schofield (R 2 = 0.005, p = 0.54) and Harris-Benedict equations (R 2 = 0.045, p = 0.06) but was present in the Miller equation (R 2 = 0.210, p < 0.01) even after logarithmic transformation (R 2 = 0.213, p < 0.01). Whilst the Miller equation tended to overestimate resting energy expenditure and was affected by proportional bias, the limits of agreement and mean bias were smaller compared to Schofield and Harris-Benedict equations. This suggested that it is the preferred predictive equation for vascular surgery patients. Future research to refine the Miller equation to improve its overall accuracy will better inform the provision of nutritional support for vascular surgery patients and subsequently improve outcomes. Alternatively, an equation might be developed specifically for use with vascular surgery patients. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
SCORE should be preferred to Framingham to predict cardiovascular death in French population.
Marchant, Ivanny; Boissel, Jean-Pierre; Kassaï, Behrouz; Bejan, Theodora; Massol, Jacques; Vidal, Chrystelle; Amsallem, Emmanuel; Naudin, Florence; Galan, Pilar; Czernichow, Sébastien; Nony, Patrice; Gueyffier, François
2009-10-01
Numerous studies have examined the validity of available scores to predict the absolute cardiovascular risk. We developed a virtual population based on data representative of the French population and compared the performances of the two most popular risk equations to predict cardiovascular death: Framingham and SCORE. A population was built based on official French demographic statistics and summarized data from representative observational studies. The 10-year coronary and cardiovascular death risk and their ratio were computed for each individual by SCORE and Framingham equations. The resulting rates were compared with those derived from national vital statistics. Framingham overestimated French coronary deaths by 2.8 in men and 1.9 in women, and cardiovascular deaths by 1.5 in men and 1.3 in women. SCORE overestimated coronary death by 1.6 in men and 1.7 in women, and underestimated cardiovascular death by 0.94 in men and 0.85 in women. Our results revealed an exaggerated representation of coronary among cardiovascular death predicted by Framingham, with coronary death exceeding cardiovascular death in some individual profiles. Sensitivity analyses gave some insights to explain the internal inconsistency of the Framingham equations. Evidence is that SCORE should be preferred to Framingham to predict cardiovascular death risk in French population. This discrepancy between prediction scores is likely to be observed in other populations. To improve the validation of risk equations, specific guidelines should be issued to harmonize the outcomes definition across epidemiologic studies. Prediction models should be calibrated for risk differences in the space and time dimensions.
On Bi-Grid Local Mode Analysis of Solution Techniques for 3-D Euler and Navier-Stokes Equations
NASA Technical Reports Server (NTRS)
Ibraheem, S. O.; Demuren, A. O.
1994-01-01
A procedure is presented for utilizing a bi-grid stability analysis as a practical tool for predicting multigrid performance in a range of numerical methods for solving Euler and Navier-Stokes equations. Model problems based on the convection, diffusion and Burger's equation are used to illustrate the superiority of the bi-grid analysis as a predictive tool for multigrid performance in comparison to the smoothing factor derived from conventional von Neumann analysis. For the Euler equations, bi-grid analysis is presented for three upwind difference based factorizations, namely Spatial, Eigenvalue and Combination splits, and two central difference based factorizations, namely LU and ADI methods. In the former, both the Steger-Warming and van Leer flux-vector splitting methods are considered. For the Navier-Stokes equations, only the Beam-Warming (ADI) central difference scheme is considered. In each case, estimates of multigrid convergence rates from the bi-grid analysis are compared to smoothing factors obtained from single-grid stability analysis. Effects of grid aspect ratio and flow skewness are examined. Both predictions are compared with practical multigrid convergence rates for 2-D Euler and Navier-Stokes solutions based on the Beam-Warming central scheme.
Boundary-layer computational model for predicting the flow and heat transfer in sudden expansions
NASA Technical Reports Server (NTRS)
Lewis, J. P.; Pletcher, R. H.
1986-01-01
Fully developed turbulent and laminar flows through symmetric planar and axisymmetric expansions with heat transfer were modeled using a finite-difference discretization of the boundary-layer equations. By using the boundary-layer equations to model separated flow in place of the Navier-Stokes equations, computational effort was reduced permitting turbulence modelling studies to be economically carried out. For laminar flow, the reattachment length was well predicted for Reynolds numbers as low as 20 and the details of the trapped eddy were well predicted for Reynolds numbers above 200. For turbulent flows, the Boussinesq assumption was used to express the Reynolds stresses in terms of a turbulent viscosity. Near-wall algebraic turbulence models based on Prandtl's-mixing-length model and the maximum Reynolds shear stress were compared.
Stochastic Optimal Prediction with Application to Averaged Euler Equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, John; Chorin, Alexandre J.; Crutchfield, William
Optimal prediction (OP) methods compensate for a lack of resolution in the numerical solution of complex problems through the use of an invariant measure as a prior measure in the Bayesian sense. In first-order OP, unresolved information is approximated by its conditional expectation with respect to the invariant measure. In higher-order OP, unresolved information is approximated by a stochastic estimator, leading to a system of random or stochastic differential equations. We explain the ideas through a simple example, and then apply them to the solution of Averaged Euler equations in two space dimensions.
A nonlinear viscoelastic constitutive equation - Yield predictions in multiaxial deformations
NASA Technical Reports Server (NTRS)
Shay, R. M., Jr.; Caruthers, J. M.
1987-01-01
Yield stress predictions of a nonlinear viscoelastic constitutive equation for amorphous polymer solids have been obtained and are compared with the phenomenological von Mises yield criterion. Linear viscoelasticity theory has been extended to include finite strains and a material timescale that depends on the instantaneous temperature, volume, and pressure. Results are presented for yield and the correct temperature and strain-rate dependence in a variety of multiaxial deformations. The present nonlinear viscoelastic constitutive equation can be formulated in terms of either a Cauchy or second Piola-Kirchhoff stress tensor, and in terms of either atmospheric or hydrostatic pressure.
Predictive equations for the estimation of body size in seals and sea lions (Carnivora: Pinnipedia)
Churchill, Morgan; Clementz, Mark T; Kohno, Naoki
2014-01-01
Body size plays an important role in pinniped ecology and life history. However, body size data is often absent for historical, archaeological, and fossil specimens. To estimate the body size of pinnipeds (seals, sea lions, and walruses) for today and the past, we used 14 commonly preserved cranial measurements to develop sets of single variable and multivariate predictive equations for pinniped body mass and total length. Principal components analysis (PCA) was used to test whether separate family specific regressions were more appropriate than single predictive equations for Pinnipedia. The influence of phylogeny was tested with phylogenetic independent contrasts (PIC). The accuracy of these regressions was then assessed using a combination of coefficient of determination, percent prediction error, and standard error of estimation. Three different methods of multivariate analysis were examined: bidirectional stepwise model selection using Akaike information criteria; all-subsets model selection using Bayesian information criteria (BIC); and partial least squares regression. The PCA showed clear discrimination between Otariidae (fur seals and sea lions) and Phocidae (earless seals) for the 14 measurements, indicating the need for family-specific regression equations. The PIC analysis found that phylogeny had a minor influence on relationship between morphological variables and body size. The regressions for total length were more accurate than those for body mass, and equations specific to Otariidae were more accurate than those for Phocidae. Of the three multivariate methods, the all-subsets approach required the fewest number of variables to estimate body size accurately. We then used the single variable predictive equations and the all-subsets approach to estimate the body size of two recently extinct pinniped taxa, the Caribbean monk seal (Monachus tropicalis) and the Japanese sea lion (Zalophus japonicus). Body size estimates using single variable regressions generally under or over-estimated body size; however, the all-subset regression produced body size estimates that were close to historically recorded body length for these two species. This indicates that the all-subset regression equations developed in this study can estimate body size accurately. PMID:24916814
Equations of prediction for abdominal fat in brown egg-laying hens fed different diets.
Souza, C; Jaimes, J J B; Gewehr, C E
2017-06-01
The objective was to use noninvasive measurements to formulate equations for predicting the abdominal fat weight of laying hens in a noninvasive manner. Hens were fed with different diets; the external body measurements of birds were used as regressors. We used 288 Hy-Line Brown laying hens, distributed in a completely randomized design in a factorial arrangement, submitted for 16 wk to 2 metabolizable energy levels (2,550 and 2,800 kcal/kg) and 3 levels of crude protein in the diet (150, 160, and 170 g/kg), totaling 6 treatments, with 48 hens each. Sixteen hens per treatment of 92 wk age were utilized to evaluate body weight, bird length, tarsus and sternum, greater and lesser diameter of the tarsus, and abdominal fat weight, after slaughter. The equations were obtained by using measures evaluated with regressors through simple and multiple linear regression with the stepwise method of indirect elimination (backward), with P < 0.10 for all variables remaining in the model. The weight of abdominal fat as predicted by the equations and observed values for each bird were subjected to Pearson's correlation analysis. The equations generated by energy levels showed coefficients of determination of 0.50 and 0.74 for 2,800 and 2,550 kcal/kg of metabolizable energy, respectively, with correlation coefficients of 0.71 and 0.84, with a highly significant correlation between the calculated and observed values of abdominal fat. For protein levels of 150, 160, and 170 g/kg in the diet, it was possible to obtain coefficients of determination of 0.75, 0.57, and 0.61, with correlation coefficients of 0.86, 0.75, and 0.78, respectively. Regarding the general equation for predicting abdominal fat weight, the coefficient of determination was 0.62; the correlation coefficient was 0.79. The equations for predicting abdominal fat weight in laying hens, based on external measurements of the birds, showed positive coefficients of determination and correlation coefficients, thus allowing researchers to determine abdominal fat weight in vivo. © 2016 Poultry Science Association Inc.
Hansen, Dominique; Jacobs, Nele; Thijs, Herbert; Dendale, Paul; Claes, Neree
2016-09-01
Healthcare professionals with limited access to ergospirometry remain in need of valid and simple submaximal exercise tests to predict maximal oxygen uptake (VO2max ). Despite previous validation studies concerning fixed-rate step tests, accurate equations for the estimation of VO2max remain to be formulated from a large sample of healthy adults between age 18-75 years (n > 100). The aim of this study was to develop a valid equation to estimate VO2max from a fixed-rate step test in a larger sample of healthy adults. A maximal ergospirometry test, with assessment of cardiopulmonary parameters and VO2max , and a 5-min fixed-rate single-stage step test were executed in 112 healthy adults (age 18-75 years). During the step test and subsequent recovery, heart rate was monitored continuously. By linear regression analysis, an equation to predict VO2max from the step test was formulated. This equation was assessed for level of agreement by displaying Bland-Altman plots and calculation of intraclass correlations with measured VO2max . Validity further was assessed by employing a Jackknife procedure. The linear regression analysis generated the following equation to predict VO2max (l min(-1) ) from the step test: 0·054(BMI)+0·612(gender)+3·359(body height in m)+0·019(fitness index)-0·012(HRmax)-0·011(age)-3·475. This equation explained 78% of the variance in measured VO2max (F = 66·15, P<0·001). The level of agreement and intraclass correlation was high (ICC = 0·94, P<0·001) between measured and predicted VO2max . From this study, a valid fixed-rate single-stage step test equation has been developed to estimate VO2max in healthy adults. This tool could be employed by healthcare professionals with limited access to ergospirometry. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Seckeler, Michael D; Hirsch, Russel; Beekman, Robert H; Goldstein, Bryan H
2014-01-01
To validate a method for determination of cardiac index (CI) using real-time measurement of oxygen consumption (VO2 ) in young children undergoing cardiac catheterization. Retrospective review comparing thermodilution cardiac index (TDCI) to CI calculated by the Fick equation using real-time measured VO2 (RT-VO2 ) and VO2 derived from 2 published predictive equations. Paired t-test and Bland-Altman analysis were used to compare TDCI to Fick CI. A survey to ascertain pediatric cardiac catheterization practices regarding VO2 determination was also conducted. Quaternary care children's hospital cardiac catheterization laboratory. Children <3 years old with structurally normal hearts undergoing cardiac catheterization under general anesthesia with at least one set of contemporaneous TDCI and RT-VO2 measurements. Thirty-six paired measurements of TDCI and RT-VO2 were made in 27 patients over a 2-year period. Indications for catheterization included congenital diaphragmatic hernia postrepair (n = 13), heart disease post-orthotopic heart transplant (n = 13), and suspected cardiomyopathy (n = 1). Mean age was 21.5 ± 8 months; median weight was 9.9 kg (IQR 8.57, 12.2). RT-VO2 was higher than VO2 predicted by the LaFarge equation (190 ± 31 vs. 173.8 ± 12.8 mL/min/m(2), P < .001), but there was no difference between TDCI and Fick CI calculated using VO2 from any method. Bland-Altman analysis showed excellent agreement between TDCI and Fick CI using RT-VO2 and VO2 predicted by the Lundell equation; Fick CI using VO2 predicted by the LaFarge equation showed fair agreement with TDCI. In children <3 years with a structurally normal heart, RT-VO2 generates highly accurate determinations of Fick CI as compared with TDCI. Additionally, in this population, VO2 derived from the LaFarge and Lundell equations generates accurate Fick CI compared with TDCI. Future studies are needed to identify factors associated with inaccurate VO2 generated from these predictive equations. © 2013 Wiley Periodicals, Inc.
Davie-Martin, Cleo L; Hageman, Kimberly J; Chin, Yu-Ping; Rougé, Valentin; Fujita, Yuki
2015-09-01
Soil-air partition coefficient (Ksoil-air) values are often employed to investigate the fate of organic contaminants in soils; however, these values have not been measured for many compounds of interest, including semivolatile current-use pesticides. Moreover, predictive equations for estimating Ksoil-air values for pesticides (other than the organochlorine pesticides) have not been robustly developed, due to a lack of measured data. In this work, a solid-phase fugacity meter was used to measure the Ksoil-air values of 22 semivolatile current- and historic-use pesticides and their degradation products. Ksoil-air values were determined for two soils (semiarid and volcanic) under a range of environmentally relevant temperature (10-30 °C) and relative humidity (30-100%) conditions, such that 943 Ksoil-air measurements were made. Measured values were used to derive a predictive equation for pesticide Ksoil-air values based on temperature, relative humidity, soil organic carbon content, and pesticide-specific octanol-air partition coefficients. Pesticide volatilization losses from soil, calculated with the newly derived Ksoil-air predictive equation and a previously described pesticide volatilization model, were compared to previous results and showed that the choice of Ksoil-air predictive equation mainly affected the more-volatile pesticides and that the way in which relative humidity was accounted for was the most critical difference.
Gougeon, R; Lamarche, M; Yale, J-F; Venuta, T
2002-12-01
Predictive equations have been reported to overestimate resting energy expenditure (REE) for obese persons. The presence of hyperglycemia results in elevated REE in obese persons with type 2 diabetes, and its effect on the validity of these equations is unknown. We tested whether (1) indicators of diabetes control were independent associates of REE in type 2 diabetes and (2) their inclusion would improve predictive equations. A cross-sectional study of 65 (25 men, 40 women) obese type 2 diabetic subjects. Variables measured were: REE by ventilated-hood indirect calorimetry, body composition by bioimpedance analysis, body circumferences, fasting plasma glucose (FPG) and hemoglobin A(1c). Data were analyzed using stepwise multiple linear regression. REE, corrected for weight, fat-free mass, age and gender, was significantly greater with FPG>10 mmol/l (P=0.017) and correlated with FPG (P=0.013) and hemoglobin A(1c) as percentage upper limit of normal (P=0.02). Weight was the main determinant of REE. Together with hip circumference and FPG, it explained 81% of the variation. FPG improved the predictability of the equation by >3%. With poor glycemic control, it can represent an increase in REE of up to 8%. Our data indicate that in a population of obese subjects with type 2 diabetes mellitus, REE is better predicted when fasting plasma glucose is included as a variable.
Konheim, Jeremy A; Kon, Zachary N; Pasrija, Chetan; Luo, Qingyang; Sanchez, Pablo G; Garcia, Jose P; Griffith, Bartley P; Jeudy, Jean
2016-04-01
Size matching for lung transplantation is widely accomplished using height comparisons between donors and recipients. This gross approximation allows for wide variation in lung size and, potentially, size mismatch. Three-dimensional computed tomography (3D-CT) volumetry comparisons could offer more accurate size matching. Although recipient CT scans are universally available, donor CT scans are rarely performed. Therefore, predicted donor lung volumes could be used for comparison to measured recipient lung volumes, but no such predictive equations exist. We aimed to use 3D-CT volumetry measurements from a normal patient population to generate equations for predicted total lung volume (pTLV), predicted right lung volume (pRLV), and predicted left lung volume (pLLV), for size-matching purposes. Chest CT scans of 400 normal patients were retrospectively evaluated. 3D-CT volumetry was performed to measure total lung volume, right lung volume, and left lung volume of each patient, and predictive equations were generated. The fitted model was tested in a separate group of 100 patients. The model was externally validated by comparison of total lung volume with total lung capacity from pulmonary function tests in a subset of those patients. Age, gender, height, and race were independent predictors of lung volume. In the test group, there were strong linear correlations between predicted and actual lung volumes measured by 3D-CT volumetry for pTLV (r = 0.72), pRLV (r = 0.72), and pLLV (r = 0.69). A strong linear correlation was also observed when comparing pTLV and total lung capacity (r = 0.82). We successfully created a predictive model for pTLV, pRLV, and pLLV. These may serve as reference standards and predict donor lung volume for size matching in lung transplantation. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
Villamuelas, Miriam; Serrano, Emmanuel; Espunyes, Johan; Fernández, Néstor; López-Olvera, Jorge R; Garel, Mathieu; Santos, João; Parra-Aguado, María Ángeles; Ramanzin, Maurizio; Fernández-Aguilar, Xavier; Colom-Cadena, Andreu; Marco, Ignasi; Lavín, Santiago; Bartolomé, Jordi; Albanell, Elena
2017-01-01
Optimal management of free-ranging herbivores requires the accurate assessment of an animal's nutritional status. For this purpose 'near-infrared reflectance spectroscopy' (NIRS) is very useful, especially when nutritional assessment is done through faecal indicators such as faecal nitrogen (FN). In order to perform an NIRS calibration, the default protocol recommends starting by generating an initial equation based on at least 50-75 samples from the given species. Although this protocol optimises prediction accuracy, it limits the use of NIRS with rare or endangered species where sample sizes are often small. To overcome this limitation we tested a single NIRS equation (i.e., multispecies calibration) to predict FN in herbivores. Firstly, we used five herbivore species with highly contrasting digestive physiologies to build monospecies and multispecies calibrations, namely horse, sheep, Pyrenean chamois, red deer and European rabbit. Secondly, the equation accuracy was evaluated by two procedures using: (1) an external validation with samples from the same species, which were not used in the calibration process; and (2) samples from different ungulate species, specifically Alpine ibex, domestic goat, European mouflon, roe deer and cattle. The multispecies equation was highly accurate in terms of the coefficient of determination for calibration R2 = 0.98, standard error of validation SECV = 0.10, standard error of external validation SEP = 0.12, ratio of performance to deviation RPD = 5.3, and range error of prediction RER = 28.4. The accuracy of the multispecies equation to predict other herbivore species was also satisfactory (R2 > 0.86, SEP < 0.27, RPD > 2.6, and RER > 8.1). Lastly, the agreement between multi- and monospecies calibrations was also confirmed by the Bland-Altman method. In conclusion, our single multispecies equation can be used as a reliable, cost-effective, easy and powerful analytical method to assess FN in a wide range of herbivore species.
Expanded prediction equations of human sweat loss and water needs.
Gonzalez, R R; Cheuvront, S N; Montain, S J; Goodman, D A; Blanchard, L A; Berglund, L G; Sawka, M N
2009-08-01
The Institute of Medicine expressed a need for improved sweating rate (msw) prediction models that calculate hourly and daily water needs based on metabolic rate, clothing, and environment. More than 25 years ago, the original Shapiro prediction equation (OSE) was formulated as msw (g.m(-2).h(-1))=27.9.Ereq.(Emax)(-0.455), where Ereq is required evaporative heat loss and Emax is maximum evaporative power of the environment; OSE was developed for a limited set of environments, exposures times, and clothing systems. Recent evidence shows that OSE often overpredicts fluid needs. Our study developed a corrected OSE and a new msw prediction equation by using independent data sets from a wide range of environmental conditions, metabolic rates (rest to
Briggs, Andrew H; Baker, Timothy; Risebrough, Nancy A; Chambers, Mike; Gonzalez-McQuire, Sebastian; Ismaila, Afisi S; Exuzides, Alex; Colby, Chris; Tabberer, Maggie; Muellerova, Hana; Locantore, Nicholas; Rutten van Mölken, Maureen P M H; Lomas, David A
2017-05-01
The recent joint International Society for Pharmacoeconomics and Outcomes Research / Society for Medical Decision Making Modeling Good Research Practices Task Force emphasized the importance of conceptualizing and validating models. We report a new model of chronic obstructive pulmonary disease (COPD) (part of the Galaxy project) founded on a conceptual model, implemented using a novel linked-equation approach, and internally validated. An expert panel developed a conceptual model including causal relationships between disease attributes, progression, and final outcomes. Risk equations describing these relationships were estimated using data from the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE) study, with costs estimated from the TOwards a Revolution in COPD Health (TORCH) study. Implementation as a linked-equation model enabled direct estimation of health service costs and quality-adjusted life years (QALYs) for COPD patients over their lifetimes. Internal validation compared 3 years of predicted cohort experience with ECLIPSE results. At 3 years, the Galaxy COPD model predictions of annual exacerbation rate and annual decline in forced expiratory volume in 1 second fell within the ECLIPSE data confidence limits, although 3-year overall survival was outside the observed confidence limits. Projections of the risk equations over time permitted extrapolation to patient lifetimes. Averaging the predicted cost/QALY outcomes for the different patients within the ECLIPSE cohort gives an estimated lifetime cost of £25,214 (undiscounted)/£20,318 (discounted) and lifetime QALYs of 6.45 (undiscounted/5.24 [discounted]) per ECLIPSE patient. A new form of model for COPD was conceptualized, implemented, and internally validated, based on a series of linked equations using epidemiological data (ECLIPSE) and cost data (TORCH). This Galaxy model predicts COPD outcomes from treatment effects on disease attributes such as lung function, exacerbations, symptoms, or exercise capacity; further external validation is required.
Aadland, E; Andersen, L B; Lerum, Ø; Resaland, G K
2018-03-01
Measurement of aerobic fitness by determining peak oxygen consumption (VO 2peak ) is often not feasible in children and adolescents, thus field tests such as the Andersen test are required in many settings, for example in most school-based studies. This study provides cross-validated prediction equations for VO 2peak based on the Andersen test in 10 and 16-year-old children. We included 235 children (n = 113 10-year olds and 122 16-year olds) who performed the Andersen test and a progressive treadmill test to exhaustion to determine VO 2peak . Joint and sex-specific prediction equations were derived and tested in 20 random samples. Performance in terms of systematic (bias) and random error (limits of agreement) was evaluated by means of Bland-Altman plots. Bias varied from -4.28 to 5.25 mL/kg/min across testing datasets, sex, and the 2 age groups. Sex-specific equations (mean bias -0.42 to 0.16 mL/kg/min) performed somewhat better than joint equations (-1.07 to 0.84 mL/kg/min). Limits of agreement were substantial across all datasets, sex, and both age groups, but were slightly lower in 16-year olds (5.84-13.29 mL/kg/min) compared to 10-year olds (9.60-15.15 mL/kg/min). We suggest the presented equations can be used to predict VO 2peak from the Andersen test performance in children and adolescents on a group level. Although the Andersen test appears to be a good measure of aerobic fitness, researchers should interpret cross-sectional individual-level predictions of VO 2peak with caution due to large random measurement errors. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Yang, Mino
2007-06-07
Theoretical foundation of rate kernel equation approaches for diffusion-influenced chemical reactions is presented and applied to explain the kinetics of fluorescence quenching reactions. A many-body master equation is constructed by introducing stochastic terms, which characterize the rates of chemical reactions, into the many-body Smoluchowski equation. A Langevin-type of memory equation for the density fields of reactants evolving under the influence of time-independent perturbation is derived. This equation should be useful in predicting the time evolution of reactant concentrations approaching the steady state attained by the perturbation as well as the steady-state concentrations. The dynamics of fluctuation occurring in equilibrium state can be predicted by the memory equation by turning the perturbation off and consequently may be useful in obtaining the linear response to a time-dependent perturbation. It is found that unimolecular decay processes including the time-independent perturbation can be incorporated into bimolecular reaction kinetics as a Laplace transform variable. As a result, a theory for bimolecular reactions along with the unimolecular process turned off is sufficient to predict overall reaction kinetics including the effects of unimolecular reactions and perturbation. As the present formulation is applied to steady-state kinetics of fluorescence quenching reactions, the exact relation between fluorophore concentrations and the intensity of excitation light is derived.
New dimension analyses with error analysis for quaking aspen and black spruce
NASA Technical Reports Server (NTRS)
Woods, K. D.; Botkin, D. B.; Feiveson, A. H.
1987-01-01
Dimension analysis for black spruce in wetland stands and trembling aspen are reported, including new approaches in error analysis. Biomass estimates for sacrificed trees have standard errors of 1 to 3%; standard errors for leaf areas are 10 to 20%. Bole biomass estimation accounts for most of the error for biomass, while estimation of branch characteristics and area/weight ratios accounts for the leaf area error. Error analysis provides insight for cost effective design of future analyses. Predictive equations for biomass and leaf area, with empirically derived estimators of prediction error, are given. Systematic prediction errors for small aspen trees and for leaf area of spruce from different site-types suggest a need for different predictive models within species. Predictive equations are compared with published equations; significant differences may be due to species responses to regional or site differences. Proportional contributions of component biomass in aspen change in ways related to tree size and stand development. Spruce maintains comparatively constant proportions with size, but shows changes corresponding to site. This suggests greater morphological plasticity of aspen and significance for spruce of nutrient conditions.
NASA Technical Reports Server (NTRS)
Suzen, Y. B.; Huang, P. G.; Ashpis, D. E.; Volino, R. J.; Corke, T. C.; Thomas, F. O.; Huang, J.; Lake, J. P.; King, P. I.
2007-01-01
A transport equation for the intermittency factor is employed to predict the transitional flows in low-pressure turbines. The intermittent behavior of the transitional flows is taken into account and incorporated into computations by modifying the eddy viscosity, mu(sub p) with the intermittency factor, gamma. Turbulent quantities are predicted using Menter's two-equation turbulence model (SST). The intermittency factor is obtained from a transport equation model which can produce both the experimentally observed streamwise variation of intermittency and a realistic profile in the cross stream direction. The model had been previously validated against low-pressure turbine experiments with success. In this paper, the model is applied to predictions of three sets of recent low-pressure turbine experiments on the Pack B blade to further validate its predicting capabilities under various flow conditions. Comparisons of computational results with experimental data are provided. Overall, good agreement between the experimental data and computational results is obtained. The new model has been shown to have the capability of accurately predicting transitional flows under a wide range of low-pressure turbine conditions.
Raymond M. Rice; Norman H. Pillsbury; Kurt W. Schmidt
1985-01-01
Abstract - A linear discriminant function, developed to predict debris avalanches after clearcut logging on a granitic batholith in northwestern California, was tested on data from two batholiths. The equation was inaccurate in predicting slope stability on one of them. A new equation based on slope, crown cover, and distance from a stream (retained from the original...
Predicting Tree Diameter Breast Height from Stump Measurements in the Southeast
Joe P. McClure
1968-01-01
When a tree has been cut and only the stump remains as an indicator of tree size, a prediction equation can be used to estimate d.b.h. from stump measurements.An improved equation model was developed from stump measurement data collected by Forest Survey special study crews in North Carolina, Virginia, and South Carolina.Independent samples from Virginia and South...
ERIC Educational Resources Information Center
Sun, Bo; Liu, Yu; Li, Jing Xian; Li, Haipeng; Chen, Peijie
2013-01-01
Purpose: This study set out to examine the relationship between step frequency and velocity to develop a step frequency-based equation to predict Chinese youth's energy expenditure (EE) during walking and running. Method: A total of 173 boys and girls aged 11 to 18 years old participated in this study. The participants walked and ran on a…
Elongated Tetrakaidecahedron Micromechanics Model for Space Shuttle External Tank Foams
NASA Technical Reports Server (NTRS)
Sullivan, Roy M.; Ghosn, Louis J.; Lerch, Bradley A.; Baker, Eric H.
2009-01-01
The results of microstructural characterization studies and physical and mechanical testing of BX-265 and NCFI24-124 foams are reported. A micromechanics model developed previously by the authors is reviewed, and the resulting equations for the elastic constants, the relative density, and the strength of the foam in the principal material directions are presented. The micromechanics model is also used to derive equations to predict the effect of vacuum on the tensile strength and the strains induced by exposure to vacuum. Using a combination of microstructural dimensions and physical and mechanical measurements as input, the equations for the elastic constants and the relative density are applied and the remaining microstructural dimensions are predicted. The predicted microstructural dimensions are in close agreement with the average measured values for both BX-265 and NCFI24-124. With the microstructural dimensions, the model predicts the ratio of the strengths in the principal material directions for both foams. The model is also used to predict the Poisson s ratios, the vacuum-induced strains, and the effect of vacuum on the tensile strengths. However, the comparison of these predicted values with the measured values is not as favorable.
Application of the Parabolic Approximation to Predict Acoustical Propagation in the Ocean.
ERIC Educational Resources Information Center
McDaniel, Suzanne T.
1979-01-01
A simplified derivation of the parabolic approximation to the acoustical wave equation is presented. Exact solutions to this approximate equation are compared with solutions to the wave equation to demonstrate the applicability of this method to the study of underwater sound propagation. (Author/BB)
Capillary waves in the subcritical nonlinear Schroedinger equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozyreff, G.
2010-01-15
We expand recent results on the nonlinear Schroedinger equation with cubic-quintic nonlinearity to show that some solutions are described by the Bernoulli equation in the presence of surface tension. As a consequence, capillary waves are predicted and found numerically at the interface between regions of large and low amplitude.
Validating Reference Equations for Impulse Oscillometry in Healthy Mexican Children.
Gochicoa-Rangel, Laura; Del Río-Hidalgo, Rodrigo; Hernández-Ruiz, Juana; Rodríguez-Moreno, Luis; Martínez-Briseño, David; Mora-Romero, Uri; Cid-Juárez, Silvia; García-Sancho, Cecilia; Torre-Bouscoulet, Luis
2017-09-01
The impulse oscillometry system (IOS) measures the impedance (Z) of the respiratory system, but proper interpretation of its results requires adequate reference values. The objectives of this work were: (1) to validate the reference equations for the IOS published previously by our group and (2) to compare the adjustment of new available reference equations for the IOS from different countries in a sample of healthy children. Subjects were healthy 4-15-y-old children from the metropolitan area of Mexico City, who performed an IOS test. The functional IOS parameters obtained were compared with the predicted values from 12 reference equations determined in studies of different ethnic groups. The validation methods applied were: analysis of the differences between measured and predicted values for each reference equation; correlation and concordance coefficients; adjustment by Z-score values; percentage of predicted value; and the percentage of patients below the lower limit of normality or above the upper limit of normality. Of the 224 participants, 117 (52.3%) were girls, and the mean age was 8.6 ± 2.3 y. The equations that showed the best adjustment for the different parameters were those from the studies by Nowowiejska et al (2008) and Gochicoa et al (2015). The equations proposed by Frei et al (2005), Hellinckx et al (1998), Kalhoff et al (2011), Klug and Bisgaard (1998), de Assumpção et al (2016), and Dencker et al (2006) overestimated the airway resistance of the children in our sample, whereas the equation of Amra et al (2008) underestimated it. In the analysis of the lower and upper limits of normality, Gochicoa et al equation was the closest, since 5% of subjects were below or above percentiles 5 and 95, respectively. The study found that, in general, all of the equations showed greater error at the extremes of the age distribution. Because of the robust adjustment of the present study reference equations for the IOS, it can be recommended for both clinical and research purposes in our population. The differential adjustment of other equations underlines the need to obtain local reference values. Copyright © 2017 by Daedalus Enterprises.
NASA Astrophysics Data System (ADS)
Shibata, Hisaichi; Takaki, Ryoji
2017-11-01
A novel method to compute current-voltage characteristics (CVCs) of direct current positive corona discharges is formulated based on a perturbation technique. We use linearized fluid equations coupled with the linearized Poisson's equation. Townsend relation is assumed to predict CVCs apart from the linearization point. We choose coaxial cylinders as a test problem, and we have successfully predicted parameters which can determine CVCs with arbitrary inner and outer radii. It is also confirmed that the proposed method essentially does not induce numerical instabilities.
A new criterion for predicting rolling-element fatigue lives of through-hardened steels
NASA Technical Reports Server (NTRS)
Chevalier, J. L.; Zaretsky, E. V.; Parker, R. J.
1972-01-01
A carbide factor was derived based upon a statistical analysis which related rolling-element fatigue life to the total number of residual carbide particles per unit area, median residual carbide size, and percent residual carbide area. An equation was experimentally determined which predicts material hardness as a function of temperature. The limiting temperatures of all of the materials studied were dependent on initial room temperature hardness and tempering temperature. An equation was derived combining the effects of material hardness, carbide factor, and bearing temperature to predict rolling-element bearing life.
Broskey, Nicholas T; Klempel, Monica C; Gilmore, L Anne; Sutton, Elizabeth F; Altazan, Abby D; Burton, Jeffrey H; Ravussin, Eric; Redman, Leanne M
2017-06-01
Weight loss is prescribed to offset the deleterious consequences of polycystic ovary syndrome (PCOS), but a successful intervention requires an accurate assessment of energy requirements. Describe energy requirements in women with PCOS and evaluate common prediction equations compared with doubly labeled water (DLW). Cross-sectional study. Academic research center. Twenty-eight weight-stable women with PCOS completed a 14-day DLW study along with measures of body composition and resting metabolic rate and assessment of physical activity by accelerometry. Total daily energy expenditure (TDEE) determined by DLW. TDEE was 2661 ± 373 kcal/d. TDEE estimated from four commonly used equations was within 4% to 6% of the TDEE measured by DLW. Hyperinsulinemia (fasting insulin and homeostatic model assessment of insulin resistance) was associated with TDEE estimates from all prediction equations (both r = 0.45; P = 0.02) but was not a significant covariate in a model that predicts TDEE. Similarly, hyperandrogenemia (total testosterone, free androgen index, and dehydroepiandrosterone sulfate) was not associated with TDEE. In weight-stable women with PCOS, the following equation derived from DLW can be used to determine energy requirements: TDEE (kcal/d) = 438 - [1.6 * Fat Mass (kg)] + [35.1 * Fat-Free Mass (kg)] + [16.2 * Age (y)]; R2 = 0.41; P = 0.005. Established equations using weight, height, and age performed well for predicting energy requirements in weight-stable women with PCOS, but more precise estimates require an accurate assessment of physical activity. Our equation derived from DLW data, which incorporates habitual physical activity, can also be used in women with PCOS; however, additional studies are needed for model validation. Copyright © 2017 Endocrine Society
Formenti, Federico; Minetti, Alberto E; Borrani, Fabio
2015-09-01
Estimation of human oxygen uptake (V˙o2) during exercise is often used as an alternative when its direct measurement is not feasible. The American College of Sports Medicine (ACSM) suggests estimating human V˙o2 during exercise on a cycle ergometer through an equation that considers individual's body mass and external work rate, but not pedaling rate (PR). We hypothesized that including PR in the ACSM equation would improve its V˙o2 prediction accuracy. Ten healthy male participants' (age 19-48 years) were recruited and their steady-state V˙o2 was recorded on a cycle ergometer for 16 combinations of external work rates (0, 50, 100, and 150 W) and PR (50, 70, 90, and 110 revolutions per minute). V˙o2 was calculated by means of a new equation, and by the ACSM equation for comparison. Kinematic data were collected by means of an infrared 3-D motion analysis system in order to explore the mechanical determinants of V˙o2. Including PR in the ACSM equation improved the accuracy for prediction of sub-maximal V˙o2 during exercise (mean bias 1.9 vs. 3.3 mL O2 kg(-1) min(-1)) but it did not affect the accuracy for prediction of maximal V˙o2 (P > 0.05). Confirming the validity of this new equation, the results were replicated for data reported in the literature in 51 participants. We conclude that PR is an important determinant of human V˙o2 during cycling exercise, and it should be considered when predicting oxygen consumption. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
De Vries, Rowen J; Marsh, Steven
2015-11-08
Internal lead shielding is utilized during superficial electron beam treatments of the head and neck, such as lip carcinoma. Methods for predicting backscattered dose include the use of empirical equations or performing physical measurements. The accuracy of these empirical equations required verification for the local electron beams. In this study, a Monte Carlo model of a Siemens Artiste linac was developed for 6, 9, 12, and 15 MeV electron beams using the EGSnrc MC package. The model was verified against physical measurements to an accuracy of better than 2% and 2mm. Multiple MC simulations of lead interfaces at different depths, corresponding to mean electron energies in the range of 0.2-14 MeV at the interfaces, were performed to calculate electron backscatter values. The simulated electron backscatter was compared with current empirical equations to ascertain their accuracy. The major finding was that the current set of backscatter equations does not accurately predict electron backscatter, particularly in the lower energies region. A new equation was derived which enables estimation of electron backscatter factor at any depth upstream from the interface for the local treatment machines. The derived equation agreed to within 1.5% of the MC simulated electron backscatter at the lead interface and upstream positions. Verification of the equation was performed by comparing to measurements of the electron backscatter factor using Gafchromic EBT2 film. These results show a mean value of 0.997 ± 0.022 to 1σ of the predicted values of electron backscatter. The new empirical equation presented can accurately estimate electron backscatter factor from lead shielding in the range of 0.2 to 14 MeV for the local linacs.
Marsh, Steven
2015-01-01
Internal lead shielding is utilized during superficial electron beam treatments of the head and neck, such as lip carcinoma. Methods for predicting backscattered dose include the use of empirical equations or performing physical measurements. The accuracy of these empirical equations required verification for the local electron beams. In this study, a Monte Carlo model of a Siemens Artiste linac was developed for 6, 9, 12, and 15 MeV electron beams using the EGSnrc MC package. The model was verified against physical measurements to an accuracy of better than 2% and 2 mm. Multiple MC simulations of lead interfaces at different depths, corresponding to mean electron energies in the range of 0.2–14 MeV at the interfaces, were performed to calculate electron backscatter values. The simulated electron backscatter was compared with current empirical equations to ascertain their accuracy. The major finding was that the current set of backscatter equations does not accurately predict electron backscatter, particularly in the lower energies region. A new equation was derived which enables estimation of electron backscatter factor at any depth upstream from the interface for the local treatment machines. The derived equation agreed to within 1.5% of the MC simulated electron backscatter at the lead interface and upstream positions. Verification of the equation was performed by comparing to measurements of the electron backscatter factor using Gafchromic EBT2 film. These results show a mean value of 0.997±0.022 to 1σ of the predicted values of electron backscatter. The new empirical equation presented can accurately estimate electron backscatter factor from lead shielding in the range of 0.2 to 14 MeV for the local linacs. PACS numbers: 87.53.Bn, 87.55.K‐, 87.56.bd PMID:26699566
Skrdla, Peter J; Floyd, Philip D; Dell'Orco, Philip C
2017-08-09
Predicting the glass transition temperature (T g ) of mixtures has applications that span across industries and scientific disciplines. By plotting experimentally determined T g values as a function of the glass composition, one can usually apply the Gordon-Taylor (G-T) equation to determine the slope, k, which subsequently can be used in T g predictions. Traditionally viewed as a phenomenological/empirical model, this work proposes a physical basis for the G-T equation. The proposed equations allow for the calculation of k directly and, hence, they determine/predict the T g values of mixtures algebraically. Two derivations for k are provided, one for strong glass-formers and the other for fragile mixtures, with the modeled trehalose-water and naproxen-indomethacin systems serving as examples of each. Separately, a new equation is described for the first time that allows for the direct determination of the crossover temperature, T x , for fragile glass-formers. Lastly, the so-called "Rule of 2/3", which is commonly used to estimate the T g of a pure amorphous phase based solely on the fusion/melting temperature, T f , of the corresponding crystalline phase, is shown to be underpinned by the heat capacity ratio of the two phases referenced to a common temperature, as evidenced by the calculations put forth for indomethacin and felodipine.
Models for nearly every occasion: Part III - One box decreasing emission models.
Hewett, Paul; Ganser, Gary H
2017-11-01
New one box "well-mixed room" decreasing emission (DE) models are introduced that allow for local exhaust or local exhaust with filtered return, as well the recirculation of a filtered (or cleaned) portion of the general room ventilation. For each control device scenario, a steady state and transient model is presented. The transient equations predict the concentration at any time t after the application of a known mass of a volatile substance to a surface, and can be used to predict the task exposure profile, the average task exposure, as well as peak and short-term exposures. The steady state equations can be used to predict the "average concentration per application" that is reached whenever the substance is repeatedly applied. Whenever the beginning and end concentrations are expected to be zero (or near zero) the steady state equations can also be used to predict the average concentration for a single task with multiple applications during the task, or even a series of such tasks. The transient equations should be used whenever these criteria cannot be met. A structured calibration procedure is proposed that utilizes a mass balance approach. Depending upon the DE model selected, one or more calibration measurements are collected. Using rearranged versions of the steady state equations, estimates of the model variables-e.g., the mass of the substance applied during each application, local exhaust capture efficiency, and the various cleaning or filtration efficiencies-can be calculated. A new procedure is proposed for estimating the emission rate constant.
NASA Astrophysics Data System (ADS)
Kim, Taeyoun; Hwang, Seho; Jang, Seonghyung
2017-01-01
When finding the "sweet spot" of a shale gas reservoir, it is essential to estimate the brittleness index (BI) and total organic carbon (TOC) of the formation. Particularly, the BI is one of the key factors in determining the crack propagation and crushing efficiency for hydraulic fracturing. There are several methods for estimating the BI of a formation, but most of them are empirical equations that are specific to particular rock types. We estimated the mineralogical BI based on elemental capture spectroscopy (ECS) log and elastic BI based on well log data, and we propose a new method for predicting S-wave velocity (VS) using mineralogical BI and elastic BI. The TOC is related to the gas content of shale gas reservoirs. Since it is difficult to perform core analysis for all intervals of shale gas reservoirs, we make empirical equations for the Horn River Basin, Canada, as well as TOC log using a linear relation between core-tested TOC and well log data. In addition, two empirical equations have been suggested for VS prediction based on density and gamma ray log used for TOC analysis. By applying the empirical equations proposed from the perspective of BI and TOC to another well log data and then comparing predicted VS log with real VS log, the validity of empirical equations suggested in this paper has been tested.
Effects of temperature on embryonic development of lake herring (Coregonus artedii)
Colby, Peter J.; Brooke, L.T.
1973-01-01
Embryonic development of lake herring (Coregonus artedii) was observed in the laboratory at 13 constant temperatures from 0.0 to 12.1 C and in Pickerel Lake (Washtenaw County, Michigan) at natural temperature regimes. Rate of development during incubation was based on progression of the embryos through 20 identifiable stages. An equation was derived to predict development stage at constant temperatures, on the general assumption that development stage (DS) is a function of time (days, D) and temperature (T). The equation should also be useful in interpreting estimates from future regressions that include other environmental variables that affect egg development. A second regression model, derived primarily for fluctuating temperatures, related development rate for stage j (DRj), expressed as the reciprocal of time, to temperature (x). The generalized equation for a development stage is: DRj = abx cx2 dx3. In general, time required for embryos to reach each stage of development in Pickerel Lake agreed closely with the time predicted from this equation, derived from our laboratory observations. Hatching time was predicted within 1 day in 1969 and within 2 days in 1970. We used the equations derived with the second model to predict the effect of the superimposition of temperature increases of 1 and 2 C on the measured temperatures in Pickerel Lake. Conceivably, hatching dates could be affected sufficiently to jeopardize the first feeding of lake herring through loss of harmony between hatching date and seasonal food availability.
Darcy Permeability of Hollow Fiber Bundles Used in Blood Oxygenation Devices
Pacella, Heather E.; Eash, Heidi J.; Federspiel, William J.
2011-01-01
Many industrial and biomedical devices (e.g. blood oxygenators and artificial lungs) use bundles of hollow fiber membranes for separation processes. Analyses of flow and mass transport within the shell-side of the fiber bundles most often model the bundle for simplicity as a packed bed or porous media, using a Darcy permeability coefficient estimated from the Blake-Kozeny equation to account for viscous drag from the fibers. In this study, we developed a simple method for measuring the Darcy permeability of hollow fiber membrane bundles and evaluated how well the Blake-Kozeny (BK) equation predicted the Darcy permeability for these bundles. Fiber bundles were fabricated from commercially available Celgard® ×30-240 fiber fabric (300 μm outer diameter fibers @ 35 and 54 fibers/inch) and from a fiber fabric with 193 μm fibers (61 fibers/inch). The fiber bundles were mounted to the bottom of an acrylic tube and Darcy permeability was determined by measuring the elapsed time for a column of glycerol solution to flow through a fiber bundle. The ratio of the measured Darcy permeability to that predicted from the BK equation varied from 1.09 to 0.56. A comprehensive literature review suggested a modified BK equation with the “constant” correlated to porosity. This modification improved the predictions of the BK equation, with the ratio of measured to predicted permeability varying from 1.13 to 0.84. PMID:22927706
Quiroz-Olguín, Gabriela; Serralde-Zúñiga, Aurora Elizabeth; Saldaña-Morales, Vianey; Guevara-Cruz, Martha
2013-01-01
Body weight measurement is of critical importance when evaluating the nutritional status of patients entering a hospital. In some situations, such as the case of patients who are bedridden or in wheelchairs, these measurements cannot be obtained using standardized methods. We have designed and validated a formula for predicting body weight. To design and validate a formula for predicting body weight using circumference-based equations. The following anthropometric measurements were taken for a sample of 76 patients: weight (kg), calf circumference, average arm circumference, waist circumference, hip circumference, wrist circumference and demispan. All circumferences were taken in centimetres (cm), and gender and age were taken into account. This equation was validated in 85 individuals from a different population. The correlation with the new equation was analyzed and compared to a previously validated method. The equation for weight prediction was the following: Weight = 0.524 (WC) - 0.176 (age) + 0.484 (HC) + 0.613 (DS) + 0.704 (CC) + 2.75 (WrC) - 3.330 (if female) - 140.87. The correlation coefficient was 0.96 for the total group of patients, 0.971 for men and 0.961 for women (p < 0.0001 for all measurements). The equation we developed is accurate and can be used to estimate body weight in overweight and/or obese patients with mobility problems, such as bedridden patients or patients in wheelchairs. Copyright © AULA MEDICA EDICIONES 2013. Published by AULA MEDICA. All rights reserved.
Bouti, Khalid; Benamor, Jouda; Bourkadi, Jamal Eddine
2017-08-01
Peak Expiratory Flow (PEF) has never been characterised among healthy Moroccan school children. To study the relationship between PEF and anthropometric parameters (sex, age, height and weight) in healthy Moroccan school children, to establish predictive equations of PEF; and to compare flowmetric and spirometric PEF with Forced Expiratory Volume in 1 second (FEV1). This cross-sectional study was conducted between April, 2016 and May, 2016. It involved 222 (122 boys and 100 girls) healthy school children living in Ksar el-Kebir, Morocco. We used mobile equipments for realisation of spirometry and peak expiratory flow measurements. SPSS (Version 22.0) was used to calculate Student's t-test, Pearson's correlation coefficient and linear regression. Significant linear correlation was seen between PEF, age and height in boys and girls. The equation for prediction of flowmetric PEF in boys was calculated as 'F-PEF = -187+ 24.4 Age + 1.61 Height' (p-value<0.001, r=0.86), and for girls as 'F-PEF = -151 + 17Age + 1.59Height' (p-value<0.001, r=0.86). The equation for prediction of spirometric PEF in boys was calculated as 'S-PEF = -199+ 9.8Age + 2.67Height' (p-value<0.05, r=0.77), and for girls as 'S-PEF = -181 + 8.5Age + 2.5Height' (p-value<0.001, r=0.83). The boys had higher values than the girls. The performance of the Mini Wright Peak Flow Meter was lower than that of a spirometer. Our study established PEF predictive equations in Moroccan children. Our results appeared to be reliable, as evident by the high correlation coefficient in this sample. PEF can be an alternative of FEV1 in centers without spirometry.
Development of reference equations for spirometry in Japanese children aged 6-18 years.
Takase, Masato; Sakata, Hiroshi; Shikada, Masahiro; Tatara, Katsuyoshi; Fukushima, Takayoshi; Miyakawa, Tomoo
2013-01-01
Spirometry is the most widely used pulmonary function test and the measured values of spirometric parameters need to be evaluated using reference values predicted for the corresponding race, sex, age, and height. However, none of the existing reference equations for Japanese children covers the entire age range of 6-18 years. The Japanese Society of Pediatric Pulmonology had organized a working group in 2006, in order to develop a new set of national standard reference equations for commonly used spirometric parameters that are applicable through the age range of 6-18 years. Quality assured spirometric data were collected through 2006-2008, from 14 institutions in Japan. We applied multiple regression analysis, using age in years (A), square of age (A(2)), height in meters (H), square of height (H(2)), and the product of age and height (AH) as explanatory variables to predict forced vital capacity (FVC), forced expiratory volume in 1 sec (FEV(1)), peak expiratory flow (PEF), forced expiratory flow between 25% and 75% of the FVC (FEF(25-75%)), instantaneous forced expiratory flow when 50% (FEF(50%)) or 75% (FEF(75%)) of the FVC have been expired. Finally, 1,296 tests (674 boys, 622 girls) formed the reference data set. Distributions of the percent predicted values did not differ by ages, confirming excellent fit of the prediction equations throughout the entire age range from 6 to 18 years. Cut-off values (around 5 percentile points) for the parameters were also determined. We recommend the use of this new set of prediction equations together with suggested cut-off values, for assessment of spirometry in Japanese children and adolescents. Copyright © 2012 Wiley Periodicals, Inc.
A Comparison between Multiple Regression Models and CUN-BAE Equation to Predict Body Fat in Adults
Fuster-Parra, Pilar; Bennasar-Veny, Miquel; Tauler, Pedro; Yañez, Aina; López-González, Angel A.; Aguiló, Antoni
2015-01-01
Background Because the accurate measure of body fat (BF) is difficult, several prediction equations have been proposed. The aim of this study was to compare different multiple regression models to predict BF, including the recently reported CUN-BAE equation. Methods Multi regression models using body mass index (BMI) and body adiposity index (BAI) as predictors of BF will be compared. These models will be also compared with the CUN-BAE equation. For all the analysis a sample including all the participants and another one including only the overweight and obese subjects will be considered. The BF reference measure was made using Bioelectrical Impedance Analysis. Results The simplest models including only BMI or BAI as independent variables showed that BAI is a better predictor of BF. However, adding the variable sex to both models made BMI a better predictor than the BAI. For both the whole group of participants and the group of overweight and obese participants, using simple models (BMI, age and sex as variables) allowed obtaining similar correlations with BF as when the more complex CUN-BAE was used (ρ = 0:87 vs. ρ = 0:86 for the whole sample and ρ = 0:88 vs. ρ = 0:89 for overweight and obese subjects, being the second value the one for CUN-BAE). Conclusions There are simpler models than CUN-BAE equation that fits BF as well as CUN-BAE does. Therefore, it could be considered that CUN-BAE overfits. Using a simple linear regression model, the BAI, as the only variable, predicts BF better than BMI. However, when the sex variable is introduced, BMI becomes the indicator of choice to predict BF. PMID:25821960
A comparison between multiple regression models and CUN-BAE equation to predict body fat in adults.
Fuster-Parra, Pilar; Bennasar-Veny, Miquel; Tauler, Pedro; Yañez, Aina; López-González, Angel A; Aguiló, Antoni
2015-01-01
Because the accurate measure of body fat (BF) is difficult, several prediction equations have been proposed. The aim of this study was to compare different multiple regression models to predict BF, including the recently reported CUN-BAE equation. Multi regression models using body mass index (BMI) and body adiposity index (BAI) as predictors of BF will be compared. These models will be also compared with the CUN-BAE equation. For all the analysis a sample including all the participants and another one including only the overweight and obese subjects will be considered. The BF reference measure was made using Bioelectrical Impedance Analysis. The simplest models including only BMI or BAI as independent variables showed that BAI is a better predictor of BF. However, adding the variable sex to both models made BMI a better predictor than the BAI. For both the whole group of participants and the group of overweight and obese participants, using simple models (BMI, age and sex as variables) allowed obtaining similar correlations with BF as when the more complex CUN-BAE was used (ρ = 0:87 vs. ρ = 0:86 for the whole sample and ρ = 0:88 vs. ρ = 0:89 for overweight and obese subjects, being the second value the one for CUN-BAE). There are simpler models than CUN-BAE equation that fits BF as well as CUN-BAE does. Therefore, it could be considered that CUN-BAE overfits. Using a simple linear regression model, the BAI, as the only variable, predicts BF better than BMI. However, when the sex variable is introduced, BMI becomes the indicator of choice to predict BF.
Application of Direct Parallel Methods to Reconstruction and Forecasting Problems
NASA Astrophysics Data System (ADS)
Song, Changgeun
Many important physical processes in nature are represented by partial differential equations. Numerical weather prediction in particular, requires vast computational resources. We investigate the significance of parallel processing technology to the real world problem of atmospheric prediction. In this paper we consider the classic problem of decomposing the observed wind field into the irrotational and nondivergent components. Recognizing the fact that on a limited domain this problem has a non-unique solution, Lynch (1989) described eight different ways to accomplish the decomposition. One set of elliptic equations is associated with the decomposition--this determines the initial nondivergent state for the forecast model. It is shown that the entire decomposition problem can be solved in a fraction of a second using multi-vector processor such as ALLIANT FX/8. Secondly, the barotropic model is used to track hurricanes. Also, one set of elliptic equations is solved to recover the streamfunction from the forecasted vorticity. A 72 h prediction of Elena is made while it is in the Gulf of Mexico. During this time the hurricane executes a dramatic re-curvature that is captured by the model. Furthermore, an improvement in the track prediction results when a simple assimilation strategy is used. This technique makes use of the wind fields in the 24 h period immediately preceding the initial time for the prediction. In this particular application, solutions to systems of elliptic equations are the center of the computational mechanics. We demonstrate that direct, parallel methods based on accelerated block cyclic reduction (BCR) significantly reduce the computational time required to solve the elliptic equations germane to the decomposition, the forecast and adjoint assimilation.
Humidity-corrected Arrhenius equation: The reference condition approach.
Naveršnik, Klemen; Jurečič, Rok
2016-03-16
Accelerated and stress stability data is often used to predict shelf life of pharmaceuticals. Temperature, combined with humidity accelerates chemical decomposition and the Arrhenius equation is used to extrapolate accelerated stability results to long-term stability. Statistical estimation of the humidity-corrected Arrhenius equation is not straightforward due to its non-linearity. A two stage nonlinear fitting approach is used in practice, followed by a prediction stage. We developed a single-stage statistical procedure, called the reference condition approach, which has better statistical properties (less collinearity, direct estimation of uncertainty, narrower prediction interval) and is significantly easier to use, compared to the existing approaches. Our statistical model was populated with data from a 35-day stress stability study on a laboratory batch of vitamin tablets and required mere 30 laboratory assay determinations. The stability prediction agreed well with the actual 24-month long term stability of the product. The approach has high potential to assist product formulation, specification setting and stability statements. Copyright © 2016 Elsevier B.V. All rights reserved.
Modelling the behaviour of additives in gun barrels
NASA Astrophysics Data System (ADS)
Rhodes, N.; Ludwig, J. C.
1986-01-01
A mathematical model which predicts the flow and heat transfer in a gun barrel is described. The model is transient, two-dimensional and equations are solved for velocities and enthalpies of a gas phase, which arises from the combustion of propellant and cartridge case, for particle additives which are released from the case; volume fractions of the gas and particles. Closure of the equations is obtained using a two-equation turbulence model. Preliminary calculations are described in which the proportions of particle additives in the cartridge case was altered. The model gives a good prediction of the ballistic performance and the gas to wall heat transfer. However, the expected magnitude of reduction in heat transfer when particles are present is not predicted. The predictions of gas flow invalidate some of the assumptions made regarding case and propellant behavior during combustion and further work is required to investigate these effects and other possible interactions, both chemical and physical, between gas and particles.
Abell, Caitlyn E; Stalder, Kenneth J; Hendricks, Haven B; Fitzgerald, Robert F
2012-07-01
The objectives of this study were to develop a prediction equation for carcass knife-separable lean within and across USDA cull sow market weight classes (MWC) and to determine carcass and individual primal cut knife separable lean content from cull sows. There were significant percent lean and fat differences in the primal cuts across USDA MWC. The two lighter USDA MWC had a greater percent carcass lean and lower percent fat compared to the two heavier MWC. In general, hot carcass weight explained the majority of carcass lean variation. Additionally, backfat was a significant variation source when predicting cull sow carcass lean. The findings support using a single lean prediction equation across MWC to assist processors when making cull sow purchasing decisions and determine the mix of animals from various USDA MWC that will meet their needs when making pork products with defined lean:fat content. Copyright © 2012 Elsevier Ltd. All rights reserved.
Dhavalikar, R; Hensley, D; Maldonado-Camargo, L; Croft, L R; Ceron, S; Goodwill, P W; Conolly, S M; Rinaldi, C
2016-08-03
Magnetic Particle Imaging (MPI) is an emerging tomographic imaging technology that detects magnetic nanoparticle tracers by exploiting their non-linear magnetization properties. In order to predict the behavior of nanoparticles in an imager, it is possible to use a non-imaging MPI relaxometer or spectrometer to characterize the behavior of nanoparticles in a controlled setting. In this paper we explore the use of ferrohydrodynamic magnetization equations for predicting the response of particles in an MPI relaxometer. These include a magnetization equation developed by Shliomis (Sh) which has a constant relaxation time and a magnetization equation which uses a field-dependent relaxation time developed by Martsenyuk, Raikher and Shliomis (MRSh). We compare the predictions from these models with measurements and with the predictions based on the Langevin function that assumes instantaneous magnetization response of the nanoparticles. The results show good qualitative and quantitative agreement between the ferrohydrodynamic models and the measurements without the use of fitting parameters and provide further evidence of the potential of ferrohydrodynamic modeling in MPI.
Comparison of in vitro and in situ methods in evaluation of forage digestibility in ruminants.
Krizsan, S J; Nyholm, L; Nousiainen, J; Südekum, K-H; Huhtanen, P
2012-09-01
The objective of this study was to compare the application of different in vitro and in situ methods in empirical and mechanistic predictions of in vivo OM digestibility (OMD) and their associations to near-infrared reflectance spectroscopy spectra for a variety of forages. Apparent in vivo OMD of silages made from alfalfa (n = 2), corn (n = 9), corn stover (n = 2), grass (n = 11), whole crops of wheat and barley (n = 8) and red clover (n = 7), and fresh alfalfa (n = 1), grass hays (n = 5), and wheat straws (n = 5) had previously been determined in sheep. Concentrations of indigestible NDF (iNDF) in all forage samples were determined by a 288-h ruminal in situ incubation. Gas production of isolated forage NDF was measured by in vitro incubations for 72 h. In vitro pepsin-cellulase OM solubility (OMS) of the forages was determined by a 2-step gravimetric digestion method. Samples were also subjected to a 2-step determination of in vitro OMD based on buffered rumen fluid and pepsin. Further, rumen fluid digestible OM was determined from a single 96-h incubation at 38°C. Digestibility of OM from the in situ and the in vitro incubations was calculated according to published empirical equations, which were either forage specific or general (1 equation for all forages) within method. Indigestible NDF was also used in a mechanistic model to predict OMD. Predictions of OMD were evaluated by residual analysis using the GLM procedure in SAS. In vitro OMS in a general prediction equation of OMD did not display a significant forage-type effect on the residuals (observed - predicted OMD; P = 0.10). Predictions of OMD within forage types were consistent between iNDF and the 2-step in vitro method based on rumen fluid. Root mean square error of OMD was least (0.032) when the prediction was based on a general forage equation of OMS. However, regenerating a simple regression for iNDF by omitting alfalfa and wheat straw reduced the root mean square error of OMD to 0.025. Indigestible NDF in a general forage equation predicted OMD without any bias (P ≥ 0.16), and root mean square error of prediction was smallest among all methods when alfalfa and wheat straw samples were excluded. Our study suggests that compared with the in vitro laboratory methods, iNDF used in forage-specific equations will improve overall predictions of forage in vivo OMD. The in vitro and in situ methods performed equally well in calibrations of iNDF or OMD by near-infrared reflectance spectroscopy.
A Sub-filter Scale Noise Equation far Hybrid LES Simulations
NASA Technical Reports Server (NTRS)
Goldstein, Marvin E.
2006-01-01
Hybrid LES/subscale modeling approaches have an important advantage over the current noise prediction methods in that they only involve modeling of the relatively universal subscale motion and not the configuration dependent larger scale turbulence . Previous hybrid approaches use approximate statistical techniques or extrapolation methods to obtain the requisite information about the sub-filter scale motion. An alternative approach would be to adopt the modeling techniques used in the current noise prediction methods and determine the unknown stresses from experimental data. The present paper derives an equation for predicting the sub scale sound from information that can be obtained with currently available experimental procedures. The resulting prediction method would then be intermediate between the current noise prediction codes and previously proposed hybrid techniques.
Prediction of Transitional Flows in the Low Pressure Turbine
NASA Technical Reports Server (NTRS)
Huang, George; Xiong, Guohua
1998-01-01
Current turbulence models tend to give too early and too short a length of flow transition to turbulence, and hence fail to predict flow separation induced by the adverse pressure gradients and streamline flow curvatures. Our discussion will focus on the development and validation of transition models. The baseline data for model comparisons are the T3 series, which include a range of free-stream turbulence intensity and cover zero-pressure gradient to aft-loaded turbine pressure gradient flows. The method will be based on the conditioned N-S equations and a transport equation for the intermittency factor. First, several of the most popular 2-equation models in predicting flow transition are examined: k-e [Launder-Sharina], k-w [Wilcox], Lien-Leschiziner and SST [Menter] models. All models fail to predict the onset and the length of transition, even for the simplest flat plate with zero-pressure gradient(T3A). Although the predicted onset position of transition can be varied by providing different inlet turbulent energy dissipation rates, the appropriate inlet conditions for turbulence quantities should be adjusted to match the decay of the free-stream turbulence. Arguably, one may adjust the low-Reynolds-number part of the model to predict transition. This approach has so far not been very successful. However, we have found that the low-Reynolds-number model of Launder and Sharma [1974], which is an improved version of Jones and Launder [1972] gave the best overall performance. The Launder and Sharma model was designed to capture flow re-laminarization (a reverse of flow transition), but tends to give rise to a too early and too fast transition in comparison with the physical transition. The three test cases were for flows with zero pressure gradient but with different free-stream turbulent intensities. The same can be said about the model when considering flows subject to pressure gradient(T3C1). To capture the effects of transition using existing turbulence models, one approach is to make use of the concept of the intermittency to predict the flow transition. It was originally based on the intermittency distribution of Narasimha [1957], and then gradually evolved into a transport equation for the intermittency factor. Gostelow and associates [1994,1995] have made some improvements to Narasimha's method in an attempt to account for both favorable and adverse pressure gradients. Their approach is based on a linear, explicit combination of laminar and turbulent solutions. This approach fails to predict the overshoot of the skin friction on a flat plate near the end of transition zone, even though the length of transition is well predicted. The major flaw of Gostelow's approach is that it assumes the non-turbulent part being the laminar solution and the turbulent part being the turbulent solution and they do not interact across the transitional region. The technique in condition averaging the flow equations in intermittent flows was first introduced by Libby [1975] and Dopazo [1977] and further refined by Dick and associates [1988, 1996]. This approach employs two sets of transport equations for the non-turbulent part and the other for the turbulent part. The advantage of this approach is that it allows the interaction of non-turbulent and turbulent velocities through the introduction of additional source terms in the continuity and momentum equations for the non-turbulent and turbulent velocities. However, the strong coupling of the two sets of equations has caused some numerical difficulties, which requires special attention. The prediction of the skin friction can be improved by this approach via the implicit coupling of non-turbulent and turbulent velocity flelds. Another improvement of the interrmittency model can be further made by allowing the intermittency to vary in the cross-stream direction. This is one step prior to testing any proposal for the transport equation for the intermittency factor. Instead of solving the transport equation for the intermittency factor, the distribution for the intermittency factor is prescribed by Klebanoff's empirical formula [1955]. The skin friction is very well predicted by this new modification, including the overshoot of the profile near the end of the transition zone. The outcome of this study is very encouraging since it indicates that the proper description of the intermittency distribution is the key to the success of the model prediction. This study will be used to guide us on the modelling of the intermittency transport equation.
Yu, Solomon C. Y.; Powell, Alice; Khow, Kareeann S. F.; Visvanathan, Renuka
2016-01-01
Appendicular skeletal muscle mass (ASM) is a diagnostic criterion for sarcopenia. Bioelectrical impedance analysis (BIA) offers a bedside approach to measure ASM but the performance of BIA prediction equations (PE) varies with ethnicities and body composition. We aim to validate the performance of five PEs in estimating ASM against estimation by dual-energy X-ray absorptiometry (DXA). We recruited 195 healthy adult Australians and ASM was measured using single-frequency BIA. Bland-Altman analysis was used to assess the predictive accuracy of ASM as determined by BIA against DXA. Precision (root mean square error (RMSE)) and bias (mean error (ME)) were calculated according to the method of Sheiner and Beal. Four PEs (except that by Kim) showed ASM values that correlated strongly with ASMDXA (r ranging from 0.96 to 0.97, p < 0.001). The Sergi equation performed the best with the lowest ME of −1.09 kg (CI: −0.84–−1.34, p < 0.001) and the RMSE was 2.09 kg (CI: 1.72–2.47). In men, the Kyle equation performed better with the lowest ME (−0.32 kg (CI: −0.66–0.02) and RMSE (1.54 kg (CI: 1.14–1.93)). The Sergi equation is applicable in adult Australians (Caucasian) whereas the Kyle equation can be considered in males. The need remains to validate PEs in other ethnicities and to develop equations suitable for multi-frequency BIA. PMID:27043617
NASA Astrophysics Data System (ADS)
Ahmadi, Hamid; Lotfollahi-Yaghin, Mohammad Ali; Aminfar, Mohammad H.
2012-03-01
A set of parametric stress analyses was carried out for two-planar tubular DKT-joints under different axial loading conditions. The analysis results were used to present general remarks on the effects of the geometrical parameters on stress concentration factors (SCFs) at the inner saddle, outer saddle, and crown positions on the central brace. Based on results of finite element (FE) analysis and through nonlinear regression analysis, a new set of SCF parametric equations was established for fatigue design purposes. An assessment study of equations was conducted against the experimental data and original SCF database. The satisfaction of acceptance criteria proposed by the UK Department of Energy (UK DoE) was also checked. Results of parametric study showed that highly remarkable differences exist between the SCF values in a multi-planar DKT-joint and the corresponding SCFs in an equivalent uni-planar KT-joint having the same geometrical properties. It can be clearly concluded from this observation that using the equations proposed for uni-planar KT-connections to compute the SCFs in multi-planar DKT-joints will lead to either considerably under-predicting or over-predicting results. Hence, it is necessary to develop SCF formulae specially designed for multi-planar DKT-joints. Good results of equation assessment according to UK DoE acceptance criteria, high values of correlation coefficients, and the satisfactory agreement between the predictions of the proposed equations and the experimental data guarantee the accuracy of the equations. Therefore, the developed equations can be reliably used for fatigue design of offshore structures.
Uncertainty Considerations for Ballistic Limit Equations
NASA Technical Reports Server (NTRS)
Schonberg, W. P.; Evans, H. J.; Williamsen, J. E.; Boyer, R. L.; Nakayama, G. S.
2005-01-01
The overall risk for any spacecraft system is typically determined using a Probabilistic Risk Assessment (PRA). A PRA attempts to determine the overall risk associated with a particular mission by factoring in all known risks (and their corresponding uncertainties, if known) to the spacecraft during its mission. The threat to mission and human life posed by the mircro-meteoroid & orbital debris (MMOD) environment is one of the risks. NASA uses the BUMPER II program to provide point estimate predictions of MMOD risk for the Space Shuttle and the International Space Station. However, BUMPER II does not provide uncertainty bounds or confidence intervals for its predictions. With so many uncertainties believed to be present in the models used within BUMPER II, providing uncertainty bounds with BUMPER II results would appear to be essential to properly evaluating its predictions of MMOD risk. The uncertainties in BUMPER II come primarily from three areas: damage prediction/ballistic limit equations, environment models, and failure criteria definitions. In order to quantify the overall uncertainty bounds on MMOD risk predictions, the uncertainties in these three areas must be identified. In this paper, possible approaches through which uncertainty bounds can be developed for the various damage prediction and ballistic limit equations encoded within the shuttle and station versions of BUMPER II are presented and discussed. We begin the paper with a review of the current approaches used by NASA to perform a PRA for the Space Shuttle and the International Space Station, followed by a review of the results of a recent sensitivity analysis performed by NASA using the shuttle version of the BUMPER II code. Following a discussion of the various equations that are encoded in BUMPER II, we propose several possible approaches for establishing uncertainty bounds for the equations within BUMPER II. We conclude with an evaluation of these approaches and present a recommendation regarding which of them would be the most appropriate to follow.
Lee, Chong Suh; Chung, Sung Soo; Park, Se Jun; Kim, Dong Min; Shin, Seong Kee
2014-01-01
This study aimed at deriving a lordosis predictive equation using the pelvic incidence and to establish a simple prediction method of lumbar lordosis for planning lumbar corrective surgery in Asians. Eighty-six asymptomatic volunteers were enrolled in the study. The maximal lumbar lordosis (MLL), lower lumbar lordosis (LLL), pelvic incidence (PI), and sacral slope (SS) were measured. The correlations between the parameters were analyzed using Pearson correlation analysis. Predictive equations of lumbar lordosis through simple regression analysis of the parameters and simple predictive values of lumbar lordosis using PI were derived. The PI strongly correlated with the SS (r = 0.78), and a strong correlation was found between the SS and LLL (r = 0.89), and between the SS and MLL (r = 0.83). Based on these correlations, the predictive equations of lumbar lordosis were found (SS = 0.80 + 0.74 PI (r = 0.78, R (2) = 0.61), LLL = 5.20 + 0.87 SS (r = 0.89, R (2) = 0.80), MLL = 17.41 + 0.96 SS (r = 0.83, R (2) = 0.68). When PI was between 30° to 35°, 40° to 50° and 55° to 60°, the equations predicted that MLL would be PI + 10°, PI + 5° and PI, and LLL would be PI - 5°, PI - 10° and PI - 15°, respectively. This simple calculation method can provide a more appropriate and simpler prediction of lumbar lordosis for Asian populations. The prediction of lumbar lordosis should be used as a reference for surgeons planning to restore the lumbar lordosis in lumbar corrective surgery.
Recursion equations in predicting band width under gradient elution.
Liang, Heng; Liu, Ying
2004-06-18
The evolution of solute zone under gradient elution is a typical problem of non-linear continuity equation since the local diffusion coefficient and local migration velocity of the mass cells of solute zones are the functions of position and time due to space- and time-variable mobile phase composition. In this paper, based on the mesoscopic approaches (Lagrangian description, the continuity theory and the local equilibrium assumption), the evolution of solute zones in space- and time-dependent fields is described by the iterative addition of local probability density of the mass cells of solute zones. Furthermore, on macroscopic levels, the recursion equations have been proposed to simulate zone migration and spreading in reversed-phase high-performance liquid chromatography (RP-HPLC) through directly relating local retention factor and local diffusion coefficient to local mobile phase concentration. This new approach differs entirely from the traditional theories on plate concept with Eulerian description, since band width recursion equation is actually the accumulation of local diffusion coefficients of solute zones to discrete-time slices. Recursion equations and literature equations were used in dealing with same experimental data in RP-HPLC, and the comparison results show that the recursion equations can accurately predict band width under gradient elution.
ERIC Educational Resources Information Center
Gonzalez-Aguero, A.; Vicente-Rodriguez, G.; Ara, I.; Moreno, L. A.; Casajus, J. A.
2011-01-01
To determine the accuracy of the published percentage body fat (%BF) prediction equations (Durnin et al., Johnston et al., Brook and Slaughter et al.) from skinfold thickness compared to air displacement plethysmography (ADP) in children and adolescents with Down syndrome (DS). Twenty-eight children and adolescents with DS (10-20 years old; 12…
Model identification using stochastic differential equation grey-box models in diabetes.
Duun-Henriksen, Anne Katrine; Schmidt, Signe; Røge, Rikke Meldgaard; Møller, Jonas Bech; Nørgaard, Kirsten; Jørgensen, John Bagterp; Madsen, Henrik
2013-03-01
The acceptance of virtual preclinical testing of control algorithms is growing and thus also the need for robust and reliable models. Models based on ordinary differential equations (ODEs) can rarely be validated with standard statistical tools. Stochastic differential equations (SDEs) offer the possibility of building models that can be validated statistically and that are capable of predicting not only a realistic trajectory, but also the uncertainty of the prediction. In an SDE, the prediction error is split into two noise terms. This separation ensures that the errors are uncorrelated and provides the possibility to pinpoint model deficiencies. An identifiable model of the glucoregulatory system in a type 1 diabetes mellitus (T1DM) patient is used as the basis for development of a stochastic-differential-equation-based grey-box model (SDE-GB). The parameters are estimated on clinical data from four T1DM patients. The optimal SDE-GB is determined from likelihood-ratio tests. Finally, parameter tracking is used to track the variation in the "time to peak of meal response" parameter. We found that the transformation of the ODE model into an SDE-GB resulted in a significant improvement in the prediction and uncorrelated errors. Tracking of the "peak time of meal absorption" parameter showed that the absorption rate varied according to meal type. This study shows the potential of using SDE-GBs in diabetes modeling. Improved model predictions were obtained due to the separation of the prediction error. SDE-GBs offer a solid framework for using statistical tools for model validation and model development. © 2013 Diabetes Technology Society.
Global hot-star wind models for stars from Magellanic Clouds
NASA Astrophysics Data System (ADS)
Krtička, J.; Kubát, J.
2018-04-01
We provide mass-loss rate predictions for O stars from Large and Small Magellanic Clouds. We calculate global (unified, hydrodynamic) model atmospheres of main sequence, giant, and supergiant stars for chemical composition corresponding to Magellanic Clouds. The models solve radiative transfer equation in comoving frame, kinetic equilibrium equations (also known as NLTE equations), and hydrodynamical equations from (quasi-)hydrostatic atmosphere to expanding stellar wind. The models allow us to predict wind density, velocity, and temperature (consequently also the terminal wind velocity and the mass-loss rate) just from basic global stellar parameters. As a result of their lower metallicity, the line radiative driving is weaker leading to lower wind mass-loss rates with respect to the Galactic stars. We provide a formula that fits the mass-loss rate predicted by our models as a function of stellar luminosity and metallicity. On average, the mass-loss rate scales with metallicity as Ṁ Z0.59. The predicted mass-loss rates are lower than mass-loss rates derived from Hα diagnostics and can be reconciled with observational results assuming clumping factor Cc = 9. On the other hand, the predicted mass-loss rates either agree or are slightly higher than the mass-loss rates derived from ultraviolet wind line profiles. The calculated P V ionization fractions also agree with values derived from observations for LMC stars with Teff ≤ 40 000 K. Taken together, our theoretical predictions provide reasonable models with consistent mass-loss rate determination, which can be used for quantitative study of stars from Magellanic Clouds.
Fuček, Mirjana; Dika, Živka; Karanović, Sandra; Vuković Brinar, Ivana; Premužić, Vedran; Kos, Jelena; Cvitković, Ante; Mišić, Maja; Samardžić, Josip; Rogić, Dunja; Jelaković, Bojan
2018-02-15
Chronic kidney disease (CKD) is a significant public health problem and it is not possible to precisely predict its progression to terminal renal failure. According to current guidelines, CKD stages are classified based on the estimated glomerular filtration rate (eGFR) and albuminuria. Aims of this study were to determine the reliability of predictive equation in estimation of CKD prevalence in Croatian areas with endemic nephropathy (EN), compare the results with non-endemic areas, and to determine if the prevalence of CKD stages 3-5 was increased in subjects with EN. A total of 1573 inhabitants of the Croatian Posavina rural area from 6 endemic and 3 non-endemic villages were enrolled. Participants were classified according to the modified criteria of the World Health Organization for EN. Estimated GFR was calculated using Chronic Kidney Disease Epidemiology Collaboration equation (CKD-EPI). The results showed a very high CKD prevalence in the Croatian rural area (19%). CKD prevalence was significantly higher in EN then in non EN villages with the lowest eGFR value in diseased subgroup. eGFR correlated significantly with the diagnosis of EN. Kidney function assessment using CKD-EPI predictive equation proved to be a good marker in differentiating the study subgroups, remained as one of the diagnostic criteria for EN.
User’s Guide for the VTRPE (Variable Terrain Radio Parabolic Equation) Computer Model
1991-10-01
propagation effects and antenna characteristics in radar system performance calculations. the radar transmission equation is oiten employed. Fol- lowing Kerr.2...electromagnetic wave equations for the complex electric and magnetic radiation fields. The model accounts for the effects of nonuniform atmospheric refractivity...mission equation, that is used in the performance prediction and analysis of radar and communication systems. Optimized fast Fourier transform (FFT
NASA Astrophysics Data System (ADS)
Ma, Y.; Dong, C.; van der Holst, B.; Nagy, A. F.; Bougher, S. W.; Toth, G.; Cravens, T.; Yelle, R. V.; Jakosky, B. M.
2017-12-01
The multi-fluid (MF) magnetohydrodynamic (MHD) model of Mars is further improved by solving an additional electron pressure equation. Through the electron pressure equation, the electron temperature is calculated based on the effects from various electrons related heating and cooling processes (e.g. photo-electron heating, electron-neutral collision and electron-ion collision), and thus the improved model is able to calculate the electron temperature and the electron pressure force self-consistently. Electron thermal conductivity is also considered in the calculation. Model results of a normal case with electron pressure equation included (MFPe) are compared in detail to an identical case using the regular MF model to identify the effect of the improved physics. We found that when the electron pressure equation is included, the general interaction patterns are similar to that of the case with no electron pressure equation. The model with electron pressure equation predicts that electron temperature is much larger than the ion temperature in the ionosphere, consistent with both Viking and MAVEN observations. The inclusion of electron pressure equation significantly increases the total escape fluxes predicted by the model, indicating the importance of the ambipolar electric field(electron pressure gradient) in driving the ion loss from Mars.
Prediction of high frequency core loss for electrical steel using the data provided by manufacturer
NASA Astrophysics Data System (ADS)
Roy, Rakesh; Dalal, Ankit; Kumar, Praveen
2016-07-01
This paper describes a technique to determine the core loss data, at high frequencies, using the loss data provided by the lamination manufacturer. Steinmetz equation is used in this proposed method to determine core loss at high frequency. This Steinmetz equation consists of static hysteresis and eddy current loss. The presented technique considers the coefficients of Steinmetz equation as variable with frequency and peak magnetic flux density. The high frequency core loss data, predicted using this model is compared with the catalogue data given by manufacturer and very good accuracy has been obtained for a wide range of frequency.
Micromechanics for particulate reinforced composites
NASA Technical Reports Server (NTRS)
Murthy, Pappu L. N.; Goldberg, Robert K.; Mital, Subodh K.
1996-01-01
A set of micromechanics equations for the analysis of particulate reinforced composites is developed using the mechanics of materials approach. Simplified equations are used to compute homogenized or equivalent thermal and mechanical properties of particulate reinforced composites in terms of the properties of the constituent materials. The microstress equations are also presented here to decompose the applied stresses on the overall composite to the microstresses in the constituent materials. The properties of a 'generic' particulate composite as well as those of a particle reinforced metal matrix composite are predicted and compared with other theories as well as some experimental data. The micromechanics predictions are in excellent agreement with the measured values.
NASA Technical Reports Server (NTRS)
Ko, William L.; Fleischer, Van Tran
2013-01-01
Large deformation displacement transfer functions were formulated for deformed shape predictions of highly flexible slender structures like aircraft wings. In the formulation, the embedded beam (depth wise cross section of structure along the surface strain sensing line) was first evenly discretized into multiple small domains, with surface strain sensing stations located at the domain junctures. Thus, the surface strain (bending strains) variation within each domain could be expressed with linear of nonlinear function. Such piecewise approach enabled piecewise integrations of the embedded beam curvature equations [classical (Eulerian), physical (Lagrangian), and shifted curvature equations] to yield closed form slope and deflection equations in recursive forms.
Quantum cybernetics and its test in “late choice” experiments
NASA Astrophysics Data System (ADS)
Grössing, Gerhard
1986-11-01
A relativistically invariant wave equation for the propagation of wave fronts S = const ( S being the action function) is derived on the basis of a cybernetic model of quantum systems involving “hidden variables”. This equation can be considered both as an expression of Huygens' principle and as a general continuity equation providing a close link between classical and quantum mechanics. Although the theory reproduces ordinary quantum mechanics, there are particular situations providing experimental predictions differing from those existing theories. Such predictions are made for so-called “late choice” experiments, which are modified versions of the familiar “delayed choice” experiments.
Empirical equation for predicting the surface tension of some liquid metals at their melting point
NASA Astrophysics Data System (ADS)
Ceotto, D.
2014-07-01
A new empirical equation is proposed for predicting the surface tension of some pure metals at their melting point. The investigation has been conducted adopting a statistical approach using some of the most accredited data available in literature. It is found that for Ag, Al, Au, Co, Cu, Fe, Ni, and Pb the surface tension can be conveniently expressed in function of the latent heat of fusion and of the geometrical parameters of an ideal liquid spherical drop. The equation proposed has been compared also with the model proposed by Lu and Jiang giving satisfactory agreement for the metals considered.
Compatible taper algorithms for California hardwoods
James W. Flewelling
2007-01-01
For 13 species of California hardwoods, cubic volume equations to three merchantability standards had been developed earlier. The equations predict cubic volume from the primary bole, forks, and branches, but do not differentiate between the sources of the wood. The Forest Inventory and Analysis (FIA) program needed taper equations that are compatible with the volume...
Comprehensive database of diameter-based biomass regressions for North American tree species
Jennifer C. Jenkins; David C. Chojnacky; Linda S. Heath; Richard A. Birdsey
2004-01-01
A database consisting of 2,640 equations compiled from the literature for predicting the biomass of trees and tree components from diameter measurements of species found in North America. Bibliographic information, geographic locations, diameter limits, diameter and biomass units, equation forms, statistical errors, and coefficients are provided for each equation,...
Khozani, Zohreh Sheikh; Bonakdari, Hossein; Zaji, Amir Hossein
2016-01-01
Two new soft computing models, namely genetic programming (GP) and genetic artificial algorithm (GAA) neural network (a combination of modified genetic algorithm and artificial neural network methods) were developed in order to predict the percentage of shear force in a rectangular channel with non-homogeneous roughness. The ability of these methods to estimate the percentage of shear force was investigated. Moreover, the independent parameters' effectiveness in predicting the percentage of shear force was determined using sensitivity analysis. According to the results, the GP model demonstrated superior performance to the GAA model. A comparison was also made between the GP program determined as the best model and five equations obtained in prior research. The GP model with the lowest error values (root mean square error ((RMSE) of 0.0515) had the best function compared with the other equations presented for rough and smooth channels as well as smooth ducts. The equation proposed for rectangular channels with rough boundaries (RMSE of 0.0642) outperformed the prior equations for smooth boundaries.
NASA Astrophysics Data System (ADS)
Huang, Min-Wei; Lo, Pei-Yu; Cheng, Kuo-Sheng
2010-12-01
Military personnel movement is exposed to solar radiation and sunburn is a major problem which can cause lost workdays and lead to disciplinary action. This study was designed to identify correlation parameters in evaluating in vivo doses and epidermis changes following sunburn inflammation. Several noninvasive bioengineering techniques have made objective evaluations possible. The volar forearms of healthy volunteers ([InlineEquation not available: see fulltext.]), 2 areas, 20 mm in diameter, were irradiated with UVB 100 mj/[InlineEquation not available: see fulltext.] and 200 mj/[InlineEquation not available: see fulltext.], respectively. The skin changes were recorded by several monitored techniques before and 24 hours after UV exposures. Our results showed that chromameter [InlineEquation not available: see fulltext.] value provides more reliable information and can be adopted with mathematical model in predicting the minimal erythema dose (MED) which showed lower than visual assessment by 10 mj/[InlineEquation not available: see fulltext.] (Pearson correlation coefficient [InlineEquation not available: see fulltext.]). A more objective measure for evaluation of MED was established for photosensitive subjects' prediction and sunburn risks prevention.
NASA Astrophysics Data System (ADS)
Mansouri, Amir
The surface degradation of equipment due to consecutive impacts of abrasive particles carried by fluid flow is called solid particle erosion. Solid particle erosion occurs in many industries including oil and gas. In order to prevent abrupt failures and costly repairs, it is essential to predict the erosion rate and identify the locations of the equipment that are mostly at risk. Computational Fluid Dynamics (CFD) is a powerful tool for predicting the erosion rate. Erosion prediction using CFD analysis includes three steps: (1) obtaining flow solution, (2) particle tracking and calculating the particle impact speed and angle, and (3) relating the particle impact information to mass loss of material through an erosion equation. Erosion equations are commonly generated using dry impingement jet tests (sand-air), since the particle impact speed and angle are assumed not to deviate from conditions in the jet. However, in slurry flows, a wide range of particle impact speeds and angles are produced in a single slurry jet test with liquid and sand particles. In this study, a novel and combined CFD/experimental method for developing an erosion equation in slurry flows is presented. In this method, a CFD analysis is used to characterize the particle impact speed, angle, and impact rate at specific locations on the test sample. Then, the particle impact data are related to the measured erosion depth to achieve an erosion equation from submerged testing. Traditionally, it was assumed that the erosion equation developed based on gas testing can be used for both gas-sand and liquid-sand flows. The erosion equations developed in this work were implemented in a CFD code, and CFD predictions were validated for various test conditions. It was shown that the erosion equation developed based on slurry tests can significantly improve the local thickness loss prediction in slurry flows. Finally, a generalized erosion equation is proposed which can be used to predict the erosion rate in gas-sand, water-sand and viscous liquid-sand flows with high accuracy. Furthermore, in order to gain a better understanding of the erosion mechanism, a comprehensive experimental study was conducted to investigate the important factors influencing the erosion rate in gas-sand and slurry flows. The wear pattern and total erosion ratio were measured in a direct impingement jet geometry (for both dry impact and submerged impingement jets). The effects of fluid viscosity, abrasive particle size, particle impact speed, jet inclination angle, standoff distance, sand concentration, and exposure time were investigated. Also, the eroded samples were studied with Scanning Electron Microscopy (SEM) to understand the erosion micro-structure. Also, the sand particle impact speed and angle were measured using a Particle Image Velocimetry (PIV) system. The measurements were conducted in two types of erosion testers (gas-solid and liquid-solid impinging jets). The Particle Tracking Velocimetry (PTV) technique was utilized which is capable of tracking individual small particles. Moreover, CFD modeling was performed to predict the particle impact data. Very good agreement between the CFD results and PTV measurements was observed.
A two-layer model for buoyant inertial displacement flows in inclined pipes
NASA Astrophysics Data System (ADS)
Etrati, Ali; Frigaard, Ian A.
2018-02-01
We investigate the inertial flows found in buoyant miscible displacements using a two-layer model. From displacement flow experiments in inclined pipes, it has been observed that for significant ranges of Fr and Re cos β/Fr, a two-layer, stratified flow develops with the heavier fluid moving at the bottom of the pipe. Due to significant inertial effects, thin-film/lubrication models developed for laminar, viscous flows are not effective for predicting these flows. Here we develop a displacement model that addresses this shortcoming. The complete model for the displacement flow consists of mass and momentum equations for each fluid, resulting in a set of four non-linear equations. By integrating over each layer and eliminating the pressure gradient, we reduce the system to two equations for the area and mean velocity of the heavy fluid layer. The wall and interfacial stresses appear as source terms in the reduced system. The final system of equations is solved numerically using a robust, shock-capturing scheme. The equations are stabilized to remove non-physical instabilities. A linear stability analysis is able to predict the onset of instabilities at the interface and together with numerical solution, is used to study displacement effectiveness over different parametric regimes. Backflow and instability onset predictions are made for different viscosity ratios.
Weber, K L; Thallman, R M; Keele, J W; Snelling, W M; Bennett, G L; Smith, T P L; McDaneld, T G; Allan, M F; Van Eenennaam, A L; Kuehn, L A
2012-12-01
Genomic selection involves the assessment of genetic merit through prediction equations that allocate genetic variation with dense marker genotypes. It has the potential to provide accurate breeding values for selection candidates at an early age and facilitate selection for expensive or difficult to measure traits. Accurate across-breed prediction would allow genomic selection to be applied on a larger scale in the beef industry, but the limited availability of large populations for the development of prediction equations has delayed researchers from providing genomic predictions that are accurate across multiple beef breeds. In this study, the accuracy of genomic predictions for 6 growth and carcass traits were derived and evaluated using 2 multibreed beef cattle populations: 3,358 crossbred cattle of the U.S. Meat Animal Research Center Germplasm Evaluation Program (USMARC_GPE) and 1,834 high accuracy bull sires of the 2,000 Bull Project (2000_BULL) representing influential breeds in the U.S. beef cattle industry. The 2000_BULL EPD were deregressed, scaled, and weighted to adjust for between- and within-breed heterogeneous variance before use in training and validation. Molecular breeding values (MBV) trained in each multibreed population and in Angus and Hereford purebred sires of 2000_BULL were derived using the GenSel BayesCπ function (Fernando and Garrick, 2009) and cross-validated. Less than 10% of large effect loci were shared between prediction equations trained on (USMARC_GPE) relative to 2000_BULL although locus effects were moderately to highly correlated for most traits and the traits themselves were highly correlated between populations. Prediction of MBV accuracy was low and variable between populations. For growth traits, MBV accounted for up to 18% of genetic variation in a pooled, multibreed analysis and up to 28% in single breeds. For carcass traits, MBV explained up to 8% of genetic variation in a pooled, multibreed analysis and up to 42% in single breeds. Prediction equations trained in multibreed populations were more accurate for Angus and Hereford subpopulations because those were the breeds most highly represented in the training populations. Accuracies were less for prediction equations trained in a single breed due to the smaller number of records derived from a single breed in the training populations.
Khelil-Arfa, H; Boudon, A; Maxin, G; Faverdin, P
2012-10-01
The increase in the worldwide demand for dairy products, associated with global warming, will emphasize the issue of water use efficiency in dairy systems. The evaluation of environmental issues related to the management of animal dejections will also require precise biotechnical models that can predict effluent management in farms. In this study, equations were developed and evaluated for predicting the main water flows at the dairy cow level, based on parameters related to cow productive performance and diet under thermoneutral conditions. Two datasets were gathered. The first one comprised 342 individual measurements of water balance in dairy cows obtained during 18 trials at the experimental farm of Méjussaume (INRA, France). Predictive equations of water intake, urine and fecal water excretion were developed by multiple regression using a stepwise selection of regressors from a list of seven candidate parameters, which were milk yield, dry matter intake (DMI), body weight, diet dry matter content (DM), proportion of concentrate (CONC) and content of crude protein (CP) ingested with forage and concentrate (CPf and CPc, g/kg DM). The second dataset was used for external validation of the developed equations and comprised 196 water flow measurements on experimental lots obtained from 43 published papers related to water balance or digestibility measurements in dairy cows. Although DMI was the first predictor of the total water intake (TWI), with a partial r(2) of 0.51, DM was the first predictive parameter of free water intake (FWI), with a partial r(2) of 0.57, likely due to the large variability of DM in the first dataset (from 11.5 to 91.4 g/100 g). This confirmed the compensation between water drunk and ingested with diet when DM changes. The variability of urine volume was explained mainly by the CPf associated with DMI (r.s.d. 5.4 kg/day for an average flow of 24.0 kg/day) and that of fecal water was explained by the proportion of CONC in the diet and DMI. External validation showed that predictive equations excluding DMI as predictive parameters could be used for FWI, urine and fecal water predictions if cows were fed a well-known total mixed ration. It also appeared that TWI and FWI were underestimated when ambient temperature increased above 25°C and possible means of including climatic parameters in future predictive equations were proposed.
Schrems, Wolfgang A; Schrems-Hoesl, Laura M; Bendschneider, Delia; Mardin, Christian Y; Laemmer, Robert; Kruse, Friedrich E; Horn, Folkert K
2015-10-01
New methods are needed to compare peripapillary retinal nerve fiber layer thickness (pRNFLT) measurements taken from time-domain optical coherence tomography (TD-OCT) and spectral-domain OCT (SD-OCT). To compare the agreement of measured and predicted pRNFLT using different equations based on pRNFLT measurements obtained by TD-OCT and SD-OCT. Cross-sectional single-center study that took place at the Department of Ophthalmology, University of Erlangen-Nuremberg from November 16, 2005, to June 3, 2015, and included 138 eyes of control participants, 126 eyes of patients with ocular hypertension, 128 eyes of patients with preperimetric glaucoma, and 160 eyes of patients with perimetric glaucoma. All participants had standard clinical examinations to obtain TD-OCT (via Stratus OCT) and SD-OCT (via Spectralis OCT) measurements of pRNFLT. Two groups were matched for diagnostic subgroup, eye side, sex, and age. The TD-OCT measurements of the first group were used to predict the mean SD-OCT and 6-sector vertical-split pRNFLT measurements of the second group and vice versa. The agreement between the predicted pRNFLT calculations of conversion equations and measured pRNFLT of the second group was evaluated by intraclass correlation coefficients and Bland-Altman plots. Mean and sectoral pRNFLT measurements obtained by TD-OCT and SD-OCT as well as the agreement between measured and predicted pRNFLT. The agreement for all investigated equations to predict mean pRNFLT measurements with intraclass correlation coeffecients ranged from 0.937 to 0.939. Bland-Altman plots demonstrated systemic biases between -0.7 μm and +1.1 μm for measured and predicted mean pRNFLT measurements. The ratio method demonstrated an intraclass correlation coefficient of 0.969 for the temporal-inferior sector. The best color-code agreement between both OCT devices was achieved by the no conversion method, with κ = 0.731 (95% CI, 0.656-0.806) for the mean pRNFLT. These data suggest that the prediction of mean pRNFLT values by equations derived from TD-OCT and SD-OCT can be conducted with high levels of agreement. In individual cases and singular sectors, high prediction errors may occur. When longitudinal imaging data from both TD-OCT and SD-OCT are available, conversion equations may provide longitudinal comparability.
Modifying Bagnold's Sediment Transport Equation for Use in Watershed-Scale Channel Incision Models
NASA Astrophysics Data System (ADS)
Lammers, R. W.; Bledsoe, B. P.
2016-12-01
Destabilized stream channels may evolve through a sequence of stages, initiated by bed incision and followed by bank erosion and widening. Channel incision can be modeled using Exner-type mass balance equations, but model accuracy is limited by the accuracy and applicability of the selected sediment transport equation. Additionally, many sediment transport relationships require significant data inputs, limiting their usefulness in data-poor environments. Bagnold's empirical relationship for bedload transport is attractive because it is based on stream power, a relatively straightforward parameter to estimate using remote sensing data. However, the equation is also dependent on flow depth, which is more difficult to measure or estimate for entire drainage networks. We recast Bagnold's original sediment transport equation using specific discharge in place of flow depth. Using a large dataset of sediment transport rates from the literature, we show that this approach yields similar predictive accuracy as other stream power based relationships. We also explore the applicability of various critical stream power equations, including Bagnold's original, and support previous conclusions that these critical values can be predicted well based solely on sediment grain size. In addition, we propagate error in these sediment transport equations through channel incision modeling to compare the errors associated with our equation to alternative formulations. This new version of Bagnold's bedload transport equation has utility for channel incision modeling at larger spatial scales using widely available and remote sensing data.
Vapor Transport Within the Thermal Diffusion Cloud Chamber
NASA Technical Reports Server (NTRS)
Ferguson, Frank T.; Heist, Richard H.; Nuth, Joseph A., III
2000-01-01
A review of the equations used to determine the 1-D vapor transport in the thermal diffusion cloud chamber (TDCC) is presented. These equations closely follow those of the classical Stefan tube problem in which there is transport of a volatile species through a noncondensible, carrier gas. In both cases, the very plausible assumption is made that the background gas is stagnant. Unfortunately, this assumption results in a convective flux which is inconsistent with the momentum and continuity equations for both systems. The approximation permits derivation of an analytical solution for the concentration profile in the Stefan tube, but there is no computational advantage in the case of the TDCC. Furthermore, the degree of supersaturation is a sensitive function of the concentration profile in the TD CC and the stagnant background gas approximation can make a dramatic difference in the calculated supersaturation. In this work, the equations typically used with a TDCC are compared with very general transport equations describing the 1-D diffusion of the volatile species. Whereas no pressure dependence is predicted with the typical equations, a strong pressure dependence is present with the more general equations given in this work. The predicted behavior is consistent with observations in diffusion cloud experiments. It appears that the new equations may account for much of the pressure dependence noted in TDCC experiments, but a comparison between the new equations and previously obtained experimental data are needed for verification.
Fujikawa, Hiroshi; Kimura, Bon; Fujii, Tateo
2009-09-01
In this study, we developed a predictive program for Vibrio parahaemolyticus growth under various environmental conditions. Raw growth data was obtained with a V. parahaemolyticus O3:K6 strain cultured at a variety of broth temperatures, pH, and salt concentrations. Data were analyzed with our logistic model and the parameter values of the model were analyzed with polynomial equations. A prediction program consisting of the growth model and the polynomial equations was then developed. After the range of the growth environments was modified, the program successfully predicted the growth for all environments tested. The program could be a useful tool to ensure the bacteriological safety of seafood.
Prediction of discretization error using the error transport equation
NASA Astrophysics Data System (ADS)
Celik, Ismail B.; Parsons, Don Roscoe
2017-06-01
This study focuses on an approach to quantify the discretization error associated with numerical solutions of partial differential equations by solving an error transport equation (ETE). The goal is to develop a method that can be used to adequately predict the discretization error using the numerical solution on only one grid/mesh. The primary problem associated with solving the ETE is the formulation of the error source term which is required for accurately predicting the transport of the error. In this study, a novel approach is considered which involves fitting the numerical solution with a series of locally smooth curves and then blending them together with a weighted spline approach. The result is a continuously differentiable analytic expression that can be used to determine the error source term. Once the source term has been developed, the ETE can easily be solved using the same solver that is used to obtain the original numerical solution. The new methodology is applied to the two-dimensional Navier-Stokes equations in the laminar flow regime. A simple unsteady flow case is also considered. The discretization error predictions based on the methodology presented in this study are in good agreement with the 'true error'. While in most cases the error predictions are not quite as accurate as those from Richardson extrapolation, the results are reasonable and only require one numerical grid. The current results indicate that there is much promise going forward with the newly developed error source term evaluation technique and the ETE.
Adjoint Method and Predictive Control for 1-D Flow in NASA Ames 11-Foot Transonic Wind Tunnel
NASA Technical Reports Server (NTRS)
Nguyen, Nhan; Ardema, Mark
2006-01-01
This paper describes a modeling method and a new optimal control approach to investigate a Mach number control problem for the NASA Ames 11-Foot Transonic Wind Tunnel. The flow in the wind tunnel is modeled by the 1-D unsteady Euler equations whose boundary conditions prescribe a controlling action by a compressor. The boundary control inputs to the compressor are in turn controlled by a drive motor system and an inlet guide vane system whose dynamics are modeled by ordinary differential equations. The resulting Euler equations are thus coupled to the ordinary differential equations via the boundary conditions. Optimality conditions are established by an adjoint method and are used to develop a model predictive linear-quadratic optimal control for regulating the Mach number due to a test model disturbance during a continuous pitch
Comparative study of turbulence models in predicting hypersonic inlet flows
NASA Technical Reports Server (NTRS)
Kapoor, Kamlesh; Anderson, Bernhard H.; Shaw, Robert J.
1992-01-01
A numerical study was conducted to analyze the performance of different turbulence models when applied to the hypersonic NASA P8 inlet. Computational results from the PARC2D code, which solves the full two-dimensional Reynolds-averaged Navier-Stokes equation, were compared with experimental data. The zero-equation models considered for the study were the Baldwin-Lomax model, the Thomas model, and a combination of the Baldwin-Lomax and Thomas models; the two-equation models considered were the Chien model, the Speziale model (both low Reynolds number), and the Launder and Spalding model (high Reynolds number). The Thomas model performed best among the zero-equation models, and predicted good pressure distributions. The Chien and Speziale models compared wery well with the experimental data, and performed better than the Thomas model near the walls.
Comparative study of turbulence models in predicting hypersonic inlet flows
NASA Technical Reports Server (NTRS)
Kapoor, Kamlesh; Anderson, Bernhard H.; Shaw, Robert J.
1992-01-01
A numerical study was conducted to analyze the performance of different turbulence models when applied to the hypersonic NASA P8 inlet. Computational results from the PARC2D code, which solves the full two-dimensional Reynolds-averaged Navier-Stokes equation, were compared with experimental data. The zero-equation models considered for the study were the Baldwin-Lomax model, the Thomas model, and a combination of the Baldwin-Lomax and Thomas models; the two-equation models considered were the Chien model, the Speziale model (both low Reynolds number), and the Launder and Spalding model (high Reynolds number). The Thomas model performed best among the zero-equation models, and predicted good pressure distributions. The Chien and Speziale models compared very well with the experimental data, and performed better than the Thomas model near the walls.
Recent Turbulence Model Advances Applied to Multielement Airfoil Computations
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; Gatski, Thomas B.
2000-01-01
A one-equation linear turbulence model and a two-equation nonlinear explicit algebraic stress model (EASM) are applied to the flow over a multielement airfoil. The effect of the K-epsilon and K-omega forms of the two-equation model are explored, and the K-epsilon form is shown to be deficient in the wall-bounded regions of adverse pressure gradient flows. A new K-omega form of EASM is introduced. Nonlinear terms present in EASM are shown to improve predictions of turbulent shear stress behind the trailing edge of the main element and near midflap. Curvature corrections are applied to both the one- and two-equation turbulence models and yield only relatively small local differences in the flap region, where the flow field undergoes the greatest curvature. Predictions of maximum lift are essentially unaffected by the turbulence model variations studied.
A linearized Euler analysis of unsteady flows in turbomachinery
NASA Technical Reports Server (NTRS)
Hall, Kenneth C.; Crawley, Edward F.
1987-01-01
A method for calculating unsteady flows in cascades is presented. The model, which is based on the linearized unsteady Euler equations, accounts for blade loading shock motion, wake motion, and blade geometry. The mean flow through the cascade is determined by solving the full nonlinear Euler equations. Assuming the unsteadiness in the flow is small, then the Euler equations are linearized about the mean flow to obtain a set of linear variable coefficient equations which describe the small amplitude, harmonic motion of the flow. These equations are discretized on a computational grid via a finite volume operator and solved directly subject to an appropriate set of linearized boundary conditions. The steady flow, which is calculated prior to the unsteady flow, is found via a Newton iteration procedure. An important feature of the analysis is the use of shock fitting to model steady and unsteady shocks. Use of the Euler equations with the unsteady Rankine-Hugoniot shock jump conditions correctly models the generation of steady and unsteady entropy and vorticity at shocks. In particular, the low frequency shock displacement is correctly predicted. Results of this method are presented for a variety of test cases. Predicted unsteady transonic flows in channels are compared to full nonlinear Euler solutions obtained using time-accurate, time-marching methods. The agreement between the two methods is excellent for small to moderate levels of flow unsteadiness. The method is also used to predict unsteady flows in cascades due to blade motion (flutter problem) and incoming disturbances (gust response problem).
A study of the liquid-vapor phase change of mercury based on irreversible thermodynamics.
NASA Technical Reports Server (NTRS)
Adt, R. R., Jr.; Hatsopoulos, G. N.; Bornhorst, W. J.
1972-01-01
The object of this work is to determine the transport coefficients which appear in linear irreversible-thermodynamic rate equations of a phase change. An experiment which involves the steady-state evaporation of mercury was performed to measure the principal transport coefficient appearing in the mass-rate equation and the coupling transport coefficient appearing in both the mass-rate equation and the energy-rate equation. The principal transport coefficient sigma, usually termed the 'condensation' or 'evaporation' coefficient, is found to be approximately 0.9, which is higher than that measured previously in condensation-of-mercury experiments. The experimental value of the coupling coefficient K does not agree with the value predicted from Schrage's kinetic analysis of the phase change. A modified kinetic analysis in which the Onsager reciprocal law and the conservation laws are invoked is presented which removes this discrepancy but which shows that the use of Schrage's equation for predicting mass rates of phase change is a good approximation.
Development of a predictive energy equation for maintenance hemodialysis patients: a pilot study.
Byham-Gray, Laura; Parrott, J Scott; Ho, Wai Yin; Sundell, Mary B; Ikizler, T Alp
2014-01-01
The study objectives were to explore the predictors of measured resting energy expenditure (mREE) among a sample of maintenance hemodialysis (MHD) patients, to generate a predictive energy equation (MHDE), and to compare such models to another commonly used predictive energy equation in nutritional care, the Mifflin-St. Jeor equation (MSJE). The study was a retrospective, cross-sectional cohort design conducted at the Vanderbilt University Medical Center. Study subjects were adult MHD patients (N = 67). Data collected from several clinical trials were analyzed using Pearson's correlation and multivariate linear regression procedures. Demographic, anthropometric, clinical, and laboratory data were examined as potential predictors of mREE. Limits of agreement between the MHDE and the MSJE were evaluated using Bland-Altman plots. The a priori α was set at P < .05. The main outcome measure was mREE. The mean age of the sample was 47 ± 13 years. Fifty participants (75.6%) were African American, 7.5% were Hispanic, and 73.1% were males. Fat-free mass (FFM), serum albumin (ALB), age, weight, serum creatinine (CR), height, body mass index, sex, high-sensitivity C-reactive protein (CRP), and fat mass (FM) were all significantly (P < .05) correlated with mREE. After screening for multi-collinearity, the best predictive model (MHDE-lean body mass [LBM]) of mREE included (R(2) = 0.489) FFM, ALB, age, and CRP. Two additional models (MHDE-CRP and MHDE-CR) with acceptable predictability (R(2) = 0.460 and R(2) = 0.451) were derived to improve the clinical utility of the developed energy equation (MHDE-LBM). Using Bland-Altman plots, the MHDE over- and underpredicted mREE less often than the MSJE. Predictive models (MHDE) including selective demographic, clinical, and anthropometric data explained less than 50% variance of mREE but had better precision in determining energy requirements for MHD patients when compared with MSJE. Further research is necessary to improve predictive models of mREE in the MHD population and to test its validity and clinical application. Copyright © 2014 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
Some Recent Developments in the Endochronic Theory with Application to Cyclic Histories
NASA Technical Reports Server (NTRS)
Valanis, K. C.; Lee, C. F.
1983-01-01
Constitutive equations with only two easily determined material constants predict the stress (strain) response of normalized mild steel to a variety of general strain (stress) histories, without a need for special unloading-reloading rules. The equations are derived from the endochronic theory of plasticity of isotropic materials with an intrinsic time scale defined in the plastic strain space. Agreement between theoretical predictions and experiments are are excellent quantitatively in cases of various uniaxial constant amplitude histories, variable uniaxial strain amplitude histories and cyclic relaxation. The cyclic ratcheting phenomenon is predicted by the present theory.
Recursive Deadbeat Controller Design
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Phan, Minh Q.
1997-01-01
This paper presents a recursive algorithm for a deadbeat predictive controller design. The method combines together the concepts of system identification and deadbeat controller designs. It starts with the multi-step output prediction equation and derives the control force in terms of past input and output time histories. The formulation thus derived satisfies simultaneously system identification and deadbeat controller design requirements. As soon as the coefficient matrices are identified satisfying the output prediction equation, no further work is required to compute the deadbeat control gain matrices. The method can be implemented recursively just as any typical recursive system identification techniques.
Composite Nanomechanics: A Mechanistic Properties Prediction
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Handler, Louis M.; Manderscheid, Jane M.
2007-01-01
A unique mechanistic theory is described to predict the properties of nanocomposites. The theory is based on composite micromechanics with progressive substructuring down to a nanoscale slice of a nanofiber where all the governing equations are formulated. These equations hav e been programmed in a computer code. That computer code is used to predict 25 properties of a mononanofiber laminate. The results are pr esented graphically and discussed with respect to their practical sig nificance. Most of the results show smooth distributions. Results for matrix-dependent properties show bimodal through-the-thickness distr ibution with discontinuous changes from mode to mode.
A survey and new measurements of ice vapor pressure at temperatures between 170 and 250K
NASA Technical Reports Server (NTRS)
Marti, James; Mauersberger, Konrad
1993-01-01
New measurements of ice vapor pressures at temperatures between 170 and 250 K are presented and published vapor pressure data are summarized. An empirical vapor pressure equation was derived and allows prediction of vapor pressures between 170 k and the triple point of water with an accuracy of approximately 2 percent. Predictions obtained agree, within experimental uncertainty, with the most reliable equation derived from thermodynamic principles.
NASA Astrophysics Data System (ADS)
Arqub, Omar Abu; El-Ajou, Ahmad; Momani, Shaher
2015-07-01
Building fractional mathematical models for specific phenomena and developing numerical or analytical solutions for these fractional mathematical models are crucial issues in mathematics, physics, and engineering. In this work, a new analytical technique for constructing and predicting solitary pattern solutions of time-fractional dispersive partial differential equations is proposed based on the generalized Taylor series formula and residual error function. The new approach provides solutions in the form of a rapidly convergent series with easily computable components using symbolic computation software. For method evaluation and validation, the proposed technique was applied to three different models and compared with some of the well-known methods. The resultant simulations clearly demonstrate the superiority and potentiality of the proposed technique in terms of the quality performance and accuracy of substructure preservation in the construct, as well as the prediction of solitary pattern solutions for time-fractional dispersive partial differential equations.
A model of rotationally-sampled wind turbulence for predicting fatigue loads in wind turbines
NASA Technical Reports Server (NTRS)
Spera, David A.
1995-01-01
Empirical equations are presented with which to model rotationally-sampled (R-S) turbulence for input to structural-dynamic computer codes and the calculation of wind turbine fatigue loads. These equations are derived from R-S turbulence data which were measured at the vertical-plane array in Clayton, New Mexico. For validation, the equations are applied to the calculation of cyclic flapwise blade loads for the NASA/DOE Mod-2 2.5-MW experimental HAWT's (horizontal-axis wind turbines), and the results compared to measured cyclic loads. Good correlation is achieved, indicating that the R-S turbulence model developed in this study contains the characteristics of the wind which produce many of the fatigue loads sustained by wind turbines. Empirical factors are included which permit the prediction of load levels at specified percentiles of occurrence, which is required for the generation of fatigue load spectra and the prediction of the fatigue lifetime of structures.
Analysis of two-equation turbulence models for recirculating flows
NASA Technical Reports Server (NTRS)
Thangam, S.
1991-01-01
The two-equation kappa-epsilon model is used to analyze turbulent separated flow past a backward-facing step. It is shown that if the model constraints are modified to be consistent with the accepted energy decay rate for isotropic turbulence, the dominant features of the flow field, namely the size of the separation bubble and the streamwise component of the mean velocity, can be accurately predicted. In addition, except in the vicinity of the step, very good predictions for the turbulent shear stress, the wall pressure, and the wall shear stress are obtained. The model is also shown to provide good predictions for the turbulence intensity in the region downstream of the reattachment point. Estimated long time growth rates for the turbulent kinetic energy and dissipation rate of homogeneous shear flow are utilized to develop an optimal set of constants for the two equation kappa-epsilon model. The physical implications of the model performance are also discussed.
Bridging a gap between continuum-QCD and ab initio predictions of hadron observables
Binosi, Daniele; Chang, Lei; Papavassiliou, Joannis; ...
2015-03-01
Within contemporary hadron physics there are two common methods for determining the momentum- dependence of the interaction between quarks: the top-down approach, which works toward an ab initiocomputation of the interaction via direct analysis of the gauge-sector gap equations; and the bottom-up scheme, which aims to infer the interaction by fitting data within a well-defined truncation of those equations in the matter sector that are relevant to bound-state properties. We unite these two approaches by demonstrating that the renormalisation-group-invariant running-interaction predicted by contemporary analyses of QCD’s gauge sector coincides with that required in order to describe ground-state hadron observables usingmore » a nonperturbative truncation of QCD’s Dyson–Schwinger equations in the matter sector. This bridges a gap that had lain between nonperturbative continuum-QCD and the ab initio prediction of bound-state properties.« less
Droplet size in flow: Theoretical model and application to polymer blends
NASA Astrophysics Data System (ADS)
Fortelný, Ivan; Jůza, Josef
2017-05-01
The paper is focused on prediction of the average droplet radius, R, in flowing polymer blends where the droplet size is determined by dynamic equilibrium between the droplet breakup and coalescence. Expressions for the droplet breakup frequency in systems with low and high contents of the dispersed phase are derived using available theoretical and experimental results for model blends. Dependences of the coalescence probability, Pc, on system parameters, following from recent theories, is considered and approximate equation for Pc in a system with a low polydispersity in the droplet size is proposed. Equations for R in systems with low and high contents of the dispersed phase are derived. Combination of these equations predicts realistic dependence of R on the volume fraction of dispersed droplets, φ. Theoretical prediction of the ratio of R to the critical droplet radius at breakup agrees fairly well with experimental values for steadily mixed polymer blends.
Lee, Myung W.
1999-01-01
Methods of predicting acoustic logs from resistivity logs for hydrate-bearing sediments are presented. Modified time average equations derived from the weighted equation provide a means of relating the velocity of the sediment to the resistivity of the sediment. These methods can be used to transform resistivity logs into acoustic logs with or without using the gas hydrate concentration in the pore space. All the parameters except the unconsolidation constants, necessary for the prediction of acoustic log from resistivity log, can be estimated from a cross plot of resistivity versus porosity values. Unconsolidation constants in equations may be assumed without rendering significant errors in the prediction. These methods were applied to the acoustic and resistivity logs acquired at the Mallik 2L-38 gas hydrate research well drilled at the Mackenzie Delta, northern Canada. The results indicate that the proposed method is simple and accurate.
Martínez-López, Brais; Gontard, Nathalie; Peyron, Stéphane
2018-03-01
A reliable prediction of migration levels of plastic additives into food requires a robust estimation of diffusivity. Predictive modelling of diffusivity as recommended by the EU commission is carried out using a semi-empirical equation that relies on two polymer-dependent parameters. These parameters were determined for the polymers most used by packaging industry (LLDPE, HDPE, PP, PET, PS, HIPS) from the diffusivity data available at that time. In the specific case of general purpose polystyrene, the diffusivity data published since then shows that the use of the equation with the original parameters results in systematic underestimation of diffusivity. The goal of this study was therefore, to propose an update of the aforementioned parameters for PS on the basis of up to date diffusivity data, so the equation can be used for a reasoned overestimation of diffusivity.
Stature estimation equations for South Asian skeletons based on DXA scans of contemporary adults.
Pomeroy, Emma; Mushrif-Tripathy, Veena; Wells, Jonathan C K; Kulkarni, Bharati; Kinra, Sanjay; Stock, Jay T
2018-05-03
Stature estimation from the skeleton is a classic anthropological problem, and recent years have seen the proliferation of population-specific regression equations. Many rely on the anatomical reconstruction of stature from archaeological skeletons to derive regression equations based on long bone lengths, but this requires a collection with very good preservation. In some regions, for example, South Asia, typical environmental conditions preclude the sufficient preservation of skeletal remains. Large-scale epidemiological studies that include medical imaging of the skeleton by techniques such as dual-energy X-ray absorptiometry (DXA) offer new potential datasets for developing such equations. We derived estimation equations based on known height and bone lengths measured from DXA scans from the Andhra Pradesh Children and Parents Study (Hyderabad, India). Given debates on the most appropriate regression model to use, multiple methods were compared, and the performance of the equations was tested on a published skeletal dataset of individuals with known stature. The equations have standard errors of estimates and prediction errors similar to those derived using anatomical reconstruction or from cadaveric datasets. As measured by the number of significant differences between true and estimated stature, and the prediction errors, the new equations perform as well as, and generally better than, published equations commonly used on South Asian skeletons or based on Indian cadaveric datasets. This study demonstrates the utility of DXA scans as a data source for developing stature estimation equations and offer a new set of equations for use with South Asian datasets. © 2018 Wiley Periodicals, Inc.
Comparison of stochastic lung deposition fractions with experimental data.
Majid, Hussain; Hofmann, Werner; Winkler-Heil, Renate
2012-04-01
Deposition fractions of inhaled particles predicted by different computational models vary with respect to physical and biological factors and mathematical modeling techniques. These models must be validated by comparison with available experimental data. Experimental data supplied by different deposition studies with surrogate airway models or lung casts were used in this study to evaluate the stochastic deposition model Inhalation, Deposition and Exhalation of Aerosols in the Lung at the airway generation level. Furthermore, different analytical equations derived for the three major deposition mechanisms, diffusion, impaction, and sedimentation, were applied to different cast or airway models to quantify their effect on calculated particle deposition fractions. The experimental results for ultrafine particles (0.00175 and 0.01) were found to be in close agreement with the stochastic model predictions; however, for coarse particles (3 and 8 μm), experimental deposition fractions became higher with increasing flow rate. An overall fair agreement among the calculated deposition fractions for the different cast geometries was found. However, alternative deposition equations resulted in up to 300% variation in predicted deposition fractions, although all equations predicted the same trends as functions of particle diameter and breathing conditions. From this comparative study, it can be concluded that structural differences in lung morphologies among different individuals are responsible for the apparent variability in particle deposition in each generation. The use of different deposition equations yields varying deposition results caused primarily by (i) different lung morphometries employed in their derivation and the choice of the central bifurcation zone geometry, (ii) the assumption of specific flow profiles, and (iii) different methods used in the derivation of these equations.
Estimating Slash Quantity from Standing Loblolly Pine
Dale D. Wade
1969-01-01
No significant difference were found between variances of two prediction equations for estimating loblolly pine crown weight from diameter breast height (d.b.h). One equation was developed from trees on the Georgia Piedmont and the other from tress on the South Carolina Coastal Plain. An equation and table are presented for estimating loblolly pine slash weights from...
Estimating leaf area and leaf biomass of open-grown deciduous urban trees
David J. Nowak
1996-01-01
Logarithmic regression equations were developed to predict leaf area and leaf biomass for open-grown deciduous urban trees based on stem diameter and crown parameters. Equations based on crown parameters produced more reliable estimates. The equations can be used to help quantify forest structure and functions, particularly in urbanizing and urban/suburban areas.
Regional height-diameter equations for major tree species of southwest Oregon.
H. Temesgen; D.W. Hann; V.J. Monleon
2006-01-01
Selected tree height and diameter functions were evaluated for their predictive abilities for major tree species of southwest Oregon. The equations included tree diameter alone, or diameter plus alternative measures of stand density and relative position. Two of the base equations were asymptotic functions, and two were exponential functional forms. The inclusion of...
NASA Technical Reports Server (NTRS)
Sengers, J. V.; Basu, R. S.; Sengers, J. M. H. L.
1981-01-01
A survey is presented of representative equations for various thermophysical properties of fluids in the critical region. Representative equations for the transport properties are included. Semi-empirical modifications of the theoretically predicted asymtotic critical behavior that yield simple and practical representations of the fluid properties in the critical region are emphasized.
Dubé, Philippe-Antoine; Imbeau, Daniel; Dubeau, Denise; Auger, Isabelle; Leone, Mario
2015-01-01
Individual heart rate (HR) to workload relationships were determined using 93 submaximal step-tests administered to 26 healthy participants attending physical activities in a university training centre (laboratory study) and 41 experienced forest workers (field study). Predicted maximum aerobic capacity (MAC) was compared to measured MAC from a maximal treadmill test (laboratory study) to test the effect of two age-predicted maximum HR Equations (220-age and 207-0.7 × age) and two clothing insulation levels (0.4 and 0.91 clo) during the step-test. Work metabolism (WM) estimated from forest work HR was compared against concurrent work V̇O2 measurements while taking into account the HR thermal component. Results show that MAC and WM can be accurately predicted from work HR measurements and simple regression models developed in this study (1% group mean prediction bias and up to 25% expected prediction bias for a single individual). Clothing insulation had no impact on predicted MAC nor age-predicted maximum HR equations. Practitioner summary: This study sheds light on four practical methodological issues faced by practitioners regarding the use of HR methodology to assess WM in actual work environments. More specifically, the effect of wearing work clothes and the use of two different maximum HR prediction equations on the ability of a submaximal step-test to assess MAC are examined, as well as the accuracy of using an individual's step-test HR to workload relationship to predict WM from HR data collected during actual work in the presence of thermal stress.
Boehmler, Erick M.; Olimpio, Joseph R.
2000-01-01
In a previous study, 44 of 48 bridge sites examined in New Hampshire were categorized as scour critical. In this study, the U.S. Geological Survey (USGS) evaluated pier-scour measurement methods and predictions at many of these sites. This evaluation included measurement of pier-scour depths at 20 bridge sites using Ground- Penetrating Radar (GPR) surveys. Pier scour was also measured during floods by teams at 5 of these 20 sites. At 4 of the 20 sites, fixed instruments were installed to monitor scour. At only one bridge site investigated by a team was any pier scour measurable during a flood event. A scour depth of 0.7 foot (0.21 m) was measured at a pier in the channel at the State Route 18 bridge over the Connecticut River in Littleton. Measurements made using GPR and (or) fixed instruments indicated pier scour for six sites. The GPR surveys indicated scour along the side of a pier and further upstream from the nose of a pier that was not detected by flood-team measurements at two sites. Most pier-scour equations selected for this examination were reviewed and published in previous scour investigations. Graphical comparison of residual pier-scour depths indicate that the Shen equation yielded pier-scour depth predictions closest to those measured, without underestimating. Measured depths of scour, however, were zero feet for 14 of the 20 sites. For the Blench-Inglis II equation and the Simplified Chinese equation, most differences between measured and predicted scour depths were within 5 feet. These two equations underpredicted scour for one of six sites with measurable scour. The underprediction, however, was within the resolution of the depth measurements. The Simplified Chinese equation is less sensitive than other equations to velocity and depth input variables, and is one of the few empirical equations to integrate the influence of flow competence, or a measure of the maximum streambed particle size that a stream is capable of transporting, in the computation of pier scour. Absence of a flow-competence component could explain some of the overprediction by other equations, but was not investigated in this study. Measurements of scour during large floods at additional sites are necessary to strengthen and substantiate the application of alternatives to the HEC-18 equation to estimate pier scour at waterway crossings in New Hampshire.
Choice of Tuning Parameters on 3D IC Engine Simulations Using G-Equation
Liu, Jinlong; Szybist, James; Dumitrescu, Cosmin
2018-04-03
3D CFD spark-ignition IC engine simulations are extremely complex for the regular user. Truly-predictive CFD simulations for the turbulent flame combustion that solve fully coupled transport/chemistry equations may require large computational capabilities unavailable to regular CFD users. A solution is to use a simpler phenomenological model such as the G-equation that decouples transport/chemistry result. Such simulation can still provide acceptable and faster results at the expense of predictive capabilities. While the G-equation is well understood within the experienced modeling community, the goal of this paper is to document some of them for a novice or less experienced CFD user whomore » may not be aware that phenomenological models of turbulent flame combustion usually require heavy tuning and calibration from the user to mimic experimental observations. This study used ANSYS® Forte, Version 17.2, and the built-in G-equation model, to investigate two tuning constants that influence flame propagation in 3D CFD SI engine simulations: the stretch factor coefficient, Cms and the flame development coefficient, Cm2. After identifying several Cm2-Cms pairs that matched experimental data at one operating conditions, simulation results showed that engine models that used different Cm2-Cms sets predicted similar combustion performance, when the spark timing, engine load, and engine speed were changed from the operating condition used to validate the CFD simulation. A dramatic shift was observed when engine speed was doubled, which suggested that the flame stretch coefficient, Cms, had a much larger influence at higher engine speeds compared to the flame development coefficient, Cm2. Therefore, the Cm2-Cms sets that predicted a higher turbulent flame under higher in-cylinder pressure and temperature increased the peak pressure and efficiency. This suggest that the choice of the Cm2-Cms will affect the G-equation-based simulation accuracy when engine speed increases from the one used to validate the model. As a result, for the less-experienced CFD user and in the absence of enough experimental data that would help retune the tuning parameters at various operating conditions, the purpose of a good G-equation-based 3D engine simulation is to guide and/or complement experimental investigations, not the other way around. Only a truly-predictive simulation that fully couples the turbulence/chemistry equations can help reduce the amount of experimental work.« less
Choice of Tuning Parameters on 3D IC Engine Simulations Using G-Equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jinlong; Szybist, James; Dumitrescu, Cosmin
3D CFD spark-ignition IC engine simulations are extremely complex for the regular user. Truly-predictive CFD simulations for the turbulent flame combustion that solve fully coupled transport/chemistry equations may require large computational capabilities unavailable to regular CFD users. A solution is to use a simpler phenomenological model such as the G-equation that decouples transport/chemistry result. Such simulation can still provide acceptable and faster results at the expense of predictive capabilities. While the G-equation is well understood within the experienced modeling community, the goal of this paper is to document some of them for a novice or less experienced CFD user whomore » may not be aware that phenomenological models of turbulent flame combustion usually require heavy tuning and calibration from the user to mimic experimental observations. This study used ANSYS® Forte, Version 17.2, and the built-in G-equation model, to investigate two tuning constants that influence flame propagation in 3D CFD SI engine simulations: the stretch factor coefficient, Cms and the flame development coefficient, Cm2. After identifying several Cm2-Cms pairs that matched experimental data at one operating conditions, simulation results showed that engine models that used different Cm2-Cms sets predicted similar combustion performance, when the spark timing, engine load, and engine speed were changed from the operating condition used to validate the CFD simulation. A dramatic shift was observed when engine speed was doubled, which suggested that the flame stretch coefficient, Cms, had a much larger influence at higher engine speeds compared to the flame development coefficient, Cm2. Therefore, the Cm2-Cms sets that predicted a higher turbulent flame under higher in-cylinder pressure and temperature increased the peak pressure and efficiency. This suggest that the choice of the Cm2-Cms will affect the G-equation-based simulation accuracy when engine speed increases from the one used to validate the model. As a result, for the less-experienced CFD user and in the absence of enough experimental data that would help retune the tuning parameters at various operating conditions, the purpose of a good G-equation-based 3D engine simulation is to guide and/or complement experimental investigations, not the other way around. Only a truly-predictive simulation that fully couples the turbulence/chemistry equations can help reduce the amount of experimental work.« less
NASA Technical Reports Server (NTRS)
Tiwari, S. N.; Lakshmanan, B.
1993-01-01
A high-speed shear layer is studied using compressibility corrected Reynolds stress turbulence model which employs newly developed model for pressure-strain correlation. MacCormack explicit prediction-corrector method is used for solving the governing equations and the turbulence transport equations. The stiffness arising due to source terms in the turbulence equations is handled by a semi-implicit numerical technique. Results obtained using the new model show a sharper reduction in growth rate with increasing convective Mach number. Some improvements were also noted in the prediction of the normalized streamwise stress and Reynolds shear stress. The computed results are in good agreement with the experimental data.
Light aircraft sound transmission studies - Noise reduction model
NASA Technical Reports Server (NTRS)
Atwal, Mahabir S.; Heitman, Karen E.; Crocker, Malcolm J.
1987-01-01
Experimental tests conducted on the fuselage of a single-engine Piper Cherokee light aircraft suggest that the cabin interior noise can be reduced by increasing the transmission loss of the dominant sound transmission paths and/or by increasing the cabin interior sound absorption. The validity of using a simple room equation model to predict the cabin interior sound-pressure level for different fuselage and exterior sound field conditions is also presented. The room equation model is based on the sound power flow balance for the cabin space and utilizes the measured transmitted sound intensity data. The room equation model predictions were considered good enough to be used for preliminary acoustical design studies.
NASA Technical Reports Server (NTRS)
Ting, P. C.
1982-01-01
Thermodynamic energy balance equations are derived and applied to midsection Orbiter-payload atmospheric thermal math models (TMMs) to predict Orbiter component, element, compartment, internal insolation and structure temperatures in support of NASA/JSC mission planning, postflight thermal analysis and payload thermal integration planning. The equations are extended and applied to the forward section, midsection, and aft section of the TMMs for five Orbiter mission phases: prelaunch on pad with purge, lift-off to ascent, re-entry to touchdown, post landing without purge, and post-landing with purge. Predicted results from the 390 node/DFI atmospheric TMM are in good agreement with STS-1 flight measurement data.
Prediction of distribution coefficient from structure. 1. Estimation method.
Csizmadia, F; Tsantili-Kakoulidou, A; Panderi, I; Darvas, F
1997-07-01
A method has been developed for the estimation of the distribution coefficient (D), which considers the microspecies of a compound. D is calculated from the microscopic dissociation constants (microconstants), the partition coefficients of the microspecies, and the counterion concentration. A general equation for the calculation of D at a given pH is presented. The microconstants are calculated from the structure using Hammett and Taft equations. The partition coefficients of the ionic microspecies are predicted by empirical equations using the dissociation constants and the partition coefficient of the uncharged species, which are estimated from the structure by a Linear Free Energy Relationship method. The algorithm is implemented in a program module called PrologD.
Comparison of techniques for correction of magnification of pelvic X-rays for hip surgery planning.
The, Bertram; Kootstra, Johan W J; Hosman, Anton H; Verdonschot, Nico; Gerritsma, Carina L E; Diercks, Ron L
2007-12-01
The aim of this study was to develop an accurate method for correction of magnification of pelvic x-rays to enhance accuracy of hip surgery planning. All investigated methods aim at estimating the anteroposterior location of the hip joint in supine position to correctly position a reference object for correction of magnification. An existing method-which is currently being used in clinical practice in our clinics-is based on estimating the position of the hip joint by palpation of the greater trochanter. It is only moderately accurate and difficult to execute reliably in clinical practice. To develop a new method, 99 patients who already had a hip implant in situ were included; this enabled determining the true location of the hip joint deducted from the magnification of the prosthesis. Physical examination was used to obtain predictor variables possibly associated with the height of the hip joint. This included a simple dynamic hip joint examination to estimate the position of the center of rotation. Prediction equations were then constructed using regression analysis. The performance of these prediction equations was compared with the performance of the existing protocol. The mean absolute error in predicting the height of the hip joint center using the old method was 20 mm (range -79 mm to +46 mm). This was 11 mm for the new method (-32 mm to +39 mm). The prediction equation is: height (mm) = 34 + 1/2 abdominal circumference (cm). The newly developed prediction equation is a superior method for predicting the height of the hip joint center for correction of magnification of pelvic x-rays. We recommend its implementation in the departments of radiology and orthopedic surgery.
NASA Astrophysics Data System (ADS)
Ghosh, Soumyadeep
Surfactant-polymer (SP) floods have significant potential to recover waterflood residual oil in shallow oil reservoirs. A thorough understanding of surfactant-oil-brine phase behavior is critical to the design of chemical EOR floods. While considerable progress has been made in developing surfactants and polymers that increase the potential of a chemical enhanced oil recovery (EOR) project, very little progress has been made to predict phase behavior as a function of formulation variables such as pressure, temperature, and oil equivalent alkane carbon number (EACN). The empirical Hand's plot is still used today to model the microemulsion phase behavior with little predictive capability as these and other formulation variables change. Such models could lead to incorrect recovery predictions and improper flood designs. Reservoir crudes also contain acidic components (primarily naphthenic acids), which undergo neutralization to form soaps in the presence of alkali. The generated soaps perform synergistically with injected synthetic surfactants to mobilize waterflood residual oil in what is termed alkali-surfactant-polymer (ASP) flooding. The addition of alkali, however, complicates the measurement and prediction of the microemulsion phase behavior that forms with acidic crudes. In this dissertation, we account for pressure changes in the hydrophilic-lipophilic difference (HLD) equation. This new HLD equation is coupled with the net-average curvature (NAC) model to predict phase volumes, solubilization ratios, and microemulsion phase transitions (Winsor II-, III, and II+). This dissertation presents the first modified HLD-NAC model to predict microemulsion phase behavior for live crudes, including optimal solubilization ratio and the salinity width of the three-phase Winsor III region at different temperatures and pressures. This new equation-of-state-like model could significantly aid the design and forecast of chemical floods where key variables change dynamically, and in screening of potential candidate reservoirs for chemical EOR. The modified HLD-NAC model is also extended here for ASP flooding. We use an empirical equation to calculate the acid distribution coefficient from the molecular structure of the soap. Key HLD-NAC parameters like optimum salinities and optimum solubilization ratios are calculated from soap mole fraction weighted equations. The model is tuned to data from phase behavior experiments with real crudes to demonstrate the procedure. We also examine the ability of the new model to predict fish plots and activity charts that show the evolution of the three-phase region. The modified HLD-NAC equations are then made dimensionless to develop important microemulsion phase behavior relationships and for use in tuning the new model to measured data. Key dimensionless groups that govern phase behavior and their effects are identified and analyzed. A new correlation was developed to predict optimum solubilization ratios at different temperatures, pressures and oil EACN with an average relative error of 10.55%. The prediction of optimum salinities with the modified HLD approach resulted in average relative errors of 2.35%. We also present a robust method to precisely determine optimum salinities and optimum solubilization ratios from salinity scan data with average relative errors of 1.17% and 2.44% for the published data examined.
Normalization and extension of single-collector efficiency correlation equation
NASA Astrophysics Data System (ADS)
Messina, Francesca; Marchisio, Daniele; Sethi, Rajandrea
2015-04-01
The colloidal transport and deposition are important phenomena involved in many engineering problems. In the environmental engineering field the use of micro- and nano-scale zerovalent iron (M-NZVI) is one of the most promising technologies for groundwater remediation. Colloid deposition is normally studied from a micro scale point of view and the results are then implemented in macro scale models that are used to design field-scale applications. The single collector efficiency concept predicts particles deposition onto a single grain of a complex porous medium in terms of probability that an approaching particle would be retained on the solid grain. In literature, many different approaches and equations exist to predict it, but most of them fail under specific conditions (e.g. very small or very big particle size and very low fluid velocity) because they predict efficiency values exceeding unity. By analysing particle fluxes and deposition mechanisms and performing a mass balance on the entire domain, the traditional definition of efficiency was reformulated and a novel total flux normalized correlation equation is proposed for predicting single-collector efficiency under a broad range of parameters. It has been formulated starting from a combination of Eulerian and Lagrangian numerical simulations, performed under Smoluchowski-Levich conditions, in a geometry which consists of a sphere enveloped by a control volume. In order to guarantee the independence of each term, the correlation equation is derived through a rigorous hierarchical parameter estimation process, accounting for single and mutual interacting transport mechanisms. The correlation equation provides efficiency values lower than one over a wide range of parameters and is valid both for point and finite-size particles. A reduced form is also proposed by elimination of the less relevant terms. References 1. Yao, K. M.; Habibian, M. M.; Omelia, C. R., Water and Waste Water Filtration - Concepts and Applications. Environ Sci Technol 1971, 5, (11), 1105-&. 2. Tufenkji, N., and M. Elimelech, Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media. Environmental Science & Technology 2004 38(2):529-536. 3. Boccardo, G.; Marchisio, D. L.; Sethi, R., Microscale simulation of particle deposition in porous media. J Colloid Interface Sci 2014, 417, 227-37
Mogensen, Kris M; Andrew, Benjamin Y; Corona, Jasmine C; Robinson, Malcolm K
2016-07-01
The Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (ASPEN) recommend that obese, critically ill patients receive 11-14 kcal/kg/d using actual body weight (ABW) or 22-25 kcal/kg/d using ideal body weight (IBW), because feeding these patients 50%-70% maintenance needs while administering high protein may improve outcomes. It is unknown whether these equations achieve this target when validated against indirect calorimetry, perform equally across all degrees of obesity, or compare well with other equations. Measured resting energy expenditure (MREE) was determined in obese (body mass index [BMI] ≥30 kg/m(2)), critically ill patients. Resting energy expenditure was predicted (PREE) using several equations: 12.5 kcal/kg ABW (ASPEN-Actual BW), 23.5 kcal/kg IBW (ASPEN-Ideal BW), Harris-Benedict (adjusted-weight and 1.5 stress-factor), and Ireton-Jones for obesity. Correlation of PREE to 65% MREE, predictive accuracy, precision, bias, and large error incidence were calculated. All equations were significantly correlated with 65% MREE but had poor predictive accuracy, had excessive large error incidence, were imprecise, and were biased in the entire cohort (N = 31). In the obesity cohort (n = 20, BMI 30-50 kg/m(2)), ASPEN-Actual BW had acceptable predictive accuracy and large error incidence, was unbiased, and was nearly precise. In super obesity (n = 11, BMI >50 kg/m(2)), ASPEN-Ideal BW had acceptable predictive accuracy and large error incidence and was precise and unbiased. SCCM/ASPEN-recommended body weight equations are reasonable predictors of 65% MREE depending on the equation and degree of obesity. Assuming that feeding 65% MREE is appropriate, this study suggests that patients with a BMI 30-50 kg/m(2) should receive 11-14 kcal/kg/d using ABW and those with a BMI >50 kg/m(2) should receive 22-25 kcal/kg/d using IBW. © 2015 American Society for Parenteral and Enteral Nutrition.
Cunha, B C N; Belk, K E; Scanga, J A; LeValley, S B; Tatum, J D; Smith, G C
2004-07-01
This study was performed to validate previous equations and to develop and evaluate new regression equations for predicting lamb carcass fabrication yields using outputs from a lamb vision system-hot carcass component (LVS-HCC) and the lamb vision system-chilled carcass LM imaging component (LVS-CCC). Lamb carcasses (n = 149) were selected after slaughter, imaged hot using the LVS-HCC, and chilled for 24 to 48 h at -3 to 1 degrees C. Chilled carcasses yield grades (YG) were assigned on-line by USDA graders and by expert USDA grading supervisors with unlimited time and access to the carcasses. Before fabrication, carcasses were ribbed between the 12th and 13th ribs and imaged using the LVS-CCC. Carcasses were fabricated into bone-in subprimal/primal cuts. Yields calculated included 1) saleable meat yield (SMY); 2) subprimal yield (SPY); and 3) fat yield (FY). On-line (whole-number) USDA YG accounted for 59, 58, and 64%; expert (whole-number) USDA YG explained 59, 59, and 65%; and expert (nearest-tenth) USDA YG accounted for 60, 60, and 67% of the observed variation in SMY, SPY, and FY, respectively. The best prediction equation developed in this trial using LVS-HCC output and hot carcass weight as independent variables explained 68, 62, and 74% of the variation in SMY, SPY, and FY, respectively. Addition of output from LVS-CCC improved predictive accuracy of the equations; the combined output equations explained 72 and 66% of the variability in SMY and SPY, respectively. Accuracy and repeatability of measurement of LM area made with the LVS-CCC also was assessed, and results suggested that use of LVS-CCC provided reasonably accurate (R2 = 0.59) and highly repeatable (repeatability = 0.98) measurements of LM area. Compared with USDA YG, use of the dual-component lamb vision system to predict cut yields of lamb carcasses improved accuracy and precision, suggesting that this system could have an application as an objective means for pricing carcasses in a value-based marketing system.
Passive Environmental ASW Prediction System (PEAPS)
1975-03-01
Because the Frye and Pugh equation [1] for sound speed is dominated by temperature terms and requires relatively few program steps compared with...other speed of sound equations , it was used in the sound speed profile sub- program . The equation was modified to use the approximation ASS ASS AP • ASS AZ...in ppt (parts per thousand). 21 The SSP sub- program converts the input data to MKS units for use in the above equation and then converts the resultant
Guiding-center equations for electrons in ultraintense laser fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, J.E.; Fisch, N.J.
1994-01-01
The guiding-center equations are derived for electrons in arbitrarily intense laser fields also subject to external fields and ponderomotive forces. Exhibiting the relativistic mass increase of the oscillating electrons, a simple frame-invariant equation is shown to govern the behavior of the electrons for sufficiently weak background fields and ponderomotive forces. The parameter regime for which such a formulation is valid is made precise, and some predictions of the equation are checked by numerical simulation.
Repins, Ingrid L.; Harvey, Steve; Bowers, Karen; ...
2017-05-15
Cu(In,Ga)Se 2(CIGS) photovoltaic absorbers frequently develop Ga gradients during growth. These gradients vary as a function of growth recipe, and are important to device performance. Prediction of Ga profiles using classic diffusion equations is not possible because In and Ga atoms occupy the same lattice sites and thus diffuse interdependently, and there is not yet a detailed experimental knowledge of the chemical potential as a function of composition that describes this interaction. Here, we show how diffusion equations can be modified to account for site sharing between In and Ga atoms. The analysis has been implemented in an Excel spreadsheet,more » and outputs predicted Cu, In, and Ga profiles for entered deposition recipes. A single set of diffusion coefficients and activation energies are chosen, such that simulated elemental profiles track with published data and those from this study. Extent and limits of agreement between elemental profiles predicted from the growth recipes and the spreadsheet tool are demonstrated.« less
Prediction of brittleness based on anisotropic rock physics model for kerogen-rich shale
NASA Astrophysics Data System (ADS)
Qian, Ke-Ran; He, Zhi-Liang; Chen, Ye-Quan; Liu, Xi-Wu; Li, Xiang-Yang
2017-12-01
The construction of a shale rock physics model and the selection of an appropriate brittleness index ( BI) are two significant steps that can influence the accuracy of brittleness prediction. On one hand, the existing models of kerogen-rich shale are controversial, so a reasonable rock physics model needs to be built. On the other hand, several types of equations already exist for predicting the BI whose feasibility needs to be carefully considered. This study constructed a kerogen-rich rock physics model by performing the selfconsistent approximation and the differential effective medium theory to model intercoupled clay and kerogen mixtures. The feasibility of our model was confirmed by comparison with classical models, showing better accuracy. Templates were constructed based on our model to link physical properties and the BI. Different equations for the BI had different sensitivities, making them suitable for different types of formations. Equations based on Young's Modulus were sensitive to variations in lithology, while those using Lame's Coefficients were sensitive to porosity and pore fluids. Physical information must be considered to improve brittleness prediction.
Dhavalikar, R; Hensley, D; Maldonado-Camargo, L; Croft, L R; Ceron, S; Goodwill, P W; Conolly, S M
2016-01-01
Magnetic Particle Imaging (MPI) is an emerging tomographic imaging technology that detects magnetic nanoparticle tracers by exploiting their non-linear magnetization properties. In order to predict the behavior of nanoparticles in an imager, it is possible to use a non-imaging MPI relaxometer or spectrometer to characterize the behavior of nanoparticles in a controlled setting. In this paper we explore the use of ferrohydrodynamic magnetization equations for predicting the response of particles in an MPI relaxometer. These include a magnetization equation developed by Shliomis (Sh) which has a constant relaxation time and a magnetization equation which uses a field-dependent relaxation time developed by Martsenyuk, Raikher and Shliomis (MRSh). We compare the predictions from these models with measurements and with the predictions based on the Langevin function that assumes instantaneous magnetization response of the nanoparticles. The results show good qualitative and quantitative agreement between the ferrohydrodynamic models and the measurements without the use of fitting parameters and provide further evidence of the potential of ferrohydrodynamic modeling in MPI. PMID:27867219
DOE Office of Scientific and Technical Information (OSTI.GOV)
Repins, Ingrid L.; Harvey, Steve; Bowers, Karen
Cu(In,Ga)Se 2(CIGS) photovoltaic absorbers frequently develop Ga gradients during growth. These gradients vary as a function of growth recipe, and are important to device performance. Prediction of Ga profiles using classic diffusion equations is not possible because In and Ga atoms occupy the same lattice sites and thus diffuse interdependently, and there is not yet a detailed experimental knowledge of the chemical potential as a function of composition that describes this interaction. Here, we show how diffusion equations can be modified to account for site sharing between In and Ga atoms. The analysis has been implemented in an Excel spreadsheet,more » and outputs predicted Cu, In, and Ga profiles for entered deposition recipes. A single set of diffusion coefficients and activation energies are chosen, such that simulated elemental profiles track with published data and those from this study. Extent and limits of agreement between elemental profiles predicted from the growth recipes and the spreadsheet tool are demonstrated.« less
Masses from an inhomogeneous partial difference equation with higher-order isospin contributions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masson, P.J.; Jaenecke, J.
In the present work, a mass equation obtained as the solution of an inhomogeneous partial difference equation is used to predict masses of unknown neutron-rich and proton-rich nuclei. The inhomogeneous source terms contain shell-dependent symmetry energy expressions (quadratic in isospin), and include, as well, an independently derived shell-model Coulomb energy equation which describes all known Coulomb displacement energies with a standarad deviation of sigma/sub c/ = 41 keV. Perturbations of higher order in isospin, previously recognized as a cause of systematic effects in long-range mass extrapolations, are also incorporated. The most general solutions of the inhomogeneous difference equation have beenmore » deduced from a chi/sup 2/-minimization procedure based on the recent atomic mass adjustment of Wapstra, Audi, and Hoekstra. Subjecting the solutions further to the condition of charge symmetry preserves the accuracy of Coulomb energies and allows mass predictions for nuclei with both Ngreater than or equal toZ and Z>N. The solutions correspond to a mass equation with 470 parameters. Using this equation, 4385 mass values have been calculated for nuclei with Agreater than or equal to16 (except N = Z = odd for A<40), with a standard deviation of sigma/sub m/ = 194 keV from the experimental masses. copyright 1988 Academic Press, Inc.« less
The validation and application of a rotor acoustic prediction computer program
NASA Technical Reports Server (NTRS)
Gallman, Judith M.
1990-01-01
An essential prerequisite to reducing the acoustic detectability of military rotorcraft is a better understanding of main rotor noise which is the major contributor to the overall noise. A simple, yet accurate, Rotor Acoustic Prediction Program (RAPP) was developed to advance the understanding of main rotor noise. This prediction program uses the Ffowcs Williams and Hawkings (FW-H) equation. The particular form of the FW-H equation used is well suited for the coupling of the measured blade surface pressure to the prediction of acoustic pressure. The FW-H equation is an inhomogeneous wave equation that is valid in all space and governs acoustic pressure generated by thin moving bodies. The nonhomogeneous terms describe mass displacement due to surface motion and forces due to local surface stresses, such as viscous stress and pressure distribution on the surface. This paper examines two of the four types of main rotor noise: BVI noise and low-frequency noise. Blade-vortex interaction noise occurs when a tip vortex, previously shed by a rotor blade, passes close enough to a rotor blade to cause large variations in the blade surface pressures. This event is most disturbing when it happens on the advancing side of the rotor disk. Low-frequency noise includes hover and low to moderate speed forward flight. For these flight conditions, the low frequency components of the acoustic signal dominate.
NASA Astrophysics Data System (ADS)
Cantero, Francisco; Castro-Orgaz, Oscar; Garcia-Marín, Amanda; Ayuso, José Luis; Dey, Subhasish
2015-10-01
Is the energy equation for gradually-varied flow the best approximation for the free surface profile computations in river flows? Determination of flood inundation in rivers and natural waterways is based on the hydraulic computation of flow profiles. This is usually done using energy-based gradually-varied flow models, like HEC-RAS, that adopts a vertical division method for discharge prediction in compound channel sections. However, this discharge prediction method is not so accurate in the context of advancements over the last three decades. This paper firstly presents a study of the impact of discharge prediction on the gradually-varied flow computations by comparing thirteen different methods for compound channels, where both energy and momentum equations are applied. The discharge, velocity distribution coefficients, specific energy, momentum and flow profiles are determined. After the study of gradually-varied flow predictions, a new theory is developed to produce higher-order energy and momentum equations for rapidly-varied flow in compound channels. These generalized equations enable to describe the flow profiles with more generality than the gradually-varied flow computations. As an outcome, results of gradually-varied flow provide realistic conclusions for computations of flow in compound channels, showing that momentum-based models are in general more accurate; whereas the new theory developed for rapidly-varied flow opens a new research direction, so far not investigated in flows through compound channels.
The rate of bubble growth in a superheated liquid in pool boiling
NASA Astrophysics Data System (ADS)
Abdollahi, Mohammad Reza; Jafarian, Mehdi; Jamialahmadi, Mohammad
2017-12-01
A semi-empirical model for the estimation of the rate of bubble growth in nucleate pool boiling is presented, considering a new equation to estimate the temperature history of the bubble in the bulk of liquid. The conservation equations of energy, mass and momentum have been firstly derived and solved analytically. The present analytical model of the bubble growth predicts that the radius of the bubble grows as a function of √{t}.{\\operatorname{erf}}( N√{t}) , while so far the bubble growth rate has been mainly correlated to √{t} in the previous studies. In the next step, the analytical solutions were used to develop a new semi-empirical equation. To achieve this, firstly the analytical solution were non-dimensionalised and then the experimental data, available in the literature, were applied to tune the dimensionless coefficients appeared in the dimensionless equation. Finally, the reliability of the proposed semi-empirical model was assessed through comparison of the model predictions with the available experimental data in the literature, which were not applied in the tuning of the dimensionless parameters of the model. The comparison of the model predictions with other proposed models in the literature was also performed. These comparisons show that this model enables more accurate predictions than previously proposed models with a deviation of less than 10% in a wide range of operating conditions.
NASA Astrophysics Data System (ADS)
Ianniello, S.
The Ffowcs Williams Hawkings equation represents a standard approach in the prediction of noise from rotating blades. It is widely used for linear aeroacoustic problems concerning helicopter rotors and aircraft propellers and over the last few years, through the use of the so called porous (or permeable) surface formulation, has replaced the Kirchhoff approach in the numerical solution of nonlinear problems. Nevertheless, because of numerical difficulties in evaluating the contribution from supersonic sources, most of the computing tools are still unable to treat the critical velocities at which the shock delocalization occurs. At those conditions, the attention is usually limited to the comparison between the noise prediction and the experimental data in the narrow time region where the pressure peak value is located, but there has been little attention paid to the singular behaviour of the governing equation at supersonic speeds. The aim of this paper is to couple the advantages of the porous formulation to an emission surface integration scheme in order to show if and how the singularities affect the noise prediction and to demonstrate a practical way to remove them. Such an analysis enables an investigation of some interesting and somewhat hidden features of the numerical solution of the governing equation and suggests a new solution approach to predicting the noise of a rotor at any rotational velocity.
Rane, Smita; Prabhakar, Bala
2013-07-01
The aim of this study was to investigate the combined influence of 3 independent variables in the preparation of paclitaxel containing pH-sensitive liposomes. A 3 factor, 3 levels Box-Behnken design was used to derive a second order polynomial equation and construct contour plots to predict responses. The independent variables selected were molar ratio phosphatidylcholine:diolylphosphatidylethanolamine (X1), molar concentration of cholesterylhemisuccinate (X2), and amount of drug (X3). Fifteen batches were prepared by thin film hydration method and evaluated for percent drug entrapment, vesicle size, and pH sensitivity. The transformed values of the independent variables and the percent drug entrapment were subjected to multiple regression to establish full model second order polynomial equation. F was calculated to confirm the omission of insignificant terms from the full model equation to derive a reduced model polynomial equation to predict the dependent variables. Contour plots were constructed to show the effects of X1, X2, and X3 on the percent drug entrapment. A model was validated for accurate prediction of the percent drug entrapment by performing checkpoint analysis. The computer optimization process and contour plots predicted the levels of independent variables X1, X2, and X3 (0.99, -0.06, 0, respectively), for maximized response of percent drug entrapment with constraints on vesicle size and pH sensitivity.
Fuček, Mirjana; Dika, Živka; Karanović, Sandra; Vuković Brinar, Ivana; Premužić, Vedran; Kos, Jelena; Cvitković, Ante; Mišić, Maja; Samardžić, Josip; Rogić, Dunja; Jelaković, Bojan
2017-01-01
Introduction Chronic kidney disease (CKD) is a significant public health problem and it is not possible to precisely predict its progression to terminal renal failure. According to current guidelines, CKD stages are classified based on the estimated glomerular filtration rate (eGFR) and albuminuria. Aims of this study were to determine the reliability of predictive equation in estimation of CKD prevalence in Croatian areas with endemic nephropathy (EN), compare the results with non-endemic areas, and to determine if the prevalence of CKD stages 3-5 was increased in subjects with EN. Materials and methods A total of 1573 inhabitants of the Croatian Posavina rural area from 6 endemic and 3 non-endemic villages were enrolled. Participants were classified according to the modified criteria of the World Health Organization for EN. Estimated GFR was calculated using Chronic Kidney Disease Epidemiology Collaboration equation (CKD-EPI). Results The results showed a very high CKD prevalence in the Croatian rural area (19%). CKD prevalence was significantly higher in EN then in non EN villages with the lowest eGFR value in diseased subgroup. Conclusions eGFR correlated significantly with the diagnosis of EN. Kidney function assessment using CKD-EPI predictive equation proved to be a good marker in differentiating the study subgroups, remained as one of the diagnostic criteria for EN. PMID:29187794
Estimating Dbh from Stump Diameter for 15 Southern Species
Carl V. Bylin
1982-01-01
Regression equations for predicting dbh from tree stump diameter inside and outside bark are presented for 15 southern species. Equations were certified on idependent test subsets using the F distrubution statistic with signigicance level of .05.
A new computational method for reacting hypersonic flows
NASA Astrophysics Data System (ADS)
Niculescu, M. L.; Cojocaru, M. G.; Pricop, M. V.; Fadgyas, M. C.; Pepelea, D.; Stoican, M. G.
2017-07-01
Hypersonic gas dynamics computations are challenging due to the difficulties to have reliable and robust chemistry models that are usually added to Navier-Stokes equations. From the numerical point of view, it is very difficult to integrate together Navier-Stokes equations and chemistry model equations because these partial differential equations have different specific time scales. For these reasons, almost all known finite volume methods fail shortly to solve this second order partial differential system. Unfortunately, the heating of Earth reentry vehicles such as space shuttles and capsules is very close linked to endothermic chemical reactions. A better prediction of wall heat flux leads to smaller safety coefficient for thermal shield of space reentry vehicle; therefore, the size of thermal shield decreases and the payload increases. For these reasons, the present paper proposes a new computational method based on chemical equilibrium, which gives accurate prediction of hypersonic heating in order to support the Earth reentry capsule design.
A k-omega-multivariate beta PDF for supersonic combustion
NASA Technical Reports Server (NTRS)
Alexopoulos, G. A.; Baurle, R. A.; Hassan, H. A.
1992-01-01
In an attempt to study the interaction between combustion and turbulence in supersonic flows, an assumed PDF has been employed. This makes it possible to calculate the time average of the chemical source terms that appear in the species conservation equations. In order to determine the averages indicated in an equation, two transport equations, one for the temperature (enthalpy) variance and one for Q, are required. Model equations are formulated for such quantities. The turbulent time scale controls the evolution. An algebraic model similar to that used by Eklund et al was used in an attempt to predict the recent measurements of Cheng et al. Predictions were satisfactory before ignition but were less satisfactory after ignition. One of the reasons for this behavior is the inadequacy of the algebraic turbulence model employed. Because of this, the objective of this work is to develop a k-omega model to remedy the situation.
Model Predictive Optimal Control of a Time-Delay Distributed-Parameter Systems
NASA Technical Reports Server (NTRS)
Nguyen, Nhan
2006-01-01
This paper presents an optimal control method for a class of distributed-parameter systems governed by first order, quasilinear hyperbolic partial differential equations that arise in many physical systems. Such systems are characterized by time delays since information is transported from one state to another by wave propagation. A general closed-loop hyperbolic transport model is controlled by a boundary control embedded in a periodic boundary condition. The boundary control is subject to a nonlinear differential equation constraint that models actuator dynamics of the system. The hyperbolic equation is thus coupled with the ordinary differential equation via the boundary condition. Optimality of this coupled system is investigated using variational principles to seek an adjoint formulation of the optimal control problem. The results are then applied to implement a model predictive control design for a wind tunnel to eliminate a transport delay effect that causes a poor Mach number regulation.
Sakici, Oytun Emre; Kucuk, Omer; Ashraf, Muhammad Irfan
2018-04-15
Small trees and saplings are important for forest management, carbon stock estimation, ecological modeling, and fire management planning. Turkish pine (Pinus brutia Ten.) is a common coniferous species and comprises 25.1% of total forest area of Turkey. Turkish pine is also important due to its flammable fuel characteristics. In this study, compatible above-ground biomass equations were developed to predict needle, branch, stem wood, and above-ground total biomass, and carbon stock assessment was also described for Turkish pine which is smaller than 8 cm diameter at breast height or shorter than breast height. Compatible biomass equations are useful for biomass prediction of small diameter individuals of Turkish pine. These equations will also be helpful in determining fire behavior characteristics and calculating their carbon stock. Overall, present study will be useful for developing ecological models, forest management plans, silvicultural plans, and fire management plans.
Numerical Modeling of Flow Distribution in Micro-Fluidics Systems
NASA Technical Reports Server (NTRS)
Majumdar, Alok; Cole, Helen; Chen, C. P.
2005-01-01
This paper describes an application of a general purpose computer program, GFSSP (Generalized Fluid System Simulation Program) for calculating flow distribution in a network of micro-channels. GFSSP employs a finite volume formulation of mass and momentum conservation equations in a network consisting of nodes and branches. Mass conservation equation is solved for pressures at the nodes while the momentum conservation equation is solved at the branches to calculate flowrate. The system of equations describing the fluid network is solved by a numerical method that is a combination of the Newton-Raphson and successive substitution methods. The numerical results have been compared with test data and detailed CFD (computational Fluid Dynamics) calculations. The agreement between test data and predictions is satisfactory. The discrepancies between the predictions and test data can be attributed to the frictional correlation which does not include the effect of surface tension or electro-kinetic effect.
Flutter and Forced Response Analyses of Cascades using a Two-Dimensional Linearized Euler Solver
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.; Srivastava, R.; Mehmed, O.
1999-01-01
Flutter and forced response analyses for a cascade of blades in subsonic and transonic flow is presented. The structural model for each blade is a typical section with bending and torsion degrees of freedom. The unsteady aerodynamic forces due to bending and torsion motions. and due to a vortical gust disturbance are obtained by solving unsteady linearized Euler equations. The unsteady linearized equations are obtained by linearizing the unsteady nonlinear equations about the steady flow. The predicted unsteady aerodynamic forces include the effect of steady aerodynamic loading due to airfoil shape, thickness and angle of attack. The aeroelastic equations are solved in the frequency domain by coupling the un- steady aerodynamic forces to the aeroelastic solver MISER. The present unsteady aerodynamic solver showed good correlation with published results for both flutter and forced response predictions. Further improvements are required to use the unsteady aerodynamic solver in a design cycle.
Lima, Luiz Rodrigo Augustemak de; Martins, Priscila Custódio; Junior, Carlos Alencar Souza Alves; Castro, João Antônio Chula de; Silva, Diego Augusto Santos; Petroski, Edio Luiz
The aim of this study was to assess the validity of traditional anthropometric equations and to develop predictive equations of total body and trunk fat for children and adolescents living with HIV based on anthropometric measurements. Forty-eight children and adolescents of both sexes (24 boys) aged 7-17 years, living in Santa Catarina, Brazil, participated in the study. Dual-energy X-ray absorptiometry was used as the reference method to evaluate total body and trunk fat. Height, body weight, circumferences and triceps, subscapular, abdominal and calf skinfolds were measured. The traditional equations of Lohman and Slaughter were used to estimate body fat. Multiple regression models were fitted to predict total body fat (Model 1) and trunk fat (Model 2) using a backward selection procedure. Model 1 had an R 2 =0.85 and a standard error of the estimate of 1.43. Model 2 had an R 2 =0.80 and standard error of the estimate=0.49. The traditional equations of Lohman and Slaughter showed poor performance in estimating body fat in children and adolescents living with HIV. The prediction models using anthropometry provided reliable estimates and can be used by clinicians and healthcare professionals to monitor total body and trunk fat in children and adolescents living with HIV. Copyright © 2017 Sociedade Brasileira de Infectologia. Published by Elsevier Editora Ltda. All rights reserved.
Sargolzaie, Narjes; Miri-Moghaddam, Ebrahim
2014-01-01
The most common differential diagnosis of β-thalassemia (β-thal) trait is iron deficiency anemia. Several red blood cell equations were introduced during different studies for differential diagnosis between β-thal trait and iron deficiency anemia. Due to genetic variations in different regions, these equations cannot be useful in all population. The aim of this study was to determine a native equation with high accuracy for differential diagnosis of β-thal trait and iron deficiency anemia for the Sistan and Baluchestan population by logistic regression analysis. We selected 77 iron deficiency anemia and 100 β-thal trait cases. We used binary logistic regression analysis and determined best equations for probability prediction of β-thal trait against iron deficiency anemia in our population. We compared diagnostic values and receiver operative characteristic (ROC) curve related to this equation and another 10 published equations in discriminating β-thal trait and iron deficiency anemia. The binary logistic regression analysis determined the best equation for best probability prediction of β-thal trait against iron deficiency anemia with area under curve (AUC) 0.998. Based on ROC curves and AUC, Green & King, England & Frazer, and then Sirdah indices, respectively, had the most accuracy after our equation. We suggest that to get the best equation and cut-off in each region, one needs to evaluate specific information of each region, specifically in areas where populations are homogeneous, to provide a specific formula for differentiating between β-thal trait and iron deficiency anemia.
Estimating the fuel moisture content of indicator sticks from selected weather variables
Theodore G. Storey
1965-01-01
Equations were developed to predict the fuel moisture content of indicator sticks from the controlling weather variables. Moisture content of ⅛-inch thick basswood slats used in the South and East could be determined with about equal precision by equation in the critical low moisture range or by weighing at fire danger stations. The most useful equation...
Fabian C.C. Uzoh; Martin W. Ritchie
1996-01-01
The equations presented predict crown area for 13 species of trees and shrubs which may be found growing in competition with commercial conifers during early stages of stand development. The equations express crown area as a function of basal area and height. Parameters were estimated for each species individually using weighted nonlinear least square regression.
Deriving Biomass Estimation Equations for Seven Plantation Hardwood Species
Bryce E. Schlaegel; Harvey E. Kennedy
1986-01-01
Trees of seven species sampled from a plantation over 7 years were used to derive weight equations to predict primary tree components. The seven species required the use of five different model forms to insure the greatest precision. Regardless of model form, all equations include variables for tree diameter, tree height, age, and number of trees planted. The most...
Tree height estimation in redwood/Douglas-fir stands in Mendocino County
Helge Eng
2012-01-01
In this study, height-diameter equations were developed for managed stands of coastal redwood/Douglas-fir stands in Mendocino County. Equations were developed by species to predict tree height as a function of diameter as well as other factors that are known to potentially explain tree height, including site class and live crown ratio. Two equation forms were compared...
Compatible taper equation for loblolly pine
J. P. McClure; R. L. Czaplewski
1986-01-01
Cao's compatible, segmented polynomial taper equation (Q. V. Cao, H. E. Burkhart, and T. A. Max. For. Sci. 26: 71-80. 1980) is fitted to a large loblolly pine data set from the southeastern United States. Equations are presented that predict diameter at a given height, height to a given top diameter, and volume below a given position on the main stem. All...
Cycle-time equations for five small tractors operating in low-volume small-diameter hardwood stands
Chris B. LeDoux; Neil K. Huyler; Neil K. Huyler
1992-01-01
Prediction equations for estimating cycle time were developed for five small tractors studied under various silvicultural treatments and operating conditions. The tractors studied included the Pasquali 933, a Holder A60F, a Forest Ant Forwarder (Skogsman), a Massey-Ferguson, and a Sam4 Minitarus. Skidding costs were estimated based on the cycle-time equations. Using...
NASA Technical Reports Server (NTRS)
Nicolaides, R. A.
1979-01-01
A description and explanation of a simple multigrid algorithm for solving finite element systems is given. Numerical results for an implementation are reported for a number of elliptic equations, including cases with singular coefficients and indefinite equations. The method shows the high efficiency, essentially independent of the grid spacing, predicted by the theory.
A hybrid approach for nonlinear computational aeroacoustics predictions
NASA Astrophysics Data System (ADS)
Sassanis, Vasileios; Sescu, Adrian; Collins, Eric M.; Harris, Robert E.; Luke, Edward A.
2017-01-01
In many aeroacoustics applications involving nonlinear waves and obstructions in the far-field, approaches based on the classical acoustic analogy theory or the linearised Euler equations are unable to fully characterise the acoustic field. Therefore, computational aeroacoustics hybrid methods that incorporate nonlinear wave propagation have to be constructed. In this study, a hybrid approach coupling Navier-Stokes equations in the acoustic source region with nonlinear Euler equations in the acoustic propagation region is introduced and tested. The full Navier-Stokes equations are solved in the source region to identify the acoustic sources. The flow variables of interest are then transferred from the source region to the acoustic propagation region, where the full nonlinear Euler equations with source terms are solved. The transition between the two regions is made through a buffer zone where the flow variables are penalised via a source term added to the Euler equations. Tests were conducted on simple acoustic and vorticity disturbances, two-dimensional jets (Mach 0.9 and 2), and a three-dimensional jet (Mach 1.5), impinging on a wall. The method is proven to be effective and accurate in predicting sound pressure levels associated with the propagation of linear and nonlinear waves in the near- and far-field regions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dana, Scott; Van Dam, Jeroen J; Damiani, Rick R
As part of an ongoing effort to improve the modeling and prediction of small wind turbine dynamics, the National Renewable Energy Laboratory (NREL) tested a small horizontal-axis wind turbine in the field at the National Wind Technology Center. The test turbine was a 2.1-kW downwind machine mounted on an 18-m multi-section fiberglass composite tower. The tower was instrumented and monitored for approximately 6 months. The collected data were analyzed to assess the turbine and tower loads and further validate the simplified loads equations from the International Electrotechnical Commission (IEC) 61400-2 design standards. Field-measured loads were also compared to the outputmore » of an aeroelastic model of the turbine. In particular, we compared fatigue loads as measured in the field, predicted by the aeroelastic model, and calculated using the simplified design equations. Ultimate loads at the tower base were assessed using both the simplified design equations and the aeroelastic model output. The simplified design equations in IEC 61400-2 do not accurately model fatigue loads and a discussion about the simplified design equations is discussed.« less
Scour at bridge sites in Delaware, Maryland, and Virginia
Hayes, Donald C.
1996-01-01
Scour data were obtained from discharge measure- ments to develop and evaluate the reliability of constriction-scour and local-scour equations for rivers in Delaware, Maryland, and Virginia. No independent constriction-scour or local-scour equations were developed from the data because no significant relation was deter-mined between measured scour and streamflow, streambed, and bridge characteristics. Two existing equations were evaluated for prediction of constriction scour and 14 existing equations were evaluated for prediction of local scour. Constriction-scour data were obtained from historical stream discharge measurements, field surveys, and bridge plans at nine bridge sites in the three-State area. Constriction scour was computed by subtracting the average-streambed elevation in the constricted reach from an uncontracted-channel reference elevation. Hydraulic conditions were estimated for the measurements with the greatest discharges by use of the Water-Surface Profile computation model. Measured and calculated constriction-scour data were used to evaluate the reliability of Laursen's clear-water constriction-scour equation and Laursen's live-bed constriction-scour equation. Laursen's clear-water constriction-scour equation underestimated 21 of 23 scour measure- ments made at three sites. A sensitivity analysis showed that the equation is extremely sensitive to estimates of the channel-bottom width. Reduction in estimates of bottom width by one-third resulted in predictions of constriction scour slightly greater than measured values for all scour measurements. Laursen's live-bed constriction- scour equation underestimated 10 of 14 scour measurements made at one site. The error between measured and predicted constriction scour was less than 1.0 ft (feet) for 12 measure-ments and less than 0.5 ft for 8 measurements. Local-scour data were obtained from stream discharge measurements, field surveys, and bridge plans at 15 bridge sites in the three-State area. The reliability of 14 local-scour equations were evaluated. From visual inspection of the plotted data, the Colorado State University, Froehlich design, Laursen, and Mississippi pier-scour equations appeared to be the best predictors of local scour. The Colorado State University equation underestimated 11 scour depths in clear-water scour conditions by a maximum of 2.4 ft, and underestimated 3 scour depth in live-bed scour conditions by a maximum of 1.3 ft. The Froehlich design equation under- estimated two scour depth in clear-water scour conditions by a maximum of 1.2 ft, and under- estimated one scour depth in live-bed scour conditions by a maximum of 0.4 ft. Laursen's equation overestimated the maximum scour depth in clear-water scour conditions by approximately one-half pier width or approximately 1.5 ft, and overestimated the maximum scour depth in live-bed scour conditions by approximately one-pier width or approximately 3 ft. The Mississippi equation underestimated six scour depths in clear-water scour conditions by a maximum of 1.2 ft, and underestimated one scour depth in live-bed scour conditions by 1.6 ft. In both clear-water and live-bed scour conditions, the upper limit for the depth of scour to pier-width ratio for all local scour measurements was 2.1. An accurate pier- approach velocity is necessary to use many local pier-scour equations for bridge design. Velocity data from all the discharge measurements reviewed for this investigation were used to develop a design curve to estimate pier-approach velocity from mean cross-sectional velocity. A least- squares regression and offset were used to envelop the velocity data.
Martin, Gary R.; Fowler, Kathleen K.; Arihood, Leslie D.
2016-09-06
Information on low-flow characteristics of streams is essential for the management of water resources. This report provides equations for estimating the 1-, 7-, and 30-day mean low flows for a recurrence interval of 10 years and the harmonic-mean flow at ungaged, unregulated stream sites in Indiana. These equations were developed using the low-flow statistics and basin characteristics for 108 continuous-record streamgages in Indiana with at least 10 years of daily mean streamflow data through the 2011 climate year (April 1 through March 31). The equations were developed in cooperation with the Indiana Department of Environmental Management.Regression techniques were used to develop the equations for estimating low-flow frequency statistics and the harmonic-mean flows on the basis of drainage-basin characteristics. A geographic information system was used to measure basin characteristics for selected streamgages. A final set of 25 basin characteristics measured at all the streamgages were evaluated to choose the best predictors of the low-flow statistics.Logistic-regression equations applicable statewide are presented for estimating the probability that selected low-flow frequency statistics equal zero. These equations use the explanatory variables total drainage area, average transmissivity of the full thickness of the unconsolidated deposits within 1,000 feet of the stream network, and latitude of the basin outlet. The percentage of the streamgage low-flow statistics correctly classified as zero or nonzero using the logistic-regression equations ranged from 86.1 to 88.9 percent.Generalized-least-squares regression equations applicable statewide for estimating nonzero low-flow frequency statistics use total drainage area, the average hydraulic conductivity of the top 70 feet of unconsolidated deposits, the slope of the basin, and the index of permeability and thickness of the Quaternary surficial sediments as explanatory variables. The average standard error of prediction of these regression equations ranges from 55.7 to 61.5 percent.Regional weighted-least-squares regression equations were developed for estimating the harmonic-mean flows by dividing the State into three low-flow regions. The Northern region uses total drainage area and the average transmissivity of the entire thickness of unconsolidated deposits as explanatory variables. The Central region uses total drainage area, the average hydraulic conductivity of the entire thickness of unconsolidated deposits, and the index of permeability and thickness of the Quaternary surficial sediments. The Southern region uses total drainage area and the percent of the basin covered by forest. The average standard error of prediction for these equations ranges from 39.3 to 66.7 percent.The regional regression equations are applicable only to stream sites with low flows unaffected by regulation and to stream sites with drainage basin characteristic values within specified limits. Caution is advised when applying the equations for basins with characteristics near the applicable limits and for basins with karst drainage features and for urbanized basins. Extrapolations near and beyond the applicable basin characteristic limits will have unknown errors that may be large. Equations are presented for use in estimating the 90-percent prediction interval of the low-flow statistics estimated by use of the regression equations at a given stream site.The regression equations are to be incorporated into the U.S. Geological Survey StreamStats Web-based application for Indiana. StreamStats allows users to select a stream site on a map and automatically measure the needed basin characteristics and compute the estimated low-flow statistics and associated prediction intervals.
Predicting Thermal Conductivity
NASA Technical Reports Server (NTRS)
Penn, B.; Ledbetter, F. E., III; Clemons, J.
1984-01-01
Empirical equation predicts thermal conductivity of composite insulators consisting of cellular, granular or fibrous material embedded in matrix of solid viscoelastic material. Application in designing custom insulators for particular environments.
Revised techniques for estimating peak discharges from channel width in Montana
Parrett, Charles; Hull, J.A.; Omang, R.J.
1987-01-01
This study was conducted to develop new estimating equations based on channel width and the updated flood frequency curves of previous investigations. Simple regression equations for estimating peak discharges with recurrence intervals of 2, 5, 10 , 25, 50, and 100 years were developed for seven regions in Montana. The standard errors of estimates for the equations that use active channel width as the independent variables ranged from 30% to 87%. The standard errors of estimate for the equations that use bankfull width as the independent variable ranged from 34% to 92%. The smallest standard errors generally occurred in the prediction equations for the 2-yr flood, 5-yr flood, and 10-yr flood, and the largest standard errors occurred in the prediction equations for the 100-yr flood. The equations that use active channel width and the equations that use bankfull width were determined to be about equally reliable in five regions. In the West Region, the equations that use bankfull width were slightly more reliable than those based on active channel width, whereas in the East-Central Region the equations that use active channel width were slightly more reliable than those based on bankfull width. Compared with similar equations previously developed, the standard errors of estimate for the new equations are substantially smaller in three regions and substantially larger in two regions. Limitations on the use of the estimating equations include: (1) The equations are based on stable conditions of channel geometry and prevailing water and sediment discharge; (2) The measurement of channel width requires a site visit, preferably by a person with experience in the method, and involves appreciable measurement errors; (3) Reliability of results from the equations for channel widths beyond the range of definition is unknown. In spite of the limitations, the estimating equations derived in this study are considered to be as reliable as estimating equations based on basin and climatic variables. Because the two types of estimating equations are independent, results from each can be weighted inversely proportional to their variances, and averaged. The weighted average estimate has a variance less than either individual estimate. (Author 's abstract)
Prediction of blast fragmentation of underground stopes for in situ leaching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stagg, M.S.; Otterness, R.E.; Djahanguiri, F.
1994-12-31
The US Bureau of Mines (USBM) evaluated empirical equations that predict fragmentation from underground stope rounds. Controlled blasting is necessary for creating leaching stopes that maximize the recovery and minimize backbreak of the perimeter wall. This paper presents the fragmentation results from one of the three drop-raise blasts used to develop a reduced-scale cylindrical stope, 1.8 m in diameter and 6 m in height. The stope is located in the Colorado School of Mines Experimental Mine (Edgar Mine) in Idaho Springs, Colorado. This stope is part of a USBM research effort to determine the feasibility of incorporating in situ leachingmore » of rubblized stopes into active underground metal and nonmetal mines. All the material from the first blast, 14 mtons was sieved. The resulting distribution was compared to the distribution predicted from empirical equations. The best fit was found with a USBM equation developed from over 50 sieved, reduced-scale (1- to 2-m) high wall blasts. Modifications to the equations were made to account for the observed differences due to breakout angle, shot geometry, initiation timing, decoupling, rock fracture toughness and explosive energy.« less
Requirements for Predictive Density Functional Theory Methods for Heavy Materials Equation of State
NASA Astrophysics Data System (ADS)
Mattsson, Ann E.; Wills, John M.
2012-02-01
The difficulties in experimentally determining the Equation of State of actinide and lanthanide materials has driven the development of many computational approaches with varying degree of empiricism and predictive power. While Density Functional Theory (DFT) based on the Schr"odinger Equation (possibly with relativistic corrections including the scalar relativistic approach) combined with local and semi-local functionals has proven to be a successful and predictive approach for many materials, it is not giving enough accuracy, or even is a complete failure, for the actinides. To remedy this failure both an improved fundamental description based on the Dirac Equation (DE) and improved functionals are needed. Based on results obtained using the appropriate fundamental approach of DFT based on the DE we discuss the performance of available semi-local functionals, the requirements for improved functionals for actinide/lanthanide materials, and the similarities in how functionals behave in transition metal oxides. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Oldfield, C
1990-01-01
1. Equations are derived for the steady-state kinetics of substrate conversion by enzymes confined within the water-droplets of water-in-oil microemulsion systems. 2. Water-soluble substrates initially confined within droplets that do not contain enzyme are assumed to be converted into product only after they enter enzyme-containing droplets via the inter-droplet exchange process. 3. Hyperbolic (Michaelis-Menten) kinetics are predicted when the substrate concentration is varied in microemulsions of fixed composition. Both kcat. and Km are predicted to be dependent on the size and concentration of the water-droplets in the microemulsion. 4. The predicted behaviour is shown to be supported by published experimental data. A physical interpretation of the form of the rate equation is presented. 5. The rate equation for an oil-soluble substrate was derived assuming a pseudo-two-phase (oil & water) model for the microemulsion. Both kcat. and Km are shown to be independent of phi aq. Km is larger than the aqueous solution value by a factor approximately equal to the oil/water partition coefficient of the substrate. The validity of the rate equation is confirmed by published data. PMID:2264819
Willis, Michael; Asseburg, Christian; Nilsson, Andreas; Johnsson, Kristina; Kartman, Bernt
2017-03-01
Type 2 diabetes mellitus (T2DM) is chronic and progressive and the cost-effectiveness of new treatment interventions must be established over long time horizons. Given the limited durability of drugs, assumptions regarding downstream rescue medication can drive results. Especially for insulin, for which treatment effects and adverse events are known to depend on patient characteristics, this can be problematic for health economic evaluation involving modeling. To estimate parsimonious multivariate equations of treatment effects and hypoglycemic event risks for use in parameterizing insulin rescue therapy in model-based cost-effectiveness analysis. Clinical evidence for insulin use in T2DM was identified in PubMed and from published reviews and meta-analyses. Study and patient characteristics and treatment effects and adverse event rates were extracted and the data used to estimate parsimonious treatment effect and hypoglycemic event risk equations using multivariate regression analysis. Data from 91 studies featuring 171 usable study arms were identified, mostly for premix and basal insulin types. Multivariate prediction equations for glycated hemoglobin A 1c lowering and weight change were estimated separately for insulin-naive and insulin-experienced patients. Goodness of fit (R 2 ) for both outcomes were generally good, ranging from 0.44 to 0.84. Multivariate prediction equations for symptomatic, nocturnal, and severe hypoglycemic events were also estimated, though considerable heterogeneity in definitions limits their usefulness. Parsimonious and robust multivariate prediction equations were estimated for glycated hemoglobin A 1c and weight change, separately for insulin-naive and insulin-experienced patients. Using these in economic simulation modeling in T2DM can improve realism and flexibility in modeling insulin rescue medication. Copyright © 2017 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
Topographies and dynamics on multidimensional potential energy surfaces
NASA Astrophysics Data System (ADS)
Ball, Keith Douglas
The stochastic master equation is a valuable tool for elucidating potential energy surface (PES) details that govern structural relaxation in clusters, bulk systems, and protein folding. This work develops a comprehensive framework for studying non-equilibrium relaxation dynamics using the master equation. Since our master equations depend upon accurate partition function models for use in Rice-Ramsperger-Kassel-Marcus (RRK(M) transition state theory, this work introduces several such models employing various harmonic and anharmonic approximations and compares their predicted equilibrium population distributions with those determined from molecular dynamics. This comparison is performed for the fully-delineated surfaces (KCl)5 and Ar9 to evaluate model performance for potential surfaces with long- and short-range interactions, respectively. For each system, several models perform better than a simple harmonic approximation. While no model gives acceptable results for all minima, and optimal modeling strategies differ for (KCl)5 and Ar9, a particular one-parameter model gives the best agreement with simulation for both systems. We then construct master equations from these models and compare their isothermal relaxation predictions for (KCl)5 and Ar9 with molecular dynamics simulations. This is the first comprehensive test of the kinetic performance of partition function models of its kind. Our results show that accurate modeling of transition-state partition functions is more important for (KCl)5 than for Ar9 in reproducing simulation results, due to a marked stiffening anharmonicity in the transition-state normal modes of (KCl)5. For both systems, several models yield qualitative agreement with simulation over a large temperature range. To examine the robustness of the master equation when applied to larger systems, for which full topographical descriptions would be either impossible or infeasible, we compute relaxation predictions for Ar11 using a master equation constructed from data representing the full PES, and compare these predictions to those of reduced master equations based on statistical samples of the full PES. We introduce a sampling method which generates random, Boltzmann-weighted, energetically 'downhill' sequences. The study reveals that, at moderate temperatures, the slowest relaxation timescale converges as the number of sequences in a sample grows to ~1000. Furthermore, the asymptotic timescale is comparable to the full-PES value.
Vacuum-bag-only processing of composites
NASA Astrophysics Data System (ADS)
Thomas, Shad
Ultrasonic imaging in the C-scan mode in conjunction with the amplitude of the reflected signal was used to measure flow rates of an epoxy resin film penetrating through the thickness of single layers of woven carbon fabric. Assemblies, comprised of a single layer of fabric and film, were vacuum-bagged and ultrasonically scanned in a water tank during impregnation at 50°C, 60°C, 70°C, and 80°C. Measured flow rates were plotted versus inverse viscosity to determine the permeability in the thin film, non-saturated system. The results demonstrated that ultrasonic imaging in the C-scan mode is an effective method of measuring z-direction resin flow through a single layer of fabric. The permeability values determined in this work were consistent with permeability values reported in the literature. Capillary flow was not observed at the temperatures and times required for pressurized flow to occur. The flow rate at 65°C was predicted from the linear plot of flow rate versus inverse viscosity. The effects of fabric architecture on through-thickness flow rates during impregnation of an epoxy resin film were measured by ultrasonic imaging. Multilayered laminates comprised of woven carbon fabrics and epoxy films (prepregs) were fabricated by vacuum-bagging. Ultrasonic imaging was performed in a heated water tank (65°C) during impregnation. Impregnation rates showed a strong dependence on fabric architecture, despite similar areal densities. Impregnation rates are directly affected by inter-tow spacing and tow nesting, which depend on fabric architecture, and are indirectly affected by areal densities. A new method of predicting resin infusion rates in prepreg and resin film infusion processes was proposed. The Stokes equation was used to derive an equation to predict the impregnation rate of laminates as a function of fabric architecture. Flow rate data previously measured by ultrasound was analyzed with the new equation and the Kozeny-Carman equation. A fiber interaction parameter was determined as a function of fabric architecture. The derived equation is straight-forward to use, unlike the Kozeny-Carman equation. The results demonstrated that the newly derived equation can be used to predict the resin infusion rate of multilayer laminates.
Energetic Consistency and Coupling of the Mean and Covariance Dynamics
NASA Technical Reports Server (NTRS)
Cohn, Stephen E.
2008-01-01
The dynamical state of the ocean and atmosphere is taken to be a large dimensional random vector in a range of large-scale computational applications, including data assimilation, ensemble prediction, sensitivity analysis, and predictability studies. In each of these applications, numerical evolution of the covariance matrix of the random state plays a central role, because this matrix is used to quantify uncertainty in the state of the dynamical system. Since atmospheric and ocean dynamics are nonlinear, there is no closed evolution equation for the covariance matrix, nor for the mean state. Therefore approximate evolution equations must be used. This article studies theoretical properties of the evolution equations for the mean state and covariance matrix that arise in the second-moment closure approximation (third- and higher-order moment discard). This approximation was introduced by EPSTEIN [1969] in an early effort to introduce a stochastic element into deterministic weather forecasting, and was studied further by FLEMING [1971a,b], EPSTEIN and PITCHER [1972], and PITCHER [1977], also in the context of atmospheric predictability. It has since fallen into disuse, with a simpler one being used in current large-scale applications. The theoretical results of this article make a case that this approximation should be reconsidered for use in large-scale applications, however, because the second moment closure equations possess a property of energetic consistency that the approximate equations now in common use do not possess. A number of properties of solutions of the second-moment closure equations that result from this energetic consistency will be established.
Semi-empirical model for prediction of unsteady forces on an airfoil with application to flutter
NASA Technical Reports Server (NTRS)
Mahajan, Aparajit J.; Kaza, Krishna Rao V.
1992-01-01
A semi-empirical model is described for predicting unsteady aerodynamic forces on arbitrary airfoils under mildly stalled and unstalled conditions. Aerodynamic forces are modeled using second order ordinary differential equations for lift and moment with airfoil motion as the input. This model is simultaneously integrated with structural dynamics equations to determine flutter characteristics for a two degrees-of-freedom system. Results for a number of cases are presented to demonstrate the suitability of this model to predict flutter. Comparison is made to the flutter characteristics determined by a Navier-Stokes solver and also the classical incompressible potential flow theory.
Semi-empirical model for prediction of unsteady forces on an airfoil with application to flutter
NASA Technical Reports Server (NTRS)
Mahajan, A. J.; Kaza, K. R. V.; Dowell, E. H.
1993-01-01
A semi-empirical model is described for predicting unsteady aerodynamic forces on arbitrary airfoils under mildly stalled and unstalled conditions. Aerodynamic forces are modeled using second order ordinary differential equations for lift and moment with airfoil motion as the input. This model is simultaneously integrated with structural dynamics equations to determine flutter characteristics for a two degrees-of-freedom system. Results for a number of cases are presented to demonstrate the suitability of this model to predict flutter. Comparison is made to the flutter characteristics determined by a Navier-Stokes solver and also the classical incompressible potential flow theory.
[Metacarpophalangeal and carpal numeric indices to calculate bone age and predict adult size].
Ebrí Torné, B; Ebrí Verde, I
2012-04-01
This work presents new numerical methods from the meta-carpal-phalangeal and carpal indexes, for calculating bone age. In addition, these new methods enable the adult height to be predicted using multiple regression equations. The longitudinal case series studied included 160 healthy children from Zaragoza, of both genders, aged between 6 months and 20 years, and studied annually, including the radiological study. For the statistical analysis the statistical package "Statistix", as well as the Excel program, was used. The new indexes are closely co-related to the chronological age, thus leading to predictive equations for the calculation of the bone age of children up to 20 years of age. In addition, it presents particular equations for up to 4 years of age, in order to optimise the diagnosis at these early ages. The resulting bones ages can be applied to numerical standard deviation tables, as well as to an equivalences chart, which directly gives us the ossification diagnosis. The predictive equations of adult height allow a reliable forecast of the future height of the studied child. These forecasts, analysed by the Student test did not show significant differences as regards the adult height that children of the case series finally achieved. The results can be obtained with a pocket calculator or through free software available for the reader. For the first time, and using a centre-developed and non-foreign methods, bones age standards and adult height predictive equations for the study of children, are presented. We invite the practitioner to use these meta-carpal-phalangeal and carpal methods in order to achieve the necessary experience to apply it to a healthy population and those with different disorders. Copyright © 2011 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.
Matrix approach to uncertainty assessment and reduction for modeling terrestrial carbon cycle
NASA Astrophysics Data System (ADS)
Luo, Y.; Xia, J.; Ahlström, A.; Zhou, S.; Huang, Y.; Shi, Z.; Wang, Y.; Du, Z.; Lu, X.
2017-12-01
Terrestrial ecosystems absorb approximately 30% of the anthropogenic carbon dioxide emissions. This estimate has been deduced indirectly: combining analyses of atmospheric carbon dioxide concentrations with ocean observations to infer the net terrestrial carbon flux. In contrast, when knowledge about the terrestrial carbon cycle is integrated into different terrestrial carbon models they make widely different predictions. To improve the terrestrial carbon models, we have recently developed a matrix approach to uncertainty assessment and reduction. Specifically, the terrestrial carbon cycle has been commonly represented by a series of carbon balance equations to track carbon influxes into and effluxes out of individual pools in earth system models. This representation matches our understanding of carbon cycle processes well and can be reorganized into one matrix equation without changing any modeled carbon cycle processes and mechanisms. We have developed matrix equations of several global land C cycle models, including CLM3.5, 4.0 and 4.5, CABLE, LPJ-GUESS, and ORCHIDEE. Indeed, the matrix equation is generic and can be applied to other land carbon models. This matrix approach offers a suite of new diagnostic tools, such as the 3-dimensional (3-D) parameter space, traceability analysis, and variance decomposition, for uncertainty analysis. For example, predictions of carbon dynamics with complex land models can be placed in a 3-D parameter space (carbon input, residence time, and storage potential) as a common metric to measure how much model predictions are different. The latter can be traced to its source components by decomposing model predictions to a hierarchy of traceable components. Then, variance decomposition can help attribute the spread in predictions among multiple models to precisely identify sources of uncertainty. The highly uncertain components can be constrained by data as the matrix equation makes data assimilation computationally possible. We will illustrate various applications of this matrix approach to uncertainty assessment and reduction for terrestrial carbon cycle models.
NASA Astrophysics Data System (ADS)
Anak Gisen, Jacqueline Isabella; Nijzink, Remko C.; Savenije, Hubert H. G.
2014-05-01
Dispersion mathematical representation of tidal mixing between sea water and fresh water in The definition of dispersion somehow remains unclear as it is not directly measurable. The role of dispersion is only meaningful if it is related to the appropriate temporal and spatial scale of mixing, which are identified as the tidal period, tidal excursion (longitudinal), width of estuary (lateral) and mixing depth (vertical). Moreover, the mixing pattern determines the salt intrusion length in an estuary. If a physically based description of the dispersion is defined, this would allow the analytical solution of the salt intrusion problem. The objective of this study is to develop a predictive equation for estimating the dispersion coefficient at tidal average (TA) condition, which can be applied in the salt intrusion model to predict the salinity profile for any estuary during different events. Utilizing available data of 72 measurements in 27 estuaries (including 6 recently studied estuaries in Malaysia), regressions analysis has been performed with various combinations of dimensionless parameters . The predictive dispersion equations have been developed for two different locations, at the mouth D0TA and at the inflection point D1TA (where the convergence length changes). Regressions have been carried out with two separated datasets: 1) more reliable data for calibration; and 2) less reliable data for validation. The combination of dimensionless ratios that give the best performance is selected as the final outcome which indicates that the dispersion coefficient is depending on the tidal excursion, tidal range, tidal velocity amplitude, friction and the Richardson Number. A limitation of the newly developed equation is that the friction is generally unknown. In order to compensate this problem, further analysis has been performed adopting the hydraulic model of Cai et. al. (2012) to estimate the friction and depth. Keywords: dispersion, alluvial estuaries, mixing, salt intrusion, predictive equation
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.
1999-01-01
Potential gas turbine applications will expose polymer matrix composites to very high strain rate loading conditions, requiring an ability to understand and predict the material behavior under extreme conditions. Specifically, analytical methods designed for these applications must have the capability of properly capturing the strain rate sensitivities and nonlinearities that are present in the material response. The Ramaswamy-Stouffer constitutive equations, originally developed to analyze the viscoplastic deformation of metals, have been modified to simulate the nonlinear deformation response of ductile, crystalline polymers. The constitutive model is characterized and correlated for two representative ductile polymers. Fiberite 977-2 and PEEK, and the computed results correlate well with experimental values. The polymer constitutive equations are implemented in a mechanics of materials based composite micromechanics model to predict the nonlinear, rate dependent deformation response of a composite ply. Uniform stress and uniform strain assumptions are applied to compute the effective stresses of a composite unit cell from the applied strains. The micromechanics equations are successfully verified for two polymer matrix composites. IM7/977-2 and AS4/PEEK. The ultimate strength of a composite ply is predicted with the Hashin failure criteria that were implemented in the composite micromechanics model. The failure stresses of the two composite material systems are accurately predicted for a variety of fiber orientations and strain rates. The composite deformation model is implemented in LS-DYNA, a commercially available transient dynamic explicit finite element code. The matrix constitutive equations are converted into an incremental form, and the model is implemented into LS-DYNA through the use of a user defined material subroutine. The deformation response of a bulk polymer and a polymer matrix composite are predicted by finite element analyses. The results compare reasonably well to experimental values, with some discrepancies. The discrepancies are at least partially caused by the method used to integrate the rate equations in the polymer constitutive model.
A Numerical Method for Predicting Rayleigh Surface Wave Velocity in Anisotropic Crystals (Postprint)
2017-09-05
generalized version of the equations are very difficult to derive, even in symbolic math languages such as Mathematica. As a result, the equations are...formalism, Math . Mech. Solids 9 (1) (2004) 5–15. [8] M. Destrade, The explicit secular equation for surface acoustic waves in monoclinic elastic crystals...Q. J. Mech. Appl. Math . 55 (2) (2002) 297–311. [10] D. Taylor, Surface waves in anisotropic media: the secular equation and its numerical solution
NASA Technical Reports Server (NTRS)
Dinar, N.
1978-01-01
Several aspects of multigrid methods are briefly described. The main subjects include the development of very efficient multigrid algorithms for systems of elliptic equations (Cauchy-Riemann, Stokes, Navier-Stokes), as well as the development of control and prediction tools (based on local mode Fourier analysis), used to analyze, check and improve these algorithms. Preliminary research on multigrid algorithms for time dependent parabolic equations is also described. Improvements in existing multigrid processes and algorithms for elliptic equations were studied.
Job Demands and Job Resources as Predictors of Absence Duration and Frequency.
ERIC Educational Resources Information Center
Bakker, Arnold B.; Demerouti, Evangelia; de Boer, Elpine; Schaufeli, Wilmar B.
2003-01-01
Structural equation modeling of data from 214 employees indicated that job demands uniquely predicted burnout and indirectly predicted length of absence. Job resources (physical, psychological, social, or organizational aspects that reduce job demands or stimulate growth) uniquely predicted organizational commitment and indirectly predicted spells…
Predicting Benefit from a Gestalt Therapy Marathon Workshop.
ERIC Educational Resources Information Center
Healy, James; Dowd, E. Thomas
1981-01-01
Tested the utility of the Personal Orientation Inventory (POI), the Myers-Briggs Type Indicator, and the Girona Affect Scale in predicting the outcomes of a marathon Gestalt therapy workshop. Signigicant predictive equations were generated that use the POI to predict gains on the Girona Affect Scale. (Author/RC)
Carbon - Bulk Density Relationships for Highly Weathered Soils of the Americas
NASA Astrophysics Data System (ADS)
Nave, L. E.
2014-12-01
Soils are dynamic natural bodies composed of mineral and organic materials. As a result of this mixed composition, essential properties of soils such as their apparent density, organic and mineral contents are typically correlated. Negative relationships between bulk density (Db) and organic matter concentration provide well-known examples across a broad range of soils, and such quantitative relationships among soil properties are useful for a variety of applications. First, gap-filling or data interpolation often are necessary to develop large soil carbon (C) datasets; furthermore, limitations of access to analytical instruments may preclude C determinations for every soil sample. In such cases, equations to derive soil C concentrations from basic measures of soil mass, volume, and density offer significant potential for purposes of soil C stock estimation. To facilitate estimation of soil C stocks on highly weathered soils of the Americas, I used observations from the International Soil Carbon Network (ISCN) database to develop carbon - bulk density prediction equations for Oxisols and Ultisols. Within a small sample set of georeferenced Oxisols (n=89), 29% of the variation in A horizon C concentrations can be predicted from Db. Including the A-horizon sand content improves predictive capacity to 35%. B horizon C concentrations (n=285) were best predicted by Db and clay content, but were more variable than A-horizons (only 10% of variation explained by linear regression). Among Ultisols, a larger sample set allowed investigation of specific horizons of interest. For example, C concentrations of plowed A (Ap) horizons are predictable based on Db, sand and silt contents (n=804, r2=0.38); gleyed argillic (Btg) horizon concentrations are predictable from Db, sand and clay contents (n=190, r2=0.23). Because soil C stock estimates are more sensitive to variation in soil mass and volume determinations than to variation in C concentration, prediction equations such as these may be used on carefully collected samples to constrain soil C stocks. The geo-referenced ISCN database allows users the opportunity to derive similar predictive relationships among measured soil parameters; continued input of new datasets from highly weathered soils of the Americas will improve the precision of these prediction equations.
Validation of the Arizona Activity Frequency Questionnaire using doubly labeled water.
Staten, L K; Taren, D L; Howell, W H; Tobar, M; Poehlman, E T; Hill, A; Reid, P M; Ritenbaugh, C
2001-11-01
Physical activity questionnaires (PAQs) are considered the most cost-efficient method to estimate total energy expenditure (TEE) in epidemiological studies. However, relatively few PAQs have been validated using doubly labeled water (DLW) in women or in samples with diverse ethnic backgrounds. This study was conducted to validate the Arizona Activity Frequency Questionnaire (AAFQ) for estimation of TEE and physical activity energy expenditure (PAEE) over 1 month using DLW as a reference method. Thirty-five relatively sedentary women completed the AAFQ before participating in an 8-d DLW protocol to measure TEE. TEE and PAEE were estimated from the AAFQ by calculating resting metabolic rate (RMR) using the equation of Mifflin et al. (AAFQmif), by measuring RMR using indirect calorimetry (AAFQic), and using MET conversion (AAFQmet). A predictive equation for TEE was generated. The mean +/- SD for TEE and PAEE from DLW were 9847 +/- 2555 kJ x d(-1) and 5578 +/- 2084 kJ x d(-1), respectively. Formulas using RMR to calculate the TEE and PAEE from the AAFQ tended to underestimate TEE and PAEE, whereas those that included only weight tended to overestimate TEE and PAEE. On the basis of the Mifflin et al. equation, the AAFQ tends to underestimate PAEE by 13%. This underestimation may be explained by the low lean body mass of the sample population and by effectiveness of the METs/RMR ratio in the obese. The following predictive equation was calculated: TEE (kJ x d(-1)) = (86.0 * average total daily METs) + (2.23 * RMRmif) - 6726. When the predictive equation is used, TEE calculated from the AAFQ is highly correlated with DLW TEE (adjusted r(2) = 0.70, P < 0.001). The AAFQ is an effective tool for the prediction of TEE and PAEE in epidemiological studies.
Helicopter Rotor Noise Prediction: Background, Current Status, and Future Direction
NASA Technical Reports Server (NTRS)
Brentner, Kenneth S.
1997-01-01
Helicopter noise prediction is increasingly important. The purpose of this viewgraph presentation is to: 1) Put into perspective the recent progress; 2) Outline current prediction capabilities; 3) Forecast direction of future prediction research; 4) Identify rotorcraft noise prediction needs. The presentation includes an historical perspective, a description of governing equations, and the current status of source noise prediction.
Prediction equation for estimating total daily energy requirements of special operations personnel.
Barringer, N D; Pasiakos, S M; McClung, H L; Crombie, A P; Margolis, L M
2018-01-01
Special Operations Forces (SOF) engage in a variety of military tasks with many producing high energy expenditures, leading to undesired energy deficits and loss of body mass. Therefore, the ability to accurately estimate daily energy requirements would be useful for accurate logistical planning. Generate a predictive equation estimating energy requirements of SOF. Retrospective analysis of data collected from SOF personnel engaged in 12 different SOF training scenarios. Energy expenditure and total body water were determined using the doubly-labeled water technique. Physical activity level was determined as daily energy expenditure divided by resting metabolic rate. Physical activity level was broken into quartiles (0 = mission prep, 1 = common warrior tasks, 2 = battle drills, 3 = specialized intense activity) to generate a physical activity factor (PAF). Regression analysis was used to construct two predictive equations (Model A; body mass and PAF, Model B; fat-free mass and PAF) estimating daily energy expenditures. Average measured energy expenditure during SOF training was 4468 (range: 3700 to 6300) Kcal·d- 1 . Regression analysis revealed that physical activity level ( r = 0.91; P < 0.05) and body mass ( r = 0.28; P < 0.05; Model A), or fat-free mass (FFM; r = 0.32; P < 0.05; Model B) were the factors that most highly predicted energy expenditures. Predictive equations coupling PAF with body mass (Model A) and FFM (Model B), were correlated ( r = 0.74 and r = 0.76, respectively) and did not differ [mean ± SEM: Model A; 4463 ± 65 Kcal·d - 1 , Model B; 4462 ± 61 Kcal·d - 1 ] from DLW measured energy expenditures. By quantifying and grouping SOF training exercises into activity factors, SOF energy requirements can be predicted with reasonable accuracy and these equations used by dietetic/logistical personnel to plan appropriate feeding regimens to meet SOF nutritional requirements across their mission profile.