Dopamine reward prediction error coding.
Schultz, Wolfram
2016-03-01
Reward prediction errors consist of the differences between received and predicted rewards. They are crucial for basic forms of learning about rewards and make us strive for more rewards-an evolutionary beneficial trait. Most dopamine neurons in the midbrain of humans, monkeys, and rodents signal a reward prediction error; they are activated by more reward than predicted (positive prediction error), remain at baseline activity for fully predicted rewards, and show depressed activity with less reward than predicted (negative prediction error). The dopamine signal increases nonlinearly with reward value and codes formal economic utility. Drugs of addiction generate, hijack, and amplify the dopamine reward signal and induce exaggerated, uncontrolled dopamine effects on neuronal plasticity. The striatum, amygdala, and frontal cortex also show reward prediction error coding, but only in subpopulations of neurons. Thus, the important concept of reward prediction errors is implemented in neuronal hardware.
Dopamine reward prediction error coding
Schultz, Wolfram
2016-01-01
Reward prediction errors consist of the differences between received and predicted rewards. They are crucial for basic forms of learning about rewards and make us strive for more rewards—an evolutionary beneficial trait. Most dopamine neurons in the midbrain of humans, monkeys, and rodents signal a reward prediction error; they are activated by more reward than predicted (positive prediction error), remain at baseline activity for fully predicted rewards, and show depressed activity with less reward than predicted (negative prediction error). The dopamine signal increases nonlinearly with reward value and codes formal economic utility. Drugs of addiction generate, hijack, and amplify the dopamine reward signal and induce exaggerated, uncontrolled dopamine effects on neuronal plasticity. The striatum, amygdala, and frontal cortex also show reward prediction error coding, but only in subpopulations of neurons. Thus, the important concept of reward prediction errors is implemented in neuronal hardware. PMID:27069377
Neural dynamics of reward probability coding: a Magnetoencephalographic study in humans
Thomas, Julie; Vanni-Mercier, Giovanna; Dreher, Jean-Claude
2013-01-01
Prediction of future rewards and discrepancy between actual and expected outcomes (prediction error) are crucial signals for adaptive behavior. In humans, a number of fMRI studies demonstrated that reward probability modulates these two signals in a large brain network. Yet, the spatio-temporal dynamics underlying the neural coding of reward probability remains unknown. Here, using magnetoencephalography, we investigated the neural dynamics of prediction and reward prediction error computations while subjects learned to associate cues of slot machines with monetary rewards with different probabilities. We showed that event-related magnetic fields (ERFs) arising from the visual cortex coded the expected reward value 155 ms after the cue, demonstrating that reward value signals emerge early in the visual stream. Moreover, a prediction error was reflected in ERF peaking 300 ms after the rewarded outcome and showing decreasing amplitude with higher reward probability. This prediction error signal was generated in a network including the anterior and posterior cingulate cortex. These findings pinpoint the spatio-temporal characteristics underlying reward probability coding. Together, our results provide insights into the neural dynamics underlying the ability to learn probabilistic stimuli-reward contingencies. PMID:24302894
Modeling coherent errors in quantum error correction
NASA Astrophysics Data System (ADS)
Greenbaum, Daniel; Dutton, Zachary
2018-01-01
Analysis of quantum error correcting codes is typically done using a stochastic, Pauli channel error model for describing the noise on physical qubits. However, it was recently found that coherent errors (systematic rotations) on physical data qubits result in both physical and logical error rates that differ significantly from those predicted by a Pauli model. Here we examine the accuracy of the Pauli approximation for noise containing coherent errors (characterized by a rotation angle ɛ) under the repetition code. We derive an analytic expression for the logical error channel as a function of arbitrary code distance d and concatenation level n, in the small error limit. We find that coherent physical errors result in logical errors that are partially coherent and therefore non-Pauli. However, the coherent part of the logical error is negligible at fewer than {ε }-({dn-1)} error correction cycles when the decoder is optimized for independent Pauli errors, thus providing a regime of validity for the Pauli approximation. Above this number of correction cycles, the persistent coherent logical error will cause logical failure more quickly than the Pauli model would predict, and this may need to be combated with coherent suppression methods at the physical level or larger codes.
Dai, Wenrui; Xiong, Hongkai; Jiang, Xiaoqian; Chen, Chang Wen
2014-01-01
This paper proposes a novel model on intra coding for High Efficiency Video Coding (HEVC), which simultaneously predicts blocks of pixels with optimal rate distortion. It utilizes the spatial statistical correlation for the optimal prediction based on 2-D contexts, in addition to formulating the data-driven structural interdependences to make the prediction error coherent with the probability distribution, which is desirable for successful transform and coding. The structured set prediction model incorporates a max-margin Markov network (M3N) to regulate and optimize multiple block predictions. The model parameters are learned by discriminating the actual pixel value from other possible estimates to maximize the margin (i.e., decision boundary bandwidth). Compared to existing methods that focus on minimizing prediction error, the M3N-based model adaptively maintains the coherence for a set of predictions. Specifically, the proposed model concurrently optimizes a set of predictions by associating the loss for individual blocks to the joint distribution of succeeding discrete cosine transform coefficients. When the sample size grows, the prediction error is asymptotically upper bounded by the training error under the decomposable loss function. As an internal step, we optimize the underlying Markov network structure to find states that achieve the maximal energy using expectation propagation. For validation, we integrate the proposed model into HEVC for optimal mode selection on rate-distortion optimization. The proposed prediction model obtains up to 2.85% bit rate reduction and achieves better visual quality in comparison to the HEVC intra coding. PMID:25505829
An emulator for minimizing computer resources for finite element analysis
NASA Technical Reports Server (NTRS)
Melosh, R.; Utku, S.; Islam, M.; Salama, M.
1984-01-01
A computer code, SCOPE, has been developed for predicting the computer resources required for a given analysis code, computer hardware, and structural problem. The cost of running the code is a small fraction (about 3 percent) of the cost of performing the actual analysis. However, its accuracy in predicting the CPU and I/O resources depends intrinsically on the accuracy of calibration data that must be developed once for the computer hardware and the finite element analysis code of interest. Testing of the SCOPE code on the AMDAHL 470 V/8 computer and the ELAS finite element analysis program indicated small I/O errors (3.2 percent), larger CPU errors (17.8 percent), and negligible total errors (1.5 percent).
NASA Astrophysics Data System (ADS)
Huo, Ming-Xia; Li, Ying
2017-12-01
Quantum error correction is important to quantum information processing, which allows us to reliably process information encoded in quantum error correction codes. Efficient quantum error correction benefits from the knowledge of error rates. We propose a protocol for monitoring error rates in real time without interrupting the quantum error correction. Any adaptation of the quantum error correction code or its implementation circuit is not required. The protocol can be directly applied to the most advanced quantum error correction techniques, e.g. surface code. A Gaussian processes algorithm is used to estimate and predict error rates based on error correction data in the past. We find that using these estimated error rates, the probability of error correction failures can be significantly reduced by a factor increasing with the code distance.
NASA Lewis Stirling engine computer code evaluation
NASA Technical Reports Server (NTRS)
Sullivan, Timothy J.
1989-01-01
In support of the U.S. Department of Energy's Stirling Engine Highway Vehicle Systems program, the NASA Lewis Stirling engine performance code was evaluated by comparing code predictions without engine-specific calibration factors to GPU-3, P-40, and RE-1000 Stirling engine test data. The error in predicting power output was -11 percent for the P-40 and 12 percent for the Re-1000 at design conditions and 16 percent for the GPU-3 at near-design conditions (2000 rpm engine speed versus 3000 rpm at design). The efficiency and heat input predictions showed better agreement with engine test data than did the power predictions. Concerning all data points, the error in predicting the GPU-3 brake power was significantly larger than for the other engines and was mainly a result of inaccuracy in predicting the pressure phase angle. Analysis into this pressure phase angle prediction error suggested that improvements to the cylinder hysteresis loss model could have a significant effect on overall Stirling engine performance predictions.
Predictive codes of familiarity and context during the perceptual learning of facial identities
NASA Astrophysics Data System (ADS)
Apps, Matthew A. J.; Tsakiris, Manos
2013-11-01
Face recognition is a key component of successful social behaviour. However, the computational processes that underpin perceptual learning and recognition as faces transition from unfamiliar to familiar are poorly understood. In predictive coding, learning occurs through prediction errors that update stimulus familiarity, but recognition is a function of both stimulus and contextual familiarity. Here we show that behavioural responses on a two-option face recognition task can be predicted by the level of contextual and facial familiarity in a computational model derived from predictive-coding principles. Using fMRI, we show that activity in the superior temporal sulcus varies with the contextual familiarity in the model, whereas activity in the fusiform face area covaries with the prediction error parameter that updated facial familiarity. Our results characterize the key computations underpinning the perceptual learning of faces, highlighting that the functional properties of face-processing areas conform to the principles of predictive coding.
Coherent errors in quantum error correction
NASA Astrophysics Data System (ADS)
Greenbaum, Daniel; Dutton, Zachary
Analysis of quantum error correcting (QEC) codes is typically done using a stochastic, Pauli channel error model for describing the noise on physical qubits. However, it was recently found that coherent errors (systematic rotations) on physical data qubits result in both physical and logical error rates that differ significantly from those predicted by a Pauli model. We present analytic results for the logical error as a function of concatenation level and code distance for coherent errors under the repetition code. For data-only coherent errors, we find that the logical error is partially coherent and therefore non-Pauli. However, the coherent part of the error is negligible after two or more concatenation levels or at fewer than ɛ - (d - 1) error correction cycles. Here ɛ << 1 is the rotation angle error per cycle for a single physical qubit and d is the code distance. These results support the validity of modeling coherent errors using a Pauli channel under some minimum requirements for code distance and/or concatenation. We discuss extensions to imperfect syndrome extraction and implications for general QEC.
Dopamine Modulates Adaptive Prediction Error Coding in the Human Midbrain and Striatum.
Diederen, Kelly M J; Ziauddeen, Hisham; Vestergaard, Martin D; Spencer, Tom; Schultz, Wolfram; Fletcher, Paul C
2017-02-15
Learning to optimally predict rewards requires agents to account for fluctuations in reward value. Recent work suggests that individuals can efficiently learn about variable rewards through adaptation of the learning rate, and coding of prediction errors relative to reward variability. Such adaptive coding has been linked to midbrain dopamine neurons in nonhuman primates, and evidence in support for a similar role of the dopaminergic system in humans is emerging from fMRI data. Here, we sought to investigate the effect of dopaminergic perturbations on adaptive prediction error coding in humans, using a between-subject, placebo-controlled pharmacological fMRI study with a dopaminergic agonist (bromocriptine) and antagonist (sulpiride). Participants performed a previously validated task in which they predicted the magnitude of upcoming rewards drawn from distributions with varying SDs. After each prediction, participants received a reward, yielding trial-by-trial prediction errors. Under placebo, we replicated previous observations of adaptive coding in the midbrain and ventral striatum. Treatment with sulpiride attenuated adaptive coding in both midbrain and ventral striatum, and was associated with a decrease in performance, whereas bromocriptine did not have a significant impact. Although we observed no differential effect of SD on performance between the groups, computational modeling suggested decreased behavioral adaptation in the sulpiride group. These results suggest that normal dopaminergic function is critical for adaptive prediction error coding, a key property of the brain thought to facilitate efficient learning in variable environments. Crucially, these results also offer potential insights for understanding the impact of disrupted dopamine function in mental illness. SIGNIFICANCE STATEMENT To choose optimally, we have to learn what to expect. Humans dampen learning when there is a great deal of variability in reward outcome, and two brain regions that are modulated by the brain chemical dopamine are sensitive to reward variability. Here, we aimed to directly relate dopamine to learning about variable rewards, and the neural encoding of associated teaching signals. We perturbed dopamine in healthy individuals using dopaminergic medication and asked them to predict variable rewards while we made brain scans. Dopamine perturbations impaired learning and the neural encoding of reward variability, thus establishing a direct link between dopamine and adaptation to reward variability. These results aid our understanding of clinical conditions associated with dopaminergic dysfunction, such as psychosis. Copyright © 2017 Diederen et al.
Schiffer, Anne-Marike; Ahlheim, Christiane; Wurm, Moritz F.; Schubotz, Ricarda I.
2012-01-01
Influential concepts in neuroscientific research cast the brain a predictive machine that revises its predictions when they are violated by sensory input. This relates to the predictive coding account of perception, but also to learning. Learning from prediction errors has been suggested for take place in the hippocampal memory system as well as in the basal ganglia. The present fMRI study used an action-observation paradigm to investigate the contributions of the hippocampus, caudate nucleus and midbrain dopaminergic system to different types of learning: learning in the absence of prediction errors, learning from prediction errors, and responding to the accumulation of prediction errors in unpredictable stimulus configurations. We conducted analyses of the regions of interests' BOLD response towards these different types of learning, implementing a bootstrapping procedure to correct for false positives. We found both, caudate nucleus and the hippocampus to be activated by perceptual prediction errors. The hippocampal responses seemed to relate to the associative mismatch between a stored representation and current sensory input. Moreover, its response was significantly influenced by the average information, or Shannon entropy of the stimulus material. In accordance with earlier results, the habenula was activated by perceptual prediction errors. Lastly, we found that the substantia nigra was activated by the novelty of sensory input. In sum, we established that the midbrain dopaminergic system, the hippocampus, and the caudate nucleus were to different degrees significantly involved in the three different types of learning: acquisition of new information, learning from prediction errors and responding to unpredictable stimulus developments. We relate learning from perceptual prediction errors to the concept of predictive coding and related information theoretic accounts. PMID:22570715
Moments of inclination error distribution computer program
NASA Technical Reports Server (NTRS)
Myler, T. R.
1981-01-01
A FORTRAN coded computer program is described which calculates orbital inclination error statistics using a closed-form solution. This solution uses a data base of trajectory errors from actual flights to predict the orbital inclination error statistics. The Scott flight history data base consists of orbit insertion errors in the trajectory parameters - altitude, velocity, flight path angle, flight azimuth, latitude and longitude. The methods used to generate the error statistics are of general interest since they have other applications. Program theory, user instructions, output definitions, subroutine descriptions and detailed FORTRAN coding information are included.
Error-Rate Bounds for Coded PPM on a Poisson Channel
NASA Technical Reports Server (NTRS)
Moision, Bruce; Hamkins, Jon
2009-01-01
Equations for computing tight bounds on error rates for coded pulse-position modulation (PPM) on a Poisson channel at high signal-to-noise ratio have been derived. These equations and elements of the underlying theory are expected to be especially useful in designing codes for PPM optical communication systems. The equations and the underlying theory apply, more specifically, to a case in which a) At the transmitter, a linear outer code is concatenated with an inner code that includes an accumulator and a bit-to-PPM-symbol mapping (see figure) [this concatenation is known in the art as "accumulate-PPM" (abbreviated "APPM")]; b) The transmitted signal propagates on a memoryless binary-input Poisson channel; and c) At the receiver, near-maximum-likelihood (ML) decoding is effected through an iterative process. Such a coding/modulation/decoding scheme is a variation on the concept of turbo codes, which have complex structures, such that an exact analytical expression for the performance of a particular code is intractable. However, techniques for accurately estimating the performances of turbo codes have been developed. The performance of a typical turbo code includes (1) a "waterfall" region consisting of a steep decrease of error rate with increasing signal-to-noise ratio (SNR) at low to moderate SNR, and (2) an "error floor" region with a less steep decrease of error rate with increasing SNR at moderate to high SNR. The techniques used heretofore for estimating performance in the waterfall region have differed from those used for estimating performance in the error-floor region. For coded PPM, prior to the present derivations, equations for accurate prediction of the performance of coded PPM at high SNR did not exist, so that it was necessary to resort to time-consuming simulations in order to make such predictions. The present derivation makes it unnecessary to perform such time-consuming simulations.
Gomez-Ramirez, Jaime; Costa, Tommaso
2017-12-01
Here we investigate whether systems that minimize prediction error e.g. predictive coding, can also show creativity, or on the contrary, prediction error minimization unqualifies for the design of systems that respond in creative ways to non-recurrent problems. We argue that there is a key ingredient that has been overlooked by researchers that needs to be incorporated to understand intelligent behavior in biological and technical systems. This ingredient is boredom. We propose a mathematical model based on the Black-Scholes-Merton equation which provides mechanistic insights into the interplay between boredom and prediction pleasure as the key drivers of behavior. Copyright © 2017 Elsevier B.V. All rights reserved.
Constrained motion estimation-based error resilient coding for HEVC
NASA Astrophysics Data System (ADS)
Guo, Weihan; Zhang, Yongfei; Li, Bo
2018-04-01
Unreliable communication channels might lead to packet losses and bit errors in the videos transmitted through it, which will cause severe video quality degradation. This is even worse for HEVC since more advanced and powerful motion estimation methods are introduced to further remove the inter-frame dependency and thus improve the coding efficiency. Once a Motion Vector (MV) is lost or corrupted, it will cause distortion in the decoded frame. More importantly, due to motion compensation, the error will propagate along the motion prediction path, accumulate over time, and significantly degrade the overall video presentation quality. To address this problem, we study the problem of encoder-sider error resilient coding for HEVC and propose a constrained motion estimation scheme to mitigate the problem of error propagation to subsequent frames. The approach is achieved by cutting off MV dependencies and limiting the block regions which are predicted by temporal motion vector. The experimental results show that the proposed method can effectively suppress the error propagation caused by bit errors of motion vector and can improve the robustness of the stream in the bit error channels. When the bit error probability is 10-5, an increase of the decoded video quality (PSNR) by up to1.310dB and on average 0.762 dB can be achieved, compared to the reference HEVC.
Davis, Matthew H.
2016-01-01
Successful perception depends on combining sensory input with prior knowledge. However, the underlying mechanism by which these two sources of information are combined is unknown. In speech perception, as in other domains, two functionally distinct coding schemes have been proposed for how expectations influence representation of sensory evidence. Traditional models suggest that expected features of the speech input are enhanced or sharpened via interactive activation (Sharpened Signals). Conversely, Predictive Coding suggests that expected features are suppressed so that unexpected features of the speech input (Prediction Errors) are processed further. The present work is aimed at distinguishing between these two accounts of how prior knowledge influences speech perception. By combining behavioural, univariate, and multivariate fMRI measures of how sensory detail and prior expectations influence speech perception with computational modelling, we provide evidence in favour of Prediction Error computations. Increased sensory detail and informative expectations have additive behavioural and univariate neural effects because they both improve the accuracy of word report and reduce the BOLD signal in lateral temporal lobe regions. However, sensory detail and informative expectations have interacting effects on speech representations shown by multivariate fMRI in the posterior superior temporal sulcus. When prior knowledge was absent, increased sensory detail enhanced the amount of speech information measured in superior temporal multivoxel patterns, but with informative expectations, increased sensory detail reduced the amount of measured information. Computational simulations of Sharpened Signals and Prediction Errors during speech perception could both explain these behavioural and univariate fMRI observations. However, the multivariate fMRI observations were uniquely simulated by a Prediction Error and not a Sharpened Signal model. The interaction between prior expectation and sensory detail provides evidence for a Predictive Coding account of speech perception. Our work establishes methods that can be used to distinguish representations of Prediction Error and Sharpened Signals in other perceptual domains. PMID:27846209
Modified linear predictive coding approach for moving target tracking by Doppler radar
NASA Astrophysics Data System (ADS)
Ding, Yipeng; Lin, Xiaoyi; Sun, Ke-Hui; Xu, Xue-Mei; Liu, Xi-Yao
2016-07-01
Doppler radar is a cost-effective tool for moving target tracking, which can support a large range of civilian and military applications. A modified linear predictive coding (LPC) approach is proposed to increase the target localization accuracy of the Doppler radar. Based on the time-frequency analysis of the received echo, the proposed approach first real-time estimates the noise statistical parameters and constructs an adaptive filter to intelligently suppress the noise interference. Then, a linear predictive model is applied to extend the available data, which can help improve the resolution of the target localization result. Compared with the traditional LPC method, which empirically decides the extension data length, the proposed approach develops an error array to evaluate the prediction accuracy and thus, adjust the optimum extension data length intelligently. Finally, the prediction error array is superimposed with the predictor output to correct the prediction error. A series of experiments are conducted to illustrate the validity and performance of the proposed techniques.
Predictive Coding Strategies for Developmental Neurorobotics
Park, Jun-Cheol; Lim, Jae Hyun; Choi, Hansol; Kim, Dae-Shik
2012-01-01
In recent years, predictive coding strategies have been proposed as a possible means by which the brain might make sense of the truly overwhelming amount of sensory data available to the brain at any given moment of time. Instead of the raw data, the brain is hypothesized to guide its actions by assigning causal beliefs to the observed error between what it expects to happen and what actually happens. In this paper, we present a variety of developmental neurorobotics experiments in which minimalist prediction error-based encoding strategies are utilize to elucidate the emergence of infant-like behavior in humanoid robotic platforms. Our approaches will be first naively Piagian, then move onto more Vygotskian ideas. More specifically, we will investigate how simple forms of infant learning, such as motor sequence generation, object permanence, and imitation learning may arise if minimizing prediction errors are used as objective functions. PMID:22586416
Dopamine neurons share common response function for reward prediction error
Eshel, Neir; Tian, Ju; Bukwich, Michael; Uchida, Naoshige
2016-01-01
Dopamine neurons are thought to signal reward prediction error, or the difference between actual and predicted reward. How dopamine neurons jointly encode this information, however, remains unclear. One possibility is that different neurons specialize in different aspects of prediction error; another is that each neuron calculates prediction error in the same way. We recorded from optogenetically-identified dopamine neurons in the lateral ventral tegmental area (VTA) while mice performed classical conditioning tasks. Our tasks allowed us to determine the full prediction error functions of dopamine neurons and compare them to each other. We found striking homogeneity among individual dopamine neurons: their responses to both unexpected and expected rewards followed the same function, just scaled up or down. As a result, we could describe both individual and population responses using just two parameters. Such uniformity ensures robust information coding, allowing each dopamine neuron to contribute fully to the prediction error signal. PMID:26854803
Computation of Standard Errors
Dowd, Bryan E; Greene, William H; Norton, Edward C
2014-01-01
Objectives We discuss the problem of computing the standard errors of functions involving estimated parameters and provide the relevant computer code for three different computational approaches using two popular computer packages. Study Design We show how to compute the standard errors of several functions of interest: the predicted value of the dependent variable for a particular subject, and the effect of a change in an explanatory variable on the predicted value of the dependent variable for an individual subject and average effect for a sample of subjects. Empirical Application Using a publicly available dataset, we explain three different methods of computing standard errors: the delta method, Krinsky–Robb, and bootstrapping. We provide computer code for Stata 12 and LIMDEP 10/NLOGIT 5. Conclusions In most applications, choice of the computational method for standard errors of functions of estimated parameters is a matter of convenience. However, when computing standard errors of the sample average of functions that involve both estimated parameters and nonstochastic explanatory variables, it is important to consider the sources of variation in the function's values. PMID:24800304
Neural mechanisms of reinforcement learning in unmedicated patients with major depressive disorder.
Rothkirch, Marcus; Tonn, Jonas; Köhler, Stephan; Sterzer, Philipp
2017-04-01
According to current concepts, major depressive disorder is strongly related to dysfunctional neural processing of motivational information, entailing impairments in reinforcement learning. While computational modelling can reveal the precise nature of neural learning signals, it has not been used to study learning-related neural dysfunctions in unmedicated patients with major depressive disorder so far. We thus aimed at comparing the neural coding of reward and punishment prediction errors, representing indicators of neural learning-related processes, between unmedicated patients with major depressive disorder and healthy participants. To this end, a group of unmedicated patients with major depressive disorder (n = 28) and a group of age- and sex-matched healthy control participants (n = 30) completed an instrumental learning task involving monetary gains and losses during functional magnetic resonance imaging. The two groups did not differ in their learning performance. Patients and control participants showed the same level of prediction error-related activity in the ventral striatum and the anterior insula. In contrast, neural coding of reward prediction errors in the medial orbitofrontal cortex was reduced in patients. Moreover, neural reward prediction error signals in the medial orbitofrontal cortex and ventral striatum showed negative correlations with anhedonia severity. Using a standard instrumental learning paradigm we found no evidence for an overall impairment of reinforcement learning in medication-free patients with major depressive disorder. Importantly, however, the attenuated neural coding of reward in the medial orbitofrontal cortex and the relation between anhedonia and reduced reward prediction error-signalling in the medial orbitofrontal cortex and ventral striatum likely reflect an impairment in experiencing pleasure from rewarding events as a key mechanism of anhedonia in major depressive disorder. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
CREME96 and Related Error Rate Prediction Methods
NASA Technical Reports Server (NTRS)
Adams, James H., Jr.
2012-01-01
Predicting the rate of occurrence of single event effects (SEEs) in space requires knowledge of the radiation environment and the response of electronic devices to that environment. Several analytical models have been developed over the past 36 years to predict SEE rates. The first error rate calculations were performed by Binder, Smith and Holman. Bradford and Pickel and Blandford, in their CRIER (Cosmic-Ray-Induced-Error-Rate) analysis code introduced the basic Rectangular ParallelePiped (RPP) method for error rate calculations. For the radiation environment at the part, both made use of the Cosmic Ray LET (Linear Energy Transfer) spectra calculated by Heinrich for various absorber Depths. A more detailed model for the space radiation environment within spacecraft was developed by Adams and co-workers. This model, together with a reformulation of the RPP method published by Pickel and Blandford, was used to create the CR ME (Cosmic Ray Effects on Micro-Electronics) code. About the same time Shapiro wrote the CRUP (Cosmic Ray Upset Program) based on the RPP method published by Bradford. It was the first code to specifically take into account charge collection from outside the depletion region due to deformation of the electric field caused by the incident cosmic ray. Other early rate prediction methods and codes include the Single Event Figure of Merit, NOVICE, the Space Radiation code and the effective flux method of Binder which is the basis of the SEFA (Scott Effective Flux Approximation) model. By the early 1990s it was becoming clear that CREME and the other early models needed Revision. This revision, CREME96, was completed and released as a WWW-based tool, one of the first of its kind. The revisions in CREME96 included improved environmental models and improved models for calculating single event effects. The need for a revision of CREME also stimulated the development of the CHIME (CRRES/SPACERAD Heavy Ion Model of the Environment) and MACREE (Modeling and Analysis of Cosmic Ray Effects in Electronics). The Single Event Figure of Merit method was also revised to use the solar minimum galactic cosmic ray spectrum and extended to circular orbits down to 200 km at any inclination. More recently a series of commercial codes was developed by TRAD (Test & Radiations) which includes the OMERE code which calculates single event effects. There are other error rate prediction methods which use Monte Carlo techniques. In this chapter the analytic methods for estimating the environment within spacecraft will be discussed.
Seligman, Sarah C; Giovannetti, Tania; Sestito, John; Libon, David J
2014-01-01
Mild functional difficulties have been associated with early cognitive decline in older adults and increased risk for conversion to dementia in mild cognitive impairment, but our understanding of this decline has been limited by a dearth of objective methods. This study evaluated the reliability and validity of a new system to code subtle errors on an established performance-based measure of everyday action and described preliminary findings within the context of a theoretical model of action disruption. Here 45 older adults completed the Naturalistic Action Test (NAT) and neuropsychological measures. NAT performance was coded for overt errors, and subtle action difficulties were scored using a novel coding system. An inter-rater reliability coefficient was calculated. Validity of the coding system was assessed using a repeated-measures ANOVA with NAT task (simple versus complex) and error type (overt versus subtle) as within-group factors. Correlation/regression analyses were conducted among overt NAT errors, subtle NAT errors, and neuropsychological variables. The coding of subtle action errors was reliable and valid, and episodic memory breakdown predicted subtle action disruption. Results suggest that the NAT can be useful in objectively assessing subtle functional decline. Treatments targeting episodic memory may be most effective in addressing early functional impairment in older age.
Thomas, D C; Bowman, J D; Jiang, L; Jiang, F; Peters, J M
1999-10-01
Case-control data on childhood leukemia in Los Angeles County were reanalyzed with residential magnetic fields predicted from the wiring configurations of nearby transmission and distribution lines. As described in a companion paper, the 24-h means of the magnetic field's magnitude in subjects' homes were predicted by a physically based regression model that had been fitted to 24-h measurements and wiring data. In addition, magnetic field exposures were adjusted for the most likely form of exposure assessment errors: classic errors for the 24-h measurements and Berkson errors for the predictions from wire configurations. Although the measured fields had no association with childhood leukemia (P for trend=.88), the risks were significant for predicted magnetic fields above 1.25 mG (odds ratio=2.00, 95% confidence interval=1.03-3.89), and a significant dose-response was seen (P for trend=.02). When exposures were determined by a combination of predictions and measurements that corrects for errors, the odds ratio (odd ratio=2.19, 95% confidence interval=1.12-4.31) and the trend (p =.007) showed somewhat greater significance. These findings support the hypothesis that magnetic fields from electrical lines are causally related to childhood leukemia but that this association has been inconsistent among epidemiologic studies due to different types of exposure assessment error. In these data, the leukemia risks from a child's residential magnetic field exposure appears to be better assessed by wire configurations than by 24-h area measurements. However, the predicted fields only partially account for the effect of the Wertheimer-Leeper wire code in a multivariate analysis and do not completely explain why these wire codes have been so often associated with childhood leukemia. The most plausible explanation for our findings is that the causal factor is another magnetic field exposure metric correlated to both wire code and the field's time-averaged magnitude. Copyright 1999 Wiley-Liss, Inc.
Decision-making in schizophrenia: A predictive-coding perspective.
Sterzer, Philipp; Voss, Martin; Schlagenhauf, Florian; Heinz, Andreas
2018-05-31
Dysfunctional decision-making has been implicated in the positive and negative symptoms of schizophrenia. Decision-making can be conceptualized within the framework of hierarchical predictive coding as the result of a Bayesian inference process that uses prior beliefs to infer states of the world. According to this idea, prior beliefs encoded at higher levels in the brain are fed back as predictive signals to lower levels. Whenever these predictions are violated by the incoming sensory data, a prediction error is generated and fed forward to update beliefs encoded at higher levels. Well-documented impairments in cognitive decision-making support the view that these neural inference mechanisms are altered in schizophrenia. There is also extensive evidence relating the symptoms of schizophrenia to aberrant signaling of prediction errors, especially in the domain of reward and value-based decision-making. Moreover, the idea of altered predictive coding is supported by evidence for impaired low-level sensory mechanisms and motor processes. We review behavioral and neural findings from these research areas and provide an integrated view suggesting that schizophrenia may be related to a pervasive alteration in predictive coding at multiple hierarchical levels, including cognitive and value-based decision-making processes as well as sensory and motor systems. We relate these findings to decision-making processes and propose that varying degrees of impairment in the implicated brain areas contribute to the variety of psychotic experiences. Copyright © 2018 Elsevier Inc. All rights reserved.
Song, Lunar; Park, Byeonghwa; Oh, Kyeung Mi
2015-04-01
Serious medication errors continue to exist in hospitals, even though there is technology that could potentially eliminate them such as bar code medication administration. Little is known about the degree to which the culture of patient safety is associated with behavioral intention to use bar code medication administration. Based on the Technology Acceptance Model, this study evaluated the relationships among patient safety culture and perceived usefulness and perceived ease of use, and behavioral intention to use bar code medication administration technology among nurses in hospitals. Cross-sectional surveys with a convenience sample of 163 nurses using bar code medication administration were conducted. Feedback and communication about errors had a positive impact in predicting perceived usefulness (β=.26, P<.01) and perceived ease of use (β=.22, P<.05). In a multiple regression model predicting for behavioral intention, age had a negative impact (β=-.17, P<.05); however, teamwork within hospital units (β=.20, P<.05) and perceived usefulness (β=.35, P<.01) both had a positive impact on behavioral intention. The overall bar code medication administration behavioral intention model explained 24% (P<.001) of the variance. Identified factors influencing bar code medication administration behavioral intention can help inform hospitals to develop tailored interventions for RNs to reduce medication administration errors and increase patient safety by using this technology.
Predicted blood glucose from insulin administration based on values from miscoded glucose meters.
Raine, Charles H; Pardo, Scott; Parkes, Joan Lee
2008-07-01
The proper use of many types of self-monitored blood glucose (SMBG) meters requires calibration to match strip code. Studies have demonstrated the occurrence and impact on insulin dose of coding errors with SMBG meters. This paper reflects additional analyses performed with data from Raine et al. (JDST, 2:205-210, 2007). It attempts to relate potential insulin dose errors to possible adverse blood glucose outcomes when glucose meters are miscoded. Five sets of glucose meters were used. Two sets of meters were autocoded and therefore could not be miscoded, and three sets required manual coding. Two of each set of manually coded meters were deliberately miscoded, and one from each set was properly coded. Subjects (n = 116) had finger stick blood glucose obtained at fasting, as well as at 1 and 2 hours after a fixed meal (Boost((R)); Novartis Medical Nutrition U.S., Basel, Switzerland). Deviations of meter blood glucose results from the reference method (YSI) were used to predict insulin dose errors and resultant blood glucose outcomes based on these deviations. Using insulin sensitivity data, it was determined that, given an actual blood glucose of 150-400 mg/dl, an error greater than +40 mg/dl would be required to calculate an insulin dose sufficient to produce a blood glucose of less than 70 mg/dl. Conversely, an error less than or equal to -70 mg/dl would be required to derive an insulin dose insufficient to correct an elevated blood glucose to less than 180 mg/dl. For miscoded meters, the estimated probability to produce a blood glucose reduction to less than or equal to 70 mg/dl was 10.40%. The corresponding probabilities for autocoded and correctly coded manual meters were 2.52% (p < 0.0001) and 1.46% (p < 0.0001), respectively. Furthermore, the errors from miscoded meters were large enough to produce a calculated blood glucose outcome less than or equal to 50 mg/dl in 42 of 833 instances. Autocoded meters produced zero (0) outcomes less than or equal to 50 mg/dl out of 279 instances, and correctly coded manual meters produced 1 of 416. Improperly coded blood glucose meters present the potential for insulin dose errors and resultant clinically significant hypoglycemia or hyperglycemia. Patients should be instructed and periodically reinstructed in the proper use of blood glucose meters, particularly for meters that require coding.
Vassena, Eliana; Deraeve, James; Alexander, William H
2017-10-01
Human behavior is strongly driven by the pursuit of rewards. In daily life, however, benefits mostly come at a cost, often requiring that effort be exerted to obtain potential benefits. Medial PFC (MPFC) and dorsolateral PFC (DLPFC) are frequently implicated in the expectation of effortful control, showing increased activity as a function of predicted task difficulty. Such activity partially overlaps with expectation of reward and has been observed both during decision-making and during task preparation. Recently, novel computational frameworks have been developed to explain activity in these regions during cognitive control, based on the principle of prediction and prediction error (predicted response-outcome [PRO] model [Alexander, W. H., & Brown, J. W. Medial prefrontal cortex as an action-outcome predictor. Nature Neuroscience, 14, 1338-1344, 2011], hierarchical error representation [HER] model [Alexander, W. H., & Brown, J. W. Hierarchical error representation: A computational model of anterior cingulate and dorsolateral prefrontal cortex. Neural Computation, 27, 2354-2410, 2015]). Despite the broad explanatory power of these models, it is not clear whether they can also accommodate effects related to the expectation of effort observed in MPFC and DLPFC. Here, we propose a translation of these computational frameworks to the domain of effort-based behavior. First, we discuss how the PRO model, based on prediction error, can explain effort-related activity in MPFC, by reframing effort-based behavior in a predictive context. We propose that MPFC activity reflects monitoring of motivationally relevant variables (such as effort and reward), by coding expectations and discrepancies from such expectations. Moreover, we derive behavioral and neural model-based predictions for healthy controls and clinical populations with impairments of motivation. Second, we illustrate the possible translation to effort-based behavior of the HER model, an extended version of PRO model based on hierarchical error prediction, developed to explain MPFC-DLPFC interactions. We derive behavioral predictions that describe how effort and reward information is coded in PFC and how changing the configuration of such environmental information might affect decision-making and task performance involving motivation.
Ylinen, Sari; Bosseler, Alexis; Junttila, Katja; Huotilainen, Minna
2017-11-01
The ability to predict future events in the environment and learn from them is a fundamental component of adaptive behavior across species. Here we propose that inferring predictions facilitates speech processing and word learning in the early stages of language development. Twelve- and 24-month olds' electrophysiological brain responses to heard syllables are faster and more robust when the preceding word context predicts the ending of a familiar word. For unfamiliar, novel word forms, however, word-expectancy violation generates a prediction error response, the strength of which significantly correlates with children's vocabulary scores at 12 months. These results suggest that predictive coding may accelerate word recognition and support early learning of novel words, including not only the learning of heard word forms but also their mapping to meanings. Prediction error may mediate learning via attention, since infants' attention allocation to the entire learning situation in natural environments could account for the link between prediction error and the understanding of word meanings. On the whole, the present results on predictive coding support the view that principles of brain function reported across domains in humans and non-human animals apply to language and its development in the infant brain. A video abstract of this article can be viewed at: http://hy.fi/unitube/video/e1cbb495-41d8-462e-8660-0864a1abd02c. [Correction added on 27 January 2017, after first online publication: The video abstract link was added.]. © 2016 John Wiley & Sons Ltd.
Expectation and Surprise Determine Neural Population Responses in the Ventral Visual Stream
Egner, Tobias; Monti, Jim M.; Summerfield, Christopher
2014-01-01
Visual cortex is traditionally viewed as a hierarchy of neural feature detectors, with neural population responses being driven by bottom-up stimulus features. Conversely, “predictive coding” models propose that each stage of the visual hierarchy harbors two computationally distinct classes of processing unit: representational units that encode the conditional probability of a stimulus and provide predictions to the next lower level; and error units that encode the mismatch between predictions and bottom-up evidence, and forward prediction error to the next higher level. Predictive coding therefore suggests that neural population responses in category-selective visual regions, like the fusiform face area (FFA), reflect a summation of activity related to prediction (“face expectation”) and prediction error (“face surprise”), rather than a homogenous feature detection response. We tested the rival hypotheses of the feature detection and predictive coding models by collecting functional magnetic resonance imaging data from the FFA while independently varying both stimulus features (faces vs houses) and subjects’ perceptual expectations regarding those features (low vs medium vs high face expectation). The effects of stimulus and expectation factors interacted, whereby FFA activity elicited by face and house stimuli was indistinguishable under high face expectation and maximally differentiated under low face expectation. Using computational modeling, we show that these data can be explained by predictive coding but not by feature detection models, even when the latter are augmented with attentional mechanisms. Thus, population responses in the ventral visual stream appear to be determined by feature expectation and surprise rather than by stimulus features per se. PMID:21147999
Application of Exactly Linearized Error Transport Equations to AIAA CFD Prediction Workshops
NASA Technical Reports Server (NTRS)
Derlaga, Joseph M.; Park, Michael A.; Rallabhandi, Sriram
2017-01-01
The computational fluid dynamics (CFD) prediction workshops sponsored by the AIAA have created invaluable opportunities in which to discuss the predictive capabilities of CFD in areas in which it has struggled, e.g., cruise drag, high-lift, and sonic boom pre diction. While there are many factors that contribute to disagreement between simulated and experimental results, such as modeling or discretization error, quantifying the errors contained in a simulation is important for those who make decisions based on the computational results. The linearized error transport equations (ETE) combined with a truncation error estimate is a method to quantify one source of errors. The ETE are implemented with a complex-step method to provide an exact linearization with minimal source code modifications to CFD and multidisciplinary analysis methods. The equivalency of adjoint and linearized ETE functional error correction is demonstrated. Uniformly refined grids from a series of AIAA prediction workshops demonstrate the utility of ETE for multidisciplinary analysis with a connection between estimated discretization error and (resolved or under-resolved) flow features.
Design of a digital voice data compression technique for orbiter voice channels
NASA Technical Reports Server (NTRS)
1975-01-01
Candidate techniques were investigated for digital voice compression to a transmission rate of 8 kbps. Good voice quality, speaker recognition, and robustness in the presence of error bursts were considered. The technique of delayed-decision adaptive predictive coding is described and compared with conventional adaptive predictive coding. Results include a set of experimental simulations recorded on analog tape. The two FM broadcast segments produced show the delayed-decision technique to be virtually undegraded or minimally degraded at .001 and .01 Viterbi decoder bit error rates. Preliminary estimates of the hardware complexity of this technique indicate potential for implementation in space shuttle orbiters.
Whittington, James C. R.; Bogacz, Rafal
2017-01-01
To efficiently learn from feedback, cortical networks need to update synaptic weights on multiple levels of cortical hierarchy. An effective and well-known algorithm for computing such changes in synaptic weights is the error backpropagation algorithm. However, in this algorithm, the change in synaptic weights is a complex function of weights and activities of neurons not directly connected with the synapse being modified, whereas the changes in biological synapses are determined only by the activity of presynaptic and postsynaptic neurons. Several models have been proposed that approximate the backpropagation algorithm with local synaptic plasticity, but these models require complex external control over the network or relatively complex plasticity rules. Here we show that a network developed in the predictive coding framework can efficiently perform supervised learning fully autonomously, employing only simple local Hebbian plasticity. Furthermore, for certain parameters, the weight change in the predictive coding model converges to that of the backpropagation algorithm. This suggests that it is possible for cortical networks with simple Hebbian synaptic plasticity to implement efficient learning algorithms in which synapses in areas on multiple levels of hierarchy are modified to minimize the error on the output. PMID:28333583
Whittington, James C R; Bogacz, Rafal
2017-05-01
To efficiently learn from feedback, cortical networks need to update synaptic weights on multiple levels of cortical hierarchy. An effective and well-known algorithm for computing such changes in synaptic weights is the error backpropagation algorithm. However, in this algorithm, the change in synaptic weights is a complex function of weights and activities of neurons not directly connected with the synapse being modified, whereas the changes in biological synapses are determined only by the activity of presynaptic and postsynaptic neurons. Several models have been proposed that approximate the backpropagation algorithm with local synaptic plasticity, but these models require complex external control over the network or relatively complex plasticity rules. Here we show that a network developed in the predictive coding framework can efficiently perform supervised learning fully autonomously, employing only simple local Hebbian plasticity. Furthermore, for certain parameters, the weight change in the predictive coding model converges to that of the backpropagation algorithm. This suggests that it is possible for cortical networks with simple Hebbian synaptic plasticity to implement efficient learning algorithms in which synapses in areas on multiple levels of hierarchy are modified to minimize the error on the output.
Scalable L-infinite coding of meshes.
Munteanu, Adrian; Cernea, Dan C; Alecu, Alin; Cornelis, Jan; Schelkens, Peter
2010-01-01
The paper investigates the novel concept of local-error control in mesh geometry encoding. In contrast to traditional mesh-coding systems that use the mean-square error as target distortion metric, this paper proposes a new L-infinite mesh-coding approach, for which the target distortion metric is the L-infinite distortion. In this context, a novel wavelet-based L-infinite-constrained coding approach for meshes is proposed, which ensures that the maximum error between the vertex positions in the original and decoded meshes is lower than a given upper bound. Furthermore, the proposed system achieves scalability in L-infinite sense, that is, any decoding of the input stream will correspond to a perfectly predictable L-infinite distortion upper bound. An instantiation of the proposed L-infinite-coding approach is demonstrated for MESHGRID, which is a scalable 3D object encoding system, part of MPEG-4 AFX. In this context, the advantages of scalable L-infinite coding over L-2-oriented coding are experimentally demonstrated. One concludes that the proposed L-infinite mesh-coding approach guarantees an upper bound on the local error in the decoded mesh, it enables a fast real-time implementation of the rate allocation, and it preserves all the scalability features and animation capabilities of the employed scalable mesh codec.
A joint source-channel distortion model for JPEG compressed images.
Sabir, Muhammad F; Sheikh, Hamid Rahim; Heath, Robert W; Bovik, Alan C
2006-06-01
The need for efficient joint source-channel coding (JSCC) is growing as new multimedia services are introduced in commercial wireless communication systems. An important component of practical JSCC schemes is a distortion model that can predict the quality of compressed digital multimedia such as images and videos. The usual approach in the JSCC literature for quantifying the distortion due to quantization and channel errors is to estimate it for each image using the statistics of the image for a given signal-to-noise ratio (SNR). This is not an efficient approach in the design of real-time systems because of the computational complexity. A more useful and practical approach would be to design JSCC techniques that minimize average distortion for a large set of images based on some distortion model rather than carrying out per-image optimizations. However, models for estimating average distortion due to quantization and channel bit errors in a combined fashion for a large set of images are not available for practical image or video coding standards employing entropy coding and differential coding. This paper presents a statistical model for estimating the distortion introduced in progressive JPEG compressed images due to quantization and channel bit errors in a joint manner. Statistical modeling of important compression techniques such as Huffman coding, differential pulse-coding modulation, and run-length coding are included in the model. Examples show that the distortion in terms of peak signal-to-noise ratio (PSNR) can be predicted within a 2-dB maximum error over a variety of compression ratios and bit-error rates. To illustrate the utility of the proposed model, we present an unequal power allocation scheme as a simple application of our model. Results show that it gives a PSNR gain of around 6.5 dB at low SNRs, as compared to equal power allocation.
Predicted Blood Glucose from Insulin Administration Based on Values from Miscoded Glucose Meters
Raine, Charles H.; Pardo, Scott; Parkes, Joan Lee
2008-01-01
Objectives The proper use of many types of self-monitored blood glucose (SMBG) meters requires calibration to match strip code. Studies have demonstrated the occurrence and impact on insulin dose of coding errors with SMBG meters. This paper reflects additional analyses performed with data from Raine et al. (JDST, 2:205–210, 2007). It attempts to relate potential insulin dose errors to possible adverse blood glucose outcomes when glucose meters are miscoded. Methods Five sets of glucose meters were used. Two sets of meters were autocoded and therefore could not be miscoded, and three sets required manual coding. Two of each set of manually coded meters were deliberately miscoded, and one from each set was properly coded. Subjects (n = 116) had finger stick blood glucose obtained at fasting, as well as at 1 and 2 hours after a fixed meal (Boost®; Novartis Medical Nutrition U.S., Basel, Switzerland). Deviations of meter blood glucose results from the reference method (YSI) were used to predict insulin dose errors and resultant blood glucose outcomes based on these deviations. Results Using insulin sensitivity data, it was determined that, given an actual blood glucose of 150–400 mg/dl, an error greater than +40 mg/dl would be required to calculate an insulin dose sufficient to produce a blood glucose of less than 70 mg/dl. Conversely, an error less than or equal to -70 mg/dl would be required to derive an insulin dose insufficient to correct an elevated blood glucose to less than 180 mg/dl. For miscoded meters, the estimated probability to produce a blood glucose reduction to less than or equal to 70 mg/dl was 10.40%. The corresponding probabilities for autocoded and correctly coded manual meters were 2.52% (p < 0.0001) and 1.46% (p < 0.0001), respectively. Furthermore, the errors from miscoded meters were large enough to produce a calculated blood glucose outcome less than or equal to 50 mg/dl in 42 of 833 instances. Autocoded meters produced zero (0) outcomes less than or equal to 50 mg/dl out of 279 instances, and correctly coded manual meters produced 1 of 416. Conclusions Improperly coded blood glucose meters present the potential for insulin dose errors and resultant clinically significant hypoglycemia or hyperglycemia. Patients should be instructed and periodically reinstructed in the proper use of blood glucose meters, particularly for meters that require coding. PMID:19885229
Disruption of hierarchical predictive coding during sleep
Strauss, Melanie; Sitt, Jacobo D.; King, Jean-Remi; Elbaz, Maxime; Azizi, Leila; Buiatti, Marco; Naccache, Lionel; van Wassenhove, Virginie; Dehaene, Stanislas
2015-01-01
When presented with an auditory sequence, the brain acts as a predictive-coding device that extracts regularities in the transition probabilities between sounds and detects unexpected deviations from these regularities. Does such prediction require conscious vigilance, or does it continue to unfold automatically in the sleeping brain? The mismatch negativity and P300 components of the auditory event-related potential, reflecting two steps of auditory novelty detection, have been inconsistently observed in the various sleep stages. To clarify whether these steps remain during sleep, we recorded simultaneous electroencephalographic and magnetoencephalographic signals during wakefulness and during sleep in normal subjects listening to a hierarchical auditory paradigm including short-term (local) and long-term (global) regularities. The global response, reflected in the P300, vanished during sleep, in line with the hypothesis that it is a correlate of high-level conscious error detection. The local mismatch response remained across all sleep stages (N1, N2, and REM sleep), but with an incomplete structure; compared with wakefulness, a specific peak reflecting prediction error vanished during sleep. Those results indicate that sleep leaves initial auditory processing and passive sensory response adaptation intact, but specifically disrupts both short-term and long-term auditory predictive coding. PMID:25737555
Perceptually tuned low-bit-rate video codec for ATM networks
NASA Astrophysics Data System (ADS)
Chou, Chun-Hsien
1996-02-01
In order to maintain high visual quality in transmitting low bit-rate video signals over asynchronous transfer mode (ATM) networks, a layered coding scheme that incorporates the human visual system (HVS), motion compensation (MC), and conditional replenishment (CR) is presented in this paper. An empirical perceptual model is proposed to estimate the spatio- temporal just-noticeable distortion (STJND) profile for each frame, by which perceptually important (PI) prediction-error signals can be located. Because of the limited channel capacity of the base layer, only coded data of motion vectors, the PI signals within a small strip of the prediction-error image and, if there are remaining bits, the PI signals outside the strip are transmitted by the cells of the base-layer channel. The rest of the coded data are transmitted by the second-layer cells which may be lost due to channel error or network congestion. Simulation results show that visual quality of the reconstructed CIF sequence is acceptable when the capacity of the base-layer channel is allocated with 2 multiplied by 64 kbps and the cells of the second layer are all lost.
Temporal Prediction Errors Affect Short-Term Memory Scanning Response Time.
Limongi, Roberto; Silva, Angélica M
2016-11-01
The Sternberg short-term memory scanning task has been used to unveil cognitive operations involved in time perception. Participants produce time intervals during the task, and the researcher explores how task performance affects interval production - where time estimation error is the dependent variable of interest. The perspective of predictive behavior regards time estimation error as a temporal prediction error (PE), an independent variable that controls cognition, behavior, and learning. Based on this perspective, we investigated whether temporal PEs affect short-term memory scanning. Participants performed temporal predictions while they maintained information in memory. Model inference revealed that PEs affected memory scanning response time independently of the memory-set size effect. We discuss the results within the context of formal and mechanistic models of short-term memory scanning and predictive coding, a Bayes-based theory of brain function. We state the hypothesis that our finding could be associated with weak frontostriatal connections and weak striatal activity.
The predictive mind and the experience of visual art work
Kesner, Ladislav
2014-01-01
Among the main challenges of the predictive brain/mind concept is how to link prediction at the neural level to prediction at the cognitive-psychological level and finding conceptually robust and empirically verifiable ways to harness this theoretical framework toward explaining higher-order mental and cognitive phenomena, including the subjective experience of aesthetic and symbolic forms. Building on the tentative prediction error account of visual art, this article extends the application of the predictive coding framework to the visual arts. It does so by linking this theoretical discussion to a subjective, phenomenological account of how a work of art is experienced. In order to engage more deeply with a work of art, viewers must be able to tune or adapt their prediction mechanism to recognize art as a specific class of objects whose ontological nature defies predictability, and they must be able to sustain a productive flow of predictions from low-level sensory, recognitional to abstract semantic, conceptual, and affective inferences. The affective component of the process of predictive error optimization that occurs when a viewer enters into dialog with a painting is constituted both by activating the affective affordances within the image and by the affective consequences of prediction error minimization itself. The predictive coding framework also has implications for the problem of the culturality of vision. A person’s mindset, which determines what top–down expectations and predictions are generated, is co-constituted by culture-relative skills and knowledge, which form hyperpriors that operate in the perception of art. PMID:25566111
The predictive mind and the experience of visual art work.
Kesner, Ladislav
2014-01-01
Among the main challenges of the predictive brain/mind concept is how to link prediction at the neural level to prediction at the cognitive-psychological level and finding conceptually robust and empirically verifiable ways to harness this theoretical framework toward explaining higher-order mental and cognitive phenomena, including the subjective experience of aesthetic and symbolic forms. Building on the tentative prediction error account of visual art, this article extends the application of the predictive coding framework to the visual arts. It does so by linking this theoretical discussion to a subjective, phenomenological account of how a work of art is experienced. In order to engage more deeply with a work of art, viewers must be able to tune or adapt their prediction mechanism to recognize art as a specific class of objects whose ontological nature defies predictability, and they must be able to sustain a productive flow of predictions from low-level sensory, recognitional to abstract semantic, conceptual, and affective inferences. The affective component of the process of predictive error optimization that occurs when a viewer enters into dialog with a painting is constituted both by activating the affective affordances within the image and by the affective consequences of prediction error minimization itself. The predictive coding framework also has implications for the problem of the culturality of vision. A person's mindset, which determines what top-down expectations and predictions are generated, is co-constituted by culture-relative skills and knowledge, which form hyperpriors that operate in the perception of art.
More About Vector Adaptive/Predictive Coding Of Speech
NASA Technical Reports Server (NTRS)
Jedrey, Thomas C.; Gersho, Allen
1992-01-01
Report presents additional information about digital speech-encoding and -decoding system described in "Vector Adaptive/Predictive Encoding of Speech" (NPO-17230). Summarizes development of vector adaptive/predictive coding (VAPC) system and describes basic functions of algorithm. Describes refinements introduced enabling receiver to cope with errors. VAPC algorithm implemented in integrated-circuit coding/decoding processors (codecs). VAPC and other codecs tested under variety of operating conditions. Tests designed to reveal effects of various background quiet and noisy environments and of poor telephone equipment. VAPC found competitive with and, in some respects, superior to other 4.8-kb/s codecs and other codecs of similar complexity.
NASA Astrophysics Data System (ADS)
Kung, Wei-Ying; Kim, Chang-Su; Kuo, C.-C. Jay
2004-10-01
A multi-hypothesis motion compensated prediction (MHMCP) scheme, which predicts a block from a weighted superposition of more than one reference blocks in the frame buffer, is proposed and analyzed for error resilient visual communication in this research. By combining these reference blocks effectively, MHMCP can enhance the error resilient capability of compressed video as well as achieve a coding gain. In particular, we investigate the error propagation effect in the MHMCP coder and analyze the rate-distortion performance in terms of the hypothesis number and hypothesis coefficients. It is shown that MHMCP suppresses the short-term effect of error propagation more effectively than the intra refreshing scheme. Simulation results are given to confirm the analysis. Finally, several design principles for the MHMCP coder are derived based on the analytical and experimental results.
Representation of deformable motion for compression of dynamic cardiac image data
NASA Astrophysics Data System (ADS)
Weinlich, Andreas; Amon, Peter; Hutter, Andreas; Kaup, André
2012-02-01
We present a new approach for efficient estimation and storage of tissue deformation in dynamic medical image data like 3-D+t computed tomography reconstructions of human heart acquisitions. Tissue deformation between two points in time can be described by means of a displacement vector field indicating for each voxel of a slice, from which position in the previous slice at a fixed position in the third dimension it has moved to this position. Our deformation model represents the motion in a compact manner using a down-sampled potential function of the displacement vector field. This function is obtained by a Gauss-Newton minimization of the estimation error image, i. e., the difference between the current and the deformed previous slice. For lossless or lossy compression of volume slices, the potential function and the error image can afterwards be coded separately. By assuming deformations instead of translational motion, a subsequent coding algorithm using this method will achieve better compression ratios for medical volume data than with conventional block-based motion compensation known from video coding. Due to the smooth prediction without block artifacts, particularly whole-image transforms like wavelet decomposition as well as intra-slice prediction methods can benefit from this approach. We show that with discrete cosine as well as with Karhunen-Lo`eve transform the method can achieve a better energy compaction of the error image than block-based motion compensation while reaching approximately the same prediction error energy.
Towards Holography via Quantum Source-Channel Codes.
Pastawski, Fernando; Eisert, Jens; Wilming, Henrik
2017-07-14
While originally motivated by quantum computation, quantum error correction (QEC) is currently providing valuable insights into many-body quantum physics, such as topological phases of matter. Furthermore, mounting evidence originating from holography research (AdS/CFT) indicates that QEC should also be pertinent for conformal field theories. With this motivation in mind, we introduce quantum source-channel codes, which combine features of lossy compression and approximate quantum error correction, both of which are predicted in holography. Through a recent construction for approximate recovery maps, we derive guarantees on its erasure decoding performance from calculations of an entropic quantity called conditional mutual information. As an example, we consider Gibbs states of the transverse field Ising model at criticality and provide evidence that they exhibit nontrivial protection from local erasure. This gives rise to the first concrete interpretation of a bona fide conformal field theory as a quantum error correcting code. We argue that quantum source-channel codes are of independent interest beyond holography.
Towards Holography via Quantum Source-Channel Codes
NASA Astrophysics Data System (ADS)
Pastawski, Fernando; Eisert, Jens; Wilming, Henrik
2017-07-01
While originally motivated by quantum computation, quantum error correction (QEC) is currently providing valuable insights into many-body quantum physics, such as topological phases of matter. Furthermore, mounting evidence originating from holography research (AdS/CFT) indicates that QEC should also be pertinent for conformal field theories. With this motivation in mind, we introduce quantum source-channel codes, which combine features of lossy compression and approximate quantum error correction, both of which are predicted in holography. Through a recent construction for approximate recovery maps, we derive guarantees on its erasure decoding performance from calculations of an entropic quantity called conditional mutual information. As an example, we consider Gibbs states of the transverse field Ising model at criticality and provide evidence that they exhibit nontrivial protection from local erasure. This gives rise to the first concrete interpretation of a bona fide conformal field theory as a quantum error correcting code. We argue that quantum source-channel codes are of independent interest beyond holography.
Pulse Vector-Excitation Speech Encoder
NASA Technical Reports Server (NTRS)
Davidson, Grant; Gersho, Allen
1989-01-01
Proposed pulse vector-excitation speech encoder (PVXC) encodes analog speech signals into digital representation for transmission or storage at rates below 5 kilobits per second. Produces high quality of reconstructed speech, but with less computation than required by comparable speech-encoding systems. Has some characteristics of multipulse linear predictive coding (MPLPC) and of code-excited linear prediction (CELP). System uses mathematical model of vocal tract in conjunction with set of excitation vectors and perceptually-based error criterion to synthesize natural-sounding speech.
Simulating a transmon implementation of the surface code, Part I
NASA Astrophysics Data System (ADS)
Tarasinski, Brian; O'Brien, Thomas; Rol, Adriaan; Bultink, Niels; Dicarlo, Leo
Current experimental efforts aim to realize Surface-17, a distance-3 surface-code logical qubit, using transmon qubits in a circuit QED architecture. Following experimental proposals for this device, and currently achieved fidelities on physical qubits, we define a detailed error model that takes experimentally relevant error sources into account, such as amplitude and phase damping, imperfect gate pulses, and coherent errors due to low-frequency flux noise. Using the GPU-accelerated software package 'quantumsim', we simulate the density matrix evolution of the logical qubit under this error model. Combining the simulation results with a minimum-weight matching decoder, we obtain predictions for the error rate of the resulting logical qubit when used as a quantum memory, and estimate the contribution of different error sources to the logical error budget. Research funded by the Foundation for Fundamental Research on Matter (FOM), the Netherlands Organization for Scientific Research (NWO/OCW), IARPA, an ERC Synergy Grant, the China Scholarship Council, and Intel Corporation.
Moors, Pieter
2015-01-01
In a recent functional magnetic resonance imaging study, Kok and de Lange (2014) observed that BOLD activity for a Kanizsa illusory shape stimulus, in which pacmen-like inducers elicit an illusory shape percept, was either enhanced or suppressed relative to a nonillusory control configuration depending on whether the spatial profile of BOLD activity in early visual cortex was related to the illusory shape or the inducers, respectively. The authors argued that these findings fit well with the predictive coding framework, because top-down predictions related to the illusory shape are not met with bottom-up sensory input and hence the feedforward error signal is enhanced. Conversely, for the inducing elements, there is a match between top-down predictions and input, leading to a decrease in error. Rather than invoking predictive coding as the explanatory framework, the suppressive effect related to the inducers might be caused by neural adaptation to perceptually stable input due to the trial sequence used in the experiment.
Putting reward in art: A tentative prediction error account of visual art
Van de Cruys, Sander; Wagemans, Johan
2011-01-01
The predictive coding model is increasingly and fruitfully used to explain a wide range of findings in perception. Here we discuss the potential of this model in explaining the mechanisms underlying aesthetic experiences. Traditionally art appreciation has been associated with concepts such as harmony, perceptual fluency, and the so-called good Gestalt. We observe that more often than not great artworks blatantly violate these characteristics. Using the concept of prediction error from the predictive coding approach, we attempt to resolve this contradiction. We argue that artists often destroy predictions that they have first carefully built up in their viewers, and thus highlight the importance of negative affect in aesthetic experience. However, the viewer often succeeds in recovering the predictable pattern, sometimes on a different level. The ensuing rewarding effect is derived from this transition from a state of uncertainty to a state of increased predictability. We illustrate our account with several example paintings and with a discussion of art movements and individual differences in preference. On a more fundamental level, our theorizing leads us to consider the affective implications of prediction confirmation and violation. We compare our proposal to other influential theories on aesthetics and explore its advantages and limitations. PMID:23145260
NASA Astrophysics Data System (ADS)
Lobanov, P. D.; Usov, E. V.; Butov, A. A.; Pribaturin, N. A.; Mosunova, N. A.; Strizhov, V. F.; Chukhno, V. I.; Kutlimetov, A. E.
2017-10-01
Experiments with impulse gas injection into model coolants, such as water or the Rose alloy, performed at the Novosibirsk Branch of the Nuclear Safety Institute, Russian Academy of Sciences, are described. The test facility and the experimental conditions are presented in details. The dependence of coolant pressure on the injected gas flow and the time of injection was determined. The purpose of these experiments was to verify the physical models of thermohydraulic codes for calculation of the processes that could occur during the rupture of tubes of a steam generator with heavy liquid metal coolant or during fuel rod failure in water-cooled reactors. The experimental results were used for verification of the HYDRA-IBRAE/LM system thermohydraulic code developed at the Nuclear Safety Institute, Russian Academy of Sciences. The models of gas bubble transportation in a vertical channel that are used in the code are described in detail. A two-phase flow pattern diagram and correlations for prediction of friction of bubbles and slugs as they float up in a vertical channel and of two-phase flow friction factor are presented. Based on the results of simulation of these experiments using the HYDRA-IBRAE/LM code, the arithmetic mean error in predicted pressures was calculated, and the predictions were analyzed considering the uncertainty in the input data, geometry of the test facility, and the error of the empirical correlation. The analysis revealed major factors having a considerable effect on the predictions. The recommendations are given on updating of the experimental results and improvement of the models used in the thermohydraulic code.
Disrupted prediction errors index social deficits in autism spectrum disorder
Balsters, Joshua H; Apps, Matthew A J; Bolis, Dimitris; Lehner, Rea; Gallagher, Louise; Wenderoth, Nicole
2017-01-01
Abstract Social deficits are a core symptom of autism spectrum disorder; however, the perturbed neural mechanisms underpinning these deficits remain unclear. It has been suggested that social prediction errors—coding discrepancies between the predicted and actual outcome of another’s decisions—might play a crucial role in processing social information. While the gyral surface of the anterior cingulate cortex signalled social prediction errors in typically developing individuals, this crucial social signal was altered in individuals with autism spectrum disorder. Importantly, the degree to which social prediction error signalling was aberrant correlated with diagnostic measures of social deficits. Effective connectivity analyses further revealed that, in typically developing individuals but not in autism spectrum disorder, the magnitude of social prediction errors was driven by input from the ventromedial prefrontal cortex. These data provide a novel insight into the neural substrates underlying autism spectrum disorder social symptom severity, and further research into the gyral surface of the anterior cingulate cortex and ventromedial prefrontal cortex could provide more targeted therapies to help ameliorate social deficits in autism spectrum disorder. PMID:28031223
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Kunwar Pal, E-mail: k-psingh@yahoo.com; Department of Physics, Shri Venkateshwara University, Gajraula, Amroha, Uttar Pradesh 244236; Arya, Rashmi
2015-09-14
We have investigated the effect of initial phase on error in electron energy obtained using paraxial approximation to study electron acceleration by a focused laser pulse in vacuum using a three dimensional test-particle simulation code. The error is obtained by comparing the energy of the electron for paraxial approximation and seventh-order correction description of the fields of Gaussian laser. The paraxial approximation predicts wrong laser divergence and wrong electron escape time from the pulse which leads to prediction of higher energy. The error shows strong phase dependence for the electrons lying along the axis of the laser for linearly polarizedmore » laser pulse. The relative error may be significant for some specific values of initial phase even at moderate values of laser spot sizes. The error does not show initial phase dependence for a circularly laser pulse.« less
Neural Elements for Predictive Coding.
Shipp, Stewart
2016-01-01
Predictive coding theories of sensory brain function interpret the hierarchical construction of the cerebral cortex as a Bayesian, generative model capable of predicting the sensory data consistent with any given percept. Predictions are fed backward in the hierarchy and reciprocated by prediction error in the forward direction, acting to modify the representation of the outside world at increasing levels of abstraction, and so to optimize the nature of perception over a series of iterations. This accounts for many 'illusory' instances of perception where what is seen (heard, etc.) is unduly influenced by what is expected, based on past experience. This simple conception, the hierarchical exchange of prediction and prediction error, confronts a rich cortical microcircuitry that is yet to be fully documented. This article presents the view that, in the current state of theory and practice, it is profitable to begin a two-way exchange: that predictive coding theory can support an understanding of cortical microcircuit function, and prompt particular aspects of future investigation, whilst existing knowledge of microcircuitry can, in return, influence theoretical development. As an example, a neural inference arising from the earliest formulations of predictive coding is that the source populations of forward and backward pathways should be completely separate, given their functional distinction; this aspect of circuitry - that neurons with extrinsically bifurcating axons do not project in both directions - has only recently been confirmed. Here, the computational architecture prescribed by a generalized (free-energy) formulation of predictive coding is combined with the classic 'canonical microcircuit' and the laminar architecture of hierarchical extrinsic connectivity to produce a template schematic, that is further examined in the light of (a) updates in the microcircuitry of primate visual cortex, and (b) rapid technical advances made possible by transgenic neural engineering in the mouse. The exercise highlights a number of recurring themes, amongst them the consideration of interneuron diversity as a spur to theoretical development and the potential for specifying a pyramidal neuron's function by its individual 'connectome,' combining its extrinsic projection (forward, backward or subcortical) with evaluation of its intrinsic network (e.g., unidirectional versus bidirectional connections with other pyramidal neurons).
Neural Elements for Predictive Coding
Shipp, Stewart
2016-01-01
Predictive coding theories of sensory brain function interpret the hierarchical construction of the cerebral cortex as a Bayesian, generative model capable of predicting the sensory data consistent with any given percept. Predictions are fed backward in the hierarchy and reciprocated by prediction error in the forward direction, acting to modify the representation of the outside world at increasing levels of abstraction, and so to optimize the nature of perception over a series of iterations. This accounts for many ‘illusory’ instances of perception where what is seen (heard, etc.) is unduly influenced by what is expected, based on past experience. This simple conception, the hierarchical exchange of prediction and prediction error, confronts a rich cortical microcircuitry that is yet to be fully documented. This article presents the view that, in the current state of theory and practice, it is profitable to begin a two-way exchange: that predictive coding theory can support an understanding of cortical microcircuit function, and prompt particular aspects of future investigation, whilst existing knowledge of microcircuitry can, in return, influence theoretical development. As an example, a neural inference arising from the earliest formulations of predictive coding is that the source populations of forward and backward pathways should be completely separate, given their functional distinction; this aspect of circuitry – that neurons with extrinsically bifurcating axons do not project in both directions – has only recently been confirmed. Here, the computational architecture prescribed by a generalized (free-energy) formulation of predictive coding is combined with the classic ‘canonical microcircuit’ and the laminar architecture of hierarchical extrinsic connectivity to produce a template schematic, that is further examined in the light of (a) updates in the microcircuitry of primate visual cortex, and (b) rapid technical advances made possible by transgenic neural engineering in the mouse. The exercise highlights a number of recurring themes, amongst them the consideration of interneuron diversity as a spur to theoretical development and the potential for specifying a pyramidal neuron’s function by its individual ‘connectome,’ combining its extrinsic projection (forward, backward or subcortical) with evaluation of its intrinsic network (e.g., unidirectional versus bidirectional connections with other pyramidal neurons). PMID:27917138
Comparison of Space Shuttle Hot Gas Manifold analysis to air flow data
NASA Technical Reports Server (NTRS)
Mcconnaughey, P. K.
1988-01-01
This paper summarizes several recent analyses of the Space Shuttle Main Engine Hot Gas Manifold and compares predicted flow environments to air flow data. Codes used in these analyses include INS3D, PAGE, PHOENICS, and VAST. Both laminar (Re = 250, M = 0.30) and turbulent (Re = 1.9 million, M = 0.30) results are discussed, with the latter being compared to data for system losses, outer wall static pressures, and manifold exit Mach number profiles. Comparison of predicted results for the turbulent case to air flow data shows that the analysis using INS3D predicted system losses within 1 percent error, while the PHOENICS, PAGE, and VAST codes erred by 31, 35, and 47 percent, respectively. The INS3D, PHOENICS, and PAGE codes did a reasonable job of predicting outer wall static pressure, while the PHOENICS code predicted exit Mach number profiles with acceptable accuracy. INS3D was approximately an order of magnitude more efficient than the other codes in terms of code speed and memory requirements. In general, it is seen that complex internal flows in manifold-like geometries can be predicted with a limited degree of confidence, and further development is necessary to improve both efficiency and accuracy of codes if they are to be used as design tools for complex three-dimensional geometries.
High-Level Prediction Signals in a Low-Level Area of the Macaque Face-Processing Hierarchy.
Schwiedrzik, Caspar M; Freiwald, Winrich A
2017-09-27
Theories like predictive coding propose that lower-order brain areas compare their inputs to predictions derived from higher-order representations and signal their deviation as a prediction error. Here, we investigate whether the macaque face-processing system, a three-level hierarchy in the ventral stream, employs such a coding strategy. We show that after statistical learning of specific face sequences, the lower-level face area ML computes the deviation of actual from predicted stimuli. But these signals do not reflect the tuning characteristic of ML. Rather, they exhibit identity specificity and view invariance, the tuning properties of higher-level face areas AL and AM. Thus, learning appears to endow lower-level areas with the capability to test predictions at a higher level of abstraction than what is afforded by the feedforward sweep. These results provide evidence for computational architectures like predictive coding and suggest a new quality of functional organization of information-processing hierarchies beyond pure feedforward schemes. Copyright © 2017 Elsevier Inc. All rights reserved.
Prospect theory does not describe the feedback-related negativity value function.
Sambrook, Thomas D; Roser, Matthew; Goslin, Jeremy
2012-12-01
Humans handle uncertainty poorly. Prospect theory accounts for this with a value function in which possible losses are overweighted compared to possible gains, and the marginal utility of rewards decreases with size. fMRI studies have explored the neural basis of this value function. A separate body of research claims that prediction errors are calculated by midbrain dopamine neurons. We investigated whether the prospect theoretic effects shown in behavioral and fMRI studies were present in midbrain prediction error coding by using the feedback-related negativity, an ERP component believed to reflect midbrain prediction errors. Participants' stated satisfaction with outcomes followed prospect theory but their feedback-related negativity did not, instead showing no effect of marginal utility and greater sensitivity to potential gains than losses. Copyright © 2012 Society for Psychophysiological Research.
Oyama, Kei; Tateyama, Yukina; Hernádi, István; Tobler, Philippe N; Iijima, Toshio; Tsutsui, Ken-Ichiro
2015-11-01
To investigate how the striatum integrates sensory information with reward information for behavioral guidance, we recorded single-unit activity in the dorsal striatum of head-fixed rats participating in a probabilistic Pavlovian conditioning task with auditory conditioned stimuli (CSs) in which reward probability was fixed for each CS but parametrically varied across CSs. We found that the activity of many neurons was linearly correlated with the reward probability indicated by the CSs. The recorded neurons could be classified according to their firing patterns into functional subtypes coding reward probability in different forms such as stimulus value, reward expectation, and reward prediction error. These results suggest that several functional subgroups of dorsal striatal neurons represent different kinds of information formed through extensive prior exposure to CS-reward contingencies. Copyright © 2015 the American Physiological Society.
Oyama, Kei; Tateyama, Yukina; Hernádi, István; Tobler, Philippe N.; Iijima, Toshio
2015-01-01
To investigate how the striatum integrates sensory information with reward information for behavioral guidance, we recorded single-unit activity in the dorsal striatum of head-fixed rats participating in a probabilistic Pavlovian conditioning task with auditory conditioned stimuli (CSs) in which reward probability was fixed for each CS but parametrically varied across CSs. We found that the activity of many neurons was linearly correlated with the reward probability indicated by the CSs. The recorded neurons could be classified according to their firing patterns into functional subtypes coding reward probability in different forms such as stimulus value, reward expectation, and reward prediction error. These results suggest that several functional subgroups of dorsal striatal neurons represent different kinds of information formed through extensive prior exposure to CS-reward contingencies. PMID:26378201
Toward a CFD nose-to-tail capability - Hypersonic unsteady Navier-Stokes code validation
NASA Technical Reports Server (NTRS)
Edwards, Thomas A.; Flores, Jolen
1989-01-01
Computational fluid dynamics (CFD) research for hypersonic flows presents new problems in code validation because of the added complexity of the physical models. This paper surveys code validation procedures applicable to hypersonic flow models that include real gas effects. The current status of hypersonic CFD flow analysis is assessed with the Compressible Navier-Stokes (CNS) code as a case study. The methods of code validation discussed to beyond comparison with experimental data to include comparisons with other codes and formulations, component analyses, and estimation of numerical errors. Current results indicate that predicting hypersonic flows of perfect gases and equilibrium air are well in hand. Pressure, shock location, and integrated quantities are relatively easy to predict accurately, while surface quantities such as heat transfer are more sensitive to the solution procedure. Modeling transition to turbulence needs refinement, though preliminary results are promising.
NASA Technical Reports Server (NTRS)
Hruby, R. J.; Bjorkman, W. S.; Schmidt, S. F.; Carestia, R. A.
1979-01-01
Algorithms were developed that attempt to identify which sensor in a tetrad configuration has experienced a step failure. An algorithm is also described that provides a measure of the confidence with which the correct identification was made. Experimental results are presented from real-time tests conducted on a three-axis motion facility utilizing an ortho-skew tetrad strapdown inertial sensor package. The effects of prediction errors and of quantization on correct failure identification are discussed as well as an algorithm for detecting second failures through prediction.
Data Assimilation - Advances and Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Brian J.
2014-07-30
This presentation provides an overview of data assimilation (model calibration) for complex computer experiments. Calibration refers to the process of probabilistically constraining uncertain physics/engineering model inputs to be consistent with observed experimental data. An initial probability distribution for these parameters is updated using the experimental information. Utilization of surrogate models and empirical adjustment for model form error in code calibration form the basis for the statistical methodology considered. The role of probabilistic code calibration in supporting code validation is discussed. Incorporation of model form uncertainty in rigorous uncertainty quantification (UQ) analyses is also addressed. Design criteria used within a batchmore » sequential design algorithm are introduced for efficiently achieving predictive maturity and improved code calibration. Predictive maturity refers to obtaining stable predictive inference with calibrated computer codes. These approaches allow for augmentation of initial experiment designs for collecting new physical data. A standard framework for data assimilation is presented and techniques for updating the posterior distribution of the state variables based on particle filtering and the ensemble Kalman filter are introduced.« less
Progressive Dictionary Learning with Hierarchical Predictive Structure for Scalable Video Coding.
Dai, Wenrui; Shen, Yangmei; Xiong, Hongkai; Jiang, Xiaoqian; Zou, Junni; Taubman, David
2017-04-12
Dictionary learning has emerged as a promising alternative to the conventional hybrid coding framework. However, the rigid structure of sequential training and prediction degrades its performance in scalable video coding. This paper proposes a progressive dictionary learning framework with hierarchical predictive structure for scalable video coding, especially in low bitrate region. For pyramidal layers, sparse representation based on spatio-temporal dictionary is adopted to improve the coding efficiency of enhancement layers (ELs) with a guarantee of reconstruction performance. The overcomplete dictionary is trained to adaptively capture local structures along motion trajectories as well as exploit the correlations between neighboring layers of resolutions. Furthermore, progressive dictionary learning is developed to enable the scalability in temporal domain and restrict the error propagation in a close-loop predictor. Under the hierarchical predictive structure, online learning is leveraged to guarantee the training and prediction performance with an improved convergence rate. To accommodate with the stateof- the-art scalable extension of H.264/AVC and latest HEVC, standardized codec cores are utilized to encode the base and enhancement layers. Experimental results show that the proposed method outperforms the latest SHVC and HEVC simulcast over extensive test sequences with various resolutions.
The Crucial Role of Error Correlation for Uncertainty Modeling of CFD-Based Aerodynamics Increments
NASA Technical Reports Server (NTRS)
Hemsch, Michael J.; Walker, Eric L.
2011-01-01
The Ares I ascent aerodynamics database for Design Cycle 3 (DAC-3) was built from wind-tunnel test results and CFD solutions. The wind tunnel results were used to build the baseline response surfaces for wind-tunnel Reynolds numbers at power-off conditions. The CFD solutions were used to build increments to account for Reynolds number effects. We calculate the validation errors for the primary CFD code results at wind tunnel Reynolds number power-off conditions and would like to be able to use those errors to predict the validation errors for the CFD increments. However, the validation errors are large compared to the increments. We suggest a way forward that is consistent with common practice in wind tunnel testing which is to assume that systematic errors in the measurement process and/or the environment will subtract out when increments are calculated, thus making increments more reliable with smaller uncertainty than absolute values of the aerodynamic coefficients. A similar practice has arisen for the use of CFD to generate aerodynamic database increments. The basis of this practice is the assumption of strong correlation of the systematic errors inherent in each of the results used to generate an increment. The assumption of strong correlation is the inferential link between the observed validation uncertainties at wind-tunnel Reynolds numbers and the uncertainties to be predicted for flight. In this paper, we suggest a way to estimate the correlation coefficient and demonstrate the approach using code-to-code differences that were obtained for quality control purposes during the Ares I CFD campaign. Finally, since we can expect the increments to be relatively small compared to the baseline response surface and to be typically of the order of the baseline uncertainty, we find that it is necessary to be able to show that the correlation coefficients are close to unity to avoid overinflating the overall database uncertainty with the addition of the increments.
NASA Astrophysics Data System (ADS)
Liu, Deyang; An, Ping; Ma, Ran; Yang, Chao; Shen, Liquan; Li, Kai
2016-07-01
Three-dimensional (3-D) holoscopic imaging, also known as integral imaging, light field imaging, or plenoptic imaging, can provide natural and fatigue-free 3-D visualization. However, a large amount of data is required to represent the 3-D holoscopic content. Therefore, efficient coding schemes for this particular type of image are needed. A 3-D holoscopic image coding scheme with kernel-based minimum mean square error (MMSE) estimation is proposed. In the proposed scheme, the coding block is predicted by an MMSE estimator under statistical modeling. In order to obtain the signal statistical behavior, kernel density estimation (KDE) is utilized to estimate the probability density function of the statistical modeling. As bandwidth estimation (BE) is a key issue in the KDE problem, we also propose a BE method based on kernel trick. The experimental results demonstrate that the proposed scheme can achieve a better rate-distortion performance and a better visual rendering quality.
A TDM link with channel coding and digital voice.
NASA Technical Reports Server (NTRS)
Jones, M. W.; Tu, K.; Harton, P. L.
1972-01-01
The features of a TDM (time-division multiplexed) link model are described. A PCM telemetry sequence was coded for error correction and multiplexed with a digitized voice channel. An all-digital implementation of a variable-slope delta modulation algorithm was used to digitize the voice channel. The results of extensive testing are reported. The measured coding gain and the system performance over a Gaussian channel are compared with theoretical predictions and computer simulations. Word intelligibility scores are reported as a measure of voice channel performance.
The Representation of Prediction Error in Auditory Cortex
Rubin, Jonathan; Ulanovsky, Nachum; Tishby, Naftali
2016-01-01
To survive, organisms must extract information from the past that is relevant for their future. How this process is expressed at the neural level remains unclear. We address this problem by developing a novel approach from first principles. We show here how to generate low-complexity representations of the past that produce optimal predictions of future events. We then illustrate this framework by studying the coding of ‘oddball’ sequences in auditory cortex. We find that for many neurons in primary auditory cortex, trial-by-trial fluctuations of neuronal responses correlate with the theoretical prediction error calculated from the short-term past of the stimulation sequence, under constraints on the complexity of the representation of this past sequence. In some neurons, the effect of prediction error accounted for more than 50% of response variability. Reliable predictions often depended on a representation of the sequence of the last ten or more stimuli, although the representation kept only few details of that sequence. PMID:27490251
Hardware-efficient bosonic quantum error-correcting codes based on symmetry operators
NASA Astrophysics Data System (ADS)
Niu, Murphy Yuezhen; Chuang, Isaac L.; Shapiro, Jeffrey H.
2018-03-01
We establish a symmetry-operator framework for designing quantum error-correcting (QEC) codes based on fundamental properties of the underlying system dynamics. Based on this framework, we propose three hardware-efficient bosonic QEC codes that are suitable for χ(2 )-interaction based quantum computation in multimode Fock bases: the χ(2 ) parity-check code, the χ(2 ) embedded error-correcting code, and the χ(2 ) binomial code. All of these QEC codes detect photon-loss or photon-gain errors by means of photon-number parity measurements, and then correct them via χ(2 ) Hamiltonian evolutions and linear-optics transformations. Our symmetry-operator framework provides a systematic procedure for finding QEC codes that are not stabilizer codes, and it enables convenient extension of a given encoding to higher-dimensional qudit bases. The χ(2 ) binomial code is of special interest because, with m ≤N identified from channel monitoring, it can correct m -photon-loss errors, or m -photon-gain errors, or (m -1 )th -order dephasing errors using logical qudits that are encoded in O (N ) photons. In comparison, other bosonic QEC codes require O (N2) photons to correct the same degree of bosonic errors. Such improved photon efficiency underscores the additional error-correction power that can be provided by channel monitoring. We develop quantum Hamming bounds for photon-loss errors in the code subspaces associated with the χ(2 ) parity-check code and the χ(2 ) embedded error-correcting code, and we prove that these codes saturate their respective bounds. Our χ(2 ) QEC codes exhibit hardware efficiency in that they address the principal error mechanisms and exploit the available physical interactions of the underlying hardware, thus reducing the physical resources required for implementing their encoding, decoding, and error-correction operations, and their universal encoded-basis gate sets.
Permanence analysis of a concatenated coding scheme for error control
NASA Technical Reports Server (NTRS)
Costello, D. J., Jr.; Lin, S.; Kasami, T.
1983-01-01
A concatenated coding scheme for error control in data communications is analyzed. In this scheme, the inner code is used for both error correction and detection, however, the outer code is used only for error detection. A retransmission is requested if the outer code detects the presence of errors after the inner code decoding. Probability of undetected error is derived and bounded. A particular example, proposed for the planetary program, is analyzed.
Probability of undetected error after decoding for a concatenated coding scheme
NASA Technical Reports Server (NTRS)
Costello, D. J., Jr.; Lin, S.
1984-01-01
A concatenated coding scheme for error control in data communications is analyzed. In this scheme, the inner code is used for both error correction and detection, however the outer code is used only for error detection. A retransmission is requested if the outer code detects the presence of errors after the inner code decoding. Probability of undetected error is derived and bounded. A particular example, proposed for NASA telecommand system is analyzed.
A concatenated coding scheme for error control
NASA Technical Reports Server (NTRS)
Lin, S.
1985-01-01
A concatenated coding scheme for error contol in data communications was analyzed. The inner code is used for both error correction and detection, however the outer code is used only for error detection. A retransmission is requested if either the inner code decoder fails to make a successful decoding or the outer code decoder detects the presence of errors after the inner code decoding. Probability of undetected error of the proposed scheme is derived. An efficient method for computing this probability is presented. Throughout efficiency of the proposed error control scheme incorporated with a selective repeat ARQ retransmission strategy is analyzed.
A Cerebellar Framework for Predictive Coding and Homeostatic Regulation in Depressive Disorder.
Schutter, Dennis J L G
2016-02-01
Depressive disorder is associated with abnormalities in the processing of reward and punishment signals and disturbances in homeostatic regulation. These abnormalities are proposed to impair error minimization routines for reducing uncertainty. Several lines of research point towards a role of the cerebellum in reward- and punishment-related predictive coding and homeostatic regulatory function in depressive disorder. Available functional and anatomical evidence suggests that in addition to the cortico-limbic networks, the cerebellum is part of the dysfunctional brain circuit in depressive disorder as well. It is proposed that impaired cerebellar function contributes to abnormalities in predictive coding and homeostatic dysregulation in depressive disorder. Further research on the role of the cerebellum in depressive disorder may further extend our knowledge on the functional and neural mechanisms of depressive disorder and development of novel antidepressant treatments strategies targeting the cerebellum.
A cascaded coding scheme for error control and its performance analysis
NASA Technical Reports Server (NTRS)
Lin, Shu; Kasami, Tadao; Fujiwara, Tohru; Takata, Toyoo
1986-01-01
A coding scheme is investigated for error control in data communication systems. The scheme is obtained by cascading two error correcting codes, called the inner and outer codes. The error performance of the scheme is analyzed for a binary symmetric channel with bit error rate epsilon <1/2. It is shown that if the inner and outer codes are chosen properly, extremely high reliability can be attained even for a high channel bit error rate. Various specific example schemes with inner codes ranging form high rates to very low rates and Reed-Solomon codes as inner codes are considered, and their error probabilities are evaluated. They all provide extremely high reliability even for very high bit error rates. Several example schemes are being considered by NASA for satellite and spacecraft down link error control.
Functional dissociation of stimulus intensity encoding and predictive coding of pain in the insula
Geuter, Stephan; Boll, Sabrina; Eippert, Falk; Büchel, Christian
2017-01-01
The computational principles by which the brain creates a painful experience from nociception are still unknown. Classic theories suggest that cortical regions either reflect stimulus intensity or additive effects of intensity and expectations, respectively. By contrast, predictive coding theories provide a unified framework explaining how perception is shaped by the integration of beliefs about the world with mismatches resulting from the comparison of these beliefs against sensory input. Using functional magnetic resonance imaging during a probabilistic heat pain paradigm, we investigated which computations underlie pain perception. Skin conductance, pupil dilation, and anterior insula responses to cued pain stimuli strictly followed the response patterns hypothesized by the predictive coding model, whereas posterior insula encoded stimulus intensity. This novel functional dissociation of pain processing within the insula together with previously observed alterations in chronic pain offer a novel interpretation of aberrant pain processing as disturbed weighting of predictions and prediction errors. DOI: http://dx.doi.org/10.7554/eLife.24770.001 PMID:28524817
New double-byte error-correcting codes for memory systems
NASA Technical Reports Server (NTRS)
Feng, Gui-Liang; Wu, Xinen; Rao, T. R. N.
1996-01-01
Error-correcting or error-detecting codes have been used in the computer industry to increase reliability, reduce service costs, and maintain data integrity. The single-byte error-correcting and double-byte error-detecting (SbEC-DbED) codes have been successfully used in computer memory subsystems. There are many methods to construct double-byte error-correcting (DBEC) codes. In the present paper we construct a class of double-byte error-correcting codes, which are more efficient than those known to be optimum, and a decoding procedure for our codes is also considered.
Assessment of Current Jet Noise Prediction Capabilities
NASA Technical Reports Server (NTRS)
Hunter, Craid A.; Bridges, James E.; Khavaran, Abbas
2008-01-01
An assessment was made of the capability of jet noise prediction codes over a broad range of jet flows, with the objective of quantifying current capabilities and identifying areas requiring future research investment. Three separate codes in NASA s possession, representative of two classes of jet noise prediction codes, were evaluated, one empirical and two statistical. The empirical code is the Stone Jet Noise Module (ST2JET) contained within the ANOPP aircraft noise prediction code. It is well documented, and represents the state of the art in semi-empirical acoustic prediction codes where virtual sources are attributed to various aspects of noise generation in each jet. These sources, in combination, predict the spectral directivity of a jet plume. A total of 258 jet noise cases were examined on the ST2JET code, each run requiring only fractions of a second to complete. Two statistical jet noise prediction codes were also evaluated, JeNo v1, and Jet3D. Fewer cases were run for the statistical prediction methods because they require substantially more resources, typically a Reynolds-Averaged Navier-Stokes solution of the jet, volume integration of the source statistical models over the entire plume, and a numerical solution of the governing propagation equation within the jet. In the evaluation process, substantial justification of experimental datasets used in the evaluations was made. In the end, none of the current codes can predict jet noise within experimental uncertainty. The empirical code came within 2dB on a 1/3 octave spectral basis for a wide range of flows. The statistical code Jet3D was within experimental uncertainty at broadside angles for hot supersonic jets, but errors in peak frequency and amplitude put it out of experimental uncertainty at cooler, lower speed conditions. Jet3D did not predict changes in directivity in the downstream angles. The statistical code JeNo,v1 was within experimental uncertainty predicting noise from cold subsonic jets at all angles, but did not predict changes with heating of the jet and did not account for directivity changes at supersonic conditions. Shortcomings addressed here give direction for future work relevant to the statistical-based prediction methods. A full report will be released as a chapter in a NASA publication assessing the state of the art in aircraft noise prediction.
Great Expectations: Is there Evidence for Predictive Coding in Auditory Cortex?
Heilbron, Micha; Chait, Maria
2017-08-04
Predictive coding is possibly one of the most influential, comprehensive, and controversial theories of neural function. While proponents praise its explanatory potential, critics object that key tenets of the theory are untested or even untestable. The present article critically examines existing evidence for predictive coding in the auditory modality. Specifically, we identify five key assumptions of the theory and evaluate each in the light of animal, human and modeling studies of auditory pattern processing. For the first two assumptions - that neural responses are shaped by expectations and that these expectations are hierarchically organized - animal and human studies provide compelling evidence. The anticipatory, predictive nature of these expectations also enjoys empirical support, especially from studies on unexpected stimulus omission. However, for the existence of separate error and prediction neurons, a key assumption of the theory, evidence is lacking. More work exists on the proposed oscillatory signatures of predictive coding, and on the relation between attention and precision. However, results on these latter two assumptions are mixed or contradictory. Looking to the future, more collaboration between human and animal studies, aided by model-based analyses will be needed to test specific assumptions and implementations of predictive coding - and, as such, help determine whether this popular grand theory can fulfill its expectations. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
A concatenated coding scheme for error control
NASA Technical Reports Server (NTRS)
Kasami, T.; Fujiwara, T.; Lin, S.
1986-01-01
In this paper, a concatenated coding scheme for error control in data communications is presented and analyzed. In this scheme, the inner code is used for both error correction and detection; however, the outer code is used only for error detection. A retransmission is requested if either the inner code decoder fails to make a successful decoding or the outer code decoder detects the presence of errors after the inner code decoding. Probability of undetected error (or decoding error) of the proposed scheme is derived. An efficient method for computing this probability is presented. Throughput efficiency of the proposed error control scheme incorporated with a selective-repeat ARQ retransmission strategy is also analyzed. Three specific examples are presented. One of the examples is proposed for error control in the NASA Telecommand System.
NASA Technical Reports Server (NTRS)
1995-01-01
In the course of preparing the SD_SURF space debris analysis code, several problems and possibilities for improvement of the BUMPERII code were documented and sent to MSFC. These suggestions and problem reports are included here as a part of the contract final report. This includes reducing BUMPERII memory requirements, compiling problems with BUMPERII, FORTRAN-lint analysis of BUMPERII, and error in function PRV in BUMPERII.
NASA Astrophysics Data System (ADS)
Yahampath, Pradeepa
2017-12-01
Consider communicating a correlated Gaussian source over a Rayleigh fading channel with no knowledge of the channel signal-to-noise ratio (CSNR) at the transmitter. In this case, a digital system cannot be optimal for a range of CSNRs. Analog transmission however is optimal at all CSNRs, if the source and channel are memoryless and bandwidth matched. This paper presents new hybrid digital-analog (HDA) systems for sources with memory and channels with bandwidth expansion, which outperform both digital-only and analog-only systems over a wide range of CSNRs. The digital part is either a predictive quantizer or a transform code, used to achieve a coding gain. Analog part uses linear encoding to transmit the quantization error which improves the performance under CSNR variations. The hybrid encoder is optimized to achieve the minimum AMMSE (average minimum mean square error) over the CSNR distribution. To this end, analytical expressions are derived for the AMMSE of asymptotically optimal systems. It is shown that the outage CSNR of the channel code and the analog-digital power allocation must be jointly optimized to achieve the minimum AMMSE. In the case of HDA predictive quantization, a simple algorithm is presented to solve the optimization problem. Experimental results are presented for both Gauss-Markov sources and speech signals.
Kuhn, Stefan; Egert, Björn; Neumann, Steffen; Steinbeck, Christoph
2008-09-25
Current efforts in Metabolomics, such as the Human Metabolome Project, collect structures of biological metabolites as well as data for their characterisation, such as spectra for identification of substances and measurements of their concentration. Still, only a fraction of existing metabolites and their spectral fingerprints are known. Computer-Assisted Structure Elucidation (CASE) of biological metabolites will be an important tool to leverage this lack of knowledge. Indispensable for CASE are modules to predict spectra for hypothetical structures. This paper evaluates different statistical and machine learning methods to perform predictions of proton NMR spectra based on data from our open database NMRShiftDB. A mean absolute error of 0.18 ppm was achieved for the prediction of proton NMR shifts ranging from 0 to 11 ppm. Random forest, J48 decision tree and support vector machines achieved similar overall errors. HOSE codes being a notably simple method achieved a comparatively good result of 0.17 ppm mean absolute error. NMR prediction methods applied in the course of this work delivered precise predictions which can serve as a building block for Computer-Assisted Structure Elucidation for biological metabolites.
Wind turbine design codes: A comparison of the structural response
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buhl, M.L. Jr.; Wright, A.D.; Pierce, K.G.
2000-03-01
The National Wind Technology Center (NWTC) of the National Renewable Energy Laboratory is continuing a comparison of several computer codes used in the design and analysis of wind turbines. The second part of this comparison determined how well the programs predict the structural response of wind turbines. In this paper, the authors compare the structural response for four programs: ADAMS, BLADED, FAST{_}AD, and YawDyn. ADAMS is a commercial, multibody-dynamics code from Mechanical Dynamics, Inc. BLADED is a commercial, performance and structural-response code from Garrad Hassan and Partners Limited. FAST{_}AD is a structural-response code developed by Oregon State University and themore » University of Utah for the NWTC. YawDyn is a structural-response code developed by the University of Utah for the NWTC. ADAMS, FAST{_}AD, and YawDyn use the University of Utah's AeroDyn subroutine package for calculating aerodynamic forces. Although errors were found in all the codes during this study, once they were fixed, the codes agreed surprisingly well for most of the cases and configurations that were evaluated. One unresolved discrepancy between BLADED and the AeroDyn-based codes was when there was blade and/or teeter motion in addition to a large yaw error.« less
Predictive Coding or Evidence Accumulation? False Inference and Neuronal Fluctuations
Friston, Karl J.; Kleinschmidt, Andreas
2010-01-01
Perceptual decisions can be made when sensory input affords an inference about what generated that input. Here, we report findings from two independent perceptual experiments conducted during functional magnetic resonance imaging (fMRI) with a sparse event-related design. The first experiment, in the visual modality, involved forced-choice discrimination of coherence in random dot kinematograms that contained either subliminal or periliminal motion coherence. The second experiment, in the auditory domain, involved free response detection of (non-semantic) near-threshold acoustic stimuli. We analysed fluctuations in ongoing neural activity, as indexed by fMRI, and found that neuronal activity in sensory areas (extrastriate visual and early auditory cortex) biases perceptual decisions towards correct inference and not towards a specific percept. Hits (detection of near-threshold stimuli) were preceded by significantly higher activity than both misses of identical stimuli or false alarms, in which percepts arise in the absence of appropriate sensory input. In accord with predictive coding models and the free-energy principle, this observation suggests that cortical activity in sensory brain areas reflects the precision of prediction errors and not just the sensory evidence or prediction errors per se. PMID:20369004
Error control for reliable digital data transmission and storage systems
NASA Technical Reports Server (NTRS)
Costello, D. J., Jr.; Deng, R. H.
1985-01-01
A problem in designing semiconductor memories is to provide some measure of error control without requiring excessive coding overhead or decoding time. In LSI and VLSI technology, memories are often organized on a multiple bit (or byte) per chip basis. For example, some 256K-bit DRAM's are organized in 32Kx8 bit-bytes. Byte oriented codes such as Reed Solomon (RS) codes can provide efficient low overhead error control for such memories. However, the standard iterative algorithm for decoding RS codes is too slow for these applications. In this paper we present some special decoding techniques for extended single-and-double-error-correcting RS codes which are capable of high speed operation. These techniques are designed to find the error locations and the error values directly from the syndrome without having to use the iterative alorithm to find the error locator polynomial. Two codes are considered: (1) a d sub min = 4 single-byte-error-correcting (SBEC), double-byte-error-detecting (DBED) RS code; and (2) a d sub min = 6 double-byte-error-correcting (DBEC), triple-byte-error-detecting (TBED) RS code.
Error floor behavior study of LDPC codes for concatenated codes design
NASA Astrophysics Data System (ADS)
Chen, Weigang; Yin, Liuguo; Lu, Jianhua
2007-11-01
Error floor behavior of low-density parity-check (LDPC) codes using quantized decoding algorithms is statistically studied with experimental results on a hardware evaluation platform. The results present the distribution of the residual errors after decoding failure and reveal that the number of residual error bits in a codeword is usually very small using quantized sum-product (SP) algorithm. Therefore, LDPC code may serve as the inner code in a concatenated coding system with a high code rate outer code and thus an ultra low error floor can be achieved. This conclusion is also verified by the experimental results.
Combinatorial neural codes from a mathematical coding theory perspective.
Curto, Carina; Itskov, Vladimir; Morrison, Katherine; Roth, Zachary; Walker, Judy L
2013-07-01
Shannon's seminal 1948 work gave rise to two distinct areas of research: information theory and mathematical coding theory. While information theory has had a strong influence on theoretical neuroscience, ideas from mathematical coding theory have received considerably less attention. Here we take a new look at combinatorial neural codes from a mathematical coding theory perspective, examining the error correction capabilities of familiar receptive field codes (RF codes). We find, perhaps surprisingly, that the high levels of redundancy present in these codes do not support accurate error correction, although the error-correcting performance of receptive field codes catches up to that of random comparison codes when a small tolerance to error is introduced. However, receptive field codes are good at reflecting distances between represented stimuli, while the random comparison codes are not. We suggest that a compromise in error-correcting capability may be a necessary price to pay for a neural code whose structure serves not only error correction, but must also reflect relationships between stimuli.
On codes with multi-level error-correction capabilities
NASA Technical Reports Server (NTRS)
Lin, Shu
1987-01-01
In conventional coding for error control, all the information symbols of a message are regarded equally significant, and hence codes are devised to provide equal protection for each information symbol against channel errors. However, in some occasions, some information symbols in a message are more significant than the other symbols. As a result, it is desired to devise codes with multilevel error-correcting capabilities. Another situation where codes with multi-level error-correcting capabilities are desired is in broadcast communication systems. An m-user broadcast channel has one input and m outputs. The single input and each output form a component channel. The component channels may have different noise levels, and hence the messages transmitted over the component channels require different levels of protection against errors. Block codes with multi-level error-correcting capabilities are also known as unequal error protection (UEP) codes. Structural properties of these codes are derived. Based on these structural properties, two classes of UEP codes are constructed.
Error Correction using Quantum Quasi-Cyclic Low-Density Parity-Check(LDPC) Codes
NASA Astrophysics Data System (ADS)
Jing, Lin; Brun, Todd; Quantum Research Team
Quasi-cyclic LDPC codes can approach the Shannon capacity and have efficient decoders. Manabu Hagiwara et al., 2007 presented a method to calculate parity check matrices with high girth. Two distinct, orthogonal matrices Hc and Hd are used. Using submatrices obtained from Hc and Hd by deleting rows, we can alter the code rate. The submatrix of Hc is used to correct Pauli X errors, and the submatrix of Hd to correct Pauli Z errors. We simulated this system for depolarizing noise on USC's High Performance Computing Cluster, and obtained the block error rate (BER) as a function of the error weight and code rate. From the rates of uncorrectable errors under different error weights we can extrapolate the BER to any small error probability. Our results show that this code family can perform reasonably well even at high code rates, thus considerably reducing the overhead compared to concatenated and surface codes. This makes these codes promising as storage blocks in fault-tolerant quantum computation. Error Correction using Quantum Quasi-Cyclic Low-Density Parity-Check(LDPC) Codes.
Masking of errors in transmission of VAPC-coded speech
NASA Technical Reports Server (NTRS)
Cox, Neil B.; Froese, Edwin L.
1990-01-01
A subjective evaluation is provided of the bit error sensitivity of the message elements of a Vector Adaptive Predictive (VAPC) speech coder, along with an indication of the amenability of these elements to a popular error masking strategy (cross frame hold over). As expected, a wide range of bit error sensitivity was observed. The most sensitive message components were the short term spectral information and the most significant bits of the pitch and gain indices. The cross frame hold over strategy was found to be useful for pitch and gain information, but it was not beneficial for the spectral information unless severe corruption had occurred.
A cascaded coding scheme for error control and its performance analysis
NASA Technical Reports Server (NTRS)
Lin, S.
1986-01-01
A coding scheme for error control in data communication systems is investigated. The scheme is obtained by cascading two error correcting codes, called the inner and the outer codes. The error performance of the scheme is analyzed for a binary symmetric channel with bit error rate epsilon < 1/2. It is shown that, if the inner and outer codes are chosen properly, extremely high reliability can be attained even for a high channel bit error rate. Various specific example schemes with inner codes ranging from high rates to very low rates and Reed-Solomon codes are considered, and their probabilities are evaluated. They all provide extremely high reliability even for very high bit error rates, say 0.1 to 0.01. Several example schemes are being considered by NASA for satellite and spacecraft down link error control.
Augmented burst-error correction for UNICON laser memory. [digital memory
NASA Technical Reports Server (NTRS)
Lim, R. S.
1974-01-01
A single-burst-error correction system is described for data stored in the UNICON laser memory. In the proposed system, a long fire code with code length n greater than 16,768 bits was used as an outer code to augment an existing inner shorter fire code for burst error corrections. The inner fire code is a (80,64) code shortened from the (630,614) code, and it is used to correct a single-burst-error on a per-word basis with burst length b less than or equal to 6. The outer code, with b less than or equal to 12, would be used to correct a single-burst-error on a per-page basis, where a page consists of 512 32-bit words. In the proposed system, the encoding and error detection processes are implemented by hardware. A minicomputer, currently used as a UNICON memory management processor, is used on a time-demanding basis for error correction. Based upon existing error statistics, this combination of an inner code and an outer code would enable the UNICON system to obtain a very low error rate in spite of flaws affecting the recorded data.
Predictive and Neural Predictive Control of Uncertain Systems
NASA Technical Reports Server (NTRS)
Kelkar, Atul G.
2000-01-01
Accomplishments and future work are:(1) Stability analysis: the work completed includes characterization of stability of receding horizon-based MPC in the setting of LQ paradigm. The current work-in-progress includes analyzing local as well as global stability of the closed-loop system under various nonlinearities; for example, actuator nonlinearities; sensor nonlinearities, and other plant nonlinearities. Actuator nonlinearities include three major types of nonlineaxities: saturation, dead-zone, and (0, 00) sector. (2) Robustness analysis: It is shown that receding horizon parameters such as input and output horizon lengths have direct effect on the robustness of the system. (3) Code development: A matlab code has been developed which can simulate various MPC formulations. The current effort is to generalize the code to include ability to handle all plant types and all MPC types. (4) Improved predictor: It is shown that MPC design using better predictors that can minimize prediction errors. It is shown analytically and numerically that Smith predictor can provide closed-loop stability under GPC operation for plants with dead times where standard optimal predictor fails. (5) Neural network predictors: When neural network is used as predictor it can be shown that neural network predicts the plant output within some finite error bound under certain conditions. Our preliminary study shows that with proper choice of update laws and network architectures such bound can be obtained. However, much work needs to be done to obtain a similar result in general case.
A spatially adaptive spectral re-ordering technique for lossless coding of hyper-spectral images
NASA Technical Reports Server (NTRS)
Memon, Nasir D.; Galatsanos, Nikolas
1995-01-01
In this paper, we propose a new approach, applicable to lossless compression of hyper-spectral images, that alleviates some limitations of linear prediction as applied to this problem. According to this approach, an adaptive re-ordering of the spectral components of each pixel is performed prior to prediction and encoding. This re-ordering adaptively exploits, on a pixel-by pixel basis, the presence of inter-band correlations for prediction. Furthermore, the proposed approach takes advantage of spatial correlations, and does not introduce any coding overhead to transmit the order of the spectral bands. This is accomplished by using the assumption that two spatially adjacent pixels are expected to have similar spectral relationships. We thus have a simple technique to exploit spectral and spatial correlations in hyper-spectral data sets, leading to compression performance improvements as compared to our previously reported techniques for lossless compression. We also look at some simple error modeling techniques for further exploiting any structure that remains in the prediction residuals prior to entropy coding.
Coding for reliable satellite communications
NASA Technical Reports Server (NTRS)
Gaarder, N. T.; Lin, S.
1986-01-01
This research project was set up to study various kinds of coding techniques for error control in satellite and space communications for NASA Goddard Space Flight Center. During the project period, researchers investigated the following areas: (1) decoding of Reed-Solomon codes in terms of dual basis; (2) concatenated and cascaded error control coding schemes for satellite and space communications; (3) use of hybrid coding schemes (error correction and detection incorporated with retransmission) to improve system reliability and throughput in satellite communications; (4) good codes for simultaneous error correction and error detection, and (5) error control techniques for ring and star networks.
Error and Error Mitigation in Low-Coverage Genome Assemblies
Hubisz, Melissa J.; Lin, Michael F.; Kellis, Manolis; Siepel, Adam
2011-01-01
The recent release of twenty-two new genome sequences has dramatically increased the data available for mammalian comparative genomics, but twenty of these new sequences are currently limited to ∼2× coverage. Here we examine the extent of sequencing error in these 2× assemblies, and its potential impact in downstream analyses. By comparing 2× assemblies with high-quality sequences from the ENCODE regions, we estimate the rate of sequencing error to be 1–4 errors per kilobase. While this error rate is fairly modest, sequencing error can still have surprising effects. For example, an apparent lineage-specific insertion in a coding region is more likely to reflect sequencing error than a true biological event, and the length distribution of coding indels is strongly distorted by error. We find that most errors are contributed by a small fraction of bases with low quality scores, in particular, by the ends of reads in regions of single-read coverage in the assembly. We explore several approaches for automatic sequencing error mitigation (SEM), making use of the localized nature of sequencing error, the fact that it is well predicted by quality scores, and information about errors that comes from comparisons across species. Our automatic methods for error mitigation cannot replace the need for additional sequencing, but they do allow substantial fractions of errors to be masked or eliminated at the cost of modest amounts of over-correction, and they can reduce the impact of error in downstream phylogenomic analyses. Our error-mitigated alignments are available for download. PMID:21340033
An Interoceptive Predictive Coding Model of Conscious Presence
Seth, Anil K.; Suzuki, Keisuke; Critchley, Hugo D.
2011-01-01
We describe a theoretical model of the neurocognitive mechanisms underlying conscious presence and its disturbances. The model is based on interoceptive prediction error and is informed by predictive models of agency, general models of hierarchical predictive coding and dopaminergic signaling in cortex, the role of the anterior insular cortex (AIC) in interoception and emotion, and cognitive neuroscience evidence from studies of virtual reality and of psychiatric disorders of presence, specifically depersonalization/derealization disorder. The model associates presence with successful suppression by top-down predictions of informative interoceptive signals evoked by autonomic control signals and, indirectly, by visceral responses to afferent sensory signals. The model connects presence to agency by allowing that predicted interoceptive signals will depend on whether afferent sensory signals are determined, by a parallel predictive-coding mechanism, to be self-generated or externally caused. Anatomically, we identify the AIC as the likely locus of key neural comparator mechanisms. Our model integrates a broad range of previously disparate evidence, makes predictions for conjoint manipulations of agency and presence, offers a new view of emotion as interoceptive inference, and represents a step toward a mechanistic account of a fundamental phenomenological property of consciousness. PMID:22291673
A concatenated coding scheme for error control
NASA Technical Reports Server (NTRS)
Lin, S.
1985-01-01
A concatenated coding scheme for error control in data communications is analyzed. The inner code is used for both error correction and detection, however the outer code is used only for error detection. A retransmission is requested if the outer code detects the presence of errors after the inner code decoding. The probability of undetected error of the above error control scheme is derived and upper bounded. Two specific exmaples are analyzed. In the first example, the inner code is a distance-4 shortened Hamming code with generator polynomial (X+1)(X(6)+X+1) = X(7)+X(6)+X(2)+1 and the outer code is a distance-4 shortened Hamming code with generator polynomial (X+1)X(15+X(14)+X(13)+X(12)+X(4)+X(3)+X(2)+X+1) = X(16)+X(12)+X(5)+1 which is the X.25 standard for packet-switched data network. This example is proposed for error control on NASA telecommand links. In the second example, the inner code is the same as that in the first example but the outer code is a shortened Reed-Solomon code with symbols from GF(2(8)) and generator polynomial (X+1)(X+alpha) where alpha is a primitive element in GF(z(8)).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bond, J.W.
1988-01-01
Data-compression codes offer the possibility of improving the thruput of existing communication systems in the near term. This study was undertaken to determine if data-compression codes could be utilized to provide message compression in a channel with up to a 0.10-bit error rate. The data-compression capabilities of codes were investigated by estimating the average number of bits-per-character required to transmit narrative files. The performance of the codes in a channel with errors (a noisy channel) was investigated in terms of the average numbers of characters-decoded-in-error and of characters-printed-in-error-per-bit-error. Results were obtained by encoding four narrative files, which were resident onmore » an IBM-PC and use a 58-character set. The study focused on Huffman codes and suffix/prefix comma-free codes. Other data-compression codes, in particular, block codes and some simple variants of block codes, are briefly discussed to place the study results in context. Comma-free codes were found to have the most-promising data compression because error propagation due to bit errors are limited to a few characters for these codes. A technique was found to identify a suffix/prefix comma-free code giving nearly the same data compressions as a Huffman code with much less error propagation than the Huffman codes. Greater data compression can be achieved through the use of this comma-free code word assignments based on conditioned probabilities of character occurrence.« less
Density-matrix simulation of small surface codes under current and projected experimental noise
NASA Astrophysics Data System (ADS)
O'Brien, T. E.; Tarasinski, B.; DiCarlo, L.
2017-09-01
We present a density-matrix simulation of the quantum memory and computing performance of the distance-3 logical qubit Surface-17, following a recently proposed quantum circuit and using experimental error parameters for transmon qubits in a planar circuit QED architecture. We use this simulation to optimize components of the QEC scheme (e.g., trading off stabilizer measurement infidelity for reduced cycle time) and to investigate the benefits of feedback harnessing the fundamental asymmetry of relaxation-dominated error in the constituent transmons. A lower-order approximate calculation extends these predictions to the distance-5 Surface-49. These results clearly indicate error rates below the fault-tolerance threshold of the surface code, and the potential for Surface-17 to perform beyond the break-even point of quantum memory. However, Surface-49 is required to surpass the break-even point of computation at state-of-the-art qubit relaxation times and readout speeds.
Code Verification Capabilities and Assessments in Support of ASC V&V Level 2 Milestone #6035
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doebling, Scott William; Budzien, Joanne Louise; Ferguson, Jim Michael
This document provides a summary of the code verification activities supporting the FY17 Level 2 V&V milestone entitled “Deliver a Capability for V&V Assessments of Code Implementations of Physics Models and Numerical Algorithms in Support of Future Predictive Capability Framework Pegposts.” The physics validation activities supporting this milestone are documented separately. The objectives of this portion of the milestone are: 1) Develop software tools to support code verification analysis; 2) Document standard definitions of code verification test problems; and 3) Perform code verification assessments (focusing on error behavior of algorithms). This report and a set of additional standalone documents servemore » as the compilation of results demonstrating accomplishment of these objectives.« less
Content Coding of Psychotherapy Transcripts Using Labeled Topic Models.
Gaut, Garren; Steyvers, Mark; Imel, Zac E; Atkins, David C; Smyth, Padhraic
2017-03-01
Psychotherapy represents a broad class of medical interventions received by millions of patients each year. Unlike most medical treatments, its primary mechanisms are linguistic; i.e., the treatment relies directly on a conversation between a patient and provider. However, the evaluation of patient-provider conversation suffers from critical shortcomings, including intensive labor requirements, coder error, nonstandardized coding systems, and inability to scale up to larger data sets. To overcome these shortcomings, psychotherapy analysis needs a reliable and scalable method for summarizing the content of treatment encounters. We used a publicly available psychotherapy corpus from Alexander Street press comprising a large collection of transcripts of patient-provider conversations to compare coding performance for two machine learning methods. We used the labeled latent Dirichlet allocation (L-LDA) model to learn associations between text and codes, to predict codes in psychotherapy sessions, and to localize specific passages of within-session text representative of a session code. We compared the L-LDA model to a baseline lasso regression model using predictive accuracy and model generalizability (measured by calculating the area under the curve (AUC) from the receiver operating characteristic curve). The L-LDA model outperforms the lasso logistic regression model at predicting session-level codes with average AUC scores of 0.79, and 0.70, respectively. For fine-grained level coding, L-LDA and logistic regression are able to identify specific talk-turns representative of symptom codes. However, model performance for talk-turn identification is not yet as reliable as human coders. We conclude that the L-LDA model has the potential to be an objective, scalable method for accurate automated coding of psychotherapy sessions that perform better than comparable discriminative methods at session-level coding and can also predict fine-grained codes.
Content Coding of Psychotherapy Transcripts Using Labeled Topic Models
Gaut, Garren; Steyvers, Mark; Imel, Zac E; Atkins, David C; Smyth, Padhraic
2016-01-01
Psychotherapy represents a broad class of medical interventions received by millions of patients each year. Unlike most medical treatments, its primary mechanisms are linguistic; i.e., the treatment relies directly on a conversation between a patient and provider. However, the evaluation of patient-provider conversation suffers from critical shortcomings, including intensive labor requirements, coder error, non-standardized coding systems, and inability to scale up to larger data sets. To overcome these shortcomings, psychotherapy analysis needs a reliable and scalable method for summarizing the content of treatment encounters. We used a publicly-available psychotherapy corpus from Alexander Street press comprising a large collection of transcripts of patient-provider conversations to compare coding performance for two machine learning methods. We used the Labeled Latent Dirichlet Allocation (L-LDA) model to learn associations between text and codes, to predict codes in psychotherapy sessions, and to localize specific passages of within-session text representative of a session code. We compared the L-LDA model to a baseline lasso regression model using predictive accuracy and model generalizability (measured by calculating the area under the curve (AUC) from the receiver operating characteristic (ROC) curve). The L-LDA model outperforms the lasso logistic regression model at predicting session-level codes with average AUC scores of .79, and .70, respectively. For fine-grained level coding, L-LDA and logistic regression are able to identify specific talk-turns representative of symptom codes. However, model performance for talk-turn identification is not yet as reliable as human coders. We conclude that the L-LDA model has the potential to be an objective, scaleable method for accurate automated coding of psychotherapy sessions that performs better than comparable discriminative methods at session-level coding and can also predict fine-grained codes. PMID:26625437
Improved Speech Coding Based on Open-Loop Parameter Estimation
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Chen, Ya-Chin; Longman, Richard W.
2000-01-01
A nonlinear optimization algorithm for linear predictive speech coding was developed early that not only optimizes the linear model coefficients for the open loop predictor, but does the optimization including the effects of quantization of the transmitted residual. It also simultaneously optimizes the quantization levels used for each speech segment. In this paper, we present an improved method for initialization of this nonlinear algorithm, and demonstrate substantial improvements in performance. In addition, the new procedure produces monotonically improving speech quality with increasing numbers of bits used in the transmitted error residual. Examples of speech encoding and decoding are given for 8 speech segments and signal to noise levels as high as 47 dB are produced. As in typical linear predictive coding, the optimization is done on the open loop speech analysis model. Here we demonstrate that minimizing the error of the closed loop speech reconstruction, instead of the simpler open loop optimization, is likely to produce negligible improvement in speech quality. The examples suggest that the algorithm here is close to giving the best performance obtainable from a linear model, for the chosen order with the chosen number of bits for the codebook.
NASA Technical Reports Server (NTRS)
Noble, Viveca K.
1994-01-01
When data is transmitted through a noisy channel, errors are produced within the data rendering it indecipherable. Through the use of error control coding techniques, the bit error rate can be reduced to any desired level without sacrificing the transmission data rate. The Astrionics Laboratory at Marshall Space Flight Center has decided to use a modular, end-to-end telemetry data simulator to simulate the transmission of data from flight to ground and various methods of error control. The simulator includes modules for random data generation, data compression, Consultative Committee for Space Data Systems (CCSDS) transfer frame formation, error correction/detection, error generation and error statistics. The simulator utilizes a concatenated coding scheme which includes CCSDS standard (255,223) Reed-Solomon (RS) code over GF(2(exp 8)) with interleave depth of 5 as the outermost code, (7, 1/2) convolutional code as an inner code and CCSDS recommended (n, n-16) cyclic redundancy check (CRC) code as the innermost code, where n is the number of information bits plus 16 parity bits. The received signal-to-noise for a desired bit error rate is greatly reduced through the use of forward error correction techniques. Even greater coding gain is provided through the use of a concatenated coding scheme. Interleaving/deinterleaving is necessary to randomize burst errors which may appear at the input of the RS decoder. The burst correction capability length is increased in proportion to the interleave depth. The modular nature of the simulator allows for inclusion or exclusion of modules as needed. This paper describes the development and operation of the simulator, the verification of a C-language Reed-Solomon code, and the possibility of using Comdisco SPW(tm) as a tool for determining optimal error control schemes.
Analysis of a Shock-Associated Noise Prediction Model Using Measured Jet Far-Field Noise Data
NASA Technical Reports Server (NTRS)
Dahl, Milo D.; Sharpe, Jacob A.
2014-01-01
A code for predicting supersonic jet broadband shock-associated noise was assessed using a database containing noise measurements of a jet issuing from a convergent nozzle. The jet was operated at 24 conditions covering six fully expanded Mach numbers with four total temperature ratios. To enable comparisons of the predicted shock-associated noise component spectra with data, the measured total jet noise spectra were separated into mixing noise and shock-associated noise component spectra. Comparisons between predicted and measured shock-associated noise component spectra were used to identify deficiencies in the prediction model. Proposed revisions to the model, based on a study of the overall sound pressure levels for the shock-associated noise component of the measured data, a sensitivity analysis of the model parameters with emphasis on the definition of the convection velocity parameter, and a least-squares fit of the predicted to the measured shock-associated noise component spectra, resulted in a new definition for the source strength spectrum in the model. An error analysis showed that the average error in the predicted spectra was reduced by as much as 3.5 dB for the revised model relative to the average error for the original model.
An investigation of error characteristics and coding performance
NASA Technical Reports Server (NTRS)
Ebel, William J.; Ingels, Frank M.
1993-01-01
The first year's effort on NASA Grant NAG5-2006 was an investigation to characterize typical errors resulting from the EOS dorn link. The analysis methods developed for this effort were used on test data from a March 1992 White Sands Terminal Test. The effectiveness of a concatenated coding scheme of a Reed Solomon outer code and a convolutional inner code versus a Reed Solomon only code scheme has been investigated as well as the effectiveness of a Periodic Convolutional Interleaver in dispersing errors of certain types. The work effort consisted of development of software that allows simulation studies with the appropriate coding schemes plus either simulated data with errors or actual data with errors. The software program is entitled Communication Link Error Analysis (CLEAN) and models downlink errors, forward error correcting schemes, and interleavers.
New Class of Quantum Error-Correcting Codes for a Bosonic Mode
NASA Astrophysics Data System (ADS)
Michael, Marios H.; Silveri, Matti; Brierley, R. T.; Albert, Victor V.; Salmilehto, Juha; Jiang, Liang; Girvin, S. M.
2016-07-01
We construct a new class of quantum error-correcting codes for a bosonic mode, which are advantageous for applications in quantum memories, communication, and scalable computation. These "binomial quantum codes" are formed from a finite superposition of Fock states weighted with binomial coefficients. The binomial codes can exactly correct errors that are polynomial up to a specific degree in bosonic creation and annihilation operators, including amplitude damping and displacement noise as well as boson addition and dephasing errors. For realistic continuous-time dissipative evolution, the codes can perform approximate quantum error correction to any given order in the time step between error detection measurements. We present an explicit approximate quantum error recovery operation based on projective measurements and unitary operations. The binomial codes are tailored for detecting boson loss and gain errors by means of measurements of the generalized number parity. We discuss optimization of the binomial codes and demonstrate that by relaxing the parity structure, codes with even lower unrecoverable error rates can be achieved. The binomial codes are related to existing two-mode bosonic codes, but offer the advantage of requiring only a single bosonic mode to correct amplitude damping as well as the ability to correct other errors. Our codes are similar in spirit to "cat codes" based on superpositions of the coherent states but offer several advantages such as smaller mean boson number, exact rather than approximate orthonormality of the code words, and an explicit unitary operation for repumping energy into the bosonic mode. The binomial quantum codes are realizable with current superconducting circuit technology, and they should prove useful in other quantum technologies, including bosonic quantum memories, photonic quantum communication, and optical-to-microwave up- and down-conversion.
Fast decoding techniques for extended single-and-double-error-correcting Reed Solomon codes
NASA Technical Reports Server (NTRS)
Costello, D. J., Jr.; Deng, H.; Lin, S.
1984-01-01
A problem in designing semiconductor memories is to provide some measure of error control without requiring excessive coding overhead or decoding time. For example, some 256K-bit dynamic random access memories are organized as 32K x 8 bit-bytes. Byte-oriented codes such as Reed Solomon (RS) codes provide efficient low overhead error control for such memories. However, the standard iterative algorithm for decoding RS codes is too slow for these applications. Some special high speed decoding techniques for extended single and double error correcting RS codes. These techniques are designed to find the error locations and the error values directly from the syndrome without having to form the error locator polynomial and solve for its roots.
Kneissler, Jan; Drugowitsch, Jan; Friston, Karl; Butz, Martin V
2015-01-01
Predictive coding appears to be one of the fundamental working principles of brain processing. Amongst other aspects, brains often predict the sensory consequences of their own actions. Predictive coding resembles Kalman filtering, where incoming sensory information is filtered to produce prediction errors for subsequent adaptation and learning. However, to generate prediction errors given motor commands, a suitable temporal forward model is required to generate predictions. While in engineering applications, it is usually assumed that this forward model is known, the brain has to learn it. When filtering sensory input and learning from the residual signal in parallel, a fundamental problem arises: the system can enter a delusional loop when filtering the sensory information using an overly trusted forward model. In this case, learning stalls before accurate convergence because uncertainty about the forward model is not properly accommodated. We present a Bayes-optimal solution to this generic and pernicious problem for the case of linear forward models, which we call Predictive Inference and Adaptive Filtering (PIAF). PIAF filters incoming sensory information and learns the forward model simultaneously. We show that PIAF is formally related to Kalman filtering and to the Recursive Least Squares linear approximation method, but combines these procedures in a Bayes optimal fashion. Numerical evaluations confirm that the delusional loop is precluded and that the learning of the forward model is more than 10-times faster when compared to a naive combination of Kalman filtering and Recursive Least Squares.
NASA Astrophysics Data System (ADS)
Blackman, Jonathan; Field, Scott E.; Galley, Chad R.; Szilágyi, Béla; Scheel, Mark A.; Tiglio, Manuel; Hemberger, Daniel A.
2015-09-01
Simulating a binary black hole coalescence by solving Einstein's equations is computationally expensive, requiring days to months of supercomputing time. Using reduced order modeling techniques, we construct an accurate surrogate model, which is evaluated in a millisecond to a second, for numerical relativity (NR) waveforms from nonspinning binary black hole coalescences with mass ratios in [1, 10] and durations corresponding to about 15 orbits before merger. We assess the model's uncertainty and show that our modeling strategy predicts NR waveforms not used for the surrogate's training with errors nearly as small as the numerical error of the NR code. Our model includes all spherical-harmonic -2Yℓm waveform modes resolved by the NR code up to ℓ=8 . We compare our surrogate model to effective one body waveforms from 50 M⊙ to 300 M⊙ for advanced LIGO detectors and find that the surrogate is always more faithful (by at least an order of magnitude in most cases).
Blackman, Jonathan; Field, Scott E; Galley, Chad R; Szilágyi, Béla; Scheel, Mark A; Tiglio, Manuel; Hemberger, Daniel A
2015-09-18
Simulating a binary black hole coalescence by solving Einstein's equations is computationally expensive, requiring days to months of supercomputing time. Using reduced order modeling techniques, we construct an accurate surrogate model, which is evaluated in a millisecond to a second, for numerical relativity (NR) waveforms from nonspinning binary black hole coalescences with mass ratios in [1, 10] and durations corresponding to about 15 orbits before merger. We assess the model's uncertainty and show that our modeling strategy predicts NR waveforms not used for the surrogate's training with errors nearly as small as the numerical error of the NR code. Our model includes all spherical-harmonic _{-2}Y_{ℓm} waveform modes resolved by the NR code up to ℓ=8. We compare our surrogate model to effective one body waveforms from 50M_{⊙} to 300M_{⊙} for advanced LIGO detectors and find that the surrogate is always more faithful (by at least an order of magnitude in most cases).
Some practical universal noiseless coding techniques, part 3, module PSl14,K+
NASA Technical Reports Server (NTRS)
Rice, Robert F.
1991-01-01
The algorithmic definitions, performance characterizations, and application notes for a high-performance adaptive noiseless coding module are provided. Subsets of these algorithms are currently under development in custom very large scale integration (VLSI) at three NASA centers. The generality of coding algorithms recently reported is extended. The module incorporates a powerful adaptive noiseless coder for Standard Data Sources (i.e., sources whose symbols can be represented by uncorrelated non-negative integers, where smaller integers are more likely than the larger ones). Coders can be specified to provide performance close to the data entropy over any desired dynamic range (of entropy) above 0.75 bit/sample. This is accomplished by adaptively choosing the best of many efficient variable-length coding options to use on each short block of data (e.g., 16 samples) All code options used for entropies above 1.5 bits/sample are 'Huffman Equivalent', but they require no table lookups to implement. The coding can be performed directly on data that have been preprocessed to exhibit the characteristics of a standard source. Alternatively, a built-in predictive preprocessor can be used where applicable. This built-in preprocessor includes the familiar 1-D predictor followed by a function that maps the prediction error sequences into the desired standard form. Additionally, an external prediction can be substituted if desired. A broad range of issues dealing with the interface between the coding module and the data systems it might serve are further addressed. These issues include: multidimensional prediction, archival access, sensor noise, rate control, code rate improvements outside the module, and the optimality of certain internal code options.
Decoding of DBEC-TBED Reed-Solomon codes. [Double-Byte-Error-Correcting, Triple-Byte-Error-Detecting
NASA Technical Reports Server (NTRS)
Deng, Robert H.; Costello, Daniel J., Jr.
1987-01-01
A problem in designing semiconductor memories is to provide some measure of error control without requiring excessive coding overhead or decoding time. In LSI and VLSI technology, memories are often organized on a multiple bit (or byte) per chip basis. For example, some 256 K bit DRAM's are organized in 32 K x 8 bit-bytes. Byte-oriented codes such as Reed-Solomon (RS) codes can provide efficient low overhead error control for such memories. However, the standard iterative algorithm for decoding RS codes is too slow for these applications. The paper presents a special decoding technique for double-byte-error-correcting, triple-byte-error-detecting RS codes which is capable of high-speed operation. This technique is designed to find the error locations and the error values directly from the syndrome without having to use the iterative algorithm to find the error locator polynomial.
Reliable absolute analog code retrieval approach for 3D measurement
NASA Astrophysics Data System (ADS)
Yu, Shuang; Zhang, Jing; Yu, Xiaoyang; Sun, Xiaoming; Wu, Haibin; Chen, Deyun
2017-11-01
The wrapped phase of phase-shifting approach can be unwrapped by using Gray code, but both the wrapped phase error and Gray code decoding error can result in period jump error, which will lead to gross measurement error. Therefore, this paper presents a reliable absolute analog code retrieval approach. The combination of unequal-period Gray code and phase shifting patterns at high frequencies are used to obtain high-frequency absolute analog code, and at low frequencies, the same unequal-period combination patterns are used to obtain the low-frequency absolute analog code. Next, the difference between the two absolute analog codes was employed to eliminate period jump errors, and a reliable unwrapped result can be obtained. Error analysis was used to determine the applicable conditions, and this approach was verified through theoretical analysis. The proposed approach was further verified experimentally. Theoretical analysis and experimental results demonstrate that the proposed approach can perform reliable analog code unwrapping.
Measuring diagnoses: ICD code accuracy.
O'Malley, Kimberly J; Cook, Karon F; Price, Matt D; Wildes, Kimberly Raiford; Hurdle, John F; Ashton, Carol M
2005-10-01
To examine potential sources of errors at each step of the described inpatient International Classification of Diseases (ICD) coding process. The use of disease codes from the ICD has expanded from classifying morbidity and mortality information for statistical purposes to diverse sets of applications in research, health care policy, and health care finance. By describing a brief history of ICD coding, detailing the process for assigning codes, identifying where errors can be introduced into the process, and reviewing methods for examining code accuracy, we help code users more systematically evaluate code accuracy for their particular applications. We summarize the inpatient ICD diagnostic coding process from patient admission to diagnostic code assignment. We examine potential sources of errors at each step and offer code users a tool for systematically evaluating code accuracy. Main error sources along the "patient trajectory" include amount and quality of information at admission, communication among patients and providers, the clinician's knowledge and experience with the illness, and the clinician's attention to detail. Main error sources along the "paper trail" include variance in the electronic and written records, coder training and experience, facility quality-control efforts, and unintentional and intentional coder errors, such as misspecification, unbundling, and upcoding. By clearly specifying the code assignment process and heightening their awareness of potential error sources, code users can better evaluate the applicability and limitations of codes for their particular situations. ICD codes can then be used in the most appropriate ways.
New class of photonic quantum error correction codes
NASA Astrophysics Data System (ADS)
Silveri, Matti; Michael, Marios; Brierley, R. T.; Salmilehto, Juha; Albert, Victor V.; Jiang, Liang; Girvin, S. M.
We present a new class of quantum error correction codes for applications in quantum memories, communication and scalable computation. These codes are constructed from a finite superposition of Fock states and can exactly correct errors that are polynomial up to a specified degree in creation and destruction operators. Equivalently, they can perform approximate quantum error correction to any given order in time step for the continuous-time dissipative evolution under these errors. The codes are related to two-mode photonic codes but offer the advantage of requiring only a single photon mode to correct loss (amplitude damping), as well as the ability to correct other errors, e.g. dephasing. Our codes are also similar in spirit to photonic ''cat codes'' but have several advantages including smaller mean occupation number and exact rather than approximate orthogonality of the code words. We analyze how the rate of uncorrectable errors scales with the code complexity and discuss the unitary control for the recovery process. These codes are realizable with current superconducting qubit technology and can increase the fidelity of photonic quantum communication and memories.
NASA Technical Reports Server (NTRS)
Noble, Viveca K.
1993-01-01
There are various elements such as radio frequency interference (RFI) which may induce errors in data being transmitted via a satellite communication link. When a transmission is affected by interference or other error-causing elements, the transmitted data becomes indecipherable. It becomes necessary to implement techniques to recover from these disturbances. The objective of this research is to develop software which simulates error control circuits and evaluate the performance of these modules in various bit error rate environments. The results of the evaluation provide the engineer with information which helps determine the optimal error control scheme. The Consultative Committee for Space Data Systems (CCSDS) recommends the use of Reed-Solomon (RS) and convolutional encoders and Viterbi and RS decoders for error correction. The use of forward error correction techniques greatly reduces the received signal to noise needed for a certain desired bit error rate. The use of concatenated coding, e.g. inner convolutional code and outer RS code, provides even greater coding gain. The 16-bit cyclic redundancy check (CRC) code is recommended by CCSDS for error detection.
Performance analysis of a cascaded coding scheme with interleaved outer code
NASA Technical Reports Server (NTRS)
Lin, S.
1986-01-01
A cascaded coding scheme for a random error channel with a bit-error rate is analyzed. In this scheme, the inner code C sub 1 is an (n sub 1, m sub 1l) binary linear block code which is designed for simultaneous error correction and detection. The outer code C sub 2 is a linear block code with symbols from the Galois field GF (2 sup l) which is designed for correcting both symbol errors and erasures, and is interleaved with a degree m sub 1. A procedure for computing the probability of a correct decoding is presented and an upper bound on the probability of a decoding error is derived. The bound provides much better results than the previous bound for a cascaded coding scheme with an interleaved outer code. Example schemes with inner codes ranging from high rates to very low rates are evaluated. Several schemes provide extremely high reliability even for very high bit-error rates say 10 to the -1 to 10 to the -2 power.
On the joys of perceiving: Affect as feedback for perceptual predictions.
Chetverikov, Andrey; Kristjánsson, Árni
2016-09-01
How we perceive, attend to, or remember the stimuli in our environment depends on our preferences for them. Here we argue that this dependence is reciprocal: pleasures and displeasures are heavily dependent on cognitive processing, namely, on our ability to predict the world correctly. We propose that prediction errors, inversely weighted with prior probabilities of predictions, yield subjective experiences of positive or negative affect. In this way, we link affect to predictions within a predictive coding framework. We discuss how three key factors - uncertainty, expectations, and conflict - influence prediction accuracy and show how they shape our affective response. We demonstrate that predictable stimuli are, in general, preferred to unpredictable ones, though too much predictability may decrease this liking effect. Furthermore, the account successfully overcomes the "dark-room" problem, explaining why we do not avoid stimulation to minimize prediction error. We further discuss the implications of our approach for art perception and the utility of affect as feedback for predictions within a prediction-testing architecture of cognition. Copyright © 2016 Elsevier B.V. All rights reserved.
Effect of bar-code technology on the safety of medication administration.
Poon, Eric G; Keohane, Carol A; Yoon, Catherine S; Ditmore, Matthew; Bane, Anne; Levtzion-Korach, Osnat; Moniz, Thomas; Rothschild, Jeffrey M; Kachalia, Allen B; Hayes, Judy; Churchill, William W; Lipsitz, Stuart; Whittemore, Anthony D; Bates, David W; Gandhi, Tejal K
2010-05-06
Serious medication errors are common in hospitals and often occur during order transcription or administration of medication. To help prevent such errors, technology has been developed to verify medications by incorporating bar-code verification technology within an electronic medication-administration system (bar-code eMAR). We conducted a before-and-after, quasi-experimental study in an academic medical center that was implementing the bar-code eMAR. We assessed rates of errors in order transcription and medication administration on units before and after implementation of the bar-code eMAR. Errors that involved early or late administration of medications were classified as timing errors and all others as nontiming errors. Two clinicians reviewed the errors to determine their potential to harm patients and classified those that could be harmful as potential adverse drug events. We observed 14,041 medication administrations and reviewed 3082 order transcriptions. Observers noted 776 nontiming errors in medication administration on units that did not use the bar-code eMAR (an 11.5% error rate) versus 495 such errors on units that did use it (a 6.8% error rate)--a 41.4% relative reduction in errors (P<0.001). The rate of potential adverse drug events (other than those associated with timing errors) fell from 3.1% without the use of the bar-code eMAR to 1.6% with its use, representing a 50.8% relative reduction (P<0.001). The rate of timing errors in medication administration fell by 27.3% (P<0.001), but the rate of potential adverse drug events associated with timing errors did not change significantly. Transcription errors occurred at a rate of 6.1% on units that did not use the bar-code eMAR but were completely eliminated on units that did use it. Use of the bar-code eMAR substantially reduced the rate of errors in order transcription and in medication administration as well as potential adverse drug events, although it did not eliminate such errors. Our data show that the bar-code eMAR is an important intervention to improve medication safety. (ClinicalTrials.gov number, NCT00243373.) 2010 Massachusetts Medical Society
Measuring Diagnoses: ICD Code Accuracy
O'Malley, Kimberly J; Cook, Karon F; Price, Matt D; Wildes, Kimberly Raiford; Hurdle, John F; Ashton, Carol M
2005-01-01
Objective To examine potential sources of errors at each step of the described inpatient International Classification of Diseases (ICD) coding process. Data Sources/Study Setting The use of disease codes from the ICD has expanded from classifying morbidity and mortality information for statistical purposes to diverse sets of applications in research, health care policy, and health care finance. By describing a brief history of ICD coding, detailing the process for assigning codes, identifying where errors can be introduced into the process, and reviewing methods for examining code accuracy, we help code users more systematically evaluate code accuracy for their particular applications. Study Design/Methods We summarize the inpatient ICD diagnostic coding process from patient admission to diagnostic code assignment. We examine potential sources of errors at each step and offer code users a tool for systematically evaluating code accuracy. Principle Findings Main error sources along the “patient trajectory” include amount and quality of information at admission, communication among patients and providers, the clinician's knowledge and experience with the illness, and the clinician's attention to detail. Main error sources along the “paper trail” include variance in the electronic and written records, coder training and experience, facility quality-control efforts, and unintentional and intentional coder errors, such as misspecification, unbundling, and upcoding. Conclusions By clearly specifying the code assignment process and heightening their awareness of potential error sources, code users can better evaluate the applicability and limitations of codes for their particular situations. ICD codes can then be used in the most appropriate ways. PMID:16178999
Time trend of injection drug errors before and after implementation of bar-code verification system.
Sakushima, Ken; Umeki, Reona; Endoh, Akira; Ito, Yoichi M; Nasuhara, Yasuyuki
2015-01-01
Bar-code technology, used for verification of patients and their medication, could prevent medication errors in clinical practice. Retrospective analysis of electronically stored medical error reports was conducted in a university hospital. The number of reported medication errors of injected drugs, including wrong drug administration and administration to the wrong patient, was compared before and after implementation of the bar-code verification system for inpatient care. A total of 2867 error reports associated with injection drugs were extracted. Wrong patient errors decreased significantly after implementation of the bar-code verification system (17.4/year vs. 4.5/year, p< 0.05), although wrong drug errors did not decrease sufficiently (24.2/year vs. 20.3/year). The source of medication errors due to wrong drugs was drug preparation in hospital wards. Bar-code medication administration is effective for prevention of wrong patient errors. However, ordinary bar-code verification systems are limited in their ability to prevent incorrect drug preparation in hospital wards.
Design of a robust baseband LPC coder for speech transmission over 9.6 kbit/s noisy channels
NASA Astrophysics Data System (ADS)
Viswanathan, V. R.; Russell, W. H.; Higgins, A. L.
1982-04-01
This paper describes the design of a baseband Linear Predictive Coder (LPC) which transmits speech over 9.6 kbit/sec synchronous channels with random bit errors of up to 1%. Presented are the results of our investigation of a number of aspects of the baseband LPC coder with the goal of maximizing the quality of the transmitted speech. Important among these aspects are: bandwidth of the baseband, coding of the baseband residual, high-frequency regeneration, and error protection of important transmission parameters. The paper discusses these and other issues, presents the results of speech-quality tests conducted during the various stages of optimization, and describes the details of the optimized speech coder. This optimized speech coding algorithm has been implemented as a real-time full-duplex system on an array processor. Informal listening tests of the real-time coder have shown that the coder produces good speech quality in the absence of channel bit errors and introduces only a slight degradation in quality for channel bit error rates of up to 1%.
Schaefer, Alexandre; Buratto, Luciano G; Goto, Nobuhiko; Brotherhood, Emilie V
A large body of evidence shows that buying behaviour is strongly determined by consumers' price expectations and the extent to which real prices violate these expectations. Despite the importance of this phenomenon, little is known regarding its neural mechanisms. Here we show that two patterns of electrical brain activity known to index prediction errors-the Feedback-Related Negativity (FRN) and the feedback-related P300 -were sensitive to price offers that were cheaper than participants' expectations. In addition, we also found that FRN amplitude time-locked to price offers predicted whether a product would be subsequently purchased or not, and further analyses suggest that this result was driven by the sensitivity of the FRN to positive price expectation violations. This finding strongly suggests that ensembles of neurons coding positive prediction errors play a critical role in real-life consumer behaviour. Further, these findings indicate that theoretical models based on the notion of prediction error, such as the Reinforcement Learning Theory, can provide a neurobiologically grounded account of consumer behavior.
The cerebellum for jocks and nerds alike.
Popa, Laurentiu S; Hewitt, Angela L; Ebner, Timothy J
2014-01-01
Historically the cerebellum has been implicated in the control of movement. However, the cerebellum's role in non-motor functions, including cognitive and emotional processes, has also received increasing attention. Starting from the premise that the uniform architecture of the cerebellum underlies a common mode of information processing, this review examines recent electrophysiological findings on the motor signals encoded in the cerebellar cortex and then relates these signals to observations in the non-motor domain. Simple spike firing of individual Purkinje cells encodes performance errors, both predicting upcoming errors as well as providing feedback about those errors. Further, this dual temporal encoding of prediction and feedback involves a change in the sign of the simple spike modulation. Therefore, Purkinje cell simple spike firing both predicts and responds to feedback about a specific parameter, consistent with computing sensory prediction errors in which the predictions about the consequences of a motor command are compared with the feedback resulting from the motor command execution. These new findings are in contrast with the historical view that complex spikes encode errors. Evaluation of the kinematic coding in the simple spike discharge shows the same dual temporal encoding, suggesting this is a common mode of signal processing in the cerebellar cortex. Decoding analyses show the considerable accuracy of the predictions provided by Purkinje cells across a range of times. Further, individual Purkinje cells encode linearly and independently a multitude of signals, both kinematic and performance errors. Therefore, the cerebellar cortex's capacity to make associations across different sensory, motor and non-motor signals is large. The results from studying how Purkinje cells encode movement signals suggest that the cerebellar cortex circuitry can support associative learning, sequencing, working memory, and forward internal models in non-motor domains.
The cerebellum for jocks and nerds alike
Popa, Laurentiu S.; Hewitt, Angela L.; Ebner, Timothy J.
2014-01-01
Historically the cerebellum has been implicated in the control of movement. However, the cerebellum's role in non-motor functions, including cognitive and emotional processes, has also received increasing attention. Starting from the premise that the uniform architecture of the cerebellum underlies a common mode of information processing, this review examines recent electrophysiological findings on the motor signals encoded in the cerebellar cortex and then relates these signals to observations in the non-motor domain. Simple spike firing of individual Purkinje cells encodes performance errors, both predicting upcoming errors as well as providing feedback about those errors. Further, this dual temporal encoding of prediction and feedback involves a change in the sign of the simple spike modulation. Therefore, Purkinje cell simple spike firing both predicts and responds to feedback about a specific parameter, consistent with computing sensory prediction errors in which the predictions about the consequences of a motor command are compared with the feedback resulting from the motor command execution. These new findings are in contrast with the historical view that complex spikes encode errors. Evaluation of the kinematic coding in the simple spike discharge shows the same dual temporal encoding, suggesting this is a common mode of signal processing in the cerebellar cortex. Decoding analyses show the considerable accuracy of the predictions provided by Purkinje cells across a range of times. Further, individual Purkinje cells encode linearly and independently a multitude of signals, both kinematic and performance errors. Therefore, the cerebellar cortex's capacity to make associations across different sensory, motor and non-motor signals is large. The results from studying how Purkinje cells encode movement signals suggest that the cerebellar cortex circuitry can support associative learning, sequencing, working memory, and forward internal models in non-motor domains. PMID:24987338
Illusory Motion Reproduced by Deep Neural Networks Trained for Prediction
Watanabe, Eiji; Kitaoka, Akiyoshi; Sakamoto, Kiwako; Yasugi, Masaki; Tanaka, Kenta
2018-01-01
The cerebral cortex predicts visual motion to adapt human behavior to surrounding objects moving in real time. Although the underlying mechanisms are still unknown, predictive coding is one of the leading theories. Predictive coding assumes that the brain's internal models (which are acquired through learning) predict the visual world at all times and that errors between the prediction and the actual sensory input further refine the internal models. In the past year, deep neural networks based on predictive coding were reported for a video prediction machine called PredNet. If the theory substantially reproduces the visual information processing of the cerebral cortex, then PredNet can be expected to represent the human visual perception of motion. In this study, PredNet was trained with natural scene videos of the self-motion of the viewer, and the motion prediction ability of the obtained computer model was verified using unlearned videos. We found that the computer model accurately predicted the magnitude and direction of motion of a rotating propeller in unlearned videos. Surprisingly, it also represented the rotational motion for illusion images that were not moving physically, much like human visual perception. While the trained network accurately reproduced the direction of illusory rotation, it did not detect motion components in negative control pictures wherein people do not perceive illusory motion. This research supports the exciting idea that the mechanism assumed by the predictive coding theory is one of basis of motion illusion generation. Using sensory illusions as indicators of human perception, deep neural networks are expected to contribute significantly to the development of brain research. PMID:29599739
Illusory Motion Reproduced by Deep Neural Networks Trained for Prediction.
Watanabe, Eiji; Kitaoka, Akiyoshi; Sakamoto, Kiwako; Yasugi, Masaki; Tanaka, Kenta
2018-01-01
The cerebral cortex predicts visual motion to adapt human behavior to surrounding objects moving in real time. Although the underlying mechanisms are still unknown, predictive coding is one of the leading theories. Predictive coding assumes that the brain's internal models (which are acquired through learning) predict the visual world at all times and that errors between the prediction and the actual sensory input further refine the internal models. In the past year, deep neural networks based on predictive coding were reported for a video prediction machine called PredNet. If the theory substantially reproduces the visual information processing of the cerebral cortex, then PredNet can be expected to represent the human visual perception of motion. In this study, PredNet was trained with natural scene videos of the self-motion of the viewer, and the motion prediction ability of the obtained computer model was verified using unlearned videos. We found that the computer model accurately predicted the magnitude and direction of motion of a rotating propeller in unlearned videos. Surprisingly, it also represented the rotational motion for illusion images that were not moving physically, much like human visual perception. While the trained network accurately reproduced the direction of illusory rotation, it did not detect motion components in negative control pictures wherein people do not perceive illusory motion. This research supports the exciting idea that the mechanism assumed by the predictive coding theory is one of basis of motion illusion generation. Using sensory illusions as indicators of human perception, deep neural networks are expected to contribute significantly to the development of brain research.
NASA Astrophysics Data System (ADS)
Delogu, A.; Furini, F.
1991-09-01
Increasing interest in radar cross section (RCS) reduction is placing new demands on theoretical, computation, and graphic techniques for calculating scattering properties of complex targets. In particular, computer codes capable of predicting the RCS of an entire aircraft at high frequency and of achieving RCS control with modest structural changes, are becoming of paramount importance in stealth design. A computer code, evaluating the RCS of arbitrary shaped metallic objects that are computer aided design (CAD) generated, and its validation with measurements carried out using ALENIA RCS test facilities are presented. The code, based on the physical optics method, is characterized by an efficient integration algorithm with error control, in order to contain the computer time within acceptable limits, and by an accurate parametric representation of the target surface in terms of bicubic splines.
Locations of serial reach targets are coded in multiple reference frames.
Thompson, Aidan A; Henriques, Denise Y P
2010-12-01
Previous work from our lab, and elsewhere, has demonstrated that remembered target locations are stored and updated in an eye-fixed reference frame. That is, reach errors systematically vary as a function of gaze direction relative to a remembered target location, not only when the target is viewed in the periphery (Bock, 1986, known as the retinal magnification effect), but also when the target has been foveated, and the eyes subsequently move after the target has disappeared but prior to reaching (e.g., Henriques, Klier, Smith, Lowy, & Crawford, 1998; Sorrento & Henriques, 2008; Thompson & Henriques, 2008). These gaze-dependent errors, following intervening eye movements, cannot be explained by representations whose frame is fixed to the head, body or even the world. However, it is unknown whether targets presented sequentially would all be coded relative to gaze (i.e., egocentrically/absolutely), or if they would be coded relative to the previous target (i.e., allocentrically/relatively). It might be expected that the reaching movements to two targets separated by 5° would differ by that distance. But, if gaze were to shift between the first and second reaches, would the movement amplitude between the targets differ? If the target locations are coded allocentrically (i.e., the location of the second target coded relative to the first) then the movement amplitude should be about 5°. But, if the second target is coded egocentrically (i.e., relative to current gaze direction), then the reaches to this target and the distances between the subsequent movements should vary systematically with gaze as described above. We found that requiring an intervening saccade to the opposite side of 2 briefly presented targets between reaches to them resulted in a pattern of reaching error that systematically varied as a function of the distance between current gaze and target, and led to a systematic change in the distance between the sequential reach endpoints as predicted by an egocentric frame anchored to the eye. However, the amount of change in this distance was smaller than predicted by a pure eye-fixed representation, suggesting that relative positions of the targets or allocentric coding was also used in sequential reach planning. The spatial coding and updating of sequential reach target locations seems to rely on a combined weighting of multiple reference frames, with one of them centered on the eye. Copyright © 2010 Elsevier Ltd. All rights reserved.
Analysis of a Shock-Associated Noise Prediction Model Using Measured Jet Far-Field Noise Data
NASA Technical Reports Server (NTRS)
Dahl, Milo D.; Sharpe, Jacob A.
2014-01-01
A code for predicting supersonic jet broadband shock-associated noise was assessed us- ing a database containing noise measurements of a jet issuing from a convergent nozzle. The jet was operated at 24 conditions covering six fully expanded Mach numbers with four total temperature ratios. To enable comparisons of the predicted shock-associated noise component spectra with data, the measured total jet noise spectra were separated into mixing noise and shock-associated noise component spectra. Comparisons between predicted and measured shock-associated noise component spectra were used to identify de ciencies in the prediction model. Proposed revisions to the model, based on a study of the overall sound pressure levels for the shock-associated noise component of the mea- sured data, a sensitivity analysis of the model parameters with emphasis on the de nition of the convection velocity parameter, and a least-squares t of the predicted to the mea- sured shock-associated noise component spectra, resulted in a new de nition for the source strength spectrum in the model. An error analysis showed that the average error in the predicted spectra was reduced by as much as 3.5 dB for the revised model relative to the average error for the original model.
Asymmetric Memory Circuit Would Resist Soft Errors
NASA Technical Reports Server (NTRS)
Buehler, Martin G.; Perlman, Marvin
1990-01-01
Some nonlinear error-correcting codes more efficient in presence of asymmetry. Combination of circuit-design and coding concepts expected to make integrated-circuit random-access memories more resistant to "soft" errors (temporary bit errors, also called "single-event upsets" due to ionizing radiation). Integrated circuit of new type made deliberately more susceptible to one kind of bit error than to other, and associated error-correcting code adapted to exploit this asymmetry in error probabilities.
Reed Solomon codes for error control in byte organized computer memory systems
NASA Technical Reports Server (NTRS)
Lin, S.; Costello, D. J., Jr.
1984-01-01
A problem in designing semiconductor memories is to provide some measure of error control without requiring excessive coding overhead or decoding time. In LSI and VLSI technology, memories are often organized on a multiple bit (or byte) per chip basis. For example, some 256K-bit DRAM's are organized in 32Kx8 bit-bytes. Byte oriented codes such as Reed Solomon (RS) codes can provide efficient low overhead error control for such memories. However, the standard iterative algorithm for decoding RS codes is too slow for these applications. Some special decoding techniques for extended single-and-double-error-correcting RS codes which are capable of high speed operation are presented. These techniques are designed to find the error locations and the error values directly from the syndrome without having to use the iterative algorithm to find the error locator polynomial.
Quantum steganography and quantum error-correction
NASA Astrophysics Data System (ADS)
Shaw, Bilal A.
Quantum error-correcting codes have been the cornerstone of research in quantum information science (QIS) for more than a decade. Without their conception, quantum computers would be a footnote in the history of science. When researchers embraced the idea that we live in a world where the effects of a noisy environment cannot completely be stripped away from the operations of a quantum computer, the natural way forward was to think about importing classical coding theory into the quantum arena to give birth to quantum error-correcting codes which could help in mitigating the debilitating effects of decoherence on quantum data. We first talk about the six-qubit quantum error-correcting code and show its connections to entanglement-assisted error-correcting coding theory and then to subsystem codes. This code bridges the gap between the five-qubit (perfect) and Steane codes. We discuss two methods to encode one qubit into six physical qubits. Each of the two examples corrects an arbitrary single-qubit error. The first example is a degenerate six-qubit quantum error-correcting code. We explicitly provide the stabilizer generators, encoding circuits, codewords, logical Pauli operators, and logical CNOT operator for this code. We also show how to convert this code into a non-trivial subsystem code that saturates the subsystem Singleton bound. We then prove that a six-qubit code without entanglement assistance cannot simultaneously possess a Calderbank-Shor-Steane (CSS) stabilizer and correct an arbitrary single-qubit error. A corollary of this result is that the Steane seven-qubit code is the smallest single-error correcting CSS code. Our second example is the construction of a non-degenerate six-qubit CSS entanglement-assisted code. This code uses one bit of entanglement (an ebit) shared between the sender (Alice) and the receiver (Bob) and corrects an arbitrary single-qubit error. The code we obtain is globally equivalent to the Steane seven-qubit code and thus corrects an arbitrary error on the receiver's half of the ebit as well. We prove that this code is the smallest code with a CSS structure that uses only one ebit and corrects an arbitrary single-qubit error on the sender's side. We discuss the advantages and disadvantages for each of the two codes. In the second half of this thesis we explore the yet uncharted and relatively undiscovered area of quantum steganography. Steganography is the process of hiding secret information by embedding it in an "innocent" message. We present protocols for hiding quantum information in a codeword of a quantum error-correcting code passing through a channel. Using either a shared classical secret key or shared entanglement Alice disguises her information as errors in the channel. Bob can retrieve the hidden information, but an eavesdropper (Eve) with the power to monitor the channel, but without the secret key, cannot distinguish the message from channel noise. We analyze how difficult it is for Eve to detect the presence of secret messages, and estimate rates of steganographic communication and secret key consumption for certain protocols. We also provide an example of how Alice hides quantum information in the perfect code when the underlying channel between Bob and her is the depolarizing channel. Using this scheme Alice can hide up to four stego-qubits.
Hu, J H; Wang, Y; Cahill, P T
1997-01-01
This paper reports a multispectral code excited linear prediction (MCELP) method for the compression of multispectral images. Different linear prediction models and adaptation schemes have been compared. The method that uses a forward adaptive autoregressive (AR) model has been proven to achieve a good compromise between performance, complexity, and robustness. This approach is referred to as the MFCELP method. Given a set of multispectral images, the linear predictive coefficients are updated over nonoverlapping three-dimensional (3-D) macroblocks. Each macroblock is further divided into several 3-D micro-blocks, and the best excitation signal for each microblock is determined through an analysis-by-synthesis procedure. The MFCELP method has been applied to multispectral magnetic resonance (MR) images. To satisfy the high quality requirement for medical images, the error between the original image set and the synthesized one is further specified using a vector quantizer. This method has been applied to images from 26 clinical MR neuro studies (20 slices/study, three spectral bands/slice, 256x256 pixels/band, 12 b/pixel). The MFCELP method provides a significant visual improvement over the discrete cosine transform (DCT) based Joint Photographers Expert Group (JPEG) method, the wavelet transform based embedded zero-tree wavelet (EZW) coding method, and the vector tree (VT) coding method, as well as the multispectral segmented autoregressive moving average (MSARMA) method we developed previously.
Analysis of automatic repeat request methods for deep-space downlinks
NASA Technical Reports Server (NTRS)
Pollara, F.; Ekroot, L.
1995-01-01
Automatic repeat request (ARQ) methods cannot increase the capacity of a memoryless channel. However, they can be used to decrease the complexity of the channel-coding system to achieve essentially error-free transmission and to reduce link margins when the channel characteristics are poorly predictable. This article considers ARQ methods on a power-limited channel (e.g., the deep-space channel), where it is important to minimize the total power needed to transmit the data, as opposed to a bandwidth-limited channel (e.g., terrestrial data links), where the spectral efficiency or the total required transmission time is the most relevant performance measure. In the analysis, we compare the performance of three reference concatenated coded systems used in actual deep-space missions to that obtainable by ARQ methods using the same codes, in terms of required power, time to transmit with a given number of retransmissions, and achievable probability of word error. The ultimate limits of ARQ with an arbitrary number of retransmissions are also derived.
Dynamic state estimation based on Poisson spike trains—towards a theory of optimal encoding
NASA Astrophysics Data System (ADS)
Susemihl, Alex; Meir, Ron; Opper, Manfred
2013-03-01
Neurons in the nervous system convey information to higher brain regions by the generation of spike trains. An important question in the field of computational neuroscience is how these sensory neurons encode environmental information in a way which may be simply analyzed by subsequent systems. Many aspects of the form and function of the nervous system have been understood using the concepts of optimal population coding. Most studies, however, have neglected the aspect of temporal coding. Here we address this shortcoming through a filtering theory of inhomogeneous Poisson processes. We derive exact relations for the minimal mean squared error of the optimal Bayesian filter and, by optimizing the encoder, obtain optimal codes for populations of neurons. We also show that a class of non-Markovian, smooth stimuli are amenable to the same treatment, and provide results for the filtering and prediction error which hold for a general class of stochastic processes. This sets a sound mathematical framework for a population coding theory that takes temporal aspects into account. It also formalizes a number of studies which discussed temporal aspects of coding using time-window paradigms, by stating them in terms of correlation times and firing rates. We propose that this kind of analysis allows for a systematic study of temporal coding and will bring further insights into the nature of the neural code.
NASA Technical Reports Server (NTRS)
Solomon, G.
1993-01-01
A (72,36;15) box code is constructed as a 9 x 8 matrix whose columns add to form an extended BCH-Hamming (8,4;4) code and whose rows sum to odd or even parity. The newly constructed code, due to its matrix form, is easily decodable for all seven-error and many eight-error patterns. The code comes from a slight modification in the parity (eighth) dimension of the Reed-Solomon (8,4;5) code over GF(512). Error correction uses the row sum parity information to detect errors, which then become erasures in a Reed-Solomon correction algorithm.
Parallelized direct execution simulation of message-passing parallel programs
NASA Technical Reports Server (NTRS)
Dickens, Phillip M.; Heidelberger, Philip; Nicol, David M.
1994-01-01
As massively parallel computers proliferate, there is growing interest in findings ways by which performance of massively parallel codes can be efficiently predicted. This problem arises in diverse contexts such as parallelizing computers, parallel performance monitoring, and parallel algorithm development. In this paper we describe one solution where one directly executes the application code, but uses a discrete-event simulator to model details of the presumed parallel machine such as operating system and communication network behavior. Because this approach is computationally expensive, we are interested in its own parallelization specifically the parallelization of the discrete-event simulator. We describe methods suitable for parallelized direct execution simulation of message-passing parallel programs, and report on the performance of such a system, Large Application Parallel Simulation Environment (LAPSE), we have built on the Intel Paragon. On all codes measured to date, LAPSE predicts performance well typically within 10 percent relative error. Depending on the nature of the application code, we have observed low slowdowns (relative to natively executing code) and high relative speedups using up to 64 processors.
Analysis of quantum error correction with symmetric hypergraph states
NASA Astrophysics Data System (ADS)
Wagner, T.; Kampermann, H.; Bruß, D.
2018-03-01
Graph states have been used to construct quantum error correction codes for independent errors. Hypergraph states generalize graph states, and symmetric hypergraph states have been shown to allow for the correction of correlated errors. In this paper, it is shown that symmetric hypergraph states are not useful for the correction of independent errors, at least for up to 30 qubits. Furthermore, error correction for error models with protected qubits is explored. A class of known graph codes for this scenario is generalized to hypergraph codes.
Cracking the code: the accuracy of coding shoulder procedures and the repercussions.
Clement, N D; Murray, I R; Nie, Y X; McBirnie, J M
2013-05-01
Coding of patients' diagnosis and surgical procedures is subject to error levels of up to 40% with consequences on distribution of resources and financial recompense. Our aim was to explore and address reasons behind coding errors of shoulder diagnosis and surgical procedures and to evaluate a potential solution. A retrospective review of 100 patients who had undergone surgery was carried out. Coding errors were identified and the reasons explored. A coding proforma was designed to address these errors and was prospectively evaluated for 100 patients. The financial implications were also considered. Retrospective analysis revealed the correct primary diagnosis was assigned in 54 patients (54%) had an entirely correct diagnosis, and only 7 (7%) patients had a correct procedure code assigned. Coders identified indistinct clinical notes and poor clarity of procedure codes as reasons for errors. The proforma was significantly more likely to assign the correct diagnosis (odds ratio 18.2, p < 0.0001) and the correct procedure code (odds ratio 310.0, p < 0.0001). Using the proforma resulted in a £28,562 increase in revenue for the 100 patients evaluated relative to the income generated from the coding department. High error levels for coding are due to misinterpretation of notes and ambiguity of procedure codes. This can be addressed by allowing surgeons to assign the diagnosis and procedure using a simplified list that is passed directly to coding.
DNA Barcoding through Quaternary LDPC Codes
Tapia, Elizabeth; Spetale, Flavio; Krsticevic, Flavia; Angelone, Laura; Bulacio, Pilar
2015-01-01
For many parallel applications of Next-Generation Sequencing (NGS) technologies short barcodes able to accurately multiplex a large number of samples are demanded. To address these competitive requirements, the use of error-correcting codes is advised. Current barcoding systems are mostly built from short random error-correcting codes, a feature that strongly limits their multiplexing accuracy and experimental scalability. To overcome these problems on sequencing systems impaired by mismatch errors, the alternative use of binary BCH and pseudo-quaternary Hamming codes has been proposed. However, these codes either fail to provide a fine-scale with regard to size of barcodes (BCH) or have intrinsic poor error correcting abilities (Hamming). Here, the design of barcodes from shortened binary BCH codes and quaternary Low Density Parity Check (LDPC) codes is introduced. Simulation results show that although accurate barcoding systems of high multiplexing capacity can be obtained with any of these codes, using quaternary LDPC codes may be particularly advantageous due to the lower rates of read losses and undetected sample misidentification errors. Even at mismatch error rates of 10−2 per base, 24-nt LDPC barcodes can be used to multiplex roughly 2000 samples with a sample misidentification error rate in the order of 10−9 at the expense of a rate of read losses just in the order of 10−6. PMID:26492348
DNA Barcoding through Quaternary LDPC Codes.
Tapia, Elizabeth; Spetale, Flavio; Krsticevic, Flavia; Angelone, Laura; Bulacio, Pilar
2015-01-01
For many parallel applications of Next-Generation Sequencing (NGS) technologies short barcodes able to accurately multiplex a large number of samples are demanded. To address these competitive requirements, the use of error-correcting codes is advised. Current barcoding systems are mostly built from short random error-correcting codes, a feature that strongly limits their multiplexing accuracy and experimental scalability. To overcome these problems on sequencing systems impaired by mismatch errors, the alternative use of binary BCH and pseudo-quaternary Hamming codes has been proposed. However, these codes either fail to provide a fine-scale with regard to size of barcodes (BCH) or have intrinsic poor error correcting abilities (Hamming). Here, the design of barcodes from shortened binary BCH codes and quaternary Low Density Parity Check (LDPC) codes is introduced. Simulation results show that although accurate barcoding systems of high multiplexing capacity can be obtained with any of these codes, using quaternary LDPC codes may be particularly advantageous due to the lower rates of read losses and undetected sample misidentification errors. Even at mismatch error rates of 10(-2) per base, 24-nt LDPC barcodes can be used to multiplex roughly 2000 samples with a sample misidentification error rate in the order of 10(-9) at the expense of a rate of read losses just in the order of 10(-6).
SSDA code to apply data assimilation in soil water flow modeling: Documentation and user manual
USDA-ARS?s Scientific Manuscript database
Soil water flow models are based on simplified assumptions about the mechanisms, processes, and parameters of water retention and flow. That causes errors in soil water flow model predictions. Data assimilation (DA) with the ensemble Kalman filter (EnKF) corrects modeling results based on measured s...
Haliasos, N; Rezajooi, K; O'neill, K S; Van Dellen, J; Hudovsky, Anita; Nouraei, Sar
2010-04-01
Clinical coding is the translation of documented clinical activities during an admission to a codified language. Healthcare Resource Groupings (HRGs) are derived from coding data and are used to calculate payment to hospitals in England, Wales and Scotland and to conduct national audit and benchmarking exercises. Coding is an error-prone process and an understanding of its accuracy within neurosurgery is critical for financial, organizational and clinical governance purposes. We undertook a multidisciplinary audit of neurosurgical clinical coding accuracy. Neurosurgeons trained in coding assessed the accuracy of 386 patient episodes. Where clinicians felt a coding error was present, the case was discussed with an experienced clinical coder. Concordance between the initial coder-only clinical coding and the final clinician-coder multidisciplinary coding was assessed. At least one coding error occurred in 71/386 patients (18.4%). There were 36 diagnosis and 93 procedure errors and in 40 cases, the initial HRG changed (10.4%). Financially, this translated to pound111 revenue-loss per patient episode and projected to pound171,452 of annual loss to the department. 85% of all coding errors were due to accumulation of coding changes that occurred only once in the whole data set. Neurosurgical clinical coding is error-prone. This is financially disadvantageous and with the coding data being the source of comparisons within and between departments, coding inaccuracies paint a distorted picture of departmental activity and subspecialism in audit and benchmarking. Clinical engagement improves accuracy and is encouraged within a clinical governance framework.
Bao, Yi; Chen, Yizheng; Hoehler, Matthew S; Smith, Christopher M; Bundy, Matthew; Chen, Genda
2017-01-01
This paper presents high temperature measurements using a Brillouin scattering-based fiber optic sensor and the application of the measured temperatures and building code recommended material parameters into enhanced thermomechanical analysis of simply supported steel beams subjected to combined thermal and mechanical loading. The distributed temperature sensor captures detailed, nonuniform temperature distributions that are compared locally with thermocouple measurements with less than 4.7% average difference at 95% confidence level. The simulated strains and deflections are validated using measurements from a second distributed fiber optic (strain) sensor and two linear potentiometers, respectively. The results demonstrate that the temperature-dependent material properties specified in the four investigated building codes lead to strain predictions with less than 13% average error at 95% confidence level and that the Europe building code provided the best predictions. However, the implicit consideration of creep in Europe is insufficient when the beam temperature exceeds 800°C.
NASA Technical Reports Server (NTRS)
Costello, Daniel J., Jr.; Courturier, Servanne; Levy, Yannick; Mills, Diane G.; Perez, Lance C.; Wang, Fu-Quan
1993-01-01
In his seminal 1948 paper 'The Mathematical Theory of Communication,' Claude E. Shannon derived the 'channel coding theorem' which has an explicit upper bound, called the channel capacity, on the rate at which 'information' could be transmitted reliably on a given communication channel. Shannon's result was an existence theorem and did not give specific codes to achieve the bound. Some skeptics have claimed that the dramatic performance improvements predicted by Shannon are not achievable in practice. The advances made in the area of coded modulation in the past decade have made communications engineers optimistic about the possibility of achieving or at least coming close to channel capacity. Here we consider the possibility in the light of current research results.
Vector Sum Excited Linear Prediction (VSELP) speech coding at 4.8 kbps
NASA Technical Reports Server (NTRS)
Gerson, Ira A.; Jasiuk, Mark A.
1990-01-01
Code Excited Linear Prediction (CELP) speech coders exhibit good performance at data rates as low as 4800 bps. The major drawback to CELP type coders is their larger computational requirements. The Vector Sum Excited Linear Prediction (VSELP) speech coder utilizes a codebook with a structure which allows for a very efficient search procedure. Other advantages of the VSELP codebook structure is discussed and a detailed description of a 4.8 kbps VSELP coder is given. This coder is an improved version of the VSELP algorithm, which finished first in the NSA's evaluation of the 4.8 kbps speech coders. The coder uses a subsample resolution single tap long term predictor, a single VSELP excitation codebook, a novel gain quantizer which is robust to channel errors, and a new adaptive pre/postfilter arrangement.
A cascaded coding scheme for error control
NASA Technical Reports Server (NTRS)
Shu, L.; Kasami, T.
1985-01-01
A cascade coding scheme for error control is investigated. The scheme employs a combination of hard and soft decisions in decoding. Error performance is analyzed. If the inner and outer codes are chosen properly, extremely high reliability can be attained even for a high channel bit-error-rate. Some example schemes are evaluated. They seem to be quite suitable for satellite down-link error control.
A cascaded coding scheme for error control
NASA Technical Reports Server (NTRS)
Kasami, T.; Lin, S.
1985-01-01
A cascaded coding scheme for error control was investigated. The scheme employs a combination of hard and soft decisions in decoding. Error performance is analyzed. If the inner and outer codes are chosen properly, extremely high reliability can be attained even for a high channel bit-error-rate. Some example schemes are studied which seem to be quite suitable for satellite down-link error control.
General linear codes for fault-tolerant matrix operations on processor arrays
NASA Technical Reports Server (NTRS)
Nair, V. S. S.; Abraham, J. A.
1988-01-01
Various checksum codes have been suggested for fault-tolerant matrix computations on processor arrays. Use of these codes is limited due to potential roundoff and overflow errors. Numerical errors may also be misconstrued as errors due to physical faults in the system. In this a set of linear codes is identified which can be used for fault-tolerant matrix operations such as matrix addition, multiplication, transposition, and LU-decomposition, with minimum numerical error. Encoding schemes are given for some of the example codes which fall under the general set of codes. With the help of experiments, a rule of thumb for the selection of a particular code for a given application is derived.
Efficient Prediction Structures for H.264 Multi View Coding Using Temporal Scalability
NASA Astrophysics Data System (ADS)
Guruvareddiar, Palanivel; Joseph, Biju K.
2014-03-01
Prediction structures with "disposable view components based" hierarchical coding have been proven to be efficient for H.264 multi view coding. Though these prediction structures along with the QP cascading schemes provide superior compression efficiency when compared to the traditional IBBP coding scheme, the temporal scalability requirements of the bit stream could not be met to the fullest. On the other hand, a fully scalable bit stream, obtained by "temporal identifier based" hierarchical coding, provides a number of advantages including bit rate adaptations and improved error resilience, but lacks in compression efficiency when compared to the former scheme. In this paper it is proposed to combine the two approaches such that a fully scalable bit stream could be realized with minimal reduction in compression efficiency when compared to state-of-the-art "disposable view components based" hierarchical coding. Simulation results shows that the proposed method enables full temporal scalability with maximum BDPSNR reduction of only 0.34 dB. A novel method also has been proposed for the identification of temporal identifier for the legacy H.264/AVC base layer packets. Simulation results also show that this enables the scenario where the enhancement views could be extracted at a lower frame rate (1/2nd or 1/4th of base view) with average extraction time for a view component of only 0.38 ms.
Speech coding at low to medium bit rates
NASA Astrophysics Data System (ADS)
Leblanc, Wilfred Paul
1992-09-01
Improved search techniques coupled with improved codebook design methodologies are proposed to improve the performance of conventional code-excited linear predictive coders for speech. Improved methods for quantizing the short term filter are developed by employing a tree search algorithm and joint codebook design to multistage vector quantization. Joint codebook design procedures are developed to design locally optimal multistage codebooks. Weighting during centroid computation is introduced to improve the outlier performance of the multistage vector quantizer. Multistage vector quantization is shown to be both robust against input characteristics and in the presence of channel errors. Spectral distortions of about 1 dB are obtained at rates of 22-28 bits/frame. Structured codebook design procedures for excitation in code-excited linear predictive coders are compared to general codebook design procedures. Little is lost using significant structure in the excitation codebooks while greatly reducing the search complexity. Sparse multistage configurations are proposed for reducing computational complexity and memory size. Improved search procedures are applied to code-excited linear prediction which attempt joint optimization of the short term filter, the adaptive codebook, and the excitation. Improvements in signal to noise ratio of 1-2 dB are realized in practice.
Multiple description distributed image coding with side information for mobile wireless transmission
NASA Astrophysics Data System (ADS)
Wu, Min; Song, Daewon; Chen, Chang Wen
2005-03-01
Multiple description coding (MDC) is a source coding technique that involves coding the source information into multiple descriptions, and then transmitting them over different channels in packet network or error-prone wireless environment to achieve graceful degradation if parts of descriptions are lost at the receiver. In this paper, we proposed a multiple description distributed wavelet zero tree image coding system for mobile wireless transmission. We provide two innovations to achieve an excellent error resilient capability. First, when MDC is applied to wavelet subband based image coding, it is possible to introduce correlation between the descriptions in each subband. We consider using such a correlation as well as potentially error corrupted description as side information in the decoding to formulate the MDC decoding as a Wyner Ziv decoding problem. If only part of descriptions is lost, however, their correlation information is still available, the proposed Wyner Ziv decoder can recover the description by using the correlation information and the error corrupted description as side information. Secondly, in each description, single bitstream wavelet zero tree coding is very vulnerable to the channel errors. The first bit error may cause the decoder to discard all subsequent bits whether or not the subsequent bits are correctly received. Therefore, we integrate the multiple description scalar quantization (MDSQ) with the multiple wavelet tree image coding method to reduce error propagation. We first group wavelet coefficients into multiple trees according to parent-child relationship and then code them separately by SPIHT algorithm to form multiple bitstreams. Such decomposition is able to reduce error propagation and therefore improve the error correcting capability of Wyner Ziv decoder. Experimental results show that the proposed scheme not only exhibits an excellent error resilient performance but also demonstrates graceful degradation over the packet loss rate.
3D measurement using combined Gray code and dual-frequency phase-shifting approach
NASA Astrophysics Data System (ADS)
Yu, Shuang; Zhang, Jing; Yu, Xiaoyang; Sun, Xiaoming; Wu, Haibin; Liu, Xin
2018-04-01
The combined Gray code and phase-shifting approach is a commonly used 3D measurement technique. In this technique, an error that equals integer multiples of the phase-shifted fringe period, i.e. period jump error, often exists in the absolute analog code, which can lead to gross measurement errors. To overcome this problem, the present paper proposes 3D measurement using a combined Gray code and dual-frequency phase-shifting approach. Based on 3D measurement using the combined Gray code and phase-shifting approach, one set of low-frequency phase-shifted fringe patterns with an odd-numbered multiple of the original phase-shifted fringe period is added. Thus, the absolute analog code measured value can be obtained by the combined Gray code and phase-shifting approach, and the low-frequency absolute analog code measured value can also be obtained by adding low-frequency phase-shifted fringe patterns. Then, the corrected absolute analog code measured value can be obtained by correcting the former by the latter, and the period jump errors can be eliminated, resulting in reliable analog code unwrapping. For the proposed approach, we established its measurement model, analyzed its measurement principle, expounded the mechanism of eliminating period jump errors by error analysis, and determined its applicable conditions. Theoretical analysis and experimental results show that the proposed approach can effectively eliminate period jump errors, reliably perform analog code unwrapping, and improve the measurement accuracy.
'Bodily precision': a predictive coding account of individual differences in interoceptive accuracy.
Ainley, Vivien; Apps, Matthew A J; Fotopoulou, Aikaterini; Tsakiris, Manos
2016-11-19
Individuals differ in their awareness of afferent information from within their bodies, which is typically assessed by a heartbeat perception measure of 'interoceptive accuracy' (IAcc). Neural and behavioural correlates of this trait have been investigated, but a theoretical explanation has yet to be presented. Building on recent models that describe interoception within the free energy/predictive coding framework, this paper applies similar principles to IAcc, proposing that individual differences in IAcc depend on 'precision' in interoceptive systems, i.e. the relative weight accorded to 'prior' representations and 'prediction errors' (that part of incoming interoceptive sensation not accounted for by priors), at various levels within the cortical hierarchy and between modalities. Attention has the effect of optimizing precision both within and between sensory modalities. Our central assumption is that people with high IAcc are able, with attention, to prioritize interoception over other sensory modalities and can thus adjust the relative precision of their interoceptive priors and prediction errors, where appropriate, given their personal history. This characterization explains key findings within the interoception literature; links results previously seen as unrelated or contradictory; and may have important implications for understanding cognitive, behavioural and psychopathological consequences of both high and low interoceptive awareness.This article is part of the themed issue 'Interoception beyond homeostasis: affect, cognition and mental health'. © 2016 The Author(s).
Córcoles, A.D.; Magesan, Easwar; Srinivasan, Srikanth J.; Cross, Andrew W.; Steffen, M.; Gambetta, Jay M.; Chow, Jerry M.
2015-01-01
The ability to detect and deal with errors when manipulating quantum systems is a fundamental requirement for fault-tolerant quantum computing. Unlike classical bits that are subject to only digital bit-flip errors, quantum bits are susceptible to a much larger spectrum of errors, for which any complete quantum error-correcting code must account. Whilst classical bit-flip detection can be realized via a linear array of qubits, a general fault-tolerant quantum error-correcting code requires extending into a higher-dimensional lattice. Here we present a quantum error detection protocol on a two-by-two planar lattice of superconducting qubits. The protocol detects an arbitrary quantum error on an encoded two-qubit entangled state via quantum non-demolition parity measurements on another pair of error syndrome qubits. This result represents a building block towards larger lattices amenable to fault-tolerant quantum error correction architectures such as the surface code. PMID:25923200
Córcoles, A D; Magesan, Easwar; Srinivasan, Srikanth J; Cross, Andrew W; Steffen, M; Gambetta, Jay M; Chow, Jerry M
2015-04-29
The ability to detect and deal with errors when manipulating quantum systems is a fundamental requirement for fault-tolerant quantum computing. Unlike classical bits that are subject to only digital bit-flip errors, quantum bits are susceptible to a much larger spectrum of errors, for which any complete quantum error-correcting code must account. Whilst classical bit-flip detection can be realized via a linear array of qubits, a general fault-tolerant quantum error-correcting code requires extending into a higher-dimensional lattice. Here we present a quantum error detection protocol on a two-by-two planar lattice of superconducting qubits. The protocol detects an arbitrary quantum error on an encoded two-qubit entangled state via quantum non-demolition parity measurements on another pair of error syndrome qubits. This result represents a building block towards larger lattices amenable to fault-tolerant quantum error correction architectures such as the surface code.
Graf, Heiko; Metzger, Coraline D; Walter, Martin; Abler, Birgit
2016-01-06
Investigating the effects of serotonergic antidepressants on neural correlates of visual erotic stimulation revealed decreased reactivity within the dopaminergic reward network along with decreased subjective sexual functioning compared with placebo. However, a global dampening of the reward system under serotonergic drugs is not intuitive considering clinical observations of their beneficial effects in the treatment of depression. Particularly, learning signals as coded in prediction error processing within the dopaminergic reward system can be assumed to be rather enhanced as antidepressant drugs have been demonstrated to facilitate the efficacy of psychotherapeutic interventions relying on learning processes. Within the same study sample, we now explored the effects of serotonergic and dopaminergic/noradrenergic antidepressants on prediction error signals compared with placebo by functional MRI. A total of 17 healthy male participants (mean age: 25.4 years) were investigated under the administration of paroxetine, bupropion and placebo for 7 days each within a randomized, double-blind, within-subject cross-over design. During functional MRI, we used an established monetary incentive task to explore neural prediction error signals within the bilateral nucleus accumbens as region of interest within the dopaminergic reward system. In contrast to diminished neural activations and subjective sexual functioning under the serotonergic agent paroxetine under visual erotic stimulation, we revealed unaffected or even enhanced neural prediction error processing within the nucleus accumbens under this antidepressant along with unaffected behavioural processing. Our study provides evidence that serotonergic antidepressants facilitate prediction error signalling and may support suggestions of beneficial effects of these agents on reinforced learning as an essential element in behavioural psychotherapy.
CRITICA: coding region identification tool invoking comparative analysis
NASA Technical Reports Server (NTRS)
Badger, J. H.; Olsen, G. J.; Woese, C. R. (Principal Investigator)
1999-01-01
Gene recognition is essential to understanding existing and future DNA sequence data. CRITICA (Coding Region Identification Tool Invoking Comparative Analysis) is a suite of programs for identifying likely protein-coding sequences in DNA by combining comparative analysis of DNA sequences with more common noncomparative methods. In the comparative component of the analysis, regions of DNA are aligned with related sequences from the DNA databases; if the translation of the aligned sequences has greater amino acid identity than expected for the observed percentage nucleotide identity, this is interpreted as evidence for coding. CRITICA also incorporates noncomparative information derived from the relative frequencies of hexanucleotides in coding frames versus other contexts (i.e., dicodon bias). The dicodon usage information is derived by iterative analysis of the data, such that CRITICA is not dependent on the existence or accuracy of coding sequence annotations in the databases. This independence makes the method particularly well suited for the analysis of novel genomes. CRITICA was tested by analyzing the available Salmonella typhimurium DNA sequences. Its predictions were compared with the DNA sequence annotations and with the predictions of GenMark. CRITICA proved to be more accurate than GenMark, and moreover, many of its predictions that would seem to be errors instead reflect problems in the sequence databases. The source code of CRITICA is freely available by anonymous FTP (rdp.life.uiuc.edu in/pub/critica) and on the World Wide Web (http:/(/)rdpwww.life.uiuc.edu).
Explaining neural signals in human visual cortex with an associative learning model.
Jiang, Jiefeng; Schmajuk, Nestor; Egner, Tobias
2012-08-01
"Predictive coding" models posit a key role for associative learning in visual cognition, viewing perceptual inference as a process of matching (learned) top-down predictions (or expectations) against bottom-up sensory evidence. At the neural level, these models propose that each region along the visual processing hierarchy entails one set of processing units encoding predictions of bottom-up input, and another set computing mismatches (prediction error or surprise) between predictions and evidence. This contrasts with traditional views of visual neurons operating purely as bottom-up feature detectors. In support of the predictive coding hypothesis, a recent human neuroimaging study (Egner, Monti, & Summerfield, 2010) showed that neural population responses to expected and unexpected face and house stimuli in the "fusiform face area" (FFA) could be well-described as a summation of hypothetical face-expectation and -surprise signals, but not by feature detector responses. Here, we used computer simulations to test whether these imaging data could be formally explained within the broader framework of a mathematical neural network model of associative learning (Schmajuk, Gray, & Lam, 1996). Results show that FFA responses could be fit very closely by model variables coding for conditional predictions (and their violations) of stimuli that unconditionally activate the FFA. These data document that neural population signals in the ventral visual stream that deviate from classic feature detection responses can formally be explained by associative prediction and surprise signals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renzi, N.E.; Roseberry, R.J.
>The experimental measurements and nuclear analysis of a uniformly loaded, unpoisoned slab core with a partially insented hafnium rod are described. Comparisons of experimental data with calculated results of the UFO code and flux synthesis techniques are given. It was concluded that one of the flux synthesis techniques and the UFO code are able to predict flux distributions to within approximately 5% of experiment for most cases. An error of approximately 10% was found in the synthesis technique for a channel near the partially inserted rod. The various calculations were able to predict neutron pulsed shutdowns to only approximately 30%.more » (auth)« less
Cooperative MIMO communication at wireless sensor network: an error correcting code approach.
Islam, Mohammad Rakibul; Han, Young Shin
2011-01-01
Cooperative communication in wireless sensor network (WSN) explores the energy efficient wireless communication schemes between multiple sensors and data gathering node (DGN) by exploiting multiple input multiple output (MIMO) and multiple input single output (MISO) configurations. In this paper, an energy efficient cooperative MIMO (C-MIMO) technique is proposed where low density parity check (LDPC) code is used as an error correcting code. The rate of LDPC code is varied by varying the length of message and parity bits. Simulation results show that the cooperative communication scheme outperforms SISO scheme in the presence of LDPC code. LDPC codes with different code rates are compared using bit error rate (BER) analysis. BER is also analyzed under different Nakagami fading scenario. Energy efficiencies are compared for different targeted probability of bit error p(b). It is observed that C-MIMO performs more efficiently when the targeted p(b) is smaller. Also the lower encoding rate for LDPC code offers better error characteristics.
Cooperative MIMO Communication at Wireless Sensor Network: An Error Correcting Code Approach
Islam, Mohammad Rakibul; Han, Young Shin
2011-01-01
Cooperative communication in wireless sensor network (WSN) explores the energy efficient wireless communication schemes between multiple sensors and data gathering node (DGN) by exploiting multiple input multiple output (MIMO) and multiple input single output (MISO) configurations. In this paper, an energy efficient cooperative MIMO (C-MIMO) technique is proposed where low density parity check (LDPC) code is used as an error correcting code. The rate of LDPC code is varied by varying the length of message and parity bits. Simulation results show that the cooperative communication scheme outperforms SISO scheme in the presence of LDPC code. LDPC codes with different code rates are compared using bit error rate (BER) analysis. BER is also analyzed under different Nakagami fading scenario. Energy efficiencies are compared for different targeted probability of bit error pb. It is observed that C-MIMO performs more efficiently when the targeted pb is smaller. Also the lower encoding rate for LDPC code offers better error characteristics. PMID:22163732
Error-Detecting Identification Codes for Algebra Students.
ERIC Educational Resources Information Center
Sutherland, David C.
1990-01-01
Discusses common error-detecting identification codes using linear algebra terminology to provide an interesting application of algebra. Presents examples from the International Standard Book Number, the Universal Product Code, bank identification numbers, and the ZIP code bar code. (YP)
The Sensitivity of Adverse Event Cost Estimates to Diagnostic Coding Error
Wardle, Gavin; Wodchis, Walter P; Laporte, Audrey; Anderson, Geoffrey M; Baker, Ross G
2012-01-01
Objective To examine the impact of diagnostic coding error on estimates of hospital costs attributable to adverse events. Data Sources Original and reabstracted medical records of 9,670 complex medical and surgical admissions at 11 hospital corporations in Ontario from 2002 to 2004. Patient specific costs, not including physician payments, were retrieved from the Ontario Case Costing Initiative database. Study Design Adverse events were identified among the original and reabstracted records using ICD10-CA (Canadian adaptation of ICD10) codes flagged as postadmission complications. Propensity score matching and multivariate regression analysis were used to estimate the cost of the adverse events and to determine the sensitivity of cost estimates to diagnostic coding error. Principal Findings Estimates of the cost of the adverse events ranged from $16,008 (metabolic derangement) to $30,176 (upper gastrointestinal bleeding). Coding errors caused the total cost attributable to the adverse events to be underestimated by 16 percent. The impact of coding error on adverse event cost estimates was highly variable at the organizational level. Conclusions Estimates of adverse event costs are highly sensitive to coding error. Adverse event costs may be significantly underestimated if the likelihood of error is ignored. PMID:22091908
MacWilliams Identity for M-Spotty Weight Enumerator
NASA Astrophysics Data System (ADS)
Suzuki, Kazuyoshi; Fujiwara, Eiji
M-spotty byte error control codes are very effective for correcting/detecting errors in semiconductor memory systems that employ recent high-density RAM chips with wide I/O data (e.g., 8, 16, or 32bits). In this case, the width of the I/O data is one byte. A spotty byte error is defined as random t-bit errors within a byte of length b bits, where 1 le t ≤ b. Then, an error is called an m-spotty byte error if at least one spotty byte error is present in a byte. M-spotty byte error control codes are characterized by the m-spotty distance, which includes the Hamming distance as a special case for t =1 or t = b. The MacWilliams identity provides the relationship between the weight distribution of a code and that of its dual code. The present paper presents the MacWilliams identity for the m-spotty weight enumerator of m-spotty byte error control codes. In addition, the present paper clarifies that the indicated identity includes the MacWilliams identity for the Hamming weight enumerator as a special case.
Error Suppression for Hamiltonian-Based Quantum Computation Using Subsystem Codes
NASA Astrophysics Data System (ADS)
Marvian, Milad; Lidar, Daniel A.
2017-01-01
We present general conditions for quantum error suppression for Hamiltonian-based quantum computation using subsystem codes. This involves encoding the Hamiltonian performing the computation using an error detecting subsystem code and the addition of a penalty term that commutes with the encoded Hamiltonian. The scheme is general and includes the stabilizer formalism of both subspace and subsystem codes as special cases. We derive performance bounds and show that complete error suppression results in the large penalty limit. To illustrate the power of subsystem-based error suppression, we introduce fully two-local constructions for protection against local errors of the swap gate of adiabatic gate teleportation and the Ising chain in a transverse field.
Error Suppression for Hamiltonian-Based Quantum Computation Using Subsystem Codes.
Marvian, Milad; Lidar, Daniel A
2017-01-20
We present general conditions for quantum error suppression for Hamiltonian-based quantum computation using subsystem codes. This involves encoding the Hamiltonian performing the computation using an error detecting subsystem code and the addition of a penalty term that commutes with the encoded Hamiltonian. The scheme is general and includes the stabilizer formalism of both subspace and subsystem codes as special cases. We derive performance bounds and show that complete error suppression results in the large penalty limit. To illustrate the power of subsystem-based error suppression, we introduce fully two-local constructions for protection against local errors of the swap gate of adiabatic gate teleportation and the Ising chain in a transverse field.
Why hard-nosed executives should care about management theory.
Christensen, Clayton M; Raynor, Michael E
2003-09-01
Theory often gets a bum rap among managers because it's associated with the word "theoretical," which connotes "impractical." But it shouldn't. Because experience is solely about the past, solid theories are the only way managers can plan future actions with any degree of confidence. The key word here is "solid." Gravity is a solid theory. As such, it lets us predict that if we step off a cliff we will fall, without actually having to do so. But business literature is replete with theories that don't seem to work in practice or actually contradict each other. How can a manager tell a good business theory from a bad one? The first step is understanding how good theories are built. They develop in three stages: gathering data, organizing it into categories highlighting significant differences, then making generalizations explaining what causes what, under which circumstances. For instance, professor Ananth Raman and his colleagues collected data showing that bar code-scanning systems generated notoriously inaccurate inventory records. These observations led them to classify the types of errors the scanning systems produced and the types of shops in which those errors most often occurred. Recently, some of Raman's doctoral students have worked as clerks to see exactly what kinds of behavior cause the errors. From this foundation, a solid theory predicting under which circumstances bar code systems work, and don't work, is beginning to emerge. Once we forgo one-size-fits-all explanations and insist that a theory describes the circumstances under which it does and doesn't work, we can bring predictable success to the world of management.
Error-trellis Syndrome Decoding Techniques for Convolutional Codes
NASA Technical Reports Server (NTRS)
Reed, I. S.; Truong, T. K.
1984-01-01
An error-trellis syndrome decoding technique for convolutional codes is developed. This algorithm is then applied to the entire class of systematic convolutional codes and to the high-rate, Wyner-Ash convolutional codes. A special example of the one-error-correcting Wyner-Ash code, a rate 3/4 code, is treated. The error-trellis syndrome decoding method applied to this example shows in detail how much more efficient syndrome decoding is than Viterbi decoding if applied to the same problem. For standard Viterbi decoding, 64 states are required, whereas in the example only 7 states are needed. Also, within the 7 states required for decoding, many fewer transitions are needed between the states.
Error-trellis syndrome decoding techniques for convolutional codes
NASA Technical Reports Server (NTRS)
Reed, I. S.; Truong, T. K.
1985-01-01
An error-trellis syndrome decoding technique for convolutional codes is developed. This algorithm is then applied to the entire class of systematic convolutional codes and to the high-rate, Wyner-Ash convolutional codes. A special example of the one-error-correcting Wyner-Ash code, a rate 3/4 code, is treated. The error-trellis syndrome decoding method applied to this example shows in detail how much more efficient syndrome decordig is than Viterbi decoding if applied to the same problem. For standard Viterbi decoding, 64 states are required, whereas in the example only 7 states are needed. Also, within the 7 states required for decoding, many fewer transitions are needed between the states.
Error-correcting codes on scale-free networks
NASA Astrophysics Data System (ADS)
Kim, Jung-Hoon; Ko, Young-Jo
2004-06-01
We investigate the potential of scale-free networks as error-correcting codes. We find that irregular low-density parity-check codes with the highest performance known to date have degree distributions well fitted by a power-law function p (k) ˜ k-γ with γ close to 2, which suggests that codes built on scale-free networks with appropriate power exponents can be good error-correcting codes, with a performance possibly approaching the Shannon limit. We demonstrate for an erasure channel that codes with a power-law degree distribution of the form p (k) = C (k+α)-γ , with k⩾2 and suitable selection of the parameters α and γ , indeed have very good error-correction capabilities.
Liakhovetskiĭ, V A; Bobrova, E V; Skopin, G N
2012-01-01
Transposition errors during the reproduction of a hand movement sequence make it possible to receive important information on the internal representation of this sequence in the motor working memory. Analysis of such errors showed that learning to reproduce sequences of the left-hand movements improves the system of positional coding (coding ofpositions), while learning of the right-hand movements improves the system of vector coding (coding of movements). Learning of the right-hand movements after the left-hand performance involved the system of positional coding "imposed" by the left hand. Learning of the left-hand movements after the right-hand performance activated the system of vector coding. Transposition errors during learning to reproduce movement sequences can be explained by neural network using either vector coding or both vector and positional coding.
The random coding bound is tight for the average code.
NASA Technical Reports Server (NTRS)
Gallager, R. G.
1973-01-01
The random coding bound of information theory provides a well-known upper bound to the probability of decoding error for the best code of a given rate and block length. The bound is constructed by upperbounding the average error probability over an ensemble of codes. The bound is known to give the correct exponential dependence of error probability on block length for transmission rates above the critical rate, but it gives an incorrect exponential dependence at rates below a second lower critical rate. Here we derive an asymptotic expression for the average error probability over the ensemble of codes used in the random coding bound. The result shows that the weakness of the random coding bound at rates below the second critical rate is due not to upperbounding the ensemble average, but rather to the fact that the best codes are much better than the average at low rates.
More on the decoder error probability for Reed-Solomon codes
NASA Technical Reports Server (NTRS)
Cheung, K.-M.
1987-01-01
The decoder error probability for Reed-Solomon codes (more generally, linear maximum distance separable codes) is examined. McEliece and Swanson offered an upper bound on P sub E (u), the decoder error probability given that u symbol errors occurs. This upper bound is slightly greater than Q, the probability that a completely random error pattern will cause decoder error. By using a combinatoric technique, the principle of inclusion and exclusion, an exact formula for P sub E (u) is derived. The P sub e (u) for the (255, 223) Reed-Solomon Code used by NASA, and for the (31,15) Reed-Solomon code (JTIDS code), are calculated using the exact formula, and the P sub E (u)'s are observed to approach the Q's of the codes rapidly as u gets larger. An upper bound for the expression is derived, and is shown to decrease nearly exponentially as u increases. This proves analytically that P sub E (u) indeed approaches Q as u becomes large, and some laws of large numbers come into play.
Double dissociation of value computations in orbitofrontal and anterior cingulate neurons
Kennerley, Steven W.; Behrens, Timothy E. J.; Wallis, Jonathan D.
2011-01-01
Damage to prefrontal cortex (PFC) impairs decision-making, but the underlying value computations that might cause such impairments remain unclear. Here we report that value computations are doubly dissociable within PFC neurons. While many PFC neurons encoded chosen value, they used opponent encoding schemes such that averaging the neuronal population eliminated value coding. However, a special population of neurons in anterior cingulate cortex (ACC) - but not orbitofrontal cortex (OFC) - multiplex chosen value across decision parameters using a unified encoding scheme, and encoded reward prediction errors. In contrast, neurons in OFC - but not ACC - encoded chosen value relative to the recent history of choice values. Together, these results suggest complementary valuation processes across PFC areas: OFC neurons dynamically evaluate current choices relative to recent choice values, while ACC neurons encode choice predictions and prediction errors using a common valuation currency reflecting the integration of multiple decision parameters. PMID:22037498
Error suppression via complementary gauge choices in Reed-Muller codes
NASA Astrophysics Data System (ADS)
Chamberland, Christopher; Jochym-O'Connor, Tomas
2017-09-01
Concatenation of two quantum error-correcting codes with complementary sets of transversal gates can provide a means toward universal fault-tolerant quantum computation. We first show that it is generally preferable to choose the inner code with the higher pseudo-threshold to achieve lower logical failure rates. We then explore the threshold properties of a wide range of concatenation schemes. Notably, we demonstrate that the concatenation of complementary sets of Reed-Muller codes can increase the code capacity threshold under depolarizing noise when compared to extensions of previously proposed concatenation models. We also analyze the properties of logical errors under circuit-level noise, showing that smaller codes perform better for all sampled physical error rates. Our work provides new insights into the performance of universal concatenated quantum codes for both code capacity and circuit-level noise.
New decoding methods of interleaved burst error-correcting codes
NASA Astrophysics Data System (ADS)
Nakano, Y.; Kasahara, M.; Namekawa, T.
1983-04-01
A probabilistic method of single burst error correction, using the syndrome correlation of subcodes which constitute the interleaved code, is presented. This method makes it possible to realize a high capability of burst error correction with less decoding delay. By generalizing this method it is possible to obtain probabilistic method of multiple (m-fold) burst error correction. After estimating the burst error positions using syndrome correlation of subcodes which are interleaved m-fold burst error detecting codes, this second method corrects erasure errors in each subcode and m-fold burst errors. The performance of these two methods is analyzed via computer simulation, and their effectiveness is demonstrated.
Sparse Representation with Spatio-Temporal Online Dictionary Learning for Efficient Video Coding.
Dai, Wenrui; Shen, Yangmei; Tang, Xin; Zou, Junni; Xiong, Hongkai; Chen, Chang Wen
2016-07-27
Classical dictionary learning methods for video coding suer from high computational complexity and interfered coding eciency by disregarding its underlying distribution. This paper proposes a spatio-temporal online dictionary learning (STOL) algorithm to speed up the convergence rate of dictionary learning with a guarantee of approximation error. The proposed algorithm incorporates stochastic gradient descents to form a dictionary of pairs of 3-D low-frequency and highfrequency spatio-temporal volumes. In each iteration of the learning process, it randomly selects one sample volume and updates the atoms of dictionary by minimizing the expected cost, rather than optimizes empirical cost over the complete training data like batch learning methods, e.g. K-SVD. Since the selected volumes are supposed to be i.i.d. samples from the underlying distribution, decomposition coecients attained from the trained dictionary are desirable for sparse representation. Theoretically, it is proved that the proposed STOL could achieve better approximation for sparse representation than K-SVD and maintain both structured sparsity and hierarchical sparsity. It is shown to outperform batch gradient descent methods (K-SVD) in the sense of convergence speed and computational complexity, and its upper bound for prediction error is asymptotically equal to the training error. With lower computational complexity, extensive experiments validate that the STOL based coding scheme achieves performance improvements than H.264/AVC or HEVC as well as existing super-resolution based methods in ratedistortion performance and visual quality.
The role of the insula in intuitive expert bug detection in computer code: an fMRI study.
Castelhano, Joao; Duarte, Isabel C; Ferreira, Carlos; Duraes, Joao; Madeira, Henrique; Castelo-Branco, Miguel
2018-05-09
Software programming is a complex and relatively recent human activity, involving the integration of mathematical, recursive thinking and language processing. The neural correlates of this recent human activity are still poorly understood. Error monitoring during this type of task, requiring the integration of language, logical symbol manipulation and other mathematical skills, is particularly challenging. We therefore aimed to investigate the neural correlates of decision-making during source code understanding and mental manipulation in professional participants with high expertise. The present fMRI study directly addressed error monitoring during source code comprehension, expert bug detection and decision-making. We used C code, which triggers the same sort of processing irrespective of the native language of the programmer. We discovered a distinct role for the insula in bug monitoring and detection and a novel connectivity pattern that goes beyond the expected activation pattern evoked by source code understanding in semantic language and mathematical processing regions. Importantly, insula activity levels were critically related to the quality of error detection, involving intuition, as signalled by reported initial bug suspicion, prior to final decision and bug detection. Activity in this salience network (SN) region evoked by bug suspicion was predictive of bug detection precision, suggesting that it encodes the quality of the behavioral evidence. Connectivity analysis provided evidence for top-down circuit "reutilization" stemming from anterior cingulate cortex (BA32), a core region in the SN that evolved for complex error monitoring such as required for this type of recent human activity. Cingulate (BA32) and anterolateral (BA10) frontal regions causally modulated decision processes in the insula, which in turn was related to activity of math processing regions in early parietal cortex. In other words, earlier brain regions used during evolution for other functions seem to be reutilized in a top-down manner for a new complex function, in an analogous manner as described for other cultural creations such as reading and literacy.
Correcting quantum errors with entanglement.
Brun, Todd; Devetak, Igor; Hsieh, Min-Hsiu
2006-10-20
We show how entanglement shared between encoder and decoder can simplify the theory of quantum error correction. The entanglement-assisted quantum codes we describe do not require the dual-containing constraint necessary for standard quantum error-correcting codes, thus allowing us to "quantize" all of classical linear coding theory. In particular, efficient modern classical codes that attain the Shannon capacity can be made into entanglement-assisted quantum codes attaining the hashing bound (closely related to the quantum capacity). For systems without large amounts of shared entanglement, these codes can also be used as catalytic codes, in which a small amount of initial entanglement enables quantum communication.
Zhang, Guangzhi; Cai, Shaobin; Xiong, Naixue
2018-01-01
One of the remarkable challenges about Wireless Sensor Networks (WSN) is how to transfer the collected data efficiently due to energy limitation of sensor nodes. Network coding will increase network throughput of WSN dramatically due to the broadcast nature of WSN. However, the network coding usually propagates a single original error over the whole network. Due to the special property of error propagation in network coding, most of error correction methods cannot correct more than C/2 corrupted errors where C is the max flow min cut of the network. To maximize the effectiveness of network coding applied in WSN, a new error-correcting mechanism to confront the propagated error is urgently needed. Based on the social network characteristic inherent in WSN and L1 optimization, we propose a novel scheme which successfully corrects more than C/2 corrupted errors. What is more, even if the error occurs on all the links of the network, our scheme also can correct errors successfully. With introducing a secret channel and a specially designed matrix which can trap some errors, we improve John and Yi’s model so that it can correct the propagated errors in network coding which usually pollute exactly 100% of the received messages. Taking advantage of the social characteristic inherent in WSN, we propose a new distributed approach that establishes reputation-based trust among sensor nodes in order to identify the informative upstream sensor nodes. With referred theory of social networks, the informative relay nodes are selected and marked with high trust value. The two methods of L1 optimization and utilizing social characteristic coordinate with each other, and can correct the propagated error whose fraction is even exactly 100% in WSN where network coding is performed. The effectiveness of the error correction scheme is validated through simulation experiments. PMID:29401668
Zhang, Guangzhi; Cai, Shaobin; Xiong, Naixue
2018-02-03
One of the remarkable challenges about Wireless Sensor Networks (WSN) is how to transfer the collected data efficiently due to energy limitation of sensor nodes. Network coding will increase network throughput of WSN dramatically due to the broadcast nature of WSN. However, the network coding usually propagates a single original error over the whole network. Due to the special property of error propagation in network coding, most of error correction methods cannot correct more than C /2 corrupted errors where C is the max flow min cut of the network. To maximize the effectiveness of network coding applied in WSN, a new error-correcting mechanism to confront the propagated error is urgently needed. Based on the social network characteristic inherent in WSN and L1 optimization, we propose a novel scheme which successfully corrects more than C /2 corrupted errors. What is more, even if the error occurs on all the links of the network, our scheme also can correct errors successfully. With introducing a secret channel and a specially designed matrix which can trap some errors, we improve John and Yi's model so that it can correct the propagated errors in network coding which usually pollute exactly 100% of the received messages. Taking advantage of the social characteristic inherent in WSN, we propose a new distributed approach that establishes reputation-based trust among sensor nodes in order to identify the informative upstream sensor nodes. With referred theory of social networks, the informative relay nodes are selected and marked with high trust value. The two methods of L1 optimization and utilizing social characteristic coordinate with each other, and can correct the propagated error whose fraction is even exactly 100% in WSN where network coding is performed. The effectiveness of the error correction scheme is validated through simulation experiments.
CFD Modeling of Launch Vehicle Aerodynamic Heating
NASA Technical Reports Server (NTRS)
Tashakkor, Scott B.; Canabal, Francisco; Mishtawy, Jason E.
2011-01-01
The Loci-CHEM 3.2 Computational Fluid Dynamics (CFD) code is being used to predict Ares-I launch vehicle aerodynamic heating. CFD has been used to predict both ascent and stage reentry environments and has been validated against wind tunnel tests and the Ares I-X developmental flight test. Most of the CFD predictions agreed with measurements. On regions where mismatches occurred, the CFD predictions tended to be higher than measured data. These higher predictions usually occurred in complex regions, where the CFD models (mainly turbulence) contain less accurate approximations. In some instances, the errors causing the over-predictions would cause locations downstream to be affected even though the physics were still being modeled properly by CHEM. This is easily seen when comparing to the 103-AH data. In the areas where predictions were low, higher grid resolution often brought the results closer to the data. Other disagreements are attributed to Ares I-X hardware not being present in the grid, as a result of computational resources limitations. The satisfactory predictions from CHEM provide confidence that future designs and predictions from the CFD code will provide an accurate approximation of the correct values for use in design and other applications
The Effects of Bar-coding Technology on Medication Errors: A Systematic Literature Review.
Hutton, Kevin; Ding, Qian; Wellman, Gregory
2017-02-24
The bar-coding technology adoptions have risen drastically in U.S. health systems in the past decade. However, few studies have addressed the impact of bar-coding technology with strong prospective methodologies and the research, which has been conducted from both in-pharmacy and bedside implementations. This systematic literature review is to examine the effectiveness of bar-coding technology on preventing medication errors and what types of medication errors may be prevented in the hospital setting. A systematic search of databases was performed from 1998 to December 2016. Studies measuring the effect of bar-coding technology on medication errors were included in a full-text review. Studies with the outcomes other than medication errors such as efficiency or workarounds were excluded. The outcomes were measured and findings were summarized for each retained study. A total of 2603 articles were initially identified and 10 studies, which used prospective before-and-after study design, were fully reviewed in this article. Of the 10 included studies, 9 took place in the United States, whereas the remaining was conducted in the United Kingdom. One research article focused on bar-coding implementation in a pharmacy setting, whereas the other 9 focused on bar coding within patient care areas. All 10 studies showed overall positive effects associated with bar-coding implementation. The results of this review show that bar-coding technology may reduce medication errors in hospital settings, particularly on preventing targeted wrong dose, wrong drug, wrong patient, unauthorized drug, and wrong route errors.
NASA Technical Reports Server (NTRS)
Ancheta, T. C., Jr.
1976-01-01
A method of using error-correcting codes to obtain data compression, called syndrome-source-coding, is described in which the source sequence is treated as an error pattern whose syndrome forms the compressed data. It is shown that syndrome-source-coding can achieve arbitrarily small distortion with the number of compressed digits per source digit arbitrarily close to the entropy of a binary memoryless source. A 'universal' generalization of syndrome-source-coding is formulated which provides robustly effective distortionless coding of source ensembles. Two examples are given, comparing the performance of noiseless universal syndrome-source-coding to (1) run-length coding and (2) Lynch-Davisson-Schalkwijk-Cover universal coding for an ensemble of binary memoryless sources.
Automatic-repeat-request error control schemes
NASA Technical Reports Server (NTRS)
Lin, S.; Costello, D. J., Jr.; Miller, M. J.
1983-01-01
Error detection incorporated with automatic-repeat-request (ARQ) is widely used for error control in data communication systems. This method of error control is simple and provides high system reliability. If a properly chosen code is used for error detection, virtually error-free data transmission can be attained. Various types of ARQ and hybrid ARQ schemes, and error detection using linear block codes are surveyed.
Error threshold for color codes and random three-body Ising models.
Katzgraber, Helmut G; Bombin, H; Martin-Delgado, M A
2009-08-28
We study the error threshold of color codes, a class of topological quantum codes that allow a direct implementation of quantum Clifford gates suitable for entanglement distillation, teleportation, and fault-tolerant quantum computation. We map the error-correction process onto a statistical mechanical random three-body Ising model and study its phase diagram via Monte Carlo simulations. The obtained error threshold of p(c) = 0.109(2) is very close to that of Kitaev's toric code, showing that enhanced computational capabilities do not necessarily imply lower resistance to noise.
NASA Technical Reports Server (NTRS)
Berke, Laszlo; Patnaik, Surya N.; Murthy, Pappu L. N.
1993-01-01
The application of artificial neural networks to capture structural design expertise is demonstrated. The principal advantage of a trained neural network is that it requires trivial computational effort to produce an acceptable new design. For the class of problems addressed, the development of a conventional expert system would be extremely difficult. In the present effort, a structural optimization code with multiple nonlinear programming algorithms and an artificial neural network code NETS were used. A set of optimum designs for a ring and two aircraft wings for static and dynamic constraints were generated by using the optimization codes. The optimum design data were processed to obtain input and output pairs, which were used to develop a trained artificial neural network with the code NETS. Optimum designs for new design conditions were predicted by using the trained network. Neural net prediction of optimum designs was found to be satisfactory for most of the output design parameters. However, results from the present study indicate that caution must be exercised to ensure that all design variables are within selected error bounds.
Optimum Design of Aerospace Structural Components Using Neural Networks
NASA Technical Reports Server (NTRS)
Berke, L.; Patnaik, S. N.; Murthy, P. L. N.
1993-01-01
The application of artificial neural networks to capture structural design expertise is demonstrated. The principal advantage of a trained neural network is that it requires a trivial computational effort to produce an acceptable new design. For the class of problems addressed, the development of a conventional expert system would be extremely difficult. In the present effort, a structural optimization code with multiple nonlinear programming algorithms and an artificial neural network code NETS were used. A set of optimum designs for a ring and two aircraft wings for static and dynamic constraints were generated using the optimization codes. The optimum design data were processed to obtain input and output pairs, which were used to develop a trained artificial neural network using the code NETS. Optimum designs for new design conditions were predicted using the trained network. Neural net prediction of optimum designs was found to be satisfactory for the majority of the output design parameters. However, results from the present study indicate that caution must be exercised to ensure that all design variables are within selected error bounds.
Automated error correction in IBM quantum computer and explicit generalization
NASA Astrophysics Data System (ADS)
Ghosh, Debjit; Agarwal, Pratik; Pandey, Pratyush; Behera, Bikash K.; Panigrahi, Prasanta K.
2018-06-01
Construction of a fault-tolerant quantum computer remains a challenging problem due to unavoidable noise and fragile quantum states. However, this goal can be achieved by introducing quantum error-correcting codes. Here, we experimentally realize an automated error correction code and demonstrate the nondestructive discrimination of GHZ states in IBM 5-qubit quantum computer. After performing quantum state tomography, we obtain the experimental results with a high fidelity. Finally, we generalize the investigated code for maximally entangled n-qudit case, which could both detect and automatically correct any arbitrary phase-change error, or any phase-flip error, or any bit-flip error, or combined error of all types of error.
Noise Estimation and Adaptive Encoding for Asymmetric Quantum Error Correcting Codes
NASA Astrophysics Data System (ADS)
Florjanczyk, Jan; Brun, Todd; CenterQuantum Information Science; Technology Team
We present a technique that improves the performance of asymmetric quantum error correcting codes in the presence of biased qubit noise channels. Our study is motivated by considering what useful information can be learned from the statistics of syndrome measurements in stabilizer quantum error correcting codes (QECC). We consider the case of a qubit dephasing channel where the dephasing axis is unknown and time-varying. We are able to estimate the dephasing angle from the statistics of the standard syndrome measurements used in stabilizer QECC's. We use this estimate to rotate the computational basis of the code in such a way that the most likely type of error is covered by the highest distance of the asymmetric code. In particular, we use the [ [ 15 , 1 , 3 ] ] shortened Reed-Muller code which can correct one phase-flip error but up to three bit-flip errors. In our simulations, we tune the computational basis to match the estimated dephasing axis which in turn leads to a decrease in the probability of a phase-flip error. With a sufficiently accurate estimate of the dephasing axis, our memory's effective error is dominated by the much lower probability of four bit-flips. Aro MURI Grant No. W911NF-11-1-0268.
NASA Astrophysics Data System (ADS)
Pei, Yong; Modestino, James W.
2004-12-01
Digital video delivered over wired-to-wireless networks is expected to suffer quality degradation from both packet loss and bit errors in the payload. In this paper, the quality degradation due to packet loss and bit errors in the payload are quantitatively evaluated and their effects are assessed. We propose the use of a concatenated forward error correction (FEC) coding scheme employing Reed-Solomon (RS) codes and rate-compatible punctured convolutional (RCPC) codes to protect the video data from packet loss and bit errors, respectively. Furthermore, the performance of a joint source-channel coding (JSCC) approach employing this concatenated FEC coding scheme for video transmission is studied. Finally, we describe an improved end-to-end architecture using an edge proxy in a mobile support station to implement differential error protection for the corresponding channel impairments expected on the two networks. Results indicate that with an appropriate JSCC approach and the use of an edge proxy, FEC-based error-control techniques together with passive error-recovery techniques can significantly improve the effective video throughput and lead to acceptable video delivery quality over time-varying heterogeneous wired-to-wireless IP networks.
NASA Astrophysics Data System (ADS)
Bezan, Scott; Shirani, Shahram
2006-12-01
To reliably transmit video over error-prone channels, the data should be both source and channel coded. When multiple channels are available for transmission, the problem extends to that of partitioning the data across these channels. The condition of transmission channels, however, varies with time. Therefore, the error protection added to the data at one instant of time may not be optimal at the next. In this paper, we propose a method for adaptively adding error correction code in a rate-distortion (RD) optimized manner using rate-compatible punctured convolutional codes to an MJPEG2000 constant rate-coded frame of video. We perform an analysis on the rate-distortion tradeoff of each of the coding units (tiles and packets) in each frame and adapt the error correction code assigned to the unit taking into account the bandwidth and error characteristics of the channels. This method is applied to both single and multiple time-varying channel environments. We compare our method with a basic protection method in which data is either not transmitted, transmitted with no protection, or transmitted with a fixed amount of protection. Simulation results show promising performance for our proposed method.
Haghighi, Mohammad Hosein Hayavi; Dehghani, Mohammad; Teshnizi, Saeid Hoseini; Mahmoodi, Hamid
2014-01-01
Accurate cause of death coding leads to organised and usable death information but there are some factors that influence documentation on death certificates and therefore affect the coding. We reviewed the role of documentation errors on the accuracy of death coding at Shahid Mohammadi Hospital (SMH), Bandar Abbas, Iran. We studied the death certificates of all deceased patients in SMH from October 2010 to March 2011. Researchers determined and coded the underlying cause of death on the death certificates according to the guidelines issued by the World Health Organization in Volume 2 of the International Statistical Classification of Diseases and Health Related Problems-10th revision (ICD-10). Necessary ICD coding rules (such as the General Principle, Rules 1-3, the modification rules and other instructions about death coding) were applied to select the underlying cause of death on each certificate. Demographic details and documentation errors were then extracted. Data were analysed with descriptive statistics and chi square tests. The accuracy rate of causes of death coding was 51.7%, demonstrating a statistically significant relationship (p=.001) with major errors but not such a relationship with minor errors. Factors that result in poor quality of Cause of Death coding in SMH are lack of coder training, documentation errors and the undesirable structure of death certificates.
Performance of concatenated Reed-Solomon trellis-coded modulation over Rician fading channels
NASA Technical Reports Server (NTRS)
Moher, Michael L.; Lodge, John H.
1990-01-01
A concatenated coding scheme for providing very reliable data over mobile-satellite channels at power levels similar to those used for vocoded speech is described. The outer code is a shorter Reed-Solomon code which provides error detection as well as error correction capabilities. The inner code is a 1-D 8-state trellis code applied independently to both the inphase and quadrature channels. To achieve the full error correction potential of this inner code, the code symbols are multiplexed with a pilot sequence which is used to provide dynamic channel estimation and coherent detection. The implementation structure of this scheme is discussed and its performance is estimated.
Quantum error correcting codes and 4-dimensional arithmetic hyperbolic manifolds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guth, Larry, E-mail: lguth@math.mit.edu; Lubotzky, Alexander, E-mail: alex.lubotzky@mail.huji.ac.il
2014-08-15
Using 4-dimensional arithmetic hyperbolic manifolds, we construct some new homological quantum error correcting codes. They are low density parity check codes with linear rate and distance n{sup ε}. Their rate is evaluated via Euler characteristic arguments and their distance using Z{sub 2}-systolic geometry. This construction answers a question of Zémor [“On Cayley graphs, surface codes, and the limits of homological coding for quantum error correction,” in Proceedings of Second International Workshop on Coding and Cryptology (IWCC), Lecture Notes in Computer Science Vol. 5557 (2009), pp. 259–273], who asked whether homological codes with such parameters could exist at all.
Soft-decision decoding techniques for linear block codes and their error performance analysis
NASA Technical Reports Server (NTRS)
Lin, Shu
1996-01-01
The first paper presents a new minimum-weight trellis-based soft-decision iterative decoding algorithm for binary linear block codes. The second paper derives an upper bound on the probability of block error for multilevel concatenated codes (MLCC). The bound evaluates difference in performance for different decompositions of some codes. The third paper investigates the bit error probability code for maximum likelihood decoding of binary linear codes. The fourth and final paper included in this report is concerns itself with the construction of multilevel concatenated block modulation codes using a multilevel concatenation scheme for the frequency non-selective Rayleigh fading channel.
Classification based upon gene expression data: bias and precision of error rates.
Wood, Ian A; Visscher, Peter M; Mengersen, Kerrie L
2007-06-01
Gene expression data offer a large number of potentially useful predictors for the classification of tissue samples into classes, such as diseased and non-diseased. The predictive error rate of classifiers can be estimated using methods such as cross-validation. We have investigated issues of interpretation and potential bias in the reporting of error rate estimates. The issues considered here are optimization and selection biases, sampling effects, measures of misclassification rate, baseline error rates, two-level external cross-validation and a novel proposal for detection of bias using the permutation mean. Reporting an optimal estimated error rate incurs an optimization bias. Downward bias of 3-5% was found in an existing study of classification based on gene expression data and may be endemic in similar studies. Using a simulated non-informative dataset and two example datasets from existing studies, we show how bias can be detected through the use of label permutations and avoided using two-level external cross-validation. Some studies avoid optimization bias by using single-level cross-validation and a test set, but error rates can be more accurately estimated via two-level cross-validation. In addition to estimating the simple overall error rate, we recommend reporting class error rates plus where possible the conditional risk incorporating prior class probabilities and a misclassification cost matrix. We also describe baseline error rates derived from three trivial classifiers which ignore the predictors. R code which implements two-level external cross-validation with the PAMR package, experiment code, dataset details and additional figures are freely available for non-commercial use from http://www.maths.qut.edu.au/profiles/wood/permr.jsp
NASA Technical Reports Server (NTRS)
Hinds, Erold W. (Principal Investigator)
1996-01-01
This report describes the progress made towards the completion of a specific task on error-correcting coding. The proposed research consisted of investigating the use of modulation block codes as the inner code of a concatenated coding system in order to improve the overall space link communications performance. The study proposed to identify and analyze candidate codes that will complement the performance of the overall coding system which uses the interleaved RS (255,223) code as the outer code.
Superdense coding interleaved with forward error correction
Humble, Travis S.; Sadlier, Ronald J.
2016-05-12
Superdense coding promises increased classical capacity and communication security but this advantage may be undermined by noise in the quantum channel. We present a numerical study of how forward error correction (FEC) applied to the encoded classical message can be used to mitigate against quantum channel noise. By studying the bit error rate under different FEC codes, we identify the unique role that burst errors play in superdense coding, and we show how these can be mitigated against by interleaving the FEC codewords prior to transmission. As a result, we conclude that classical FEC with interleaving is a useful methodmore » to improve the performance in near-term demonstrations of superdense coding.« less
Neuronal Reward and Decision Signals: From Theories to Data
Schultz, Wolfram
2015-01-01
Rewards are crucial objects that induce learning, approach behavior, choices, and emotions. Whereas emotions are difficult to investigate in animals, the learning function is mediated by neuronal reward prediction error signals which implement basic constructs of reinforcement learning theory. These signals are found in dopamine neurons, which emit a global reward signal to striatum and frontal cortex, and in specific neurons in striatum, amygdala, and frontal cortex projecting to select neuronal populations. The approach and choice functions involve subjective value, which is objectively assessed by behavioral choices eliciting internal, subjective reward preferences. Utility is the formal mathematical characterization of subjective value and a prime decision variable in economic choice theory. It is coded as utility prediction error by phasic dopamine responses. Utility can incorporate various influences, including risk, delay, effort, and social interaction. Appropriate for formal decision mechanisms, rewards are coded as object value, action value, difference value, and chosen value by specific neurons. Although all reward, reinforcement, and decision variables are theoretical constructs, their neuronal signals constitute measurable physical implementations and as such confirm the validity of these concepts. The neuronal reward signals provide guidance for behavior while constraining the free will to act. PMID:26109341
Performance Bounds on Two Concatenated, Interleaved Codes
NASA Technical Reports Server (NTRS)
Moision, Bruce; Dolinar, Samuel
2010-01-01
A method has been developed of computing bounds on the performance of a code comprised of two linear binary codes generated by two encoders serially concatenated through an interleaver. Originally intended for use in evaluating the performances of some codes proposed for deep-space communication links, the method can also be used in evaluating the performances of short-block-length codes in other applications. The method applies, more specifically, to a communication system in which following processes take place: At the transmitter, the original binary information that one seeks to transmit is first processed by an encoder into an outer code (Co) characterized by, among other things, a pair of numbers (n,k), where n (n > k)is the total number of code bits associated with k information bits and n k bits are used for correcting or at least detecting errors. Next, the outer code is processed through either a block or a convolutional interleaver. In the block interleaver, the words of the outer code are processed in blocks of I words. In the convolutional interleaver, the interleaving operation is performed bit-wise in N rows with delays that are multiples of B bits. The output of the interleaver is processed through a second encoder to obtain an inner code (Ci) characterized by (ni,ki). The output of the inner code is transmitted over an additive-white-Gaussian- noise channel characterized by a symbol signal-to-noise ratio (SNR) Es/No and a bit SNR Eb/No. At the receiver, an inner decoder generates estimates of bits. Depending on whether a block or a convolutional interleaver is used at the transmitter, the sequence of estimated bits is processed through a block or a convolutional de-interleaver, respectively, to obtain estimates of code words. Then the estimates of the code words are processed through an outer decoder, which generates estimates of the original information along with flags indicating which estimates are presumed to be correct and which are found to be erroneous. From the perspective of the present method, the topic of major interest is the performance of the communication system as quantified in the word-error rate and the undetected-error rate as functions of the SNRs and the total latency of the interleaver and inner code. The method is embodied in equations that describe bounds on these functions. Throughout the derivation of the equations that embody the method, it is assumed that the decoder for the outer code corrects any error pattern of t or fewer errors, detects any error pattern of s or fewer errors, may detect some error patterns of more than s errors, and does not correct any patterns of more than t errors. Because a mathematically complete description of the equations that embody the method and of the derivation of the equations would greatly exceed the space available for this article, it must suffice to summarize by reporting that the derivation includes consideration of several complex issues, including relationships between latency and memory requirements for block and convolutional codes, burst error statistics, enumeration of error-event intersections, and effects of different interleaving depths. In a demonstration, the method was used to calculate bounds on the performances of several communication systems, each based on serial concatenation of a (63,56) expurgated Hamming code with a convolutional inner code through a convolutional interleaver. The bounds calculated by use of the method were compared with results of numerical simulations of performances of the systems to show the regions where the bounds are tight (see figure).
Simulation of rare events in quantum error correction
NASA Astrophysics Data System (ADS)
Bravyi, Sergey; Vargo, Alexander
2013-12-01
We consider the problem of calculating the logical error probability for a stabilizer quantum code subject to random Pauli errors. To access the regime of large code distances where logical errors are extremely unlikely we adopt the splitting method widely used in Monte Carlo simulations of rare events and Bennett's acceptance ratio method for estimating the free energy difference between two canonical ensembles. To illustrate the power of these methods in the context of error correction, we calculate the logical error probability PL for the two-dimensional surface code on a square lattice with a pair of holes for all code distances d≤20 and all error rates p below the fault-tolerance threshold. Our numerical results confirm the expected exponential decay PL˜exp[-α(p)d] and provide a simple fitting formula for the decay rate α(p). Both noiseless and noisy syndrome readout circuits are considered.
Error Control Coding Techniques for Space and Satellite Communications
NASA Technical Reports Server (NTRS)
Lin, Shu
2000-01-01
This paper presents a concatenated turbo coding system in which a Reed-Solomom outer code is concatenated with a binary turbo inner code. In the proposed system, the outer code decoder and the inner turbo code decoder interact to achieve both good bit error and frame error performances. The outer code decoder helps the inner turbo code decoder to terminate its decoding iteration while the inner turbo code decoder provides soft-output information to the outer code decoder to carry out a reliability-based soft-decision decoding. In the case that the outer code decoding fails, the outer code decoder instructs the inner code decoder to continue its decoding iterations until the outer code decoding is successful or a preset maximum number of decoding iterations is reached. This interaction between outer and inner code decoders reduces decoding delay. Also presented in the paper are an effective criterion for stopping the iteration process of the inner code decoder and a new reliability-based decoding algorithm for nonbinary codes.
Image defects from surface and alignment errors in grazing incidence telescopes
NASA Technical Reports Server (NTRS)
Saha, Timo T.
1989-01-01
The rigid body motions and low frequency surface errors of grazing incidence Wolter telescopes are studied. The analysis is based on surface error descriptors proposed by Paul Glenn. In his analysis, the alignment and surface errors are expressed in terms of Legendre-Fourier polynomials. Individual terms in the expression correspond to rigid body motions (decenter and tilt) and low spatial frequency surface errors of mirrors. With the help of the Legendre-Fourier polynomials and the geometry of grazing incidence telescopes, exact and approximated first order equations are derived in this paper for the components of the ray intercepts at the image plane. These equations are then used to calculate the sensitivities of Wolter type I and II telescopes for the rigid body motions and surface deformations. The rms spot diameters calculated from this theory and OSAC ray tracing code agree very well. This theory also provides a tool to predict how rigid body motions and surface errors of the mirrors compensate each other.
EAC: A program for the error analysis of STAGS results for plates
NASA Technical Reports Server (NTRS)
Sistla, Rajaram; Thurston, Gaylen A.; Bains, Nancy Jane C.
1989-01-01
A computer code is now available for estimating the error in results from the STAGS finite element code for a shell unit consisting of a rectangular orthotropic plate. This memorandum contains basic information about the computer code EAC (Error Analysis and Correction) and describes the connection between the input data for the STAGS shell units and the input data necessary to run the error analysis code. The STAGS code returns a set of nodal displacements and a discrete set of stress resultants; the EAC code returns a continuous solution for displacements and stress resultants. The continuous solution is defined by a set of generalized coordinates computed in EAC. The theory and the assumptions that determine the continuous solution are also outlined in this memorandum. An example of application of the code is presented and instructions on its usage on the Cyber and the VAX machines have been provided.
Is a Genome a Codeword of an Error-Correcting Code?
Kleinschmidt, João H.; Silva-Filho, Márcio C.; Bim, Edson; Herai, Roberto H.; Yamagishi, Michel E. B.; Palazzo, Reginaldo
2012-01-01
Since a genome is a discrete sequence, the elements of which belong to a set of four letters, the question as to whether or not there is an error-correcting code underlying DNA sequences is unavoidable. The most common approach to answering this question is to propose a methodology to verify the existence of such a code. However, none of the methodologies proposed so far, although quite clever, has achieved that goal. In a recent work, we showed that DNA sequences can be identified as codewords in a class of cyclic error-correcting codes known as Hamming codes. In this paper, we show that a complete intron-exon gene, and even a plasmid genome, can be identified as a Hamming code codeword as well. Although this does not constitute a definitive proof that there is an error-correcting code underlying DNA sequences, it is the first evidence in this direction. PMID:22649495
Bao, Yi; Chen, Yizheng; Hoehler, Matthew S.; Smith, Christopher M.; Bundy, Matthew; Chen, Genda
2016-01-01
This paper presents high temperature measurements using a Brillouin scattering-based fiber optic sensor and the application of the measured temperatures and building code recommended material parameters into enhanced thermomechanical analysis of simply supported steel beams subjected to combined thermal and mechanical loading. The distributed temperature sensor captures detailed, nonuniform temperature distributions that are compared locally with thermocouple measurements with less than 4.7% average difference at 95% confidence level. The simulated strains and deflections are validated using measurements from a second distributed fiber optic (strain) sensor and two linear potentiometers, respectively. The results demonstrate that the temperature-dependent material properties specified in the four investigated building codes lead to strain predictions with less than 13% average error at 95% confidence level and that the Europe building code provided the best predictions. However, the implicit consideration of creep in Europe is insufficient when the beam temperature exceeds 800°C. PMID:28239230
Propagation of Computational Uncertainty Using the Modern Design of Experiments
NASA Technical Reports Server (NTRS)
DeLoach, Richard
2007-01-01
This paper describes the use of formally designed experiments to aid in the error analysis of a computational experiment. A method is described by which the underlying code is approximated with relatively low-order polynomial graduating functions represented by truncated Taylor series approximations to the true underlying response function. A resource-minimal approach is outlined by which such graduating functions can be estimated from a minimum number of case runs of the underlying computational code. Certain practical considerations are discussed, including ways and means of coping with high-order response functions. The distributional properties of prediction residuals are presented and discussed. A practical method is presented for quantifying that component of the prediction uncertainty of a computational code that can be attributed to imperfect knowledge of independent variable levels. This method is illustrated with a recent assessment of uncertainty in computational estimates of Space Shuttle thermal and structural reentry loads attributable to ice and foam debris impact on ascent.
Product code optimization for determinate state LDPC decoding in robust image transmission.
Thomos, Nikolaos; Boulgouris, Nikolaos V; Strintzis, Michael G
2006-08-01
We propose a novel scheme for error-resilient image transmission. The proposed scheme employs a product coder consisting of low-density parity check (LDPC) codes and Reed-Solomon codes in order to deal effectively with bit errors. The efficiency of the proposed scheme is based on the exploitation of determinate symbols in Tanner graph decoding of LDPC codes and a novel product code optimization technique based on error estimation. Experimental evaluation demonstrates the superiority of the proposed system in comparison to recent state-of-the-art techniques for image transmission.
Quantum error-correcting codes from algebraic geometry codes of Castle type
NASA Astrophysics Data System (ADS)
Munuera, Carlos; Tenório, Wanderson; Torres, Fernando
2016-10-01
We study algebraic geometry codes producing quantum error-correcting codes by the CSS construction. We pay particular attention to the family of Castle codes. We show that many of the examples known in the literature in fact belong to this family of codes. We systematize these constructions by showing the common theory that underlies all of them.
Bit Error Probability for Maximum Likelihood Decoding of Linear Block Codes
NASA Technical Reports Server (NTRS)
Lin, Shu; Fossorier, Marc P. C.; Rhee, Dojun
1996-01-01
In this paper, the bit error probability P(sub b) for maximum likelihood decoding of binary linear codes is investigated. The contribution of each information bit to P(sub b) is considered. For randomly generated codes, it is shown that the conventional approximation at high SNR P(sub b) is approximately equal to (d(sub H)/N)P(sub s), where P(sub s) represents the block error probability, holds for systematic encoding only. Also systematic encoding provides the minimum P(sub b) when the inverse mapping corresponding to the generator matrix of the code is used to retrieve the information sequence. The bit error performances corresponding to other generator matrix forms are also evaluated. Although derived for codes with a generator matrix randomly generated, these results are shown to provide good approximations for codes used in practice. Finally, for decoding methods which require a generator matrix with a particular structure such as trellis decoding or algebraic-based soft decision decoding, equivalent schemes that reduce the bit error probability are discussed.
Efficient preparation of large-block-code ancilla states for fault-tolerant quantum computation
NASA Astrophysics Data System (ADS)
Zheng, Yi-Cong; Lai, Ching-Yi; Brun, Todd A.
2018-03-01
Fault-tolerant quantum computation (FTQC) schemes that use multiqubit large block codes can potentially reduce the resource overhead to a great extent. A major obstacle is the requirement for a large number of clean ancilla states of different types without correlated errors inside each block. These ancilla states are usually logical stabilizer states of the data-code blocks, which are generally difficult to prepare if the code size is large. Previously, we have proposed an ancilla distillation protocol for Calderbank-Shor-Steane (CSS) codes by classical error-correcting codes. It was assumed that the quantum gates in the distillation circuit were perfect; however, in reality, noisy quantum gates may introduce correlated errors that are not treatable by the protocol. In this paper, we show that additional postselection by another classical error-detecting code can be applied to remove almost all correlated errors. Consequently, the revised protocol is fully fault tolerant and capable of preparing a large set of stabilizer states sufficient for FTQC using large block codes. At the same time, the yield rate can be boosted from O (t-2) to O (1 ) in practice for an [[n ,k ,d =2 t +1
Coordinated design of coding and modulation systems
NASA Technical Reports Server (NTRS)
Massey, J. L.
1976-01-01
Work on partial unit memory codes continued; it was shown that for a given virtual state complexity, the maximum free distance over the class of all convolutional codes is achieved within the class of unit memory codes. The effect of phase-lock loop (PLL) tracking error on coding system performance was studied by using the channel cut-off rate as the measure of quality of a modulation system. Optimum modulation signal sets for a non-white Gaussian channel considered an heuristic selection rule based on a water-filling argument. The use of error correcting codes to perform data compression by the technique of syndrome source coding was researched and a weight-and-error-locations scheme was developed that is closely related to LDSC coding.
Active Mirror Predictive and Requirements Verification Software (AMP-ReVS)
NASA Technical Reports Server (NTRS)
Basinger, Scott A.
2012-01-01
This software is designed to predict large active mirror performance at various stages in the fabrication lifecycle of the mirror. It was developed for 1-meter class powered mirrors for astronomical purposes, but is extensible to other geometries. The package accepts finite element model (FEM) inputs and laboratory measured data for large optical-quality mirrors with active figure control. It computes phenomenological contributions to the surface figure error using several built-in optimization techniques. These phenomena include stresses induced in the mirror by the manufacturing process and the support structure, the test procedure, high spatial frequency errors introduced by the polishing process, and other process-dependent deleterious effects due to light-weighting of the mirror. Then, depending on the maturity of the mirror, it either predicts the best surface figure error that the mirror will attain, or it verifies that the requirements for the error sources have been met once the best surface figure error has been measured. The unique feature of this software is that it ties together physical phenomenology with wavefront sensing and control techniques and various optimization methods including convex optimization, Kalman filtering, and quadratic programming to both generate predictive models and to do requirements verification. This software combines three distinct disciplines: wavefront control, predictive models based on FEM, and requirements verification using measured data in a robust, reusable code that is applicable to any large optics for ground and space telescopes. The software also includes state-of-the-art wavefront control algorithms that allow closed-loop performance to be computed. It allows for quantitative trade studies to be performed for optical systems engineering, including computing the best surface figure error under various testing and operating conditions. After the mirror manufacturing process and testing have been completed, the software package can be used to verify that the underlying requirements have been met.
Short-Block Protograph-Based LDPC Codes
NASA Technical Reports Server (NTRS)
Divsalar, Dariush; Dolinar, Samuel; Jones, Christopher
2010-01-01
Short-block low-density parity-check (LDPC) codes of a special type are intended to be especially well suited for potential applications that include transmission of command and control data, cellular telephony, data communications in wireless local area networks, and satellite data communications. [In general, LDPC codes belong to a class of error-correcting codes suitable for use in a variety of wireless data-communication systems that include noisy channels.] The codes of the present special type exhibit low error floors, low bit and frame error rates, and low latency (in comparison with related prior codes). These codes also achieve low maximum rate of undetected errors over all signal-to-noise ratios, without requiring the use of cyclic redundancy checks, which would significantly increase the overhead for short blocks. These codes have protograph representations; this is advantageous in that, for reasons that exceed the scope of this article, the applicability of protograph representations makes it possible to design highspeed iterative decoders that utilize belief- propagation algorithms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1987-10-01
Huffman codes, comma-free codes, and block codes with shift indicators are important candidate-message compression codes for improving the efficiency of communications systems. This study was undertaken to determine if these codes could be used to increase the thruput of the fixed very-low-frequency (FVLF) communication system. This applications involves the use of compression codes in a channel with errors.
A decoding procedure for the Reed-Solomon codes
NASA Technical Reports Server (NTRS)
Lim, R. S.
1978-01-01
A decoding procedure is described for the (n,k) t-error-correcting Reed-Solomon (RS) code, and an implementation of the (31,15) RS code for the I4-TENEX central system. This code can be used for error correction in large archival memory systems. The principal features of the decoder are a Galois field arithmetic unit implemented by microprogramming a microprocessor, and syndrome calculation by using the g(x) encoding shift register. Complete decoding of the (31,15) code is expected to take less than 500 microsecs. The syndrome calculation is performed by hardware using the encoding shift register and a modified Chien search. The error location polynomial is computed by using Lin's table, which is an interpretation of Berlekamp's iterative algorithm. The error location numbers are calculated by using the Chien search. Finally, the error values are computed by using Forney's method.
NASA Astrophysics Data System (ADS)
Lidar, Daniel A.; Brun, Todd A.
2013-09-01
Prologue; Preface; Part I. Background: 1. Introduction to decoherence and noise in open quantum systems Daniel Lidar and Todd Brun; 2. Introduction to quantum error correction Dave Bacon; 3. Introduction to decoherence-free subspaces and noiseless subsystems Daniel Lidar; 4. Introduction to quantum dynamical decoupling Lorenza Viola; 5. Introduction to quantum fault tolerance Panos Aliferis; Part II. Generalized Approaches to Quantum Error Correction: 6. Operator quantum error correction David Kribs and David Poulin; 7. Entanglement-assisted quantum error-correcting codes Todd Brun and Min-Hsiu Hsieh; 8. Continuous-time quantum error correction Ognyan Oreshkov; Part III. Advanced Quantum Codes: 9. Quantum convolutional codes Mark Wilde; 10. Non-additive quantum codes Markus Grassl and Martin Rötteler; 11. Iterative quantum coding systems David Poulin; 12. Algebraic quantum coding theory Andreas Klappenecker; 13. Optimization-based quantum error correction Andrew Fletcher; Part IV. Advanced Dynamical Decoupling: 14. High order dynamical decoupling Zhen-Yu Wang and Ren-Bao Liu; 15. Combinatorial approaches to dynamical decoupling Martin Rötteler and Pawel Wocjan; Part V. Alternative Quantum Computation Approaches: 16. Holonomic quantum computation Paolo Zanardi; 17. Fault tolerance for holonomic quantum computation Ognyan Oreshkov, Todd Brun and Daniel Lidar; 18. Fault tolerant measurement-based quantum computing Debbie Leung; Part VI. Topological Methods: 19. Topological codes Héctor Bombín; 20. Fault tolerant topological cluster state quantum computing Austin Fowler and Kovid Goyal; Part VII. Applications and Implementations: 21. Experimental quantum error correction Dave Bacon; 22. Experimental dynamical decoupling Lorenza Viola; 23. Architectures Jacob Taylor; 24. Error correction in quantum communication Mark Wilde; Part VIII. Critical Evaluation of Fault Tolerance: 25. Hamiltonian methods in QEC and fault tolerance Eduardo Novais, Eduardo Mucciolo and Harold Baranger; 26. Critique of fault-tolerant quantum information processing Robert Alicki; References; Index.
Transversal Clifford gates on folded surface codes
Moussa, Jonathan E.
2016-10-12
Surface and color codes are two forms of topological quantum error correction in two spatial dimensions with complementary properties. Surface codes have lower-depth error detection circuits and well-developed decoders to interpret and correct errors, while color codes have transversal Clifford gates and better code efficiency in the number of physical qubits needed to achieve a given code distance. A formal equivalence exists between color codes and folded surface codes, but it does not guarantee the transferability of any of these favorable properties. However, the equivalence does imply the existence of constant-depth circuit implementations of logical Clifford gates on folded surfacemore » codes. We achieve and improve this result by constructing two families of folded surface codes with transversal Clifford gates. This construction is presented generally for qudits of any dimension. Lastly, the specific application of these codes to universal quantum computation based on qubit fusion is also discussed.« less
Analysis of quantum error-correcting codes: Symplectic lattice codes and toric codes
NASA Astrophysics Data System (ADS)
Harrington, James William
Quantum information theory is concerned with identifying how quantum mechanical resources (such as entangled quantum states) can be utilized for a number of information processing tasks, including data storage, computation, communication, and cryptography. Efficient quantum algorithms and protocols have been developed for performing some tasks (e.g. , factoring large numbers, securely communicating over a public channel, and simulating quantum mechanical systems) that appear to be very difficult with just classical resources. In addition to identifying the separation between classical and quantum computational power, much of the theoretical focus in this field over the last decade has been concerned with finding novel ways of encoding quantum information that are robust against errors, which is an important step toward building practical quantum information processing devices. In this thesis I present some results on the quantum error-correcting properties of oscillator codes (also described as symplectic lattice codes) and toric codes. Any harmonic oscillator system (such as a mode of light) can be encoded with quantum information via symplectic lattice codes that are robust against shifts in the system's continuous quantum variables. I show the existence of lattice codes whose achievable rates match the one-shot coherent information over the Gaussian quantum channel. Also, I construct a family of symplectic self-dual lattices and search for optimal encodings of quantum information distributed between several oscillators. Toric codes provide encodings of quantum information into two-dimensional spin lattices that are robust against local clusters of errors and which require only local quantum operations for error correction. Numerical simulations of this system under various error models provide a calculation of the accuracy threshold for quantum memory using toric codes, which can be related to phase transitions in certain condensed matter models. I also present a local classical processing scheme for correcting errors on toric codes, which demonstrates that quantum information can be maintained in two dimensions by purely local (quantum and classical) resources.
Farzandipour, Mehrdad; Sheikhtaheri, Abbas
2009-01-01
To evaluate the accuracy of procedural coding and the factors that influence it, 246 records were randomly selected from four teaching hospitals in Kashan, Iran. “Recodes” were assigned blindly and then compared to the original codes. Furthermore, the coders' professional behaviors were carefully observed during the coding process. Coding errors were classified as major or minor. The relations between coding accuracy and possible effective factors were analyzed by χ2 or Fisher exact tests as well as the odds ratio (OR) and the 95 percent confidence interval for the OR. The results showed that using a tabular index for rechecking codes reduces errors (83 percent vs. 72 percent accuracy). Further, more thorough documentation by the clinician positively affected coding accuracy, though this relation was not significant. Readability of records decreased errors overall (p = .003), including major ones (p = .012). Moreover, records with no abbreviations had fewer major errors (p = .021). In conclusion, not using abbreviations, ensuring more readable documentation, and paying more attention to available information increased coding accuracy and the quality of procedure databases. PMID:19471647
Robust video transmission with distributed source coded auxiliary channel.
Wang, Jiajun; Majumdar, Abhik; Ramchandran, Kannan
2009-12-01
We propose a novel solution to the problem of robust, low-latency video transmission over lossy channels. Predictive video codecs, such as MPEG and H.26x, are very susceptible to prediction mismatch between encoder and decoder or "drift" when there are packet losses. These mismatches lead to a significant degradation in the decoded quality. To address this problem, we propose an auxiliary codec system that sends additional information alongside an MPEG or H.26x compressed video stream to correct for errors in decoded frames and mitigate drift. The proposed system is based on the principles of distributed source coding and uses the (possibly erroneous) MPEG/H.26x decoder reconstruction as side information at the auxiliary decoder. The distributed source coding framework depends upon knowing the statistical dependency (or correlation) between the source and the side information. We propose a recursive algorithm to analytically track the correlation between the original source frame and the erroneous MPEG/H.26x decoded frame. Finally, we propose a rate-distortion optimization scheme to allocate the rate used by the auxiliary encoder among the encoding blocks within a video frame. We implement the proposed system and present extensive simulation results that demonstrate significant gains in performance both visually and objectively (on the order of 2 dB in PSNR over forward error correction based solutions and 1.5 dB in PSNR over intrarefresh based solutions for typical scenarios) under tight latency constraints.
Channel modeling, signal processing and coding for perpendicular magnetic recording
NASA Astrophysics Data System (ADS)
Wu, Zheng
With the increasing areal density in magnetic recording systems, perpendicular recording has replaced longitudinal recording to overcome the superparamagnetic limit. Studies on perpendicular recording channels including aspects of channel modeling, signal processing and coding techniques are presented in this dissertation. To optimize a high density perpendicular magnetic recording system, one needs to know the tradeoffs between various components of the system including the read/write transducers, the magnetic medium, and the read channel. We extend the work by Chaichanavong on the parameter optimization for systems via design curves. Different signal processing and coding techniques are studied. Information-theoretic tools are utilized to determine the acceptable region for the channel parameters when optimal detection and linear coding techniques are used. Our results show that a considerable gain can be achieved by the optimal detection and coding techniques. The read-write process in perpendicular magnetic recording channels includes a number of nonlinear effects. Nonlinear transition shift (NLTS) is one of them. The signal distortion induced by NLTS can be reduced by write precompensation during data recording. We numerically evaluate the effect of NLTS on the read-back signal and examine the effectiveness of several write precompensation schemes in combating NLTS in a channel characterized by both transition jitter noise and additive white Gaussian electronics noise. We also present an analytical method to estimate the bit-error-rate and use it to help determine the optimal write precompensation values in multi-level precompensation schemes. We propose a mean-adjusted pattern-dependent noise predictive (PDNP) detection algorithm for use on the channel with NLTS. We show that this detector can offer significant improvements in bit-error-rate (BER) compared to conventional Viterbi and PDNP detectors. Moreover, the system performance can be further improved by combining the new detector with a simple write precompensation scheme. Soft-decision decoding for algebraic codes can improve performance for magnetic recording systems. In this dissertation, we propose two soft-decision decoding methods for tensor-product parity codes. We also present a list decoding algorithm for generalized error locating codes.
ERIC Educational Resources Information Center
Sampson, Andrew
2012-01-01
This paper reports on a small-scale study into the effects of uncoded correction (writing the correct forms above each error) and coded annotations (writing symbols that encourage learners to self-correct) on Colombian university-level EFL learners' written work. The study finds that while both coded annotations and uncoded correction appear to…
A Role for the Lateral Dorsal Tegmentum in Memory and Decision Neural Circuitry
Redila, Van; Kinzel, Chantelle; Jo, Yong Sang; Puryear, Corey B.; Mizumori, Sheri J.Y.
2017-01-01
A role for the hippocampus in memory is clear, although the mechanism for its contribution remains a matter of debate. Converging evidence suggests that hippocampus evaluates the extent to which context-defining features of events occur as expected. The consequence of mismatches, or prediction error, signals from hippocampus is discussed in terms of its impact on neural circuitry that evaluates the significance of prediction errors: Ventral tegmental area (VTA) dopamine cells burst fire to rewards or cues that predict rewards (Schultz et al., 1997). Although the lateral dorsal tegmentum (LDTg) importantly controls dopamine cell burst firing (Lodge & Grace, 2006) the behavioral significance of the LDTg control is not known. Therefore, we evaluated LDTg functional activity as rats performed a spatial memory task that generates task-dependent reward codes in VTA (Jo et al., 2013; Puryear et al., 2010) and another VTA afferent, the pedunculopontine nucleus (PPTg, Norton et al., 2011). Reversible inactivation of the LDTg significantly impaired choice accuracy. LDTg neurons coded primarily egocentric information in the form of movement velocity, turning behaviors, and behaviors leading up to expected reward locations. A subset of the velocity-tuned LDTg cells also showed high frequency bursts shortly before or after reward encounters, after which they showed tonic elevated firing during consumption of small, but not large, rewards. Cells that fired before reward encounters showed stronger correlations with velocity as rats moved toward, rather than away from, rewarded sites. LDTg neural activity was more strongly regulated by egocentric behaviors than that observed for PPTg or VTA cells that were recorded by Puryear et al. and Norton et al. While PPTg activity was uniquely sensitive to ongoing sensory input, all three regions encoded reward magnitude (although in different ways), reward expectation, and reward encounters. Only VTA encoded reward prediction errors. LDTg may inform VTA about learned goal-directed movement that reflects the current motivational state, and this in turn may guide VTA determination of expected subjective goal values. When combined it is clear the LDTg and PPTg provide only a portion of the information that dopamine cells need to assess the value of prediction errors, a process that is essential to future adaptive decisions and switches of cognitive (i.e. memorial) strategies and behavioral responses. PMID:24910282
Improving accuracy of clinical coding in surgery: collaboration is key.
Heywood, Nick A; Gill, Michael D; Charlwood, Natasha; Brindle, Rachel; Kirwan, Cliona C
2016-08-01
Clinical coding data provide the basis for Hospital Episode Statistics and Healthcare Resource Group codes. High accuracy of this information is required for payment by results, allocation of health and research resources, and public health data and planning. We sought to identify the level of accuracy of clinical coding in general surgical admissions across hospitals in the Northwest of England. Clinical coding departments identified a total of 208 emergency general surgical patients discharged between 1st March and 15th August 2013 from seven hospital trusts (median = 20, range = 16-60). Blinded re-coding was performed by a senior clinical coder and clinician, with results compared with the original coding outcome. Recorded codes were generated from OPCS-4 & ICD-10. Of all cases, 194 of 208 (93.3%) had at least one coding error and 9 of 208 (4.3%) had errors in both primary diagnosis and primary procedure. Errors were found in 64 of 208 (30.8%) of primary diagnoses and 30 of 137 (21.9%) of primary procedure codes. Median tariff using original codes was £1411.50 (range, £409-9138). Re-calculation using updated clinical codes showed a median tariff of £1387.50, P = 0.997 (range, £406-10,102). The most frequent reasons for incorrect coding were "coder error" and a requirement for "clinical interpretation of notes". Errors in clinical coding are multifactorial and have significant impact on primary diagnosis, potentially affecting the accuracy of Hospital Episode Statistics data and in turn the allocation of health care resources and public health planning. As we move toward surgeon specific outcomes, surgeons should increase collaboration with coding departments to ensure the system is robust. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kesler, Steven R.
The lifting line theory was first developed by Prandtl and was used primarily on analysis of airplane wings. Though the theory is about one hundred years old, it is still used in the initial calculations to find the lift of a wing. The question that guided this thesis was, "How close does Prandtl's lifting line theory predict the thrust of a propeller?" In order to answer this question, an experiment was designed that measured the thrust of a propeller for different speeds. The measured thrust was compared to what the theory predicted. In order to do this experiment and analysis, a propeller needed to be used. A walnut wood ultralight propeller was chosen that had a 1.30 meter (51 inches) length from tip to tip. In this thesis, Prandtl's lifting line theory was modified to account for the different incoming velocity depending on the radial position of the airfoil. A modified equation was used to reflect these differences. A working code was developed based on this modified equation. A testing rig was built that allowed the propeller to be rotated at high speeds while measuring the thrust. During testing, the rotational speed of the propeller ranged from 13-43 rotations per second. The thrust from the propeller was measured at different speeds and ranged from 16-33 Newton's. The test data were then compared to the theoretical results obtained from the lifting line code. A plot in Chapter 5 (the results section) shows the theoretical vs. actual thrust for different rotational speeds. The theory over predicted the actual thrust of the propeller. Depending on the rotational speed, the error was: at low speeds 36%, at low to moderate speeds 84%, and at high speeds the error increased to 195%. Different reasons for these errors are discussed.
Tutorial on Reed-Solomon error correction coding
NASA Technical Reports Server (NTRS)
Geisel, William A.
1990-01-01
This tutorial attempts to provide a frank, step-by-step approach to Reed-Solomon (RS) error correction coding. RS encoding and RS decoding both with and without erasing code symbols are emphasized. There is no need to present rigorous proofs and extreme mathematical detail. Rather, the simple concepts of groups and fields, specifically Galois fields, are presented with a minimum of complexity. Before RS codes are presented, other block codes are presented as a technical introduction into coding. A primitive (15, 9) RS coding example is then completely developed from start to finish, demonstrating the encoding and decoding calculations and a derivation of the famous error-locator polynomial. The objective is to present practical information about Reed-Solomon coding in a manner such that it can be easily understood.
Tailored Codes for Small Quantum Memories
NASA Astrophysics Data System (ADS)
Robertson, Alan; Granade, Christopher; Bartlett, Stephen D.; Flammia, Steven T.
2017-12-01
We demonstrate that small quantum memories, realized via quantum error correction in multiqubit devices, can benefit substantially by choosing a quantum code that is tailored to the relevant error model of the system. For a biased noise model, with independent bit and phase flips occurring at different rates, we show that a single code greatly outperforms the well-studied Steane code across the full range of parameters of the noise model, including for unbiased noise. In fact, this tailored code performs almost optimally when compared with 10 000 randomly selected stabilizer codes of comparable experimental complexity. Tailored codes can even outperform the Steane code with realistic experimental noise, and without any increase in the experimental complexity, as we demonstrate by comparison in the observed error model in a recent seven-qubit trapped ion experiment.
Zafirah, S A; Nur, Amrizal Muhammad; Puteh, Sharifa Ezat Wan; Aljunid, Syed Mohamed
2018-01-25
The accuracy of clinical coding is crucial in the assignment of Diagnosis Related Groups (DRGs) codes, especially if the hospital is using Casemix System as a tool for resource allocations and efficiency monitoring. The aim of this study was to estimate the potential loss of income due to an error in clinical coding during the implementation of the Malaysia Diagnosis Related Group (MY-DRG ® ) Casemix System in a teaching hospital in Malaysia. Four hundred and sixty-four (464) coded medical records were selected, re-examined and re-coded by an independent senior coder (ISC). This ISC re-examined and re-coded the error code that was originally entered by the hospital coders. The pre- and post-coding results were compared, and if there was any disagreement, the codes by the ISC were considered the accurate codes. The cases were then re-grouped using a MY-DRG ® grouper to assess and compare the changes in the DRG assignment and the hospital tariff assignment. The outcomes were then verified by a casemix expert. Coding errors were found in 89.4% (415/424) of the selected patient medical records. Coding errors in secondary diagnoses were the highest, at 81.3% (377/464), followed by secondary procedures at 58.2% (270/464), principal procedures of 50.9% (236/464) and primary diagnoses at 49.8% (231/464), respectively. The coding errors resulted in the assignment of different MY-DRG ® codes in 74.0% (307/415) of the cases. From this result, 52.1% (160/307) of the cases had a lower assigned hospital tariff. In total, the potential loss of income due to changes in the assignment of the MY-DRG ® code was RM654,303.91. The quality of coding is a crucial aspect in implementing casemix systems. Intensive re-training and the close monitoring of coder performance in the hospital should be performed to prevent the potential loss of hospital income.
Impact of Different Correlations on TRACEv4.160 Predicted Critical Heat Flux
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jasiulevicius, A.; Macian-Juan, R.
2006-07-01
This paper presents an independent assessment of the Critical Heat Flux (CHF) models implemented in TRACEv4.160 with data from the experiments carried out at the Royal Institute of Technology (RIT) in Stockholm, Sweden, with single vertical uniformly heated 7.0 m long tubes. In previous CHF assessment studies with TRACE, it was noted that, although the overall code predictions in long single tubes with inner diameters of 1.0 to 2.49 cm agreed rather well with the results of experiments (with r.m.s. error being 25.6%), several regions of pressure and coolant mass flux could be identified, in which the code strongly under-predictsmore » or over-predicts the CHF. In order to evaluate the possibility of improving the code performance, some of the most widely used and assessed CHF correlations were additionally implemented in TRACEv4.160, namely Bowring, Levitan - Lantsman, and Tong-W3. The results obtained for the CHF predictions in single tubes with uniform axial heat flux by using these correlations, were compared to the results produced with the standard TRACE correlations (Biasi and CISE-GE), and with the experimental data from RIT, which covered a broad range of pressures (3-20 MPa) and coolant mass fluxes (500-3000 kg/m{sup 2}s). Several hundreds of experimental points were calculated to cover the parameter range mentioned above for the evaluation of the newly implemented correlations in the TRACEv4.160 code. (author)« less
Prediction suppression and surprise enhancement in monkey inferotemporal cortex.
Ramachandran, Suchitra; Meyer, Travis; Olson, Carl R
2017-07-01
Exposing monkeys, over the course of days and weeks, to pairs of images presented in fixed sequence, so that each leading image becomes a predictor for the corresponding trailing image, affects neuronal visual responsiveness in area TE. At the end of the training period, neurons respond relatively weakly to a trailing image when it appears in a trained sequence and, thus, confirms prediction, whereas they respond relatively strongly to the same image when it appears in an untrained sequence and, thus, violates prediction. This effect could arise from prediction suppression (reduced firing in response to the occurrence of a probable event) or surprise enhancement (elevated firing in response to the omission of a probable event). To identify its cause, we compared firing under the prediction-confirming and prediction-violating conditions to firing under a prediction-neutral condition. The results provide strong evidence for prediction suppression and limited evidence for surprise enhancement. NEW & NOTEWORTHY In predictive coding models of the visual system, neurons carry signed prediction error signals. We show here that monkey inferotemporal neurons exhibit prediction-modulated firing, as posited by these models, but that the signal is unsigned. The response to a prediction-confirming image is suppressed, and the response to a prediction-violating image may be enhanced. These results are better explained by a model in which the visual system emphasizes unpredicted events than by a predictive coding model. Copyright © 2017 the American Physiological Society.
Reardon, Joseph M; Harmon, Katherine J; Schult, Genevieve C; Staton, Catherine A; Waller, Anna E
2016-02-08
Although fatal opioid poisonings tripled from 1999 to 2008, data describing nonfatal poisonings are rare. Public health authorities are in need of tools to track opioid poisonings in near real time. We determined the utility of ICD-9-CM diagnosis codes for identifying clinically significant opioid poisonings in a state-wide emergency department (ED) surveillance system. We sampled visits from four hospitals from July 2009 to June 2012 with diagnosis codes of 965.00, 965.01, 965.02 and 965.09 (poisoning by opiates and related narcotics) and/or an external cause of injury code of E850.0-E850.2 (accidental poisoning by opiates and related narcotics), and developed a novel case definition to determine in which cases opioid poisoning prompted the ED visit. We calculated the percentage of visits coded for opioid poisoning that were clinically significant and compared it to the percentage of visits coded for poisoning by non-opioid agents in which there was actually poisoning by an opioid agent. We created a multivariate regression model to determine if other collected triage data can improve the positive predictive value of diagnosis codes alone for detecting clinically significant opioid poisoning. 70.1 % of visits (Standard Error 2.4 %) coded for opioid poisoning were primarily prompted by opioid poisoning. The remainder of visits represented opioid exposure in the setting of other primary diseases. Among non-opioid poisoning codes reviewed, up to 36 % were reclassified as an opioid poisoning. In multivariate analysis, only naloxone use improved the positive predictive value of ICD-9-CM codes for identifying clinically significant opioid poisoning, but was associated with a high false negative rate. This surveillance mechanism identifies many clinically significant opioid overdoses with a high positive predictive value. With further validation, it may help target control measures such as prescriber education and pharmacy monitoring.
NP-hardness of decoding quantum error-correction codes
NASA Astrophysics Data System (ADS)
Hsieh, Min-Hsiu; Le Gall, François
2011-05-01
Although the theory of quantum error correction is intimately related to classical coding theory and, in particular, one can construct quantum error-correction codes (QECCs) from classical codes with the dual-containing property, this does not necessarily imply that the computational complexity of decoding QECCs is the same as their classical counterparts. Instead, decoding QECCs can be very much different from decoding classical codes due to the degeneracy property. Intuitively, one expects degeneracy would simplify the decoding since two different errors might not and need not be distinguished in order to correct them. However, we show that general quantum decoding problem is NP-hard regardless of the quantum codes being degenerate or nondegenerate. This finding implies that no considerably fast decoding algorithm exists for the general quantum decoding problems and suggests the existence of a quantum cryptosystem based on the hardness of decoding QECCs.
Biometrics encryption combining palmprint with two-layer error correction codes
NASA Astrophysics Data System (ADS)
Li, Hengjian; Qiu, Jian; Dong, Jiwen; Feng, Guang
2017-07-01
To bridge the gap between the fuzziness of biometrics and the exactitude of cryptography, based on combining palmprint with two-layer error correction codes, a novel biometrics encryption method is proposed. Firstly, the randomly generated original keys are encoded by convolutional and cyclic two-layer coding. The first layer uses a convolution code to correct burst errors. The second layer uses cyclic code to correct random errors. Then, the palmprint features are extracted from the palmprint images. Next, they are fused together by XORing operation. The information is stored in a smart card. Finally, the original keys extraction process is the information in the smart card XOR the user's palmprint features and then decoded with convolutional and cyclic two-layer code. The experimental results and security analysis show that it can recover the original keys completely. The proposed method is more secure than a single password factor, and has higher accuracy than a single biometric factor.
NASA Technical Reports Server (NTRS)
Dolinar, S.
1988-01-01
Over the past six to eight years, an extensive research effort was conducted to investigate advanced coding techniques which promised to yield more coding gain than is available with current NASA standard codes. The delay in Galileo's launch due to the temporary suspension of the shuttle program provided the Galileo project with an opportunity to evaluate the possibility of including some version of the advanced codes as a mission enhancement option. A study was initiated last summer to determine if substantial coding gain was feasible for Galileo and, is so, to recommend a suitable experimental code for use as a switchable alternative to the current NASA-standard code. The Galileo experimental code study resulted in the selection of a code with constant length 15 and rate 1/4. The code parameters were chosen to optimize performance within cost and risk constraints consistent with retrofitting the new code into the existing Galileo system design and launch schedule. The particular code was recommended after a very limited search among good codes with the chosen parameters. It will theoretically yield about 1.5 dB enhancement under idealizing assumptions relative to the current NASA-standard code at Galileo's desired bit error rates. This ideal predicted gain includes enough cushion to meet the project's target of at least 1 dB enhancement under real, non-ideal conditions.
Semantic representations in the temporal pole predict false memories
Chadwick, Martin J.; Anjum, Raeesa S.; Kumaran, Dharshan; Schacter, Daniel L.; Spiers, Hugo J.; Hassabis, Demis
2016-01-01
Recent advances in neuroscience have given us unprecedented insight into the neural mechanisms of false memory, showing that artificial memories can be inserted into the memory cells of the hippocampus in a way that is indistinguishable from true memories. However, this alone is not enough to explain how false memories can arise naturally in the course of our daily lives. Cognitive psychology has demonstrated that many instances of false memory, both in the laboratory and the real world, can be attributed to semantic interference. Whereas previous studies have found that a diverse set of regions show some involvement in semantic false memory, none have revealed the nature of the semantic representations underpinning the phenomenon. Here we use fMRI with representational similarity analysis to search for a neural code consistent with semantic false memory. We find clear evidence that false memories emerge from a similarity-based neural code in the temporal pole, a region that has been called the “semantic hub” of the brain. We further show that each individual has a partially unique semantic code within the temporal pole, and this unique code can predict idiosyncratic patterns of memory errors. Finally, we show that the same neural code can also predict variation in true-memory performance, consistent with an adaptive perspective on false memory. Taken together, our findings reveal the underlying structure of neural representations of semantic knowledge, and how this semantic structure can both enhance and distort our memories. PMID:27551087
Semantic representations in the temporal pole predict false memories.
Chadwick, Martin J; Anjum, Raeesa S; Kumaran, Dharshan; Schacter, Daniel L; Spiers, Hugo J; Hassabis, Demis
2016-09-06
Recent advances in neuroscience have given us unprecedented insight into the neural mechanisms of false memory, showing that artificial memories can be inserted into the memory cells of the hippocampus in a way that is indistinguishable from true memories. However, this alone is not enough to explain how false memories can arise naturally in the course of our daily lives. Cognitive psychology has demonstrated that many instances of false memory, both in the laboratory and the real world, can be attributed to semantic interference. Whereas previous studies have found that a diverse set of regions show some involvement in semantic false memory, none have revealed the nature of the semantic representations underpinning the phenomenon. Here we use fMRI with representational similarity analysis to search for a neural code consistent with semantic false memory. We find clear evidence that false memories emerge from a similarity-based neural code in the temporal pole, a region that has been called the "semantic hub" of the brain. We further show that each individual has a partially unique semantic code within the temporal pole, and this unique code can predict idiosyncratic patterns of memory errors. Finally, we show that the same neural code can also predict variation in true-memory performance, consistent with an adaptive perspective on false memory. Taken together, our findings reveal the underlying structure of neural representations of semantic knowledge, and how this semantic structure can both enhance and distort our memories.
2001-09-01
Rate - compatible punctured convolutional codes (RCPC codes ) and their applications,” IEEE...ABSTRACT In this dissertation, the bit error rates for serially concatenated convolutional codes (SCCC) for both BPSK and DPSK modulation with...INTENTIONALLY LEFT BLANK i EXECUTIVE SUMMARY In this dissertation, the bit error rates of serially concatenated convolutional codes
Confidence Intervals for Error Rates Observed in Coded Communications Systems
NASA Astrophysics Data System (ADS)
Hamkins, J.
2015-05-01
We present methods to compute confidence intervals for the codeword error rate (CWER) and bit error rate (BER) of a coded communications link. We review several methods to compute exact and approximate confidence intervals for the CWER, and specifically consider the situation in which the true CWER is so low that only a handful, if any, codeword errors are able to be simulated. In doing so, we answer the question of how long an error-free simulation must be run in order to certify that a given CWER requirement is met with a given level of confidence, and discuss the bias introduced by aborting a simulation after observing the first codeword error. Next, we turn to the lesser studied problem of determining confidence intervals for the BER of coded systems. Since bit errors in systems that use coding or higher-order modulation do not occur independently, blind application of a method that assumes independence leads to inappropriately narrow confidence intervals. We present a new method to compute the confidence interval properly, using the first and second sample moments of the number of bit errors per codeword. This is the first method we know of to compute a confidence interval for the BER of a coded or higher-order modulation system.
NASA Technical Reports Server (NTRS)
Massey, J. L.
1976-01-01
Virtually all previously-suggested rate 1/2 binary convolutional codes with KE = 24 are compared. Their distance properties are given; and their performance, both in computation and in error probability, with sequential decoding on the deep-space channel is determined by simulation. Recommendations are made both for the choice of a specific KE = 24 code as well as for codes to be included in future coding standards for the deep-space channel. A new result given in this report is a method for determining the statistical significance of error probability data when the error probability is so small that it is not feasible to perform enough decoding simulations to obtain more than a very small number of decoding errors.
Joint Schemes for Physical Layer Security and Error Correction
ERIC Educational Resources Information Center
Adamo, Oluwayomi
2011-01-01
The major challenges facing resource constraint wireless devices are error resilience, security and speed. Three joint schemes are presented in this research which could be broadly divided into error correction based and cipher based. The error correction based ciphers take advantage of the properties of LDPC codes and Nordstrom Robinson code. A…
Error correcting coding-theory for structured light illumination systems
NASA Astrophysics Data System (ADS)
Porras-Aguilar, Rosario; Falaggis, Konstantinos; Ramos-Garcia, Ruben
2017-06-01
Intensity discrete structured light illumination systems project a series of projection patterns for the estimation of the absolute fringe order using only the temporal grey-level sequence at each pixel. This work proposes the use of error-correcting codes for pixel-wise correction of measurement errors. The use of an error correcting code is advantageous in many ways: it allows reducing the effect of random intensity noise, it corrects outliners near the border of the fringe commonly present when using intensity discrete patterns, and it provides a robustness in case of severe measurement errors (even for burst errors where whole frames are lost). The latter aspect is particular interesting in environments with varying ambient light as well as in critical safety applications as e.g. monitoring of deformations of components in nuclear power plants, where a high reliability is ensured even in case of short measurement disruptions. A special form of burst errors is the so-called salt and pepper noise, which can largely be removed with error correcting codes using only the information of a given pixel. The performance of this technique is evaluated using both simulations and experiments.
Simple scheme for encoding and decoding a qubit in unknown state for various topological codes
Łodyga, Justyna; Mazurek, Paweł; Grudka, Andrzej; Horodecki, Michał
2015-01-01
We present a scheme for encoding and decoding an unknown state for CSS codes, based on syndrome measurements. We illustrate our method by means of Kitaev toric code, defected-lattice code, topological subsystem code and 3D Haah code. The protocol is local whenever in a given code the crossings between the logical operators consist of next neighbour pairs, which holds for the above codes. For subsystem code we also present scheme in a noisy case, where we allow for bit and phase-flip errors on qubits as well as state preparation and syndrome measurement errors. Similar scheme can be built for two other codes. We show that the fidelity of the protected qubit in the noisy scenario in a large code size limit is of , where p is a probability of error on a single qubit per time step. Regarding Haah code we provide noiseless scheme, leaving the noisy case as an open problem. PMID:25754905
Schaefer, Alexandre; Buratto, Luciano G.; Goto, Nobuhiko; Brotherhood, Emilie V.
2016-01-01
A large body of evidence shows that buying behaviour is strongly determined by consumers’ price expectations and the extent to which real prices violate these expectations. Despite the importance of this phenomenon, little is known regarding its neural mechanisms. Here we show that two patterns of electrical brain activity known to index prediction errors–the Feedback-Related Negativity (FRN) and the feedback-related P300 –were sensitive to price offers that were cheaper than participants’ expectations. In addition, we also found that FRN amplitude time-locked to price offers predicted whether a product would be subsequently purchased or not, and further analyses suggest that this result was driven by the sensitivity of the FRN to positive price expectation violations. This finding strongly suggests that ensembles of neurons coding positive prediction errors play a critical role in real-life consumer behaviour. Further, these findings indicate that theoretical models based on the notion of prediction error, such as the Reinforcement Learning Theory, can provide a neurobiologically grounded account of consumer behavior. PMID:27658301
LDPC Codes with Minimum Distance Proportional to Block Size
NASA Technical Reports Server (NTRS)
Divsalar, Dariush; Jones, Christopher; Dolinar, Samuel; Thorpe, Jeremy
2009-01-01
Low-density parity-check (LDPC) codes characterized by minimum Hamming distances proportional to block sizes have been demonstrated. Like the codes mentioned in the immediately preceding article, the present codes are error-correcting codes suitable for use in a variety of wireless data-communication systems that include noisy channels. The previously mentioned codes have low decoding thresholds and reasonably low error floors. However, the minimum Hamming distances of those codes do not grow linearly with code-block sizes. Codes that have this minimum-distance property exhibit very low error floors. Examples of such codes include regular LDPC codes with variable degrees of at least 3. Unfortunately, the decoding thresholds of regular LDPC codes are high. Hence, there is a need for LDPC codes characterized by both low decoding thresholds and, in order to obtain acceptably low error floors, minimum Hamming distances that are proportional to code-block sizes. The present codes were developed to satisfy this need. The minimum Hamming distances of the present codes have been shown, through consideration of ensemble-average weight enumerators, to be proportional to code block sizes. As in the cases of irregular ensembles, the properties of these codes are sensitive to the proportion of degree-2 variable nodes. A code having too few such nodes tends to have an iterative decoding threshold that is far from the capacity threshold. A code having too many such nodes tends not to exhibit a minimum distance that is proportional to block size. Results of computational simulations have shown that the decoding thresholds of codes of the present type are lower than those of regular LDPC codes. Included in the simulations were a few examples from a family of codes characterized by rates ranging from low to high and by thresholds that adhere closely to their respective channel capacity thresholds; the simulation results from these examples showed that the codes in question have low error floors as well as low decoding thresholds. As an example, the illustration shows the protograph (which represents the blueprint for overall construction) of one proposed code family for code rates greater than or equal to 1.2. Any size LDPC code can be obtained by copying the protograph structure N times, then permuting the edges. The illustration also provides Field Programmable Gate Array (FPGA) hardware performance simulations for this code family. In addition, the illustration provides minimum signal-to-noise ratios (Eb/No) in decibels (decoding thresholds) to achieve zero error rates as the code block size goes to infinity for various code rates. In comparison with the codes mentioned in the preceding article, these codes have slightly higher decoding thresholds.
Nonspinning numerical relativity waveform surrogates: assessing the model
NASA Astrophysics Data System (ADS)
Field, Scott; Blackman, Jonathan; Galley, Chad; Scheel, Mark; Szilagyi, Bela; Tiglio, Manuel
2015-04-01
Recently, multi-modal gravitational waveform surrogate models have been built directly from data numerically generated by the Spectral Einstein Code (SpEC). I will describe ways in which the surrogate model error can be quantified. This task, in turn, requires (i) characterizing differences between waveforms computed by SpEC with those predicted by the surrogate model and (ii) estimating errors associated with the SpEC waveforms from which the surrogate is built. Both pieces can have numerous sources of numerical and systematic errors. We make an attempt to study the most dominant error sources and, ultimately, the surrogate model's fidelity. These investigations yield information about the surrogate model's uncertainty as a function of time (or frequency) and parameter, and could be useful in parameter estimation studies which seek to incorporate model error. Finally, I will conclude by comparing the numerical relativity surrogate model to other inspiral-merger-ringdown models. A companion talk will cover the building of multi-modal surrogate models.
Baum, John M; Monhaut, Nanette M; Parker, Donald R; Price, Christopher P
2006-06-01
Two independent studies reported that 16% of people who self-monitor blood glucose used incorrectly coded meters. The degree of analytical error, however, was not characterized. Our study objectives were to demonstrate that miscoding can cause analytical errors and to characterize the potential amount of bias that can occur. The impact of calibration error with three selfblood glucose monitoring systems (BGMSs), one of which has an autocoding feature, is reported. Fresh capillary fingerstick blood from 50 subjects, 18 men and 32 women ranging in age from 23 to 82 years, was used to measure glucose with three BGMSs. Two BGMSs required manual coding and were purposely miscoded using numbers different from the one recommended for the reagent lot used. Two properly coded meters of each BGMS were included to assess within-system variability. Different reagent lots were used to challenge a third system that had autocoding capability and could not be miscoded. Some within-system comparisons showed deviations of greater than +/-30% when results obtained with miscoded meters were compared with data obtained with ones programmed using the correct code number. Similar erroneous results were found when the miscoded meter results were compared with those obtained with a glucose analyzer. For some miscoded meter and test strip combinations, error grid analysis showed that 90% of results fell into zones indicating altered clinical action. Such inaccuracies were not found with the BGMS having the autocoding feature. When certain meter code number settings of two BGMSs were used in conjunction with test strips having code numbers that did not match, statistically and clinically inaccurate results were obtained. Coding errors resulted in analytical errors of greater than +/-30% (-31.6 to +60.9%). These results confirm the value of a BGMS with an automatic coding feature.
A neuronal model of predictive coding accounting for the mismatch negativity.
Wacongne, Catherine; Changeux, Jean-Pierre; Dehaene, Stanislas
2012-03-14
The mismatch negativity (MMN) is thought to index the activation of specialized neural networks for active prediction and deviance detection. However, a detailed neuronal model of the neurobiological mechanisms underlying the MMN is still lacking, and its computational foundations remain debated. We propose here a detailed neuronal model of auditory cortex, based on predictive coding, that accounts for the critical features of MMN. The model is entirely composed of spiking excitatory and inhibitory neurons interconnected in a layered cortical architecture with distinct input, predictive, and prediction error units. A spike-timing dependent learning rule, relying upon NMDA receptor synaptic transmission, allows the network to adjust its internal predictions and use a memory of the recent past inputs to anticipate on future stimuli based on transition statistics. We demonstrate that this simple architecture can account for the major empirical properties of the MMN. These include a frequency-dependent response to rare deviants, a response to unexpected repeats in alternating sequences (ABABAA…), a lack of consideration of the global sequence context, a response to sound omission, and a sensitivity of the MMN to NMDA receptor antagonists. Novel predictions are presented, and a new magnetoencephalography experiment in healthy human subjects is presented that validates our key hypothesis: the MMN results from active cortical prediction rather than passive synaptic habituation.
Monte Carlo tests of the ELIPGRID-PC algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidson, J.R.
1995-04-01
The standard tool for calculating the probability of detecting pockets of contamination called hot spots has been the ELIPGRID computer code of Singer and Wickman. The ELIPGRID-PC program has recently made this algorithm available for an IBM{reg_sign} PC. However, no known independent validation of the ELIPGRID algorithm exists. This document describes a Monte Carlo simulation-based validation of a modified version of the ELIPGRID-PC code. The modified ELIPGRID-PC code is shown to match Monte Carlo-calculated hot-spot detection probabilities to within {plus_minus}0.5% for 319 out of 320 test cases. The one exception, a very thin elliptical hot spot located within a rectangularmore » sampling grid, differed from the Monte Carlo-calculated probability by about 1%. These results provide confidence in the ability of the modified ELIPGRID-PC code to accurately predict hot-spot detection probabilities within an acceptable range of error.« less
Comparison of analysis and experiment for dynamics of low-contact-ratio spur gears
NASA Technical Reports Server (NTRS)
Oswald, Fred B.; Rebbechi, Brian; Zakrajsek, James J.; Townsend, Dennis P.; Lin, Hsiang Hsi
1991-01-01
Low-contact-ratio spur gears were tested in NASA gear-noise-rig to study gear dynamics including dynamic load, tooth bending stress, vibration, and noise. The experimental results were compared with a NASA gear dynamics code to validate the code as a design tool for predicting transmission vibration and noise. Analytical predictions and experimental data for gear-tooth dynamic loads and tooth-root bending stress were compared at 28 operating conditions. Strain gage data were used to compute the normal load between meshing teeth and the bending stress at the tooth root for direct comparison with the analysis. The computed and measured waveforms for dynamic load and stress were compared for several test conditions. These are very similar in shape, which means the analysis successfully simulates the physical behavior of the test gears. The predicted peak value of the dynamic load agrees with the measurement results within an average error of 4.9 percent except at low-torque, high-speed conditions. Predictions of peak dynamic root stress are generally within 10 to 15 percent of the measured values.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borges, Ronaldo C.; D'Auria, Francesco; Alvim, Antonio Carlos M.
2002-07-01
The Code with - the capability of - Internal Assessment of Uncertainty (CIAU) is a tool proposed by the 'Dipartimento di Ingegneria Meccanica, Nucleare e della Produzione (DIMNP)' of the University of Pisa. Other Institutions including the nuclear regulatory body from Brazil, 'Comissao Nacional de Energia Nuclear', contributed to the development of the tool. The CIAU aims at providing the currently available Relap5/Mod3.2 system code with the integrated capability of performing not only relevant transient calculations but also the related estimates of uncertainty bands. The Uncertainty Methodology based on Accuracy Extrapolation (UMAE) is used to characterize the uncertainty in themore » prediction of system code calculations for light water reactors and is internally coupled with the above system code. Following an overview of the CIAU development, the present paper deals with the independent qualification of the tool. The qualification test is performed by estimating the uncertainty bands that should envelope the prediction of the Angra 1 NPP transient RES-11. 99 originated by an inadvertent complete load rejection that caused the reactor scram when the unit was operating at 99% of nominal power. The current limitation of the 'error' database, implemented into the CIAU prevented a final demonstration of the qualification. However, all the steps for the qualification process are demonstrated. (authors)« less
Bayesian logistic regression approaches to predict incorrect DRG assignment.
Suleiman, Mani; Demirhan, Haydar; Boyd, Leanne; Girosi, Federico; Aksakalli, Vural
2018-05-07
Episodes of care involving similar diagnoses and treatments and requiring similar levels of resource utilisation are grouped to the same Diagnosis-Related Group (DRG). In jurisdictions which implement DRG based payment systems, DRGs are a major determinant of funding for inpatient care. Hence, service providers often dedicate auditing staff to the task of checking that episodes have been coded to the correct DRG. The use of statistical models to estimate an episode's probability of DRG error can significantly improve the efficiency of clinical coding audits. This study implements Bayesian logistic regression models with weakly informative prior distributions to estimate the likelihood that episodes require a DRG revision, comparing these models with each other and to classical maximum likelihood estimates. All Bayesian approaches had more stable model parameters than maximum likelihood. The best performing Bayesian model improved overall classification per- formance by 6% compared to maximum likelihood, with a 34% gain compared to random classification, respectively. We found that the original DRG, coder and the day of coding all have a significant effect on the likelihood of DRG error. Use of Bayesian approaches has improved model parameter stability and classification accuracy. This method has already lead to improved audit efficiency in an operational capacity.
Novel modes and adaptive block scanning order for intra prediction in AV1
NASA Astrophysics Data System (ADS)
Hadar, Ofer; Shleifer, Ariel; Mukherjee, Debargha; Joshi, Urvang; Mazar, Itai; Yuzvinsky, Michael; Tavor, Nitzan; Itzhak, Nati; Birman, Raz
2017-09-01
The demand for streaming video content is on the rise and growing exponentially. Networks bandwidth is very costly and therefore there is a constant effort to improve video compression rates and enable the sending of reduced data volumes while retaining quality of experience (QoE). One basic feature that utilizes the spatial correlation of pixels for video compression is Intra-Prediction, which determines the codec's compression efficiency. Intra prediction enables significant reduction of the Intra-Frame (I frame) size and, therefore, contributes to efficient exploitation of bandwidth. In this presentation, we propose new Intra-Prediction algorithms that improve the AV1 prediction model and provide better compression ratios. Two (2) types of methods are considered: )1( New scanning order method that maximizes spatial correlation in order to reduce prediction error; and )2( New Intra-Prediction modes implementation in AVI. Modern video coding standards, including AVI codec, utilize fixed scan orders in processing blocks during intra coding. The fixed scan orders typically result in residual blocks with high prediction error mainly in blocks with edges. This means that the fixed scan orders cannot fully exploit the content-adaptive spatial correlations between adjacent blocks, thus the bitrate after compression tends to be large. To reduce the bitrate induced by inaccurate intra prediction, the proposed approach adaptively chooses the scanning order of blocks according to criteria of firstly predicting blocks with maximum number of surrounding, already Inter-Predicted blocks. Using the modified scanning order method and the new modes has reduced the MSE by up to five (5) times when compared to conventional TM mode / Raster scan and up to two (2) times when compared to conventional CALIC mode / Raster scan, depending on the image characteristics (which determines the percentage of blocks predicted with Inter-Prediction, which in turn impacts the efficiency of the new scanning method). For the same cases, the PSNR was shown to improve by up to 7.4dB and up to 4 dB, respectively. The new modes have yielded 5% improvement in BD-Rate over traditionally used modes, when run on K-Frame, which is expected to yield 1% of overall improvement.
Regoui, Chaouki; Durand, Guillaume; Belliveau, Luc; Léger, Serge
2013-01-01
This paper presents a novel hybrid DNA encryption (HyDEn) approach that uses randomized assignments of unique error-correcting DNA Hamming code words for single characters in the extended ASCII set. HyDEn relies on custom-built quaternary codes and a private key used in the randomized assignment of code words and the cyclic permutations applied on the encoded message. Along with its ability to detect and correct errors, HyDEn equals or outperforms existing cryptographic methods and represents a promising in silico DNA steganographic approach. PMID:23984392
Performance and structure of single-mode bosonic codes
NASA Astrophysics Data System (ADS)
Albert, Victor V.; Noh, Kyungjoo; Duivenvoorden, Kasper; Young, Dylan J.; Brierley, R. T.; Reinhold, Philip; Vuillot, Christophe; Li, Linshu; Shen, Chao; Girvin, S. M.; Terhal, Barbara M.; Jiang, Liang
2018-03-01
The early Gottesman, Kitaev, and Preskill (GKP) proposal for encoding a qubit in an oscillator has recently been followed by cat- and binomial-code proposals. Numerically optimized codes have also been proposed, and we introduce codes of this type here. These codes have yet to be compared using the same error model; we provide such a comparison by determining the entanglement fidelity of all codes with respect to the bosonic pure-loss channel (i.e., photon loss) after the optimal recovery operation. We then compare achievable communication rates of the combined encoding-error-recovery channel by calculating the channel's hashing bound for each code. Cat and binomial codes perform similarly, with binomial codes outperforming cat codes at small loss rates. Despite not being designed to protect against the pure-loss channel, GKP codes significantly outperform all other codes for most values of the loss rate. We show that the performance of GKP and some binomial codes increases monotonically with increasing average photon number of the codes. In order to corroborate our numerical evidence of the cat-binomial-GKP order of performance occurring at small loss rates, we analytically evaluate the quantum error-correction conditions of those codes. For GKP codes, we find an essential singularity in the entanglement fidelity in the limit of vanishing loss rate. In addition to comparing the codes, we draw parallels between binomial codes and discrete-variable systems. First, we characterize one- and two-mode binomial as well as multiqubit permutation-invariant codes in terms of spin-coherent states. Such a characterization allows us to introduce check operators and error-correction procedures for binomial codes. Second, we introduce a generalization of spin-coherent states, extending our characterization to qudit binomial codes and yielding a multiqudit code.
Performance analysis of the word synchronization properties of the outer code in a TDRSS decoder
NASA Technical Reports Server (NTRS)
Costello, D. J., Jr.; Lin, S.
1984-01-01
A self-synchronizing coding scheme for NASA's TDRSS satellite system is a concatenation of a (2,1,7) inner convolutional code with a (255,223) Reed-Solomon outer code. Both symbol and word synchronization are achieved without requiring that any additional symbols be transmitted. An important parameter which determines the performance of the word sync procedure is the ratio of the decoding failure probability to the undetected error probability. Ideally, the former should be as small as possible compared to the latter when the error correcting capability of the code is exceeded. A computer simulation of a (255,223) Reed-Solomon code as carried out. Results for decoding failure probability and for undetected error probability are tabulated and compared.
1993-04-01
determining effective group functioning, leader-group interaction , and decision making; (2) factors that determine effective, low error human performance...infectious disease and biological defense vaccines and drugs , vision, neurotxins, neurochemistry, molecular neurobiology, neurodegenrative diseases...Potential Rotor/Comprehensive Analysis Model for Rotor Aerodynamics-Johnson Aeronautics (FPR/CAMRAD-JA) code to predict Blade Vortex Interaction (BVI
Optical PAyload for Lasercomm Science (OPALS) link validation
NASA Technical Reports Server (NTRS)
Biswas, Abhijit; Oaida, Bogdan V.; Andrews, Kenneth S.; Kovalik, Joseph M.; Abrahamson, Matthew J.; Wright, Malcolm W.
2015-01-01
Recently several day and nighttime links under diverse atmospheric conditions were completed using the Optical Payload for Lasercomm Science (OPALS) flight system on-board the International Space Station (ISS). In this paper we compare measured optical power and its variance at either end of the link with predictions that include atmospheric propagation models. For the 976 nm laser beacon mean power transmitted from the ground to the ISS the predicted mean irradiance of 10's of microwatts per square meter close to zenith and its decrease with range and increased air mass shows good agreement with predictions. The irradiance fluctuations sampled at 100 Hz also follow the expected increase in scintillation with air mass representative of atmospheric coherence lengths at zenith at 500 nm in the 3-8 cm range. The downlink predicted power of 100's of nanowatts was also reconciled within the uncertainty of the atmospheric losses. Expected link performance with uncoded bit-error rates less than 1E-4 required for the Reed-Solomon code to correct errors for video, text and file transmission was verified. The results of predicted and measured powers and fluctuations suggest the need for further study and refinement.
Levesque, Eric; Hoti, Emir; de La Serna, Sofia; Habouchi, Houssam; Ichai, Philippe; Saliba, Faouzi; Samuel, Didier; Azoulay, Daniel
2013-03-01
In the French healthcare system, the intensive care budget allocated is directly dependent on the activity level of the center. To evaluate this activity level, it is necessary to code the medical diagnoses and procedures performed on Intensive Care Unit (ICU) patients. The aim of this study was to evaluate the effects of using an Intensive Care Information System (ICIS) on the incidence of coding errors and its impact on the ICU budget allocated. Since 2005, the documentation on and monitoring of every patient admitted to our ICU has been carried out using an ICIS. However, the coding process was performed manually until 2008. This study focused on two periods: the period of manual coding (year 2007) and the period of computerized coding (year 2008) which covered a total of 1403 ICU patients. The time spent on the coding process, the rate of coding errors (defined as patients missed/not coded or wrongly identified as undergoing major procedure/s) and the financial impact were evaluated for these two periods. With computerized coding, the time per admission decreased significantly (from 6.8 ± 2.8 min in 2007 to 3.6 ± 1.9 min in 2008, p<0.001). Similarly, a reduction in coding errors was observed (7.9% vs. 2.2%, p<0.001). This decrease in coding errors resulted in a reduced difference between the potential and real ICU financial supplements obtained in the respective years (€194,139 loss in 2007 vs. a €1628 loss in 2008). Using specific computer programs improves the intensive process of manual coding by shortening the time required as well as reducing errors, which in turn positively impacts the ICU budget allocation. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Remembering a criminal conversation: beyond eyewitness testimony.
Campos, Laura; Alonso-Quecuty, María L
2006-01-01
Unlike the important body of work on eyewitness memory, little research has been done on the accuracy and completeness of "earwitness" memory for conversations. The present research examined the effects of mode of presentation (audiovisual/ auditory-only) on witnesses' free recall for utterances in a criminal conversation at different retention intervals (immediate/delayed) within a single experiment. Different forms of correct recall (verbatim/gist) of the verbal information as well as different types of errors (distortions/fabrications) were also examined. It was predicted that participants in the audiovisual modality would provide more correct information, and fewer errors than participants in the auditory-only modality. Participants' recall was predicted to be impaired over time, dropping to a greater extent after a delay in the auditory-only modality. Results confirmed these hypotheses. Interpretations of the overall findings are offered within the context of dual-coding theory, and within the theoretical frameworks of source monitoring and fuzzy-trace theory.
Communication variations and aircrew performance
NASA Technical Reports Server (NTRS)
Kanki, Barbara G.; Folk, Valerie G.; Irwin, Cheryl M.
1991-01-01
The relationship between communication variations and aircrew performance (high-error vs low-error performances) was investigated by analyzing the coded verbal transcripts derived from the videotape records of 18 two-person air transport crews who participated in a high-fidelity, full-mission flight simulation. The flight scenario included a task which involved abnormal operations and required the coordinated efforts of all crew members. It was found that the best-performing crews were characterized by nearly identical patterns of communication, whereas the midrange and poorer performing crews showed a great deal of heterogeneity in their speech patterns. Although some specific speech sequences can be interpreted as being more or less facilitative to the crew-coordination process, predictability appears to be the key ingredient for enhancing crew performance. Crews communicating in highly standard (hence predictable) ways were better able to coordinate their task, whereas crews characterized by multiple, nonstandard communication profiles were less effective in their performance.
Joint Source-Channel Coding by Means of an Oversampled Filter Bank Code
NASA Astrophysics Data System (ADS)
Marinkovic, Slavica; Guillemot, Christine
2006-12-01
Quantized frame expansions based on block transforms and oversampled filter banks (OFBs) have been considered recently as joint source-channel codes (JSCCs) for erasure and error-resilient signal transmission over noisy channels. In this paper, we consider a coding chain involving an OFB-based signal decomposition followed by scalar quantization and a variable-length code (VLC) or a fixed-length code (FLC). This paper first examines the problem of channel error localization and correction in quantized OFB signal expansions. The error localization problem is treated as an[InlineEquation not available: see fulltext.]-ary hypothesis testing problem. The likelihood values are derived from the joint pdf of the syndrome vectors under various hypotheses of impulse noise positions, and in a number of consecutive windows of the received samples. The error amplitudes are then estimated by solving the syndrome equations in the least-square sense. The message signal is reconstructed from the corrected received signal by a pseudoinverse receiver. We then improve the error localization procedure by introducing a per-symbol reliability information in the hypothesis testing procedure of the OFB syndrome decoder. The per-symbol reliability information is produced by the soft-input soft-output (SISO) VLC/FLC decoders. This leads to the design of an iterative algorithm for joint decoding of an FLC and an OFB code. The performance of the algorithms developed is evaluated in a wavelet-based image coding system.
NASA Technical Reports Server (NTRS)
Truong, T. K.; Hsu, I. S.; Eastman, W. L.; Reed, I. S.
1987-01-01
It is well known that the Euclidean algorithm or its equivalent, continued fractions, can be used to find the error locator polynomial and the error evaluator polynomial in Berlekamp's key equation needed to decode a Reed-Solomon (RS) code. A simplified procedure is developed and proved to correct erasures as well as errors by replacing the initial condition of the Euclidean algorithm by the erasure locator polynomial and the Forney syndrome polynomial. By this means, the errata locator polynomial and the errata evaluator polynomial can be obtained, simultaneously and simply, by the Euclidean algorithm only. With this improved technique the complexity of time domain RS decoders for correcting both errors and erasures is reduced substantially from previous approaches. As a consequence, decoders for correcting both errors and erasures of RS codes can be made more modular, regular, simple, and naturally suitable for both VLSI and software implementation. An example illustrating this modified decoding procedure is given for a (15, 9) RS code.
Error control techniques for satellite and space communications
NASA Technical Reports Server (NTRS)
Costello, Daniel J., Jr.
1994-01-01
The unequal error protection capabilities of convolutional and trellis codes are studied. In certain environments, a discrepancy in the amount of error protection placed on different information bits is desirable. Examples of environments which have data of varying importance are a number of speech coding algorithms, packet switched networks, multi-user systems, embedded coding systems, and high definition television. Encoders which provide more than one level of error protection to information bits are called unequal error protection (UEP) codes. In this work, the effective free distance vector, d, is defined as an alternative to the free distance as a primary performance parameter for UEP convolutional and trellis encoders. For a given (n, k), convolutional encoder, G, the effective free distance vector is defined as the k-dimensional vector d = (d(sub 0), d(sub 1), ..., d(sub k-1)), where d(sub j), the j(exp th) effective free distance, is the lowest Hamming weight among all code sequences that are generated by input sequences with at least one '1' in the j(exp th) position. It is shown that, although the free distance for a code is unique to the code and independent of the encoder realization, the effective distance vector is dependent on the encoder realization.
NASA Technical Reports Server (NTRS)
Massey, J. L.
1976-01-01
The very low error probability obtained with long error-correcting codes results in a very small number of observed errors in simulation studies of practical size and renders the usual confidence interval techniques inapplicable to the observed error probability. A natural extension of the notion of a 'confidence interval' is made and applied to such determinations of error probability by simulation. An example is included to show the surprisingly great significance of as few as two decoding errors in a very large number of decoding trials.
Computer search for binary cyclic UEP codes of odd length up to 65
NASA Technical Reports Server (NTRS)
Lin, Mao-Chao; Lin, Chi-Chang; Lin, Shu
1990-01-01
Using an exhaustive computation, the unequal error protection capabilities of all binary cyclic codes of odd length up to 65 that have minimum distances at least 3 are found. For those codes that can only have upper bounds on their unequal error protection capabilities computed, an analytic method developed by Dynkin and Togonidze (1976) is used to show that the upper bounds meet the exact unequal error protection capabilities.
Estimating replicate time shifts using Gaussian process regression
Liu, Qiang; Andersen, Bogi; Smyth, Padhraic; Ihler, Alexander
2010-01-01
Motivation: Time-course gene expression datasets provide important insights into dynamic aspects of biological processes, such as circadian rhythms, cell cycle and organ development. In a typical microarray time-course experiment, measurements are obtained at each time point from multiple replicate samples. Accurately recovering the gene expression patterns from experimental observations is made challenging by both measurement noise and variation among replicates' rates of development. Prior work on this topic has focused on inference of expression patterns assuming that the replicate times are synchronized. We develop a statistical approach that simultaneously infers both (i) the underlying (hidden) expression profile for each gene, as well as (ii) the biological time for each individual replicate. Our approach is based on Gaussian process regression (GPR) combined with a probabilistic model that accounts for uncertainty about the biological development time of each replicate. Results: We apply GPR with uncertain measurement times to a microarray dataset of mRNA expression for the hair-growth cycle in mouse back skin, predicting both profile shapes and biological times for each replicate. The predicted time shifts show high consistency with independently obtained morphological estimates of relative development. We also show that the method systematically reduces prediction error on out-of-sample data, significantly reducing the mean squared error in a cross-validation study. Availability: Matlab code for GPR with uncertain time shifts is available at http://sli.ics.uci.edu/Code/GPRTimeshift/ Contact: ihler@ics.uci.edu PMID:20147305
Error-correcting pairs for a public-key cryptosystem
NASA Astrophysics Data System (ADS)
Pellikaan, Ruud; Márquez-Corbella, Irene
2017-06-01
Code-based Cryptography (CBC) is a powerful and promising alternative for quantum resistant cryptography. Indeed, together with lattice-based cryptography, multivariate cryptography and hash-based cryptography are the principal available techniques for post-quantum cryptography. CBC was first introduced by McEliece where he designed one of the most efficient Public-Key encryption schemes with exceptionally strong security guarantees and other desirable properties that still resist to attacks based on Quantum Fourier Transform and Amplitude Amplification. The original proposal, which remains unbroken, was based on binary Goppa codes. Later, several families of codes have been proposed in order to reduce the key size. Some of these alternatives have already been broken. One of the main requirements of a code-based cryptosystem is having high performance t-bounded decoding algorithms which is achieved in the case the code has a t-error-correcting pair (ECP). Indeed, those McEliece schemes that use GRS codes, BCH, Goppa and algebraic geometry codes are in fact using an error-correcting pair as a secret key. That is, the security of these Public-Key Cryptosystems is not only based on the inherent intractability of bounded distance decoding but also on the assumption that it is difficult to retrieve efficiently an error-correcting pair. In this paper, the class of codes with a t-ECP is proposed for the McEliece cryptosystem. Moreover, we study the hardness of distinguishing arbitrary codes from those having a t-error correcting pair.
Analysis of error-correction constraints in an optical disk.
Roberts, J D; Ryley, A; Jones, D M; Burke, D
1996-07-10
The compact disk read-only memory (CD-ROM) is a mature storage medium with complex error control. It comprises four levels of Reed Solomon codes allied to a sequence of sophisticated interleaving strategies and 8:14 modulation coding. New storage media are being developed and introduced that place still further demands on signal processing for error correction. It is therefore appropriate to explore thoroughly the limit of existing strategies to assess future requirements. We describe a simulation of all stages of the CD-ROM coding, modulation, and decoding. The results of decoding the burst error of a prescribed number of modulation bits are discussed in detail. Measures of residual uncorrected error within a sector are displayed by C1, C2, P, and Q error counts and by the status of the final cyclic redundancy check (CRC). Where each data sector is encoded separately, it is shown that error-correction performance against burst errors depends critically on the position of the burst within a sector. The C1 error measures the burst length, whereas C2 errors reflect the burst position. The performance of Reed Solomon product codes is shown by the P and Q statistics. It is shown that synchronization loss is critical near the limits of error correction. An example is given of miscorrection that is identified by the CRC check.
Analysis of error-correction constraints in an optical disk
NASA Astrophysics Data System (ADS)
Roberts, Jonathan D.; Ryley, Alan; Jones, David M.; Burke, David
1996-07-01
The compact disk read-only memory (CD-ROM) is a mature storage medium with complex error control. It comprises four levels of Reed Solomon codes allied to a sequence of sophisticated interleaving strategies and 8:14 modulation coding. New storage media are being developed and introduced that place still further demands on signal processing for error correction. It is therefore appropriate to explore thoroughly the limit of existing strategies to assess future requirements. We describe a simulation of all stages of the CD-ROM coding, modulation, and decoding. The results of decoding the burst error of a prescribed number of modulation bits are discussed in detail. Measures of residual uncorrected error within a sector are displayed by C1, C2, P, and Q error counts and by the status of the final cyclic redundancy check (CRC). Where each data sector is encoded separately, it is shown that error-correction performance against burst errors depends critically on the position of the burst within a sector. The C1 error measures the burst length, whereas C2 errors reflect the burst position. The performance of Reed Solomon product codes is shown by the P and Q statistics. It is shown that synchronization loss is critical near the limits of error correction. An example is given of miscorrection that is identified by the CRC check.
Dopamine Reward Prediction Error Responses Reflect Marginal Utility
Stauffer, William R.; Lak, Armin; Schultz, Wolfram
2014-01-01
Summary Background Optimal choices require an accurate neuronal representation of economic value. In economics, utility functions are mathematical representations of subjective value that can be constructed from choices under risk. Utility usually exhibits a nonlinear relationship to physical reward value that corresponds to risk attitudes and reflects the increasing or decreasing marginal utility obtained with each additional unit of reward. Accordingly, neuronal reward responses coding utility should robustly reflect this nonlinearity. Results In two monkeys, we measured utility as a function of physical reward value from meaningful choices under risk (that adhered to first- and second-order stochastic dominance). The resulting nonlinear utility functions predicted the certainty equivalents for new gambles, indicating that the functions’ shapes were meaningful. The monkeys were risk seeking (convex utility function) for low reward and risk avoiding (concave utility function) with higher amounts. Critically, the dopamine prediction error responses at the time of reward itself reflected the nonlinear utility functions measured at the time of choices. In particular, the reward response magnitude depended on the first derivative of the utility function and thus reflected the marginal utility. Furthermore, dopamine responses recorded outside of the task reflected the marginal utility of unpredicted reward. Accordingly, these responses were sufficient to train reinforcement learning models to predict the behaviorally defined expected utility of gambles. Conclusions These data suggest a neuronal manifestation of marginal utility in dopamine neurons and indicate a common neuronal basis for fundamental explanatory constructs in animal learning theory (prediction error) and economic decision theory (marginal utility). PMID:25283778
Topological color codes on Union Jack lattices: a stable implementation of the whole Clifford group
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katzgraber, Helmut G.; Theoretische Physik, ETH Zurich, CH-8093 Zurich; Bombin, H.
We study the error threshold of topological color codes on Union Jack lattices that allow for the full implementation of the whole Clifford group of quantum gates. After mapping the error-correction process onto a statistical mechanical random three-body Ising model on a Union Jack lattice, we compute its phase diagram in the temperature-disorder plane using Monte Carlo simulations. Surprisingly, topological color codes on Union Jack lattices have a similar error stability to color codes on triangular lattices, as well as to the Kitaev toric code. The enhanced computational capabilities of the topological color codes on Union Jack lattices with respectmore » to triangular lattices and the toric code combined with the inherent robustness of this implementation show good prospects for future stable quantum computer implementations.« less
Array coding for large data memories
NASA Technical Reports Server (NTRS)
Tranter, W. H.
1982-01-01
It is pointed out that an array code is a convenient method for storing large quantities of data. In a typical application, the array consists of N data words having M symbols in each word. The probability of undetected error is considered, taking into account three symbol error probabilities which are of interest, and a formula for determining the probability of undetected error. Attention is given to the possibility of reading data into the array using a digital communication system with symbol error probability p. Two different schemes are found to be of interest. The conducted analysis of array coding shows that the probability of undetected error is very small even for relatively large arrays.
The development and evaluation of accident predictive models
NASA Astrophysics Data System (ADS)
Maleck, T. L.
1980-12-01
A mathematical model that will predict the incremental change in the dependent variables (accident types) resulting from changes in the independent variables is developed. The end product is a tool for estimating the expected number and type of accidents for a given highway segment. The data segments (accidents) are separated in exclusive groups via a branching process and variance is further reduced using stepwise multiple regression. The standard error of the estimate is calculated for each model. The dependent variables are the frequency, density, and rate of 18 types of accidents among the independent variables are: district, county, highway geometry, land use, type of zone, speed limit, signal code, type of intersection, number of intersection legs, number of turn lanes, left-turn control, all-red interval, average daily traffic, and outlier code. Models for nonintersectional accidents did not fit nor validate as well as models for intersectional accidents.
NASA Technical Reports Server (NTRS)
Lin, Shu; Fossorier, Marc
1998-01-01
In a coded communication system with equiprobable signaling, MLD minimizes the word error probability and delivers the most likely codeword associated with the corresponding received sequence. This decoding has two drawbacks. First, minimization of the word error probability is not equivalent to minimization of the bit error probability. Therefore, MLD becomes suboptimum with respect to the bit error probability. Second, MLD delivers a hard-decision estimate of the received sequence, so that information is lost between the input and output of the ML decoder. This information is important in coded schemes where the decoded sequence is further processed, such as concatenated coding schemes, multi-stage and iterative decoding schemes. In this chapter, we first present a decoding algorithm which both minimizes bit error probability, and provides the corresponding soft information at the output of the decoder. This algorithm is referred to as the MAP (maximum aposteriori probability) decoding algorithm.
Bandwidth efficient CCSDS coding standard proposals
NASA Technical Reports Server (NTRS)
Costello, Daniel J., Jr.; Perez, Lance C.; Wang, Fu-Quan
1992-01-01
The basic concatenated coding system for the space telemetry channel consists of a Reed-Solomon (RS) outer code, a symbol interleaver/deinterleaver, and a bandwidth efficient trellis inner code. A block diagram of this configuration is shown. The system may operate with or without the outer code and interleaver. In this recommendation, the outer code remains the (255,223) RS code over GF(2 exp 8) with an error correcting capability of t = 16 eight bit symbols. This code's excellent performance and the existence of fast, cost effective, decoders justify its continued use. The purpose of the interleaver/deinterleaver is to distribute burst errors out of the inner decoder over multiple codewords of the outer code. This utilizes the error correcting capability of the outer code more efficiently and reduces the probability of an RS decoder failure. Since the space telemetry channel is not considered bursty, the required interleaving depth is primarily a function of the inner decoding method. A diagram of an interleaver with depth 4 that is compatible with the (255,223) RS code is shown. Specific interleaver requirements are discussed after the inner code recommendations.
Syndrome source coding and its universal generalization
NASA Technical Reports Server (NTRS)
Ancheta, T. C., Jr.
1975-01-01
A method of using error-correcting codes to obtain data compression, called syndrome-source-coding, is described in which the source sequence is treated as an error pattern whose syndrome forms the compressed data. It is shown that syndrome-source-coding can achieve arbitrarily small distortion with the number of compressed digits per source digit arbitrarily close to the entropy of a binary memoryless source. A universal generalization of syndrome-source-coding is formulated which provides robustly-effective, distortionless, coding of source ensembles.
A Very Low Cost BCH Decoder for High Immunity of On-Chip Memories
NASA Astrophysics Data System (ADS)
Seo, Haejun; Han, Sehwan; Heo, Yoonseok; Cho, Taewon
BCH(Bose-Chaudhuri-Hoquenbhem) code, a type of block codes-cyclic codes, has very strong error-correcting ability which is vital for performing the error protection on the memory system. BCH code has many kinds of dual algorithms, PGZ(Pererson-Gorenstein-Zierler) algorithm out of them is advantageous in view of correcting the errors through the simple calculation in t value. However, this is problematic when this becomes 0 (divided by zero) in case ν ≠ t. In this paper, the circuit would be simplified by suggesting the multi-mode hardware architecture in preparation that v were 0~3. First, production cost would be less thanks to the smaller number of gates. Second, lessening power consumption could lengthen the recharging period. The very low cost and simple datapath make our design a good choice in small-footprint SoC(System on Chip) as ECC(Error Correction Code/Circuit) in memory system.
An empirical comparison of a dynamic software testability metric to static cyclomatic complexity
NASA Technical Reports Server (NTRS)
Voas, Jeffrey M.; Miller, Keith W.; Payne, Jeffrey E.
1993-01-01
This paper compares the dynamic testability prediction technique termed 'sensitivity analysis' to the static testability technique termed cyclomatic complexity. The application that we chose in this empirical study is a CASE generated version of a B-737 autoland system. For the B-737 system we analyzed, we isolated those functions that we predict are more prone to hide errors during system/reliability testing. We also analyzed the code with several other well-known static metrics. This paper compares and contrasts the results of sensitivity analysis to the results of the static metrics.
Faster and more accurate transport procedures for HZETRN
NASA Astrophysics Data System (ADS)
Slaba, T. C.; Blattnig, S. R.; Badavi, F. F.
2010-12-01
The deterministic transport code HZETRN was developed for research scientists and design engineers studying the effects of space radiation on astronauts and instrumentation protected by various shielding materials and structures. In this work, several aspects of code verification are examined. First, a detailed derivation of the light particle ( A ⩽ 4) and heavy ion ( A > 4) numerical marching algorithms used in HZETRN is given. References are given for components of the derivation that already exist in the literature, and discussions are given for details that may have been absent in the past. The present paper provides a complete description of the numerical methods currently used in the code and is identified as a key component of the verification process. Next, a new numerical method for light particle transport is presented, and improvements to the heavy ion transport algorithm are discussed. A summary of round-off error is also given, and the impact of this error on previously predicted exposure quantities is shown. Finally, a coupled convergence study is conducted by refining the discretization parameters (step-size and energy grid-size). From this study, it is shown that past efforts in quantifying the numerical error in HZETRN were hindered by single precision calculations and computational resources. It is determined that almost all of the discretization error in HZETRN is caused by the use of discretization parameters that violate a numerical convergence criterion related to charged target fragments below 50 AMeV. Total discretization errors are given for the old and new algorithms to 100 g/cm 2 in aluminum and water, and the improved accuracy of the new numerical methods is demonstrated. Run time comparisons between the old and new algorithms are given for one, two, and three layer slabs of 100 g/cm 2 of aluminum, polyethylene, and water. The new algorithms are found to be almost 100 times faster for solar particle event simulations and almost 10 times faster for galactic cosmic ray simulations.
Faster and more accurate transport procedures for HZETRN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slaba, T.C., E-mail: Tony.C.Slaba@nasa.go; Blattnig, S.R., E-mail: Steve.R.Blattnig@nasa.go; Badavi, F.F., E-mail: Francis.F.Badavi@nasa.go
The deterministic transport code HZETRN was developed for research scientists and design engineers studying the effects of space radiation on astronauts and instrumentation protected by various shielding materials and structures. In this work, several aspects of code verification are examined. First, a detailed derivation of the light particle (A {<=} 4) and heavy ion (A > 4) numerical marching algorithms used in HZETRN is given. References are given for components of the derivation that already exist in the literature, and discussions are given for details that may have been absent in the past. The present paper provides a complete descriptionmore » of the numerical methods currently used in the code and is identified as a key component of the verification process. Next, a new numerical method for light particle transport is presented, and improvements to the heavy ion transport algorithm are discussed. A summary of round-off error is also given, and the impact of this error on previously predicted exposure quantities is shown. Finally, a coupled convergence study is conducted by refining the discretization parameters (step-size and energy grid-size). From this study, it is shown that past efforts in quantifying the numerical error in HZETRN were hindered by single precision calculations and computational resources. It is determined that almost all of the discretization error in HZETRN is caused by the use of discretization parameters that violate a numerical convergence criterion related to charged target fragments below 50 AMeV. Total discretization errors are given for the old and new algorithms to 100 g/cm{sup 2} in aluminum and water, and the improved accuracy of the new numerical methods is demonstrated. Run time comparisons between the old and new algorithms are given for one, two, and three layer slabs of 100 g/cm{sup 2} of aluminum, polyethylene, and water. The new algorithms are found to be almost 100 times faster for solar particle event simulations and almost 10 times faster for galactic cosmic ray simulations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richers, Sherwood; Nagakura, Hiroki; Ott, Christian D.
The mechanism driving core-collapse supernovae is sensitive to the interplay between matter and neutrino radiation. However, neutrino radiation transport is very difficult to simulate, and several radiation transport methods of varying levels of approximation are available. We carefully compare for the first time in multiple spatial dimensions the discrete ordinates (DO) code of Nagakura, Yamada, and Sumiyoshi and the Monte Carlo (MC) code Sedonu, under the assumptions of a static fluid background, flat spacetime, elastic scattering, and full special relativity. We find remarkably good agreement in all spectral, angular, and fluid interaction quantities, lending confidence to both methods. The DOmore » method excels in determining the heating and cooling rates in the optically thick region. The MC method predicts sharper angular features due to the effectively infinite angular resolution, but struggles to drive down noise in quantities where subtractive cancellation is prevalent, such as the net gain in the protoneutron star and off-diagonal components of the Eddington tensor. We also find that errors in the angular moments of the distribution functions induced by neglecting velocity dependence are subdominant to those from limited momentum-space resolution. We briefly compare directly computed second angular moments to those predicted by popular algebraic two-moment closures, and we find that the errors from the approximate closures are comparable to the difference between the DO and MC methods. Included in this work is an improved Sedonu code, which now implements a fully special relativistic, time-independent version of the grid-agnostic MC random walk approximation.« less
Richers, Sherwood; Nagakura, Hiroki; Ott, Christian D.; ...
2017-10-03
The mechanism driving core-collapse supernovae is sensitive to the interplay between matter and neutrino radiation. However, neutrino radiation transport is very difficult to simulate, and several radiation transport methods of varying levels of approximation are available. In this paper, we carefully compare for the first time in multiple spatial dimensions the discrete ordinates (DO) code of Nagakura, Yamada, and Sumiyoshi and the Monte Carlo (MC) code Sedonu, under the assumptions of a static fluid background, flat spacetime, elastic scattering, and full special relativity. We find remarkably good agreement in all spectral, angular, and fluid interaction quantities, lending confidence to bothmore » methods. The DO method excels in determining the heating and cooling rates in the optically thick region. The MC method predicts sharper angular features due to the effectively infinite angular resolution, but struggles to drive down noise in quantities where subtractive cancellation is prevalent, such as the net gain in the protoneutron star and off-diagonal components of the Eddington tensor. We also find that errors in the angular moments of the distribution functions induced by neglecting velocity dependence are subdominant to those from limited momentum-space resolution. We briefly compare directly computed second angular moments to those predicted by popular algebraic two-moment closures, and we find that the errors from the approximate closures are comparable to the difference between the DO and MC methods. Finally, included in this work is an improved Sedonu code, which now implements a fully special relativistic, time-independent version of the grid-agnostic MC random walk approximation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richers, Sherwood; Nagakura, Hiroki; Ott, Christian D.
The mechanism driving core-collapse supernovae is sensitive to the interplay between matter and neutrino radiation. However, neutrino radiation transport is very difficult to simulate, and several radiation transport methods of varying levels of approximation are available. In this paper, we carefully compare for the first time in multiple spatial dimensions the discrete ordinates (DO) code of Nagakura, Yamada, and Sumiyoshi and the Monte Carlo (MC) code Sedonu, under the assumptions of a static fluid background, flat spacetime, elastic scattering, and full special relativity. We find remarkably good agreement in all spectral, angular, and fluid interaction quantities, lending confidence to bothmore » methods. The DO method excels in determining the heating and cooling rates in the optically thick region. The MC method predicts sharper angular features due to the effectively infinite angular resolution, but struggles to drive down noise in quantities where subtractive cancellation is prevalent, such as the net gain in the protoneutron star and off-diagonal components of the Eddington tensor. We also find that errors in the angular moments of the distribution functions induced by neglecting velocity dependence are subdominant to those from limited momentum-space resolution. We briefly compare directly computed second angular moments to those predicted by popular algebraic two-moment closures, and we find that the errors from the approximate closures are comparable to the difference between the DO and MC methods. Finally, included in this work is an improved Sedonu code, which now implements a fully special relativistic, time-independent version of the grid-agnostic MC random walk approximation.« less
Shao, Wei; Liu, Mingxia; Zhang, Daoqiang
2016-01-01
The systematic study of subcellular location pattern is very important for fully characterizing the human proteome. Nowadays, with the great advances in automated microscopic imaging, accurate bioimage-based classification methods to predict protein subcellular locations are highly desired. All existing models were constructed on the independent parallel hypothesis, where the cellular component classes are positioned independently in a multi-class classification engine. The important structural information of cellular compartments is missed. To deal with this problem for developing more accurate models, we proposed a novel cell structure-driven classifier construction approach (SC-PSorter) by employing the prior biological structural information in the learning model. Specifically, the structural relationship among the cellular components is reflected by a new codeword matrix under the error correcting output coding framework. Then, we construct multiple SC-PSorter-based classifiers corresponding to the columns of the error correcting output coding codeword matrix using a multi-kernel support vector machine classification approach. Finally, we perform the classifier ensemble by combining those multiple SC-PSorter-based classifiers via majority voting. We evaluate our method on a collection of 1636 immunohistochemistry images from the Human Protein Atlas database. The experimental results show that our method achieves an overall accuracy of 89.0%, which is 6.4% higher than the state-of-the-art method. The dataset and code can be downloaded from https://github.com/shaoweinuaa/. dqzhang@nuaa.edu.cn Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Richers, Sherwood; Nagakura, Hiroki; Ott, Christian D.; Dolence, Joshua; Sumiyoshi, Kohsuke; Yamada, Shoichi
2017-10-01
The mechanism driving core-collapse supernovae is sensitive to the interplay between matter and neutrino radiation. However, neutrino radiation transport is very difficult to simulate, and several radiation transport methods of varying levels of approximation are available. We carefully compare for the first time in multiple spatial dimensions the discrete ordinates (DO) code of Nagakura, Yamada, and Sumiyoshi and the Monte Carlo (MC) code Sedonu, under the assumptions of a static fluid background, flat spacetime, elastic scattering, and full special relativity. We find remarkably good agreement in all spectral, angular, and fluid interaction quantities, lending confidence to both methods. The DO method excels in determining the heating and cooling rates in the optically thick region. The MC method predicts sharper angular features due to the effectively infinite angular resolution, but struggles to drive down noise in quantities where subtractive cancellation is prevalent, such as the net gain in the protoneutron star and off-diagonal components of the Eddington tensor. We also find that errors in the angular moments of the distribution functions induced by neglecting velocity dependence are subdominant to those from limited momentum-space resolution. We briefly compare directly computed second angular moments to those predicted by popular algebraic two-moment closures, and we find that the errors from the approximate closures are comparable to the difference between the DO and MC methods. Included in this work is an improved Sedonu code, which now implements a fully special relativistic, time-independent version of the grid-agnostic MC random walk approximation.
Using concatenated quantum codes for universal fault-tolerant quantum gates.
Jochym-O'Connor, Tomas; Laflamme, Raymond
2014-01-10
We propose a method for universal fault-tolerant quantum computation using concatenated quantum error correcting codes. The concatenation scheme exploits the transversal properties of two different codes, combining them to provide a means to protect against low-weight arbitrary errors. We give the required properties of the error correcting codes to ensure universal fault tolerance and discuss a particular example using the 7-qubit Steane and 15-qubit Reed-Muller codes. Namely, other than computational basis state preparation as required by the DiVincenzo criteria, our scheme requires no special ancillary state preparation to achieve universality, as opposed to schemes such as magic state distillation. We believe that optimizing the codes used in such a scheme could provide a useful alternative to state distillation schemes that exhibit high overhead costs.
Concatenated coding for low date rate space communications.
NASA Technical Reports Server (NTRS)
Chen, C. H.
1972-01-01
In deep space communications with distant planets, the data rate as well as the operating SNR may be very low. To maintain the error rate also at a very low level, it is necessary to use a sophisticated coding system (longer code) without excessive decoding complexity. The concatenated coding has been shown to meet such requirements in that the error rate decreases exponentially with the overall length of the code while the decoder complexity increases only algebraically. Three methods of concatenating an inner code with an outer code are considered. Performance comparison of the three concatenated codes is made.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ansong, Charles; Tolic, Nikola; Purvine, Samuel O.
Complete and accurate genome annotation is crucial for comprehensive and systematic studies of biological systems. For example systems biology-oriented genome scale modeling efforts greatly benefit from accurate annotation of protein-coding genes to develop proper functioning models. However, determining protein-coding genes for most new genomes is almost completely performed by inference, using computational predictions with significant documented error rates (> 15%). Furthermore, gene prediction programs provide no information on biologically important post-translational processing events critical for protein function. With the ability to directly measure peptides arising from expressed proteins, mass spectrometry-based proteomics approaches can be used to augment and verify codingmore » regions of a genomic sequence and importantly detect post-translational processing events. In this study we utilized “shotgun” proteomics to guide accurate primary genome annotation of the bacterial pathogen Salmonella Typhimurium 14028 to facilitate a systems-level understanding of Salmonella biology. The data provides protein-level experimental confirmation for 44% of predicted protein-coding genes, suggests revisions to 48 genes assigned incorrect translational start sites, and uncovers 13 non-annotated genes missed by gene prediction programs. We also present a comprehensive analysis of post-translational processing events in Salmonella, revealing a wide range of complex chemical modifications (70 distinct modifications) and confirming more than 130 signal peptide and N-terminal methionine cleavage events in Salmonella. This study highlights several ways in which proteomics data applied during the primary stages of annotation can improve the quality of genome annotations, especially with regards to the annotation of mature protein products.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Ke; Zhang, Yanwen; Zhu, Zihua
Accurate information of electronic stopping power is fundamental for broad advances in electronic industry, space exploration, national security, and sustainable energy technologies. The Stopping and Range of Ions in Matter (SRIM) code has been widely applied to predict stopping powers and ion distributions for decades. Recent experimental results have, however, shown considerable errors in the SRIM predictions for stopping of heavy ions in compounds containing light elements, indicating an urgent need to improve current stopping power models. The electronic stopping powers of 35Cl, 80Br, 127I, and 197Au ions are experimentally determined in two important functional materials, SiC and SiO2, frommore » tens to hundreds keV/u based on a single ion technique. By combining with the reciprocity theory, new electronic stopping powers are suggested in a region from 0 to 15 MeV, where large deviations from SRIM predictions are observed. For independent experimental validation of the electronic stopping powers we determined, Rutherford backscattering spectrometry (RBS) and secondary ion mass spectrometry (SIMS) are utilized to measure the depth profiles of implanted Au ions in SiC with energies from 700 keV to 15 MeV. The measured ion distributions from both RBS and SIMS are considerably deeper (up to ~30%) than the predictions from the commercial SRIM code. In comparison, the new electronic stopping power values are utilized in a modified TRIM-85 (the original version of the SRIM) code, M-TRIM, to predict ion distributions, and the results are in good agreement with the experimentally measured ion distributions.« less
NASA Technical Reports Server (NTRS)
Lee, P. J.
1984-01-01
For rate 1/N convolutional codes, a recursive algorithm for finding the transfer function bound on bit error rate (BER) at the output of a Viterbi decoder is described. This technique is very fast and requires very little storage since all the unnecessary operations are eliminated. Using this technique, we find and plot bounds on the BER performance of known codes of rate 1/2 with K 18, rate 1/3 with K 14. When more than one reported code with the same parameter is known, we select the code that minimizes the required signal to noise ratio for a desired bit error rate of 0.000001. This criterion of determining goodness of a code had previously been found to be more useful than the maximum free distance criterion and was used in the code search procedures of very short constraint length codes. This very efficient technique can also be used for searches of longer constraint length codes.
Stagnation-point heat-transfer rate predictions at aeroassist flight conditions
NASA Technical Reports Server (NTRS)
Gupta, Roop N.; Jones, Jim J.; Rochelle, William C.
1992-01-01
The results are presented for the stagnation-point heat-transfer rates used in the design process of the Aeroassist Flight Experiment (AFE) vehicle over its entire aeropass trajectory. The prediction methods used in this investigation demonstrate the application of computational fluid dynamics (CFD) techniques to a wide range of flight conditions and their usefulness in a design process. The heating rates were computed by a viscous-shock-layer (VSL) code at the lower altitudes and by a Navier-Stokes (N-S) code for the higher altitude cases. For both methods, finite-rate chemically reacting gas was considered, and a temperature-dependent wall-catalysis model was used. The wall temperature for each case was assumed to be radiative equilibrium temperature, based on total heating. The radiative heating was estimated by using a correlation equation. Wall slip was included in the N-S calculation method, and this method implicitly accounts for shock slip. The N-S/VSL combination of projection methods was established by comparison with the published benchmark flow-field code LAURA results at lower altitudes, and the direct simulation Monte Carlo results at higher altitude cases. To obtain the design heating rate over the entire forward face of the vehicle, a boundary-layer method (BLIMP code) that employs reacting chemistry and surface catalysis was used. The ratio of the VSL or N-S method prediction to that obtained from the boundary-layer method code at the stagnation point is used to define an adjustment factor, which accounts for the errors involved in using the boundary-layer method.
Accumulate-Repeat-Accumulate-Accumulate Codes
NASA Technical Reports Server (NTRS)
Divsalar, Dariush; Dolinar, Samuel; Thorpe, Jeremy
2007-01-01
Accumulate-repeat-accumulate-accumulate (ARAA) codes have been proposed, inspired by the recently proposed accumulate-repeat-accumulate (ARA) codes. These are error-correcting codes suitable for use in a variety of wireless data-communication systems that include noisy channels. ARAA codes can be regarded as serial turbolike codes or as a subclass of low-density parity-check (LDPC) codes, and, like ARA codes they have projected graph or protograph representations; these characteristics make it possible to design high-speed iterative decoders that utilize belief-propagation algorithms. The objective in proposing ARAA codes as a subclass of ARA codes was to enhance the error-floor performance of ARA codes while maintaining simple encoding structures and low maximum variable node degree.
Ultrahigh Error Threshold for Surface Codes with Biased Noise
NASA Astrophysics Data System (ADS)
Tuckett, David K.; Bartlett, Stephen D.; Flammia, Steven T.
2018-02-01
We show that a simple modification of the surface code can exhibit an enormous gain in the error correction threshold for a noise model in which Pauli Z errors occur more frequently than X or Y errors. Such biased noise, where dephasing dominates, is ubiquitous in many quantum architectures. In the limit of pure dephasing noise we find a threshold of 43.7(1)% using a tensor network decoder proposed by Bravyi, Suchara, and Vargo. The threshold remains surprisingly large in the regime of realistic noise bias ratios, for example 28.2(2)% at a bias of 10. The performance is, in fact, at or near the hashing bound for all values of the bias. The modified surface code still uses only weight-4 stabilizers on a square lattice, but merely requires measuring products of Y instead of Z around the faces, as this doubles the number of useful syndrome bits associated with the dominant Z errors. Our results demonstrate that large efficiency gains can be found by appropriately tailoring codes and decoders to realistic noise models, even under the locality constraints of topological codes.
Death Certification Errors and the Effect on Mortality Statistics.
McGivern, Lauri; Shulman, Leanne; Carney, Jan K; Shapiro, Steven; Bundock, Elizabeth
Errors in cause and manner of death on death certificates are common and affect families, mortality statistics, and public health research. The primary objective of this study was to characterize errors in the cause and manner of death on death certificates completed by non-Medical Examiners. A secondary objective was to determine the effects of errors on national mortality statistics. We retrospectively compared 601 death certificates completed between July 1, 2015, and January 31, 2016, from the Vermont Electronic Death Registration System with clinical summaries from medical records. Medical Examiners, blinded to original certificates, reviewed summaries, generated mock certificates, and compared mock certificates with original certificates. They then graded errors using a scale from 1 to 4 (higher numbers indicated increased impact on interpretation of the cause) to determine the prevalence of minor and major errors. They also compared International Classification of Diseases, 10th Revision (ICD-10) codes on original certificates with those on mock certificates. Of 601 original death certificates, 319 (53%) had errors; 305 (51%) had major errors; and 59 (10%) had minor errors. We found no significant differences by certifier type (physician vs nonphysician). We did find significant differences in major errors in place of death ( P < .001). Certificates for deaths occurring in hospitals were more likely to have major errors than certificates for deaths occurring at a private residence (59% vs 39%, P < .001). A total of 580 (93%) death certificates had a change in ICD-10 codes between the original and mock certificates, of which 348 (60%) had a change in the underlying cause-of-death code. Error rates on death certificates in Vermont are high and extend to ICD-10 coding, thereby affecting national mortality statistics. Surveillance and certifier education must expand beyond local and state efforts. Simplifying and standardizing underlying literal text for cause of death may improve accuracy, decrease coding errors, and improve national mortality statistics.
The Limits of Coding with Joint Constraints on Detected and Undetected Error Rates
NASA Technical Reports Server (NTRS)
Dolinar, Sam; Andrews, Kenneth; Pollara, Fabrizio; Divsalar, Dariush
2008-01-01
We develop a remarkably tight upper bound on the performance of a parameterized family of bounded angle maximum-likelihood (BA-ML) incomplete decoders. The new bound for this class of incomplete decoders is calculated from the code's weight enumerator, and is an extension of Poltyrev-type bounds developed for complete ML decoders. This bound can also be applied to bound the average performance of random code ensembles in terms of an ensemble average weight enumerator. We also formulate conditions defining a parameterized family of optimal incomplete decoders, defined to minimize both the total codeword error probability and the undetected error probability for any fixed capability of the decoder to detect errors. We illustrate the gap between optimal and BA-ML incomplete decoding via simulation of a small code.
A family of chaotic pure analog coding schemes based on baker's map function
NASA Astrophysics Data System (ADS)
Liu, Yang; Li, Jing; Lu, Xuanxuan; Yuen, Chau; Wu, Jun
2015-12-01
This paper considers a family of pure analog coding schemes constructed from dynamic systems which are governed by chaotic functions—baker's map function and its variants. Various decoding methods, including maximum likelihood (ML), minimum mean square error (MMSE), and mixed ML-MMSE decoding algorithms, have been developed for these novel encoding schemes. The proposed mirrored baker's and single-input baker's analog codes perform a balanced protection against the fold error (large distortion) and weak distortion and outperform the classical chaotic analog coding and analog joint source-channel coding schemes in literature. Compared to the conventional digital communication system, where quantization and digital error correction codes are used, the proposed analog coding system has graceful performance evolution, low decoding latency, and no quantization noise. Numerical results show that under the same bandwidth expansion, the proposed analog system outperforms the digital ones over a wide signal-to-noise (SNR) range.
NASA Technical Reports Server (NTRS)
Westphal, Douglas L.; Russell, Philip (Technical Monitor)
1994-01-01
A set of 2,600 6-second, National Weather Service soundings from NASA's FIRE-II Cirrus field experiment are used to illustrate previously known errors and new potential errors in the VIZ and SDD brand relative humidity (RH) sensors and the MicroART processing software. The entire spectrum of RH is potentially affected by at least one of these errors. (These errors occur before being converted to dew point temperature.) Corrections to the errors are discussed. Examples are given of the effect that these errors and biases may have on numerical weather prediction and radiative transfer. The figure shows the OLR calculated for the corrected and uncorrected soundings using an 18-band radiative transfer code. The OLR differences are sufficiently large to warrant consideration when validating line-by-line radiation calculations that use radiosonde data to specify the atmospheric state, or when validating satellite retrievals. In addition, a comparison of observations of RE during FIRE-II derived from GOES satellite, raman lidar, MAPS analyses, NCAR CLASS sondes, and the NWS sondes reveals disagreement in the RH distribution and underlines our lack of an understanding of the climatology of water vapor.
NASA Technical Reports Server (NTRS)
Westphal, Douglas L.; Russell, Philip B. (Technical Monitor)
1994-01-01
A set of 2,600 6-second, National Weather Service soundings from NASA's FIRE-II Cirrus field experiment are used to illustrate previously known errors and new potential errors in the VIZ and SDD ) brand relative humidity (RH) sensors and the MicroART processing software. The entire spectrum of RH is potentially affected by at least one of these errors. (These errors occur before being converted to dew point temperature.) Corrections to the errors are discussed. Examples are given of the effect that these errors and biases may have on numerical weather prediction and radiative transfer. The figure shows the OLR calculated for the corrected and uncorrected soundings using an 18-band radiative transfer code. The OLR differences are sufficiently large to warrant consideration when validating line-by-line radiation calculations that use radiosonde data to specify the atmospheric state, or when validating satellite retrievals. in addition, a comparison of observations of RH during FIRE-II derived from GOES satellite, raman lidar, MAPS analyses, NCAR CLASS sondes, and the NWS sondes reveals disagreement in the RH distribution and underlines our lack of an understanding of the climatology of water vapor.
Chroma intra prediction based on inter-channel correlation for HEVC.
Zhang, Xingyu; Gisquet, Christophe; François, Edouard; Zou, Feng; Au, Oscar C
2014-01-01
In this paper, we investigate a new inter-channel coding mode called LM mode proposed for the next generation video coding standard called high efficiency video coding. This mode exploits inter-channel correlation using reconstructed luma to predict chroma linearly with parameters derived from neighboring reconstructed luma and chroma pixels at both encoder and decoder to avoid overhead signaling. In this paper, we analyze the LM mode and prove that the LM parameters for predicting original chroma and reconstructed chroma are statistically the same. We also analyze the error sensitivity of the LM parameters. We identify some LM mode problematic situations and propose three novel LM-like modes called LMA, LML, and LMO to address the situations. To limit the increase in complexity due to the LM-like modes, we propose some fast algorithms with the help of some new cost functions. We further identify some potentially-problematic conditions in the parameter estimation (including regression dilution problem) and introduce a novel model correction technique to detect and correct those conditions. Simulation results suggest that considerable BD-rate reduction can be achieved by the proposed LM-like modes and model correction technique. In addition, the performance gain of the two techniques appears to be essentially additive when combined.
An investigation of error characteristics and coding performance
NASA Technical Reports Server (NTRS)
Ebel, William J.; Ingels, Frank M.
1992-01-01
The performance of forward error correcting coding schemes on errors anticipated for the Earth Observation System (EOS) Ku-band downlink are studied. The EOS transmits picture frame data to the ground via the Telemetry Data Relay Satellite System (TDRSS) to a ground-based receiver at White Sands. Due to unintentional RF interference from other systems operating in the Ku band, the noise at the receiver is non-Gaussian which may result in non-random errors output by the demodulator. That is, the downlink channel cannot be modeled by a simple memoryless Gaussian-noise channel. From previous experience, it is believed that those errors are bursty. The research proceeded by developing a computer based simulation, called Communication Link Error ANalysis (CLEAN), to model the downlink errors, forward error correcting schemes, and interleavers used with TDRSS. To date, the bulk of CLEAN was written, documented, debugged, and verified. The procedures for utilizing CLEAN to investigate code performance were established and are discussed.
Observations on Polar Coding with CRC-Aided List Decoding
2016-09-01
9 v 1. INTRODUCTION Polar codes are a new type of forward error correction (FEC) codes, introduced by Arikan in [1], in which he...error correction (FEC) currently used and planned for use in Navy wireless communication systems. The project’s results from FY14 and FY15 are...good error- correction per- formance. We used the Tal/Vardy method of [5]. The polar encoder uses a row vector u of length N . Let uA be the subvector
Fault-tolerance thresholds for the surface code with fabrication errors
NASA Astrophysics Data System (ADS)
Auger, James M.; Anwar, Hussain; Gimeno-Segovia, Mercedes; Stace, Thomas M.; Browne, Dan E.
2017-10-01
The construction of topological error correction codes requires the ability to fabricate a lattice of physical qubits embedded on a manifold with a nontrivial topology such that the quantum information is encoded in the global degrees of freedom (i.e., the topology) of the manifold. However, the manufacturing of large-scale topological devices will undoubtedly suffer from fabrication errors—permanent faulty components such as missing physical qubits or failed entangling gates—introducing permanent defects into the topology of the lattice and hence significantly reducing the distance of the code and the quality of the encoded logical qubits. In this work we investigate how fabrication errors affect the performance of topological codes, using the surface code as the test bed. A known approach to mitigate defective lattices involves the use of primitive swap gates in a long sequence of syndrome extraction circuits. Instead, we show that in the presence of fabrication errors the syndrome can be determined using the supercheck operator approach and the outcome of the defective gauge stabilizer generators without any additional computational overhead or use of swap gates. We report numerical fault-tolerance thresholds in the presence of both qubit fabrication and gate fabrication errors using a circuit-based noise model and the minimum-weight perfect-matching decoder. Our numerical analysis is most applicable to two-dimensional chip-based technologies, but the techniques presented here can be readily extended to other topological architectures. We find that in the presence of 8 % qubit fabrication errors, the surface code can still tolerate a computational error rate of up to 0.1 % .
Numerical simulation of steady supersonic flow over spinning bodies of revolution
NASA Technical Reports Server (NTRS)
Sturek, W. B.; Schiff, L. B.
1982-01-01
A recently reported parabolized Navier-Stokes code has been employed to compute the supersonic flowfield about a spinning cone and spinning and nonspinning ogive cylinder and boattailed bodies of revolution at moderate incidence. The computations were performed for flow conditions where extensive measurements for wall pressure, boundary-layer velocity profiles, and Magnus force had been obtained. Comparisons between the computational results and experiment indicate excellent agreement for angles of attack up to 6 deg. At angles greater than 6 deg discrepancies are noted which are tentatively attributed to turbulence modeling errors. The comparisons for Magnus effects show that the code accurately predicts the effects of body shape for the selected models.
Error control techniques for satellite and space communications
NASA Technical Reports Server (NTRS)
Costello, Daniel J., Jr.
1995-01-01
This report focuses on the results obtained during the PI's recent sabbatical leave at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland, from January 1, 1995 through June 30, 1995. Two projects investigated various properties of TURBO codes, a new form of concatenated coding that achieves near channel capacity performance at moderate bit error rates. The performance of TURBO codes is explained in terms of the code's distance spectrum. These results explain both the near capacity performance of the TURBO codes and the observed 'error floor' for moderate and high signal-to-noise ratios (SNR's). A semester project, entitled 'The Realization of the Turbo-Coding System,' involved a thorough simulation study of the performance of TURBO codes and verified the results claimed by previous authors. A copy of the final report for this project is included as Appendix A. A diploma project, entitled 'On the Free Distance of Turbo Codes and Related Product Codes,' includes an analysis of TURBO codes and an explanation for their remarkable performance. A copy of the final report for this project is included as Appendix B.
On the error statistics of Viterbi decoding and the performance of concatenated codes
NASA Technical Reports Server (NTRS)
Miller, R. L.; Deutsch, L. J.; Butman, S. A.
1981-01-01
Computer simulation results are presented on the performance of convolutional codes of constraint lengths 7 and 10 concatenated with the (255, 223) Reed-Solomon code (a proposed NASA standard). These results indicate that as much as 0.8 dB can be gained by concatenating this Reed-Solomon code with a (10, 1/3) convolutional code, instead of the (7, 1/2) code currently used by the DSN. A mathematical model of Viterbi decoder burst-error statistics is developed and is validated through additional computer simulations.
Crosstalk eliminating and low-density parity-check codes for photochromic dual-wavelength storage
NASA Astrophysics Data System (ADS)
Wang, Meicong; Xiong, Jianping; Jian, Jiqi; Jia, Huibo
2005-01-01
Multi-wavelength storage is an approach to increase the memory density with the problem of crosstalk to be deal with. We apply Low Density Parity Check (LDPC) codes as error-correcting codes in photochromic dual-wavelength optical storage based on the investigation of LDPC codes in optical data storage. A proper method is applied to reduce the crosstalk and simulation results show that this operation is useful to improve Bit Error Rate (BER) performance. At the same time we can conclude that LDPC codes outperform RS codes in crosstalk channel.
Phenotypic Graphs and Evolution Unfold the Standard Genetic Code as the Optimal
NASA Astrophysics Data System (ADS)
Zamudio, Gabriel S.; José, Marco V.
2018-03-01
In this work, we explicitly consider the evolution of the Standard Genetic Code (SGC) by assuming two evolutionary stages, to wit, the primeval RNY code and two intermediate codes in between. We used network theory and graph theory to measure the connectivity of each phenotypic graph. The connectivity values are compared to the values of the codes under different randomization scenarios. An error-correcting optimal code is one in which the algebraic connectivity is minimized. We show that the SGC is optimal in regard to its robustness and error-tolerance when compared to all random codes under different assumptions.
New coding advances for deep space communications
NASA Technical Reports Server (NTRS)
Yuen, Joseph H.
1987-01-01
Advances made in error-correction coding for deep space communications are described. The code believed to be the best is a (15, 1/6) convolutional code, with maximum likelihood decoding; when it is concatenated with a 10-bit Reed-Solomon code, it achieves a bit error rate of 10 to the -6th, at a bit SNR of 0.42 dB. This code outperforms the Voyager code by 2.11 dB. The use of source statics in decoding convolutionally encoded Voyager images from the Uranus encounter is investigated, and it is found that a 2 dB decoding gain can be achieved.
Chen, Chien P; Braunstein, Steve; Mourad, Michelle; Hsu, I-Chow J; Haas-Kogan, Daphne; Roach, Mack; Fogh, Shannon E
2015-01-01
Accurate International Classification of Diseases (ICD) diagnosis coding is critical for patient care, billing purposes, and research endeavors. In this single-institution study, we evaluated our baseline ICD-9 (9th revision) diagnosis coding accuracy, identified the most common errors contributing to inaccurate coding, and implemented a multimodality strategy to improve radiation oncology coding. We prospectively studied ICD-9 coding accuracy in our radiation therapy--specific electronic medical record system. Baseline ICD-9 coding accuracy was obtained from chart review targeting ICD-9 coding accuracy of all patients treated at our institution between March and June of 2010. To improve performance an educational session highlighted common coding errors, and a user-friendly software tool, RadOnc ICD Search, version 1.0, for coding radiation oncology specific diagnoses was implemented. We then prospectively analyzed ICD-9 coding accuracy for all patients treated from July 2010 to June 2011, with the goal of maintaining 80% or higher coding accuracy. Data on coding accuracy were analyzed and fed back monthly to individual providers. Baseline coding accuracy for physicians was 463 of 661 (70%) cases. Only 46% of physicians had coding accuracy above 80%. The most common errors involved metastatic cases, whereby primary or secondary site ICD-9 codes were either incorrect or missing, and special procedures such as stereotactic radiosurgery cases. After implementing our project, overall coding accuracy rose to 92% (range, 86%-96%). The median accuracy for all physicians was 93% (range, 77%-100%) with only 1 attending having accuracy below 80%. Incorrect primary and secondary ICD-9 codes in metastatic cases showed the most significant improvement (10% vs 2% after intervention). Identifying common coding errors and implementing both education and systems changes led to significantly improved coding accuracy. This quality assurance project highlights the potential problem of ICD-9 coding accuracy by physicians and offers an approach to effectively address this shortcoming. Copyright © 2015. Published by Elsevier Inc.
Experimental implementation of the Bacon-Shor code with 10 entangled photons
NASA Astrophysics Data System (ADS)
Gimeno-Segovia, Mercedes; Sanders, Barry C.
The number of qubits that can be effectively controlled in quantum experiments is growing, reaching a regime where small quantum error-correcting codes can be tested. The Bacon-Shor code is a simple quantum code that protects against the effect of an arbitrary single-qubit error. In this work, we propose an experimental implementation of said code in a post-selected linear optical setup, similar to the recently reported 10-photon GHZ generation experiment. In the procedure we propose, an arbitrary state is encoded into the protected Shor code subspace, and after undergoing a controlled single-qubit error, is successfully decoded. BCS appreciates financial support from Alberta Innovates, NSERC, China's 1000 Talent Plan and the Institute for Quantum Information and Matter, which is an NSF Physics Frontiers Center(NSF Grant PHY-1125565) with support of the Moore Foundation(GBMF-2644).
The proposed coding standard at GSFC
NASA Technical Reports Server (NTRS)
Morakis, J. C.; Helgert, H. J.
1977-01-01
As part of the continuing effort to introduce standardization of spacecraft and ground equipment in satellite systems, NASA's Goddard Space Flight Center and other NASA facilities have supported the development of a set of standards for the use of error control coding in telemetry subsystems. These standards are intended to ensure compatibility between spacecraft and ground encoding equipment, while allowing sufficient flexibility to meet all anticipated mission requirements. The standards which have been developed to date cover the application of block codes in error detection and error correction modes, as well as short and long constraint length convolutional codes decoded via the Viterbi and sequential decoding algorithms, respectively. Included are detailed specifications of the codes, and their implementation. Current effort is directed toward the development of standards covering channels with burst noise characteristics, channels with feedback, and code concatenation.
A Framework for Identifying and Classifying Undergraduate Student Proof Errors
ERIC Educational Resources Information Center
Strickland, S.; Rand, B.
2016-01-01
This paper describes a framework for identifying, classifying, and coding student proofs, modified from existing proof-grading rubrics. The framework includes 20 common errors, as well as categories for interpreting the severity of the error. The coding scheme is intended for use in a classroom context, for providing effective student feedback. In…
Reed-Solomon Codes and the Deep Hole Problem
NASA Astrophysics Data System (ADS)
Keti, Matt
In many types of modern communication, a message is transmitted over a noisy medium. When this is done, there is a chance that the message will be corrupted. An error-correcting code adds redundant information to the message which allows the receiver to detect and correct errors accrued during the transmission. We will study the famous Reed-Solomon code (found in QR codes, compact discs, deep space probes,ldots) and investigate the limits of its error-correcting capacity. It can be shown that understanding this is related to understanding the "deep hole" problem, which is a question of determining when a received message has, in a sense, incurred the worst possible corruption. We partially resolve this in its traditional context, when the code is based on the finite field F q or Fq*, as well as new contexts, when it is based on a subgroup of F q* or the image of a Dickson polynomial. This is a new and important problem that could give insight on the true error-correcting potential of the Reed-Solomon code.
CFD Modelling of Bore Erosion in Two-Stage Light Gas Guns
NASA Technical Reports Server (NTRS)
Bogdanoff, D. W.
1998-01-01
A well-validated quasi-one-dimensional computational fluid dynamics (CFD) code for the analysis of the internal ballistics of two-stage light gas guns is modified to explicitly calculate the ablation of steel from the gun bore and the incorporation of the ablated wall material into the hydrogen working cas. The modified code is used to model 45 shots made with the NASA Ames 0.5 inch light gas gun over an extremely wide variety of gun operating conditions. Good agreement is found between the experimental and theoretical piston velocities (maximum errors of +/-2% to +/-6%) and maximum powder pressures (maximum errors of +/-10% with good igniters). Overall, the agreement between the experimental and numerically calculated gun erosion values (within a factor of 2) was judged to be reasonably good, considering the complexity of the processes modelled. Experimental muzzle velocities agree very well (maximum errors of 0.5-0.7 km/sec) with theoretical muzzle velocities calculated with loading of the hydrogen gas with the ablated barrel wall material. Comparison of results for pump tube volumes of 100%, 60% and 40% of an initial benchmark value show that, at the higher muzzle velocities, operation at 40% pump tube volume produces much lower hydrogen loading and gun erosion and substantially lower maximum pressures in the gun. Large muzzle velocity gains (2.4-5.4 km/sec) are predicted upon driving the gun harder (that is, upon using, higher powder loads and/or lower hydrogen fill pressures) when hydrogen loading is neglected; much smaller muzzle velocity gains (1.1-2.2 km/sec) are predicted when hydrogen loading is taken into account. These smaller predicted velocity gains agree well with those achieved in practice. CFD snapshots of the hydrogen mass fraction, density and pressure of the in-bore medium are presented for a very erosive shot.
Becker, Michael P I; Nitsch, Alexander M; Hewig, Johannes; Miltner, Wolfgang H R; Straube, Thomas
2016-12-01
Several regions of the frontal cortex interact with striatal and amygdala regions to mediate the evaluation of reward-related information and subsequent adjustment of response choices. Recent theories discuss the particular relevance of dorsal anterior cingulate cortex (dACC) for switching behavior; consecutively, ventromedial prefrontal cortex (VMPFC) is involved in mediating exploitative behaviors by tracking reward values unfolding after the behavioral switch. Amygdala, on the other hand, has been implied in coding the valence of stimulus-outcome associations and the ventral striatum (VS) has consistently been shown to code a reward prediction error (RPE). Here, we used fMRI data acquired in humans during a reversal task to parametrically model different sequences of positive feedback in order to unravel differential contributions of these brain regions to the tracking and exploitation of rewards. Parameters from an Optimal Bayesian Learner accurately predicted the divergent involvement of dACC and VMPFC during feedback processing: dACC signaled the first, but not later, presentations of positive feedback, while VMPFC coded trial-by-trial accumulations in reward value. Our results confirm that dACC carries a prominent confirmatory signal during processing of first positive feedback. Amygdala coded positive feedbacks more uniformly, while striatal regions were associated with RPE. Copyright © 2016 Elsevier Inc. All rights reserved.
CFD Sensitivity Analysis of a Modern Civil Transport Near Buffet-Onset Conditions
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; Allison, Dennis O.; Biedron, Robert T.; Buning, Pieter G.; Gainer, Thomas G.; Morrison, Joseph H.; Rivers, S. Melissa; Mysko, Stephen J.; Witkowski, David P.
2001-01-01
A computational fluid dynamics (CFD) sensitivity analysis is conducted for a modern civil transport at several conditions ranging from mostly attached flow to flow with substantial separation. Two different Navier-Stokes computer codes and four different turbulence models are utilized, and results are compared both to wind tunnel data at flight Reynolds number and flight data. In-depth CFD sensitivities to grid, code, spatial differencing method, aeroelastic shape, and turbulence model are described for conditions near buffet onset (a condition at which significant separation exists). In summary, given a grid of sufficient density for a given aeroelastic wing shape, the combined approximate error band in CFD at conditions near buffet onset due to code, spatial differencing method, and turbulence model is: 6% in lift, 7% in drag, and 16% in moment. The biggest two contributers to this uncertainty are turbulence model and code. Computed results agree well with wind tunnel surface pressure measurements both for an overspeed 'cruise' case as well as a case with small trailing edge separation. At and beyond buffet onset, computed results agree well over the inner half of the wing, but shock location is predicted too far aft at some of the outboard stations. Lift, drag, and moment curves are predicted in good agreement with experimental results from the wind tunnel.
Predictable and reliable ECG monitoring over IEEE 802.11 WLANs within a hospital.
Park, Juyoung; Kang, Kyungtae
2014-09-01
Telecardiology provides mobility for patients who require constant electrocardiogram (ECG) monitoring. However, its safety is dependent on the predictability and robustness of data delivery, which must overcome errors in the wireless channel through which the ECG data are transmitted. We report here a framework that can be used to gauge the applicability of IEEE 802.11 wireless local area network (WLAN) technology to ECG monitoring systems in terms of delay constraints and transmission reliability. For this purpose, a medical-grade WLAN architecture achieved predictable delay through the combination of a medium access control mechanism based on the point coordination function provided by IEEE 802.11 and an error control scheme based on Reed-Solomon coding and block interleaving. The size of the jitter buffer needed was determined by this architecture to avoid service dropout caused by buffer underrun, through analysis of variations in transmission delay. Finally, we assessed this architecture in terms of service latency and reliability by modeling the transmission of uncompressed two-lead electrocardiogram data from the MIT-BIH Arrhythmia Database and highlight the applicability of this wireless technology to telecardiology.
The fate of memory: Reconsolidation and the case of Prediction Error.
Fernández, Rodrigo S; Boccia, Mariano M; Pedreira, María E
2016-09-01
The ability to make predictions based on stored information is a general coding strategy. A Prediction-Error (PE) is a mismatch between expected and current events. It was proposed as the process by which memories are acquired. But, our memories like ourselves are subject to change. Thus, an acquired memory can become active and update its content or strength by a labilization-reconsolidation process. Within the reconsolidation framework, PE drives the updating of consolidated memories. Moreover, memory features, such as strength and age, are crucial boundary conditions that limit the initiation of the reconsolidation process. In order to disentangle these boundary conditions, we review the role of surprise, classical models of conditioning, and their neural correlates. Several forms of PE were found to be capable of inducing memory labilization-reconsolidation. Notably, many of the PE findings mirror those of memory-reconsolidation, suggesting a strong link between these signals and memory process. Altogether, the aim of the present work is to integrate a psychological and neuroscientific analysis of PE into a general framework for memory-reconsolidation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Measurement-free implementations of small-scale surface codes for quantum-dot qubits
NASA Astrophysics Data System (ADS)
Ercan, H. Ekmel; Ghosh, Joydip; Crow, Daniel; Premakumar, Vickram N.; Joynt, Robert; Friesen, Mark; Coppersmith, S. N.
2018-01-01
The performance of quantum-error-correction schemes depends sensitively on the physical realizations of the qubits and the implementations of various operations. For example, in quantum-dot spin qubits, readout is typically much slower than gate operations, and conventional surface-code implementations that rely heavily on syndrome measurements could therefore be challenging. However, fast and accurate reset of quantum-dot qubits, without readout, can be achieved via tunneling to a reservoir. Here we propose small-scale surface-code implementations for which syndrome measurements are replaced by a combination of Toffoli gates and qubit reset. For quantum-dot qubits, this enables much faster error correction than measurement-based schemes, but requires additional ancilla qubits and non-nearest-neighbor interactions. We have performed numerical simulations of two different coding schemes, obtaining error thresholds on the orders of 10-2 for a one-dimensional architecture that only corrects bit-flip errors and 10-4 for a two-dimensional architecture that corrects bit- and phase-flip errors.
On the error probability of general tree and trellis codes with applications to sequential decoding
NASA Technical Reports Server (NTRS)
Johannesson, R.
1973-01-01
An upper bound on the average error probability for maximum-likelihood decoding of the ensemble of random binary tree codes is derived and shown to be independent of the length of the tree. An upper bound on the average error probability for maximum-likelihood decoding of the ensemble of random L-branch binary trellis codes of rate R = 1/n is derived which separates the effects of the tail length T and the memory length M of the code. It is shown that the bound is independent of the length L of the information sequence. This implication is investigated by computer simulations of sequential decoding utilizing the stack algorithm. These simulations confirm the implication and further suggest an empirical formula for the true undetected decoding error probability with sequential decoding.
Error rates and resource overheads of encoded three-qubit gates
NASA Astrophysics Data System (ADS)
Takagi, Ryuji; Yoder, Theodore J.; Chuang, Isaac L.
2017-10-01
A non-Clifford gate is required for universal quantum computation, and, typically, this is the most error-prone and resource-intensive logical operation on an error-correcting code. Small, single-qubit rotations are popular choices for this non-Clifford gate, but certain three-qubit gates, such as Toffoli or controlled-controlled-Z (ccz), are equivalent options that are also more suited for implementing some quantum algorithms, for instance, those with coherent classical subroutines. Here, we calculate error rates and resource overheads for implementing logical ccz with pieceable fault tolerance, a nontransversal method for implementing logical gates. We provide a comparison with a nonlocal magic-state scheme on a concatenated code and a local magic-state scheme on the surface code. We find the pieceable fault-tolerance scheme particularly advantaged over magic states on concatenated codes and in certain regimes over magic states on the surface code. Our results suggest that pieceable fault tolerance is a promising candidate for fault tolerance in a near-future quantum computer.
Reinventing radiology reimbursement.
Marshall, John; Adema, Denise
2005-01-01
Lee Memorial Health System (LMHS), located in southwest Florida, consists of 5 hospitals, a home health agency, a skilled nursing facility, multiple outpatient centers, walk-in medical centers, and primary care physician offices. LMHS annually performs more than 300,000 imaging procedures with gross imaging revenues exceeding dollar 350 million. In fall 2002, LMHS received the results of an independent audit of its IR coding. The overall IR coding error rate was determined to be 84.5%. The projected net financial impact of these errors was an annual reimbursement loss of dollar 182,000. To address the issues of coding errors and reimbursement loss, LMHS implemented its clinical reimbursementspecialist (CRS) system in October 2003, as an extension of financial services' reimbursement division. LMHS began with CRSs in 3 service lines: emergency department, cardiac catheterization, and radiology. These 3 CRSs coordinate all facets of their respective areas' chargemaster, patient charges, coding, and reimbursement functions while serving as a resident coding expert within their clinical areas. The radiology reimbursement specialist (RRS) combines an experienced radiologic technologist, interventional technologist, medical records coder, financial auditor, reimbursement specialist, and biller into a single position. The RRS's radiology experience and technologist knowledge are key assets to resolving coding conflicts and handling complex interventional coding. In addition, performing a daily charge audit and an active code review are essential if an organization is to eliminate coding errors. One of the inherent effects of eliminating coding errors is the capturing of additional RVUs and units of service. During its first year, based on account level detail, the RRS system increased radiology productivity through the additional capture of just more than 3,000 RVUs and 1,000 additional units of service. In addition, the physicians appreciate having someone who "keeps up with all the coding changes" and looks out for the charges. By assisting a few physicians' staff with coding questions, providing coding updates, and allowing them to sit in on educational sessions, at least 2 physicians have transferred some their volume to LMHS from a competitor. The provision of a "clean account," without coding errors, allows the biller to avoid the rework and billing delays caused by coding issues. During the first quarter of the RRS system, the billers referred an average of 9 accounts per day for coding resolution. During the fourth quarter of the system, these referrals were reduced to less than one per day. Prior to the RRS system, resolving these issues took an average of 4 business days. Now the conflicts are resolved within 24 hours.
Emergency department discharge prescription errors in an academic medical center
Belanger, April; Devine, Lauren T.; Lane, Aaron; Condren, Michelle E.
2017-01-01
This study described discharge prescription medication errors written for emergency department patients. This study used content analysis in a cross-sectional design to systematically categorize prescription errors found in a report of 1000 discharge prescriptions submitted in the electronic medical record in February 2015. Two pharmacy team members reviewed the discharge prescription list for errors. Open-ended data were coded by an additional rater for agreement on coding categories. Coding was based upon majority rule. Descriptive statistics were used to address the study objective. Categories evaluated were patient age, provider type, drug class, and type and time of error. The discharge prescription error rate out of 1000 prescriptions was 13.4%, with “incomplete or inadequate prescription” being the most commonly detected error (58.2%). The adult and pediatric error rates were 11.7% and 22.7%, respectively. The antibiotics reviewed had the highest number of errors. The highest within-class error rates were with antianginal medications, antiparasitic medications, antacids, appetite stimulants, and probiotics. Emergency medicine residents wrote the highest percentage of prescriptions (46.7%) and had an error rate of 9.2%. Residents of other specialties wrote 340 prescriptions and had an error rate of 20.9%. Errors occurred most often between 10:00 am and 6:00 pm. PMID:28405061
Real-time transmission of digital video using variable-length coding
NASA Technical Reports Server (NTRS)
Bizon, Thomas P.; Shalkhauser, Mary JO; Whyte, Wayne A., Jr.
1993-01-01
Huffman coding is a variable-length lossless compression technique where data with a high probability of occurrence is represented with short codewords, while 'not-so-likely' data is assigned longer codewords. Compression is achieved when the high-probability levels occur so frequently that their benefit outweighs any penalty paid when a less likely input occurs. One instance where Huffman coding is extremely effective occurs when data is highly predictable and differential coding can be applied (as with a digital video signal). For that reason, it is desirable to apply this compression technique to digital video transmission; however, special care must be taken in order to implement a communication protocol utilizing Huffman coding. This paper addresses several of the issues relating to the real-time transmission of Huffman-coded digital video over a constant-rate serial channel. Topics discussed include data rate conversion (from variable to a fixed rate), efficient data buffering, channel coding, recovery from communication errors, decoder synchronization, and decoder architectures. A description of the hardware developed to execute Huffman coding and serial transmission is also included. Although this paper focuses on matters relating to Huffman-coded digital video, the techniques discussed can easily be generalized for a variety of applications which require transmission of variable-length data.
Tests of Exoplanet Atmospheric Radiative Transfer Codes
NASA Astrophysics Data System (ADS)
Harrington, Joseph; Challener, Ryan; DeLarme, Emerson; Cubillos, Patricio; Blecic, Jasmina; Foster, Austin; Garland, Justin
2016-10-01
Atmospheric radiative transfer codes are used both to predict planetary spectra and in retrieval algorithms to interpret data. Observational plans, theoretical models, and scientific results thus depend on the correctness of these calculations. Yet, the calculations are complex and the codes implementing them are often written without modern software-verification techniques. In the process of writing our own code, we became aware of several others with artifacts of unknown origin and even outright errors in their spectra. We present a series of tests to verify atmospheric radiative-transfer codes. These include: simple, single-line line lists that, when combined with delta-function abundance profiles, should produce a broadened line that can be verified easily; isothermal atmospheres that should produce analytically-verifiable blackbody spectra at the input temperatures; and model atmospheres with a range of complexities that can be compared to the output of other codes. We apply the tests to our own code, Bayesian Atmospheric Radiative Transfer (BART) and to several other codes. The test suite is open-source software. We propose this test suite as a standard for verifying current and future radiative transfer codes, analogous to the Held-Suarez test for general circulation models. This work was supported by NASA Planetary Atmospheres grant NX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G.
Herwiningsih, Sri; Hanlon, Peta; Fielding, Andrew
2014-12-01
A Monte Carlo model of an Elekta iViewGT amorphous silicon electronic portal imaging device (a-Si EPID) has been validated for pre-treatment verification of clinical IMRT treatment plans. The simulations involved the use of the BEAMnrc and DOSXYZnrc Monte Carlo codes to predict the response of the iViewGT a-Si EPID model. The predicted EPID images were compared to the measured images obtained from the experiment. The measured EPID images were obtained by delivering a photon beam from an Elekta Synergy linac to the Elekta iViewGT a-Si EPID. The a-Si EPID was used with no additional build-up material. Frame averaged EPID images were acquired and processed using in-house software. The agreement between the predicted and measured images was analyzed using the gamma analysis technique with acceptance criteria of 3 %/3 mm. The results show that the predicted EPID images for four clinical IMRT treatment plans have a good agreement with the measured EPID signal. Three prostate IMRT plans were found to have an average gamma pass rate of more than 95.0 % and a spinal IMRT plan has the average gamma pass rate of 94.3 %. During the period of performing this work a routine MLC calibration was performed and one of the IMRT treatments re-measured with the EPID. A change in the gamma pass rate for one field was observed. This was the motivation for a series of experiments to investigate the sensitivity of the method by introducing delivery errors, MLC position and dosimetric overshoot, into the simulated EPID images. The method was found to be sensitive to 1 mm leaf position errors and 10 % overshoot errors.
Spatially coupled low-density parity-check error correction for holographic data storage
NASA Astrophysics Data System (ADS)
Ishii, Norihiko; Katano, Yutaro; Muroi, Tetsuhiko; Kinoshita, Nobuhiro
2017-09-01
The spatially coupled low-density parity-check (SC-LDPC) was considered for holographic data storage. The superiority of SC-LDPC was studied by simulation. The simulations show that the performance of SC-LDPC depends on the lifting number, and when the lifting number is over 100, SC-LDPC shows better error correctability compared with irregular LDPC. SC-LDPC is applied to the 5:9 modulation code, which is one of the differential codes. The error-free point is near 2.8 dB and over 10-1 can be corrected in simulation. From these simulation results, this error correction code can be applied to actual holographic data storage test equipment. Results showed that 8 × 10-2 can be corrected, furthermore it works effectively and shows good error correctability.
NASA Astrophysics Data System (ADS)
Vesselinov, V. V.; Harp, D.
2010-12-01
The process of decision making to protect groundwater resources requires a detailed estimation of uncertainties in model predictions. Various uncertainties associated with modeling a natural system, such as: (1) measurement and computational errors; (2) uncertainties in the conceptual model and model-parameter estimates; (3) simplifications in model setup and numerical representation of governing processes, contribute to the uncertainties in the model predictions. Due to this combination of factors, the sources of predictive uncertainties are generally difficult to quantify individually. Decision support related to optimal design of monitoring networks requires (1) detailed analyses of existing uncertainties related to model predictions of groundwater flow and contaminant transport, (2) optimization of the proposed monitoring network locations in terms of their efficiency to detect contaminants and provide early warning. We apply existing and newly-proposed methods to quantify predictive uncertainties and to optimize well locations. An important aspect of the analysis is the application of newly-developed optimization technique based on coupling of Particle Swarm and Levenberg-Marquardt optimization methods which proved to be robust and computationally efficient. These techniques and algorithms are bundled in a software package called MADS. MADS (Model Analyses for Decision Support) is an object-oriented code that is capable of performing various types of model analyses and supporting model-based decision making. The code can be executed under different computational modes, which include (1) sensitivity analyses (global and local), (2) Monte Carlo analysis, (3) model calibration, (4) parameter estimation, (5) uncertainty quantification, and (6) model selection. The code can be externally coupled with any existing model simulator through integrated modules that read/write input and output files using a set of template and instruction files (consistent with the PEST I/O protocol). MADS can also be internally coupled with a series of built-in analytical simulators. MADS provides functionality to work directly with existing control files developed for the code PEST (Doherty 2009). To perform the computational modes mentioned above, the code utilizes (1) advanced Latin-Hypercube sampling techniques (including Improved Distributed Sampling), (2) various gradient-based Levenberg-Marquardt optimization methods, (3) advanced global optimization methods (including Particle Swarm Optimization), and (4) a selection of alternative objective functions. The code has been successfully applied to perform various model analyses related to environmental management of real contamination sites. Examples include source identification problems, quantification of uncertainty, model calibration, and optimization of monitoring networks. The methodology and software codes are demonstrated using synthetic and real case studies where monitoring networks are optimized taking into account the uncertainty in model predictions of contaminant transport.
Reed-Solomon error-correction as a software patch mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pendley, Kevin D.
This report explores how error-correction data generated by a Reed-Solomon code may be used as a mechanism to apply changes to an existing installed codebase. Using the Reed-Solomon code to generate error-correction data for a changed or updated codebase will allow the error-correction data to be applied to an existing codebase to both validate and introduce changes or updates from some upstream source to the existing installed codebase.
Colour coding for blood collection tube closures - a call for harmonisation.
Simundic, Ana-Maria; Cornes, Michael P; Grankvist, Kjell; Lippi, Giuseppe; Nybo, Mads; Ceriotti, Ferruccio; Theodorsson, Elvar; Panteghini, Mauro
2015-02-01
At least one in 10 patients experience adverse events while receiving hospital care. Many of the errors are related to laboratory diagnostics. Efforts to reduce laboratory errors over recent decades have primarily focused on the measurement process while pre- and post-analytical errors including errors in sampling, reporting and decision-making have received much less attention. Proper sampling and additives to the samples are essential. Tubes and additives are identified not only in writing on the tubes but also by the colour of the tube closures. Unfortunately these colours have not been standardised, running the risk of error when tubes from one manufacturer are replaced by the tubes from another manufacturer that use different colour coding. EFLM therefore supports the worldwide harmonisation of the colour coding for blood collection tube closures and labels in order to reduce the risk of pre-analytical errors and improve the patient safety.
Performance of concatenated Reed-Solomon/Viterbi channel coding
NASA Technical Reports Server (NTRS)
Divsalar, D.; Yuen, J. H.
1982-01-01
The concatenated Reed-Solomon (RS)/Viterbi coding system is reviewed. The performance of the system is analyzed and results are derived with a new simple approach. A functional model for the input RS symbol error probability is presented. Based on this new functional model, we compute the performance of a concatenated system in terms of RS word error probability, output RS symbol error probability, bit error probability due to decoding failure, and bit error probability due to decoding error. Finally we analyze the effects of the noisy carrier reference and the slow fading on the system performance.
The Impact of Bar Code Medication Administration Technology on Reported Medication Errors
ERIC Educational Resources Information Center
Holecek, Andrea
2011-01-01
The use of bar-code medication administration technology is on the rise in acute care facilities in the United States. The technology is purported to decrease medication errors that occur at the point of administration. How significantly this technology affects actual rate and severity of error is unknown. This descriptive, longitudinal research…
NASA Astrophysics Data System (ADS)
Lohrmann, Carol A.
1990-03-01
Interoperability of commercial Land Mobile Radios (LMR) and the military's tactical LMR is highly desirable if the U.S. government is to respond effectively in a national emergency or in a joint military operation. This ability to talk securely and immediately across agency and military service boundaries is often overlooked. One way to ensure interoperability is to develop and promote Federal communication standards (FS). This thesis surveys one area of the proposed FS 1024 for LMRs; namely, the error detection and correction (EDAC) of the message indicator (MI) bits used for cryptographic synchronization. Several EDAC codes are examined (Hamming, Quadratic Residue, hard decision Golay and soft decision Golay), tested on three FORTRAN programmed channel simulations (INMARSAT, Gaussian and constant burst width), compared and analyzed (based on bit error rates and percent of error-free super-frame runs) so that a best code can be recommended. Out of the four codes under study, the soft decision Golay code (24,12) is evaluated to be the best. This finding is based on the code's ability to detect and correct errors as well as the relative ease of implementation of the algorithm.
Adaptive decoding of convolutional codes
NASA Astrophysics Data System (ADS)
Hueske, K.; Geldmacher, J.; Götze, J.
2007-06-01
Convolutional codes, which are frequently used as error correction codes in digital transmission systems, are generally decoded using the Viterbi Decoder. On the one hand the Viterbi Decoder is an optimum maximum likelihood decoder, i.e. the most probable transmitted code sequence is obtained. On the other hand the mathematical complexity of the algorithm only depends on the used code, not on the number of transmission errors. To reduce the complexity of the decoding process for good transmission conditions, an alternative syndrome based decoder is presented. The reduction of complexity is realized by two different approaches, the syndrome zero sequence deactivation and the path metric equalization. The two approaches enable an easy adaptation of the decoding complexity for different transmission conditions, which results in a trade-off between decoding complexity and error correction performance.
Dopamine reward prediction error responses reflect marginal utility.
Stauffer, William R; Lak, Armin; Schultz, Wolfram
2014-11-03
Optimal choices require an accurate neuronal representation of economic value. In economics, utility functions are mathematical representations of subjective value that can be constructed from choices under risk. Utility usually exhibits a nonlinear relationship to physical reward value that corresponds to risk attitudes and reflects the increasing or decreasing marginal utility obtained with each additional unit of reward. Accordingly, neuronal reward responses coding utility should robustly reflect this nonlinearity. In two monkeys, we measured utility as a function of physical reward value from meaningful choices under risk (that adhered to first- and second-order stochastic dominance). The resulting nonlinear utility functions predicted the certainty equivalents for new gambles, indicating that the functions' shapes were meaningful. The monkeys were risk seeking (convex utility function) for low reward and risk avoiding (concave utility function) with higher amounts. Critically, the dopamine prediction error responses at the time of reward itself reflected the nonlinear utility functions measured at the time of choices. In particular, the reward response magnitude depended on the first derivative of the utility function and thus reflected the marginal utility. Furthermore, dopamine responses recorded outside of the task reflected the marginal utility of unpredicted reward. Accordingly, these responses were sufficient to train reinforcement learning models to predict the behaviorally defined expected utility of gambles. These data suggest a neuronal manifestation of marginal utility in dopamine neurons and indicate a common neuronal basis for fundamental explanatory constructs in animal learning theory (prediction error) and economic decision theory (marginal utility). Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Testing of Error-Correcting Sparse Permutation Channel Codes
NASA Technical Reports Server (NTRS)
Shcheglov, Kirill, V.; Orlov, Sergei S.
2008-01-01
A computer program performs Monte Carlo direct numerical simulations for testing sparse permutation channel codes, which offer strong error-correction capabilities at high code rates and are considered especially suitable for storage of digital data in holographic and volume memories. A word in a code of this type is characterized by, among other things, a sparseness parameter (M) and a fixed number (K) of 1 or "on" bits in a channel block length of N.
Resource allocation for error resilient video coding over AWGN using optimization approach.
An, Cheolhong; Nguyen, Truong Q
2008-12-01
The number of slices for error resilient video coding is jointly optimized with 802.11a-like media access control and the physical layers with automatic repeat request and rate compatible punctured convolutional code over additive white gaussian noise channel as well as channel times allocation for time division multiple access. For error resilient video coding, the relation between the number of slices and coding efficiency is analyzed and formulated as a mathematical model. It is applied for the joint optimization problem, and the problem is solved by a convex optimization method such as the primal-dual decomposition method. We compare the performance of a video communication system which uses the optimal number of slices with one that codes a picture as one slice. From numerical examples, end-to-end distortion of utility functions can be significantly reduced with the optimal slices of a picture especially at low signal-to-noise ratio.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fitzpatrick, Richard
2007-09-24
Dr. Fitzpatrick has written an MHD code in order to investigate the interaction of tearing modes with flow and external magnetic perturbations, which has been successfully benchmarked against both linear and nonlinear theory and used to investigate error-field penetration in flowing plasmas. The same code was used to investigate the so-called Taylor problem. He employed the University of Chicago's FLASH code to further investigate the Taylor problem, discovering a new aspect of the problem. Dr. Fitzpatrick has written a 2-D Hall MHD code and used it to investigate the collisionless Taylor problem. Dr. Waelbroeck has performed an investigation of themore » scaling of the error-field penetration threshold in collisionless plasmas. Paul Watson and Dr. Fitzpatrick have written a fully-implicit extended-MHD code using the PETSC framework. Five publications have resulted from this grant work.« less
Moreira, Maria E; Hernandez, Caleb; Stevens, Allen D; Jones, Seth; Sande, Margaret; Blumen, Jason R; Hopkins, Emily; Bakes, Katherine; Haukoos, Jason S
2015-08-01
The Institute of Medicine has called on the US health care system to identify and reduce medical errors. Unfortunately, medication dosing errors remain commonplace and may result in potentially life-threatening outcomes, particularly for pediatric patients when dosing requires weight-based calculations. Novel medication delivery systems that may reduce dosing errors resonate with national health care priorities. Our goal was to evaluate novel, prefilled medication syringes labeled with color-coded volumes corresponding to the weight-based dosing of the Broselow Tape, compared with conventional medication administration, in simulated pediatric emergency department (ED) resuscitation scenarios. We performed a prospective, block-randomized, crossover study in which 10 emergency physician and nurse teams managed 2 simulated pediatric arrest scenarios in situ, using either prefilled, color-coded syringes (intervention) or conventional drug administration methods (control). The ED resuscitation room and the intravenous medication port were video recorded during the simulations. Data were extracted from video review by blinded, independent reviewers. Median time to delivery of all doses for the conventional and color-coded delivery groups was 47 seconds (95% confidence interval [CI] 40 to 53 seconds) and 19 seconds (95% CI 18 to 20 seconds), respectively (difference=27 seconds; 95% CI 21 to 33 seconds). With the conventional method, 118 doses were administered, with 20 critical dosing errors (17%); with the color-coded method, 123 doses were administered, with 0 critical dosing errors (difference=17%; 95% CI 4% to 30%). A novel color-coded, prefilled syringe decreased time to medication administration and significantly reduced critical dosing errors by emergency physician and nurse teams during simulated pediatric ED resuscitations. Copyright © 2015 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.
Error-correction coding for digital communications
NASA Astrophysics Data System (ADS)
Clark, G. C., Jr.; Cain, J. B.
This book is written for the design engineer who must build the coding and decoding equipment and for the communication system engineer who must incorporate this equipment into a system. It is also suitable as a senior-level or first-year graduate text for an introductory one-semester course in coding theory. Fundamental concepts of coding are discussed along with group codes, taking into account basic principles, practical constraints, performance computations, coding bounds, generalized parity check codes, polynomial codes, and important classes of group codes. Other topics explored are related to simple nonalgebraic decoding techniques for group codes, soft decision decoding of block codes, algebraic techniques for multiple error correction, the convolutional code structure and Viterbi decoding, syndrome decoding techniques, and sequential decoding techniques. System applications are also considered, giving attention to concatenated codes, coding for the white Gaussian noise channel, interleaver structures for coded systems, and coding for burst noise channels.
Hard decoding algorithm for optimizing thresholds under general Markovian noise
NASA Astrophysics Data System (ADS)
Chamberland, Christopher; Wallman, Joel; Beale, Stefanie; Laflamme, Raymond
2017-04-01
Quantum error correction is instrumental in protecting quantum systems from noise in quantum computing and communication settings. Pauli channels can be efficiently simulated and threshold values for Pauli error rates under a variety of error-correcting codes have been obtained. However, realistic quantum systems can undergo noise processes that differ significantly from Pauli noise. In this paper, we present an efficient hard decoding algorithm for optimizing thresholds and lowering failure rates of an error-correcting code under general completely positive and trace-preserving (i.e., Markovian) noise. We use our hard decoding algorithm to study the performance of several error-correcting codes under various non-Pauli noise models by computing threshold values and failure rates for these codes. We compare the performance of our hard decoding algorithm to decoders optimized for depolarizing noise and show improvements in thresholds and reductions in failure rates by several orders of magnitude. Our hard decoding algorithm can also be adapted to take advantage of a code's non-Pauli transversal gates to further suppress noise. For example, we show that using the transversal gates of the 5-qubit code allows arbitrary rotations around certain axes to be perfectly corrected. Furthermore, we show that Pauli twirling can increase or decrease the threshold depending upon the code properties. Lastly, we show that even if the physical noise model differs slightly from the hypothesized noise model used to determine an optimized decoder, failure rates can still be reduced by applying our hard decoding algorithm.
The DoE method as an efficient tool for modeling the behavior of monocrystalline Si-PV module
NASA Astrophysics Data System (ADS)
Kessaissia, Fatma Zohra; Zegaoui, Abdallah; Boutoubat, Mohamed; Allouache, Hadj; Aillerie, Michel; Charles, Jean-Pierre
2018-05-01
The objective of this paper is to apply the Design of Experiments (DoE) method to study and to obtain a predictive model of any marketed monocrystalline photovoltaic (mc-PV) module. This technique allows us to have a mathematical model that represents the predicted responses depending upon input factors and experimental data. Therefore, the DoE model for characterization and modeling of mc-PV module behavior can be obtained by just performing a set of experimental trials. The DoE model of the mc-PV panel evaluates the predictive maximum power, as a function of irradiation and temperature in a bounded domain of study for inputs. For the mc-PV panel, the predictive model for both one level and two levels were developed taking into account both influences of the main effect and the interactive effects on the considered factors. The DoE method is then implemented by developing a code under Matlab software. The code allows us to simulate, characterize, and validate the predictive model of the mc-PV panel. The calculated results were compared to the experimental data, errors were estimated, and an accurate validation of the predictive models was evaluated by the surface response. Finally, we conclude that the predictive models reproduce the experimental trials and are defined within a good accuracy.
Physics of the Isotopic Dependence of Galactic Cosmic Ray Fluence Behind Shielding
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Saganti, Premkumar B.; Hu, Xiao-Dong; Kim, Myung-Hee Y.; Cleghorn, Timothy F.; Wilson, John W.; Tripathi, Ram K.; Zeitlin, Cary J.
2003-01-01
For over 25 years, NASA has supported the development of space radiation transport models for shielding applications. The NASA space radiation transport model now predicts dose and dose equivalent in Earth and Mars orbit to an accuracy of plus or minus 20%. However, because larger errors may occur in particle fluence predictions, there is interest in further assessments and improvements in NASA's space radiation transport model. In this paper, we consider the effects of the isotopic composition of the primary galactic cosmic rays (GCR) and the isotopic dependence of nuclear fragmentation cross-sections on the solution to transport models used for shielding studies. Satellite measurements are used to describe the isotopic composition of the GCR. Using NASA's quantum multiple-scattering theory of nuclear fragmentation (QMSFRG) and high-charge and energy (HZETRN) transport code, we study the effect of the isotopic dependence of the primary GCR composition and secondary nuclei on shielding calculations. The QMSFRG is shown to accurately describe the iso-spin dependence of nuclear fragmentation. The principal finding of this study is that large errors (plus or minus 100%) will occur in the mass-fluence spectra when comparing transport models that use a complete isotope grid (approximately 170 ions) to ones that use a reduced isotope grid, for example the 59 ion-grid used in the HZETRN code in the past, however less significant errors (less than 20%) occur in the elemental-fluence spectra. Because a complete isotope grid is readily handled on small computer workstations and is needed for several applications studying GCR propagation and scattering, it is recommended that they be used for future GCR studies.
Studies on image compression and image reconstruction
NASA Technical Reports Server (NTRS)
Sayood, Khalid; Nori, Sekhar; Araj, A.
1994-01-01
During this six month period our works concentrated on three, somewhat different areas. We looked at and developed a number of error concealment schemes for use in a variety of video coding environments. This work is described in an accompanying (draft) Masters thesis. In the thesis we describe application of this techniques to the MPEG video coding scheme. We felt that the unique frame ordering approach used in the MPEG scheme would be a challenge to any error concealment/error recovery technique. We continued with our work in the vector quantization area. We have also developed a new type of vector quantizer, which we call a scan predictive vector quantization. The scan predictive VQ was tested on data processed at Goddard to approximate Landsat 7 HRMSI resolution and compared favorably with existing VQ techniques. A paper describing this work is included. The third area is concerned more with reconstruction than compression. While there is a variety of efficient lossless image compression schemes, they all have a common property that they use past data to encode future data. This is done either via taking differences, context modeling, or by building dictionaries. When encoding large images, this common property becomes a common flaw. When the user wishes to decode just a portion of the image, the requirement that the past history be available forces the decoding of a significantly larger portion of the image than desired by the user. Even with intelligent partitioning of the image dataset, the number of pixels decoded may be four times the number of pixels requested. We have developed an adaptive scanning strategy which can be used with any lossless compression scheme and which lowers the additional number of pixels to be decoded to about 7 percent of the number of pixels requested! A paper describing these results is included.
RNAcode: Robust discrimination of coding and noncoding regions in comparative sequence data
Washietl, Stefan; Findeiß, Sven; Müller, Stephan A.; Kalkhof, Stefan; von Bergen, Martin; Hofacker, Ivo L.; Stadler, Peter F.; Goldman, Nick
2011-01-01
With the availability of genome-wide transcription data and massive comparative sequencing, the discrimination of coding from noncoding RNAs and the assessment of coding potential in evolutionarily conserved regions arose as a core analysis task. Here we present RNAcode, a program to detect coding regions in multiple sequence alignments that is optimized for emerging applications not covered by current protein gene-finding software. Our algorithm combines information from nucleotide substitution and gap patterns in a unified framework and also deals with real-life issues such as alignment and sequencing errors. It uses an explicit statistical model with no machine learning component and can therefore be applied “out of the box,” without any training, to data from all domains of life. We describe the RNAcode method and apply it in combination with mass spectrometry experiments to predict and confirm seven novel short peptides in Escherichia coli and to analyze the coding potential of RNAs previously annotated as “noncoding.” RNAcode is open source software and available for all major platforms at http://wash.github.com/rnacode. PMID:21357752
RNAcode: robust discrimination of coding and noncoding regions in comparative sequence data.
Washietl, Stefan; Findeiss, Sven; Müller, Stephan A; Kalkhof, Stefan; von Bergen, Martin; Hofacker, Ivo L; Stadler, Peter F; Goldman, Nick
2011-04-01
With the availability of genome-wide transcription data and massive comparative sequencing, the discrimination of coding from noncoding RNAs and the assessment of coding potential in evolutionarily conserved regions arose as a core analysis task. Here we present RNAcode, a program to detect coding regions in multiple sequence alignments that is optimized for emerging applications not covered by current protein gene-finding software. Our algorithm combines information from nucleotide substitution and gap patterns in a unified framework and also deals with real-life issues such as alignment and sequencing errors. It uses an explicit statistical model with no machine learning component and can therefore be applied "out of the box," without any training, to data from all domains of life. We describe the RNAcode method and apply it in combination with mass spectrometry experiments to predict and confirm seven novel short peptides in Escherichia coli and to analyze the coding potential of RNAs previously annotated as "noncoding." RNAcode is open source software and available for all major platforms at http://wash.github.com/rnacode.
Transient Ejector Analysis (TEA) code user's guide
NASA Technical Reports Server (NTRS)
Drummond, Colin K.
1993-01-01
A FORTRAN computer program for the semi analytic prediction of unsteady thrust augmenting ejector performance has been developed, based on a theoretical analysis for ejectors. That analysis blends classic self-similar turbulent jet descriptions with control-volume mixing region elements. Division of the ejector into an inlet, diffuser, and mixing region allowed flexibility in the modeling of the physics for each region. In particular, the inlet and diffuser analyses are simplified by a quasi-steady-analysis, justified by the assumption that pressure is the forcing function in those regions. Only the mixing region is assumed to be dominated by viscous effects. The present work provides an overview of the code structure, a description of the required input and output data file formats, and the results for a test case. Since there are limitations to the code for applications outside the bounds of the test case, the user should consider TEA as a research code (not as a production code), designed specifically as an implementation of the proposed ejector theory. Program error flags are discussed, and some diagnostic routines are presented.
A New Tool for CME Arrival Time Prediction using Machine Learning Algorithms: CAT-PUMA
NASA Astrophysics Data System (ADS)
Liu, Jiajia; Ye, Yudong; Shen, Chenglong; Wang, Yuming; Erdélyi, Robert
2018-03-01
Coronal mass ejections (CMEs) are arguably the most violent eruptions in the solar system. CMEs can cause severe disturbances in interplanetary space and can even affect human activities in many aspects, causing damage to infrastructure and loss of revenue. Fast and accurate prediction of CME arrival time is vital to minimize the disruption that CMEs may cause when interacting with geospace. In this paper, we propose a new approach for partial-/full halo CME Arrival Time Prediction Using Machine learning Algorithms (CAT-PUMA). Via detailed analysis of the CME features and solar-wind parameters, we build a prediction engine taking advantage of 182 previously observed geo-effective partial-/full halo CMEs and using algorithms of the Support Vector Machine. We demonstrate that CAT-PUMA is accurate and fast. In particular, predictions made after applying CAT-PUMA to a test set unknown to the engine show a mean absolute prediction error of ∼5.9 hr within the CME arrival time, with 54% of the predictions having absolute errors less than 5.9 hr. Comparisons with other models reveal that CAT-PUMA has a more accurate prediction for 77% of the events investigated that can be carried out very quickly, i.e., within minutes of providing the necessary input parameters of a CME. A practical guide containing the CAT-PUMA engine and the source code of two examples are available in the Appendix, allowing the community to perform their own applications for prediction using CAT-PUMA.
Electronic stopping powers for heavy ions in SiC and SiO{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, K.; Xue, H.; Zhang, Y., E-mail: Zhangy1@ornl.gov
2014-01-28
Accurate information on electronic stopping power is fundamental for broad advances in materials science, electronic industry, space exploration, and sustainable energy technologies. In the case of slow heavy ions in light targets, current codes and models provide significantly inconsistent predictions, among which the Stopping and Range of Ions in Matter (SRIM) code is the most commonly used one. Experimental evidence, however, has demonstrated considerable errors in the predicted ion and damage profiles based on SRIM stopping powers. In this work, electronic stopping powers for Cl, Br, I, and Au ions are experimentally determined in two important functional materials, SiC andmore » SiO{sub 2}, based on a single ion technique, and new electronic stopping power values are derived over the energy regime from 0 to 15 MeV, where large deviations from the SRIM predictions are observed. As an experimental validation, Rutherford backscattering spectrometry (RBS) and secondary ion mass spectrometry (SIMS) are utilized to measure the depth profiles of implanted Au ions in SiC for energies from 700 keV to 15 MeV. The measured ion distributions by both RBS and SIMS are considerably deeper than the SRIM predictions, but agree well with predictions based on our derived stopping powers.« less
Electronic Stopping Powers For Heavy Ions In SiC And SiO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Ke; Zhang, Y.; Zhu, Zihua
2014-01-24
Accurate information on electronic stopping power is fundamental for broad advances in materials science, electronic industry, space exploration, and sustainable energy technologies. In the case of slow heavy ions in light targets, current codes and models provide significantly inconsistent predictions, among which the Stopping and Range of Ions in Matter (SRIM) code is the most commonly used one. Experimental evidence, however, has demonstrated considerable errors in the predicted ion and damage profiles based on SRIM stopping powers. In this work, electronic stopping powers for Cl, Br, I, and Au ions are experimentally determined in two important functional materials, SiC andmore » SiO2, based on a single ion technique, and new electronic stopping power values are derived over the energy regime from 0 to 15 MeV, where large deviations from the SRIM predictions are observed. As an experimental validation, Rutherford backscattering spectrometry (RBS) and secondary ion mass spectrometry (SIMS) are utilized to measure the depth profiles of implanted Au ions in SiC for energies from 700 keV to 15MeV. The measured ion distributions by both RBS and SIMS are considerably deeper than the SRIM predictions, but agree well with predictions based on our derived stopping powers.« less
Numerical ‘health check’ for scientific codes: the CADNA approach
NASA Astrophysics Data System (ADS)
Scott, N. S.; Jézéquel, F.; Denis, C.; Chesneaux, J.-M.
2007-04-01
Scientific computation has unavoidable approximations built into its very fabric. One important source of error that is difficult to detect and control is round-off error propagation which originates from the use of finite precision arithmetic. We propose that there is a need to perform regular numerical 'health checks' on scientific codes in order to detect the cancerous effect of round-off error propagation. This is particularly important in scientific codes that are built on legacy software. We advocate the use of the CADNA library as a suitable numerical screening tool. We present a case study to illustrate the practical use of CADNA in scientific codes that are of interest to the Computer Physics Communications readership. In doing so we hope to stimulate a greater awareness of round-off error propagation and present a practical means by which it can be analyzed and managed.
Analysis on the optical aberration effect on spectral resolution of coded aperture spectroscopy
NASA Astrophysics Data System (ADS)
Hao, Peng; Chi, Mingbo; Wu, Yihui
2017-10-01
The coded aperture spectrometer can achieve high throughput and high spectral resolution by replacing the traditional single slit with two-dimensional array slits manufactured by MEMS technology. However, the sampling accuracy of coding spectrum image will be distorted due to the existence of system aberrations, machining error, fixing errors and so on, resulting in the declined spectral resolution. The influence factor of the spectral resolution come from the decode error, the spectral resolution of each column, and the column spectrum offset correction. For the Czerny-Turner spectrometer, the spectral resolution of each column most depend on the astigmatism, in this coded aperture spectroscopy, the uncorrected astigmatism does result in degraded performance. Some methods must be used to reduce or remove the limiting astigmatism. The curvature of field and the spectral curvature can be result in the spectrum revision errors.
Low Density Parity Check Codes: Bandwidth Efficient Channel Coding
NASA Technical Reports Server (NTRS)
Fong, Wai; Lin, Shu; Maki, Gary; Yeh, Pen-Shu
2003-01-01
Low Density Parity Check (LDPC) Codes provide near-Shannon Capacity performance for NASA Missions. These codes have high coding rates R=0.82 and 0.875 with moderate code lengths, n=4096 and 8176. Their decoders have inherently parallel structures which allows for high-speed implementation. Two codes based on Euclidean Geometry (EG) were selected for flight ASIC implementation. These codes are cyclic and quasi-cyclic in nature and therefore have a simple encoder structure. This results in power and size benefits. These codes also have a large minimum distance as much as d,,, = 65 giving them powerful error correcting capabilities and error floors less than lo- BER. This paper will present development of the LDPC flight encoder and decoder, its applications and status.
Quantum error-correction failure distributions: Comparison of coherent and stochastic error models
NASA Astrophysics Data System (ADS)
Barnes, Jeff P.; Trout, Colin J.; Lucarelli, Dennis; Clader, B. D.
2017-06-01
We compare failure distributions of quantum error correction circuits for stochastic errors and coherent errors. We utilize a fully coherent simulation of a fault-tolerant quantum error correcting circuit for a d =3 Steane and surface code. We find that the output distributions are markedly different for the two error models, showing that no simple mapping between the two error models exists. Coherent errors create very broad and heavy-tailed failure distributions. This suggests that they are susceptible to outlier events and that mean statistics, such as pseudothreshold estimates, may not provide the key figure of merit. This provides further statistical insight into why coherent errors can be so harmful for quantum error correction. These output probability distributions may also provide a useful metric that can be utilized when optimizing quantum error correcting codes and decoding procedures for purely coherent errors.
Error control techniques for satellite and space communications
NASA Technical Reports Server (NTRS)
Costello, D. J., Jr.
1986-01-01
High rate concatenated coding systems with trellis inner codes and Reed-Solomon (RS) outer codes for application in satellite communication systems are considered. Two types of inner codes are studied: high rate punctured binary convolutional codes which result in overall effective information rates between 1/2 and 1 bit per channel use; and bandwidth efficient signal space trellis codes which can achieve overall effective information rates greater than 1 bit per channel use. Channel capacity calculations with and without side information performed for the concatenated coding system. Concatenated coding schemes are investigated. In Scheme 1, the inner code is decoded with the Viterbi algorithm and the outer RS code performs error-correction only (decoding without side information). In scheme 2, the inner code is decoded with a modified Viterbi algorithm which produces reliability information along with the decoded output. In this algorithm, path metrics are used to estimate the entire information sequence, while branch metrics are used to provide the reliability information on the decoded sequence. This information is used to erase unreliable bits in the decoded output. An errors-and-erasures RS decoder is then used for the outer code. These two schemes are proposed for use on NASA satellite channels. Results indicate that high system reliability can be achieved with little or no bandwidth expansion.
Runtime Detection of C-Style Errors in UPC Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pirkelbauer, P; Liao, C; Panas, T
2011-09-29
Unified Parallel C (UPC) extends the C programming language (ISO C 99) with explicit parallel programming support for the partitioned global address space (PGAS), which provides a global memory space with localized partitions to each thread. Like its ancestor C, UPC is a low-level language that emphasizes code efficiency over safety. The absence of dynamic (and static) safety checks allows programmer oversights and software flaws that can be hard to spot. In this paper, we present an extension of a dynamic analysis tool, ROSE-Code Instrumentation and Runtime Monitor (ROSECIRM), for UPC to help programmers find C-style errors involving the globalmore » address space. Built on top of the ROSE source-to-source compiler infrastructure, the tool instruments source files with code that monitors operations and keeps track of changes to the system state. The resulting code is linked to a runtime monitor that observes the program execution and finds software defects. We describe the extensions to ROSE-CIRM that were necessary to support UPC. We discuss complications that arise from parallel code and our solutions. We test ROSE-CIRM against a runtime error detection test suite, and present performance results obtained from running error-free codes. ROSE-CIRM is released as part of the ROSE compiler under a BSD-style open source license.« less
Construction of type-II QC-LDPC codes with fast encoding based on perfect cyclic difference sets
NASA Astrophysics Data System (ADS)
Li, Ling-xiang; Li, Hai-bing; Li, Ji-bi; Jiang, Hua
2017-09-01
In view of the problems that the encoding complexity of quasi-cyclic low-density parity-check (QC-LDPC) codes is high and the minimum distance is not large enough which leads to the degradation of the error-correction performance, the new irregular type-II QC-LDPC codes based on perfect cyclic difference sets (CDSs) are constructed. The parity check matrices of these type-II QC-LDPC codes consist of the zero matrices with weight of 0, the circulant permutation matrices (CPMs) with weight of 1 and the circulant matrices with weight of 2 (W2CMs). The introduction of W2CMs in parity check matrices makes it possible to achieve the larger minimum distance which can improve the error- correction performance of the codes. The Tanner graphs of these codes have no girth-4, thus they have the excellent decoding convergence characteristics. In addition, because the parity check matrices have the quasi-dual diagonal structure, the fast encoding algorithm can reduce the encoding complexity effectively. Simulation results show that the new type-II QC-LDPC codes can achieve a more excellent error-correction performance and have no error floor phenomenon over the additive white Gaussian noise (AWGN) channel with sum-product algorithm (SPA) iterative decoding.
Achieving unequal error protection with convolutional codes
NASA Technical Reports Server (NTRS)
Mills, D. G.; Costello, D. J., Jr.; Palazzo, R., Jr.
1994-01-01
This paper examines the unequal error protection capabilities of convolutional codes. Both time-invariant and periodically time-varying convolutional encoders are examined. The effective free distance vector is defined and is shown to be useful in determining the unequal error protection (UEP) capabilities of convolutional codes. A modified transfer function is used to determine an upper bound on the bit error probabilities for individual input bit positions in a convolutional encoder. The bound is heavily dependent on the individual effective free distance of the input bit position. A bound relating two individual effective free distances is presented. The bound is a useful tool in determining the maximum possible disparity in individual effective free distances of encoders of specified rate and memory distribution. The unequal error protection capabilities of convolutional encoders of several rates and memory distributions are determined and discussed.
Error control techniques for satellite and space communications
NASA Technical Reports Server (NTRS)
Costello, Daniel J., Jr.
1992-01-01
Worked performed during the reporting period is summarized. Construction of robustly good trellis codes for use with sequential decoding was developed. The robustly good trellis codes provide a much better trade off between free distance and distance profile. The unequal error protection capabilities of convolutional codes was studied. The problem of finding good large constraint length, low rate convolutional codes for deep space applications is investigated. A formula for computing the free distance of 1/n convolutional codes was discovered. Double memory (DM) codes, codes with two memory units per unit bit position, were studied; a search for optimal DM codes is being conducted. An algorithm for constructing convolutional codes from a given quasi-cyclic code was developed. Papers based on the above work are included in the appendix.
Evaluation of tactual displays for flight control
NASA Technical Reports Server (NTRS)
Levison, W. H.; Tanner, R. B.; Triggs, T. J.
1973-01-01
Manual tracking experiments were conducted to determine the suitability of tactual displays for presenting flight-control information in multitask situations. Although tracking error scores are considerably greater than scores obtained with a continuous visual display, preliminary results indicate that inter-task interference effects are substantially less with the tactual display in situations that impose high visual scanning workloads. The single-task performance degradation found with the tactual display appears to be a result of the coding scheme rather than the use of the tactual sensory mode per se. Analysis with the state-variable pilot/vehicle model shows that reliable predictions of tracking errors can be obtained for wide-band tracking systems once the pilot-related model parameters have been adjusted to reflect the pilot-display interaction.
Throughput of Coded Optical CDMA Systems with AND Detectors
NASA Astrophysics Data System (ADS)
Memon, Kehkashan A.; Umrani, Fahim A.; Umrani, A. W.; Umrani, Naveed A.
2012-09-01
Conventional detection techniques used in optical code-division multiple access (OCDMA) systems are not optimal and result in poor bit error rate performance. This paper analyzes the coded performance of optical CDMA systems with AND detectors for enhanced throughput efficiencies and improved error rate performance. The results show that the use of AND detectors significantly improve the performance of an optical channel.
Insel, Catherine; Reinen, Jenna; Weber, Jochen; Wager, Tor D; Jarskog, L Fredrik; Shohamy, Daphna; Smith, Edward E
2014-03-01
Schizophrenia is characterized by an abnormal dopamine system, and dopamine blockade is the primary mechanism of antipsychotic treatment. Consistent with the known role of dopamine in reward processing, prior research has demonstrated that patients with schizophrenia exhibit impairments in reward-based learning. However, it remains unknown how treatment with antipsychotic medication impacts the behavioral and neural signatures of reinforcement learning in schizophrenia. The goal of this study was to examine whether antipsychotic medication modulates behavioral and neural responses to prediction error coding during reinforcement learning. Patients with schizophrenia completed a reinforcement learning task while undergoing functional magnetic resonance imaging. The task consisted of two separate conditions in which participants accumulated monetary gain or avoided monetary loss. Behavioral results indicated that antipsychotic medication dose was associated with altered behavioral approaches to learning, such that patients taking higher doses of medication showed increased sensitivity to negative reinforcement. Higher doses of antipsychotic medication were also associated with higher learning rates (LRs), suggesting that medication enhanced sensitivity to trial-by-trial feedback. Neuroimaging data demonstrated that antipsychotic dose was related to differences in neural signatures of feedback prediction error during the loss condition. Specifically, patients taking higher doses of medication showed attenuated prediction error responses in the striatum and the medial prefrontal cortex. These findings indicate that antipsychotic medication treatment may influence motivational processes in patients with schizophrenia.
Han, Yaoqiang; Dang, Anhong; Ren, Yongxiong; Tang, Junxiong; Guo, Hong
2010-12-20
In free space optical communication (FSOC) systems, channel fading caused by atmospheric turbulence degrades the system performance seriously. However, channel coding combined with diversity techniques can be exploited to mitigate channel fading. In this paper, based on the experimental study of the channel fading effects, we propose to use turbo product code (TPC) as the channel coding scheme, which features good resistance to burst errors and no error floor. However, only channel coding cannot cope with burst errors caused by channel fading, interleaving is also used. We investigate the efficiency of interleaving for different interleaving depths, and then the optimum interleaving depth for TPC is also determined. Finally, an experimental study of TPC with interleaving is demonstrated, and we show that TPC with interleaving can significantly mitigate channel fading in FSOC systems.
Spectroradiometric calibration of the Thematic Mapper and Multispectral Scanner system
NASA Technical Reports Server (NTRS)
Slater, P. N.; Palmer, J. M. (Principal Investigator)
1985-01-01
The results of analyses of Thematic Mapper (TM) images acquired on July 8 and October 28, 1984, and of a check of the calibration of the 1.22-m integrating sphere at Santa Barbara Research Center (SBRC) are described. The results obtained from the in-flight calibration attempts disagree with the pre-flight calibrations for bands 2 and 4. Considerable effort was expended in an attempt to explain the disagreement. The difficult point to explain is that the difference between the radiances predicted by the radiative transfer code (the code radiances) and the radiances predicted by the preflight calibration (the pre-flight radiances) fluctuate with spectral band. Because the spectral quantities measured at White Sands show little change with spectral band, these fluctuations are not anticipated. Analyses of other targets at White Sands such as clouds, cloud shadows, and water surfaces tend to support the pre-flight and internal calibrator calibrations. The source of the disagreement has not been identified. It could be due to: (1) a computational error in the data reduction; (2) an incorrect assumption in the input to the radiative transfer code; or (3) incorrect operation of the field equipment.
A Parallel Decoding Algorithm for Short Polar Codes Based on Error Checking and Correcting
Pan, Xiaofei; Pan, Kegang; Ye, Zhan; Gong, Chao
2014-01-01
We propose a parallel decoding algorithm based on error checking and correcting to improve the performance of the short polar codes. In order to enhance the error-correcting capacity of the decoding algorithm, we first derive the error-checking equations generated on the basis of the frozen nodes, and then we introduce the method to check the errors in the input nodes of the decoder by the solutions of these equations. In order to further correct those checked errors, we adopt the method of modifying the probability messages of the error nodes with constant values according to the maximization principle. Due to the existence of multiple solutions of the error-checking equations, we formulate a CRC-aided optimization problem of finding the optimal solution with three different target functions, so as to improve the accuracy of error checking. Besides, in order to increase the throughput of decoding, we use a parallel method based on the decoding tree to calculate probability messages of all the nodes in the decoder. Numerical results show that the proposed decoding algorithm achieves better performance than that of some existing decoding algorithms with the same code length. PMID:25540813
Ciliates learn to diagnose and correct classical error syndromes in mating strategies
Clark, Kevin B.
2013-01-01
Preconjugal ciliates learn classical repetition error-correction codes to safeguard mating messages and replies from corruption by “rivals” and local ambient noise. Because individual cells behave as memory channels with Szilárd engine attributes, these coding schemes also might be used to limit, diagnose, and correct mating-signal errors due to noisy intracellular information processing. The present study, therefore, assessed whether heterotrich ciliates effect fault-tolerant signal planning and execution by modifying engine performance, and consequently entropy content of codes, during mock cell–cell communication. Socially meaningful serial vibrations emitted from an ambiguous artificial source initiated ciliate behavioral signaling performances known to advertise mating fitness with varying courtship strategies. Microbes, employing calcium-dependent Hebbian-like decision making, learned to diagnose then correct error syndromes by recursively matching Boltzmann entropies between signal planning and execution stages via “power” or “refrigeration” cycles. All eight serial contraction and reversal strategies incurred errors in entropy magnitude by the execution stage of processing. Absolute errors, however, subtended expected threshold values for single bit-flip errors in three-bit replies, indicating coding schemes protected information content throughout signal production. Ciliate preparedness for vibrations selectively and significantly affected the magnitude and valence of Szilárd engine performance during modal and non-modal strategy corrective cycles. But entropy fidelity for all replies mainly improved across learning trials as refinements in engine efficiency. Fidelity neared maximum levels for only modal signals coded in resilient three-bit repetition error-correction sequences. Together, these findings demonstrate microbes can elevate survival/reproductive success by learning to implement classical fault-tolerant information processing in social contexts. PMID:23966987
Cart3D Simulations for the First AIAA Sonic Boom Prediction Workshop
NASA Technical Reports Server (NTRS)
Aftosmis, Michael J.; Nemec, Marian
2014-01-01
Simulation results for the First AIAA Sonic Boom Prediction Workshop (LBW1) are presented using an inviscid, embedded-boundary Cartesian mesh method. The method employs adjoint-based error estimation and adaptive meshing to automatically determine resolution requirements of the computational domain. Results are presented for both mandatory and optional test cases. These include an axisymmetric body of revolution, a 69deg delta wing model and a complete model of the Lockheed N+2 supersonic tri-jet with V-tail and flow through nacelles. In addition to formal mesh refinement studies and examination of the adjoint-based error estimates, mesh convergence is assessed by presenting simulation results for meshes at several resolutions which are comparable in size to the unstructured grids distributed by the workshop organizers. Data provided includes both the pressure signals required by the workshop and information on code performance in both memory and processing time. Various enhanced techniques offering improved simulation efficiency will be demonstrated and discussed.
Validation of Design and Analysis Techniques of Tailored Composite Structures
NASA Technical Reports Server (NTRS)
Jegley, Dawn C. (Technical Monitor); Wijayratne, Dulnath D.
2004-01-01
Aeroelasticity is the relationship between the elasticity of an aircraft structure and its aerodynamics. This relationship can cause instabilities such as flutter in a wing. Engineers have long studied aeroelasticity to ensure such instabilities do not become a problem within normal operating conditions. In recent decades structural tailoring has been used to take advantage of aeroelasticity. It is possible to tailor an aircraft structure to respond favorably to multiple different flight regimes such as takeoff, landing, cruise, 2-g pull up, etc. Structures can be designed so that these responses provide an aerodynamic advantage. This research investigates the ability to design and analyze tailored structures made from filamentary composites. Specifically the accuracy of tailored composite analysis must be verified if this design technique is to become feasible. To pursue this idea, a validation experiment has been performed on a small-scale filamentary composite wing box. The box is tailored such that its cover panels induce a global bend-twist coupling under an applied load. Two types of analysis were chosen for the experiment. The first is a closed form analysis based on a theoretical model of a single cell tailored box beam and the second is a finite element analysis. The predicted results are compared with the measured data to validate the analyses. The comparison of results show that the finite element analysis is capable of predicting displacements and strains to within 10% on the small-scale structure. The closed form code is consistently able to predict the wing box bending to 25% of the measured value. This error is expected due to simplifying assumptions in the closed form analysis. Differences between the closed form code representation and the wing box specimen caused large errors in the twist prediction. The closed form analysis prediction of twist has not been validated from this test.
Method for computing self-consistent solution in a gun code
Nelson, Eric M
2014-09-23
Complex gun code computations can be made to converge more quickly based on a selection of one or more relaxation parameters. An eigenvalue analysis is applied to error residuals to identify two error eigenvalues that are associated with respective error residuals. Relaxation values can be selected based on these eigenvalues so that error residuals associated with each can be alternately reduced in successive iterations. In some examples, relaxation values that would be unstable if used alone can be used.
An extended Reed Solomon decoder design
NASA Technical Reports Server (NTRS)
Chen, J.; Owsley, P.; Purviance, J.
1991-01-01
It has previously been shown that the Reed-Solomon (RS) codes can correct errors beyond the Singleton and Rieger Bounds with an arbitrarily small probability of a miscorrect. That is, an (n,k) RS code can correct more than (n-k)/2 errors. An implementation of such an RS decoder is presented in this paper. An existing RS decoder, the AHA4010, is utilized in this work. This decoder is especially useful for errors which are patterned with a long burst plus some random errors.
Errors from approximation of ODE systems with reduced order models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vassilevska, Tanya
2016-12-30
This is a code to calculate the error from approximation of systems of ordinary differential equations (ODEs) by using Proper Orthogonal Decomposition (POD) Reduced Order Models (ROM) methods and to compare and analyze the errors for two POD ROM variants. The first variant is the standard POD ROM, the second variant is a modification of the method using the values of the time derivatives (a.k.a. time-derivative snapshots). The code compares the errors from the two variants under different conditions.
Performance analysis of optical wireless communication system based on two-fold turbo code
NASA Astrophysics Data System (ADS)
Chen, Jun; Huang, Dexiu; Yuan, Xiuhua
2005-11-01
Optical wireless communication (OWC) is beginning to emerge in the telecommunications market as a strategy to meet last-mile demand owing to its unique combination of features. Turbo codes have an impressive near Shannon-limit error correcting performance. Twofold turbo codes have been recently introduced as the least complex member of the multifold turbo code family. In this paper, at first, we present the mathematical model of signal and optical wireless channel with fading and bit error rate model with scintillation, then we provide a new turbo code method to use in OWC system, we can obtain a better BER curse of OWC system with twofold turbo code than with common turbo code.
Trellises and Trellis-Based Decoding Algorithms for Linear Block Codes
NASA Technical Reports Server (NTRS)
Lin, Shu
1998-01-01
A code trellis is a graphical representation of a code, block or convolutional, in which every path represents a codeword (or a code sequence for a convolutional code). This representation makes it possible to implement Maximum Likelihood Decoding (MLD) of a code with reduced decoding complexity. The most well known trellis-based MLD algorithm is the Viterbi algorithm. The trellis representation was first introduced and used for convolutional codes [23]. This representation, together with the Viterbi decoding algorithm, has resulted in a wide range of applications of convolutional codes for error control in digital communications over the last two decades. There are two major reasons for this inactive period of research in this area. First, most coding theorists at that time believed that block codes did not have simple trellis structure like convolutional codes and maximum likelihood decoding of linear block codes using the Viterbi algorithm was practically impossible, except for very short block codes. Second, since almost all of the linear block codes are constructed algebraically or based on finite geometries, it was the belief of many coding theorists that algebraic decoding was the only way to decode these codes. These two reasons seriously hindered the development of efficient soft-decision decoding methods for linear block codes and their applications to error control in digital communications. This led to a general belief that block codes are inferior to convolutional codes and hence, that they were not useful. Chapter 2 gives a brief review of linear block codes. The goal is to provide the essential background material for the development of trellis structure and trellis-based decoding algorithms for linear block codes in the later chapters. Chapters 3 through 6 present the fundamental concepts, finite-state machine model, state space formulation, basic structural properties, state labeling, construction procedures, complexity, minimality, and sectionalization of trellises. Chapter 7 discusses trellis decomposition and subtrellises for low-weight codewords. Chapter 8 first presents well known methods for constructing long powerful codes from short component codes or component codes of smaller dimensions, and then provides methods for constructing their trellises which include Shannon and Cartesian product techniques. Chapter 9 deals with convolutional codes, puncturing, zero-tail termination and tail-biting.Chapters 10 through 13 present various trellis-based decoding algorithms, old and new. Chapter 10 first discusses the application of the well known Viterbi decoding algorithm to linear block codes, optimum sectionalization of a code trellis to minimize computation complexity, and design issues for IC (integrated circuit) implementation of a Viterbi decoder. Then it presents a new decoding algorithm for convolutional codes, named Differential Trellis Decoding (DTD) algorithm. Chapter 12 presents a suboptimum reliability-based iterative decoding algorithm with a low-weight trellis search for the most likely codeword. This decoding algorithm provides a good trade-off between error performance and decoding complexity. All the decoding algorithms presented in Chapters 10 through 12 are devised to minimize word error probability. Chapter 13 presents decoding algorithms that minimize bit error probability and provide the corresponding soft (reliability) information at the output of the decoder. Decoding algorithms presented are the MAP (maximum a posteriori probability) decoding algorithm and the Soft-Output Viterbi Algorithm (SOVA) algorithm. Finally, the minimization of bit error probability in trellis-based MLD is discussed.
Transmission and storage of medical images with patient information.
Acharya U, Rajendra; Subbanna Bhat, P; Kumar, Sathish; Min, Lim Choo
2003-07-01
Digital watermarking is a technique of hiding specific identification data for copyright authentication. This technique is adapted here for interleaving patient information with medical images, to reduce storage and transmission overheads. The text data is encrypted before interleaving with images to ensure greater security. The graphical signals are interleaved with the image. Two types of error control-coding techniques are proposed to enhance reliability of transmission and storage of medical images interleaved with patient information. Transmission and storage scenarios are simulated with and without error control coding and a qualitative as well as quantitative interpretation of the reliability enhancement resulting from the use of various commonly used error control codes such as repetitive, and (7,4) Hamming code is provided.
Bounds on Block Error Probability for Multilevel Concatenated Codes
NASA Technical Reports Server (NTRS)
Lin, Shu; Moorthy, Hari T.; Stojanovic, Diana
1996-01-01
Maximum likelihood decoding of long block codes is not feasable due to large complexity. Some classes of codes are shown to be decomposable into multilevel concatenated codes (MLCC). For these codes, multistage decoding provides good trade-off between performance and complexity. In this paper, we derive an upper bound on the probability of block error for MLCC. We use this bound to evaluate difference in performance for different decompositions of some codes. Examples given show that a significant reduction in complexity can be achieved when increasing number of stages of decoding. Resulting performance degradation varies for different decompositions. A guideline is given for finding good m-level decompositions.
Neural Decoder for Topological Codes
NASA Astrophysics Data System (ADS)
Torlai, Giacomo; Melko, Roger G.
2017-07-01
We present an algorithm for error correction in topological codes that exploits modern machine learning techniques. Our decoder is constructed from a stochastic neural network called a Boltzmann machine, of the type extensively used in deep learning. We provide a general prescription for the training of the network and a decoding strategy that is applicable to a wide variety of stabilizer codes with very little specialization. We demonstrate the neural decoder numerically on the well-known two-dimensional toric code with phase-flip errors.
Error control techniques for satellite and space communications
NASA Technical Reports Server (NTRS)
Costello, Daniel J., Jr.
1990-01-01
An expurgated upper bound on the event error probability of trellis coded modulation is presented. This bound is used to derive a lower bound on the minimum achievable free Euclidean distance d sub (free) of trellis codes. It is shown that the dominant parameters for both bounds, the expurgated error exponent and the asymptotic d sub (free) growth rate, respectively, can be obtained from the cutoff-rate R sub O of the transmission channel by a simple geometric construction, making R sub O the central parameter for finding good trellis codes. Several constellations are optimized with respect to the bounds.
Apply network coding for H.264/SVC multicasting
NASA Astrophysics Data System (ADS)
Wang, Hui; Kuo, C.-C. Jay
2008-08-01
In a packet erasure network environment, video streaming benefits from error control in two ways to achieve graceful degradation. The first approach is application-level (or the link-level) forward error-correction (FEC) to provide erasure protection. The second error control approach is error concealment at the decoder end to compensate lost packets. A large amount of research work has been done in the above two areas. More recently, network coding (NC) techniques have been proposed for efficient data multicast over networks. It was shown in our previous work that multicast video streaming benefits from NC for its throughput improvement. An algebraic model is given to analyze the performance in this work. By exploiting the linear combination of video packets along nodes in a network and the SVC video format, the system achieves path diversity automatically and enables efficient video delivery to heterogeneous receivers in packet erasure channels. The application of network coding can protect video packets against the erasure network environment. However, the rank defficiency problem of random linear network coding makes the error concealment inefficiently. It is shown by computer simulation that the proposed NC video multicast scheme enables heterogenous receiving according to their capacity constraints. But it needs special designing to improve the video transmission performance when applying network coding.
NASA Technical Reports Server (NTRS)
Rebbechi, Brian; Forrester, B. David; Oswald, Fred B.; Townsend, Dennis P.
1992-01-01
A comparison was made between computer model predictions of gear dynamics behavior and experimental results. The experimental data were derived from the NASA gear noise rig, which was used to record dynamic tooth loads and vibration. The experimental results were compared with predictions from the DSTO Aeronautical Research Laboratory's gear dynamics code for a matrix of 28 load speed points. At high torque the peak dynamic load predictions agree with the experimental results with an average error of 5 percent in the speed range 800 to 6000 rpm. Tooth separation (or bounce), which was observed in the experimental data for light torque, high speed conditions, was simulated by the computer model. The model was also successful in simulating the degree of load sharing between gear teeth in the multiple tooth contact region.
Trace-shortened Reed-Solomon codes
NASA Technical Reports Server (NTRS)
Mceliece, R. J.; Solomon, G.
1994-01-01
Reed-Solomon (RS) codes have been part of standard NASA telecommunications systems for many years. RS codes are character-oriented error-correcting codes, and their principal use in space applications has been as outer codes in concatenated coding systems. However, for a given character size, say m bits, RS codes are limited to a length of, at most, 2(exp m). It is known in theory that longer character-oriented codes would be superior to RS codes in concatenation applications, but until recently no practical class of 'long' character-oriented codes had been discovered. In 1992, however, Solomon discovered an extensive class of such codes, which are now called trace-shortened Reed-Solomon (TSRS) codes. In this article, we will continue the study of TSRS codes. Our main result is a formula for the dimension of any TSRS code, as a function of its error-correcting power. Using this formula, we will give several examples of TSRS codes, some of which look very promising as candidate outer codes in high-performance coded telecommunications systems.
An Interactive Concatenated Turbo Coding System
NASA Technical Reports Server (NTRS)
Liu, Ye; Tang, Heng; Lin, Shu; Fossorier, Marc
1999-01-01
This paper presents a concatenated turbo coding system in which a Reed-Solomon outer code is concatenated with a binary turbo inner code. In the proposed system, the outer code decoder and the inner turbo code decoder interact to achieve both good bit error and frame error performances. The outer code decoder helps the inner turbo code decoder to terminate its decoding iteration while the inner turbo code decoder provides soft-output information to the outer code decoder to carry out a reliability-based soft- decision decoding. In the case that the outer code decoding fails, the outer code decoder instructs the inner code decoder to continue its decoding iterations until the outer code decoding is successful or a preset maximum number of decoding iterations is reached. This interaction between outer and inner code decoders reduces decoding delay. Also presented in the paper are an effective criterion for stopping the iteration process of the inner code decoder and a new reliability-based decoding algorithm for nonbinary codes.
Jiao, Shuming; Jin, Zhi; Zhou, Changyuan; Zou, Wenbin; Li, Xia
2018-01-01
Quick response (QR) code has been employed as a data carrier for optical cryptosystems in many recent research works, and the error-correction coding mechanism allows the decrypted result to be noise free. However, in this paper, we point out for the first time that the Reed-Solomon coding algorithm in QR code is not a very suitable option for the nonlocally distributed speckle noise in optical cryptosystems from an information coding perspective. The average channel capacity is proposed to measure the data storage capacity and noise-resistant capability of different encoding schemes. We design an alternative 2D barcode scheme based on Bose-Chaudhuri-Hocquenghem (BCH) coding, which demonstrates substantially better average channel capacity than QR code in numerical simulated optical cryptosystems.
Engine dynamic analysis with general nonlinear finite element codes
NASA Technical Reports Server (NTRS)
Adams, M. L.; Padovan, J.; Fertis, D. G.
1991-01-01
A general engine dynamic analysis as a standard design study computational tool is described for the prediction and understanding of complex engine dynamic behavior. Improved definition of engine dynamic response provides valuable information and insights leading to reduced maintenance and overhaul costs on existing engine configurations. Application of advanced engine dynamic simulation methods provides a considerable cost reduction in the development of new engine designs by eliminating some of the trial and error process done with engine hardware development.
Vibrational relaxation in hypersonic flow fields
NASA Technical Reports Server (NTRS)
Meador, Willard E.; Miner, Gilda A.; Heinbockel, John H.
1993-01-01
Mathematical formulations of vibrational relaxation are derived from first principles for application to fluid dynamic computations of hypersonic flow fields. Relaxation within and immediately behind shock waves is shown to be substantially faster than that described in current numerical codes. The result should be a significant reduction in nonequilibrium radiation overshoot in shock layers and in radiative heating of hypersonic vehicles; these results are precisely the trends needed to bring theoretical predictions more in line with flight data. Errors in existing formulations are identified and qualitative comparisons are made.
NASA Technical Reports Server (NTRS)
Wade, Randall S.; Jones, Bailey
2009-01-01
A computer program loads configuration code into a Xilinx field-programmable gate array (FPGA), reads back and verifies that code, reloads the code if an error is detected, and monitors the performance of the FPGA for errors in the presence of radiation. The program consists mainly of a set of VHDL files (wherein "VHDL" signifies "VHSIC Hardware Description Language" and "VHSIC" signifies "very-high-speed integrated circuit").
Detecting and Characterizing Semantic Inconsistencies in Ported Code
NASA Technical Reports Server (NTRS)
Ray, Baishakhi; Kim, Miryung; Person, Suzette J.; Rungta, Neha
2013-01-01
Adding similar features and bug fixes often requires porting program patches from reference implementations and adapting them to target implementations. Porting errors may result from faulty adaptations or inconsistent updates. This paper investigates (I) the types of porting errors found in practice, and (2) how to detect and characterize potential porting errors. Analyzing version histories, we define five categories of porting errors, including incorrect control- and data-flow, code redundancy, inconsistent identifier renamings, etc. Leveraging this categorization, we design a static control- and data-dependence analysis technique, SPA, to detect and characterize porting inconsistencies. Our evaluation on code from four open-source projects shows thai SPA can dell-oct porting inconsistencies with 65% to 73% precision and 90% recall, and identify inconsistency types with 58% to 63% precision and 92% to 100% recall. In a comparison with two existing error detection tools, SPA improves precision by 14 to 17 percentage points
Detecting and Characterizing Semantic Inconsistencies in Ported Code
NASA Technical Reports Server (NTRS)
Ray, Baishakhi; Kim, Miryung; Person,Suzette; Rungta, Neha
2013-01-01
Adding similar features and bug fixes often requires porting program patches from reference implementations and adapting them to target implementations. Porting errors may result from faulty adaptations or inconsistent updates. This paper investigates (1) the types of porting errors found in practice, and (2) how to detect and characterize potential porting errors. Analyzing version histories, we define five categories of porting errors, including incorrect control- and data-flow, code redundancy, inconsistent identifier renamings, etc. Leveraging this categorization, we design a static control- and data-dependence analysis technique, SPA, to detect and characterize porting inconsistencies. Our evaluation on code from four open-source projects shows that SPA can detect porting inconsistencies with 65% to 73% precision and 90% recall, and identify inconsistency types with 58% to 63% precision and 92% to 100% recall. In a comparison with two existing error detection tools, SPA improves precision by 14 to 17 percentage points.
The application of LDPC code in MIMO-OFDM system
NASA Astrophysics Data System (ADS)
Liu, Ruian; Zeng, Beibei; Chen, Tingting; Liu, Nan; Yin, Ninghao
2018-03-01
The combination of MIMO and OFDM technology has become one of the key technologies of the fourth generation mobile communication., which can overcome the frequency selective fading of wireless channel, increase the system capacity and improve the frequency utilization. Error correcting coding introduced into the system can further improve its performance. LDPC (low density parity check) code is a kind of error correcting code which can improve system reliability and anti-interference ability, and the decoding is simple and easy to operate. This paper mainly discusses the application of LDPC code in MIMO-OFDM system.
Enhanced fault-tolerant quantum computing in d-level systems.
Campbell, Earl T
2014-12-05
Error-correcting codes protect quantum information and form the basis of fault-tolerant quantum computing. Leading proposals for fault-tolerant quantum computation require codes with an exceedingly rare property, a transversal non-Clifford gate. Codes with the desired property are presented for d-level qudit systems with prime d. The codes use n=d-1 qudits and can detect up to ∼d/3 errors. We quantify the performance of these codes for one approach to quantum computation known as magic-state distillation. Unlike prior work, we find performance is always enhanced by increasing d.
NASA Astrophysics Data System (ADS)
Zou, Ding; Djordjevic, Ivan B.
2016-02-01
Forward error correction (FEC) is as one of the key technologies enabling the next-generation high-speed fiber optical communications. In this paper, we propose a rate-adaptive scheme using a class of generalized low-density parity-check (GLDPC) codes with a Hamming code as local code. We show that with the proposed unified GLDPC decoder architecture, a variable net coding gains (NCGs) can be achieved with no error floor at BER down to 10-15, making it a viable solution in the next-generation high-speed fiber optical communications.
"ON ALGEBRAIC DECODING OF Q-ARY REED-MULLER AND PRODUCT REED-SOLOMON CODES"
DOE Office of Scientific and Technical Information (OSTI.GOV)
SANTHI, NANDAKISHORE
We consider a list decoding algorithm recently proposed by Pellikaan-Wu for q-ary Reed-Muller codes RM{sub q}({ell}, m, n) of length n {le} q{sup m} when {ell} {le} q. A simple and easily accessible correctness proof is given which shows that this algorithm achieves a relative error-correction radius of {tau} {le} (1-{radical}{ell}q{sup m-1}/n). This is an improvement over the proof using one-point Algebraic-Geometric decoding method given in. The described algorithm can be adapted to decode product Reed-Solomon codes. We then propose a new low complexity recursive aJgebraic decoding algorithm for product Reed-Solomon codes and Reed-Muller codes. This algorithm achieves a relativemore » error correction radius of {tau} {le} {Pi}{sub i=1}{sup m} (1 - {radical}k{sub i}/q). This algorithm is then proved to outperform the Pellikaan-Wu algorithm in both complexity and error correction radius over a wide range of code rates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Guoping; Mayes, Melanie; Parker, Jack C
2010-01-01
We implemented the widely used CXTFIT code in Excel to provide flexibility and added sensitivity and uncertainty analysis functions to improve transport parameter estimation and to facilitate model discrimination for multi-tracer experiments on structured soils. Analytical solutions for one-dimensional equilibrium and nonequilibrium convection dispersion equations were coded as VBA functions so that they could be used as ordinary math functions in Excel for forward predictions. Macros with user-friendly interfaces were developed for optimization, sensitivity analysis, uncertainty analysis, error propagation, response surface calculation, and Monte Carlo analysis. As a result, any parameter with transformations (e.g., dimensionless, log-transformed, species-dependent reactions, etc.) couldmore » be estimated with uncertainty and sensitivity quantification for multiple tracer data at multiple locations and times. Prior information and observation errors could be incorporated into the weighted nonlinear least squares method with a penalty function. Users are able to change selected parameter values and view the results via embedded graphics, resulting in a flexible tool applicable to modeling transport processes and to teaching students about parameter estimation. The code was verified by comparing to a number of benchmarks with CXTFIT 2.0. It was applied to improve parameter estimation for four typical tracer experiment data sets in the literature using multi-model evaluation and comparison. Additional examples were included to illustrate the flexibilities and advantages of CXTFIT/Excel. The VBA macros were designed for general purpose and could be used for any parameter estimation/model calibration when the forward solution is implemented in Excel. A step-by-step tutorial, example Excel files and the code are provided as supplemental material.« less
Perceptually-Based Adaptive JPEG Coding
NASA Technical Reports Server (NTRS)
Watson, Andrew B.; Rosenholtz, Ruth; Null, Cynthia H. (Technical Monitor)
1996-01-01
An extension to the JPEG standard (ISO/IEC DIS 10918-3) allows spatial adaptive coding of still images. As with baseline JPEG coding, one quantization matrix applies to an entire image channel, but in addition the user may specify a multiplier for each 8 x 8 block, which multiplies the quantization matrix, yielding the new matrix for the block. MPEG 1 and 2 use much the same scheme, except there the multiplier changes only on macroblock boundaries. We propose a method for perceptual optimization of the set of multipliers. We compute the perceptual error for each block based upon DCT quantization error adjusted according to contrast sensitivity, light adaptation, and contrast masking, and pick the set of multipliers which yield maximally flat perceptual error over the blocks of the image. We investigate the bitrate savings due to this adaptive coding scheme and the relative importance of the different sorts of masking on adaptive coding.
Al-Hablani, Bader
2017-01-01
The objective of this study is to discuss and analyze the use of automated SNOMED CT clinical coding in clinical decision support systems (CDSSs) for preventive care. The central question that this study seeks to answer is whether the utilization of SNOMED CT in CDSSs can improve preventive care. PubMed, Google Scholar, and Cochrane Library were searched for articles published in English between 2001 and 2012 on SNOMED CT, CDSS, and preventive care. Outcome measures were the sensitivity or specificity of SNOMED CT coded data and the positive predictive value or negative predictive value of SNOMED CT coded data. Additionally, we documented the publication year, research question, study design, results, and conclusions of these studies. The reviewed studies suggested that SNOMED CT successfully represents clinical terms and negated clinical terms. The use of SNOMED CT in CDSS can be considered to provide an answer to the problem of medical errors as well as for preventive care in general. Enhancement of the modifiers and synonyms found in SNOMED CT will be necessary to improve the expected outcome of the integration of SNOMED CT with CDSS. Moreover, the application of the tree-augmented naïve (TAN) Bayesian network method can be considered the best technique to search SNOMED CT data and, consequently, to help improve preventive health services.
Al-Hablani, Bader
2017-01-01
Objective The objective of this study is to discuss and analyze the use of automated SNOMED CT clinical coding in clinical decision support systems (CDSSs) for preventive care. The central question that this study seeks to answer is whether the utilization of SNOMED CT in CDSSs can improve preventive care. Method PubMed, Google Scholar, and Cochrane Library were searched for articles published in English between 2001 and 2012 on SNOMED CT, CDSS, and preventive care. Outcome Measures Outcome measures were the sensitivity or specificity of SNOMED CT coded data and the positive predictive value or negative predictive value of SNOMED CT coded data. Additionally, we documented the publication year, research question, study design, results, and conclusions of these studies. Results The reviewed studies suggested that SNOMED CT successfully represents clinical terms and negated clinical terms. Conclusion The use of SNOMED CT in CDSS can be considered to provide an answer to the problem of medical errors as well as for preventive care in general. Enhancement of the modifiers and synonyms found in SNOMED CT will be necessary to improve the expected outcome of the integration of SNOMED CT with CDSS. Moreover, the application of the tree-augmented naïve (TAN) Bayesian network method can be considered the best technique to search SNOMED CT data and, consequently, to help improve preventive health services. PMID:28566995
Performance analysis of parallel gravitational N-body codes on large GPU clusters
NASA Astrophysics Data System (ADS)
Huang, Si-Yi; Spurzem, Rainer; Berczik, Peter
2016-01-01
We compare the performance of two very different parallel gravitational N-body codes for astrophysical simulations on large Graphics Processing Unit (GPU) clusters, both of which are pioneers in their own fields as well as on certain mutual scales - NBODY6++ and Bonsai. We carry out benchmarks of the two codes by analyzing their performance, accuracy and efficiency through the modeling of structure decomposition and timing measurements. We find that both codes are heavily optimized to leverage the computational potential of GPUs as their performance has approached half of the maximum single precision performance of the underlying GPU cards. With such performance we predict that a speed-up of 200 - 300 can be achieved when up to 1k processors and GPUs are employed simultaneously. We discuss the quantitative information about comparisons of the two codes, finding that in the same cases Bonsai adopts larger time steps as well as larger relative energy errors than NBODY6++, typically ranging from 10 - 50 times larger, depending on the chosen parameters of the codes. Although the two codes are built for different astrophysical applications, in specified conditions they may overlap in performance at certain physical scales, thus allowing the user to choose either one by fine-tuning parameters accordingly.
Fast and Flexible Successive-Cancellation List Decoders for Polar Codes
NASA Astrophysics Data System (ADS)
Hashemi, Seyyed Ali; Condo, Carlo; Gross, Warren J.
2017-11-01
Polar codes have gained significant amount of attention during the past few years and have been selected as a coding scheme for the next generation of mobile broadband standard. Among decoding schemes, successive-cancellation list (SCL) decoding provides a reasonable trade-off between the error-correction performance and hardware implementation complexity when used to decode polar codes, at the cost of limited throughput. The simplified SCL (SSCL) and its extension SSCL-SPC increase the speed of decoding by removing redundant calculations when encountering particular information and frozen bit patterns (rate one and single parity check codes), while keeping the error-correction performance unaltered. In this paper, we improve SSCL and SSCL-SPC by proving that the list size imposes a specific number of bit estimations required to decode rate one and single parity check codes. Thus, the number of estimations can be limited while guaranteeing exactly the same error-correction performance as if all bits of the code were estimated. We call the new decoding algorithms Fast-SSCL and Fast-SSCL-SPC. Moreover, we show that the number of bit estimations in a practical application can be tuned to achieve desirable speed, while keeping the error-correction performance almost unchanged. Hardware architectures implementing both algorithms are then described and implemented: it is shown that our design can achieve 1.86 Gb/s throughput, higher than the best state-of-the-art decoders.
ERIC Educational Resources Information Center
Rice, Bart F.; Wilde, Carroll O.
It is noted that with the prominence of computers in today's technological society, digital communication systems have become widely used in a variety of applications. Some of the problems that arise in digital communications systems are described. This unit presents the problem of correcting errors in such systems. Error correcting codes are…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brundage, Aaron L.; Nicolette, Vernon F.; Donaldson, A. Burl
2005-09-01
A joint experimental and computational study was performed to evaluate the capability of the Sandia Fire Code VULCAN to predict thermocouple response temperature. Thermocouple temperatures recorded by an Inconel-sheathed thermocouple inserted into a near-adiabatic flat flame were predicted by companion VULCAN simulations. The predicted thermocouple temperatures were within 6% of the measured values, with the error primarily attributable to uncertainty in Inconel 600 emissivity and axial conduction losses along the length of the thermocouple assembly. Hence, it is recommended that future thermocouple models (for Inconel-sheathed designs) include a correction for axial conduction. Given the remarkable agreement between experiment and simulation,more » it is recommended that the analysis be repeated for thermocouples in flames with pollutants such as soot.« less
An Experiment in Scientific Code Semantic Analysis
NASA Technical Reports Server (NTRS)
Stewart, Mark E. M.
1998-01-01
This paper concerns a procedure that analyzes aspects of the meaning or semantics of scientific and engineering code. This procedure involves taking a user's existing code, adding semantic declarations for some primitive variables, and parsing this annotated code using multiple, distributed expert parsers. These semantic parser are designed to recognize formulae in different disciplines including physical and mathematical formulae and geometrical position in a numerical scheme. The parsers will automatically recognize and document some static, semantic concepts and locate some program semantic errors. Results are shown for a subroutine test case and a collection of combustion code routines. This ability to locate some semantic errors and document semantic concepts in scientific and engineering code should reduce the time, risk, and effort of developing and using these codes.
Disjointness of Stabilizer Codes and Limitations on Fault-Tolerant Logical Gates
NASA Astrophysics Data System (ADS)
Jochym-O'Connor, Tomas; Kubica, Aleksander; Yoder, Theodore J.
2018-04-01
Stabilizer codes are among the most successful quantum error-correcting codes, yet they have important limitations on their ability to fault tolerantly compute. Here, we introduce a new quantity, the disjointness of the stabilizer code, which, roughly speaking, is the number of mostly nonoverlapping representations of any given nontrivial logical Pauli operator. The notion of disjointness proves useful in limiting transversal gates on any error-detecting stabilizer code to a finite level of the Clifford hierarchy. For code families, we can similarly restrict logical operators implemented by constant-depth circuits. For instance, we show that it is impossible, with a constant-depth but possibly geometrically nonlocal circuit, to implement a logical non-Clifford gate on the standard two-dimensional surface code.
Discussion on LDPC Codes and Uplink Coding
NASA Technical Reports Server (NTRS)
Andrews, Ken; Divsalar, Dariush; Dolinar, Sam; Moision, Bruce; Hamkins, Jon; Pollara, Fabrizio
2007-01-01
This slide presentation reviews the progress that the workgroup on Low-Density Parity-Check (LDPC) for space link coding. The workgroup is tasked with developing and recommending new error correcting codes for near-Earth, Lunar, and deep space applications. Included in the presentation is a summary of the technical progress of the workgroup. Charts that show the LDPC decoder sensitivity to symbol scaling errors are reviewed, as well as a chart showing the performance of several frame synchronizer algorithms compared to that of some good codes and LDPC decoder tests at ESTL. Also reviewed is a study on Coding, Modulation, and Link Protocol (CMLP), and the recommended codes. A design for the Pseudo-Randomizer with LDPC Decoder and CRC is also reviewed. A chart that summarizes the three proposed coding systems is also presented.
NASA Technical Reports Server (NTRS)
Ingels, F. M.; Mo, C. D.
1978-01-01
An empirical study of the performance of the Viterbi decoders in bursty channels was carried out and an improved algebraic decoder for nonsystematic codes was developed. The hybrid algorithm was simulated for the (2,1), k = 7 code on a computer using 20 channels having various error statistics, ranging from pure random error to pure bursty channels. The hybrid system outperformed both the algebraic and the Viterbi decoders in every case, except the 1% random error channel where the Viterbi decoder had one bit less decoding error.
A /31,15/ Reed-Solomon Code for large memory systems
NASA Technical Reports Server (NTRS)
Lim, R. S.
1979-01-01
This paper describes the encoding and the decoding of a (31,15) Reed-Solomon Code for multiple-burst error correction for large memory systems. The decoding procedure consists of four steps: (1) syndrome calculation, (2) error-location polynomial calculation, (3) error-location numbers calculation, and (4) error values calculation. The principal features of the design are the use of a hardware shift register for both high-speed encoding and syndrome calculation, and the use of a commercially available (31,15) decoder for decoding Steps 2, 3 and 4.
Entanglement renormalization, quantum error correction, and bulk causality
NASA Astrophysics Data System (ADS)
Kim, Isaac H.; Kastoryano, Michael J.
2017-04-01
Entanglement renormalization can be viewed as an encoding circuit for a family of approximate quantum error correcting codes. The logical information becomes progres-sively more well-protected against erasure errors at larger length scales. In particular, an approximate variant of holographic quantum error correcting code emerges at low energy for critical systems. This implies that two operators that are largely separated in scales behave as if they are spatially separated operators, in the sense that they obey a Lieb-Robinson type locality bound under a time evolution generated by a local Hamiltonian.
Protograph LDPC Codes with Node Degrees at Least 3
NASA Technical Reports Server (NTRS)
Divsalar, Dariush; Jones, Christopher
2006-01-01
In this paper we present protograph codes with a small number of degree-3 nodes and one high degree node. The iterative decoding threshold for proposed rate 1/2 codes are lower, by about 0.2 dB, than the best known irregular LDPC codes with degree at least 3. The main motivation is to gain linear minimum distance to achieve low error floor. Also to construct rate-compatible protograph-based LDPC codes for fixed block length that simultaneously achieves low iterative decoding threshold and linear minimum distance. We start with a rate 1/2 protograph LDPC code with degree-3 nodes and one high degree node. Higher rate codes are obtained by connecting check nodes with degree-2 non-transmitted nodes. This is equivalent to constraint combining in the protograph. The condition where all constraints are combined corresponds to the highest rate code. This constraint must be connected to nodes of degree at least three for the graph to have linear minimum distance. Thus having node degree at least 3 for rate 1/2 guarantees linear minimum distance property to be preserved for higher rates. Through examples we show that the iterative decoding threshold as low as 0.544 dB can be achieved for small protographs with node degrees at least three. A family of low- to high-rate codes with minimum distance linearly increasing in block size and with capacity-approaching performance thresholds is presented. FPGA simulation results for a few example codes show that the proposed codes perform as predicted.
NASA Astrophysics Data System (ADS)
Jos, Sujit; Kumar, Preetam; Chakrabarti, Saswat
Orthogonal and quasi-orthogonal codes are integral part of any DS-CDMA based cellular systems. Orthogonal codes are ideal for use in perfectly synchronous scenario like downlink cellular communication. Quasi-orthogonal codes are preferred over orthogonal codes in the uplink communication where perfect synchronization cannot be achieved. In this paper, we attempt to compare orthogonal and quasi-orthogonal codes in presence of timing synchronization error. This will give insight into the synchronization demands in DS-CDMA systems employing the two classes of sequences. The synchronization error considered is smaller than chip duration. Monte-Carlo simulations have been carried out to verify the analytical and numerical results.
An Autonomous Satellite Time Synchronization System Using Remotely Disciplined VC-OCXOs.
Gu, Xiaobo; Chang, Qing; Glennon, Eamonn P; Xu, Baoda; Dempseter, Andrew G; Wang, Dun; Wu, Jiapeng
2015-07-23
An autonomous remote clock control system is proposed to provide time synchronization and frequency syntonization for satellite to satellite or ground to satellite time transfer, with the system comprising on-board voltage controlled oven controlled crystal oscillators (VC-OCXOs) that are disciplined to a remote master atomic clock or oscillator. The synchronization loop aims to provide autonomous operation over extended periods, be widely applicable to a variety of scenarios and robust. A new architecture comprising the use of frequency division duplex (FDD), synchronous time division (STDD) duplex and code division multiple access (CDMA) with a centralized topology is employed. This new design utilizes dual one-way ranging methods to precisely measure the clock error, adopts least square (LS) methods to predict the clock error and employs a third-order phase lock loop (PLL) to generate the voltage control signal. A general functional model for this system is proposed and the error sources and delays that affect the time synchronization are discussed. Related algorithms for estimating and correcting these errors are also proposed. The performance of the proposed system is simulated and guidance for selecting the clock is provided.
What Information is Stored in DNA: Does it Contain Digital Error Correcting Codes?
NASA Astrophysics Data System (ADS)
Liebovitch, Larry
1998-03-01
The longest term correlations in living systems are the information stored in DNA which reflects the evolutionary history of an organism. The 4 bases (A,T,G,C) encode sequences of amino acids as well as locations of binding sites for proteins that regulate DNA. The fidelity of this important information is maintained by ANALOG error check mechanisms. When a single strand of DNA is replicated the complementary base is inserted in the new strand. Sometimes the wrong base is inserted that sticks out disrupting the phosphate backbone. The new base is not yet methylated, so repair enzymes, that slide along the DNA, can tear out the wrong base and replace it with the right one. The bases in DNA form a sequence of 4 different symbols and so the information is encoded in a DIGITAL form. All the digital codes in our society (ISBN book numbers, UPC product codes, bank account numbers, airline ticket numbers) use error checking code, where some digits are functions of other digits to maintain the fidelity of transmitted informaiton. Does DNA also utitlize a DIGITAL error chekcing code to maintain the fidelity of its information and increase the accuracy of replication? That is, are some bases in DNA functions of other bases upstream or downstream? This raises the interesting mathematical problem: How does one determine whether some symbols in a sequence of symbols are a function of other symbols. It also bears on the issue of determining algorithmic complexity: What is the function that generates the shortest algorithm for reproducing the symbol sequence. The error checking codes most used in our technology are linear block codes. We developed an efficient method to test for the presence of such codes in DNA. We coded the 4 bases as (0,1,2,3) and used Gaussian elimination, modified for modulus 4, to test if some bases are linear combinations of other bases. We used this method to analyze the base sequence in the genes from the lac operon and cytochrome C. We did not find evidence for such error correcting codes in these genes. However, we analyzed only a small amount of DNA and if digitial error correcting schemes are present in DNA, they may be more subtle than such simple linear block codes. The basic issue we raise here, is how information is stored in DNA and an appreciation that digital symbol sequences, such as DNA, admit of interesting schemes to store and protect the fidelity of their information content. Liebovitch, Tao, Todorov, Levine. 1996. Biophys. J. 71:1539-1544. Supported by NIH grant EY6234.
Low Density Parity Check Codes Based on Finite Geometries: A Rediscovery and More
NASA Technical Reports Server (NTRS)
Kou, Yu; Lin, Shu; Fossorier, Marc
1999-01-01
Low density parity check (LDPC) codes with iterative decoding based on belief propagation achieve astonishing error performance close to Shannon limit. No algebraic or geometric method for constructing these codes has been reported and they are largely generated by computer search. As a result, encoding of long LDPC codes is in general very complex. This paper presents two classes of high rate LDPC codes whose constructions are based on finite Euclidean and projective geometries, respectively. These classes of codes a.re cyclic and have good constraint parameters and minimum distances. Cyclic structure adows the use of linear feedback shift registers for encoding. These finite geometry LDPC codes achieve very good error performance with either soft-decision iterative decoding based on belief propagation or Gallager's hard-decision bit flipping algorithm. These codes can be punctured or extended to obtain other good LDPC codes. A generalization of these codes is also presented.
Low-density parity-check codes for volume holographic memory systems.
Pishro-Nik, Hossein; Rahnavard, Nazanin; Ha, Jeongseok; Fekri, Faramarz; Adibi, Ali
2003-02-10
We investigate the application of low-density parity-check (LDPC) codes in volume holographic memory (VHM) systems. We show that a carefully designed irregular LDPC code has a very good performance in VHM systems. We optimize high-rate LDPC codes for the nonuniform error pattern in holographic memories to reduce the bit error rate extensively. The prior knowledge of noise distribution is used for designing as well as decoding the LDPC codes. We show that these codes have a superior performance to that of Reed-Solomon (RS) codes and regular LDPC counterparts. Our simulation shows that we can increase the maximum storage capacity of holographic memories by more than 50 percent if we use irregular LDPC codes with soft-decision decoding instead of conventionally employed RS codes with hard-decision decoding. The performance of these LDPC codes is close to the information theoretic capacity.
Asymmetric soft-error resistant memory
NASA Technical Reports Server (NTRS)
Buehler, Martin G. (Inventor); Perlman, Marvin (Inventor)
1991-01-01
A memory system is provided, of the type that includes an error-correcting circuit that detects and corrects, that more efficiently utilizes the capacity of a memory formed of groups of binary cells whose states can be inadvertently switched by ionizing radiation. Each memory cell has an asymmetric geometry, so that ionizing radiation causes a significantly greater probability of errors in one state than in the opposite state (e.g., an erroneous switch from '1' to '0' is far more likely than a switch from '0' to'1'. An asymmetric error correcting coding circuit can be used with the asymmetric memory cells, which requires fewer bits than an efficient symmetric error correcting code.
An efficient system for reliably transmitting image and video data over low bit rate noisy channels
NASA Technical Reports Server (NTRS)
Costello, Daniel J., Jr.; Huang, Y. F.; Stevenson, Robert L.
1994-01-01
This research project is intended to develop an efficient system for reliably transmitting image and video data over low bit rate noisy channels. The basic ideas behind the proposed approach are the following: employ statistical-based image modeling to facilitate pre- and post-processing and error detection, use spare redundancy that the source compression did not remove to add robustness, and implement coded modulation to improve bandwidth efficiency and noise rejection. Over the last six months, progress has been made on various aspects of the project. Through our studies of the integrated system, a list-based iterative Trellis decoder has been developed. The decoder accepts feedback from a post-processor which can detect channel errors in the reconstructed image. The error detection is based on the Huber Markov random field image model for the compressed image. The compression scheme used here is that of JPEG (Joint Photographic Experts Group). Experiments were performed and the results are quite encouraging. The principal ideas here are extendable to other compression techniques. In addition, research was also performed on unequal error protection channel coding, subband vector quantization as a means of source coding, and post processing for reducing coding artifacts. Our studies on unequal error protection (UEP) coding for image transmission focused on examining the properties of the UEP capabilities of convolutional codes. The investigation of subband vector quantization employed a wavelet transform with special emphasis on exploiting interband redundancy. The outcome of this investigation included the development of three algorithms for subband vector quantization. The reduction of transform coding artifacts was studied with the aid of a non-Gaussian Markov random field model. This results in improved image decompression. These studies are summarized and the technical papers included in the appendices.
Han, Sangkwon; Bae, Hyung Jong; Kim, Junhoi; Shin, Sunghwan; Choi, Sung-Eun; Lee, Sung Hoon; Kwon, Sunghoon; Park, Wook
2012-11-20
A QR-coded microtaggant for the anti-counterfeiting of drugs is proposed that can provide high capacity and error-correction capability. It is fabricated lithographically in a microfluidic channel with special consideration of the island patterns in the QR Code. The microtaggant is incorporated in the drug capsule ("on-dose authentication") and can be read by a simple smartphone QR Code reader application when removed from the capsule and washed free of drug. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Neural evidence for predictive coding in auditory cortex during speech production.
Okada, Kayoko; Matchin, William; Hickok, Gregory
2018-02-01
Recent models of speech production suggest that motor commands generate forward predictions of the auditory consequences of those commands, that these forward predications can be used to monitor and correct speech output, and that this system is hierarchically organized (Hickok, Houde, & Rong, Neuron, 69(3), 407--422, 2011; Pickering & Garrod, Behavior and Brain Sciences, 36(4), 329--347, 2013). Recent psycholinguistic research has shown that internally generated speech (i.e., imagined speech) produces different types of errors than does overt speech (Oppenheim & Dell, Cognition, 106(1), 528--537, 2008; Oppenheim & Dell, Memory & Cognition, 38(8), 1147-1160, 2010). These studies suggest that articulated speech might involve predictive coding at additional levels than imagined speech. The current fMRI experiment investigates neural evidence of predictive coding in speech production. Twenty-four participants from UC Irvine were recruited for the study. Participants were scanned while they were visually presented with a sequence of words that they reproduced in sync with a visual metronome. On each trial, they were cued to either silently articulate the sequence or to imagine the sequence without overt articulation. As expected, silent articulation and imagined speech both engaged a left hemisphere network previously implicated in speech production. A contrast of silent articulation with imagined speech revealed greater activation for articulated speech in inferior frontal cortex, premotor cortex and the insula in the left hemisphere, consistent with greater articulatory load. Although both conditions were silent, this contrast also produced significantly greater activation in auditory cortex in dorsal superior temporal gyrus in both hemispheres. We suggest that these activations reflect forward predictions arising from additional levels of the perceptual/motor hierarchy that are involved in monitoring the intended speech output.
Results of the Simulation of the HTR-Proteus Core 4.2 Using PEBBED-COMBINE: FY10 Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hans Gougar
2010-07-01
ABSTRACT The Idaho National Laboratory’s deterministic neutronics analysis codes and methods were applied to the computation of the core multiplication factor of the HTR-Proteus pebble bed reactor critical facility. This report is a follow-on to INL/EXT-09-16620 in which the same calculation was performed but using earlier versions of the codes and less developed methods. In that report, results indicated that the cross sections generated using COMBINE-7.0 did not yield satisfactory estimates of keff. It was concluded in the report that the modeling of control rods was not satisfactory. In the past year, improvements to the homogenization capability in COMBINE havemore » enabled the explicit modeling of TRIS particles, pebbles, and heterogeneous core zones including control rod regions using a new multi-scale version of COMBINE in which the 1-dimensional discrete ordinate transport code ANISN has been integrated. The new COMBINE is shown to yield benchmark quality results for pebble unit cell models, the first step in preparing few-group diffusion parameters for core simulations. In this report, the full critical core is modeled once again but with cross sections generated using the capabilities and physics of the improved COMBINE code. The new PEBBED-COMBINE model enables the exact modeling of the pebbles and control rod region along with better approximation to structures in the reflector. Initial results for the core multiplication factor indicate significant improvement in the INL’s tools for modeling the neutronic properties of a pebble bed reactor. Errors on the order of 1.6-2.5% in keff are obtained; a significant improvement over the 5-6% error observed in the earlier This is acceptable for a code system and model in the early stages of development but still too high for a production code. Analysis of a simpler core model indicates an over-prediction of the flux in the low end of the thermal spectrum. Causes of this discrepancy are under investigation. New homogenization techniques and assumptions were used in this analysis and as such, they require further confirmation and validation. Further refinement and review of the complex Proteus core model are likely to reduce the errors even further.« less
Quantum error-correcting code for ternary logic
NASA Astrophysics Data System (ADS)
Majumdar, Ritajit; Basu, Saikat; Ghosh, Shibashis; Sur-Kolay, Susmita
2018-05-01
Ternary quantum systems are being studied because they provide more computational state space per unit of information, known as qutrit. A qutrit has three basis states, thus a qubit may be considered as a special case of a qutrit where the coefficient of one of the basis states is zero. Hence both (2 ×2 ) -dimensional and (3 ×3 ) -dimensional Pauli errors can occur on qutrits. In this paper, we (i) explore the possible (2 ×2 ) -dimensional as well as (3 ×3 ) -dimensional Pauli errors in qutrits and show that any pairwise bit swap error can be expressed as a linear combination of shift errors and phase errors, (ii) propose a special type of error called a quantum superposition error and show its equivalence to arbitrary rotation, (iii) formulate a nine-qutrit code which can correct a single error in a qutrit, and (iv) provide its stabilizer and circuit realization.
Ho, B T; Tsai, M J; Wei, J; Ma, M; Saipetch, P
1996-01-01
A new method of video compression for angiographic images has been developed to achieve high compression ratio (~20:1) while eliminating block artifacts which leads to loss of diagnostic accuracy. This method adopts motion picture experts group's (MPEGs) motion compensated prediction to takes advantage of frame to frame correlation. However, in contrast to MPEG, the error images arising from mismatches in the motion estimation are encoded by discrete wavelet transform (DWT) rather than block discrete cosine transform (DCT). Furthermore, the authors developed a classification scheme which label each block in an image as intra, error, or background type and encode it accordingly. This hybrid coding can significantly improve the compression efficiency in certain eases. This method can be generalized for any dynamic image sequences applications sensitive to block artifacts.
NASA Technical Reports Server (NTRS)
Lewis, Michael
1994-01-01
Statistical encoding techniques enable the reduction of the number of bits required to encode a set of symbols, and are derived from their probabilities. Huffman encoding is an example of statistical encoding that has been used for error-free data compression. The degree of compression given by Huffman encoding in this application can be improved by the use of prediction methods. These replace the set of elevations by a set of corrections that have a more advantageous probability distribution. In particular, the method of Lagrange Multipliers for minimization of the mean square error has been applied to local geometrical predictors. Using this technique, an 8-point predictor achieved about a 7 percent improvement over an existing simple triangular predictor.
Hayden, Randall T; Patterson, Donna J; Jay, Dennis W; Cross, Carl; Dotson, Pamela; Possel, Robert E; Srivastava, Deo Kumar; Mirro, Joseph; Shenep, Jerry L
2008-02-01
To assess the ability of a bar code-based electronic positive patient and specimen identification (EPPID) system to reduce identification errors in a pediatric hospital's clinical laboratory. An EPPID system was implemented at a pediatric oncology hospital to reduce errors in patient and laboratory specimen identification. The EPPID system included bar-code identifiers and handheld personal digital assistants supporting real-time order verification. System efficacy was measured in 3 consecutive 12-month time frames, corresponding to periods before, during, and immediately after full EPPID implementation. A significant reduction in the median percentage of mislabeled specimens was observed in the 3-year study period. A decline from 0.03% to 0.005% (P < .001) was observed in the 12 months after full system implementation. On the basis of the pre-intervention detected error rate, it was estimated that EPPID prevented at least 62 mislabeling events during its first year of operation. EPPID decreased the rate of misidentification of clinical laboratory samples. The diminution of errors observed in this study provides support for the development of national guidelines for the use of bar coding for laboratory specimens, paralleling recent recommendations for medication administration.
Toroidal modeling of the n = 1 intrinsic error field correction experiments in EAST
NASA Astrophysics Data System (ADS)
Yang, Xu; Liu, Yueqiang; Sun, Youwen; Wang, Huihui; Gu, Shuai; Jia, Manni; Li, Li; Liu, Yue; Wang, Zhirui; Zhou, Lina
2018-05-01
The m/n = 2/1 resonant vacuum error field (EF) in the EAST tokamak experiments, inferred from the compass coil current amplitude and phase scan for mode locking, was found to depend on the parity between the upper and lower rows of the EF correction (EFC) coils (Wang et al 2016 Nucl. Fusion 56 066011). Here m and n are the poloidal and toroidal harmonic numbers in a torus, respectively. This experimental observation implies that the compass scan results cannot be simply interpreted as reflecting the true intrinsic EF. This work aims at understanding this puzzle, based on toroidal modeling of the EFC plasma discharge in EAST using the MARS-F code (Liu et al 2000 Phys. Plasmas 7 3681). By varying the amplitude and phase of the assumed n = 1 intrinsic vacuum EF with different poloidal spectra, and by computing the plasma response to the assumed EF, the compass scan predicted 2/1 EF, based on minimizing the computed resonant electromagnetic torque, can be made to match well with that of the EFC experiments using both even and odd parity coils. Moreover, the compass scan predicted vacuum EFs are found to be significantly differing from the true intrinsic EF used as input to the MARS-F code. While the puzzling result remains to be fully resolved, the results from this study offer an improved understanding of the EFC experiments and the compass scan technique for determining the intrinsic resonant EF.
[Professional error and nursing ethics: from past consideration to future strategy].
Germini, Francesco; Lattarulo, Pio
2008-01-01
In 1960, the National Federation IPASVI emanated its first ethical code which does not deal at all with the prevention of error or how to behave in the case this does happen, with the exception of point 6, which recommends scrupulously respecting the therapy prescribed and encouraging patients to trust the physicians and the other health workers. The second ethical code was dated 1977. In this eighteen year interval the hospital organization had been deeply modified and this new layout of the Code reflected some remarkable changes of thought but no precise reference to the matter of error management. In the 1999 version of the code the radical changes in the profession are reflected and formally recognized by the law (42/1999) and by society acting as a reference for the regulation of the nursing profession and referring to one of the most ancient principles of medicine, the "primum non nocere". It is important to remember that an ethical code derives from professional considerations, applied to the context of "here and now". Some strategic considerations for the future regarding the important role of risk prevention and management of errors (which do, unfortunately, occur) are therefore expressed.
Lamb, Mary K; Innes, Kerry; Saad, Patricia; Rust, Julie; Dimitropoulos, Vera; Cumerlato, Megan
The Performance Indicators for Coding Quality (PICQ) is a data quality assessment tool developed by Australia's National Centre for Classification in Health (NCCH). PICQ consists of a number of indicators covering all ICD-10-AM disease chapters, some procedure chapters from the Australian Classification of Health Intervention (ACHI) and some Australian Coding Standards (ACS). The indicators can be used to assess the coding quality of hospital morbidity data by monitoring compliance of coding conventions and ACS; this enables the identification of particular records that may be incorrectly coded, thus providing a measure of data quality. There are 31 obstetric indicators available for the ICD-10-AM Fourth Edition. Twenty of these 31 indicators were classified as Fatal, nine as Warning and two Relative. These indicators were used to examine coding quality of obstetric records in the 2004-2005 financial year Australian national hospital morbidity dataset. Records with obstetric disease or procedure codes listed anywhere in the code string were extracted and exported from the SPSS source file. Data were then imported into a Microsoft Access database table as per PICQ instructions, and run against all Fatal and Warning and Relative (N=31) obstetric PICQ 2006 Fourth Edition Indicators v.5 for the ICD-10- AM Fourth Edition. There were 689,905 gynaecological and obstetric records in the 2004-2005 financial year, of which 1.14% were found to have triggered Fatal degree errors, 3.78% Warning degree errors and 8.35% Relative degree errors. The types of errors include completeness, redundancy, specificity and sequencing problems. It was found that PICQ is a useful initial screening tool for the assessment of ICD-10-AM/ACHI coding quality. The overall quality of codes assigned to obstetric records in the 2004- 2005 Australian national morbidity dataset is of fair quality.
New Gear Transmission Error Measurement System Designed
NASA Technical Reports Server (NTRS)
Oswald, Fred B.
2001-01-01
The prime source of vibration and noise in a gear system is the transmission error between the meshing gears. Transmission error is caused by manufacturing inaccuracy, mounting errors, and elastic deflections under load. Gear designers often attempt to compensate for transmission error by modifying gear teeth. This is done traditionally by a rough "rule of thumb" or more recently under the guidance of an analytical code. In order for a designer to have confidence in a code, the code must be validated through experiment. NASA Glenn Research Center contracted with the Design Unit of the University of Newcastle in England for a system to measure the transmission error of spur and helical test gears in the NASA Gear Noise Rig. The new system measures transmission error optically by means of light beams directed by lenses and prisms through gratings mounted on the gear shafts. The amount of light that passes through both gratings is directly proportional to the transmission error of the gears. A photodetector circuit converts the light to an analog electrical signal. To increase accuracy and reduce "noise" due to transverse vibration, there are parallel light paths at the top and bottom of the gears. The two signals are subtracted via differential amplifiers in the electronics package. The output of the system is 40 mV/mm, giving a resolution in the time domain of better than 0.1 mm, and discrimination in the frequency domain of better than 0.01 mm. The new system will be used to validate gear analytical codes and to investigate mechanisms that produce vibration and noise in parallel axis gears.
Stevens, Allen D.; Hernandez, Caleb; Jones, Seth; Moreira, Maria E.; Blumen, Jason R.; Hopkins, Emily; Sande, Margaret; Bakes, Katherine; Haukoos, Jason S.
2016-01-01
Background Medication dosing errors remain commonplace and may result in potentially life-threatening outcomes, particularly for pediatric patients where dosing often requires weight-based calculations. Novel medication delivery systems that may reduce dosing errors resonate with national healthcare priorities. Our goal was to evaluate novel, prefilled medication syringes labeled with color-coded volumes corresponding to the weight-based dosing of the Broselow Tape, compared to conventional medication administration, in simulated prehospital pediatric resuscitation scenarios. Methods We performed a prospective, block-randomized, cross-over study, where 10 full-time paramedics each managed two simulated pediatric arrests in situ using either prefilled, color-coded-syringes (intervention) or their own medication kits stocked with conventional ampoules (control). Each paramedic was paired with two emergency medical technicians to provide ventilations and compressions as directed. The ambulance patient compartment and the intravenous medication port were video recorded. Data were extracted from video review by blinded, independent reviewers. Results Median time to delivery of all doses for the intervention and control groups was 34 (95% CI: 28–39) seconds and 42 (95% CI: 36–51) seconds, respectively (difference = 9 [95% CI: 4–14] seconds). Using the conventional method, 62 doses were administered with 24 (39%) critical dosing errors; using the prefilled, color-coded syringe method, 59 doses were administered with 0 (0%) critical dosing errors (difference = 39%, 95% CI: 13–61%). Conclusions A novel color-coded, prefilled syringe decreased time to medication administration and significantly reduced critical dosing errors by paramedics during simulated prehospital pediatric resuscitations. PMID:26247145
Stevens, Allen D; Hernandez, Caleb; Jones, Seth; Moreira, Maria E; Blumen, Jason R; Hopkins, Emily; Sande, Margaret; Bakes, Katherine; Haukoos, Jason S
2015-11-01
Medication dosing errors remain commonplace and may result in potentially life-threatening outcomes, particularly for pediatric patients where dosing often requires weight-based calculations. Novel medication delivery systems that may reduce dosing errors resonate with national healthcare priorities. Our goal was to evaluate novel, prefilled medication syringes labeled with color-coded volumes corresponding to the weight-based dosing of the Broselow Tape, compared to conventional medication administration, in simulated prehospital pediatric resuscitation scenarios. We performed a prospective, block-randomized, cross-over study, where 10 full-time paramedics each managed two simulated pediatric arrests in situ using either prefilled, color-coded syringes (intervention) or their own medication kits stocked with conventional ampoules (control). Each paramedic was paired with two emergency medical technicians to provide ventilations and compressions as directed. The ambulance patient compartment and the intravenous medication port were video recorded. Data were extracted from video review by blinded, independent reviewers. Median time to delivery of all doses for the intervention and control groups was 34 (95% CI: 28-39) seconds and 42 (95% CI: 36-51) seconds, respectively (difference=9 [95% CI: 4-14] seconds). Using the conventional method, 62 doses were administered with 24 (39%) critical dosing errors; using the prefilled, color-coded syringe method, 59 doses were administered with 0 (0%) critical dosing errors (difference=39%, 95% CI: 13-61%). A novel color-coded, prefilled syringe decreased time to medication administration and significantly reduced critical dosing errors by paramedics during simulated prehospital pediatric resuscitations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Introduction to Forward-Error-Correcting Coding
NASA Technical Reports Server (NTRS)
Freeman, Jon C.
1996-01-01
This reference publication introduces forward error correcting (FEC) and stresses definitions and basic calculations for use by engineers. The seven chapters include 41 example problems, worked in detail to illustrate points. A glossary of terms is included, as well as an appendix on the Q function. Block and convolutional codes are covered.
Multichannel error correction code decoder
NASA Technical Reports Server (NTRS)
Wagner, Paul K.; Ivancic, William D.
1993-01-01
A brief overview of a processing satellite for a mesh very-small-aperture (VSAT) communications network is provided. The multichannel error correction code (ECC) decoder system, the uplink signal generation and link simulation equipment, and the time-shared decoder are described. The testing is discussed. Applications of the time-shared decoder are recommended.
A Step Made Toward Designing Microelectromechanical System (MEMS) Structures With High Reliability
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.
2003-01-01
The mechanical design of microelectromechanical systems-particularly for micropower generation applications-requires the ability to predict the strength capacity of load-carrying components over the service life of the device. These microdevices, which typically are made of brittle materials such as polysilicon, show wide scatter (stochastic behavior) in strength as well as a different average strength for different sized structures (size effect). These behaviors necessitate either costly and time-consuming trial-and-error designs or, more efficiently, the development of a probabilistic design methodology for MEMS. Over the years, the NASA Glenn Research Center s Life Prediction Branch has developed the CARES/Life probabilistic design methodology to predict the reliability of advanced ceramic components. In this study, done in collaboration with Johns Hopkins University, the ability of the CARES/Life code to predict the reliability of polysilicon microsized structures with stress concentrations is successfully demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cox, James V.; Wellman, Gerald William; Emery, John M.
2011-09-01
Fracture or tearing of ductile metals is a pervasive engineering concern, yet accurate prediction of the critical conditions of fracture remains elusive. Sandia National Laboratories has been developing and implementing several new modeling methodologies to address problems in fracture, including both new physical models and new numerical schemes. The present study provides a double-blind quantitative assessment of several computational capabilities including tearing parameters embedded in a conventional finite element code, localization elements, extended finite elements (XFEM), and peridynamics. For this assessment, each of four teams reported blind predictions for three challenge problems spanning crack initiation and crack propagation. After predictionsmore » had been reported, the predictions were compared to experimentally observed behavior. The metal alloys for these three problems were aluminum alloy 2024-T3 and precipitation hardened stainless steel PH13-8Mo H950. The predictive accuracies of the various methods are demonstrated, and the potential sources of error are discussed.« less
Smart photodetector arrays for error control in page-oriented optical memory
NASA Astrophysics Data System (ADS)
Schaffer, Maureen Elizabeth
1998-12-01
Page-oriented optical memories (POMs) have been proposed to meet high speed, high capacity storage requirements for input/output intensive computer applications. This technology offers the capability for storage and retrieval of optical data in two-dimensional pages resulting in high throughput data rates. Since currently measured raw bit error rates for these systems fall several orders of magnitude short of industry requirements for binary data storage, powerful error control codes must be adopted. These codes must be designed to take advantage of the two-dimensional memory output. In addition, POMs require an optoelectronic interface to transfer the optical data pages to one or more electronic host systems. Conventional charge coupled device (CCD) arrays can receive optical data in parallel, but the relatively slow serial electronic output of these devices creates a system bottleneck thereby eliminating the POM advantage of high transfer rates. Also, CCD arrays are "unintelligent" interfaces in that they offer little data processing capabilities. The optical data page can be received by two-dimensional arrays of "smart" photo-detector elements that replace conventional CCD arrays. These smart photodetector arrays (SPAs) can perform fast parallel data decoding and error control, thereby providing an efficient optoelectronic interface between the memory and the electronic computer. This approach optimizes the computer memory system by combining the massive parallelism and high speed of optics with the diverse functionality, low cost, and local interconnection efficiency of electronics. In this dissertation we examine the design of smart photodetector arrays for use as the optoelectronic interface for page-oriented optical memory. We review options and technologies for SPA fabrication, develop SPA requirements, and determine SPA scalability constraints with respect to pixel complexity, electrical power dissipation, and optical power limits. Next, we examine data modulation and error correction coding for the purpose of error control in the POM system. These techniques are adapted, where possible, for 2D data and evaluated as to their suitability for a SPA implementation in terms of BER, code rate, decoder time and pixel complexity. Our analysis shows that differential data modulation combined with relatively simple block codes known as array codes provide a powerful means to achieve the desired data transfer rates while reducing error rates to industry requirements. Finally, we demonstrate the first smart photodetector array designed to perform parallel error correction on an entire page of data and satisfy the sustained data rates of page-oriented optical memories. Our implementation integrates a monolithic PN photodiode array and differential input receiver for optoelectronic signal conversion with a cluster error correction code using 0.35-mum CMOS. This approach provides high sensitivity, low electrical power dissipation, and fast parallel correction of 2 x 2-bit cluster errors in an 8 x 8 bit code block to achieve corrected output data rates scalable to 102 Gbps in the current technology increasing to 1.88 Tbps in 0.1-mum CMOS.
Jacobson, Peggy F; Walden, Patrick R
2013-08-01
This study explored the utility of language sample analysis for evaluating language ability in school-age Spanish-English sequential bilingual children. Specifically, the relative potential of lexical diversity and word/morpheme omission as predictors of typical or atypical language status was evaluated. Narrative samples were obtained from 48 bilingual children in both of their languages using the suggested narrative retell protocol and coding conventions as per Systematic Analysis of Language Transcripts (SALT; Miller & Iglesias, 2008) software. An additional lexical diversity measure, VocD, was also calculated. A series of logistical hierarchical regressions explored the utility of the number of different words, VocD statistic, and word and morpheme omissions in each language for predicting language status. Omission errors turned out to be the best predictors of bilingual language impairment at all ages, and this held true across languages. Although lexical diversity measures did not predict typical or atypical language status, the measures were significantly related to oral language proficiency in English and Spanish. The results underscore the significance of omission errors in bilingual language impairment while simultaneously revealing the limitations of lexical diversity measures as indicators of impairment. The relationship between lexical diversity and oral language proficiency highlights the importance of considering relative language proficiency in bilingual assessment.
NASA Technical Reports Server (NTRS)
Radhadrishnan, Krishnan
1993-01-01
A detailed analysis of the accuracy of several techniques recently developed for integrating stiff ordinary differential equations is presented. The techniques include two general-purpose codes EPISODE and LSODE developed for an arbitrary system of ordinary differential equations, and three specialized codes CHEMEQ, CREK1D, and GCKP4 developed specifically to solve chemical kinetic rate equations. The accuracy study is made by application of these codes to two practical combustion kinetics problems. Both problems describe adiabatic, homogeneous, gas-phase chemical reactions at constant pressure, and include all three combustion regimes: induction, heat release, and equilibration. To illustrate the error variation in the different combustion regimes the species are divided into three types (reactants, intermediates, and products), and error versus time plots are presented for each species type and the temperature. These plots show that CHEMEQ is the most accurate code during induction and early heat release. During late heat release and equilibration, however, the other codes are more accurate. A single global quantity, a mean integrated root-mean-square error, that measures the average error incurred in solving the complete problem is used to compare the accuracy of the codes. Among the codes examined, LSODE is the most accurate for solving chemical kinetics problems. It is also the most efficient code, in the sense that it requires the least computational work to attain a specified accuracy level. An important finding is that use of the algebraic enthalpy conservation equation to compute the temperature can be more accurate and efficient than integrating the temperature differential equation.
The neutral emergence of error minimized genetic codes superior to the standard genetic code.
Massey, Steven E
2016-11-07
The standard genetic code (SGC) assigns amino acids to codons in such a way that the impact of point mutations is reduced, this is termed 'error minimization' (EM). The occurrence of EM has been attributed to the direct action of selection, however it is difficult to explain how the searching of alternative codes for an error minimized code can occur via codon reassignments, given that these are likely to be disruptive to the proteome. An alternative scenario is that EM has arisen via the process of genetic code expansion, facilitated by the duplication of genes encoding charging enzymes and adaptor molecules. This is likely to have led to similar amino acids being assigned to similar codons. Strikingly, we show that if during code expansion the most similar amino acid to the parent amino acid, out of the set of unassigned amino acids, is assigned to codons related to those of the parent amino acid, then genetic codes with EM superior to the SGC easily arise. This scheme mimics code expansion via the gene duplication of charging enzymes and adaptors. The result is obtained for a variety of different schemes of genetic code expansion and provides a mechanistically realistic manner in which EM has arisen in the SGC. These observations might be taken as evidence for self-organization in the earliest stages of life. Copyright © 2016 Elsevier Ltd. All rights reserved.
A stimulus-dependent spike threshold is an optimal neural coder
Jones, Douglas L.; Johnson, Erik C.; Ratnam, Rama
2015-01-01
A neural code based on sequences of spikes can consume a significant portion of the brain's energy budget. Thus, energy considerations would dictate that spiking activity be kept as low as possible. However, a high spike-rate improves the coding and representation of signals in spike trains, particularly in sensory systems. These are competing demands, and selective pressure has presumably worked to optimize coding by apportioning a minimum number of spikes so as to maximize coding fidelity. The mechanisms by which a neuron generates spikes while maintaining a fidelity criterion are not known. Here, we show that a signal-dependent neural threshold, similar to a dynamic or adapting threshold, optimizes the trade-off between spike generation (encoding) and fidelity (decoding). The threshold mimics a post-synaptic membrane (a low-pass filter) and serves as an internal decoder. Further, it sets the average firing rate (the energy constraint). The decoding process provides an internal copy of the coding error to the spike-generator which emits a spike when the error equals or exceeds a spike threshold. When optimized, the trade-off leads to a deterministic spike firing-rule that generates optimally timed spikes so as to maximize fidelity. The optimal coder is derived in closed-form in the limit of high spike-rates, when the signal can be approximated as a piece-wise constant signal. The predicted spike-times are close to those obtained experimentally in the primary electrosensory afferent neurons of weakly electric fish (Apteronotus leptorhynchus) and pyramidal neurons from the somatosensory cortex of the rat. We suggest that KCNQ/Kv7 channels (underlying the M-current) are good candidates for the decoder. They are widely coupled to metabolic processes and do not inactivate. We conclude that the neural threshold is optimized to generate an energy-efficient and high-fidelity neural code. PMID:26082710
The algebraic decoding of the (41, 21, 9) quadratic residue code
NASA Technical Reports Server (NTRS)
Reed, Irving S.; Truong, T. K.; Chen, Xuemin; Yin, Xiaowei
1992-01-01
A new algebraic approach for decoding the quadratic residue (QR) codes, in particular the (41, 21, 9) QR code is presented. The key ideas behind this decoding technique are a systematic application of the Sylvester resultant method to the Newton identities associated with the code syndromes to find the error-locator polynomial, and next a method for determining error locations by solving certain quadratic, cubic and quartic equations over GF(2 exp m) in a new way which uses Zech's logarithms for the arithmetic. The algorithms developed here are suitable for implementation in a programmable microprocessor or special-purpose VLSI chip. It is expected that the algebraic methods developed here can apply generally to other codes such as the BCH and Reed-Solomon codes.
A recent Cleanroom success story: The Redwing project
NASA Technical Reports Server (NTRS)
Hausler, Philip A.
1992-01-01
Redwing is the largest completed Cleanroom software engineering project in IBM, both in terms of lines of code and project staffing. The product provides a decision-support facility that utilizes artificial intelligence (AI) technology for predicting and preventing complex operating problems in an MVS environment. The project used the Cleanroom process for development and realized a defect rate of 2.6 errors/KLOC, measured from first execution. This represents the total amount of errors that were found in testing and installation at three field test sites. Development productivity was 486 LOC/PM, which included all development labor expended in design specification through completion of incremental testing. In short, the Redwing team produced a complex systems software product with an extraordinarily low error rate, while maintaining high productivity. All of this was accomplished by a project team using Cleanroom for the first time. An 'introductory implementation' of Cleanroom was defined and used on Redwing. This paper describes the quality and productivity results, the Redwing project, and how Cleanroom was implemented.
Performance of MIMO-OFDM using convolution codes with QAM modulation
NASA Astrophysics Data System (ADS)
Astawa, I. Gede Puja; Moegiharto, Yoedy; Zainudin, Ahmad; Salim, Imam Dui Agus; Anggraeni, Nur Annisa
2014-04-01
Performance of Orthogonal Frequency Division Multiplexing (OFDM) system can be improved by adding channel coding (error correction code) to detect and correct errors that occur during data transmission. One can use the convolution code. This paper present performance of OFDM using Space Time Block Codes (STBC) diversity technique use QAM modulation with code rate ½. The evaluation is done by analyzing the value of Bit Error Rate (BER) vs Energy per Bit to Noise Power Spectral Density Ratio (Eb/No). This scheme is conducted 256 subcarrier which transmits Rayleigh multipath fading channel in OFDM system. To achieve a BER of 10-3 is required 10dB SNR in SISO-OFDM scheme. For 2×2 MIMO-OFDM scheme requires 10 dB to achieve a BER of 10-3. For 4×4 MIMO-OFDM scheme requires 5 dB while adding convolution in a 4x4 MIMO-OFDM can improve performance up to 0 dB to achieve the same BER. This proves the existence of saving power by 3 dB of 4×4 MIMO-OFDM system without coding, power saving 7 dB of 2×2 MIMO-OFDM and significant power savings from SISO-OFDM system.
Kotchenova, Svetlana Y; Vermote, Eric F
2007-07-10
This is the second part of the validation effort of the recently developed vector version of the 6S (Second Simulation of a Satellite Signal in the Solar Spectrum) radiative transfer code (6SV1), primarily used for the calculation of look-up tables in the Moderate Resolution Imaging Spectroradiometer (MODIS) atmospheric correction algorithm. The 6SV1 code was tested against a Monte Carlo code and Coulson's tabulated values for molecular and aerosol atmospheres bounded by different Lambertian and anisotropic surfaces. The code was also tested in scalar mode against the scalar code SHARM to resolve the previous 6S accuracy issues in the case of an anisotropic surface. All test cases were characterized by good agreement between the 6SV1 and the other codes: The overall relative error did not exceed 0.8%. The study also showed that ignoring the effects of radiation polarization in the atmosphere led to large errors in the simulated top-of-atmosphere reflectances: The maximum observed error was approximately 7.2% for both Lambertian and anisotropic surfaces.
NASA Astrophysics Data System (ADS)
Kotchenova, Svetlana Y.; Vermote, Eric F.
2007-07-01
This is the second part of the validation effort of the recently developed vector version of the 6S (Second Simulation of a Satellite Signal in the Solar Spectrum) radiative transfer code (6SV1), primarily used for the calculation of look-up tables in the Moderate Resolution Imaging Spectroradiometer (MODIS) atmospheric correction algorithm. The 6SV1 code was tested against a Monte Carlo code and Coulson's tabulated values for molecular and aerosol atmospheres bounded by different Lambertian and anisotropic surfaces. The code was also tested in scalar mode against the scalar code SHARM to resolve the previous 6S accuracy issues in the case of an anisotropic surface. All test cases were characterized by good agreement between the 6SV1 and the other codes: The overall relative error did not exceed 0.8%. The study also showed that ignoring the effects of radiation polarization in the atmosphere led to large errors in the simulated top-of-atmosphere reflectances: The maximum observed error was approximately 7.2% for both Lambertian and anisotropic surfaces.
Modulation/demodulation techniques for satellite communications. Part 1: Background
NASA Technical Reports Server (NTRS)
Omura, J. K.; Simon, M. K.
1981-01-01
Basic characteristics of digital data transmission systems described include the physical communication links, the notion of bandwidth, FCC regulations, and performance measurements such as bit rates, bit error probabilities, throughputs, and delays. The error probability performance and spectral characteristics of various modulation/demodulation techniques commonly used or proposed for use in radio and satellite communication links are summarized. Forward error correction with block or convolutional codes is also discussed along with the important coding parameter, channel cutoff rate.
NASA Astrophysics Data System (ADS)
Magnuson, Brian
A proof-of-concept software-in-the-loop study is performed to assess the accuracy of predicted net and charge-gaining energy consumption for potential effective use in optimizing powertrain management of hybrid vehicles. With promising results of improving fuel efficiency of a thermostatic control strategy for a series, plug-ing, hybrid-electric vehicle by 8.24%, the route and speed prediction machine learning algorithms are redesigned and implemented for real- world testing in a stand-alone C++ code-base to ingest map data, learn and predict driver habits, and store driver data for fast startup and shutdown of the controller or computer used to execute the compiled algorithm. Speed prediction is performed using a multi-layer, multi-input, multi- output neural network using feed-forward prediction and gradient descent through back- propagation training. Route prediction utilizes a Hidden Markov Model with a recurrent forward algorithm for prediction and multi-dimensional hash maps to store state and state distribution constraining associations between atomic road segments and end destinations. Predicted energy is calculated using the predicted time-series speed and elevation profile over the predicted route and the road-load equation. Testing of the code-base is performed over a known road network spanning 24x35 blocks on the south hill of Spokane, Washington. A large set of training routes are traversed once to add randomness to the route prediction algorithm, and a subset of the training routes, testing routes, are traversed to assess the accuracy of the net and charge-gaining predicted energy consumption. Each test route is traveled a random number of times with varying speed conditions from traffic and pedestrians to add randomness to speed prediction. Prediction data is stored and analyzed in a post process Matlab script. The aggregated results and analysis of all traversals of all test routes reflect the performance of the Driver Prediction algorithm. The error of average energy gained through charge-gaining events is 31.3% and the error of average net energy consumed is 27.3%. The average delta and average standard deviation of the delta of predicted energy gained through charge-gaining events is 0.639 and 0.601 Wh respectively for individual time-series calculations. Similarly, the average delta and average standard deviation of the delta of the predicted net energy consumed is 0.567 and 0.580 Wh respectively for individual time-series calculations. The average delta and standard deviation of the delta of the predicted speed is 1.60 and 1.15 respectively also for the individual time-series measurements. The percentage of accuracy of route prediction is 91%. Overall, test routes are traversed 151 times for a total test distance of 276.4 km.
Santos, José; Monteagudo, Ángel
2017-03-27
The canonical code, although prevailing in complex genomes, is not universal. It was shown the canonical genetic code superior robustness compared to random codes, but it is not clearly determined how it evolved towards its current form. The error minimization theory considers the minimization of point mutation adverse effect as the main selection factor in the evolution of the code. We have used simulated evolution in a computer to search for optimized codes, which helps to obtain information about the optimization level of the canonical code in its evolution. A genetic algorithm searches for efficient codes in a fitness landscape that corresponds with the adaptability of possible hypothetical genetic codes. The lower the effects of errors or mutations in the codon bases of a hypothetical code, the more efficient or optimal is that code. The inclusion of the fitness sharing technique in the evolutionary algorithm allows the extent to which the canonical genetic code is in an area corresponding to a deep local minimum to be easily determined, even in the high dimensional spaces considered. The analyses show that the canonical code is not in a deep local minimum and that the fitness landscape is not a multimodal fitness landscape with deep and separated peaks. Moreover, the canonical code is clearly far away from the areas of higher fitness in the landscape. Given the non-presence of deep local minima in the landscape, although the code could evolve and different forces could shape its structure, the fitness landscape nature considered in the error minimization theory does not explain why the canonical code ended its evolution in a location which is not an area of a localized deep minimum of the huge fitness landscape.
Posteriori error determination and grid adaptation for AMR and ALE computational fluid dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lapenta, G. M.
2002-01-01
We discuss grid adaptation for application to AMR and ALE codes. Two new contributions are presented. First, a new method to locate the regions where the truncation error is being created due to an insufficient accuracy: the operator recovery error origin (OREO) detector. The OREO detector is automatic, reliable, easy to implement and extremely inexpensive. Second, a new grid motion technique is presented for application to ALE codes. The method is based on the Brackbill-Saltzman approach but it is directly linked to the OREO detector and moves the grid automatically to minimize the error.
Iterative channel decoding of FEC-based multiple-description codes.
Chang, Seok-Ho; Cosman, Pamela C; Milstein, Laurence B
2012-03-01
Multiple description coding has been receiving attention as a robust transmission framework for multimedia services. This paper studies the iterative decoding of FEC-based multiple description codes. The proposed decoding algorithms take advantage of the error detection capability of Reed-Solomon (RS) erasure codes. The information of correctly decoded RS codewords is exploited to enhance the error correction capability of the Viterbi algorithm at the next iteration of decoding. In the proposed algorithm, an intradescription interleaver is synergistically combined with the iterative decoder. The interleaver does not affect the performance of noniterative decoding but greatly enhances the performance when the system is iteratively decoded. We also address the optimal allocation of RS parity symbols for unequal error protection. For the optimal allocation in iterative decoding, we derive mathematical equations from which the probability distributions of description erasures can be generated in a simple way. The performance of the algorithm is evaluated over an orthogonal frequency-division multiplexing system. The results show that the performance of the multiple description codes is significantly enhanced.
Label consistent K-SVD: learning a discriminative dictionary for recognition.
Jiang, Zhuolin; Lin, Zhe; Davis, Larry S
2013-11-01
A label consistent K-SVD (LC-KSVD) algorithm to learn a discriminative dictionary for sparse coding is presented. In addition to using class labels of training data, we also associate label information with each dictionary item (columns of the dictionary matrix) to enforce discriminability in sparse codes during the dictionary learning process. More specifically, we introduce a new label consistency constraint called "discriminative sparse-code error" and combine it with the reconstruction error and the classification error to form a unified objective function. The optimal solution is efficiently obtained using the K-SVD algorithm. Our algorithm learns a single overcomplete dictionary and an optimal linear classifier jointly. The incremental dictionary learning algorithm is presented for the situation of limited memory resources. It yields dictionaries so that feature points with the same class labels have similar sparse codes. Experimental results demonstrate that our algorithm outperforms many recently proposed sparse-coding techniques for face, action, scene, and object category recognition under the same learning conditions.
NASA Astrophysics Data System (ADS)
Watanabe, Y.; Abe, S.
2014-06-01
Terrestrial neutron-induced soft errors in MOSFETs from a 65 nm down to a 25 nm design rule are analyzed by means of multi-scale Monte Carlo simulation using the PHITS-HyENEXSS code system. Nuclear reaction models implemented in PHITS code are validated by comparisons with experimental data. From the analysis of calculated soft error rates, it is clarified that secondary He and H ions provide a major impact on soft errors with decreasing critical charge. It is also found that the high energy component from 10 MeV up to several hundreds of MeV in secondary cosmic-ray neutrons has the most significant source of soft errors regardless of design rule.
Reinforcement learning signals in the anterior cingulate cortex code for others' false beliefs.
Apps, M A J; Green, R; Ramnani, N
2013-01-01
The ability to recognise that another's belief is false is a hallmark of our capacity to understand others' mental states. It has been suggested that the computational and neural mechanisms that underpin learning about others' mental states may be similar to those that underpin first-person Reinforcement Learning (RL). In RL, unexpected decision-making outcomes constitute prediction errors (PE), which are coded for by neurons in the Anterior Cingulate Cortex (ACC). Does the ACC signal the PEs (false beliefs) of others about the outcomes of their decisions? We scanned subjects using fMRI while they monitored a third-person's decisions and similar responses made by a computer. The outcomes of the trials were manipulated, such that the actual outcome was unexpectedly different from the predicted outcome on 1/3 of trials. We examined activity time-locked to privileged information which indicated the actual outcomes only to subjects. Activity in the gyral ACC was found when the outcomes of the third-person's decisions were unexpectedly positive. Activity in the sulcal ACC was found when the third-person's or computer's outcomes were unexpectedly positive. We suggest that a property of the ACC is that it codes PEs, with a portion of the gyral ACC specialised for processing the PEs of others. Copyright © 2012 Elsevier Inc. All rights reserved.
Users Manual for the NASA Lewis Ice Accretion Prediction Code (LEWICE)
NASA Technical Reports Server (NTRS)
Ruff, Gary A.; Berkowitz, Brian M.
1990-01-01
LEWICE is an ice accretion prediction code that applies a time-stepping procedure to calculate the shape of an ice accretion. The potential flow field is calculated in LEWICE using the Douglas Hess-Smith 2-D panel code (S24Y). This potential flow field is then used to calculate the trajectories of particles and the impingement points on the body. These calculations are performed to determine the distribution of liquid water impinging on the body, which then serves as input to the icing thermodynamic code. The icing thermodynamic model is based on the work of Messinger, but contains several major modifications and improvements. This model is used to calculate the ice growth rate at each point on the surface of the geometry. By specifying an icing time increment, the ice growth rate can be interpreted as an ice thickness which is added to the body, resulting in the generation of new coordinates. This procedure is repeated, beginning with the potential flow calculations, until the desired icing time is reached. The operation of LEWICE is illustrated through the use of five examples. These examples are representative of the types of applications expected for LEWICE. All input and output is discussed, along with many of the diagnostic messages contained in the code. Several error conditions that may occur in the code for certain icing conditions are identified, and a course of action is recommended. LEWICE has been used to calculate a variety of ice shapes, but should still be considered a research code. The code should be exercised further to identify any shortcomings and inadequacies. Any modifications identified as a result of these cases, or of additional experimental results, should be incorporated into the model. Using it as a test bed for improvements to the ice accretion model is one important application of LEWICE.
Hétu, Sébastien; Luo, Yi; D’Ardenne, Kimberlee; Lohrenz, Terry
2017-01-01
Abstract As models of shared expectations, social norms play an essential role in our societies. Since our social environment is changing constantly, our internal models of it also need to change. In humans, there is mounting evidence that neural structures such as the insula and the ventral striatum are involved in detecting norm violation and updating internal models. However, because of methodological challenges, little is known about the possible involvement of midbrain structures in detecting norm violation and updating internal models of our norms. Here, we used high-resolution cardiac-gated functional magnetic resonance imaging and a norm adaptation paradigm in healthy adults to investigate the role of the substantia nigra/ventral tegmental area (SN/VTA) complex in tracking signals related to norm violation that can be used to update internal norms. We show that the SN/VTA codes for the norm’s variance prediction error (PE) and norm PE with spatially distinct regions coding for negative and positive norm PE. These results point to a common role played by the SN/VTA complex in supporting both simple reward-based and social decision making. PMID:28981876
Cryptic tRNAs in chaetognath mitochondrial genomes.
Barthélémy, Roxane-Marie; Seligmann, Hervé
2016-06-01
The chaetognaths constitute a small and enigmatic phylum of little marine invertebrates. Both nuclear and mitochondrial genomes have numerous originalities, some phylum-specific. Until recently, their mitogenomes seemed containing only one tRNA gene (trnMet), but a recent study found in two chaetognath mitogenomes two and four tRNA genes. Moreover, apparently two conspecific mitogenomes have different tRNA gene numbers (one and two). Reanalyses by tRNAscan-SE and ARWEN softwares of the five available complete chaetognath mitogenomes suggest numerous additional tRNA genes from different types. Their total number never reaches the 22 found in most other invertebrates using that genetic code. Predicted error compensation between codon-anticodon mismatch and tRNA misacylation suggests translational activity by tRNAs predicted solely according to secondary structure for tRNAs predicted by tRNAscan-SE, not ARWEN. Numbers of predicted stop-suppressor (antitermination) tRNAs coevolve with predicted overlapping, frameshifted protein coding genes including stop codons. Sequence alignments in secondary structure prediction with non-chaetognath tRNAs suggest that the most likely functional tRNAs are in intergenic regions, as regular mt-tRNAs. Due to usually short intergenic regions, generally tRNA sequences partially overlap with flanking genes. Some tRNA pairs seem templated by sense-antisense strands. Moreover, 16S rRNA genes, but not 12S rRNAs, appear as tRNA nurseries, as previously suggested for multifunctional ribosomal-like protogenomes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Scalable video transmission over Rayleigh fading channels using LDPC codes
NASA Astrophysics Data System (ADS)
Bansal, Manu; Kondi, Lisimachos P.
2005-03-01
In this paper, we investigate an important problem of efficiently utilizing the available resources for video transmission over wireless channels while maintaining a good decoded video quality and resilience to channel impairments. Our system consists of the video codec based on 3-D set partitioning in hierarchical trees (3-D SPIHT) algorithm and employs two different schemes using low-density parity check (LDPC) codes for channel error protection. The first method uses the serial concatenation of the constant-rate LDPC code and rate-compatible punctured convolutional (RCPC) codes. Cyclic redundancy check (CRC) is used to detect transmission errors. In the other scheme, we use the product code structure consisting of a constant rate LDPC/CRC code across the rows of the `blocks' of source data and an erasure-correction systematic Reed-Solomon (RS) code as the column code. In both the schemes introduced here, we use fixed-length source packets protected with unequal forward error correction coding ensuring a strictly decreasing protection across the bitstream. A Rayleigh flat-fading channel with additive white Gaussian noise (AWGN) is modeled for the transmission. The rate-distortion optimization algorithm is developed and carried out for the selection of source coding and channel coding rates using Lagrangian optimization. The experimental results demonstrate the effectiveness of this system under different wireless channel conditions and both the proposed methods (LDPC+RCPC/CRC and RS+LDPC/CRC) outperform the more conventional schemes such as those employing RCPC/CRC.
Neural network decoder for quantum error correcting codes
NASA Astrophysics Data System (ADS)
Krastanov, Stefan; Jiang, Liang
Artificial neural networks form a family of extremely powerful - albeit still poorly understood - tools used in anything from image and sound recognition through text generation to, in our case, decoding. We present a straightforward Recurrent Neural Network architecture capable of deducing the correcting procedure for a quantum error-correcting code from a set of repeated stabilizer measurements. We discuss the fault-tolerance of our scheme and the cost of training the neural network for a system of a realistic size. Such decoders are especially interesting when applied to codes, like the quantum LDPC codes, that lack known efficient decoding schemes.
Error-Transparent Quantum Gates for Small Logical Qubit Architectures
NASA Astrophysics Data System (ADS)
Kapit, Eliot
2018-02-01
One of the largest obstacles to building a quantum computer is gate error, where the physical evolution of the state of a qubit or group of qubits during a gate operation does not match the intended unitary transformation. Gate error stems from a combination of control errors and random single qubit errors from interaction with the environment. While great strides have been made in mitigating control errors, intrinsic qubit error remains a serious problem that limits gate fidelity in modern qubit architectures. Simultaneously, recent developments of small error-corrected logical qubit devices promise significant increases in logical state lifetime, but translating those improvements into increases in gate fidelity is a complex challenge. In this Letter, we construct protocols for gates on and between small logical qubit devices which inherit the parent device's tolerance to single qubit errors which occur at any time before or during the gate. We consider two such devices, a passive implementation of the three-qubit bit flip code, and the author's own [E. Kapit, Phys. Rev. Lett. 116, 150501 (2016), 10.1103/PhysRevLett.116.150501] very small logical qubit (VSLQ) design, and propose error-tolerant gate sets for both. The effective logical gate error rate in these models displays superlinear error reduction with linear increases in single qubit lifetime, proving that passive error correction is capable of increasing gate fidelity. Using a standard phenomenological noise model for superconducting qubits, we demonstrate a realistic, universal one- and two-qubit gate set for the VSLQ, with error rates an order of magnitude lower than those for same-duration operations on single qubits or pairs of qubits. These developments further suggest that incorporating small logical qubits into a measurement based code could substantially improve code performance.
NASA Astrophysics Data System (ADS)
Honnell, Kevin; Burnett, Sarah; Yorke, Chloe'; Howard, April; Ramsey, Scott
2017-06-01
The Noh problem is classic verification problem in the field of compressible flows. Simple to conceptualize, it is nonetheless difficult for numerical codes to predict correctly, making it an ideal code-verification test bed. In its original incarnation, the fluid is a simple ideal gas; once validated, however, these codes are often used to study highly non-ideal fluids and solids. In this work the classic Noh problem is extended beyond the commonly-studied polytropic ideal gas to more realistic equations of state (EOS) including the stiff gas, the Nobel-Abel gas, and the Carnahan-Starling hard-sphere fluid, thus enabling verification studies to be performed on more physically-realistic fluids. Exact solutions are compared with numerical results obtained from the Lagrangian hydrocode FLAG, developed at Los Alamos. For these more realistic EOSs, the simulation errors decreased in magnitude both at the origin and at the shock, but also spread more broadly about these points compared to the ideal EOS. The overall spatial convergence rate remained first order.
NASA Astrophysics Data System (ADS)
Hartling, K.; Ciungu, B.; Li, G.; Bentoumi, G.; Sur, B.
2018-05-01
Monte Carlo codes such as MCNP and Geant4 rely on a combination of physics models and evaluated nuclear data files (ENDF) to simulate the transport of neutrons through various materials and geometries. The grid representation used to represent the final-state scattering energies and angles associated with neutron scattering interactions can significantly affect the predictions of these codes. In particular, the default thermal scattering libraries used by MCNP6.1 and Geant4.10.3 do not accurately reproduce the ENDF/B-VII.1 model in simulations of the double-differential cross section for thermal neutrons interacting with hydrogen nuclei in a thin layer of water. However, agreement between model and simulation can be achieved within the statistical error by re-processing ENDF/B-VII.I thermal scattering libraries with the NJOY code. The structure of the thermal scattering libraries and sampling algorithms in MCNP and Geant4 are also reviewed.
NASA Technical Reports Server (NTRS)
Ingels, F.; Schoggen, W. O.
1981-01-01
The various methods of high bit transition density encoding are presented, their relative performance is compared in so far as error propagation characteristics, transition properties and system constraints are concerned. A computer simulation of the system using the specific PN code recommended, is included.
Holonomic surface codes for fault-tolerant quantum computation
NASA Astrophysics Data System (ADS)
Zhang, Jiang; Devitt, Simon J.; You, J. Q.; Nori, Franco
2018-02-01
Surface codes can protect quantum information stored in qubits from local errors as long as the per-operation error rate is below a certain threshold. Here we propose holonomic surface codes by harnessing the quantum holonomy of the system. In our scheme, the holonomic gates are built via auxiliary qubits rather than the auxiliary levels in multilevel systems used in conventional holonomic quantum computation. The key advantage of our approach is that the auxiliary qubits are in their ground state before and after each gate operation, so they are not involved in the operation cycles of surface codes. This provides an advantageous way to implement surface codes for fault-tolerant quantum computation.
Final Report: Correctness Tools for Petascale Computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mellor-Crummey, John
2014-10-27
In the course of developing parallel programs for leadership computing systems, subtle programming errors often arise that are extremely difficult to diagnose without tools. To meet this challenge, University of Maryland, the University of Wisconsin—Madison, and Rice University worked to develop lightweight tools to help code developers pinpoint a variety of program correctness errors that plague parallel scientific codes. The aim of this project was to develop software tools that help diagnose program errors including memory leaks, memory access errors, round-off errors, and data races. Research at Rice University focused on developing algorithms and data structures to support efficient monitoringmore » of multithreaded programs for memory access errors and data races. This is a final report about research and development work at Rice University as part of this project.« less
Encoder fault analysis system based on Moire fringe error signal
NASA Astrophysics Data System (ADS)
Gao, Xu; Chen, Wei; Wan, Qiu-hua; Lu, Xin-ran; Xie, Chun-yu
2018-02-01
Aiming at the problem of any fault and wrong code in the practical application of photoelectric shaft encoder, a fast and accurate encoder fault analysis system is researched from the aspect of Moire fringe photoelectric signal processing. DSP28335 is selected as the core processor and high speed serial A/D converter acquisition card is used. And temperature measuring circuit using AD7420 is designed. Discrete data of Moire fringe error signal is collected at different temperatures and it is sent to the host computer through wireless transmission. The error signal quality index and fault type is displayed on the host computer based on the error signal identification method. The error signal quality can be used to diagnosis the state of error code through the human-machine interface.
Clover: Compiler directed lightweight soft error resilience
Liu, Qingrui; Lee, Dongyoon; Jung, Changhee; ...
2015-05-01
This paper presents Clover, a compiler directed soft error detection and recovery scheme for lightweight soft error resilience. The compiler carefully generates soft error tolerant code based on idem-potent processing without explicit checkpoint. During program execution, Clover relies on a small number of acoustic wave detectors deployed in the processor to identify soft errors by sensing the wave made by a particle strike. To cope with DUE (detected unrecoverable errors) caused by the sensing latency of error detection, Clover leverages a novel selective instruction duplication technique called tail-DMR (dual modular redundancy). Once a soft error is detected by either themore » sensor or the tail-DMR, Clover takes care of the error as in the case of exception handling. To recover from the error, Clover simply redirects program control to the beginning of the code region where the error is detected. Lastly, the experiment results demonstrate that the average runtime overhead is only 26%, which is a 75% reduction compared to that of the state-of-the-art soft error resilience technique.« less
Least Reliable Bits Coding (LRBC) for high data rate satellite communications
NASA Technical Reports Server (NTRS)
Vanderaar, Mark; Wagner, Paul; Budinger, James
1992-01-01
An analysis and discussion of a bandwidth efficient multi-level/multi-stage block coded modulation technique called Least Reliable Bits Coding (LRBC) is presented. LRBC uses simple multi-level component codes that provide increased error protection on increasingly unreliable modulated bits in order to maintain an overall high code rate that increases spectral efficiency. Further, soft-decision multi-stage decoding is used to make decisions on unprotected bits through corrections made on more protected bits. Using analytical expressions and tight performance bounds it is shown that LRBC can achieve increased spectral efficiency and maintain equivalent or better power efficiency compared to that of Binary Phase Shift Keying (BPSK). Bit error rates (BER) vs. channel bit energy with Additive White Gaussian Noise (AWGN) are given for a set of LRB Reed-Solomon (RS) encoded 8PSK modulation formats with an ensemble rate of 8/9. All formats exhibit a spectral efficiency of 2.67 = (log2(8))(8/9) information bps/Hz. Bit by bit coded and uncoded error probabilities with soft-decision information are determined. These are traded with with code rate to determine parameters that achieve good performance. The relative simplicity of Galois field algebra vs. the Viterbi algorithm and the availability of high speed commercial Very Large Scale Integration (VLSI) for block codes indicates that LRBC using block codes is a desirable method for high data rate implementations.
Mull, Hillary J; Borzecki, Ann M; Loveland, Susan; Hickson, Kathleen; Chen, Qi; MacDonald, Sally; Shin, Marlena H; Cevasco, Marisa; Itani, Kamal M F; Rosen, Amy K
2014-04-01
The Patient Safety Indicators (PSIs) use administrative data to screen for select adverse events (AEs). In this study, VA Surgical Quality Improvement Program (VASQIP) chart review data were used as the gold standard to measure the criterion validity of 5 surgical PSIs. Independent chart review was also used to determine reasons for PSI errors. The sensitivity, specificity, and positive predictive value of PSI software version 4.1a were calculated among Veterans Health Administration hospitalizations (2003-2007) reviewed by VASQIP (n = 268,771). Nurses re-reviewed a sample of hospitalizations for which PSI and VASQIP AE detection disagreed. Sensitivities ranged from 31% to 68%, specificities from 99.1% to 99.8%, and positive predictive values from 31% to 72%. Reviewers found that coding errors accounted for some PSI-VASQIP disagreement; some disagreement was also the result of differences in AE definitions. These results suggest that the PSIs have moderate criterion validity; however, some surgical PSIs detect different AEs than VASQIP. Future research should explore using both methods to evaluate surgical quality. Published by Elsevier Inc.
Ancient DNA sequence revealed by error-correcting codes.
Brandão, Marcelo M; Spoladore, Larissa; Faria, Luzinete C B; Rocha, Andréa S L; Silva-Filho, Marcio C; Palazzo, Reginaldo
2015-07-10
A previously described DNA sequence generator algorithm (DNA-SGA) using error-correcting codes has been employed as a computational tool to address the evolutionary pathway of the genetic code. The code-generated sequence alignment demonstrated that a residue mutation revealed by the code can be found in the same position in sequences of distantly related taxa. Furthermore, the code-generated sequences do not promote amino acid changes in the deviant genomes through codon reassignment. A Bayesian evolutionary analysis of both code-generated and homologous sequences of the Arabidopsis thaliana malate dehydrogenase gene indicates an approximately 1 MYA divergence time from the MDH code-generated sequence node to its paralogous sequences. The DNA-SGA helps to determine the plesiomorphic state of DNA sequences because a single nucleotide alteration often occurs in distantly related taxa and can be found in the alternative codon patterns of noncanonical genetic codes. As a consequence, the algorithm may reveal an earlier stage of the evolution of the standard code.
Ancient DNA sequence revealed by error-correcting codes
Brandão, Marcelo M.; Spoladore, Larissa; Faria, Luzinete C. B.; Rocha, Andréa S. L.; Silva-Filho, Marcio C.; Palazzo, Reginaldo
2015-01-01
A previously described DNA sequence generator algorithm (DNA-SGA) using error-correcting codes has been employed as a computational tool to address the evolutionary pathway of the genetic code. The code-generated sequence alignment demonstrated that a residue mutation revealed by the code can be found in the same position in sequences of distantly related taxa. Furthermore, the code-generated sequences do not promote amino acid changes in the deviant genomes through codon reassignment. A Bayesian evolutionary analysis of both code-generated and homologous sequences of the Arabidopsis thaliana malate dehydrogenase gene indicates an approximately 1 MYA divergence time from the MDH code-generated sequence node to its paralogous sequences. The DNA-SGA helps to determine the plesiomorphic state of DNA sequences because a single nucleotide alteration often occurs in distantly related taxa and can be found in the alternative codon patterns of noncanonical genetic codes. As a consequence, the algorithm may reveal an earlier stage of the evolution of the standard code. PMID:26159228
High rate concatenated coding systems using bandwidth efficient trellis inner codes
NASA Technical Reports Server (NTRS)
Deng, Robert H.; Costello, Daniel J., Jr.
1989-01-01
High-rate concatenated coding systems with bandwidth-efficient trellis inner codes and Reed-Solomon (RS) outer codes are investigated for application in high-speed satellite communication systems. Two concatenated coding schemes are proposed. In one the inner code is decoded with soft-decision Viterbi decoding, and the outer RS code performs error-correction-only decoding (decoding without side information). In the other, the inner code is decoded with a modified Viterbi algorithm, which produces reliability information along with the decoded output. In this algorithm, path metrics are used to estimate the entire information sequence, whereas branch metrics are used to provide reliability information on the decoded sequence. This information is used to erase unreliable bits in the decoded output. An errors-and-erasures RS decoder is then used for the outer code. The two schemes have been proposed for high-speed data communication on NASA satellite channels. The rates considered are at least double those used in current NASA systems, and the results indicate that high system reliability can still be achieved.
Dissociating response conflict and error likelihood in anterior cingulate cortex.
Yeung, Nick; Nieuwenhuis, Sander
2009-11-18
Neuroimaging studies consistently report activity in anterior cingulate cortex (ACC) in conditions of high cognitive demand, leading to the view that ACC plays a crucial role in the control of cognitive processes. According to one prominent theory, the sensitivity of ACC to task difficulty reflects its role in monitoring for the occurrence of competition, or "conflict," between responses to signal the need for increased cognitive control. However, a contrasting theory proposes that ACC is the recipient rather than source of monitoring signals, and that ACC activity observed in relation to task demand reflects the role of this region in learning about the likelihood of errors. Response conflict and error likelihood are typically confounded, making the theories difficult to distinguish empirically. The present research therefore used detailed computational simulations to derive contrasting predictions regarding ACC activity and error rate as a function of response speed. The simulations demonstrated a clear dissociation between conflict and error likelihood: fast response trials are associated with low conflict but high error likelihood, whereas slow response trials show the opposite pattern. Using the N2 component as an index of ACC activity, an EEG study demonstrated that when conflict and error likelihood are dissociated in this way, ACC activity tracks conflict and is negatively correlated with error likelihood. These findings support the conflict-monitoring theory and suggest that, in speeded decision tasks, ACC activity reflects current task demands rather than the retrospective coding of past performance.
Hakala, John L; Hung, Joseph C; Mosman, Elton A
2012-09-01
The objective of this project was to ensure correct radiopharmaceutical administration through the use of a bar code system that links patient and drug profiles with on-site information management systems. This new combined system would minimize the amount of manual human manipulation, which has proven to be a primary source of error. The most common reason for dosing errors is improper patient identification when a dose is obtained from the nuclear pharmacy or when a dose is administered. A standardized electronic transfer of information from radiopharmaceutical preparation to injection will further reduce the risk of misadministration. Value stream maps showing the flow of the patient dose information, as well as potential points of human error, were developed. Next, a future-state map was created that included proposed corrections for the most common critical sites of error. Transitioning the current process to the future state will require solutions that address these sites. To optimize the future-state process, a bar code system that links the on-site radiology management system with the nuclear pharmacy management system was proposed. A bar-coded wristband connects the patient directly to the electronic information systems. The bar code-enhanced process linking the patient dose with the electronic information reduces the number of crucial points for human error and provides a framework to ensure that the prepared dose reaches the correct patient. Although the proposed flowchart is designed for a site with an in-house central nuclear pharmacy, much of the framework could be applied by nuclear medicine facilities using unit doses. An electronic connection between information management systems to allow the tracking of a radiopharmaceutical from preparation to administration can be a useful tool in preventing the mistakes that are an unfortunate reality for any facility.
ERIC Educational Resources Information Center
Shumack, Kellie A.; Reilly, Erin; Chamberlain, Nik
2013-01-01
space, has error-correction capacity, and can be read from any direction. These codes are used in manufacturing, shipping, and marketing, as well as in education. QR codes can be created to produce…
FPGA implementation of high-performance QC-LDPC decoder for optical communications
NASA Astrophysics Data System (ADS)
Zou, Ding; Djordjevic, Ivan B.
2015-01-01
Forward error correction is as one of the key technologies enabling the next-generation high-speed fiber optical communications. Quasi-cyclic (QC) low-density parity-check (LDPC) codes have been considered as one of the promising candidates due to their large coding gain performance and low implementation complexity. In this paper, we present our designed QC-LDPC code with girth 10 and 25% overhead based on pairwise balanced design. By FPGAbased emulation, we demonstrate that the 5-bit soft-decision LDPC decoder can achieve 11.8dB net coding gain with no error floor at BER of 10-15 avoiding using any outer code or post-processing method. We believe that the proposed single QC-LDPC code is a promising solution for 400Gb/s optical communication systems and beyond.
NASA Technical Reports Server (NTRS)
Ni, Jianjun David
2011-01-01
This presentation briefly discusses a research effort on mitigation techniques of pulsed radio frequency interference (RFI) on a Low-Density-Parity-Check (LDPC) code. This problem is of considerable interest in the context of providing reliable communications to the space vehicle which might suffer severe degradation due to pulsed RFI sources such as large radars. The LDPC code is one of modern forward-error-correction (FEC) codes which have the decoding performance to approach the Shannon Limit. The LDPC code studied here is the AR4JA (2048, 1024) code recommended by the Consultative Committee for Space Data Systems (CCSDS) and it has been chosen for some spacecraft design. Even though this code is designed as a powerful FEC code in the additive white Gaussian noise channel, simulation data and test results show that the performance of this LDPC decoder is severely degraded when exposed to the pulsed RFI specified in the spacecraft s transponder specifications. An analysis work (through modeling and simulation) has been conducted to evaluate the impact of the pulsed RFI and a few implemental techniques have been investigated to mitigate the pulsed RFI impact by reshuffling the soft-decision-data available at the input of the LDPC decoder. The simulation results show that the LDPC decoding performance of codeword error rate (CWER) under pulsed RFI can be improved up to four orders of magnitude through a simple soft-decision-data reshuffle scheme. This study reveals that an error floor of LDPC decoding performance appears around CWER=1E-4 when the proposed technique is applied to mitigate the pulsed RFI impact. The mechanism causing this error floor remains unknown, further investigation is necessary.
Topological quantum error correction in the Kitaev honeycomb model
NASA Astrophysics Data System (ADS)
Lee, Yi-Chan; Brell, Courtney G.; Flammia, Steven T.
2017-08-01
The Kitaev honeycomb model is an approximate topological quantum error correcting code in the same phase as the toric code, but requiring only a 2-body Hamiltonian. As a frustrated spin model, it is well outside the commuting models of topological quantum codes that are typically studied, but its exact solubility makes it more amenable to analysis of effects arising in this noncommutative setting than a generic topologically ordered Hamiltonian. Here we study quantum error correction in the honeycomb model using both analytic and numerical techniques. We first prove explicit exponential bounds on the approximate degeneracy, local indistinguishability, and correctability of the code space. These bounds are tighter than can be achieved using known general properties of topological phases. Our proofs are specialized to the honeycomb model, but some of the methods may nonetheless be of broader interest. Following this, we numerically study noise caused by thermalization processes in the perturbative regime close to the toric code renormalization group fixed point. The appearance of non-topological excitations in this setting has no significant effect on the error correction properties of the honeycomb model in the regimes we study. Although the behavior of this model is found to be qualitatively similar to that of the standard toric code in most regimes, we find numerical evidence of an interesting effect in the low-temperature, finite-size regime where a preferred lattice direction emerges and anyon diffusion is geometrically constrained. We expect this effect to yield an improvement in the scaling of the lifetime with system size as compared to the standard toric code.
Design of an MSAT-X mobile transceiver and related base and gateway stations
NASA Technical Reports Server (NTRS)
Fang, Russell J. F.; Bhaskar, Udaya; Hemmati, Farhad; Mackenthun, Kenneth M.; Shenoy, Ajit
1987-01-01
This paper summarizes the results of a design study of the mobile transceiver, base station, and gateway station for NASA's proposed Mobile Satellite Experiment (MSAT-X). Major ground segment system design issues such as frequency stability control, modulation method, linear predictive coding vocoder algorithm, and error control technique are addressed. The modular and flexible transceiver design is described in detail, including the core, RF/IF, modem, vocoder, forward error correction codec, amplitude-companded single sideband, and input/output modules, as well as the flexible interface. Designs for a three-carrier base station and a 10-carrier gateway station are also discussed, including the interface with the controllers and with the public-switched telephone networks at the gateway station. Functional specifications are given for the transceiver, the base station, and the gateway station.
Software Requirements Analysis as Fault Predictor
NASA Technical Reports Server (NTRS)
Wallace, Dolores
2003-01-01
Waiting until the integration and system test phase to discover errors leads to more costly rework than resolving those same errors earlier in the lifecycle. Costs increase even more significantly once a software system has become operational. WE can assess the quality of system requirements, but do little to correlate this information either to system assurance activities or long-term reliability projections - both of which remain unclear and anecdotal. Extending earlier work on requirements accomplished by the ARM tool, measuring requirements quality information against code complexity and test data for the same system may be used to predict specific software modules containing high impact or deeply embedded faults now escaping in operational systems. Such knowledge would lead to more effective and efficient test programs. It may enable insight into whether a program should be maintained or started over.
Design of an MSAT-X mobile transceiver and related base and gateway stations
NASA Astrophysics Data System (ADS)
Fang, Russell J. F.; Bhaskar, Udaya; Hemmati, Farhad; Mackenthun, Kenneth M.; Shenoy, Ajit
This paper summarizes the results of a design study of the mobile transceiver, base station, and gateway station for NASA's proposed Mobile Satellite Experiment (MSAT-X). Major ground segment system design issues such as frequency stability control, modulation method, linear predictive coding vocoder algorithm, and error control technique are addressed. The modular and flexible transceiver design is described in detail, including the core, RF/IF, modem, vocoder, forward error correction codec, amplitude-companded single sideband, and input/output modules, as well as the flexible interface. Designs for a three-carrier base station and a 10-carrier gateway station are also discussed, including the interface with the controllers and with the public-switched telephone networks at the gateway station. Functional specifications are given for the transceiver, the base station, and the gateway station.
Crack Turning and Arrest Mechanisms for Integral Structure
NASA Technical Reports Server (NTRS)
Pettit, Richard; Ingraffea, Anthony
1999-01-01
In the course of several years of research efforts to predict crack turning and flapping in aircraft fuselage structures and other problems related to crack turning, the 2nd order maximum tangential stress theory has been identified as the theory most capable of predicting the observed test results. This theory requires knowledge of a material specific characteristic length, and also a computation of the stress intensity factors and the T-stress, or second order term in the asymptotic stress field in the vicinity of the crack tip. A characteristic length, r(sub c), is proposed for ductile materials pertaining to the onset of plastic instability, as opposed to the void spacing theories espoused by previous investigators. For the plane stress case, an approximate estimate of r(sub c), is obtained from the asymptotic field for strain hardening materials given by Hutchinson, Rice and Rosengren (HRR). A previous study using of high order finite element methods to calculate T-stresses by contour integrals resulted in extremely high accuracy values obtained for selected test specimen geometries, and a theoretical error estimation parameter was defined. In the present study, it is shown that a large portion of the error in finite element computations of both K and T are systematic, and can be corrected after the initial solution if the finite element implementation utilizes a similar crack tip discretization scheme for all problems. This scheme is applied for two-dimensional problems to a both a p-version finite element code, showing that sufficiently accurate values of both K(sub I) and T can be obtained with fairly low order elements if correction is used. T-stress correction coefficients are also developed for the singular crack tip rosette utilized in the adaptive mesh finite element code FRANC2D, and shown to reduce the error in the computed T-stress significantly. Stress intensity factor correction was not attempted for FRANC2D because it employs a highly accurate quarter-point scheme to obtain stress intensity factors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, Y., E-mail: watanabe@aees.kyushu-u.ac.jp; Abe, S.
Terrestrial neutron-induced soft errors in MOSFETs from a 65 nm down to a 25 nm design rule are analyzed by means of multi-scale Monte Carlo simulation using the PHITS-HyENEXSS code system. Nuclear reaction models implemented in PHITS code are validated by comparisons with experimental data. From the analysis of calculated soft error rates, it is clarified that secondary He and H ions provide a major impact on soft errors with decreasing critical charge. It is also found that the high energy component from 10 MeV up to several hundreds of MeV in secondary cosmic-ray neutrons has the most significant sourcemore » of soft errors regardless of design rule.« less
NASA Technical Reports Server (NTRS)
Shinn, J. L.; Cucinotta, F. A.; Badhwar, G. D.; ONeill, P. M.; Badavi, F. F.
1995-01-01
Recent improvements in the radiation transport code HZETRN/BRYNTRN and galactic cosmic ray environmental model have provided an opportunity to investigate the effects of target fragmentation on estimates of single event upset (SEU) rates for spacecraft memory devices. Since target fragments are mostly of very low energy, an SEU prediction model has been derived in terms of particle energy rather than linear energy transfer (LET) to account for nonlinear relationship between range and energy. Predictions are made for SEU rates observed on two Shuttle flights, each at low and high inclination orbit. Corrections due to track structure effects are made for both high energy ions with track structure larger than device sensitive volume and for low energy ions with dense track where charge recombination is important. Results indicate contributions from target fragments are relatively important at large shield depths (or any thick structure material) and at low inclination orbit. Consequently, a more consistent set of predictions for upset rates observed in these two flights is reached when compared to an earlier analysis with CREME model. It is also observed that the errors produced by assuming linear relationship in range and energy in the earlier analysis have fortuitously canceled out the errors for not considering target fragmentation and track structure effects.
Applications and error correction for adiabatic quantum optimization
NASA Astrophysics Data System (ADS)
Pudenz, Kristen
Adiabatic quantum optimization (AQO) is a fast-developing subfield of quantum information processing which holds great promise in the relatively near future. Here we develop an application, quantum anomaly detection, and an error correction code, Quantum Annealing Correction (QAC), for use with AQO. The motivation for the anomaly detection algorithm is the problematic nature of classical software verification and validation (V&V). The number of lines of code written for safety-critical applications such as cars and aircraft increases each year, and with it the cost of finding errors grows exponentially (the cost of overlooking errors, which can be measured in human safety, is arguably even higher). We approach the V&V problem by using a quantum machine learning algorithm to identify charateristics of software operations that are implemented outside of specifications, then define an AQO to return these anomalous operations as its result. Our error correction work is the first large-scale experimental demonstration of quantum error correcting codes. We develop QAC and apply it to USC's equipment, the first and second generation of commercially available D-Wave AQO processors. We first show comprehensive experimental results for the code's performance on antiferromagnetic chains, scaling the problem size up to 86 logical qubits (344 physical qubits) and recovering significant encoded success rates even when the unencoded success rates drop to almost nothing. A broader set of randomized benchmarking problems is then introduced, for which we observe similar behavior to the antiferromagnetic chain, specifically that the use of QAC is almost always advantageous for problems of sufficient size and difficulty. Along the way, we develop problem-specific optimizations for the code and gain insight into the various on-chip error mechanisms (most prominently thermal noise, since the hardware operates at finite temperature) and the ways QAC counteracts them. We finish by showing that the scheme is robust to qubit loss on-chip, a significant benefit when considering an implemented system.
LDPC Codes--Structural Analysis and Decoding Techniques
ERIC Educational Resources Information Center
Zhang, Xiaojie
2012-01-01
Low-density parity-check (LDPC) codes have been the focus of much research over the past decade thanks to their near Shannon limit performance and to their efficient message-passing (MP) decoding algorithms. However, the error floor phenomenon observed in MP decoding, which manifests itself as an abrupt change in the slope of the error-rate curve,…
Local non-Calderbank-Shor-Steane quantum error-correcting code on a three-dimensional lattice
NASA Astrophysics Data System (ADS)
Kim, Isaac H.
2011-05-01
We present a family of non-Calderbank-Shor-Steane quantum error-correcting code consisting of geometrically local stabilizer generators on a 3D lattice. We study the Hamiltonian constructed from ferromagnetic interaction of overcomplete set of local stabilizer generators. The degenerate ground state of the system is characterized by a quantum error-correcting code whose number of encoded qubits are equal to the second Betti number of the manifold. These models (i) have solely local interactions; (ii) admit a strong-weak duality relation with an Ising model on a dual lattice; (iii) have topological order in the ground state, some of which survive at finite temperature; and (iv) behave as classical memory at finite temperature.
Integrating automated structured analysis and design with Ada programming support environments
NASA Technical Reports Server (NTRS)
Hecht, Alan; Simmons, Andy
1986-01-01
Ada Programming Support Environments (APSE) include many powerful tools that address the implementation of Ada code. These tools do not address the entire software development process. Structured analysis is a methodology that addresses the creation of complete and accurate system specifications. Structured design takes a specification and derives a plan to decompose the system subcomponents, and provides heuristics to optimize the software design to minimize errors and maintenance. It can also produce the creation of useable modules. Studies have shown that most software errors result from poor system specifications, and that these errors also become more expensive to fix as the development process continues. Structured analysis and design help to uncover error in the early stages of development. The APSE tools help to insure that the code produced is correct, and aid in finding obscure coding errors. However, they do not have the capability to detect errors in specifications or to detect poor designs. An automated system for structured analysis and design TEAMWORK, which can be integrated with an APSE to support software systems development from specification through implementation is described. These tools completement each other to help developers improve quality and productivity, as well as to reduce development and maintenance costs. Complete system documentation and reusable code also resultss from the use of these tools. Integrating an APSE with automated tools for structured analysis and design provide capabilities and advantages beyond those realized with any of these systems used by themselves.
Combined Wavelet Video Coding and Error Control for Internet Streaming and Multicast
NASA Astrophysics Data System (ADS)
Chu, Tianli; Xiong, Zixiang
2003-12-01
This paper proposes an integrated approach to Internet video streaming and multicast (e.g., receiver-driven layered multicast (RLM) by McCanne) based on combined wavelet video coding and error control. We design a packetized wavelet video (PWV) coder to facilitate its integration with error control. The PWV coder produces packetized layered bitstreams that are independent among layers while being embedded within each layer. Thus, a lost packet only renders the following packets in the same layer useless. Based on the PWV coder, we search for a multilayered error-control strategy that optimally trades off source and channel coding for each layer under a given transmission rate to mitigate the effects of packet loss. While both the PWV coder and the error-control strategy are new—the former incorporates embedded wavelet video coding and packetization and the latter extends the single-layered approach for RLM by Chou et al.—the main distinction of this paper lies in the seamless integration of the two parts. Theoretical analysis shows a gain of up to 1 dB on a channel with 20% packet loss using our combined approach over separate designs of the source coder and the error-control mechanism. This is also substantiated by our simulations with a gain of up to 0.6 dB. In addition, our simulations show a gain of up to 2.2 dB over previous results reported by Chou et al.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stathakis, S; Defoor, D; Linden, P
Purpose: To study the frequency of Multi-Leaf Collimator (MLC) leaf failures, investigate methods to predict them and reduce linac downtime. Methods: A Varian HD120 MLC was used in our study. The hyperterminal MLC errors logged from 06/2012 to 12/2014 were collected. Along with the hyperterminal errors, the MLC motor changes and all other MLC interventions by the linear accelerator engineer were recorded. The MLC dynalog files were also recorded on a daily basis for each treatment and during linac QA. The dynalog files were analyzed to calculate root mean square errors (RMS) and cumulative MLC travel distance per motor. Anmore » in-house MatLab code was used to analyze all dynalog files, record RMS errors and calculate the distance each MLC traveled per day. Results: A total of 269 interventions were recorded over a period of 18 months. Of these, 146 included MLC motor leaf change, 39 T-nut replacements, and 84 MLC cleaning sessions. Leaves close to the middle of each side required the most maintenance. In the A bank, leaves A27 to A40 recorded 73% of all interventions, while the same leaves in the B bank counted for 52% of the interventions. On average, leaves in the middle of the bank had their motors changed approximately every 1500m of travel. Finally, it was found that the number of RMS errors increased prior to an MLC motor change. Conclusion: An MLC dynalog file analysis software was developed that can be used to log daily MLC usage. Our eighteen-month data analysis showed that there is a correlation between the distance an MLC travels, the RMS and the life of the MLC motor. We plan to use this tool to predict MLC motor failures and with proper and timely intervention, reduce the downtime of the linac during clinical hours.« less
NASA Technical Reports Server (NTRS)
Gomez, Susan F.; Hood, Laura; Panneton, Robert J.; Saunders, Penny E.; Adkins, Antha; Hwu, Shian U.; Lu, Ba P.
1996-01-01
Two computational techniques are used to calculate differential phase errors on Global Positioning System (GPS) carrier war phase measurements due to certain multipath-producing objects. The two computational techniques are a rigorous computati electromagnetics technique called Geometric Theory of Diffraction (GTD) and the other is a simple ray tracing method. The GTD technique has been used successfully to predict microwave propagation characteristics by taking into account the dominant multipath components due to reflections and diffractions from scattering structures. The ray tracing technique only solves for reflected signals. The results from the two techniques are compared to GPS differential carrier phase ns taken on the ground using a GPS receiver in the presence of typical International Space Station (ISS) interference structures. The calculations produced using the GTD code compared to the measured results better than the ray tracing technique. The agreement was good, demonstrating that the phase errors due to multipath can be modeled and characterized using the GTD technique and characterized to a lesser fidelity using the DECAT technique. However, some discrepancies were observed. Most of the discrepancies occurred at lower devations and were either due to phase center deviations of the antenna, the background multipath environment, or the receiver itself. Selected measured and predicted differential carrier phase error results are presented and compared. Results indicate that reflections and diffractions caused by the multipath producers, located near the GPS antennas, can produce phase shifts of greater than 10 mm, and as high as 95 mm. It should be noted tl the field test configuration was meant to simulate typical ISS structures, but the two environments are not identical. The GZ and DECAT techniques have been used to calculate phase errors due to multipath o the ISS configuration to quantify the expected attitude determination errors.
NASA Technical Reports Server (NTRS)
Lin, Shu; Fossorier, Marc
1998-01-01
For long linear block codes, maximum likelihood decoding based on full code trellises would be very hard to implement if not impossible. In this case, we may wish to trade error performance for the reduction in decoding complexity. Sub-optimum soft-decision decoding of a linear block code based on a low-weight sub-trellis can be devised to provide an effective trade-off between error performance and decoding complexity. This chapter presents such a suboptimal decoding algorithm for linear block codes. This decoding algorithm is iterative in nature and based on an optimality test. It has the following important features: (1) a simple method to generate a sequence of candidate code-words, one at a time, for test; (2) a sufficient condition for testing a candidate code-word for optimality; and (3) a low-weight sub-trellis search for finding the most likely (ML) code-word.
Techniques for the Enhancement of Linear Predictive Speech Coding in Adverse Conditions
NASA Astrophysics Data System (ADS)
Wrench, Alan A.
Available from UMI in association with The British Library. Requires signed TDF. The Linear Prediction model was first applied to speech two and a half decades ago. Since then it has been the subject of intense research and continues to be one of the principal tools in the analysis of speech. Its mathematical tractability makes it a suitable subject for study and its proven success in practical applications makes the study worthwhile. The model is known to be unsuited to speech corrupted by background noise. This has led many researchers to investigate ways of enhancing the speech signal prior to Linear Predictive analysis. In this thesis this body of work is extended. The chosen application is low bit-rate (2.4 kbits/sec) speech coding. For this task the performance of the Linear Prediction algorithm is crucial because there is insufficient bandwidth to encode the error between the modelled speech and the original input. A review of the fundamentals of Linear Prediction and an independent assessment of the relative performance of methods of Linear Prediction modelling are presented. A new method is proposed which is fast and facilitates stability checking, however, its stability is shown to be unacceptably poorer than existing methods. A novel supposition governing the positioning of the analysis frame relative to a voiced speech signal is proposed and supported by observation. The problem of coding noisy speech is examined. Four frequency domain speech processing techniques are developed and tested. These are: (i) Combined Order Linear Prediction Spectral Estimation; (ii) Frequency Scaling According to an Aural Model; (iii) Amplitude Weighting Based on Perceived Loudness; (iv) Power Spectrum Squaring. These methods are compared with the Recursive Linearised Maximum a Posteriori method. Following on from work done in the frequency domain, a time domain implementation of spectrum squaring is developed. In addition, a new method of power spectrum estimation is developed based on the Minimum Variance approach. This new algorithm is shown to be closely related to Linear Prediction but produces slightly broader spectral peaks. Spectrum squaring is applied to both the new algorithm and standard Linear Prediction and their relative performance is assessed. (Abstract shortened by UMI.).
Neural underpinnings of music: the polyrhythmic brain.
Vuust, Peter; Gebauer, Line K; Witek, Maria A G
2014-01-01
Musical rhythm, consisting of apparently abstract intervals of accented temporal events, has the remarkable ability to move our minds and bodies. Why do certain rhythms make us want to tap our feet, bop our heads or even get up and dance? And how does the brain process rhythmically complex rhythms during our experiences of music? In this chapter, we describe some common forms of rhythmic complexity in music and propose that the theory of predictive coding can explain how rhythm and rhythmic complexity are processed in the brain. We also consider how this theory may reveal why we feel so compelled by rhythmic tension in music. First, musical-theoretical and neuroscientific frameworks of rhythm are presented, in which rhythm perception is conceptualized as an interaction between what is heard ('rhythm') and the brain's anticipatory structuring of music ('the meter'). Second, three different examples of tension between rhythm and meter in music are described: syncopation, polyrhythm and groove. Third, we present the theory of predictive coding of music, which posits a hierarchical organization of brain responses reflecting fundamental, survival-related mechanisms associated with predicting future events. According to this theory, perception and learning is manifested through the brain's Bayesian minimization of the error between the input to the brain and the brain's prior expectations. Fourth, empirical studies of neural and behavioral effects of syncopation, polyrhythm and groove will be reported, and we propose how these studies can be seen as special cases of the predictive coding theory. Finally, we argue that musical rhythm exploits the brain's general principles of anticipation and propose that pleasure from musical rhythm may be a result of such anticipatory mechanisms.
A Theory of False Cognitive Expectancies in Airline Pilots
NASA Astrophysics Data System (ADS)
Cortes, Antonio I.
The Theory of False Cognitive Expectancies was developed by studying high reliability flight operations. Airline pilots depend extensively on cognitive expectancies to perceive, understand, and predict actions and events. Out of 1,363 incident reports submitted by airline pilots to the National Aeronautics and Space Administration Aviation Safety Reporting System over a year's time, 110 reports were found to contain evidence of 127 false cognitive expectancies in pilots. A comprehensive taxonomy was developed with six categories of interest. The dataset of 127 false expectancies was used to initially code tentative taxon values for each category. Intermediate coding through constant comparative analysis completed the taxonomy. The taxonomy was used for the advanced coding of chronological context-dependent visualizations of expectancy factors, known as strands, which depict the major factors in the creation and propagation of each expectancy. Strands were mapped into common networks to detect highly represented expectancy processes. Theoretical integration established 11 sources of false expectancies, the most common expectancy errors, and those conspicuous factors worthy of future study. The most prevalent source of false cognitive expectancies within the dataset was determined to be unconscious individual modeling based on past events. Integrative analyses also revealed relationships between expectancies and flight deck automation, unresolved discrepancies, and levels of situation awareness. Particularly noteworthy were the findings that false expectancies can combine in three possible permutations to diminish situation awareness and examples of how false expectancies can be unwittingly transmitted from one person to another. The theory resulting from this research can enhance the error coding process used during aircraft line oriented safety audits, lays the foundation for developing expectancy management training programs, and will allow researchers to proffer hypotheses for human testing using flight simulators.
Coding for reliable satellite communications
NASA Technical Reports Server (NTRS)
Lin, S.
1984-01-01
Several error control coding techniques for reliable satellite communications were investigated to find algorithms for fast decoding of Reed-Solomon codes in terms of dual basis. The decoding of the (255,223) Reed-Solomon code, which is used as the outer code in the concatenated TDRSS decoder, was of particular concern.
Fast QC-LDPC code for free space optical communication
NASA Astrophysics Data System (ADS)
Wang, Jin; Zhang, Qi; Udeh, Chinonso Paschal; Wu, Rangzhong
2017-02-01
Free Space Optical (FSO) Communication systems use the atmosphere as a propagation medium. Hence the atmospheric turbulence effects lead to multiplicative noise related with signal intensity. In order to suppress the signal fading induced by multiplicative noise, we propose a fast Quasi-Cyclic (QC) Low-Density Parity-Check (LDPC) code for FSO Communication systems. As a linear block code based on sparse matrix, the performances of QC-LDPC is extremely near to the Shannon limit. Currently, the studies on LDPC code in FSO Communications is mainly focused on Gauss-channel and Rayleigh-channel, respectively. In this study, the LDPC code design over atmospheric turbulence channel which is nether Gauss-channel nor Rayleigh-channel is closer to the practical situation. Based on the characteristics of atmospheric channel, which is modeled as logarithmic-normal distribution and K-distribution, we designed a special QC-LDPC code, and deduced the log-likelihood ratio (LLR). An irregular QC-LDPC code for fast coding, of which the rates are variable, is proposed in this paper. The proposed code achieves excellent performance of LDPC codes and can present the characteristics of high efficiency in low rate, stable in high rate and less number of iteration. The result of belief propagation (BP) decoding shows that the bit error rate (BER) obviously reduced as the Signal-to-Noise Ratio (SNR) increased. Therefore, the LDPC channel coding technology can effectively improve the performance of FSO. At the same time, the BER, after decoding reduces with the increase of SNR arbitrarily, and not having error limitation platform phenomenon with error rate slowing down.
Performance of Low-Density Parity-Check Coded Modulation
NASA Astrophysics Data System (ADS)
Hamkins, J.
2011-02-01
This article presents the simulated performance of a family of nine AR4JA low-density parity-check (LDPC) codes when used with each of five modulations. In each case, the decoder inputs are codebit log-likelihood ratios computed from the received (noisy) modulation symbols using a general formula which applies to arbitrary modulations. Suboptimal soft-decision and hard-decision demodulators are also explored. Bit-interleaving and various mappings of bits to modulation symbols are considered. A number of subtle decoder algorithm details are shown to affect performance, especially in the error floor region. Among these are quantization dynamic range and step size, clipping degree-one variable nodes, "Jones clipping" of variable nodes, approximations of the min* function, and partial hard-limiting messages from check nodes. Using these decoder optimizations, all coded modulations simulated here are free of error floors down to codeword error rates below 10^{-6}. The purpose of generating this performance data is to aid system engineers in determining an appropriate code and modulation to use under specific power and bandwidth constraints, and to provide information needed to design a variable/adaptive coded modulation (VCM/ACM) system using the AR4JA codes. IPNPR Volume 42-185 Tagged File.txt