New dimension analyses with error analysis for quaking aspen and black spruce
NASA Technical Reports Server (NTRS)
Woods, K. D.; Botkin, D. B.; Feiveson, A. H.
1987-01-01
Dimension analysis for black spruce in wetland stands and trembling aspen are reported, including new approaches in error analysis. Biomass estimates for sacrificed trees have standard errors of 1 to 3%; standard errors for leaf areas are 10 to 20%. Bole biomass estimation accounts for most of the error for biomass, while estimation of branch characteristics and area/weight ratios accounts for the leaf area error. Error analysis provides insight for cost effective design of future analyses. Predictive equations for biomass and leaf area, with empirically derived estimators of prediction error, are given. Systematic prediction errors for small aspen trees and for leaf area of spruce from different site-types suggest a need for different predictive models within species. Predictive equations are compared with published equations; significant differences may be due to species responses to regional or site differences. Proportional contributions of component biomass in aspen change in ways related to tree size and stand development. Spruce maintains comparatively constant proportions with size, but shows changes corresponding to site. This suggests greater morphological plasticity of aspen and significance for spruce of nutrient conditions.
NASA Technical Reports Server (NTRS)
Bell, Thomas L.; Kundu, Prasun K.; Kummerow, Christian D.; Einaudi, Franco (Technical Monitor)
2000-01-01
Quantitative use of satellite-derived maps of monthly rainfall requires some measure of the accuracy of the satellite estimates. The rainfall estimate for a given map grid box is subject to both remote-sensing error and, in the case of low-orbiting satellites, sampling error due to the limited number of observations of the grid box provided by the satellite. A simple model of rain behavior predicts that Root-mean-square (RMS) random error in grid-box averages should depend in a simple way on the local average rain rate, and the predicted behavior has been seen in simulations using surface rain-gauge and radar data. This relationship was examined using satellite SSM/I data obtained over the western equatorial Pacific during TOGA COARE. RMS error inferred directly from SSM/I rainfall estimates was found to be larger than predicted from surface data, and to depend less on local rain rate than was predicted. Preliminary examination of TRMM microwave estimates shows better agreement with surface data. A simple method of estimating rms error in satellite rainfall estimates is suggested, based on quantities that can be directly computed from the satellite data.
Estimating Model Prediction Error: Should You Treat Predictions as Fixed or Random?
NASA Technical Reports Server (NTRS)
Wallach, Daniel; Thorburn, Peter; Asseng, Senthold; Challinor, Andrew J.; Ewert, Frank; Jones, James W.; Rotter, Reimund; Ruane, Alexander
2016-01-01
Crop models are important tools for impact assessment of climate change, as well as for exploring management options under current climate. It is essential to evaluate the uncertainty associated with predictions of these models. We compare two criteria of prediction error; MSEP fixed, which evaluates mean squared error of prediction for a model with fixed structure, parameters and inputs, and MSEP uncertain( X), which evaluates mean squared error averaged over the distributions of model structure, inputs and parameters. Comparison of model outputs with data can be used to estimate the former. The latter has a squared bias term, which can be estimated using hindcasts, and a model variance term, which can be estimated from a simulation experiment. The separate contributions to MSEP uncertain (X) can be estimated using a random effects ANOVA. It is argued that MSEP uncertain (X) is the more informative uncertainty criterion, because it is specific to each prediction situation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daly, Don S.; Anderson, Kevin K.; White, Amanda M.
Background: A microarray of enzyme-linked immunosorbent assays, or ELISA microarray, predicts simultaneously the concentrations of numerous proteins in a small sample. These predictions, however, are uncertain due to processing error and biological variability. Making sound biological inferences as well as improving the ELISA microarray process require require both concentration predictions and creditable estimates of their errors. Methods: We present a statistical method based on monotonic spline statistical models, penalized constrained least squares fitting (PCLS) and Monte Carlo simulation (MC) to predict concentrations and estimate prediction errors in ELISA microarray. PCLS restrains the flexible spline to a fit of assay intensitymore » that is a monotone function of protein concentration. With MC, both modeling and measurement errors are combined to estimate prediction error. The spline/PCLS/MC method is compared to a common method using simulated and real ELISA microarray data sets. Results: In contrast to the rigid logistic model, the flexible spline model gave credible fits in almost all test cases including troublesome cases with left and/or right censoring, or other asymmetries. For the real data sets, 61% of the spline predictions were more accurate than their comparable logistic predictions; especially the spline predictions at the extremes of the prediction curve. The relative errors of 50% of comparable spline and logistic predictions differed by less than 20%. Monte Carlo simulation rendered acceptable asymmetric prediction intervals for both spline and logistic models while propagation of error produced symmetric intervals that diverged unrealistically as the standard curves approached horizontal asymptotes. Conclusions: The spline/PCLS/MC method is a flexible, robust alternative to a logistic/NLS/propagation-of-error method to reliably predict protein concentrations and estimate their errors. The spline method simplifies model selection and fitting, and reliably estimates believable prediction errors. For the 50% of the real data sets fit well by both methods, spline and logistic predictions are practically indistinguishable, varying in accuracy by less than 15%. The spline method may be useful when automated prediction across simultaneous assays of numerous proteins must be applied routinely with minimal user intervention.« less
NASA Technical Reports Server (NTRS)
Morris, A. Terry
1999-01-01
This paper examines various sources of error in MIT's improved top oil temperature rise over ambient temperature model and estimation process. The sources of error are the current parameter estimation technique, quantization noise, and post-processing of the transformer data. Results from this paper will show that an output error parameter estimation technique should be selected to replace the current least squares estimation technique. The output error technique obtained accurate predictions of transformer behavior, revealed the best error covariance, obtained consistent parameter estimates, and provided for valid and sensible parameters. This paper will also show that the output error technique should be used to minimize errors attributed to post-processing (decimation) of the transformer data. Models used in this paper are validated using data from a large transformer in service.
Troutman, Brent M.
1982-01-01
Errors in runoff prediction caused by input data errors are analyzed by treating precipitation-runoff models as regression (conditional expectation) models. Independent variables of the regression consist of precipitation and other input measurements; the dependent variable is runoff. In models using erroneous input data, prediction errors are inflated and estimates of expected storm runoff for given observed input variables are biased. This bias in expected runoff estimation results in biased parameter estimates if these parameter estimates are obtained by a least squares fit of predicted to observed runoff values. The problems of error inflation and bias are examined in detail for a simple linear regression of runoff on rainfall and for a nonlinear U.S. Geological Survey precipitation-runoff model. Some implications for flood frequency analysis are considered. A case study using a set of data from Turtle Creek near Dallas, Texas illustrates the problems of model input errors.
Effect of correlated observation error on parameters, predictions, and uncertainty
Tiedeman, Claire; Green, Christopher T.
2013-01-01
Correlations among observation errors are typically omitted when calculating observation weights for model calibration by inverse methods. We explore the effects of omitting these correlations on estimates of parameters, predictions, and uncertainties. First, we develop a new analytical expression for the difference in parameter variance estimated with and without error correlations for a simple one-parameter two-observation inverse model. Results indicate that omitting error correlations from both the weight matrix and the variance calculation can either increase or decrease the parameter variance, depending on the values of error correlation (ρ) and the ratio of dimensionless scaled sensitivities (rdss). For small ρ, the difference in variance is always small, but for large ρ, the difference varies widely depending on the sign and magnitude of rdss. Next, we consider a groundwater reactive transport model of denitrification with four parameters and correlated geochemical observation errors that are computed by an error-propagation approach that is new for hydrogeologic studies. We compare parameter estimates, predictions, and uncertainties obtained with and without the error correlations. Omitting the correlations modestly to substantially changes parameter estimates, and causes both increases and decreases of parameter variances, consistent with the analytical expression. Differences in predictions for the models calibrated with and without error correlations can be greater than parameter differences when both are considered relative to their respective confidence intervals. These results indicate that including observation error correlations in weighting for nonlinear regression can have important effects on parameter estimates, predictions, and their respective uncertainties.
NASA Technical Reports Server (NTRS)
Consiglio, Maria C.; Hoadley, Sherwood T.; Allen, B. Danette
2009-01-01
Wind prediction errors are known to affect the performance of automated air traffic management tools that rely on aircraft trajectory predictions. In particular, automated separation assurance tools, planned as part of the NextGen concept of operations, must be designed to account and compensate for the impact of wind prediction errors and other system uncertainties. In this paper we describe a high fidelity batch simulation study designed to estimate the separation distance required to compensate for the effects of wind-prediction errors throughout increasing traffic density on an airborne separation assistance system. These experimental runs are part of the Safety Performance of Airborne Separation experiment suite that examines the safety implications of prediction errors and system uncertainties on airborne separation assurance systems. In this experiment, wind-prediction errors were varied between zero and forty knots while traffic density was increased several times current traffic levels. In order to accurately measure the full unmitigated impact of wind-prediction errors, no uncertainty buffers were added to the separation minima. The goal of the study was to measure the impact of wind-prediction errors in order to estimate the additional separation buffers necessary to preserve separation and to provide a baseline for future analyses. Buffer estimations from this study will be used and verified in upcoming safety evaluation experiments under similar simulation conditions. Results suggest that the strategic airborne separation functions exercised in this experiment can sustain wind prediction errors up to 40kts at current day air traffic density with no additional separation distance buffer and at eight times the current day with no more than a 60% increase in separation distance buffer.
Holmes, John B; Dodds, Ken G; Lee, Michael A
2017-03-02
An important issue in genetic evaluation is the comparability of random effects (breeding values), particularly between pairs of animals in different contemporary groups. This is usually referred to as genetic connectedness. While various measures of connectedness have been proposed in the literature, there is general agreement that the most appropriate measure is some function of the prediction error variance-covariance matrix. However, obtaining the prediction error variance-covariance matrix is computationally demanding for large-scale genetic evaluations. Many alternative statistics have been proposed that avoid the computational cost of obtaining the prediction error variance-covariance matrix, such as counts of genetic links between contemporary groups, gene flow matrices, and functions of the variance-covariance matrix of estimated contemporary group fixed effects. In this paper, we show that a correction to the variance-covariance matrix of estimated contemporary group fixed effects will produce the exact prediction error variance-covariance matrix averaged by contemporary group for univariate models in the presence of single or multiple fixed effects and one random effect. We demonstrate the correction for a series of models and show that approximations to the prediction error matrix based solely on the variance-covariance matrix of estimated contemporary group fixed effects are inappropriate in certain circumstances. Our method allows for the calculation of a connectedness measure based on the prediction error variance-covariance matrix by calculating only the variance-covariance matrix of estimated fixed effects. Since the number of fixed effects in genetic evaluation is usually orders of magnitudes smaller than the number of random effect levels, the computational requirements for our method should be reduced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newman, Jennifer F.; Clifton, Andrew
Currently, cup anemometers on meteorological towers are used to measure wind speeds and turbulence intensity to make decisions about wind turbine class and site suitability; however, as modern turbine hub heights increase and wind energy expands to complex and remote sites, it becomes more difficult and costly to install meteorological towers at potential sites. As a result, remote-sensing devices (e.g., lidars) are now commonly used by wind farm managers and researchers to estimate the flow field at heights spanned by a turbine. Although lidars can accurately estimate mean wind speeds and wind directions, there is still a large amount ofmore » uncertainty surrounding the measurement of turbulence using these devices. Errors in lidar turbulence estimates are caused by a variety of factors, including instrument noise, volume averaging, and variance contamination, in which the magnitude of these factors is highly dependent on measurement height and atmospheric stability. As turbulence has a large impact on wind power production, errors in turbulence measurements will translate into errors in wind power prediction. The impact of using lidars rather than cup anemometers for wind power prediction must be understood if lidars are to be considered a viable alternative to cup anemometers.In this poster, the sensitivity of power prediction error to typical lidar turbulence measurement errors is assessed. Turbulence estimates from a vertically profiling WINDCUBE v2 lidar are compared to high-resolution sonic anemometer measurements at field sites in Oklahoma and Colorado to determine the degree of lidar turbulence error that can be expected under different atmospheric conditions. These errors are then incorporated into a power prediction model to estimate the sensitivity of power prediction error to turbulence measurement error. Power prediction models, including the standard binning method and a random forest method, were developed using data from the aeroelastic simulator FAST for a 1.5 MW turbine. The impact of lidar turbulence error on the predicted power from these different models is examined to determine the degree of turbulence measurement accuracy needed for accurate power prediction.« less
Doubková, Marcela; Van Dijk, Albert I.J.M.; Sabel, Daniel; Wagner, Wolfgang; Blöschl, Günter
2012-01-01
The Sentinel-1 will carry onboard a C-band radar instrument that will map the European continent once every four days and the global land surface at least once every twelve days with finest 5 × 20 m spatial resolution. The high temporal sampling rate and operational configuration make Sentinel-1 of interest for operational soil moisture monitoring. Currently, updated soil moisture data are made available at 1 km spatial resolution as a demonstration service using Global Mode (GM) measurements from the Advanced Synthetic Aperture Radar (ASAR) onboard ENVISAT. The service demonstrates the potential of the C-band observations to monitor variations in soil moisture. Importantly, a retrieval error estimate is also available; these are needed to assimilate observations into models. The retrieval error is estimated by propagating sensor errors through the retrieval model. In this work, the existing ASAR GM retrieval error product is evaluated using independent top soil moisture estimates produced by the grid-based landscape hydrological model (AWRA-L) developed within the Australian Water Resources Assessment system (AWRA). The ASAR GM retrieval error estimate, an assumed prior AWRA-L error estimate and the variance in the respective datasets were used to spatially predict the root mean square error (RMSE) and the Pearson's correlation coefficient R between the two datasets. These were compared with the RMSE calculated directly from the two datasets. The predicted and computed RMSE showed a very high level of agreement in spatial patterns as well as good quantitative agreement; the RMSE was predicted within accuracy of 4% of saturated soil moisture over 89% of the Australian land mass. Predicted and calculated R maps corresponded within accuracy of 10% over 61% of the continent. The strong correspondence between the predicted and calculated RMSE and R builds confidence in the retrieval error model and derived ASAR GM error estimates. The ASAR GM and Sentinel-1 have the same basic physical measurement characteristics, and therefore very similar retrieval error estimation method can be applied. Because of the expected improvements in radiometric resolution of the Sentinel-1 backscatter measurements, soil moisture estimation errors can be expected to be an order of magnitude less than those for ASAR GM. This opens the possibility for operationally available medium resolution soil moisture estimates with very well-specified errors that can be assimilated into hydrological or crop yield models, with potentially large benefits for land-atmosphere fluxes, crop growth, and water balance monitoring and modelling. PMID:23483015
NASA Astrophysics Data System (ADS)
Xu, Yadong; Serre, Marc L.; Reyes, Jeanette M.; Vizuete, William
2017-10-01
We have developed a Bayesian Maximum Entropy (BME) framework that integrates observations from a surface monitoring network and predictions from a Chemical Transport Model (CTM) to create improved exposure estimates that can be resolved into any spatial and temporal resolution. The flexibility of the framework allows for input of data in any choice of time scales and CTM predictions of any spatial resolution with varying associated degrees of estimation error and cost in terms of implementation and computation. This study quantifies the impact on exposure estimation error due to these choices by first comparing estimations errors when BME relied on ozone concentration data either as an hourly average, the daily maximum 8-h average (DM8A), or the daily 24-h average (D24A). Our analysis found that the use of DM8A and D24A data, although less computationally intensive, reduced estimation error more when compared to the use of hourly data. This was primarily due to the poorer CTM model performance in the hourly average predicted ozone. Our second analysis compared spatial variability and estimation errors when BME relied on CTM predictions with a grid cell resolution of 12 × 12 km2 versus a coarser resolution of 36 × 36 km2. Our analysis found that integrating the finer grid resolution CTM predictions not only reduced estimation error, but also increased the spatial variability in daily ozone estimates by 5 times. This improvement was due to the improved spatial gradients and model performance found in the finer resolved CTM simulation. The integration of observational and model predictions that is permitted in a BME framework continues to be a powerful approach for improving exposure estimates of ambient air pollution. The results of this analysis demonstrate the importance of also understanding model performance variability and its implications on exposure error.
Improved model predictive control of resistive wall modes by error field estimator in EXTRAP T2R
NASA Astrophysics Data System (ADS)
Setiadi, A. C.; Brunsell, P. R.; Frassinetti, L.
2016-12-01
Many implementations of a model-based approach for toroidal plasma have shown better control performance compared to the conventional type of feedback controller. One prerequisite of model-based control is the availability of a control oriented model. This model can be obtained empirically through a systematic procedure called system identification. Such a model is used in this work to design a model predictive controller to stabilize multiple resistive wall modes in EXTRAP T2R reversed-field pinch. Model predictive control is an advanced control method that can optimize the future behaviour of a system. Furthermore, this paper will discuss an additional use of the empirical model which is to estimate the error field in EXTRAP T2R. Two potential methods are discussed that can estimate the error field. The error field estimator is then combined with the model predictive control and yields better radial magnetic field suppression.
Ballistic projectile trajectory determining system
Karr, Thomas J.
1997-01-01
A computer controlled system determines the three-dimensional trajectory of a ballistic projectile. To initialize the system, predictions of state parameters for a ballistic projectile are received at an estimator. The estimator uses the predictions of the state parameters to estimate first trajectory characteristics of the ballistic projectile. A single stationary monocular sensor then observes the actual first trajectory characteristics of the ballistic projectile. A comparator generates an error value related to the predicted state parameters by comparing the estimated first trajectory characteristics of the ballistic projectile with the observed first trajectory characteristics of the ballistic projectile. If the error value is equal to or greater than a selected limit, the predictions of the state parameters are adjusted. New estimates for the trajectory characteristics of the ballistic projectile are made and are then compared with actual observed trajectory characteristics. This process is repeated until the error value is less than the selected limit. Once the error value is less than the selected limit, a calculator calculates trajectory characteristics such a the origin and destination of the ballistic projectile.
Machine learning approaches for estimation of prediction interval for the model output.
Shrestha, Durga L; Solomatine, Dimitri P
2006-03-01
A novel method for estimating prediction uncertainty using machine learning techniques is presented. Uncertainty is expressed in the form of the two quantiles (constituting the prediction interval) of the underlying distribution of prediction errors. The idea is to partition the input space into different zones or clusters having similar model errors using fuzzy c-means clustering. The prediction interval is constructed for each cluster on the basis of empirical distributions of the errors associated with all instances belonging to the cluster under consideration and propagated from each cluster to the examples according to their membership grades in each cluster. Then a regression model is built for in-sample data using computed prediction limits as targets, and finally, this model is applied to estimate the prediction intervals (limits) for out-of-sample data. The method was tested on artificial and real hydrologic data sets using various machine learning techniques. Preliminary results show that the method is superior to other methods estimating the prediction interval. A new method for evaluating performance for estimating prediction interval is proposed as well.
Methods for estimating flood frequency in Montana based on data through water year 1998
Parrett, Charles; Johnson, Dave R.
2004-01-01
Annual peak discharges having recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years (T-year floods) were determined for 660 gaged sites in Montana and in adjacent areas of Idaho, Wyoming, and Canada, based on data through water year 1998. The updated flood-frequency information was subsequently used in regression analyses, either ordinary or generalized least squares, to develop equations relating T-year floods to various basin and climatic characteristics, equations relating T-year floods to active-channel width, and equations relating T-year floods to bankfull width. The equations can be used to estimate flood frequency at ungaged sites. Montana was divided into eight regions, within which flood characteristics were considered to be reasonably homogeneous, and the three sets of regression equations were developed for each region. A measure of the overall reliability of the regression equations is the average standard error of prediction. The average standard errors of prediction for the equations based on basin and climatic characteristics ranged from 37.4 percent to 134.1 percent. Average standard errors of prediction for the equations based on active-channel width ranged from 57.2 percent to 141.3 percent. Average standard errors of prediction for the equations based on bankfull width ranged from 63.1 percent to 155.5 percent. In most regions, the equations based on basin and climatic characteristics generally had smaller average standard errors of prediction than equations based on active-channel or bankfull width. An exception was the Southeast Plains Region, where all equations based on active-channel width had smaller average standard errors of prediction than equations based on basin and climatic characteristics or bankfull width. Methods for weighting estimates derived from the basin- and climatic-characteristic equations and the channel-width equations also were developed. The weights were based on the cross correlation of residuals from the different methods and the average standard errors of prediction. When all three methods were combined, the average standard errors of prediction ranged from 37.4 percent to 120.2 percent. Weighting of estimates reduced the standard errors of prediction for all T-year flood estimates in four regions, reduced the standard errors of prediction for some T-year flood estimates in two regions, and provided no reduction in average standard error of prediction in two regions. A computer program for solving the regression equations, weighting estimates, and determining reliability of individual estimates was developed and placed on the USGS Montana District World Wide Web page. A new regression method, termed Region of Influence regression, also was tested. Test results indicated that the Region of Influence method was not as reliable as the regional equations based on generalized least squares regression. Two additional methods for estimating flood frequency at ungaged sites located on the same streams as gaged sites also are described. The first method, based on a drainage-area-ratio adjustment, is intended for use on streams where the ungaged site of interest is located near a gaged site. The second method, based on interpolation between gaged sites, is intended for use on streams that have two or more streamflow-gaging stations.
Green, Christopher T.; Zhang, Yong; Jurgens, Bryant C.; Starn, J. Jeffrey; Landon, Matthew K.
2014-01-01
Analytical models of the travel time distribution (TTD) from a source area to a sample location are often used to estimate groundwater ages and solute concentration trends. The accuracies of these models are not well known for geologically complex aquifers. In this study, synthetic datasets were used to quantify the accuracy of four analytical TTD models as affected by TTD complexity, observation errors, model selection, and tracer selection. Synthetic TTDs and tracer data were generated from existing numerical models with complex hydrofacies distributions for one public-supply well and 14 monitoring wells in the Central Valley, California. Analytical TTD models were calibrated to synthetic tracer data, and prediction errors were determined for estimates of TTDs and conservative tracer (NO3−) concentrations. Analytical models included a new, scale-dependent dispersivity model (SDM) for two-dimensional transport from the watertable to a well, and three other established analytical models. The relative influence of the error sources (TTD complexity, observation error, model selection, and tracer selection) depended on the type of prediction. Geological complexity gave rise to complex TTDs in monitoring wells that strongly affected errors of the estimated TTDs. However, prediction errors for NO3− and median age depended more on tracer concentration errors. The SDM tended to give the most accurate estimates of the vertical velocity and other predictions, although TTD model selection had minor effects overall. Adding tracers improved predictions if the new tracers had different input histories. Studies using TTD models should focus on the factors that most strongly affect the desired predictions.
Stochastic stability of sigma-point Unscented Predictive Filter.
Cao, Lu; Tang, Yu; Chen, Xiaoqian; Zhao, Yong
2015-07-01
In this paper, the Unscented Predictive Filter (UPF) is derived based on unscented transformation for nonlinear estimation, which breaks the confine of conventional sigma-point filters by employing Kalman filter as subject investigated merely. In order to facilitate the new method, the algorithm flow of UPF is given firstly. Then, the theoretical analyses demonstrate that the estimate accuracy of the model error and system for the UPF is higher than that of the conventional PF. Moreover, the authors analyze the stochastic boundedness and the error behavior of Unscented Predictive Filter (UPF) for general nonlinear systems in a stochastic framework. In particular, the theoretical results present that the estimation error remains bounded and the covariance keeps stable if the system׳s initial estimation error, disturbing noise terms as well as the model error are small enough, which is the core part of the UPF theory. All of the results have been demonstrated by numerical simulations for a nonlinear example system. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Ballistic projectile trajectory determining system
Karr, T.J.
1997-05-20
A computer controlled system determines the three-dimensional trajectory of a ballistic projectile. To initialize the system, predictions of state parameters for a ballistic projectile are received at an estimator. The estimator uses the predictions of the state parameters to estimate first trajectory characteristics of the ballistic projectile. A single stationary monocular sensor then observes the actual first trajectory characteristics of the ballistic projectile. A comparator generates an error value related to the predicted state parameters by comparing the estimated first trajectory characteristics of the ballistic projectile with the observed first trajectory characteristics of the ballistic projectile. If the error value is equal to or greater than a selected limit, the predictions of the state parameters are adjusted. New estimates for the trajectory characteristics of the ballistic projectile are made and are then compared with actual observed trajectory characteristics. This process is repeated until the error value is less than the selected limit. Once the error value is less than the selected limit, a calculator calculates trajectory characteristics such a the origin and destination of the ballistic projectile. 8 figs.
Application of Exactly Linearized Error Transport Equations to AIAA CFD Prediction Workshops
NASA Technical Reports Server (NTRS)
Derlaga, Joseph M.; Park, Michael A.; Rallabhandi, Sriram
2017-01-01
The computational fluid dynamics (CFD) prediction workshops sponsored by the AIAA have created invaluable opportunities in which to discuss the predictive capabilities of CFD in areas in which it has struggled, e.g., cruise drag, high-lift, and sonic boom pre diction. While there are many factors that contribute to disagreement between simulated and experimental results, such as modeling or discretization error, quantifying the errors contained in a simulation is important for those who make decisions based on the computational results. The linearized error transport equations (ETE) combined with a truncation error estimate is a method to quantify one source of errors. The ETE are implemented with a complex-step method to provide an exact linearization with minimal source code modifications to CFD and multidisciplinary analysis methods. The equivalency of adjoint and linearized ETE functional error correction is demonstrated. Uniformly refined grids from a series of AIAA prediction workshops demonstrate the utility of ETE for multidisciplinary analysis with a connection between estimated discretization error and (resolved or under-resolved) flow features.
Latin hypercube approach to estimate uncertainty in ground water vulnerability
Gurdak, J.J.; McCray, J.E.; Thyne, G.; Qi, S.L.
2007-01-01
A methodology is proposed to quantify prediction uncertainty associated with ground water vulnerability models that were developed through an approach that coupled multivariate logistic regression with a geographic information system (GIS). This method uses Latin hypercube sampling (LHS) to illustrate the propagation of input error and estimate uncertainty associated with the logistic regression predictions of ground water vulnerability. Central to the proposed method is the assumption that prediction uncertainty in ground water vulnerability models is a function of input error propagation from uncertainty in the estimated logistic regression model coefficients (model error) and the values of explanatory variables represented in the GIS (data error). Input probability distributions that represent both model and data error sources of uncertainty were simultaneously sampled using a Latin hypercube approach with logistic regression calculations of probability of elevated nonpoint source contaminants in ground water. The resulting probability distribution represents the prediction intervals and associated uncertainty of the ground water vulnerability predictions. The method is illustrated through a ground water vulnerability assessment of the High Plains regional aquifer. Results of the LHS simulations reveal significant prediction uncertainties that vary spatially across the regional aquifer. Additionally, the proposed method enables a spatial deconstruction of the prediction uncertainty that can lead to improved prediction of ground water vulnerability. ?? 2007 National Ground Water Association.
Prediction and error of baldcypress stem volume from stump diameter
Bernard R. Parresol
1998-01-01
The need to estimate the volume of removals occurs for many reasons, such as in trespass cases, severance tax reports, and post-harvest assessments. A logarithmic model is presented for prediction of baldcypress total stem cubic foot volume using stump diameter as the independent variable. Because the error of prediction is as important as the volume estimate, the...
A Canonical Ensemble Correlation Prediction Model for Seasonal Precipitation Anomaly
NASA Technical Reports Server (NTRS)
Shen, Samuel S. P.; Lau, William K. M.; Kim, Kyu-Myong; Li, Guilong
2001-01-01
This report describes an optimal ensemble forecasting model for seasonal precipitation and its error estimation. Each individual forecast is based on the canonical correlation analysis (CCA) in the spectral spaces whose bases are empirical orthogonal functions (EOF). The optimal weights in the ensemble forecasting crucially depend on the mean square error of each individual forecast. An estimate of the mean square error of a CCA prediction is made also using the spectral method. The error is decomposed onto EOFs of the predictand and decreases linearly according to the correlation between the predictor and predictand. This new CCA model includes the following features: (1) the use of area-factor, (2) the estimation of prediction error, and (3) the optimal ensemble of multiple forecasts. The new CCA model is applied to the seasonal forecasting of the United States precipitation field. The predictor is the sea surface temperature.
Hoos, Anne B.; Patel, Anant R.
1996-01-01
Model-adjustment procedures were applied to the combined data bases of storm-runoff quality for Chattanooga, Knoxville, and Nashville, Tennessee, to improve predictive accuracy for storm-runoff quality for urban watersheds in these three cities and throughout Middle and East Tennessee. Data for 45 storms at 15 different sites (five sites in each city) constitute the data base. Comparison of observed values of storm-runoff load and event-mean concentration to the predicted values from the regional regression models for 10 constituents shows prediction errors, as large as 806,000 percent. Model-adjustment procedures, which combine the regional model predictions with local data, are applied to improve predictive accuracy. Standard error of estimate after model adjustment ranges from 67 to 322 percent. Calibration results may be biased due to sampling error in the Tennessee data base. The relatively large values of standard error of estimate for some of the constituent models, although representing significant reduction (at least 50 percent) in prediction error compared to estimation with unadjusted regional models, may be unacceptable for some applications. The user may wish to collect additional local data for these constituents and repeat the analysis, or calibrate an independent local regression model.
Using beta binomials to estimate classification uncertainty for ensemble models.
Clark, Robert D; Liang, Wenkel; Lee, Adam C; Lawless, Michael S; Fraczkiewicz, Robert; Waldman, Marvin
2014-01-01
Quantitative structure-activity (QSAR) models have enormous potential for reducing drug discovery and development costs as well as the need for animal testing. Great strides have been made in estimating their overall reliability, but to fully realize that potential, researchers and regulators need to know how confident they can be in individual predictions. Submodels in an ensemble model which have been trained on different subsets of a shared training pool represent multiple samples of the model space, and the degree of agreement among them contains information on the reliability of ensemble predictions. For artificial neural network ensembles (ANNEs) using two different methods for determining ensemble classification - one using vote tallies and the other averaging individual network outputs - we have found that the distribution of predictions across positive vote tallies can be reasonably well-modeled as a beta binomial distribution, as can the distribution of errors. Together, these two distributions can be used to estimate the probability that a given predictive classification will be in error. Large data sets comprised of logP, Ames mutagenicity, and CYP2D6 inhibition data are used to illustrate and validate the method. The distributions of predictions and errors for the training pool accurately predicted the distribution of predictions and errors for large external validation sets, even when the number of positive and negative examples in the training pool were not balanced. Moreover, the likelihood of a given compound being prospectively misclassified as a function of the degree of consensus between networks in the ensemble could in most cases be estimated accurately from the fitted beta binomial distributions for the training pool. Confidence in an individual predictive classification by an ensemble model can be accurately assessed by examining the distributions of predictions and errors as a function of the degree of agreement among the constituent submodels. Further, ensemble uncertainty estimation can often be improved by adjusting the voting or classification threshold based on the parameters of the error distribution. Finally, the profiles for models whose predictive uncertainty estimates are not reliable provide clues to that effect without the need for comparison to an external test set.
NASA Astrophysics Data System (ADS)
Cao, Lu; Li, Hengnian
2016-10-01
For the satellite attitude estimation problem, the serious model errors always exist and hider the estimation performance of the Attitude Determination and Control System (ACDS), especially for a small satellite with low precision sensors. To deal with this problem, a new algorithm for the attitude estimation, referred to as the unscented predictive variable structure filter (UPVSF) is presented. This strategy is proposed based on the variable structure control concept and unscented transform (UT) sampling method. It can be implemented in real time with an ability to estimate the model errors on-line, in order to improve the state estimation precision. In addition, the model errors in this filter are not restricted only to the Gaussian noises; therefore, it has the advantages to deal with the various kinds of model errors or noises. It is anticipated that the UT sampling strategy can further enhance the robustness and accuracy of the novel UPVSF. Numerical simulations show that the proposed UPVSF is more effective and robustness in dealing with the model errors and low precision sensors compared with the traditional unscented Kalman filter (UKF).
Adaptive control of theophylline therapy: importance of blood sampling times.
D'Argenio, D Z; Khakmahd, K
1983-10-01
A two-observation protocol for estimating theophylline clearance during a constant-rate intravenous infusion is used to examine the importance of blood sampling schedules with regard to the information content of resulting concentration data. Guided by a theory for calculating maximally informative sample times, population simulations are used to assess the effect of specific sampling times on the precision of resulting clearance estimates and subsequent predictions of theophylline plasma concentrations. The simulations incorporated noise terms for intersubject variability, dosing errors, sample collection errors, and assay error. Clearance was estimated using Chiou's method, least squares, and a Bayesian estimation procedure. The results of these simulations suggest that clinically significant estimation and prediction errors may result when using the above two-point protocol for estimating theophylline clearance if the time separating the two blood samples is less than one population mean elimination half-life.
Uncertainty in predicting soil hydraulic properties at the hillslope scale with indirect methods
NASA Astrophysics Data System (ADS)
Chirico, G. B.; Medina, H.; Romano, N.
2007-02-01
SummarySeveral hydrological applications require the characterisation of the soil hydraulic properties at large spatial scales. Pedotransfer functions (PTFs) are being developed as simplified methods to estimate soil hydraulic properties as an alternative to direct measurements, which are unfeasible for most practical circumstances. The objective of this study is to quantify the uncertainty in PTFs spatial predictions at the hillslope scale as related to the sampling density, due to: (i) the error in estimated soil physico-chemical properties and (ii) PTF model error. The analysis is carried out on a 2-km-long experimental hillslope in South Italy. The method adopted is based on a stochastic generation of patterns of soil variables using sequential Gaussian simulation, conditioned to the observed sample data. The following PTFs are applied: Vereecken's PTF [Vereecken, H., Diels, J., van Orshoven, J., Feyen, J., Bouma, J., 1992. Functional evaluation of pedotransfer functions for the estimation of soil hydraulic properties. Soil Sci. Soc. Am. J. 56, 1371-1378] and HYPRES PTF [Wösten, J.H.M., Lilly, A., Nemes, A., Le Bas, C., 1999. Development and use of a database of hydraulic properties of European soils. Geoderma 90, 169-185]. The two PTFs estimate reliably the soil water retention characteristic even for a relatively coarse sampling resolution, with prediction uncertainties comparable to the uncertainties in direct laboratory or field measurements. The uncertainty of soil water retention prediction due to the model error is as much as or more significant than the uncertainty associated with the estimated input, even for a relatively coarse sampling resolution. Prediction uncertainties are much more important when PTF are applied to estimate the saturated hydraulic conductivity. In this case model error dominates the overall prediction uncertainties, making negligible the effect of the input error.
Comparison of structural and least-squares lines for estimating geologic relations
Williams, G.P.; Troutman, B.M.
1990-01-01
Two different goals in fitting straight lines to data are to estimate a "true" linear relation (physical law) and to predict values of the dependent variable with the smallest possible error. Regarding the first goal, a Monte Carlo study indicated that the structural-analysis (SA) method of fitting straight lines to data is superior to the ordinary least-squares (OLS) method for estimating "true" straight-line relations. Number of data points, slope and intercept of the true relation, and variances of the errors associated with the independent (X) and dependent (Y) variables influence the degree of agreement. For example, differences between the two line-fitting methods decrease as error in X becomes small relative to error in Y. Regarding the second goal-predicting the dependent variable-OLS is better than SA. Again, the difference diminishes as X takes on less error relative to Y. With respect to estimation of slope and intercept and prediction of Y, agreement between Monte Carlo results and large-sample theory was very good for sample sizes of 100, and fair to good for sample sizes of 20. The procedures and error measures are illustrated with two geologic examples. ?? 1990 International Association for Mathematical Geology.
Ferreira, Tiago B; Ribeiro, Paulo; Ribeiro, Filomena J; O'Neill, João G
2017-12-01
To compare the prediction error in the calculation of toric intraocular lenses (IOLs) associated with methods that estimate the power of the posterior corneal surface (ie, Barrett toric calculator and Abulafia-Koch formula) with that of methods that consider real measures obtained using Scheimpflug imaging: a software that uses vectorial calculation (Panacea toric calculator: http://www.panaceaiolandtoriccalculator.com) and a ray tracing software (PhacoOptics, Aarhus Nord, Denmark). In 107 eyes of 107 patients undergoing cataract surgery with toric IOL implantation (Acrysof IQ Toric; Alcon Laboratories, Inc., Fort Worth, TX), predicted residual astigmatism by each calculation method was compared with manifest refractive astigmatism. Prediction error in residual astigmatism was calculated using vector analysis. All calculation methods resulted in overcorrection of with-the-rule astigmatism and undercorrection of against-the-rule astigmatism. Both estimation methods resulted in lower mean and centroid astigmatic prediction errors, and a larger number of eyes within 0.50 diopters (D) of absolute prediction error than methods considering real measures (P < .001). Centroid prediction error (CPE) was 0.07 D at 172° for the Barrett toric calculator and 0.13 D at 174° for the Abulafia-Koch formula (combined with Holladay calculator). For methods using real posterior corneal surface measurements, CPE was 0.25 D at 173° for the Panacea calculator and 0.29 D at 171° for the ray tracing software. The Barrett toric calculator and Abulafia-Koch formula yielded the lowest astigmatic prediction errors. Directly evaluating total corneal power for toric IOL calculation was not superior to estimating it. [J Refract Surg. 2017;33(12):794-800.]. Copyright 2017, SLACK Incorporated.
Conflict Probability Estimation for Free Flight
NASA Technical Reports Server (NTRS)
Paielli, Russell A.; Erzberger, Heinz
1996-01-01
The safety and efficiency of free flight will benefit from automated conflict prediction and resolution advisories. Conflict prediction is based on trajectory prediction and is less certain the farther in advance the prediction, however. An estimate is therefore needed of the probability that a conflict will occur, given a pair of predicted trajectories and their levels of uncertainty. A method is developed in this paper to estimate that conflict probability. The trajectory prediction errors are modeled as normally distributed, and the two error covariances for an aircraft pair are combined into a single equivalent covariance of the relative position. A coordinate transformation is then used to derive an analytical solution. Numerical examples and Monte Carlo validation are presented.
Ronald E. McRoberts; Veronica C. Lessard
2001-01-01
Uncertainty in diameter growth predictions is attributed to three general sources: measurement error or sampling variability in predictor variables, parameter covariances, and residual or unexplained variation around model expectations. Using measurement error and sampling variability distributions obtained from the literature and Monte Carlo simulation methods, the...
Then, Amy Y.; Hoenig, John M; Hall, Norman G.; Hewitt, David A.
2015-01-01
Many methods have been developed in the last 70 years to predict the natural mortality rate, M, of a stock based on empirical evidence from comparative life history studies. These indirect or empirical methods are used in most stock assessments to (i) obtain estimates of M in the absence of direct information, (ii) check on the reasonableness of a direct estimate of M, (iii) examine the range of plausible M estimates for the stock under consideration, and (iv) define prior distributions for Bayesian analyses. The two most cited empirical methods have appeared in the literature over 2500 times to date. Despite the importance of these methods, there is no consensus in the literature on how well these methods work in terms of prediction error or how their performance may be ranked. We evaluate estimators based on various combinations of maximum age (tmax), growth parameters, and water temperature by seeing how well they reproduce >200 independent, direct estimates of M. We use tenfold cross-validation to estimate the prediction error of the estimators and to rank their performance. With updated and carefully reviewed data, we conclude that a tmax-based estimator performs the best among all estimators evaluated. The tmax-based estimators in turn perform better than the Alverson–Carney method based on tmax and the von Bertalanffy K coefficient, Pauly’s method based on growth parameters and water temperature and methods based just on K. It is possible to combine two independent methods by computing a weighted mean but the improvement over the tmax-based methods is slight. Based on cross-validation prediction error, model residual patterns, model parsimony, and biological considerations, we recommend the use of a tmax-based estimator (M=4.899tmax−0.916">M=4.899t−0.916maxM=4.899tmax−0.916, prediction error = 0.32) when possible and a growth-based method (M=4.118K0.73L∞−0.33">M=4.118K0.73L−0.33∞M=4.118K0.73L∞−0.33 , prediction error = 0.6, length in cm) otherwise.
Preisig, James C
2005-07-01
Equations are derived for analyzing the performance of channel estimate based equalizers. The performance is characterized in terms of the mean squared soft decision error (sigma2(s)) of each equalizer. This error is decomposed into two components. These are the minimum achievable error (sigma2(0)) and the excess error (sigma2(e)). The former is the soft decision error that would be realized by the equalizer if the filter coefficient calculation were based upon perfect knowledge of the channel impulse response and statistics of the interfering noise field. The latter is the additional soft decision error that is realized due to errors in the estimates of these channel parameters. These expressions accurately predict the equalizer errors observed in the processing of experimental data by a channel estimate based decision feedback equalizer (DFE) and a passive time-reversal equalizer. Further expressions are presented that allow equalizer performance to be predicted given the scattering function of the acoustic channel. The analysis using these expressions yields insights into the features of surface scattering that most significantly impact equalizer performance in shallow water environments and motivates the implementation of a DFE that is robust with respect to channel estimation errors.
Temporal Prediction Errors Affect Short-Term Memory Scanning Response Time.
Limongi, Roberto; Silva, Angélica M
2016-11-01
The Sternberg short-term memory scanning task has been used to unveil cognitive operations involved in time perception. Participants produce time intervals during the task, and the researcher explores how task performance affects interval production - where time estimation error is the dependent variable of interest. The perspective of predictive behavior regards time estimation error as a temporal prediction error (PE), an independent variable that controls cognition, behavior, and learning. Based on this perspective, we investigated whether temporal PEs affect short-term memory scanning. Participants performed temporal predictions while they maintained information in memory. Model inference revealed that PEs affected memory scanning response time independently of the memory-set size effect. We discuss the results within the context of formal and mechanistic models of short-term memory scanning and predictive coding, a Bayes-based theory of brain function. We state the hypothesis that our finding could be associated with weak frontostriatal connections and weak striatal activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Estep, Donald
2015-11-30
This project addressed the challenge of predictive computational analysis of strongly coupled, highly nonlinear multiphysics systems characterized by multiple physical phenomena that span a large range of length- and time-scales. Specifically, the project was focused on computational estimation of numerical error and sensitivity analysis of computational solutions with respect to variations in parameters and data. In addition, the project investigated the use of accurate computational estimates to guide efficient adaptive discretization. The project developed, analyzed and evaluated new variational adjoint-based techniques for integration, model, and data error estimation/control and sensitivity analysis, in evolutionary multiphysics multiscale simulations.
Bernard R. Parresol
1993-01-01
In the context of forest modeling, it is often reasonable to assume a multiplicative heteroscedastic error structure to the data. Under such circumstances ordinary least squares no longer provides minimum variance estimates of the model parameters. Through study of the error structure, a suitable error variance model can be specified and its parameters estimated. This...
Potter, Gail E; Smieszek, Timo; Sailer, Kerstin
2015-09-01
Face-to-face social contacts are potentially important transmission routes for acute respiratory infections, and understanding the contact network can improve our ability to predict, contain, and control epidemics. Although workplaces are important settings for infectious disease transmission, few studies have collected workplace contact data and estimated workplace contact networks. We use contact diaries, architectural distance measures, and institutional structures to estimate social contact networks within a Swiss research institute. Some contact reports were inconsistent, indicating reporting errors. We adjust for this with a latent variable model, jointly estimating the true (unobserved) network of contacts and duration-specific reporting probabilities. We find that contact probability decreases with distance, and that research group membership, role, and shared projects are strongly predictive of contact patterns. Estimated reporting probabilities were low only for 0-5 min contacts. Adjusting for reporting error changed the estimate of the duration distribution, but did not change the estimates of covariate effects and had little effect on epidemic predictions. Our epidemic simulation study indicates that inclusion of network structure based on architectural and organizational structure data can improve the accuracy of epidemic forecasting models.
Potter, Gail E.; Smieszek, Timo; Sailer, Kerstin
2015-01-01
Face-to-face social contacts are potentially important transmission routes for acute respiratory infections, and understanding the contact network can improve our ability to predict, contain, and control epidemics. Although workplaces are important settings for infectious disease transmission, few studies have collected workplace contact data and estimated workplace contact networks. We use contact diaries, architectural distance measures, and institutional structures to estimate social contact networks within a Swiss research institute. Some contact reports were inconsistent, indicating reporting errors. We adjust for this with a latent variable model, jointly estimating the true (unobserved) network of contacts and duration-specific reporting probabilities. We find that contact probability decreases with distance, and that research group membership, role, and shared projects are strongly predictive of contact patterns. Estimated reporting probabilities were low only for 0–5 min contacts. Adjusting for reporting error changed the estimate of the duration distribution, but did not change the estimates of covariate effects and had little effect on epidemic predictions. Our epidemic simulation study indicates that inclusion of network structure based on architectural and organizational structure data can improve the accuracy of epidemic forecasting models. PMID:26634122
Generalized Variance Function Applications in Forestry
James Alegria; Charles T. Scott; Charles T. Scott
1991-01-01
Adequately predicting the sampling errors of tabular data can reduce printing costs by eliminating the need to publish separate sampling error tables. Two generalized variance functions (GVFs) found in the literature and three GVFs derived for this study were evaluated for their ability to predict the sampling error of tabular forestry estimates. The recommended GVFs...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, H; Chen, J; Pouliot, J
2015-06-15
Purpose: Deformable image registration (DIR) is a powerful tool with the potential to deformably map dose from one computed-tomography (CT) image to another. Errors in the DIR, however, will produce errors in the transferred dose distribution. We have proposed a software tool, called AUTODIRECT (automated DIR evaluation of confidence tool), which predicts voxel-specific dose mapping errors on a patient-by-patient basis. This work validates the effectiveness of AUTODIRECT to predict dose mapping errors with virtual and physical phantom datasets. Methods: AUTODIRECT requires 4 inputs: moving and fixed CT images and two noise scans of a water phantom (for noise characterization). Then,more » AUTODIRECT uses algorithms to generate test deformations and applies them to the moving and fixed images (along with processing) to digitally create sets of test images, with known ground-truth deformations that are similar to the actual one. The clinical DIR algorithm is then applied to these test image sets (currently 4) . From these tests, AUTODIRECT generates spatial and dose uncertainty estimates for each image voxel based on a Student’s t distribution. This work compares these uncertainty estimates to the actual errors made by the Velocity Deformable Multi Pass algorithm on 11 virtual and 1 physical phantom datasets. Results: For 11 of the 12 tests, the predicted dose error distributions from AUTODIRECT are well matched to the actual error distributions within 1–6% for 10 virtual phantoms, and 9% for the physical phantom. For one of the cases though, the predictions underestimated the errors in the tail of the distribution. Conclusion: Overall, the AUTODIRECT algorithm performed well on the 12 phantom cases for Velocity and was shown to generate accurate estimates of dose warping uncertainty. AUTODIRECT is able to automatically generate patient-, organ- , and voxel-specific DIR uncertainty estimates. This ability would be useful for patient-specific DIR quality assurance.« less
Estimation of lipids and lean mass of migrating sandpipers
Skagen, Susan K.; Knopf, Fritz L.; Cade, Brian S.
1993-01-01
Estimation of lean mass and lipid levels in birds involves the derivation of predictive equations that relate morphological measurements and, more recently, total body electrical conductivity (TOBEC) indices to known lean and lipid masses. Using cross-validation techniques, we evaluated the ability of several published and new predictive equations to estimate lean and lipid mass of Semipalmated Sandpipers (Calidris pusilla) and White-rumped Sandpipers (C. fuscicollis). We also tested ideas of Morton et al. (1991), who stated that current statistical approaches to TOBEC methodology misrepresent precision in estimating body fat. Three published interspecific equations using TOBEC indices predicted lean and lipid masses of our sample of birds with average errors of 8-28% and 53-155%, respectively. A new two-species equation relating lean mass and TOBEC indices revealed average errors of 4.6% and 23.2% in predicting lean and lipid mass, respectively. New intraspecific equations that estimate lipid mass directly from body mass, morphological measurements, and TOBEC indices yielded about a 13% error in lipid estimates. Body mass and morphological measurements explained a substantial portion of the variance (about 90%) in fat mass of both species. Addition of TOBEC indices improved the predictive model more for the smaller than for the larger sandpiper. TOBEC indices explained an additional 7.8% and 2.6% of the variance in fat mass and reduced the minimum breadth of prediction intervals by 0.95 g (32%) and 0.39 g (13%) for Semipalmated and White-rumped Sandpipers, respectively. The breadth of prediction intervals for models used to predict fat levels of individual birds must be considered when interpreting the resultant lipid estimates.
NASA Astrophysics Data System (ADS)
Huo, Ming-Xia; Li, Ying
2017-12-01
Quantum error correction is important to quantum information processing, which allows us to reliably process information encoded in quantum error correction codes. Efficient quantum error correction benefits from the knowledge of error rates. We propose a protocol for monitoring error rates in real time without interrupting the quantum error correction. Any adaptation of the quantum error correction code or its implementation circuit is not required. The protocol can be directly applied to the most advanced quantum error correction techniques, e.g. surface code. A Gaussian processes algorithm is used to estimate and predict error rates based on error correction data in the past. We find that using these estimated error rates, the probability of error correction failures can be significantly reduced by a factor increasing with the code distance.
Nematode Damage Functions: The Problems of Experimental and Sampling Error
Ferris, H.
1984-01-01
The development and use of pest damage functions involves measurement and experimental errors associated with cultural, environmental, and distributional factors. Damage predictions are more valuable if considered with associated probability. Collapsing population densities into a geometric series of population classes allows a pseudo-replication removal of experimental and sampling error in damage function development. Recognition of the nature of sampling error for aggregated populations allows assessment of probability associated with the population estimate. The product of the probabilities incorporated in the damage function and in the population estimate provides a basis for risk analysis of the yield loss prediction and the ensuing management decision. PMID:19295865
NASA Astrophysics Data System (ADS)
Lock, Jacobus C.; Smit, Willie J.; Treurnicht, Johann
2016-05-01
The Solar Thermal Energy Research Group (STERG) is investigating ways to make heliostats cheaper to reduce the total cost of a concentrating solar power (CSP) plant. One avenue of research is to use unmanned aerial vehicles (UAVs) to automate and assist with the heliostat calibration process. To do this, the pose estimation error of each UAV must be determined and integrated into a calibration procedure. A computer vision (CV) system is used to measure the pose of a quadcopter UAV. However, this CV system contains considerable measurement errors. Since this is a high-dimensional problem, a sophisticated prediction model must be used to estimate the measurement error of the CV system for any given pose measurement vector. This paper attempts to train and validate such a model with the aim of using it to determine the pose error of a quadcopter in a CSP plant setting.
Gao, Yujuan; Wang, Sheng; Deng, Minghua; Xu, Jinbo
2018-05-08
Protein dihedral angles provide a detailed description of protein local conformation. Predicted dihedral angles can be used to narrow down the conformational space of the whole polypeptide chain significantly, thus aiding protein tertiary structure prediction. However, direct angle prediction from sequence alone is challenging. In this article, we present a novel method (named RaptorX-Angle) to predict real-valued angles by combining clustering and deep learning. Tested on a subset of PDB25 and the targets in the latest two Critical Assessment of protein Structure Prediction (CASP), our method outperforms the existing state-of-art method SPIDER2 in terms of Pearson Correlation Coefficient (PCC) and Mean Absolute Error (MAE). Our result also shows approximately linear relationship between the real prediction errors and our estimated bounds. That is, the real prediction error can be well approximated by our estimated bounds. Our study provides an alternative and more accurate prediction of dihedral angles, which may facilitate protein structure prediction and functional study.
Stochastic estimation of plant-available soil water under fluctuating water table depths
NASA Astrophysics Data System (ADS)
Or, Dani; Groeneveld, David P.
1994-12-01
Preservation of native valley-floor phreatophytes while pumping groundwater for export from Owens Valley, California, requires reliable predictions of plant water use. These predictions are compared with stored soil water within well field regions and serve as a basis for managing groundwater resources. Soil water measurement errors, variable recharge, unpredictable climatic conditions affecting plant water use, and modeling errors make soil water predictions uncertain and error-prone. We developed and tested a scheme based on soil water balance coupled with implementation of Kalman filtering (KF) for (1) providing physically based soil water storage predictions with prediction errors projected from the statistics of the various inputs, and (2) reducing the overall uncertainty in both estimates and predictions. The proposed KF-based scheme was tested using experimental data collected at a location on the Owens Valley floor where the water table was artificially lowered by groundwater pumping and later allowed to recover. Vegetation composition and per cent cover, climatic data, and soil water information were collected and used for developing a soil water balance. Predictions and updates of soil water storage under different types of vegetation were obtained for a period of 5 years. The main results show that: (1) the proposed predictive model provides reliable and resilient soil water estimates under a wide range of external conditions; (2) the predicted soil water storage and the error bounds provided by the model offer a realistic and rational basis for decisions such as when to curtail well field operation to ensure plant survival. The predictive model offers a practical means for accommodating simple aspects of spatial variability by considering the additional source of uncertainty as part of modeling or measurement uncertainty.
Computation of Standard Errors
Dowd, Bryan E; Greene, William H; Norton, Edward C
2014-01-01
Objectives We discuss the problem of computing the standard errors of functions involving estimated parameters and provide the relevant computer code for three different computational approaches using two popular computer packages. Study Design We show how to compute the standard errors of several functions of interest: the predicted value of the dependent variable for a particular subject, and the effect of a change in an explanatory variable on the predicted value of the dependent variable for an individual subject and average effect for a sample of subjects. Empirical Application Using a publicly available dataset, we explain three different methods of computing standard errors: the delta method, Krinsky–Robb, and bootstrapping. We provide computer code for Stata 12 and LIMDEP 10/NLOGIT 5. Conclusions In most applications, choice of the computational method for standard errors of functions of estimated parameters is a matter of convenience. However, when computing standard errors of the sample average of functions that involve both estimated parameters and nonstochastic explanatory variables, it is important to consider the sources of variation in the function's values. PMID:24800304
Queuing Time Prediction Using WiFi Positioning Data in an Indoor Scenario.
Shu, Hua; Song, Ci; Pei, Tao; Xu, Lianming; Ou, Yang; Zhang, Libin; Li, Tao
2016-11-22
Queuing is common in urban public places. Automatically monitoring and predicting queuing time can not only help individuals to reduce their wait time and alleviate anxiety but also help managers to allocate resources more efficiently and enhance their ability to address emergencies. This paper proposes a novel method to estimate and predict queuing time in indoor environments based on WiFi positioning data. First, we use a series of parameters to identify the trajectories that can be used as representatives of queuing time. Next, we divide the day into equal time slices and estimate individuals' average queuing time during specific time slices. Finally, we build a nonstandard autoregressive (NAR) model trained using the previous day's WiFi estimation results and actual queuing time to predict the queuing time in the upcoming time slice. A case study comparing two other time series analysis models shows that the NAR model has better precision. Random topological errors caused by the drift phenomenon of WiFi positioning technology (locations determined by a WiFi positioning system may drift accidently) and systematic topological errors caused by the positioning system are the main factors that affect the estimation precision. Therefore, we optimize the deployment strategy during the positioning system deployment phase and propose a drift ratio parameter pertaining to the trajectory screening phase to alleviate the impact of topological errors and improve estimates. The WiFi positioning data from an eight-day case study conducted at the T3-C entrance of Beijing Capital International Airport show that the mean absolute estimation error is 147 s, which is approximately 26.92% of the actual queuing time. For predictions using the NAR model, the proportion is approximately 27.49%. The theoretical predictions and the empirical case study indicate that the NAR model is an effective method to estimate and predict queuing time in indoor public areas.
Queuing Time Prediction Using WiFi Positioning Data in an Indoor Scenario
Shu, Hua; Song, Ci; Pei, Tao; Xu, Lianming; Ou, Yang; Zhang, Libin; Li, Tao
2016-01-01
Queuing is common in urban public places. Automatically monitoring and predicting queuing time can not only help individuals to reduce their wait time and alleviate anxiety but also help managers to allocate resources more efficiently and enhance their ability to address emergencies. This paper proposes a novel method to estimate and predict queuing time in indoor environments based on WiFi positioning data. First, we use a series of parameters to identify the trajectories that can be used as representatives of queuing time. Next, we divide the day into equal time slices and estimate individuals’ average queuing time during specific time slices. Finally, we build a nonstandard autoregressive (NAR) model trained using the previous day’s WiFi estimation results and actual queuing time to predict the queuing time in the upcoming time slice. A case study comparing two other time series analysis models shows that the NAR model has better precision. Random topological errors caused by the drift phenomenon of WiFi positioning technology (locations determined by a WiFi positioning system may drift accidently) and systematic topological errors caused by the positioning system are the main factors that affect the estimation precision. Therefore, we optimize the deployment strategy during the positioning system deployment phase and propose a drift ratio parameter pertaining to the trajectory screening phase to alleviate the impact of topological errors and improve estimates. The WiFi positioning data from an eight-day case study conducted at the T3-C entrance of Beijing Capital International Airport show that the mean absolute estimation error is 147 s, which is approximately 26.92% of the actual queuing time. For predictions using the NAR model, the proportion is approximately 27.49%. The theoretical predictions and the empirical case study indicate that the NAR model is an effective method to estimate and predict queuing time in indoor public areas. PMID:27879663
Eaton, Jeffrey W.; Bao, Le
2017-01-01
Objectives The aim of the study was to propose and demonstrate an approach to allow additional nonsampling uncertainty about HIV prevalence measured at antenatal clinic sentinel surveillance (ANC-SS) in model-based inferences about trends in HIV incidence and prevalence. Design Mathematical model fitted to surveillance data with Bayesian inference. Methods We introduce a variance inflation parameter σinfl2 that accounts for the uncertainty of nonsampling errors in ANC-SS prevalence. It is additive to the sampling error variance. Three approaches are tested for estimating σinfl2 using ANC-SS and household survey data from 40 subnational regions in nine countries in sub-Saharan, as defined in UNAIDS 2016 estimates. Methods were compared using in-sample fit and out-of-sample prediction of ANC-SS data, fit to household survey prevalence data, and the computational implications. Results Introducing the additional variance parameter σinfl2 increased the error variance around ANC-SS prevalence observations by a median of 2.7 times (interquartile range 1.9–3.8). Using only sampling error in ANC-SS prevalence ( σinfl2=0), coverage of 95% prediction intervals was 69% in out-of-sample prediction tests. This increased to 90% after introducing the additional variance parameter σinfl2. The revised probabilistic model improved model fit to household survey prevalence and increased epidemic uncertainty intervals most during the early epidemic period before 2005. Estimating σinfl2 did not increase the computational cost of model fitting. Conclusions: We recommend estimating nonsampling error in ANC-SS as an additional parameter in Bayesian inference using the Estimation and Projection Package model. This approach may prove useful for incorporating other data sources such as routine prevalence from Prevention of mother-to-child transmission testing into future epidemic estimates. PMID:28296801
Evaluating concentration estimation errors in ELISA microarray experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daly, Don S.; White, Amanda M.; Varnum, Susan M.
Enzyme-linked immunosorbent assay (ELISA) is a standard immunoassay to predict a protein concentration in a sample. Deploying ELISA in a microarray format permits simultaneous prediction of the concentrations of numerous proteins in a small sample. These predictions, however, are uncertain due to processing error and biological variability. Evaluating prediction error is critical to interpreting biological significance and improving the ELISA microarray process. Evaluating prediction error must be automated to realize a reliable high-throughput ELISA microarray system. Methods: In this paper, we present a statistical method based on propagation of error to evaluate prediction errors in the ELISA microarray process. Althoughmore » propagation of error is central to this method, it is effective only when comparable data are available. Therefore, we briefly discuss the roles of experimental design, data screening, normalization and statistical diagnostics when evaluating ELISA microarray prediction errors. We use an ELISA microarray investigation of breast cancer biomarkers to illustrate the evaluation of prediction errors. The illustration begins with a description of the design and resulting data, followed by a brief discussion of data screening and normalization. In our illustration, we fit a standard curve to the screened and normalized data, review the modeling diagnostics, and apply propagation of error.« less
NASA Astrophysics Data System (ADS)
Lilly, P.; Yanai, R. D.; Buckley, H. L.; Case, B. S.; Woollons, R. C.; Holdaway, R. J.; Johnson, J.
2016-12-01
Calculations of forest biomass and elemental content require many measurements and models, each contributing uncertainty to the final estimates. While sampling error is commonly reported, based on replicate plots, error due to uncertainty in the regression used to estimate biomass from tree diameter is usually not quantified. Some published estimates of uncertainty due to the regression models have used the uncertainty in the prediction of individuals, ignoring uncertainty in the mean, while others have propagated uncertainty in the mean while ignoring individual variation. Using the simple case of the calcium concentration of sugar maple leaves, we compare the variation among individuals (the standard deviation) to the uncertainty in the mean (the standard error) and illustrate the declining importance in the prediction of individual concentrations as the number of individuals increases. For allometric models, the analogous statistics are the prediction interval (or the residual variation in the model fit) and the confidence interval (describing the uncertainty in the best fit model). The effect of propagating these two sources of error is illustrated using the mass of sugar maple foliage. The uncertainty in individual tree predictions was large for plots with few trees; for plots with 30 trees or more, the uncertainty in individuals was less important than the uncertainty in the mean. Authors of previously published analyses have reanalyzed their data to show the magnitude of these two sources of uncertainty in scales ranging from experimental plots to entire countries. The most correct analysis will take both sources of uncertainty into account, but for practical purposes, country-level reports of uncertainty in carbon stocks, as required by the IPCC, can ignore the uncertainty in individuals. Ignoring the uncertainty in the mean will lead to exaggerated estimates of confidence in estimates of forest biomass and carbon and nutrient contents.
Jiang, Wenyu; Simon, Richard
2007-12-20
This paper first provides a critical review on some existing methods for estimating the prediction error in classifying microarray data where the number of genes greatly exceeds the number of specimens. Special attention is given to the bootstrap-related methods. When the sample size n is small, we find that all the reviewed methods suffer from either substantial bias or variability. We introduce a repeated leave-one-out bootstrap (RLOOB) method that predicts for each specimen in the sample using bootstrap learning sets of size ln. We then propose an adjusted bootstrap (ABS) method that fits a learning curve to the RLOOB estimates calculated with different bootstrap learning set sizes. The ABS method is robust across the situations we investigate and provides a slightly conservative estimate for the prediction error. Even with small samples, it does not suffer from large upward bias as the leave-one-out bootstrap and the 0.632+ bootstrap, and it does not suffer from large variability as the leave-one-out cross-validation in microarray applications. Copyright (c) 2007 John Wiley & Sons, Ltd.
The current study uses case studies of model-estimated regional precipitation and wet ion deposition to estimate errors in corresponding regional values derived from the means of site-specific values within regions of interest located in the eastern US. The mean of model-estimate...
Use of the HR index to predict maximal oxygen uptake during different exercise protocols.
Haller, Jeannie M; Fehling, Patricia C; Barr, David A; Storer, Thomas W; Cooper, Christopher B; Smith, Denise L
2013-10-01
This study examined the ability of the HRindex model to accurately predict maximal oxygen uptake ([Formula: see text]O2max) across a variety of incremental exercise protocols. Ten men completed five incremental protocols to volitional exhaustion. Protocols included three treadmill (Bruce, UCLA running, Wellness Fitness Initiative [WFI]), one cycle, and one field (shuttle) test. The HRindex prediction equation (METs = 6 × HRindex - 5, where HRindex = HRmax/HRrest) was used to generate estimates of energy expenditure, which were converted to body mass-specific estimates of [Formula: see text]O2max. Estimated [Formula: see text]O2max was compared with measured [Formula: see text]O2max. Across all protocols, the HRindex model significantly underestimated [Formula: see text]O2max by 5.1 mL·kg(-1)·min(-1) (95% CI: -7.4, -2.7) and the standard error of the estimate (SEE) was 6.7 mL·kg(-1)·min(-1). Accuracy of the model was protocol-dependent, with [Formula: see text]O2max significantly underestimated for the Bruce and WFI protocols but not the UCLA, Cycle, or Shuttle protocols. Although no significant differences in [Formula: see text]O2max estimates were identified for these three protocols, predictive accuracy among them was not high, with root mean squared errors and SEEs ranging from 7.6 to 10.3 mL·kg(-1)·min(-1) and from 4.5 to 8.0 mL·kg(-1)·min(-1), respectively. Correlations between measured and predicted [Formula: see text]O2max were between 0.27 and 0.53. Individual prediction errors indicated that prediction accuracy varied considerably within protocols and among participants. In conclusion, across various protocols the HRindex model significantly underestimated [Formula: see text]O2max in a group of aerobically fit young men. Estimates generated using the model did not differ from measured [Formula: see text]O2max for three of the five protocols studied; nevertheless, some individual prediction errors were large. The lack of precision among estimates may limit the utility of the HRindex model; however, further investigation to establish the model's predictive accuracy is warranted.
An hp-adaptivity and error estimation for hyperbolic conservation laws
NASA Technical Reports Server (NTRS)
Bey, Kim S.
1995-01-01
This paper presents an hp-adaptive discontinuous Galerkin method for linear hyperbolic conservation laws. A priori and a posteriori error estimates are derived in mesh-dependent norms which reflect the dependence of the approximate solution on the element size (h) and the degree (p) of the local polynomial approximation. The a posteriori error estimate, based on the element residual method, provides bounds on the actual global error in the approximate solution. The adaptive strategy is designed to deliver an approximate solution with the specified level of error in three steps. The a posteriori estimate is used to assess the accuracy of a given approximate solution and the a priori estimate is used to predict the mesh refinements and polynomial enrichment needed to deliver the desired solution. Numerical examples demonstrate the reliability of the a posteriori error estimates and the effectiveness of the hp-adaptive strategy.
Five-equation and robust three-equation methods for solution verification of large eddy simulation
NASA Astrophysics Data System (ADS)
Dutta, Rabijit; Xing, Tao
2018-02-01
This study evaluates the recently developed general framework for solution verification methods for large eddy simulation (LES) using implicitly filtered LES of periodic channel flows at friction Reynolds number of 395 on eight systematically refined grids. The seven-equation method shows that the coupling error based on Hypothesis I is much smaller as compared with the numerical and modeling errors and therefore can be neglected. The authors recommend five-equation method based on Hypothesis II, which shows a monotonic convergence behavior of the predicted numerical benchmark ( S C ), and provides realistic error estimates without the need of fixing the orders of accuracy for either numerical or modeling errors. Based on the results from seven-equation and five-equation methods, less expensive three and four-equation methods for practical LES applications were derived. It was found that the new three-equation method is robust as it can be applied to any convergence types and reasonably predict the error trends. It was also observed that the numerical and modeling errors usually have opposite signs, which suggests error cancellation play an essential role in LES. When Reynolds averaged Navier-Stokes (RANS) based error estimation method is applied, it shows significant error in the prediction of S C on coarse meshes. However, it predicts reasonable S C when the grids resolve at least 80% of the total turbulent kinetic energy.
NASA Astrophysics Data System (ADS)
Behnabian, Behzad; Mashhadi Hossainali, Masoud; Malekzadeh, Ahad
2018-02-01
The cross-validation technique is a popular method to assess and improve the quality of prediction by least squares collocation (LSC). We present a formula for direct estimation of the vector of cross-validation errors (CVEs) in LSC which is much faster than element-wise CVE computation. We show that a quadratic form of CVEs follows Chi-squared distribution. Furthermore, a posteriori noise variance factor is derived by the quadratic form of CVEs. In order to detect blunders in the observations, estimated standardized CVE is proposed as the test statistic which can be applied when noise variances are known or unknown. We use LSC together with the methods proposed in this research for interpolation of crustal subsidence in the northern coast of the Gulf of Mexico. The results show that after detection and removing outliers, the root mean square (RMS) of CVEs and estimated noise standard deviation are reduced about 51 and 59%, respectively. In addition, RMS of LSC prediction error at data points and RMS of estimated noise of observations are decreased by 39 and 67%, respectively. However, RMS of LSC prediction error on a regular grid of interpolation points covering the area is only reduced about 4% which is a consequence of sparse distribution of data points for this case study. The influence of gross errors on LSC prediction results is also investigated by lower cutoff CVEs. It is indicated that after elimination of outliers, RMS of this type of errors is also reduced by 19.5% for a 5 km radius of vicinity. We propose a method using standardized CVEs for classification of dataset into three groups with presumed different noise variances. The noise variance components for each of the groups are estimated using restricted maximum-likelihood method via Fisher scoring technique. Finally, LSC assessment measures were computed for the estimated heterogeneous noise variance model and compared with those of the homogeneous model. The advantage of the proposed method is the reduction in estimated noise levels for those groups with the fewer number of noisy data points.
Wald Sequential Probability Ratio Test for Analysis of Orbital Conjunction Data
NASA Technical Reports Server (NTRS)
Carpenter, J. Russell; Markley, F. Landis; Gold, Dara
2013-01-01
We propose a Wald Sequential Probability Ratio Test for analysis of commonly available predictions associated with spacecraft conjunctions. Such predictions generally consist of a relative state and relative state error covariance at the time of closest approach, under the assumption that prediction errors are Gaussian. We show that under these circumstances, the likelihood ratio of the Wald test reduces to an especially simple form, involving the current best estimate of collision probability, and a similar estimate of collision probability that is based on prior assumptions about the likelihood of collision.
The impact of estimation errors on evaluations of timber production opportunities.
Dennis L. Schweitzer
1970-01-01
Errors in estimating costs and return, the timing of harvests, and the cost of using funds can greatly affect the apparent desirability of investments in timber production. Partial derivatives are used to measure the impact of these errors on the predicted present net worth of potential investments in timber production. Graphs that illustrate the impact of each type...
Tarone, Aaron M; Foran, David R
2008-07-01
Forensic entomologists use blow fly development to estimate a postmortem interval. Although accurate, fly age estimates can be imprecise for older developmental stages and no standard means of assigning confidence intervals exists. Presented here is a method for modeling growth of the forensically important blow fly Lucilia sericata, using generalized additive models (GAMs). Eighteen GAMs were created to predict the extent of juvenile fly development, encompassing developmental stage, length, weight, strain, and temperature data, collected from 2559 individuals. All measures were informative, explaining up to 92.6% of the deviance in the data, though strain and temperature exerted negligible influences. Predictions made with an independent data set allowed for a subsequent examination of error. Estimates using length and developmental stage were within 5% of true development percent during the feeding portion of the larval life cycle, while predictions for postfeeding third instars were less precise, but within expected error.
Adjoint-Based, Three-Dimensional Error Prediction and Grid Adaptation
NASA Technical Reports Server (NTRS)
Park, Michael A.
2002-01-01
Engineering computational fluid dynamics (CFD) analysis and design applications focus on output functions (e.g., lift, drag). Errors in these output functions are generally unknown and conservatively accurate solutions may be computed. Computable error estimates can offer the possibility to minimize computational work for a prescribed error tolerance. Such an estimate can be computed by solving the flow equations and the linear adjoint problem for the functional of interest. The computational mesh can be modified to minimize the uncertainty of a computed error estimate. This robust mesh-adaptation procedure automatically terminates when the simulation is within a user specified error tolerance. This procedure for estimating and adapting to error in a functional is demonstrated for three-dimensional Euler problems. An adaptive mesh procedure that links to a Computer Aided Design (CAD) surface representation is demonstrated for wing, wing-body, and extruded high lift airfoil configurations. The error estimation and adaptation procedure yielded corrected functions that are as accurate as functions calculated on uniformly refined grids with ten times as many grid points.
Frankenfield, David; Roth-Yousey, Lori; Compher, Charlene
2005-05-01
An assessment of energy needs is a necessary component in the development and evaluation of a nutrition care plan. The metabolic rate can be measured or estimated by equations, but estimation is by far the more common method. However, predictive equations might generate errors large enough to impact outcome. Therefore, a systematic review of the literature was undertaken to document the accuracy of predictive equations preliminary to deciding on the imperative to measure metabolic rate. As part of a larger project to determine the role of indirect calorimetry in clinical practice, an evidence team identified published articles that examined the validity of various predictive equations for resting metabolic rate (RMR) in nonobese and obese people and also in individuals of various ethnic and age groups. Articles were accepted based on defined criteria and abstracted using evidence analysis tools developed by the American Dietetic Association. Because these equations are applied by dietetics practitioners to individuals, a key inclusion criterion was research reports of individual data. The evidence was systematically evaluated, and a conclusion statement and grade were developed. Four prediction equations were identified as the most commonly used in clinical practice (Harris-Benedict, Mifflin-St Jeor, Owen, and World Health Organization/Food and Agriculture Organization/United Nations University [WHO/FAO/UNU]). Of these equations, the Mifflin-St Jeor equation was the most reliable, predicting RMR within 10% of measured in more nonobese and obese individuals than any other equation, and it also had the narrowest error range. No validation work concentrating on individual errors was found for the WHO/FAO/UNU equation. Older adults and US-residing ethnic minorities were underrepresented both in the development of predictive equations and in validation studies. The Mifflin-St Jeor equation is more likely than the other equations tested to estimate RMR to within 10% of that measured, but noteworthy errors and limitations exist when it is applied to individuals and possibly when it is generalized to certain age and ethnic groups. RMR estimation errors would be eliminated by valid measurement of RMR with indirect calorimetry, using an evidence-based protocol to minimize measurement error. The Expert Panel advises clinical judgment regarding when to accept estimated RMR using predictive equations in any given individual. Indirect calorimetry may be an important tool when, in the judgment of the clinician, the predictive methods fail an individual in a clinically relevant way. For members of groups that are greatly underrepresented by existing validation studies of predictive equations, a high level of suspicion regarding the accuracy of the equations is warranted.
Iterative random vs. Kennard-Stone sampling for IR spectrum-based classification task using PLS2-DA
NASA Astrophysics Data System (ADS)
Lee, Loong Chuen; Liong, Choong-Yeun; Jemain, Abdul Aziz
2018-04-01
External testing (ET) is preferred over auto-prediction (AP) or k-fold-cross-validation in estimating more realistic predictive ability of a statistical model. With IR spectra, Kennard-stone (KS) sampling algorithm is often used to split the data into training and test sets, i.e. respectively for model construction and for model testing. On the other hand, iterative random sampling (IRS) has not been the favored choice though it is theoretically more likely to produce reliable estimation. The aim of this preliminary work is to compare performances of KS and IRS in sampling a representative training set from an attenuated total reflectance - Fourier transform infrared spectral dataset (of four varieties of blue gel pen inks) for PLS2-DA modeling. The `best' performance achievable from the dataset is estimated with AP on the full dataset (APF, error). Both IRS (n = 200) and KS were used to split the dataset in the ratio of 7:3. The classic decision rule (i.e. maximum value-based) is employed for new sample prediction via partial least squares - discriminant analysis (PLS2-DA). Error rate of each model was estimated repeatedly via: (a) AP on full data (APF, error); (b) AP on training set (APS, error); and (c) ET on the respective test set (ETS, error). A good PLS2-DA model is expected to produce APS, error and EVS, error that is similar to the APF, error. Bearing that in mind, the similarities between (a) APS, error vs. APF, error; (b) ETS, error vs. APF, error and; (c) APS, error vs. ETS, error were evaluated using correlation tests (i.e. Pearson and Spearman's rank test), using series of PLS2-DA models computed from KS-set and IRS-set, respectively. Overall, models constructed from IRS-set exhibits more similarities between the internal and external error rates than the respective KS-set, i.e. less risk of overfitting. In conclusion, IRS is more reliable than KS in sampling representative training set.
Kumar, Poornima; Eickhoff, Simon B.; Dombrovski, Alexandre Y.
2015-01-01
Reinforcement learning describes motivated behavior in terms of two abstract signals. The representation of discrepancies between expected and actual rewards/punishments – prediction error – is thought to update the expected value of actions and predictive stimuli. Electrophysiological and lesion studies suggest that mesostriatal prediction error signals control behavior through synaptic modification of cortico-striato-thalamic networks. Signals in the ventromedial prefrontal and orbitofrontal cortex are implicated in representing expected value. To obtain unbiased maps of these representations in the human brain, we performed a meta-analysis of functional magnetic resonance imaging studies that employed algorithmic reinforcement learning models, across a variety of experimental paradigms. We found that the ventral striatum (medial and lateral) and midbrain/thalamus represented reward prediction errors, consistent with animal studies. Prediction error signals were also seen in the frontal operculum/insula, particularly for social rewards. In Pavlovian studies, striatal prediction error signals extended into the amygdala, while instrumental tasks engaged the caudate. Prediction error maps were sensitive to the model-fitting procedure (fixed or individually-estimated) and to the extent of spatial smoothing. A correlate of expected value was found in a posterior region of the ventromedial prefrontal cortex, caudal and medial to the orbitofrontal regions identified in animal studies. These findings highlight a reproducible motif of reinforcement learning in the cortico-striatal loops and identify methodological dimensions that may influence the reproducibility of activation patterns across studies. PMID:25665667
Analytical performance evaluation of SAR ATR with inaccurate or estimated models
NASA Astrophysics Data System (ADS)
DeVore, Michael D.
2004-09-01
Hypothesis testing algorithms for automatic target recognition (ATR) are often formulated in terms of some assumed distribution family. The parameter values corresponding to a particular target class together with the distribution family constitute a model for the target's signature. In practice such models exhibit inaccuracy because of incorrect assumptions about the distribution family and/or because of errors in the assumed parameter values, which are often determined experimentally. Model inaccuracy can have a significant impact on performance predictions for target recognition systems. Such inaccuracy often causes model-based predictions that ignore the difference between assumed and actual distributions to be overly optimistic. This paper reports on research to quantify the effect of inaccurate models on performance prediction and to estimate the effect using only trained parameters. We demonstrate that for large observation vectors the class-conditional probabilities of error can be expressed as a simple function of the difference between two relative entropies. These relative entropies quantify the discrepancies between the actual and assumed distributions and can be used to express the difference between actual and predicted error rates. Focusing on the problem of ATR from synthetic aperture radar (SAR) imagery, we present estimators of the probabilities of error in both ideal and plug-in tests expressed in terms of the trained model parameters. These estimators are defined in terms of unbiased estimates for the first two moments of the sample statistic. We present an analytical treatment of these results and include demonstrations from simulated radar data.
On the Limitations of Variational Bias Correction
NASA Technical Reports Server (NTRS)
Moradi, Isaac; Mccarty, Will; Gelaro, Ronald
2018-01-01
Satellite radiances are the largest dataset assimilated into Numerical Weather Prediction (NWP) models, however the data are subject to errors and uncertainties that need to be accounted for before assimilating into the NWP models. Variational bias correction uses the time series of observation minus background to estimate the observations bias. This technique does not distinguish between the background error, forward operator error, and observations error so that all these errors are summed up together and counted as observation error. We identify some sources of observations errors (e.g., antenna emissivity, non-linearity in the calibration, and antenna pattern) and show the limitations of variational bias corrections on estimating these errors.
Zollanvari, Amin; Dougherty, Edward R
2014-06-01
The most important aspect of any classifier is its error rate, because this quantifies its predictive capacity. Thus, the accuracy of error estimation is critical. Error estimation is problematic in small-sample classifier design because the error must be estimated using the same data from which the classifier has been designed. Use of prior knowledge, in the form of a prior distribution on an uncertainty class of feature-label distributions to which the true, but unknown, feature-distribution belongs, can facilitate accurate error estimation (in the mean-square sense) in circumstances where accurate completely model-free error estimation is impossible. This paper provides analytic asymptotically exact finite-sample approximations for various performance metrics of the resulting Bayesian Minimum Mean-Square-Error (MMSE) error estimator in the case of linear discriminant analysis (LDA) in the multivariate Gaussian model. These performance metrics include the first, second, and cross moments of the Bayesian MMSE error estimator with the true error of LDA, and therefore, the Root-Mean-Square (RMS) error of the estimator. We lay down the theoretical groundwork for Kolmogorov double-asymptotics in a Bayesian setting, which enables us to derive asymptotic expressions of the desired performance metrics. From these we produce analytic finite-sample approximations and demonstrate their accuracy via numerical examples. Various examples illustrate the behavior of these approximations and their use in determining the necessary sample size to achieve a desired RMS. The Supplementary Material contains derivations for some equations and added figures.
Bergen, Silas; Sheppard, Lianne; Kaufman, Joel D.; Szpiro, Adam A.
2016-01-01
Summary Air pollution epidemiology studies are trending towards a multi-pollutant approach. In these studies, exposures at subject locations are unobserved and must be predicted using observed exposures at misaligned monitoring locations. This induces measurement error, which can bias the estimated health effects and affect standard error estimates. We characterize this measurement error and develop an analytic bias correction when using penalized regression splines to predict exposure. Our simulations show bias from multi-pollutant measurement error can be severe, and in opposite directions or simultaneously positive or negative. Our analytic bias correction combined with a non-parametric bootstrap yields accurate coverage of 95% confidence intervals. We apply our methodology to analyze the association of systolic blood pressure with PM2.5 and NO2 in the NIEHS Sister Study. We find that NO2 confounds the association of systolic blood pressure with PM2.5 and vice versa. Elevated systolic blood pressure was significantly associated with increased PM2.5 and decreased NO2. Correcting for measurement error bias strengthened these associations and widened 95% confidence intervals. PMID:27789915
NASA Technical Reports Server (NTRS)
Lee-Rausch, E. M.; Park, M. A.; Jones, W. T.; Hammond, D. P.; Nielsen, E. J.
2005-01-01
This paper demonstrates the extension of error estimation and adaptation methods to parallel computations enabling larger, more realistic aerospace applications and the quantification of discretization errors for complex 3-D solutions. Results were shown for an inviscid sonic-boom prediction about a double-cone configuration and a wing/body segmented leading edge (SLE) configuration where the output function of the adjoint was pressure integrated over a part of the cylinder in the near field. After multiple cycles of error estimation and surface/field adaptation, a significant improvement in the inviscid solution for the sonic boom signature of the double cone was observed. Although the double-cone adaptation was initiated from a very coarse mesh, the near-field pressure signature from the final adapted mesh compared very well with the wind-tunnel data which illustrates that the adjoint-based error estimation and adaptation process requires no a priori refinement of the mesh. Similarly, the near-field pressure signature for the SLE wing/body sonic boom configuration showed a significant improvement from the initial coarse mesh to the final adapted mesh in comparison with the wind tunnel results. Error estimation and field adaptation results were also presented for the viscous transonic drag prediction of the DLR-F6 wing/body configuration, and results were compared to a series of globally refined meshes. Two of these globally refined meshes were used as a starting point for the error estimation and field-adaptation process where the output function for the adjoint was the total drag. The field-adapted results showed an improvement in the prediction of the drag in comparison with the finest globally refined mesh and a reduction in the estimate of the remaining drag error. The adjoint-based adaptation parameter showed a need for increased resolution in the surface of the wing/body as well as a need for wake resolution downstream of the fuselage and wing trailing edge in order to achieve the requested drag tolerance. Although further adaptation was required to meet the requested tolerance, no further cycles were computed in order to avoid large discrepancies between the surface mesh spacing and the refined field spacing.
Constrained motion estimation-based error resilient coding for HEVC
NASA Astrophysics Data System (ADS)
Guo, Weihan; Zhang, Yongfei; Li, Bo
2018-04-01
Unreliable communication channels might lead to packet losses and bit errors in the videos transmitted through it, which will cause severe video quality degradation. This is even worse for HEVC since more advanced and powerful motion estimation methods are introduced to further remove the inter-frame dependency and thus improve the coding efficiency. Once a Motion Vector (MV) is lost or corrupted, it will cause distortion in the decoded frame. More importantly, due to motion compensation, the error will propagate along the motion prediction path, accumulate over time, and significantly degrade the overall video presentation quality. To address this problem, we study the problem of encoder-sider error resilient coding for HEVC and propose a constrained motion estimation scheme to mitigate the problem of error propagation to subsequent frames. The approach is achieved by cutting off MV dependencies and limiting the block regions which are predicted by temporal motion vector. The experimental results show that the proposed method can effectively suppress the error propagation caused by bit errors of motion vector and can improve the robustness of the stream in the bit error channels. When the bit error probability is 10-5, an increase of the decoded video quality (PSNR) by up to1.310dB and on average 0.762 dB can be achieved, compared to the reference HEVC.
Addressing Angular Single-Event Effects in the Estimation of On-Orbit Error Rates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, David S.; Swift, Gary M.; Wirthlin, Michael J.
2015-12-01
Our study describes complications introduced by angular direct ionization events on space error rate predictions. In particular, prevalence of multiple-cell upsets and a breakdown in the application of effective linear energy transfer in modern-scale devices can skew error rates approximated from currently available estimation models. Moreover, this paper highlights the importance of angular testing and proposes a methodology to extend existing error estimation tools to properly consider angular strikes in modern-scale devices. Finally, these techniques are illustrated with test data provided from a modern 28 nm SRAM-based device.
Error Estimation of An Ensemble Statistical Seasonal Precipitation Prediction Model
NASA Technical Reports Server (NTRS)
Shen, Samuel S. P.; Lau, William K. M.; Kim, Kyu-Myong; Li, Gui-Long
2001-01-01
This NASA Technical Memorandum describes an optimal ensemble canonical correlation forecasting model for seasonal precipitation. Each individual forecast is based on the canonical correlation analysis (CCA) in the spectral spaces whose bases are empirical orthogonal functions (EOF). The optimal weights in the ensemble forecasting crucially depend on the mean square error of each individual forecast. An estimate of the mean square error of a CCA prediction is made also using the spectral method. The error is decomposed onto EOFs of the predictand and decreases linearly according to the correlation between the predictor and predictand. Since new CCA scheme is derived for continuous fields of predictor and predictand, an area-factor is automatically included. Thus our model is an improvement of the spectral CCA scheme of Barnett and Preisendorfer. The improvements include (1) the use of area-factor, (2) the estimation of prediction error, and (3) the optimal ensemble of multiple forecasts. The new CCA model is applied to the seasonal forecasting of the United States (US) precipitation field. The predictor is the sea surface temperature (SST). The US Climate Prediction Center's reconstructed SST is used as the predictor's historical data. The US National Center for Environmental Prediction's optimally interpolated precipitation (1951-2000) is used as the predictand's historical data. Our forecast experiments show that the new ensemble canonical correlation scheme renders a reasonable forecasting skill. For example, when using September-October-November SST to predict the next season December-January-February precipitation, the spatial pattern correlation between the observed and predicted are positive in 46 years among the 50 years of experiments. The positive correlations are close to or greater than 0.4 in 29 years, which indicates excellent performance of the forecasting model. The forecasting skill can be further enhanced when several predictors are used.
Maximum Likelihood Time-of-Arrival Estimation of Optical Pulses via Photon-Counting Photodetectors
NASA Technical Reports Server (NTRS)
Erkmen, Baris I.; Moision, Bruce E.
2010-01-01
Many optical imaging, ranging, and communications systems rely on the estimation of the arrival time of an optical pulse. Recently, such systems have been increasingly employing photon-counting photodetector technology, which changes the statistics of the observed photocurrent. This requires time-of-arrival estimators to be developed and their performances characterized. The statistics of the output of an ideal photodetector, which are well modeled as a Poisson point process, were considered. An analytical model was developed for the mean-square error of the maximum likelihood (ML) estimator, demonstrating two phenomena that cause deviations from the minimum achievable error at low signal power. An approximation was derived to the threshold at which the ML estimator essentially fails to provide better than a random guess of the pulse arrival time. Comparing the analytic model performance predictions to those obtained via simulations, it was verified that the model accurately predicts the ML performance over all regimes considered. There is little prior art that attempts to understand the fundamental limitations to time-of-arrival estimation from Poisson statistics. This work establishes both a simple mathematical description of the error behavior, and the associated physical processes that yield this behavior. Previous work on mean-square error characterization for ML estimators has predominantly focused on additive Gaussian noise. This work demonstrates that the discrete nature of the Poisson noise process leads to a distinctly different error behavior.
Hess, G.W.; Bohman, L.R.
1996-01-01
Techniques for estimating monthly mean streamflow at gaged sites and monthly streamflow duration characteristics at ungaged sites in central Nevada were developed using streamflow records at six gaged sites and basin physical and climatic characteristics. Streamflow data at gaged sites were related by regression techniques to concurrent flows at nearby gaging stations so that monthly mean streamflows for periods of missing or no record can be estimated for gaged sites in central Nevada. The standard error of estimate for relations at these sites ranged from 12 to 196 percent. Also, monthly streamflow data for selected percent exceedence levels were used in regression analyses with basin and climatic variables to determine relations for ungaged basins for annual and monthly percent exceedence levels. Analyses indicate that the drainage area and percent of drainage area at altitudes greater than 10,000 feet are the most significant variables. For the annual percent exceedence, the standard error of estimate of the relations for ungaged sites ranged from 51 to 96 percent and standard error of prediction for ungaged sites ranged from 96 to 249 percent. For the monthly percent exceedence values, the standard error of estimate of the relations ranged from 31 to 168 percent, and the standard error of prediction ranged from 115 to 3,124 percent. Reliability and limitations of the estimating methods are described.
Measurement variability error for estimates of volume change
James A. Westfall; Paul L. Patterson
2007-01-01
Using quality assurance data, measurement variability distributions were developed for attributes that affect tree volume prediction. Random deviations from the measurement variability distributions were applied to 19381 remeasured sample trees in Maine. The additional error due to measurement variation and measurement bias was estimated via a simulation study for...
Validation of the firefighter WFI treadmill protocol for predicting VO2 max.
Dolezal, B A; Barr, D; Boland, D M; Smith, D L; Cooper, C B
2015-03-01
The Wellness-Fitness Initiative submaximal treadmill exercise test (WFI-TM) is recommended by the US National Fire Protection Agency to assess aerobic capacity (VO2 max) in firefighters. However, predicting VO2 max from submaximal tests can result in errors leading to erroneous conclusions about fitness. To investigate the level of agreement between VO2 max predicted from the WFI-TM against its direct measurement using exhaled gas analysis. The WFI-TM was performed to volitional fatigue. Differences between estimated VO2 max (derived from the WFI-TM equation) and direct measurement (exhaled gas analysis) were compared by paired t-test and agreement was determined using Pearson Product-Moment correlation and Bland-Altman analysis. Statistical significance was set at P < 0.05. Fifty-nine men performed the WFI-TM. Mean (standard deviation) values for estimated and measured VO2 max were 44.6 (3.4) and 43.6 (7.9) ml/kg/min, respectively (P < 0.01). The mean bias by which WFI-TM overestimated VO2 max was 0.9ml/kg/min with a 95% prediction interval of ±13.1. Prediction errors for 22% of subjects were within ±5%; 36% had errors greater than or equal to ±15% and 7% had greater than ±30% errors. The correlation between predicted and measured VO2 max was r = 0.55 (standard error of the estimate = 2.8ml/kg/min). WFI-TM predicts VO2 max with 11% error. There is a tendency to overestimate aerobic capacity in less fit individuals and to underestimate it in more fit individuals leading to a clustering of values around 42ml/kg/min, a criterion used by some fire departments to assess fitness for duty. © The Author 2015. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Non-integer expansion embedding techniques for reversible image watermarking
NASA Astrophysics Data System (ADS)
Xiang, Shijun; Wang, Yi
2015-12-01
This work aims at reducing the embedding distortion of prediction-error expansion (PE)-based reversible watermarking. In the classical PE embedding method proposed by Thodi and Rodriguez, the predicted value is rounded to integer number for integer prediction-error expansion (IPE) embedding. The rounding operation makes a constraint on a predictor's performance. In this paper, we propose a non-integer PE (NIPE) embedding approach, which can proceed non-integer prediction errors for embedding data into an audio or image file by only expanding integer element of a prediction error while keeping its fractional element unchanged. The advantage of the NIPE embedding technique is that the NIPE technique can really bring a predictor into full play by estimating a sample/pixel in a noncausal way in a single pass since there is no rounding operation. A new noncausal image prediction method to estimate a pixel with four immediate pixels in a single pass is included in the proposed scheme. The proposed noncausal image predictor can provide better performance than Sachnev et al.'s noncausal double-set prediction method (where data prediction in two passes brings a distortion problem due to the fact that half of the pixels were predicted with the watermarked pixels). In comparison with existing several state-of-the-art works, experimental results have shown that the NIPE technique with the new noncausal prediction strategy can reduce the embedding distortion for the same embedding payload.
NASA Technical Reports Server (NTRS)
Hunter, H. E.; Amato, R. A.
1972-01-01
The results are presented of the application of Avco Data Analysis and Prediction Techniques (ADAPT) to derivation of new algorithms for the prediction of future sunspot activity. The ADAPT derived algorithms show a factor of 2 to 3 reduction in the expected 2-sigma errors in the estimates of the 81-day running average of the Zurich sunspot numbers. The report presents: (1) the best estimates for sunspot cycles 20 and 21, (2) a comparison of the ADAPT performance with conventional techniques, and (3) specific approaches to further reduction in the errors of estimated sunspot activity and to recovery of earlier sunspot historical data. The ADAPT programs are used both to derive regression algorithm for prediction of the entire 11-year sunspot cycle from the preceding two cycles and to derive extrapolation algorithms for extrapolating a given sunspot cycle based on any available portion of the cycle.
Martínez-Martínez, Víctor; Baladrón, Carlos; Gomez-Gil, Jaime; Ruiz-Ruiz, Gonzalo; Navas-Gracia, Luis M; Aguiar, Javier M; Carro, Belén
2012-10-17
This paper presents a system based on an Artificial Neural Network (ANN) for estimating and predicting environmental variables related to tobacco drying processes. This system has been validated with temperature and relative humidity data obtained from a real tobacco dryer with a Wireless Sensor Network (WSN). A fitting ANN was used to estimate temperature and relative humidity in different locations inside the tobacco dryer and to predict them with different time horizons. An error under 2% can be achieved when estimating temperature as a function of temperature and relative humidity in other locations. Moreover, an error around 1.5 times lower than that obtained with an interpolation method can be achieved when predicting the temperature inside the tobacco mass as a function of its present and past values with time horizons over 150 minutes. These results show that the tobacco drying process can be improved taking into account the predicted future value of the monitored variables and the estimated actual value of other variables using a fitting ANN as proposed.
Martínez-Martínez, Víctor; Baladrón, Carlos; Gomez-Gil, Jaime; Ruiz-Ruiz, Gonzalo; Navas-Gracia, Luis M.; Aguiar, Javier M.; Carro, Belén
2012-01-01
This paper presents a system based on an Artificial Neural Network (ANN) for estimating and predicting environmental variables related to tobacco drying processes. This system has been validated with temperature and relative humidity data obtained from a real tobacco dryer with a Wireless Sensor Network (WSN). A fitting ANN was used to estimate temperature and relative humidity in different locations inside the tobacco dryer and to predict them with different time horizons. An error under 2% can be achieved when estimating temperature as a function of temperature and relative humidity in other locations. Moreover, an error around 1.5 times lower than that obtained with an interpolation method can be achieved when predicting the temperature inside the tobacco mass as a function of its present and past values with time horizons over 150 minutes. These results show that the tobacco drying process can be improved taking into account the predicted future value of the monitored variables and the estimated actual value of other variables using a fitting ANN as proposed. PMID:23202032
Puleo, J.A.; Mouraenko, O.; Hanes, D.M.
2004-01-01
Six one-dimensional-vertical wave bottom boundary layer models are analyzed based on different methods for estimating the turbulent eddy viscosity: Laminar, linear, parabolic, k—one equation turbulence closure, k−ε—two equation turbulence closure, and k−ω—two equation turbulence closure. Resultant velocity profiles, bed shear stresses, and turbulent kinetic energy are compared to laboratory data of oscillatory flow over smooth and rough beds. Bed shear stress estimates for the smooth bed case were most closely predicted by the k−ω model. Normalized errors between model predictions and measurements of velocity profiles over the entire computational domain collected at 15° intervals for one-half a wave cycle show that overall the linear model was most accurate. The least accurate were the laminar and k−ε models. Normalized errors between model predictions and turbulence kinetic energy profiles showed that the k−ω model was most accurate. Based on these findings, when the smallest overall velocity profile prediction error is required, the processing requirements and error analysis suggest that the linear eddy viscosity model is adequate. However, if accurate estimates of bed shear stress and TKE are required then, of the models tested, the k−ω model should be used.
Motl, Robert W; Fernhall, Bo
2012-03-01
To examine the accuracy of predicting peak oxygen consumption (VO(2peak)) primarily from peak work rate (WR(peak)) recorded during a maximal, incremental exercise test on a cycle ergometer among persons with relapsing-remitting multiple sclerosis (RRMS) who had minimal disability. Cross-sectional study. Clinical research laboratory. Women with RRMS (n=32) and sex-, age-, height-, and weight-matched healthy controls (n=16) completed an incremental exercise test on a cycle ergometer to volitional termination. Not applicable. Measured and predicted VO(2peak) and WR(peak). There were strong, statistically significant associations between measured and predicted VO(2peak) in the overall sample (R(2)=.89, standard error of the estimate=127.4 mL/min) and subsamples with (R(2)=.89, standard error of the estimate=131.3 mL/min) and without (R(2)=.85, standard error of the estimate=126.8 mL/min) multiple sclerosis (MS) based on the linear regression analyses. Based on the 95% confidence limits for worst-case errors, the equation predicted VO(2peak) within 10% of its true value in 95 of every 100 subjects with MS. Peak VO(2) can be accurately predicted in persons with RRMS who have minimal disability as it is in controls by using established equations and WR(peak) recorded from a maximal, incremental exercise test on a cycle ergometer. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Pitch-Learning Algorithm For Speech Encoders
NASA Technical Reports Server (NTRS)
Bhaskar, B. R. Udaya
1988-01-01
Adaptive algorithm detects and corrects errors in sequence of estimates of pitch period of speech. Algorithm operates in conjunction with techniques used to estimate pitch period. Used in such parametric and hybrid speech coders as linear predictive coders and adaptive predictive coders.
Devakumar, Delan; Grijalva-Eternod, Carlos S; Roberts, Sebastian; Chaube, Shiva Shankar; Saville, Naomi M; Manandhar, Dharma S; Costello, Anthony; Osrin, David; Wells, Jonathan C K
2015-01-01
Background. Body composition is important as a marker of both current and future health. Bioelectrical impedance (BIA) is a simple and accurate method for estimating body composition, but requires population-specific calibration equations. Objectives. (1) To generate population specific calibration equations to predict lean mass (LM) from BIA in Nepalese children aged 7-9 years. (2) To explore methodological changes that may extend the range and improve accuracy. Methods. BIA measurements were obtained from 102 Nepalese children (52 girls) using the Tanita BC-418. Isotope dilution with deuterium oxide was used to measure total body water and to estimate LM. Prediction equations for estimating LM from BIA data were developed using linear regression, and estimates were compared with those obtained from the Tanita system. We assessed the effects of flexing the arms of children to extend the range of coverage towards lower weights. We also estimated potential error if the number of children included in the study was reduced. Findings. Prediction equations were generated, incorporating height, impedance index, weight and sex as predictors (R (2) 93%). The Tanita system tended to under-estimate LM, with a mean error of 2.2%, but extending up to 25.8%. Flexing the arms to 90° increased the lower weight range, but produced a small error that was not significant when applied to children <16 kg (p 0.42). Reducing the number of children increased the error at the tails of the weight distribution. Conclusions. Population-specific isotope calibration of BIA for Nepalese children has high accuracy. Arm position is important and can be used to extend the range of low weight covered. Smaller samples reduce resource requirements, but leads to large errors at the tails of the weight distribution.
Efficient Reduction and Analysis of Model Predictive Error
NASA Astrophysics Data System (ADS)
Doherty, J.
2006-12-01
Most groundwater models are calibrated against historical measurements of head and other system states before being used to make predictions in a real-world context. Through the calibration process, parameter values are estimated or refined such that the model is able to reproduce historical behaviour of the system at pertinent observation points reasonably well. Predictions made by the model are deemed to have greater integrity because of this. Unfortunately, predictive integrity is not as easy to achieve as many groundwater practitioners would like to think. The level of parameterisation detail estimable through the calibration process (especially where estimation takes place on the basis of heads alone) is strictly limited, even where full use is made of modern mathematical regularisation techniques such as those encapsulated in the PEST calibration package. (Use of these mechanisms allows more information to be extracted from a calibration dataset than is possible using simpler regularisation devices such as zones of piecewise constancy.) Where a prediction depends on aspects of parameterisation detail that are simply not inferable through the calibration process (which is often the case for predictions related to contaminant movement, and/or many aspects of groundwater/surface water interaction), then that prediction may be just as much in error as it would have been if the model had not been calibrated at all. Model predictive error arises from two sources. These are (a) the presence of measurement noise within the calibration dataset through which linear combinations of parameters spanning the "calibration solution space" are inferred, and (b) the sensitivity of the prediction to members of the "calibration null space" spanned by linear combinations of parameters which are not inferable through the calibration process. The magnitude of the former contribution depends on the level of measurement noise. The magnitude of the latter contribution (which often dominates the former) depends on the "innate variability" of hydraulic properties within the model domain. Knowledge of both of these is a prerequisite for characterisation of the magnitude of possible model predictive error. Unfortunately, in most cases, such knowledge is incomplete and subjective. Nevertheless, useful analysis of model predictive error can still take place. The present paper briefly discusses the means by which mathematical regularisation can be employed in the model calibration process in order to extract as much information as possible on hydraulic property heterogeneity prevailing within the model domain, thereby reducing predictive error to the lowest that can be achieved on the basis of that dataset. It then demonstrates the means by which predictive error variance can be quantified based on information supplied by the regularised inversion process. Both linear and nonlinear predictive error variance analysis is demonstrated using a number of real-world and synthetic examples.
The Development of MST Test Information for the Prediction of Test Performances
ERIC Educational Resources Information Center
Park, Ryoungsun; Kim, Jiseon; Chung, Hyewon; Dodd, Barbara G.
2017-01-01
The current study proposes novel methods to predict multistage testing (MST) performance without conducting simulations. This method, called MST test information, is based on analytic derivation of standard errors of ability estimates across theta levels. We compared standard errors derived analytically to the simulation results to demonstrate the…
Estimating the densities of benzene-derived explosives using atomic volumes.
Ghule, Vikas D; Nirwan, Ayushi; Devi, Alka
2018-02-09
The application of average atomic volumes to predict the crystal densities of benzene-derived energetic compounds of general formula C a H b N c O d is presented, along with the reliability of this method. The densities of 119 neutral nitrobenzenes, energetic salts, and cocrystals with diverse compositions were estimated and compared with experimental data. Of the 74 nitrobenzenes for which direct comparisons could be made, the % error in the estimated density was within 0-3% for 54 compounds, 3-5% for 12 compounds, and 5-8% for the remaining 8 compounds. Among 45 energetic salts and cocrystals, the % error in the estimated density was within 0-3% for 25 compounds, 3-5% for 13 compounds, and 5-7.4% for 7 compounds. The absolute error surpassed 0.05 g/cm 3 for 27 of the 119 compounds (22%). The largest errors occurred for compounds containing fused rings and for compounds with three -NH 2 or -OH groups. Overall, the present approach for estimating the densities of benzene-derived explosives with different functional groups was found to be reliable. Graphical abstract Application and reliability of average atom volume in the crystal density prediction of energetic compounds containing benzene ring.
Role-modeling and medical error disclosure: a national survey of trainees.
Martinez, William; Hickson, Gerald B; Miller, Bonnie M; Doukas, David J; Buckley, John D; Song, John; Sehgal, Niraj L; Deitz, Jennifer; Braddock, Clarence H; Lehmann, Lisa Soleymani
2014-03-01
To measure trainees' exposure to negative and positive role-modeling for responding to medical errors and to examine the association between that exposure and trainees' attitudes and behaviors regarding error disclosure. Between May 2011 and June 2012, 435 residents at two large academic medical centers and 1,187 medical students from seven U.S. medical schools received anonymous, electronic questionnaires. The questionnaire asked respondents about (1) experiences with errors, (2) training for responding to errors, (3) behaviors related to error disclosure, (4) exposure to role-modeling for responding to errors, and (5) attitudes regarding disclosure. Using multivariate regression, the authors analyzed whether frequency of exposure to negative and positive role-modeling independently predicted two primary outcomes: (1) attitudes regarding disclosure and (2) nontransparent behavior in response to a harmful error. The response rate was 55% (884/1,622). Training on how to respond to errors had the largest independent, positive effect on attitudes (standardized effect estimate, 0.32, P < .001); negative role-modeling had the largest independent, negative effect (standardized effect estimate, -0.26, P < .001). Positive role-modeling had a positive effect on attitudes (standardized effect estimate, 0.26, P < .001). Exposure to negative role-modeling was independently associated with an increased likelihood of trainees' nontransparent behavior in response to an error (OR 1.37, 95% CI 1.15-1.64; P < .001). Exposure to role-modeling predicts trainees' attitudes and behavior regarding the disclosure of harmful errors. Negative role models may be a significant impediment to disclosure among trainees.
Stochastic Residual-Error Analysis For Estimating Hydrologic Model Predictive Uncertainty
A hybrid time series-nonparametric sampling approach, referred to herein as semiparametric, is presented for the estimation of model predictive uncertainty. The methodology is a two-step procedure whereby a distributed hydrologic model is first calibrated, then followed by brute ...
NASA Astrophysics Data System (ADS)
Behmanesh, Iman; Yousefianmoghadam, Seyedsina; Nozari, Amin; Moaveni, Babak; Stavridis, Andreas
2018-07-01
This paper investigates the application of Hierarchical Bayesian model updating for uncertainty quantification and response prediction of civil structures. In this updating framework, structural parameters of an initial finite element (FE) model (e.g., stiffness or mass) are calibrated by minimizing error functions between the identified modal parameters and the corresponding parameters of the model. These error functions are assumed to have Gaussian probability distributions with unknown parameters to be determined. The estimated parameters of error functions represent the uncertainty of the calibrated model in predicting building's response (modal parameters here). The focus of this paper is to answer whether the quantified model uncertainties using dynamic measurement at building's reference/calibration state can be used to improve the model prediction accuracies at a different structural state, e.g., damaged structure. Also, the effects of prediction error bias on the uncertainty of the predicted values is studied. The test structure considered here is a ten-story concrete building located in Utica, NY. The modal parameters of the building at its reference state are identified from ambient vibration data and used to calibrate parameters of the initial FE model as well as the error functions. Before demolishing the building, six of its exterior walls were removed and ambient vibration measurements were also collected from the structure after the wall removal. These data are not used to calibrate the model; they are only used to assess the predicted results. The model updating framework proposed in this paper is applied to estimate the modal parameters of the building at its reference state as well as two damaged states: moderate damage (removal of four walls) and severe damage (removal of six walls). Good agreement is observed between the model-predicted modal parameters and those identified from vibration tests. Moreover, it is shown that including prediction error bias in the updating process instead of commonly-used zero-mean error function can significantly reduce the prediction uncertainties.
A Bayesian approach to model structural error and input variability in groundwater modeling
NASA Astrophysics Data System (ADS)
Xu, T.; Valocchi, A. J.; Lin, Y. F. F.; Liang, F.
2015-12-01
Effective water resource management typically relies on numerical models to analyze groundwater flow and solute transport processes. Model structural error (due to simplification and/or misrepresentation of the "true" environmental system) and input forcing variability (which commonly arises since some inputs are uncontrolled or estimated with high uncertainty) are ubiquitous in groundwater models. Calibration that overlooks errors in model structure and input data can lead to biased parameter estimates and compromised predictions. We present a fully Bayesian approach for a complete assessment of uncertainty for spatially distributed groundwater models. The approach explicitly recognizes stochastic input and uses data-driven error models based on nonparametric kernel methods to account for model structural error. We employ exploratory data analysis to assist in specifying informative prior for error models to improve identifiability. The inference is facilitated by an efficient sampling algorithm based on DREAM-ZS and a parameter subspace multiple-try strategy to reduce the required number of forward simulations of the groundwater model. We demonstrate the Bayesian approach through a synthetic case study of surface-ground water interaction under changing pumping conditions. It is found that explicit treatment of errors in model structure and input data (groundwater pumping rate) has substantial impact on the posterior distribution of groundwater model parameters. Using error models reduces predictive bias caused by parameter compensation. In addition, input variability increases parametric and predictive uncertainty. The Bayesian approach allows for a comparison among the contributions from various error sources, which could inform future model improvement and data collection efforts on how to best direct resources towards reducing predictive uncertainty.
A model for the prediction of latent errors using data obtained during the development process
NASA Technical Reports Server (NTRS)
Gaffney, J. E., Jr.; Martello, S. J.
1984-01-01
A model implemented in a program that runs on the IBM PC for estimating the latent (or post ship) content of a body of software upon its initial release to the user is presented. The model employs the count of errors discovered at one or more of the error discovery processes during development, such as a design inspection, as the input data for a process which provides estimates of the total life-time (injected) error content and of the latent (or post ship) error content--the errors remaining a delivery. The model presented presumes that these activities cover all of the opportunities during the software development process for error discovery (and removal).
Alexeeff, Stacey E; Carroll, Raymond J; Coull, Brent
2016-04-01
Spatial modeling of air pollution exposures is widespread in air pollution epidemiology research as a way to improve exposure assessment. However, there are key sources of exposure model uncertainty when air pollution is modeled, including estimation error and model misspecification. We examine the use of predicted air pollution levels in linear health effect models under a measurement error framework. For the prediction of air pollution exposures, we consider a universal Kriging framework, which may include land-use regression terms in the mean function and a spatial covariance structure for the residuals. We derive the bias induced by estimation error and by model misspecification in the exposure model, and we find that a misspecified exposure model can induce asymptotic bias in the effect estimate of air pollution on health. We propose a new spatial simulation extrapolation (SIMEX) procedure, and we demonstrate that the procedure has good performance in correcting this asymptotic bias. We illustrate spatial SIMEX in a study of air pollution and birthweight in Massachusetts. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Sargent, Daniel J.; Buyse, Marc; Burzykowski, Tomasz
2011-01-01
SUMMARY Using multiple historical trials with surrogate and true endpoints, we consider various models to predict the effect of treatment on a true endpoint in a target trial in which only a surrogate endpoint is observed. This predicted result is computed using (1) a prediction model (mixture, linear, or principal stratification) estimated from historical trials and the surrogate endpoint of the target trial and (2) a random extrapolation error estimated from successively leaving out each trial among the historical trials. The method applies to either binary outcomes or survival to a particular time that is computed from censored survival data. We compute a 95% confidence interval for the predicted result and validate its coverage using simulation. To summarize the additional uncertainty from using a predicted instead of true result for the estimated treatment effect, we compute its multiplier of standard error. Software is available for download. PMID:21838732
NASA Astrophysics Data System (ADS)
Wan, S.; He, W.
2016-12-01
The inverse problem of using the information of historical data to estimate model errors is one of the science frontier research topics. In this study, we investigate such a problem using the classic Lorenz (1963) equation as a prediction model and the Lorenz equation with a periodic evolutionary function as an accurate representation of reality to generate "observational data." On the basis of the intelligent features of evolutionary modeling (EM), including self-organization, self-adaptive and self-learning, the dynamic information contained in the historical data can be identified and extracted by computer automatically. Thereby, a new approach is proposed to estimate model errors based on EM in the present paper. Numerical tests demonstrate the ability of the new approach to correct model structural errors. In fact, it can actualize the combination of the statistics and dynamics to certain extent.
Qu, Conghui; Schuetz, Johanna M.; Min, Jeong Eun; Leach, Stephen; Daley, Denise; Spinelli, John J.; Brooks-Wilson, Angela; Graham, Jinko
2011-01-01
We describe a statistical approach to predict gender-labeling errors in candidate-gene association studies, when Y-chromosome markers have not been included in the genotyping set. The approach adds value to methods that consider only the heterozygosity of X-chromosome SNPs, by incorporating available information about the intensity of X-chromosome SNPs in candidate genes relative to autosomal SNPs from the same individual. To our knowledge, no published methods formalize a framework in which heterozygosity and relative intensity are simultaneously taken into account. Our method offers the advantage that, in the genotyping set, no additional space is required beyond that already assigned to X-chromosome SNPs in the candidate genes. We also show how the predictions can be used in a two-phase sampling design to estimate the gender-labeling error rates for an entire study, at a fraction of the cost of a conventional design. PMID:22303327
Measurement System Characterization in the Presence of Measurement Errors
NASA Technical Reports Server (NTRS)
Commo, Sean A.
2012-01-01
In the calibration of a measurement system, data are collected in order to estimate a mathematical model between one or more factors of interest and a response. Ordinary least squares is a method employed to estimate the regression coefficients in the model. The method assumes that the factors are known without error; yet, it is implicitly known that the factors contain some uncertainty. In the literature, this uncertainty is known as measurement error. The measurement error affects both the estimates of the model coefficients and the prediction, or residual, errors. There are some methods, such as orthogonal least squares, that are employed in situations where measurement errors exist, but these methods do not directly incorporate the magnitude of the measurement errors. This research proposes a new method, known as modified least squares, that combines the principles of least squares with knowledge about the measurement errors. This knowledge is expressed in terms of the variance ratio - the ratio of response error variance to measurement error variance.
Steen Magnussen; Ronald E. McRoberts; Erkki O. Tomppo
2009-01-01
New model-based estimators of the uncertainty of pixel-level and areal k-nearest neighbour (knn) predictions of attribute Y from remotely-sensed ancillary data X are presented. Non-parametric functions predict Y from scalar 'Single Index Model' transformations of X. Variance functions generated...
Objective Analysis of Oceanic Data for Coast Guard Trajectory Models Phase II
1997-12-01
as outliers depends on the desired probability of false alarm, Pfa values, which is the probability of marking a valid point as an outlier. Table 2-2...constructed to minimize the mean-squared prediction error of the grid point estimate under the constraint that the estimate is unbiased . The...prediction error, e= Zl(S) _oizl(Si)+oC1iZz(S) (2.44) subject to the constraints of unbiasedness , • c/1 = 1,and (2.45) i SCC12 = 0. (2.46) Denoting
NASA Astrophysics Data System (ADS)
de Montera, L.; Mallet, C.; Barthès, L.; Golé, P.
2008-08-01
This paper shows how nonlinear models originally developed in the finance field can be used to predict rain attenuation level and volatility in Earth-to-Satellite links operating at the Extremely High Frequencies band (EHF, 20 50 GHz). A common approach to solving this problem is to consider that the prediction error corresponds only to scintillations, whose variance is assumed to be constant. Nevertheless, this assumption does not seem to be realistic because of the heteroscedasticity of error time series: the variance of the prediction error is found to be time-varying and has to be modeled. Since rain attenuation time series behave similarly to certain stocks or foreign exchange rates, a switching ARIMA/GARCH model was implemented. The originality of this model is that not only the attenuation level, but also the error conditional distribution are predicted. It allows an accurate upper-bound of the future attenuation to be estimated in real time that minimizes the cost of Fade Mitigation Techniques (FMT) and therefore enables the communication system to reach a high percentage of availability. The performance of the switching ARIMA/GARCH model was estimated using a measurement database of the Olympus satellite 20/30 GHz beacons and this model is shown to outperform significantly other existing models. The model also includes frequency scaling from the downlink frequency to the uplink frequency. The attenuation effects (gases, clouds and rain) are first separated with a neural network and then scaled using specific scaling factors. As to the resulting uplink prediction error, the error contribution of the frequency scaling step is shown to be larger than that of the downlink prediction, indicating that further study should focus on improving the accuracy of the scaling factor.
Characterization of errors in a coupled snow hydrology-microwave emission model
Andreadis, K.M.; Liang, D.; Tsang, L.; Lettenmaier, D.P.; Josberger, E.G.
2008-01-01
Traditional approaches to the direct estimation of snow properties from passive microwave remote sensing have been plagued by limitations such as the tendency of estimates to saturate for moderately deep snowpacks and the effects of mixed land cover within remotely sensed pixels. An alternative approach is to assimilate satellite microwave emission observations directly, which requires embedding an accurate microwave emissions model into a hydrologic prediction scheme, as well as quantitative information of model and observation errors. In this study a coupled snow hydrology [Variable Infiltration Capacity (VIC)] and microwave emission [Dense Media Radiative Transfer (DMRT)] model are evaluated using multiscale brightness temperature (TB) measurements from the Cold Land Processes Experiment (CLPX). The ability of VIC to reproduce snowpack properties is shown with the use of snow pit measurements, while TB model predictions are evaluated through comparison with Ground-Based Microwave Radiometer (GBMR), air-craft [Polarimetric Scanning Radiometer (PSR)], and satellite [Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E)] TB measurements. Limitations of the model at the point scale were not as evident when comparing areal estimates. The coupled model was able to reproduce the TB spatial patterns observed by PSR in two of three sites. However, this was mostly due to the presence of relatively dense forest cover. An interesting result occurs when examining the spatial scaling behavior of the higher-resolution errors; the satellite-scale error is well approximated by the mode of the (spatial) histogram of errors at the smaller scale. In addition, TB prediction errors were almost invariant when aggregated to the satellite scale, while forest-cover fractions greater than 30% had a significant effect on TB predictions. ?? 2008 American Meteorological Society.
Accuracy of Robotic Radiosurgical Liver Treatment Throughout the Respiratory Cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winter, Jeff D.; Wong, Raimond; Swaminath, Anand
Purpose: To quantify random uncertainties in robotic radiosurgical treatment of liver lesions with real-time respiratory motion management. Methods and Materials: We conducted a retrospective analysis of 27 liver cancer patients treated with robotic radiosurgery over 118 fractions. The robotic radiosurgical system uses orthogonal x-ray images to determine internal target position and correlates this position with an external surrogate to provide robotic corrections of linear accelerator positioning. Verification and update of this internal–external correlation model was achieved using periodic x-ray images collected throughout treatment. To quantify random uncertainties in targeting, we analyzed logged tracking information and isolated x-ray images collected immediately beforemore » beam delivery. For translational correlation errors, we quantified the difference between correlation model–estimated target position and actual position determined by periodic x-ray imaging. To quantify prediction errors, we computed the mean absolute difference between the predicted coordinates and actual modeled position calculated 115 milliseconds later. We estimated overall random uncertainty by quadratically summing correlation, prediction, and end-to-end targeting errors. We also investigated relationships between tracking errors and motion amplitude using linear regression. Results: The 95th percentile absolute correlation errors in each direction were 2.1 mm left–right, 1.8 mm anterior–posterior, 3.3 mm cranio–caudal, and 3.9 mm 3-dimensional radial, whereas 95th percentile absolute radial prediction errors were 0.5 mm. Overall 95th percentile random uncertainty was 4 mm in the radial direction. Prediction errors were strongly correlated with modeled target amplitude (r=0.53-0.66, P<.001), whereas only weak correlations existed for correlation errors. Conclusions: Study results demonstrate that model correlation errors are the primary random source of uncertainty in Cyberknife liver treatment and, unlike prediction errors, are not strongly correlated with target motion amplitude. Aggregate 3-dimensional radial position errors presented here suggest the target will be within 4 mm of the target volume for 95% of the beam delivery.« less
Physical Validation of TRMM TMI and PR Monthly Rain Products Over Oklahoma
NASA Technical Reports Server (NTRS)
Fisher, Brad L.
2004-01-01
The Tropical Rainfall Measuring Mission (TRMM) provides monthly rainfall estimates using data collected by the TRMM satellite. These estimates cover a substantial fraction of the earth's surface. The physical validation of TRMM estimates involves corroborating the accuracy of spaceborne estimates of areal rainfall by inferring errors and biases from ground-based rain estimates. The TRMM error budget consists of two major sources of error: retrieval and sampling. Sampling errors are intrinsic to the process of estimating monthly rainfall and occur because the satellite extrapolates monthly rainfall from a small subset of measurements collected only during satellite overpasses. Retrieval errors, on the other hand, are related to the process of collecting measurements while the satellite is overhead. One of the big challenges confronting the TRMM validation effort is how to best estimate these two main components of the TRMM error budget, which are not easily decoupled. This four-year study computed bulk sampling and retrieval errors for the TRMM microwave imager (TMI) and the precipitation radar (PR) by applying a technique that sub-samples gauge data at TRMM overpass times. Gridded monthly rain estimates are then computed from the monthly bulk statistics of the collected samples, providing a sensor-dependent gauge rain estimate that is assumed to include a TRMM equivalent sampling error. The sub-sampled gauge rain estimates are then used in conjunction with the monthly satellite and gauge (without sub- sampling) estimates to decouple retrieval and sampling errors. The computed mean sampling errors for the TMI and PR were 5.9% and 7.796, respectively, in good agreement with theoretical predictions. The PR year-to-year retrieval biases exceeded corresponding TMI biases, but it was found that these differences were partially due to negative TMI biases during cold months and positive TMI biases during warm months.
Error Patterns in Ordering Fractions among At-Risk Fourth-Grade Students
Malone, Amelia S.; Fuchs, Lynn S.
2016-01-01
The 3 purposes of this study were to: (a) describe fraction ordering errors among at-risk 4th-grade students; (b) assess the effect of part-whole understanding and accuracy of fraction magnitude estimation on the probability of committing errors; and (c) examine the effect of students' ability to explain comparing problems on the probability of committing errors. Students (n = 227) completed a 9-item ordering test. A high proportion (81%) of problems were completed incorrectly. Most (65% of) errors were due to students misapplying whole number logic to fractions. Fraction-magnitude estimation skill, but not part-whole understanding, significantly predicted the probability of committing this type of error. Implications for practice are discussed. PMID:26966153
Adjoints and Low-rank Covariance Representation
NASA Technical Reports Server (NTRS)
Tippett, Michael K.; Cohn, Stephen E.
2000-01-01
Quantitative measures of the uncertainty of Earth System estimates can be as important as the estimates themselves. Second moments of estimation errors are described by the covariance matrix, whose direct calculation is impractical when the number of degrees of freedom of the system state is large. Ensemble and reduced-state approaches to prediction and data assimilation replace full estimation error covariance matrices by low-rank approximations. The appropriateness of such approximations depends on the spectrum of the full error covariance matrix, whose calculation is also often impractical. Here we examine the situation where the error covariance is a linear transformation of a forcing error covariance. We use operator norms and adjoints to relate the appropriateness of low-rank representations to the conditioning of this transformation. The analysis is used to investigate low-rank representations of the steady-state response to random forcing of an idealized discrete-time dynamical system.
Gurdak, Jason J.; Qi, Sharon L.; Geisler, Michael L.
2009-01-01
The U.S. Geological Survey Raster Error Propagation Tool (REPTool) is a custom tool for use with the Environmental System Research Institute (ESRI) ArcGIS Desktop application to estimate error propagation and prediction uncertainty in raster processing operations and geospatial modeling. REPTool is designed to introduce concepts of error and uncertainty in geospatial data and modeling and provide users of ArcGIS Desktop a geoprocessing tool and methodology to consider how error affects geospatial model output. Similar to other geoprocessing tools available in ArcGIS Desktop, REPTool can be run from a dialog window, from the ArcMap command line, or from a Python script. REPTool consists of public-domain, Python-based packages that implement Latin Hypercube Sampling within a probabilistic framework to track error propagation in geospatial models and quantitatively estimate the uncertainty of the model output. Users may specify error for each input raster or model coefficient represented in the geospatial model. The error for the input rasters may be specified as either spatially invariant or spatially variable across the spatial domain. Users may specify model output as a distribution of uncertainty for each raster cell. REPTool uses the Relative Variance Contribution method to quantify the relative error contribution from the two primary components in the geospatial model - errors in the model input data and coefficients of the model variables. REPTool is appropriate for many types of geospatial processing operations, modeling applications, and related research questions, including applications that consider spatially invariant or spatially variable error in geospatial data.
High accuracy satellite drag model (HASDM)
NASA Astrophysics Data System (ADS)
Storz, M.; Bowman, B.; Branson, J.
The dominant error source in the force models used to predict low perigee satellite trajectories is atmospheric drag. Errors in operational thermospheric density models cause significant errors in predicted satellite positions, since these models do not account for dynamic changes in atmospheric drag for orbit predictions. The Air Force Space Battlelab's High Accuracy Satellite Drag Model (HASDM) estimates and predicts (out three days) a dynamically varying high-resolution density field. HASDM includes the Dynamic Calibration Atmosphere (DCA) algorithm that solves for the phases and amplitudes of the diurnal, semidiurnal and terdiurnal variations of thermospheric density near real-time from the observed drag effects on a set of Low Earth Orbit (LEO) calibration satellites. The density correction is expressed as a function of latitude, local solar time and altitude. In HASDM, a time series prediction filter relates the extreme ultraviolet (EUV) energy index E10.7 and the geomagnetic storm index a p to the DCA density correction parameters. The E10.7 index is generated by the SOLAR2000 model, the first full spectrum model of solar irradiance. The estimated and predicted density fields will be used operationally to significantly improve the accuracy of predicted trajectories for all low perigee satellites.
High accuracy satellite drag model (HASDM)
NASA Astrophysics Data System (ADS)
Storz, Mark F.; Bowman, Bruce R.; Branson, Major James I.; Casali, Stephen J.; Tobiska, W. Kent
The dominant error source in force models used to predict low-perigee satellite trajectories is atmospheric drag. Errors in operational thermospheric density models cause significant errors in predicted satellite positions, since these models do not account for dynamic changes in atmospheric drag for orbit predictions. The Air Force Space Battlelab's High Accuracy Satellite Drag Model (HASDM) estimates and predicts (out three days) a dynamically varying global density field. HASDM includes the Dynamic Calibration Atmosphere (DCA) algorithm that solves for the phases and amplitudes of the diurnal and semidiurnal variations of thermospheric density near real-time from the observed drag effects on a set of Low Earth Orbit (LEO) calibration satellites. The density correction is expressed as a function of latitude, local solar time and altitude. In HASDM, a time series prediction filter relates the extreme ultraviolet (EUV) energy index E10.7 and the geomagnetic storm index ap, to the DCA density correction parameters. The E10.7 index is generated by the SOLAR2000 model, the first full spectrum model of solar irradiance. The estimated and predicted density fields will be used operationally to significantly improve the accuracy of predicted trajectories for all low-perigee satellites.
Maboudi Afkham, Heydar; Qiu, Xuanbin; The, Matthew; Käll, Lukas
2017-02-15
Liquid chromatography is frequently used as a means to reduce the complexity of peptide-mixtures in shotgun proteomics. For such systems, the time when a peptide is released from a chromatography column and registered in the mass spectrometer is referred to as the peptide's retention time . Using heuristics or machine learning techniques, previous studies have demonstrated that it is possible to predict the retention time of a peptide from its amino acid sequence. In this paper, we are applying Gaussian Process Regression to the feature representation of a previously described predictor E lude . Using this framework, we demonstrate that it is possible to estimate the uncertainty of the prediction made by the model. Here we show how this uncertainty relates to the actual error of the prediction. In our experiments, we observe a strong correlation between the estimated uncertainty provided by Gaussian Process Regression and the actual prediction error. This relation provides us with new means for assessment of the predictions. We demonstrate how a subset of the peptides can be selected with lower prediction error compared to the whole set. We also demonstrate how such predicted standard deviations can be used for designing adaptive windowing strategies. lukas.kall@scilifelab.se. Our software and the data used in our experiments is publicly available and can be downloaded from https://github.com/statisticalbiotechnology/GPTime . © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Stress Recovery and Error Estimation for 3-D Shell Structures
NASA Technical Reports Server (NTRS)
Riggs, H. R.
2000-01-01
The C1-continuous stress fields obtained from finite element analyses are in general lower- order accurate than are the corresponding displacement fields. Much effort has focussed on increasing their accuracy and/or their continuity, both for improved stress prediction and especially error estimation. A previous project developed a penalized, discrete least squares variational procedure that increases the accuracy and continuity of the stress field. The variational problem is solved by a post-processing, 'finite-element-type' analysis to recover a smooth, more accurate, C1-continuous stress field given the 'raw' finite element stresses. This analysis has been named the SEA/PDLS. The recovered stress field can be used in a posteriori error estimators, such as the Zienkiewicz-Zhu error estimator or equilibrium error estimators. The procedure was well-developed for the two-dimensional (plane) case involving low-order finite elements. It has been demonstrated that, if optimal finite element stresses are used for the post-processing, the recovered stress field is globally superconvergent. Extension of this work to three dimensional solids is straightforward. Attachment: Stress recovery and error estimation for shell structure (abstract only). A 4-node, shear-deformable flat shell element developed via explicit Kirchhoff constraints (abstract only). A novel four-node quadrilateral smoothing element for stress enhancement and error estimation (abstract only).
Model-free and model-based reward prediction errors in EEG.
Sambrook, Thomas D; Hardwick, Ben; Wills, Andy J; Goslin, Jeremy
2018-05-24
Learning theorists posit two reinforcement learning systems: model-free and model-based. Model-based learning incorporates knowledge about structure and contingencies in the world to assign candidate actions with an expected value. Model-free learning is ignorant of the world's structure; instead, actions hold a value based on prior reinforcement, with this value updated by expectancy violation in the form of a reward prediction error. Because they use such different learning mechanisms, it has been previously assumed that model-based and model-free learning are computationally dissociated in the brain. However, recent fMRI evidence suggests that the brain may compute reward prediction errors to both model-free and model-based estimates of value, signalling the possibility that these systems interact. Because of its poor temporal resolution, fMRI risks confounding reward prediction errors with other feedback-related neural activity. In the present study, EEG was used to show the presence of both model-based and model-free reward prediction errors and their place in a temporal sequence of events including state prediction errors and action value updates. This demonstration of model-based prediction errors questions a long-held assumption that model-free and model-based learning are dissociated in the brain. Copyright © 2018 Elsevier Inc. All rights reserved.
Using artificial intelligence to predict the equilibrated postdialysis blood urea concentration.
Fernández, E A; Valtuille, R; Willshaw, P; Perazzo, C A
2001-01-01
Total dialysis dose (Kt/V) is considered to be a major determinant of morbidity and mortality in hemodialyzed patients. The continuous growth of the blood urea concentration over the 30- to 60-min period following dialysis, a phenomenon known as urea rebound, is a critical factor in determining the true dose of hemodialysis. The misestimation of the equilibrated (true) postdialysis blood urea or equilibrated Kt/V results in an inadequate hemodialysis prescription, with predictably poor clinical outcomes for the patients. The estimation of the equilibrated postdialysis blood urea (eqU) is therefore crucial in order to estimate the equilibrated (true) Kt/V. In this work we propose a supervised neural network to predict the eqU at 60 min after the end of hemodialysis. The use of this model is new in this field and is shown to be better than the currently accepted methods (Smye for eqU and Daugirdas for eqKt/V). With this approach we achieve a mean difference error of 0.22 +/- 7.71 mg/ml (mean % error: 1.88 +/- 13.46) on the eqU prediction and a mean difference error for eqKt/V of -0.01 +/- 0.15 (mean % error: -0.95 +/- 14.73). The equilibrated Kt/V estimated with the eqU calculated using the Smye formula is not appropriate because it showed a great dispersion. The Daugirdas double-pool Kt/V estimation formula appeared to be accurate and in agreement with the results of the HEMO study. Copyright 2001 S. Karger AG, Basel.
Ronald E. McRoberts
2005-01-01
Uncertainty in model-based predictions of individual tree diameter growth is attributed to three sources: measurement error for predictor variables, residual variability around model predictions, and uncertainty in model parameter estimates. Monte Carlo simulations are used to propagate the uncertainty from the three sources through a set of diameter growth models to...
NASA Technical Reports Server (NTRS)
Curry, Timothy J.; Batterson, James G. (Technical Monitor)
2000-01-01
Low order equivalent system (LOES) models for the Tu-144 supersonic transport aircraft were identified from flight test data. The mathematical models were given in terms of transfer functions with a time delay by the military standard MIL-STD-1797A, "Flying Qualities of Piloted Aircraft," and the handling qualities were predicted from the estimated transfer function coefficients. The coefficients and the time delay in the transfer functions were estimated using a nonlinear equation error formulation in the frequency domain. Flight test data from pitch, roll, and yaw frequency sweeps at various flight conditions were used for parameter estimation. Flight test results are presented in terms of the estimated parameter values, their standard errors, and output fits in the time domain. Data from doublet maneuvers at the same flight conditions were used to assess the predictive capabilities of the identified models. The identified transfer function models fit the measured data well and demonstrated good prediction capabilities. The Tu-144 was predicted to be between level 2 and 3 for all longitudinal maneuvers and level I for all lateral maneuvers. High estimates of the equivalent time delay in the transfer function model caused the poor longitudinal rating.
Small Area Variance Estimation for the Siuslaw NF in Oregon and Some Results
S. Lin; D. Boes; H.T. Schreuder
2006-01-01
The results of a small area prediction study for the Siuslaw National Forest in Oregon are presented. Predictions were made for total basal area, number of trees and mortality per ha on a 0.85 mile grid using data on a 1.7 mile grid and additional ancillary information from TM. A reliable method of estimating prediction errors for individual plot predictions called the...
Sequential reconstruction of driving-forces from nonlinear nonstationary dynamics
NASA Astrophysics Data System (ADS)
Güntürkün, Ulaş
2010-07-01
This paper describes a functional analysis-based method for the estimation of driving-forces from nonlinear dynamic systems. The driving-forces account for the perturbation inputs induced by the external environment or the secular variations in the internal variables of the system. The proposed algorithm is applicable to the problems for which there is too little or no prior knowledge to build a rigorous mathematical model of the unknown dynamics. We derive the estimator conditioned on the differentiability of the unknown system’s mapping, and smoothness of the driving-force. The proposed algorithm is an adaptive sequential realization of the blind prediction error method, where the basic idea is to predict the observables, and retrieve the driving-force from the prediction error. Our realization of this idea is embodied by predicting the observables one-step into the future using a bank of echo state networks (ESN) in an online fashion, and then extracting the raw estimates from the prediction error and smoothing these estimates in two adaptive filtering stages. The adaptive nature of the algorithm enables to retrieve both slowly and rapidly varying driving-forces accurately, which are illustrated by simulations. Logistic and Moran-Ricker maps are studied in controlled experiments, exemplifying chaotic state and stochastic measurement models. The algorithm is also applied to the estimation of a driving-force from another nonlinear dynamic system that is stochastic in both state and measurement equations. The results are judged by the posterior Cramer-Rao lower bounds. The method is finally put into test on a real-world application; extracting sun’s magnetic flux from the sunspot time series.
[Comparison of three stand-level biomass estimation methods].
Dong, Li Hu; Li, Feng Ri
2016-12-01
At present, the forest biomass methods of regional scale attract most of attention of the researchers, and developing the stand-level biomass model is popular. Based on the forestry inventory data of larch plantation (Larix olgensis) in Jilin Province, we used non-linear seemly unrelated regression (NSUR) to estimate the parameters in two additive system of stand-level biomass equations, i.e., stand-level biomass equations including the stand variables and stand biomass equations including the biomass expansion factor (i.e., Model system 1 and Model system 2), listed the constant biomass expansion factor for larch plantation and compared the prediction accuracy of three stand-level biomass estimation methods. The results indicated that for two additive system of biomass equations, the adjusted coefficient of determination (R a 2 ) of the total and stem equations was more than 0.95, the root mean squared error (RMSE), the mean prediction error (MPE) and the mean absolute error (MAE) were smaller. The branch and foliage biomass equations were worse than total and stem biomass equations, and the adjusted coefficient of determination (R a 2 ) was less than 0.95. The prediction accuracy of a constant biomass expansion factor was relatively lower than the prediction accuracy of Model system 1 and Model system 2. Overall, although stand-level biomass equation including the biomass expansion factor belonged to the volume-derived biomass estimation method, and was different from the stand biomass equations including stand variables in essence, but the obtained prediction accuracy of the two methods was similar. The constant biomass expansion factor had the lower prediction accuracy, and was inappropriate. In addition, in order to make the model parameter estimation more effective, the established stand-level biomass equations should consider the additivity in a system of all tree component biomass and total biomass equations.
F. Mauro; Vicente J. Monleon; H. Temesgen; L.A. Ruiz
2017-01-01
Accounting for spatial correlation of LiDAR model errors can improve the precision of model-based estimators. To estimate spatial correlation, sample designs that provide close observations are needed, but their implementation might be prohibitively expensive. To quantify the gains obtained by accounting for the spatial correlation of model errors, we examined (
Measurement Error and Bias in Value-Added Models. Research Report. ETS RR-17-25
ERIC Educational Resources Information Center
Kane, Michael T.
2017-01-01
By aggregating residual gain scores (the differences between each student's current score and a predicted score based on prior performance) for a school or a teacher, value-added models (VAMs) can be used to generate estimates of school or teacher effects. It is known that random errors in the prior scores will introduce bias into predictions of…
Schroeter, Timon Sebastian; Schwaighofer, Anton; Mika, Sebastian; Ter Laak, Antonius; Suelzle, Detlev; Ganzer, Ursula; Heinrich, Nikolaus; Müller, Klaus-Robert
2007-12-01
We investigate the use of different Machine Learning methods to construct models for aqueous solubility. Models are based on about 4000 compounds, including an in-house set of 632 drug discovery molecules of Bayer Schering Pharma. For each method, we also consider an appropriate method to obtain error bars, in order to estimate the domain of applicability (DOA) for each model. Here, we investigate error bars from a Bayesian model (Gaussian Process (GP)), an ensemble based approach (Random Forest), and approaches based on the Mahalanobis distance to training data (for Support Vector Machine and Ridge Regression models). We evaluate all approaches in terms of their prediction accuracy (in cross-validation, and on an external validation set of 536 molecules) and in how far the individual error bars can faithfully represent the actual prediction error.
Schroeter, Timon Sebastian; Schwaighofer, Anton; Mika, Sebastian; Ter Laak, Antonius; Suelzle, Detlev; Ganzer, Ursula; Heinrich, Nikolaus; Müller, Klaus-Robert
2007-09-01
We investigate the use of different Machine Learning methods to construct models for aqueous solubility. Models are based on about 4000 compounds, including an in-house set of 632 drug discovery molecules of Bayer Schering Pharma. For each method, we also consider an appropriate method to obtain error bars, in order to estimate the domain of applicability (DOA) for each model. Here, we investigate error bars from a Bayesian model (Gaussian Process (GP)), an ensemble based approach (Random Forest), and approaches based on the Mahalanobis distance to training data (for Support Vector Machine and Ridge Regression models). We evaluate all approaches in terms of their prediction accuracy (in cross-validation, and on an external validation set of 536 molecules) and in how far the individual error bars can faithfully represent the actual prediction error.
NASA Astrophysics Data System (ADS)
Schroeter, Timon Sebastian; Schwaighofer, Anton; Mika, Sebastian; Ter Laak, Antonius; Suelzle, Detlev; Ganzer, Ursula; Heinrich, Nikolaus; Müller, Klaus-Robert
2007-12-01
We investigate the use of different Machine Learning methods to construct models for aqueous solubility. Models are based on about 4000 compounds, including an in-house set of 632 drug discovery molecules of Bayer Schering Pharma. For each method, we also consider an appropriate method to obtain error bars, in order to estimate the domain of applicability (DOA) for each model. Here, we investigate error bars from a Bayesian model (Gaussian Process (GP)), an ensemble based approach (Random Forest), and approaches based on the Mahalanobis distance to training data (for Support Vector Machine and Ridge Regression models). We evaluate all approaches in terms of their prediction accuracy (in cross-validation, and on an external validation set of 536 molecules) and in how far the individual error bars can faithfully represent the actual prediction error.
NASA Astrophysics Data System (ADS)
Schroeter, Timon Sebastian; Schwaighofer, Anton; Mika, Sebastian; Ter Laak, Antonius; Suelzle, Detlev; Ganzer, Ursula; Heinrich, Nikolaus; Müller, Klaus-Robert
2007-09-01
We investigate the use of different Machine Learning methods to construct models for aqueous solubility. Models are based on about 4000 compounds, including an in-house set of 632 drug discovery molecules of Bayer Schering Pharma. For each method, we also consider an appropriate method to obtain error bars, in order to estimate the domain of applicability (DOA) for each model. Here, we investigate error bars from a Bayesian model (Gaussian Process (GP)), an ensemble based approach (Random Forest), and approaches based on the Mahalanobis distance to training data (for Support Vector Machine and Ridge Regression models). We evaluate all approaches in terms of their prediction accuracy (in cross-validation, and on an external validation set of 536 molecules) and in how far the individual error bars can faithfully represent the actual prediction error.
Testolin, C G; Gore, R; Rivkin, T; Horlick, M; Arbo, J; Wang, Z; Chiumello, G; Heymsfield, S B
2000-12-01
Dual-energy X-ray absorptiometry (DXA) percent (%) fat estimates may be inaccurate in young children, who typically have high tissue hydration levels. This study was designed to provide a comprehensive analysis of pediatric tissue hydration effects on DXA %fat estimates. Phase 1 was experimental and included three in vitro studies to establish the physical basis of DXA %fat-estimation models. Phase 2 extended phase 1 models and consisted of theoretical calculations to estimate the %fat errors emanating from previously reported pediatric hydration effects. Phase 1 experiments supported the two-compartment DXA soft tissue model and established that pixel ratio of low to high energy (R values) are a predictable function of tissue elemental content. In phase 2, modeling of reference body composition values from birth to age 120 mo revealed that %fat errors will arise if a "constant" adult lean soft tissue R value is applied to the pediatric population; the maximum %fat error, approximately 0.8%, would be present at birth. High tissue hydration, as observed in infants and young children, leads to errors in DXA %fat estimates. The magnitude of these errors based on theoretical calculations is small and may not be of clinical or research significance.
Bias in error estimation when using cross-validation for model selection.
Varma, Sudhir; Simon, Richard
2006-02-23
Cross-validation (CV) is an effective method for estimating the prediction error of a classifier. Some recent articles have proposed methods for optimizing classifiers by choosing classifier parameter values that minimize the CV error estimate. We have evaluated the validity of using the CV error estimate of the optimized classifier as an estimate of the true error expected on independent data. We used CV to optimize the classification parameters for two kinds of classifiers; Shrunken Centroids and Support Vector Machines (SVM). Random training datasets were created, with no difference in the distribution of the features between the two classes. Using these "null" datasets, we selected classifier parameter values that minimized the CV error estimate. 10-fold CV was used for Shrunken Centroids while Leave-One-Out-CV (LOOCV) was used for the SVM. Independent test data was created to estimate the true error. With "null" and "non null" (with differential expression between the classes) data, we also tested a nested CV procedure, where an inner CV loop is used to perform the tuning of the parameters while an outer CV is used to compute an estimate of the error. The CV error estimate for the classifier with the optimal parameters was found to be a substantially biased estimate of the true error that the classifier would incur on independent data. Even though there is no real difference between the two classes for the "null" datasets, the CV error estimate for the Shrunken Centroid with the optimal parameters was less than 30% on 18.5% of simulated training data-sets. For SVM with optimal parameters the estimated error rate was less than 30% on 38% of "null" data-sets. Performance of the optimized classifiers on the independent test set was no better than chance. The nested CV procedure reduces the bias considerably and gives an estimate of the error that is very close to that obtained on the independent testing set for both Shrunken Centroids and SVM classifiers for "null" and "non-null" data distributions. We show that using CV to compute an error estimate for a classifier that has itself been tuned using CV gives a significantly biased estimate of the true error. Proper use of CV for estimating true error of a classifier developed using a well defined algorithm requires that all steps of the algorithm, including classifier parameter tuning, be repeated in each CV loop. A nested CV procedure provides an almost unbiased estimate of the true error.
Chan, Kelvin K W; Xie, Feng; Willan, Andrew R; Pullenayegum, Eleanor M
2017-04-01
Parameter uncertainty in value sets of multiattribute utility-based instruments (MAUIs) has received little attention previously. This false precision leads to underestimation of the uncertainty of the results of cost-effectiveness analyses. The aim of this study is to examine the use of multiple imputation as a method to account for this uncertainty of MAUI scoring algorithms. We fitted a Bayesian model with random effects for respondents and health states to the data from the original US EQ-5D-3L valuation study, thereby estimating the uncertainty in the EQ-5D-3L scoring algorithm. We applied these results to EQ-5D-3L data from the Commonwealth Fund (CWF) Survey for Sick Adults ( n = 3958), comparing the standard error of the estimated mean utility in the CWF population using the predictive distribution from the Bayesian mixed-effect model (i.e., incorporating parameter uncertainty in the value set) with the standard error of the estimated mean utilities based on multiple imputation and the standard error using the conventional approach of using MAUI (i.e., ignoring uncertainty in the value set). The mean utility in the CWF population based on the predictive distribution of the Bayesian model was 0.827 with a standard error (SE) of 0.011. When utilities were derived using the conventional approach, the estimated mean utility was 0.827 with an SE of 0.003, which is only 25% of the SE based on the full predictive distribution of the mixed-effect model. Using multiple imputation with 20 imputed sets, the mean utility was 0.828 with an SE of 0.011, which is similar to the SE based on the full predictive distribution. Ignoring uncertainty of the predicted health utilities derived from MAUIs could lead to substantial underestimation of the variance of mean utilities. Multiple imputation corrects for this underestimation so that the results of cost-effectiveness analyses using MAUIs can report the correct degree of uncertainty.
Ye, Min; Nagar, Swati; Korzekwa, Ken
2015-01-01
Predicting the pharmacokinetics of highly protein-bound drugs is difficult. Also, since historical plasma protein binding data was often collected using unbuffered plasma, the resulting inaccurate binding data could contribute to incorrect predictions. This study uses a generic physiologically based pharmacokinetic (PBPK) model to predict human plasma concentration-time profiles for 22 highly protein-bound drugs. Tissue distribution was estimated from in vitro drug lipophilicity data, plasma protein binding, and blood: plasma ratio. Clearance was predicted with a well-stirred liver model. Underestimated hepatic clearance for acidic and neutral compounds was corrected by an empirical scaling factor. Predicted values (pharmacokinetic parameters, plasma concentration-time profile) were compared with observed data to evaluate model accuracy. Of the 22 drugs, less than a 2-fold error was obtained for terminal elimination half-life (t1/2, 100% of drugs), peak plasma concentration (Cmax, 100%), area under the plasma concentration-time curve (AUC0–t, 95.4%), clearance (CLh, 95.4%), mean retention time (MRT, 95.4%), and steady state volume (Vss, 90.9%). The impact of fup errors on CLh and Vss prediction was evaluated. Errors in fup resulted in proportional errors in clearance prediction for low-clearance compounds, and in Vss prediction for high-volume neutral drugs. For high-volume basic drugs, errors in fup did not propagate to errors in Vss prediction. This is due to the cancellation of errors in the calculations for tissue partitioning of basic drugs. Overall, plasma profiles were well simulated with the present PBPK model. PMID:26531057
Revised techniques for estimating peak discharges from channel width in Montana
Parrett, Charles; Hull, J.A.; Omang, R.J.
1987-01-01
This study was conducted to develop new estimating equations based on channel width and the updated flood frequency curves of previous investigations. Simple regression equations for estimating peak discharges with recurrence intervals of 2, 5, 10 , 25, 50, and 100 years were developed for seven regions in Montana. The standard errors of estimates for the equations that use active channel width as the independent variables ranged from 30% to 87%. The standard errors of estimate for the equations that use bankfull width as the independent variable ranged from 34% to 92%. The smallest standard errors generally occurred in the prediction equations for the 2-yr flood, 5-yr flood, and 10-yr flood, and the largest standard errors occurred in the prediction equations for the 100-yr flood. The equations that use active channel width and the equations that use bankfull width were determined to be about equally reliable in five regions. In the West Region, the equations that use bankfull width were slightly more reliable than those based on active channel width, whereas in the East-Central Region the equations that use active channel width were slightly more reliable than those based on bankfull width. Compared with similar equations previously developed, the standard errors of estimate for the new equations are substantially smaller in three regions and substantially larger in two regions. Limitations on the use of the estimating equations include: (1) The equations are based on stable conditions of channel geometry and prevailing water and sediment discharge; (2) The measurement of channel width requires a site visit, preferably by a person with experience in the method, and involves appreciable measurement errors; (3) Reliability of results from the equations for channel widths beyond the range of definition is unknown. In spite of the limitations, the estimating equations derived in this study are considered to be as reliable as estimating equations based on basin and climatic variables. Because the two types of estimating equations are independent, results from each can be weighted inversely proportional to their variances, and averaged. The weighted average estimate has a variance less than either individual estimate. (Author 's abstract)
Rastetter, Edward B; Williams, Mathew; Griffin, Kevin L; Kwiatkowski, Bonnie L; Tomasky, Gabrielle; Potosnak, Mark J; Stoy, Paul C; Shaver, Gaius R; Stieglitz, Marc; Hobbie, John E; Kling, George W
2010-07-01
Continuous time-series estimates of net ecosystem carbon exchange (NEE) are routinely made using eddy covariance techniques. Identifying and compensating for errors in the NEE time series can be automated using a signal processing filter like the ensemble Kalman filter (EnKF). The EnKF compares each measurement in the time series to a model prediction and updates the NEE estimate by weighting the measurement and model prediction relative to a specified measurement error estimate and an estimate of the model-prediction error that is continuously updated based on model predictions of earlier measurements in the time series. Because of the covariance among model variables, the EnKF can also update estimates of variables for which there is no direct measurement. The resulting estimates evolve through time, enabling the EnKF to be used to estimate dynamic variables like changes in leaf phenology. The evolving estimates can also serve as a means to test the embedded model and reconcile persistent deviations between observations and model predictions. We embedded a simple arctic NEE model into the EnKF and filtered data from an eddy covariance tower located in tussock tundra on the northern foothills of the Brooks Range in northern Alaska, USA. The model predicts NEE based only on leaf area, irradiance, and temperature and has been well corroborated for all the major vegetation types in the Low Arctic using chamber-based data. This is the first application of the model to eddy covariance data. We modified the EnKF by adding an adaptive noise estimator that provides a feedback between persistent model data deviations and the noise added to the ensemble of Monte Carlo simulations in the EnKF. We also ran the EnKF with both a specified leaf-area trajectory and with the EnKF sequentially recalibrating leaf-area estimates to compensate for persistent model-data deviations. When used together, adaptive noise estimation and sequential recalibration substantially improved filter performance, but it did not improve performance when used individually. The EnKF estimates of leaf area followed the expected springtime canopy phenology. However, there were also diel fluctuations in the leaf-area estimates; these are a clear indication of a model deficiency possibly related to vapor pressure effects on canopy conductance.
Predictability of CFSv2 in the tropical Indo-Pacific region, at daily and subseasonal time scales
NASA Astrophysics Data System (ADS)
Krishnamurthy, V.
2018-06-01
The predictability of a coupled climate model is evaluated at daily and intraseasonal time scales in the tropical Indo-Pacific region during boreal summer and winter. This study has assessed the daily retrospective forecasts of the Climate Forecast System version 2 from the National Centers of Environmental Prediction for the period 1982-2010. The growth of errors in the forecasts of daily precipitation, monsoon intraseasonal oscillation (MISO) and the Madden-Julian oscillation (MJO) is studied. The seasonal cycle of the daily climatology of precipitation is reasonably well predicted except for the underestimation during the peak of summer. The anomalies follow the typical pattern of error growth in nonlinear systems and show no difference between summer and winter. The initial errors in all the cases are found to be in the nonlinear phase of the error growth. The doubling time of small errors is estimated by applying Lorenz error formula. For summer and winter, the doubling time of the forecast errors is in the range of 4-7 and 5-14 days while the doubling time of the predictability errors is 6-8 and 8-14 days, respectively. The doubling time in MISO during the summer and MJO during the winter is in the range of 12-14 days, indicating higher predictability and providing optimism for long-range prediction. There is no significant difference in the growth of forecasts errors originating from different phases of MISO and MJO, although the prediction of the active phase seems to be slightly better.
A post audit of a model-designed ground water extraction system.
Andersen, Peter F; Lu, Silong
2003-01-01
Model post audits test the predictive capabilities of ground water models and shed light on their practical limitations. In the work presented here, ground water model predictions were used to design an extraction/treatment/injection system at a military ammunition facility and then were re-evaluated using site-specific water-level data collected approximately one year after system startup. The water-level data indicated that performance specifications for the design, i.e., containment, had been achieved over the required area, but that predicted water-level changes were greater than observed, particularly in the deeper zones of the aquifer. Probable model error was investigated by determining the changes that were required to obtain an improved match to observed water-level changes. This analysis suggests that the originally estimated hydraulic properties were in error by a factor of two to five. These errors may have resulted from attributing less importance to data from deeper zones of the aquifer and from applying pumping test results to a volume of material that was larger than the volume affected by the pumping test. To determine the importance of these errors to the predictions of interest, the models were used to simulate the capture zones resulting from the originally estimated and updated parameter values. The study suggests that, despite the model error, the ground water model contributed positively to the design of the remediation system.
Nonlinear calibration for petroleum water content measurement using PSO
NASA Astrophysics Data System (ADS)
Li, Mingbao; Zhang, Jiawei
2008-10-01
A new algorithmic for strapdown inertial navigation system (SINS) state estimation based on neural networks is introduced. In training strategy, the error vector and its delay are introduced. This error vector is made of the position and velocity difference between the estimations of system and the outputs of GPS. After state prediction and state update, the states of the system are estimated. After off-line training, the network can approach the status switching of SINS and after on-line training, the state estimate precision can be improved further by reducing network output errors. Then the network convergence is discussed. In the end, several simulations with different noise are given. The results show that the neural network state estimator has lower noise sensitivity and better noise immunity than Kalman filter.
Cook, Sarah F; Roberts, Jessica K; Samiee-Zafarghandy, Samira; Stockmann, Chris; King, Amber D; Deutsch, Nina; Williams, Elaine F; Allegaert, Karel; Wilkins, Diana G; Sherwin, Catherine M T; van den Anker, John N
2016-01-01
The aims of this study were to develop a population pharmacokinetic model for intravenous paracetamol in preterm and term neonates and to assess the generalizability of the model by testing its predictive performance in an external dataset. Nonlinear mixed-effects models were constructed from paracetamol concentration-time data in NONMEM 7.2. Potential covariates included body weight, gestational age, postnatal age, postmenstrual age, sex, race, total bilirubin, and estimated glomerular filtration rate. An external dataset was used to test the predictive performance of the model through calculation of bias, precision, and normalized prediction distribution errors. The model-building dataset included 260 observations from 35 neonates with a mean gestational age of 33.6 weeks [standard deviation (SD) 6.6]. Data were well-described by a one-compartment model with first-order elimination. Weight predicted paracetamol clearance and volume of distribution, which were estimated as 0.348 L/h (5.5 % relative standard error; 30.8 % coefficient of variation) and 2.46 L (3.5 % relative standard error; 14.3 % coefficient of variation), respectively, at the mean subject weight of 2.30 kg. An external evaluation was performed on an independent dataset that included 436 observations from 60 neonates with a mean gestational age of 35.6 weeks (SD 4.3). The median prediction error was 10.1 % [95 % confidence interval (CI) 6.1-14.3] and the median absolute prediction error was 25.3 % (95 % CI 23.1-28.1). Weight predicted intravenous paracetamol pharmacokinetics in neonates ranging from extreme preterm to full-term gestational status. External evaluation suggested that these findings should be generalizable to other similar patient populations.
Cook, Sarah F.; Roberts, Jessica K.; Samiee-Zafarghandy, Samira; Stockmann, Chris; King, Amber D.; Deutsch, Nina; Williams, Elaine F.; Allegaert, Karel; Sherwin, Catherine M. T.; van den Anker, John N.
2017-01-01
Objectives The aims of this study were to develop a population pharmacokinetic model for intravenous paracetamol in preterm and term neonates and to assess the generalizability of the model by testing its predictive performance in an external dataset. Methods Nonlinear mixed-effects models were constructed from paracetamol concentration–time data in NONMEM 7.2. Potential covariates included body weight, gestational age, postnatal age, postmenstrual age, sex, race, total bilirubin, and estimated glomerular filtration rate. An external dataset was used to test the predictive performance of the model through calculation of bias, precision, and normalized prediction distribution errors. Results The model-building dataset included 260 observations from 35 neonates with a mean gestational age of 33.6 weeks [standard deviation (SD) 6.6]. Data were well-described by a one-compartment model with first-order elimination. Weight predicted paracetamol clearance and volume of distribution, which were estimated as 0.348 L/h (5.5 % relative standard error; 30.8 % coefficient of variation) and 2.46 L (3.5 % relative standard error; 14.3 % coefficient of variation), respectively, at the mean subject weight of 2.30 kg. An external evaluation was performed on an independent dataset that included 436 observations from 60 neonates with a mean gestational age of 35.6 weeks (SD 4.3). The median prediction error was 10.1 % [95 % confidence interval (CI) 6.1–14.3] and the median absolute prediction error was 25.3 % (95 % CI 23.1–28.1). Conclusions Weight predicted intravenous paracetamol pharmacokinetics in neonates ranging from extreme preterm to full-term gestational status. External evaluation suggested that these findings should be generalizable to other similar patient populations. PMID:26201306
Ensemble Kalman filters for dynamical systems with unresolved turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grooms, Ian, E-mail: grooms@cims.nyu.edu; Lee, Yoonsang; Majda, Andrew J.
Ensemble Kalman filters are developed for turbulent dynamical systems where the forecast model does not resolve all the active scales of motion. Coarse-resolution models are intended to predict the large-scale part of the true dynamics, but observations invariably include contributions from both the resolved large scales and the unresolved small scales. The error due to the contribution of unresolved scales to the observations, called ‘representation’ or ‘representativeness’ error, is often included as part of the observation error, in addition to the raw measurement error, when estimating the large-scale part of the system. It is here shown how stochastic superparameterization (amore » multiscale method for subgridscale parameterization) can be used to provide estimates of the statistics of the unresolved scales. In addition, a new framework is developed wherein small-scale statistics can be used to estimate both the resolved and unresolved components of the solution. The one-dimensional test problem from dispersive wave turbulence used here is computationally tractable yet is particularly difficult for filtering because of the non-Gaussian extreme event statistics and substantial small scale turbulence: a shallow energy spectrum proportional to k{sup −5/6} (where k is the wavenumber) results in two-thirds of the climatological variance being carried by the unresolved small scales. Because the unresolved scales contain so much energy, filters that ignore the representation error fail utterly to provide meaningful estimates of the system state. Inclusion of a time-independent climatological estimate of the representation error in a standard framework leads to inaccurate estimates of the large-scale part of the signal; accurate estimates of the large scales are only achieved by using stochastic superparameterization to provide evolving, large-scale dependent predictions of the small-scale statistics. Again, because the unresolved scales contain so much energy, even an accurate estimate of the large-scale part of the system does not provide an accurate estimate of the true state. By providing simultaneous estimates of both the large- and small-scale parts of the solution, the new framework is able to provide accurate estimates of the true system state.« less
Nonlinear adaptive control system design with asymptotically stable parameter estimation error
NASA Astrophysics Data System (ADS)
Mishkov, Rumen; Darmonski, Stanislav
2018-01-01
The paper presents a new general method for nonlinear adaptive system design with asymptotic stability of the parameter estimation error. The advantages of the approach include asymptotic unknown parameter estimation without persistent excitation and capability to directly control the estimates transient response time. The method proposed modifies the basic parameter estimation dynamics designed via a known nonlinear adaptive control approach. The modification is based on the generalised prediction error, a priori constraints with a hierarchical parameter projection algorithm, and the stable data accumulation concepts. The data accumulation principle is the main tool for achieving asymptotic unknown parameter estimation. It relies on the parametric identifiability system property introduced. Necessary and sufficient conditions for exponential stability of the data accumulation dynamics are derived. The approach is applied in a nonlinear adaptive speed tracking vector control of a three-phase induction motor.
Demura, S; Sato, S; Kitabayashi, T
2006-06-01
This study examined a method of predicting body density based on hydrostatic weighing without head submersion (HWwithoutHS). Donnelly and Sintek (1984) developed a method to predict body density based on hydrostatic weight without head submersion. This method predicts the difference (D) between HWwithoutHS and hydrostatic weight with head submersion (HWwithHS) from anthropometric variables (head length and head width), and then calculates body density using D as a correction factor. We developed several prediction equations to estimate D based on head anthropometry and differences between the sexes, and compared their prediction accuracy with Donnelly and Sintek's equation. Thirty-two males and 32 females aged 17-26 years participated in the study. Multiple linear regression analysis was performed to obtain the prediction equations, and the systematic errors of their predictions were assessed by Bland-Altman plots. The best prediction equations obtained were: Males: D(g) = -164.12X1 - 125.81X2 - 111.03X3 + 100.66X4 + 6488.63, where X1 = head length (cm), X2 = head circumference (cm), X3 = head breadth (cm), X4 = head thickness (cm) (R = 0.858, R2 = 0.737, adjusted R2 = 0.687, standard error of the estimate = 224.1); Females: D(g) = -156.03X1 - 14.03X2 - 38.45X3 - 8.87X4 + 7852.45, where X1 = head circumference (cm), X2 = body mass (g), X3 = head length (cm), X4 = height (cm) (R = 0.913, R2 = 0.833, adjusted R2 = 0.808, standard error of the estimate = 137.7). The effective predictors in these prediction equations differed from those of Donnelly and Sintek's equation, and head circumference and head length were included in both equations. The prediction accuracy was improved by statistically selecting effective predictors. Since we did not assess cross-validity, the equations cannot be used to generalize to other populations, and further investigation is required.
Functional Mixed Effects Model for Small Area Estimation.
Maiti, Tapabrata; Sinha, Samiran; Zhong, Ping-Shou
2016-09-01
Functional data analysis has become an important area of research due to its ability of handling high dimensional and complex data structures. However, the development is limited in the context of linear mixed effect models, and in particular, for small area estimation. The linear mixed effect models are the backbone of small area estimation. In this article, we consider area level data, and fit a varying coefficient linear mixed effect model where the varying coefficients are semi-parametrically modeled via B-splines. We propose a method of estimating the fixed effect parameters and consider prediction of random effects that can be implemented using a standard software. For measuring prediction uncertainties, we derive an analytical expression for the mean squared errors, and propose a method of estimating the mean squared errors. The procedure is illustrated via a real data example, and operating characteristics of the method are judged using finite sample simulation studies.
Single point estimation of phenytoin dosing: a reappraisal.
Koup, J R; Gibaldi, M; Godolphin, W
1981-11-01
A previously proposed method for estimation of phenytoin dosing requirement using a single serum sample obtained 24 hours after intravenous loading dose (18 mg/Kg) has been re-evaluated. Using more realistic values for the volume of distribution of phenytoin (0.4 to 1.2 L/Kg), simulations indicate that the proposed method will fail to consistently predict dosage requirements. Additional simulations indicate that two samples obtained during the 24 hour interval following the iv loading dose could be used to more reliably predict phenytoin dose requirement. Because of the nonlinear relationship which exists between phenytoin dose administration rate (RO) and the mean steady state serum concentration (CSS), small errors in prediction of the required RO result in much larger errors in CSS.
Optimal Tuner Selection for Kalman Filter-Based Aircraft Engine Performance Estimation
NASA Technical Reports Server (NTRS)
Simon, Donald L.; Garg, Sanjay
2010-01-01
A linear point design methodology for minimizing the error in on-line Kalman filter-based aircraft engine performance estimation applications is presented. This technique specifically addresses the underdetermined estimation problem, where there are more unknown parameters than available sensor measurements. A systematic approach is applied to produce a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. Tuning parameter selection is performed using a multi-variable iterative search routine which seeks to minimize the theoretical mean-squared estimation error. This paper derives theoretical Kalman filter estimation error bias and variance values at steady-state operating conditions, and presents the tuner selection routine applied to minimize these values. Results from the application of the technique to an aircraft engine simulation are presented and compared to the conventional approach of tuner selection. Experimental simulation results are found to be in agreement with theoretical predictions. The new methodology is shown to yield a significant improvement in on-line engine performance estimation accuracy
Masterlark, Timothy; Lu, Zhong; Rykhus, Russell P.
2006-01-01
Interferometric synthetic aperture radar (InSAR) imagery documents the consistent subsidence, during the interval 1992–1999, of a pyroclastic flow deposit (PFD) emplaced during the 1986 eruption of Augustine Volcano, Alaska. We construct finite element models (FEMs) that simulate thermoelastic contraction of the PFD to account for the observed subsidence. Three-dimensional problem domains of the FEMs include a thermoelastic PFD embedded in an elastic substrate. The thickness of the PFD is initially determined from the difference between post- and pre-eruption digital elevation models (DEMs). The initial excess temperature of the PFD at the time of deposition, 640 °C, is estimated from FEM predictions and an InSAR image via standard least-squares inverse methods. Although the FEM predicts the major features of the observed transient deformation, systematic prediction errors (RMSE = 2.2 cm) are most likely associated with errors in the a priori PFD thickness distribution estimated from the DEM differences. We combine an InSAR image, FEMs, and an adaptive mesh algorithm to iteratively optimize the geometry of the PFD with respect to a minimized misfit between the predicted thermoelastic deformation and observed deformation. Prediction errors from an FEM, which includes an optimized PFD geometry and the initial excess PFD temperature estimated from the least-squares analysis, are sub-millimeter (RMSE = 0.3 mm). The average thickness (9.3 m), maximum thickness (126 m), and volume (2.1 × 107m3) of the PFD, estimated using the adaptive mesh algorithm, are about twice as large as the respective estimations for the a priori PFD geometry. Sensitivity analyses suggest unrealistic PFD thickness distributions are required for initial excess PFD temperatures outside of the range 500–800 °C.
Understanding seasonal variability of uncertainty in hydrological prediction
NASA Astrophysics Data System (ADS)
Li, M.; Wang, Q. J.
2012-04-01
Understanding uncertainty in hydrological prediction can be highly valuable for improving the reliability of streamflow prediction. In this study, a monthly water balance model, WAPABA, in a Bayesian joint probability with error models are presented to investigate the seasonal dependency of prediction error structure. A seasonal invariant error model, analogous to traditional time series analysis, uses constant parameters for model error and account for no seasonal variations. In contrast, a seasonal variant error model uses a different set of parameters for bias, variance and autocorrelation for each individual calendar month. Potential connection amongst model parameters from similar months is not considered within the seasonal variant model and could result in over-fitting and over-parameterization. A hierarchical error model further applies some distributional restrictions on model parameters within a Bayesian hierarchical framework. An iterative algorithm is implemented to expedite the maximum a posterior (MAP) estimation of a hierarchical error model. Three error models are applied to forecasting streamflow at a catchment in southeast Australia in a cross-validation analysis. This study also presents a number of statistical measures and graphical tools to compare the predictive skills of different error models. From probability integral transform histograms and other diagnostic graphs, the hierarchical error model conforms better to reliability when compared to the seasonal invariant error model. The hierarchical error model also generally provides the most accurate mean prediction in terms of the Nash-Sutcliffe model efficiency coefficient and the best probabilistic prediction in terms of the continuous ranked probability score (CRPS). The model parameters of the seasonal variant error model are very sensitive to each cross validation, while the hierarchical error model produces much more robust and reliable model parameters. Furthermore, the result of the hierarchical error model shows that most of model parameters are not seasonal variant except for error bias. The seasonal variant error model is likely to use more parameters than necessary to maximize the posterior likelihood. The model flexibility and robustness indicates that the hierarchical error model has great potential for future streamflow predictions.
Assumption-free estimation of the genetic contribution to refractive error across childhood.
Guggenheim, Jeremy A; St Pourcain, Beate; McMahon, George; Timpson, Nicholas J; Evans, David M; Williams, Cathy
2015-01-01
Studies in relatives have generally yielded high heritability estimates for refractive error: twins 75-90%, families 15-70%. However, because related individuals often share a common environment, these estimates are inflated (via misallocation of unique/common environment variance). We calculated a lower-bound heritability estimate for refractive error free from such bias. Between the ages 7 and 15 years, participants in the Avon Longitudinal Study of Parents and Children (ALSPAC) underwent non-cycloplegic autorefraction at regular research clinics. At each age, an estimate of the variance in refractive error explained by single nucleotide polymorphism (SNP) genetic variants was calculated using genome-wide complex trait analysis (GCTA) using high-density genome-wide SNP genotype information (minimum N at each age=3,404). The variance in refractive error explained by the SNPs ("SNP heritability") was stable over childhood: Across age 7-15 years, SNP heritability averaged 0.28 (SE=0.08, p<0.001). The genetic correlation for refractive error between visits varied from 0.77 to 1.00 (all p<0.001) demonstrating that a common set of SNPs was responsible for the genetic contribution to refractive error across this period of childhood. Simulations suggested lack of cycloplegia during autorefraction led to a small underestimation of SNP heritability (adjusted SNP heritability=0.35; SE=0.09). To put these results in context, the variance in refractive error explained (or predicted) by the time participants spent outdoors was <0.005 and by the time spent reading was <0.01, based on a parental questionnaire completed when the child was aged 8-9 years old. Genetic variation captured by common SNPs explained approximately 35% of the variation in refractive error between unrelated subjects. This value sets an upper limit for predicting refractive error using existing SNP genotyping arrays, although higher-density genotyping in larger samples and inclusion of interaction effects is expected to raise this figure toward twin- and family-based heritability estimates. The same SNPs influenced refractive error across much of childhood. Notwithstanding the strong evidence of association between time outdoors and myopia, and time reading and myopia, less than 1% of the variance in myopia at age 15 was explained by crude measures of these two risk factors, indicating that their effects may be limited, at least when averaged over the whole population.
The Role of Multimodel Combination in Improving Streamflow Prediction
NASA Astrophysics Data System (ADS)
Arumugam, S.; Li, W.
2008-12-01
Model errors are the inevitable part in any prediction exercise. One approach that is currently gaining attention to reduce model errors is by optimally combining multiple models to develop improved predictions. The rationale behind this approach primarily lies on the premise that optimal weights could be derived for each model so that the developed multimodel predictions will result in improved predictability. In this study, we present a new approach to combine multiple hydrological models by evaluating their predictability contingent on the predictor state. We combine two hydrological models, 'abcd' model and Variable Infiltration Capacity (VIC) model, with each model's parameter being estimated by two different objective functions to develop multimodel streamflow predictions. The performance of multimodel predictions is compared with individual model predictions using correlation, root mean square error and Nash-Sutcliffe coefficient. To quantify precisely under what conditions the multimodel predictions result in improved predictions, we evaluate the proposed algorithm by testing it against streamflow generated from a known model ('abcd' model or VIC model) with errors being homoscedastic or heteroscedastic. Results from the study show that streamflow simulated from individual models performed better than multimodels under almost no model error. Under increased model error, the multimodel consistently performed better than the single model prediction in terms of all performance measures. The study also evaluates the proposed algorithm for streamflow predictions in two humid river basins from NC as well as in two arid basins from Arizona. Through detailed validation in these four sites, the study shows that multimodel approach better predicts the observed streamflow in comparison to the single model predictions.
NASA Technical Reports Server (NTRS)
Davis, J. L.; Herring, T. A.; Shapiro, I. I.; Rogers, A. E. E.; Elgered, G.
1985-01-01
Analysis of very long baseline interferometry data indicates that systematic errors in prior estimates of baseline length, of order 5 cm for approximately 8000-km baselines, were due primarily to mismodeling of the electrical path length of the troposphere and mesosphere ('atmospheric delay'). Here observational evidence for the existence of such errors in the previously used models for the atmospheric delay is discussed, and a new 'mapping' function for the elevation angle dependence of this delay is developed. The delay predicted by this new mapping function differs from ray trace results by less than approximately 5 mm, at all elevations down to 5 deg elevation, and introduces errors into the estimates of baseline length of less than about 1 cm, for the multistation intercontinental experiment analyzed here.
Lombardo, Franco; Berellini, Giuliano; Labonte, Laura R; Liang, Guiqing; Kim, Sean
2016-03-01
We present a systematic evaluation of the Wajima superpositioning method to estimate the human intravenous (i.v.) pharmacokinetic (PK) profile based on a set of 54 marketed drugs with diverse structure and range of physicochemical properties. We illustrate the use of average of "best methods" for the prediction of clearance (CL) and volume of distribution at steady state (VDss) as described in our earlier work (Lombardo F, Waters NJ, Argikar UA, et al. J Clin Pharmacol. 2013;53(2):178-191; Lombardo F, Waters NJ, Argikar UA, et al. J Clin Pharmacol. 2013;53(2):167-177). These methods provided much more accurate prediction of human PK parameters, yielding 88% and 70% of the prediction within 2-fold error for VDss and CL, respectively. The prediction of human i.v. profile using Wajima superpositioning of rat, dog, and monkey time-concentration profiles was tested against the observed human i.v. PK using fold error statistics. The results showed that 63% of the compounds yielded a geometric mean of fold error below 2-fold, and an additional 19% yielded a geometric mean of fold error between 2- and 3-fold, leaving only 18% of the compounds with a relatively poor prediction. Our results showed that good superposition was observed in any case, demonstrating the predictive value of the Wajima approach, and that the cause of poor prediction of human i.v. profile was mainly due to the poorly predicted CL value, while VDss prediction had a minor impact on the accuracy of human i.v. profile prediction. Copyright © 2016. Published by Elsevier Inc.
Water quality management using statistical analysis and time-series prediction model
NASA Astrophysics Data System (ADS)
Parmar, Kulwinder Singh; Bhardwaj, Rashmi
2014-12-01
This paper deals with water quality management using statistical analysis and time-series prediction model. The monthly variation of water quality standards has been used to compare statistical mean, median, mode, standard deviation, kurtosis, skewness, coefficient of variation at Yamuna River. Model validated using R-squared, root mean square error, mean absolute percentage error, maximum absolute percentage error, mean absolute error, maximum absolute error, normalized Bayesian information criterion, Ljung-Box analysis, predicted value and confidence limits. Using auto regressive integrated moving average model, future water quality parameters values have been estimated. It is observed that predictive model is useful at 95 % confidence limits and curve is platykurtic for potential of hydrogen (pH), free ammonia, total Kjeldahl nitrogen, dissolved oxygen, water temperature (WT); leptokurtic for chemical oxygen demand, biochemical oxygen demand. Also, it is observed that predicted series is close to the original series which provides a perfect fit. All parameters except pH and WT cross the prescribed limits of the World Health Organization /United States Environmental Protection Agency, and thus water is not fit for drinking, agriculture and industrial use.
LACIE performance predictor FOC users manual
NASA Technical Reports Server (NTRS)
1976-01-01
The LACIE Performance Predictor (LPP) is a computer simulation of the LACIE process for predicting worldwide wheat production. The simulation provides for the introduction of various errors into the system and provides estimates based on these errors, thus allowing the user to determine the impact of selected error sources. The FOC LPP simulates the acquisition of the sample segment data by the LANDSAT Satellite (DAPTS), the classification of the agricultural area within the sample segment (CAMS), the estimation of the wheat yield (YES), and the production estimation and aggregation (CAS). These elements include data acquisition characteristics, environmental conditions, classification algorithms, the LACIE aggregation and data adjustment procedures. The operational structure for simulating these elements consists of the following key programs: (1) LACIE Utility Maintenance Process, (2) System Error Executive, (3) Ephemeris Generator, (4) Access Generator, (5) Acquisition Selector, (6) LACIE Error Model (LEM), and (7) Post Processor.
García-González, Miguel A; Fernández-Chimeno, Mireya; Ramos-Castro, Juan
2009-02-01
An analysis of the errors due to the finite resolution of RR time series in the estimation of the approximate entropy (ApEn) is described. The quantification errors in the discrete RR time series produce considerable errors in the ApEn estimation (bias and variance) when the signal variability or the sampling frequency is low. Similar errors can be found in indices related to the quantification of recurrence plots. An easy way to calculate a figure of merit [the signal to resolution of the neighborhood ratio (SRN)] is proposed in order to predict when the bias in the indices could be high. When SRN is close to an integer value n, the bias is higher than when near n - 1/2 or n + 1/2. Moreover, if SRN is close to an integer value, the lower this value, the greater the bias is.
Ye, Min; Nagar, Swati; Korzekwa, Ken
2016-04-01
Predicting the pharmacokinetics of highly protein-bound drugs is difficult. Also, since historical plasma protein binding data were often collected using unbuffered plasma, the resulting inaccurate binding data could contribute to incorrect predictions. This study uses a generic physiologically based pharmacokinetic (PBPK) model to predict human plasma concentration-time profiles for 22 highly protein-bound drugs. Tissue distribution was estimated from in vitro drug lipophilicity data, plasma protein binding and the blood: plasma ratio. Clearance was predicted with a well-stirred liver model. Underestimated hepatic clearance for acidic and neutral compounds was corrected by an empirical scaling factor. Predicted values (pharmacokinetic parameters, plasma concentration-time profile) were compared with observed data to evaluate the model accuracy. Of the 22 drugs, less than a 2-fold error was obtained for the terminal elimination half-life (t1/2 , 100% of drugs), peak plasma concentration (Cmax , 100%), area under the plasma concentration-time curve (AUC0-t , 95.4%), clearance (CLh , 95.4%), mean residence time (MRT, 95.4%) and steady state volume (Vss , 90.9%). The impact of fup errors on CLh and Vss prediction was evaluated. Errors in fup resulted in proportional errors in clearance prediction for low-clearance compounds, and in Vss prediction for high-volume neutral drugs. For high-volume basic drugs, errors in fup did not propagate to errors in Vss prediction. This is due to the cancellation of errors in the calculations for tissue partitioning of basic drugs. Overall, plasma profiles were well simulated with the present PBPK model. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Mean Bias in Seasonal Forecast Model and ENSO Prediction Error.
Kim, Seon Tae; Jeong, Hye-In; Jin, Fei-Fei
2017-07-20
This study uses retrospective forecasts made using an APEC Climate Center seasonal forecast model to investigate the cause of errors in predicting the amplitude of El Niño Southern Oscillation (ENSO)-driven sea surface temperature variability. When utilizing Bjerknes coupled stability (BJ) index analysis, enhanced errors in ENSO amplitude with forecast lead times are found to be well represented by those in the growth rate estimated by the BJ index. ENSO amplitude forecast errors are most strongly associated with the errors in both the thermocline slope response and surface wind response to forcing over the tropical Pacific, leading to errors in thermocline feedback. This study concludes that upper ocean temperature bias in the equatorial Pacific, which becomes more intense with increasing lead times, is a possible cause of forecast errors in the thermocline feedback and thus in ENSO amplitude.
The impact of response measurement error on the analysis of designed experiments
Anderson-Cook, Christine Michaela; Hamada, Michael Scott; Burr, Thomas Lee
2016-11-01
This study considers the analysis of designed experiments when there is measurement error in the true response or so-called response measurement error. We consider both additive and multiplicative response measurement errors. Through a simulation study, we investigate the impact of ignoring the response measurement error in the analysis, that is, by using a standard analysis based on t-tests. In addition, we examine the role of repeat measurements in improving the quality of estimation and prediction in the presence of response measurement error. We also study a Bayesian approach that accounts for the response measurement error directly through the specification ofmore » the model, and allows including additional information about variability in the analysis. We consider the impact on power, prediction, and optimization. Copyright © 2015 John Wiley & Sons, Ltd.« less
The impact of response measurement error on the analysis of designed experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson-Cook, Christine Michaela; Hamada, Michael Scott; Burr, Thomas Lee
This study considers the analysis of designed experiments when there is measurement error in the true response or so-called response measurement error. We consider both additive and multiplicative response measurement errors. Through a simulation study, we investigate the impact of ignoring the response measurement error in the analysis, that is, by using a standard analysis based on t-tests. In addition, we examine the role of repeat measurements in improving the quality of estimation and prediction in the presence of response measurement error. We also study a Bayesian approach that accounts for the response measurement error directly through the specification ofmore » the model, and allows including additional information about variability in the analysis. We consider the impact on power, prediction, and optimization. Copyright © 2015 John Wiley & Sons, Ltd.« less
Interpolating precipitation and its relation to runoff and non-point source pollution.
Chang, Chia-Ling; Lo, Shang-Lien; Yu, Shaw-L
2005-01-01
When rainfall spatially varies, complete rainfall data for each region with different rainfall characteristics are very important. Numerous interpolation methods have been developed for estimating unknown spatial characteristics. However, no interpolation method is suitable for all circumstances. In this study, several methods, including the arithmetic average method, the Thiessen Polygons method, the traditional inverse distance method, and the modified inverse distance method, were used to interpolate precipitation. The modified inverse distance method considers not only horizontal distances but also differences between the elevations of the region with no rainfall records and of its surrounding rainfall stations. The results show that when the spatial variation of rainfall is strong, choosing a suitable interpolation method is very important. If the rainfall is uniform, the precipitation estimated using any interpolation method would be quite close to the actual precipitation. When rainfall is heavy in locations with high elevation, the rainfall changes with the elevation. In this situation, the modified inverse distance method is much more effective than any other method discussed herein for estimating the rainfall input for WinVAST to estimate runoff and non-point source pollution (NPSP). When the spatial variation of rainfall is random, regardless of the interpolation method used to yield rainfall input, the estimation errors of runoff and NPSP are large. Moreover, the relationship between the relative error of the predicted runoff and predicted pollutant loading of SS is high. However, the pollutant concentration is affected by both runoff and pollutant export, so the relationship between the relative error of the predicted runoff and the predicted pollutant concentration of SS may be unstable.
Estimating anesthesia and surgical procedure times from medicare anesthesia claims.
Silber, Jeffrey H; Rosenbaum, Paul R; Zhang, Xuemei; Even-Shoshan, Orit
2007-02-01
Procedure times are important variables that often are included in studies of quality and efficiency. However, due to the need for costly chart review, most studies are limited to single-institution analyses. In this article, the authors describe how well the anesthesia claim from Medicare can estimate chart times. The authors abstracted information on time of induction and entrance to the recovery room ("anesthesia chart time") from the charts of 1,931 patients who underwent general and orthopedic surgical procedures in Pennsylvania. The authors then merged the associated bills from claims data supplied from Medicare (Part B data) that included a variable denoting the time in minutes for the anesthesia service. The authors also investigated the time from incision to closure ("surgical chart time") on a subset of 1,888 patients. Anesthesia claim time from Medicare was highly predictive of anesthesia chart time (Kendall's rank correlation tau = 0.85, P < 0.0001, median absolute error = 5.1 min) but somewhat less predictive of surgical chart time (Kendall's tau = 0.73, P < 0.0001, median absolute error = 13.8 min). When predicting chart time from Medicare bills, variables reflecting procedure type, comorbidities, and hospital type did not significantly improve the prediction, suggesting that errors in predicting the chart time from the anesthesia bill time are not related to these factors; however, the individual hospital did have some influence on these estimates. Anesthesia chart time can be well estimated using Medicare claims, thereby facilitating studies with vastly larger sample sizes and much lower costs of data collection.
Sensitivity and uncertainty analysis for the annual phosphorus loss estimator model
USDA-ARS?s Scientific Manuscript database
Models are often used to predict phosphorus (P) loss from agricultural fields. While it is commonly recognized that there are inherent uncertainties with model predictions, limited studies have addressed model prediction uncertainty. In this study we assess the effect of model input error on predict...
Methods for estimating magnitude and frequency of peak flows for natural streams in Utah
Kenney, Terry A.; Wilkowske, Chris D.; Wright, Shane J.
2007-01-01
Estimates of the magnitude and frequency of peak streamflows is critical for the safe and cost-effective design of hydraulic structures and stream crossings, and accurate delineation of flood plains. Engineers, planners, resource managers, and scientists need accurate estimates of peak-flow return frequencies for locations on streams with and without streamflow-gaging stations. The 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence-interval flows were estimated for 344 unregulated U.S. Geological Survey streamflow-gaging stations in Utah and nearby in bordering states. These data along with 23 basin and climatic characteristics computed for each station were used to develop regional peak-flow frequency and magnitude regression equations for 7 geohydrologic regions of Utah. These regression equations can be used to estimate the magnitude and frequency of peak flows for natural streams in Utah within the presented range of predictor variables. Uncertainty, presented as the average standard error of prediction, was computed for each developed equation. Equations developed using data from more than 35 gaging stations had standard errors of prediction that ranged from 35 to 108 percent, and errors for equations developed using data from less than 35 gaging stations ranged from 50 to 357 percent.
NASA Astrophysics Data System (ADS)
Sun, Ruochen; Yuan, Huiling; Liu, Xiaoli
2017-11-01
The heteroscedasticity treatment in residual error models directly impacts the model calibration and prediction uncertainty estimation. This study compares three methods to deal with the heteroscedasticity, including the explicit linear modeling (LM) method and nonlinear modeling (NL) method using hyperbolic tangent function, as well as the implicit Box-Cox transformation (BC). Then a combined approach (CA) combining the advantages of both LM and BC methods has been proposed. In conjunction with the first order autoregressive model and the skew exponential power (SEP) distribution, four residual error models are generated, namely LM-SEP, NL-SEP, BC-SEP and CA-SEP, and their corresponding likelihood functions are applied to the Variable Infiltration Capacity (VIC) hydrologic model over the Huaihe River basin, China. Results show that the LM-SEP yields the poorest streamflow predictions with the widest uncertainty band and unrealistic negative flows. The NL and BC methods can better deal with the heteroscedasticity and hence their corresponding predictive performances are improved, yet the negative flows cannot be avoided. The CA-SEP produces the most accurate predictions with the highest reliability and effectively avoids the negative flows, because the CA approach is capable of addressing the complicated heteroscedasticity over the study basin.
Peterson, J.; Dunham, J.B.
2003-01-01
Effective conservation efforts for at-risk species require knowledge of the locations of existing populations. Species presence can be estimated directly by conducting field-sampling surveys or alternatively by developing predictive models. Direct surveys can be expensive and inefficient, particularly for rare and difficult-to-sample species, and models of species presence may produce biased predictions. We present a Bayesian approach that combines sampling and model-based inferences for estimating species presence. The accuracy and cost-effectiveness of this approach were compared to those of sampling surveys and predictive models for estimating the presence of the threatened bull trout ( Salvelinus confluentus ) via simulation with existing models and empirical sampling data. Simulations indicated that a sampling-only approach would be the most effective and would result in the lowest presence and absence misclassification error rates for three thresholds of detection probability. When sampling effort was considered, however, the combined approach resulted in the lowest error rates per unit of sampling effort. Hence, lower probability-of-detection thresholds can be specified with the combined approach, resulting in lower misclassification error rates and improved cost-effectiveness.
NASA Technical Reports Server (NTRS)
Lerch, F. J.; Nerem, R. S.; Chinn, D. S.; Chan, J. C.; Patel, G. B.; Klosko, S. M.
1993-01-01
A new method has been developed to provide a direct test of the error calibrations of gravity models based on actual satellite observations. The basic approach projects the error estimates of the gravity model parameters onto satellite observations, and the results of these projections are then compared with data residual computed from the orbital fits. To allow specific testing of the gravity error calibrations, subset solutions are computed based on the data set and data weighting of the gravity model. The approach is demonstrated using GEM-T3 to show that the gravity error estimates are well calibrated and that reliable predictions of orbit accuracies can be achieved for independent orbits.
Anderson, N G; Jolley, I J; Wells, J E
2007-08-01
To determine the major sources of error in ultrasonographic assessment of fetal weight and whether they have changed over the last decade. We performed a prospective observational study in 1991 and again in 2000 of a mixed-risk pregnancy population, estimating fetal weight within 7 days of delivery. In 1991, the Rose and McCallum formula was used for 72 deliveries. Inter- and intraobserver agreement was assessed within this group. Bland-Altman measures of agreement from log data were calculated as ratios. We repeated the study in 2000 in 208 consecutive deliveries, comparing predicted and actual weights for 12 published equations using Bland-Altman and percentage error methods. We compared bias (mean percentage error), precision (SD percentage error), and their consistency across the weight ranges. 95% limits of agreement ranged from - 4.4% to + 3.3% for inter- and intraobserver estimates, but were - 18.0% to 24.0% for estimated and actual birth weight. There was no improvement in accuracy between 1991 and 2000. In 2000 only six of the 12 published formulae had overall bias within 7% and precision within 15%. There was greater bias and poorer precision in nearly all equations if the birth weight was < 1,000 g. Observer error is a relatively minor component of the error in estimating fetal weight; error due to the equation is a larger source of error. Improvements in ultrasound technology have not improved the accuracy of estimating fetal weight. Comparison of methods of estimating fetal weight requires statistical methods that can separate out bias, precision and consistency. Estimating fetal weight in the very low birth weight infant is subject to much greater error than it is in larger babies. Copyright (c) 2007 ISUOG. Published by John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Berthet, Lionel; Marty, Renaud; Bourgin, François; Viatgé, Julie; Piotte, Olivier; Perrin, Charles
2017-04-01
An increasing number of operational flood forecasting centres assess the predictive uncertainty associated with their forecasts and communicate it to the end users. This information can match the end-users needs (i.e. prove to be useful for an efficient crisis management) only if it is reliable: reliability is therefore a key quality for operational flood forecasts. In 2015, the French flood forecasting national and regional services (Vigicrues network; www.vigicrues.gouv.fr) implemented a framework to compute quantitative discharge and water level forecasts and to assess the predictive uncertainty. Among the possible technical options to achieve this goal, a statistical analysis of past forecasting errors of deterministic models has been selected (QUOIQUE method, Bourgin, 2014). It is a data-based and non-parametric approach based on as few assumptions as possible about the forecasting error mathematical structure. In particular, a very simple assumption is made regarding the predictive uncertainty distributions for large events outside the range of the calibration data: the multiplicative error distribution is assumed to be constant, whatever the magnitude of the flood. Indeed, the predictive distributions may not be reliable in extrapolation. However, estimating the predictive uncertainty for these rare events is crucial when major floods are of concern. In order to improve the forecasts reliability for major floods, an attempt at combining the operational strength of the empirical statistical analysis and a simple error modelling is done. Since the heteroscedasticity of forecast errors can considerably weaken the predictive reliability for large floods, this error modelling is based on the log-sinh transformation which proved to reduce significantly the heteroscedasticity of the transformed error in a simulation context, even for flood peaks (Wang et al., 2012). Exploratory tests on some operational forecasts issued during the recent floods experienced in France (major spring floods in June 2016 on the Loire river tributaries and flash floods in fall 2016) will be shown and discussed. References Bourgin, F. (2014). How to assess the predictive uncertainty in hydrological modelling? An exploratory work on a large sample of watersheds, AgroParisTech Wang, Q. J., Shrestha, D. L., Robertson, D. E. and Pokhrel, P (2012). A log-sinh transformation for data normalization and variance stabilization. Water Resources Research, , W05514, doi:10.1029/2011WR010973
Canovas, Carmen; Alarcon, Aixa; Rosén, Robert; Kasthurirangan, Sanjeev; Ma, Joseph J K; Koch, Douglas D; Piers, Patricia
2018-02-01
To assess the accuracy of toric intraocular lens (IOL) power calculations of a new algorithm that incorporates the effect of posterior corneal astigmatism (PCA). Abbott Medical Optics, Inc., Groningen, the Netherlands. Retrospective case report. In eyes implanted with toric IOLs, the exact vergence formula of the Tecnis toric calculator was used to predict refractive astigmatism from preoperative biometry, surgeon-estimated surgically induced astigmatism (SIA), and implanted IOL power, with and without including the new PCA algorithm. For each calculation method, the error in predicted refractive astigmatism was calculated as the vector difference between the prediction and the actual refraction. Calculations were also made using postoperative keratometry (K) values to eliminate the potential effect of incorrect SIA estimates. The study comprised 274 eyes. The PCA algorithm significantly reduced the centroid error in predicted refractive astigmatism (P < .001). With the PCA algorithm, the centroid error reduced from 0.50 @ 1 to 0.19 @ 3 when using preoperative K values and from 0.30 @ 0 to 0.02 @ 84 when using postoperative K values. Patients who had anterior corneal against-the-rule, with-the-rule, and oblique astigmatism had improvement with the PCA algorithm. In addition, the PCA algorithm reduced the median absolute error in all groups (P < .001). The use of the new PCA algorithm decreased the error in the prediction of residual refractive astigmatism in eyes implanted with toric IOLs. Therefore, the new PCA algorithm, in combination with an exact vergence IOL power calculation formula, led to an increased predictability of toric IOL power. Copyright © 2018 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Taming the Hurricane of Acquisition Cost Growth - Or at Least Predicting It
2015-01-01
the practice of generating two different cost estimates dubbed Will Cost and Should Cost. The Should Cost estimate is “based on realistic tech...to predict estimate error in similar future programs. This method is dubbed “macro-stochastic” estimation (Ryan, Schubert Kabban, Jacques...mph Potential Day 1-3 Track Area Tropical Storm Warning OK AR TN AL FL Mexico MS LA TX 30 N 35 N 25 N 95 W 90 W 85 W 80 W True at 30.00N Approx
NASA Astrophysics Data System (ADS)
Sharan, Maithili; Singh, Amit Kumar; Singh, Sarvesh Kumar
2017-11-01
Estimation of an unknown atmospheric release from a finite set of concentration measurements is considered an ill-posed inverse problem. Besides ill-posedness, the estimation process is influenced by the instrumental errors in the measured concentrations and model representativity errors. The study highlights the effect of minimizing model representativity errors on the source estimation. This is described in an adjoint modelling framework and followed in three steps. First, an estimation of point source parameters (location and intensity) is carried out using an inversion technique. Second, a linear regression relationship is established between the measured concentrations and corresponding predicted using the retrieved source parameters. Third, this relationship is utilized to modify the adjoint functions. Further, source estimation is carried out using these modified adjoint functions to analyse the effect of such modifications. The process is tested for two well known inversion techniques, called renormalization and least-square. The proposed methodology and inversion techniques are evaluated for a real scenario by using concentrations measurements from the Idaho diffusion experiment in low wind stable conditions. With both the inversion techniques, a significant improvement is observed in the retrieval of source estimation after minimizing the representativity errors.
Aerodynamic Parameter Estimation for the X-43A (Hyper-X) from Flight Data
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.; Derry, Stephen D.; Smith, Mark S.
2005-01-01
Aerodynamic parameters were estimated based on flight data from the third flight of the X-43A hypersonic research vehicle, also called Hyper-X. Maneuvers were flown using multiple orthogonal phase-optimized sweep inputs applied as simultaneous control surface perturbations at Mach 8, 7, 6, 5, 4, and 3 during the vehicle descent. Aerodynamic parameters, consisting of non-dimensional longitudinal and lateral stability and control derivatives, were estimated from flight data at each Mach number. Multi-step inputs at nearly the same flight conditions were also flown to assess the prediction capability of the identified models. Prediction errors were found to be comparable in magnitude to the modeling errors, which indicates accurate modeling. Aerodynamic parameter estimates were plotted as a function of Mach number, and compared with estimates from the pre-flight aerodynamic database, which was based on wind-tunnel tests and computational fluid dynamics. Agreement between flight estimates and values computed from the aerodynamic database was excellent overall.
Ejlerskov, Katrine T.; Jensen, Signe M.; Christensen, Line B.; Ritz, Christian; Michaelsen, Kim F.; Mølgaard, Christian
2014-01-01
For 3-year-old children suitable methods to estimate body composition are sparse. We aimed to develop predictive equations for estimating fat-free mass (FFM) from bioelectrical impedance (BIA) and anthropometry using dual-energy X-ray absorptiometry (DXA) as reference method using data from 99 healthy 3-year-old Danish children. Predictive equations were derived from two multiple linear regression models, a comprehensive model (height2/resistance (RI), six anthropometric measurements) and a simple model (RI, height, weight). Their uncertainty was quantified by means of 10-fold cross-validation approach. Prediction error of FFM was 3.0% for both equations (root mean square error: 360 and 356 g, respectively). The derived equations produced BIA-based prediction of FFM and FM near DXA scan results. We suggest that the predictive equations can be applied in similar population samples aged 2–4 years. The derived equations may prove useful for studies linking body composition to early risk factors and early onset of obesity. PMID:24463487
Ejlerskov, Katrine T; Jensen, Signe M; Christensen, Line B; Ritz, Christian; Michaelsen, Kim F; Mølgaard, Christian
2014-01-27
For 3-year-old children suitable methods to estimate body composition are sparse. We aimed to develop predictive equations for estimating fat-free mass (FFM) from bioelectrical impedance (BIA) and anthropometry using dual-energy X-ray absorptiometry (DXA) as reference method using data from 99 healthy 3-year-old Danish children. Predictive equations were derived from two multiple linear regression models, a comprehensive model (height(2)/resistance (RI), six anthropometric measurements) and a simple model (RI, height, weight). Their uncertainty was quantified by means of 10-fold cross-validation approach. Prediction error of FFM was 3.0% for both equations (root mean square error: 360 and 356 g, respectively). The derived equations produced BIA-based prediction of FFM and FM near DXA scan results. We suggest that the predictive equations can be applied in similar population samples aged 2-4 years. The derived equations may prove useful for studies linking body composition to early risk factors and early onset of obesity.
On the internal target model in a tracking task
NASA Technical Reports Server (NTRS)
Caglayan, A. K.; Baron, S.
1981-01-01
An optimal control model for predicting operator's dynamic responses and errors in target tracking ability is summarized. The model, which predicts asymmetry in the tracking data, is dependent on target maneuvers and trajectories. Gunners perception, decision making, control, and estimate of target positions and velocity related to crossover intervals are discussed. The model provides estimates for means, standard deviations, and variances for variables investigated and for operator estimates of future target positions and velocities.
Local-search based prediction of medical image registration error
NASA Astrophysics Data System (ADS)
Saygili, Görkem
2018-03-01
Medical image registration is a crucial task in many different medical imaging applications. Hence, considerable amount of work has been published recently that aim to predict the error in a registration without any human effort. If provided, these error predictions can be used as a feedback to the registration algorithm to further improve its performance. Recent methods generally start with extracting image-based and deformation-based features, then apply feature pooling and finally train a Random Forest (RF) regressor to predict the real registration error. Image-based features can be calculated after applying a single registration but provide limited accuracy whereas deformation-based features such as variation of deformation vector field may require up to 20 registrations which is a considerably high time-consuming task. This paper proposes to use extracted features from a local search algorithm as image-based features to estimate the error of a registration. The proposed method comprises a local search algorithm to find corresponding voxels between registered image pairs and based on the amount of shifts and stereo confidence measures, it predicts the amount of registration error in millimetres densely using a RF regressor. Compared to other algorithms in the literature, the proposed algorithm does not require multiple registrations, can be efficiently implemented on a Graphical Processing Unit (GPU) and can still provide highly accurate error predictions in existence of large registration error. Experimental results with real registrations on a public dataset indicate a substantially high accuracy achieved by using features from the local search algorithm.
LANDSAT 4 band 6 data evaluation
NASA Technical Reports Server (NTRS)
1985-01-01
Comparison of underflight data with satellite estimates of temperature revealed significant gain calibration errors. The source of the LANDSAT 5 band 6 error and its reproducibility is not yet adequately defined. The error can be accounted for using underflight or ground truth data. When underflight data are used to correct the satellite data, the residual error for the scene studied was 1.3K when the predicted temperatures were compared to measured surface temperature.
Villa, Chiara; Brůžek, Jaroslav
2017-01-01
Background Estimating volumes and masses of total body components is important for the study and treatment monitoring of nutrition and nutrition-related disorders, cancer, joint replacement, energy-expenditure and exercise physiology. While several equations have been offered for estimating total body components from MRI slices, no reliable and tested method exists for CT scans. For the first time, body composition data was derived from 41 high-resolution whole-body CT scans. From these data, we defined equations for estimating volumes and masses of total body AT and LT from corresponding tissue areas measured in selected CT scan slices. Methods We present a new semi-automatic approach to defining the density cutoff between adipose tissue (AT) and lean tissue (LT) in such material. An intra-class correlation coefficient (ICC) was used to validate the method. The equations for estimating the whole-body composition volume and mass from areas measured in selected slices were modeled with ordinary least squares (OLS) linear regressions and support vector machine regression (SVMR). Results and Discussion The best predictive equation for total body AT volume was based on the AT area of a single slice located between the 4th and 5th lumbar vertebrae (L4-L5) and produced lower prediction errors (|PE| = 1.86 liters, %PE = 8.77) than previous equations also based on CT scans. The LT area of the mid-thigh provided the lowest prediction errors (|PE| = 2.52 liters, %PE = 7.08) for estimating whole-body LT volume. We also present equations to predict total body AT and LT masses from a slice located at L4-L5 that resulted in reduced error compared with the previously published equations based on CT scans. The multislice SVMR predictor gave the theoretical upper limit for prediction precision of volumes and cross-validated the results. PMID:28533960
Documentation of a spreadsheet for time-series analysis and drawdown estimation
Halford, Keith J.
2006-01-01
Drawdowns during aquifer tests can be obscured by barometric pressure changes, earth tides, regional pumping, and recharge events in the water-level record. These stresses can create water-level fluctuations that should be removed from observed water levels prior to estimating drawdowns. Simple models have been developed for estimating unpumped water levels during aquifer tests that are referred to as synthetic water levels. These models sum multiple time series such as barometric pressure, tidal potential, and background water levels to simulate non-pumping water levels. The amplitude and phase of each time series are adjusted so that synthetic water levels match measured water levels during periods unaffected by an aquifer test. Differences between synthetic and measured water levels are minimized with a sum-of-squares objective function. Root-mean-square errors during fitting and prediction periods were compared multiple times at four geographically diverse sites. Prediction error equaled fitting error when fitting periods were greater than or equal to four times prediction periods. The proposed drawdown estimation approach has been implemented in a spreadsheet application. Measured time series are independent so that collection frequencies can differ and sampling times can be asynchronous. Time series can be viewed selectively and magnified easily. Fitting and prediction periods can be defined graphically or entered directly. Synthetic water levels for each observation well are created with earth tides, measured time series, moving averages of time series, and differences between measured and moving averages of time series. Selected series and fitting parameters for synthetic water levels are stored and drawdowns are estimated for prediction periods. Drawdowns can be viewed independently and adjusted visually if an anomaly skews initial drawdowns away from 0. The number of observations in a drawdown time series can be reduced by averaging across user-defined periods. Raw or reduced drawdown estimates can be copied from the spreadsheet application or written to tab-delimited ASCII files.
Lacoste Jeanson, Alizé; Dupej, Ján; Villa, Chiara; Brůžek, Jaroslav
2017-01-01
Estimating volumes and masses of total body components is important for the study and treatment monitoring of nutrition and nutrition-related disorders, cancer, joint replacement, energy-expenditure and exercise physiology. While several equations have been offered for estimating total body components from MRI slices, no reliable and tested method exists for CT scans. For the first time, body composition data was derived from 41 high-resolution whole-body CT scans. From these data, we defined equations for estimating volumes and masses of total body AT and LT from corresponding tissue areas measured in selected CT scan slices. We present a new semi-automatic approach to defining the density cutoff between adipose tissue (AT) and lean tissue (LT) in such material. An intra-class correlation coefficient (ICC) was used to validate the method. The equations for estimating the whole-body composition volume and mass from areas measured in selected slices were modeled with ordinary least squares (OLS) linear regressions and support vector machine regression (SVMR). The best predictive equation for total body AT volume was based on the AT area of a single slice located between the 4th and 5th lumbar vertebrae (L4-L5) and produced lower prediction errors (|PE| = 1.86 liters, %PE = 8.77) than previous equations also based on CT scans. The LT area of the mid-thigh provided the lowest prediction errors (|PE| = 2.52 liters, %PE = 7.08) for estimating whole-body LT volume. We also present equations to predict total body AT and LT masses from a slice located at L4-L5 that resulted in reduced error compared with the previously published equations based on CT scans. The multislice SVMR predictor gave the theoretical upper limit for prediction precision of volumes and cross-validated the results.
Adaptive reduction of constitutive model-form error using a posteriori error estimation techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bishop, Joseph E.; Brown, Judith Alice
In engineering practice, models are typically kept as simple as possible for ease of setup and use, computational efficiency, maintenance, and overall reduced complexity to achieve robustness. In solid mechanics, a simple and efficient constitutive model may be favored over one that is more predictive, but is difficult to parameterize, is computationally expensive, or is simply not available within a simulation tool. In order to quantify the modeling error due to the choice of a relatively simple and less predictive constitutive model, we adopt the use of a posteriori model-form error-estimation techniques. Based on local error indicators in the energymore » norm, an algorithm is developed for reducing the modeling error by spatially adapting the material parameters in the simpler constitutive model. The resulting material parameters are not material properties per se, but depend on the given boundary-value problem. As a first step to the more general nonlinear case, we focus here on linear elasticity in which the “complex” constitutive model is general anisotropic elasticity and the chosen simpler model is isotropic elasticity. As a result, the algorithm for adaptive error reduction is demonstrated using two examples: (1) A transversely-isotropic plate with hole subjected to tension, and (2) a transversely-isotropic tube with two side holes subjected to torsion.« less
Adaptive reduction of constitutive model-form error using a posteriori error estimation techniques
Bishop, Joseph E.; Brown, Judith Alice
2018-06-15
In engineering practice, models are typically kept as simple as possible for ease of setup and use, computational efficiency, maintenance, and overall reduced complexity to achieve robustness. In solid mechanics, a simple and efficient constitutive model may be favored over one that is more predictive, but is difficult to parameterize, is computationally expensive, or is simply not available within a simulation tool. In order to quantify the modeling error due to the choice of a relatively simple and less predictive constitutive model, we adopt the use of a posteriori model-form error-estimation techniques. Based on local error indicators in the energymore » norm, an algorithm is developed for reducing the modeling error by spatially adapting the material parameters in the simpler constitutive model. The resulting material parameters are not material properties per se, but depend on the given boundary-value problem. As a first step to the more general nonlinear case, we focus here on linear elasticity in which the “complex” constitutive model is general anisotropic elasticity and the chosen simpler model is isotropic elasticity. As a result, the algorithm for adaptive error reduction is demonstrated using two examples: (1) A transversely-isotropic plate with hole subjected to tension, and (2) a transversely-isotropic tube with two side holes subjected to torsion.« less
NASA Technical Reports Server (NTRS)
Kulawik, Susan; Wunch, Debra; O’Dell, Christopher; Frankenberg, Christian; Reuter, Maximilian; Chevallier, Frederic; Oda, Tomohiro; Sherlock, Vanessa; Buchwitz, Michael; Osterman, Greg;
2016-01-01
Consistent validation of satellite CO2 estimates is a prerequisite for using multiple satellite CO2 measurements for joint flux inversion, and for establishing an accurate long-term atmospheric CO2 data record. Harmonizing satellite CO2 measurements is particularly important since the differences in instruments, observing geometries, sampling strategies, etc. imbue different measurement characteristics in the various satellite CO2 data products. We focus on validating model and satellite observation attributes that impact flux estimates and CO2 assimilation, including accurate error estimates, correlated and random errors, overall biases, biases by season and latitude, the impact of coincidence criteria, validation of seasonal cycle phase and amplitude, yearly growth, and daily variability. We evaluate dry-air mole fraction (X(sub CO2)) for Greenhouse gases Observing SATellite (GOSAT) (Atmospheric CO2 Observations from Space, ACOS b3.5) and SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) (Bremen Optimal Estimation DOAS, BESD v2.00.08) as well as the CarbonTracker (CT2013b) simulated CO2 mole fraction fields and the Monitoring Atmospheric Composition and Climate (MACC) CO2 inversion system (v13.1) and compare these to Total Carbon Column Observing Network (TCCON) observations (GGG2012/2014). We find standard deviations of 0.9, 0.9, 1.7, and 2.1 parts per million vs. TCCON for CT2013b, MACC, GOSAT, and SCIAMACHY, respectively, with the single observation errors 1.9 and 0.9 times the predicted errors for GOSAT and SCIAMACHY, respectively. We quantify how satellite error drops with data averaging by interpreting according to (error(sup 2) equals a(sup 2) plus b(sup 2) divided by n (with n being the number of observations averaged, a the systematic (correlated) errors, and b the random (uncorrelated) errors). a and b are estimated by satellites, coincidence criteria, and hemisphere. Biases at individual stations have year-to-year variability of 0.3 parts per million, with biases larger than the TCCON predicted bias uncertainty of 0.4 parts per million at many stations. We find that GOSAT and CT2013b under-predict the seasonal cycle amplitude in the Northern Hemisphere (NH) between 46 and 53 degrees North latitude, MACC over-predicts between 26 and 37 degrees North latitude, and CT2013b under-predicts the seasonal cycle amplitude in the Southern Hemisphere (SH). The seasonal cycle phase indicates whether a data set or model lags another data set in time. We find that the GOSAT measurements improve the seasonal cycle phase substantially over the prior while SCIAMACHY measurements improve the phase significantly for just two of seven sites. The models reproduce the measured seasonal cycle phase well except for at Lauder_125HR (CT2013b) and Darwin (MACC). We compare the variability within 1 day between TCCON and models in June-July-August; there is correlation between 0.2 and 0.8 in the NH, with models showing 10-50 percent the variability of TCCON at different stations and CT2013b showing more variability than MACC. This paper highlights findings that provide inputs to estimate flux errors in model assimilations, and places where models and satellites need further investigation, e.g., the SH for models and 45-67 degrees North latitude for GOSAT and CT2013b.
Khondoker, Mizanur R; Bachmann, Till T; Mewissen, Muriel; Dickinson, Paul; Dobrzelecki, Bartosz; Campbell, Colin J; Mount, Andrew R; Walton, Anthony J; Crain, Jason; Schulze, Holger; Giraud, Gerard; Ross, Alan J; Ciani, Ilenia; Ember, Stuart W J; Tlili, Chaker; Terry, Jonathan G; Grant, Eilidh; McDonnell, Nicola; Ghazal, Peter
2010-12-01
Machine learning and statistical model based classifiers have increasingly been used with more complex and high dimensional biological data obtained from high-throughput technologies. Understanding the impact of various factors associated with large and complex microarray datasets on the predictive performance of classifiers is computationally intensive, under investigated, yet vital in determining the optimal number of biomarkers for various classification purposes aimed towards improved detection, diagnosis, and therapeutic monitoring of diseases. We investigate the impact of microarray based data characteristics on the predictive performance for various classification rules using simulation studies. Our investigation using Random Forest, Support Vector Machines, Linear Discriminant Analysis and k-Nearest Neighbour shows that the predictive performance of classifiers is strongly influenced by training set size, biological and technical variability, replication, fold change and correlation between biomarkers. Optimal number of biomarkers for a classification problem should therefore be estimated taking account of the impact of all these factors. A database of average generalization errors is built for various combinations of these factors. The database of generalization errors can be used for estimating the optimal number of biomarkers for given levels of predictive accuracy as a function of these factors. Examples show that curves from actual biological data resemble that of simulated data with corresponding levels of data characteristics. An R package optBiomarker implementing the method is freely available for academic use from the Comprehensive R Archive Network (http://www.cran.r-project.org/web/packages/optBiomarker/).
A new method to estimate average hourly global solar radiation on the horizontal surface
NASA Astrophysics Data System (ADS)
Pandey, Pramod K.; Soupir, Michelle L.
2012-10-01
A new model, Global Solar Radiation on Horizontal Surface (GSRHS), was developed to estimate the average hourly global solar radiation on the horizontal surfaces (Gh). The GSRHS model uses the transmission function (Tf,ij), which was developed to control hourly global solar radiation, for predicting solar radiation. The inputs of the model were: hour of day, day (Julian) of year, optimized parameter values, solar constant (H0), latitude, and longitude of the location of interest. The parameter values used in the model were optimized at a location (Albuquerque, NM), and these values were applied into the model for predicting average hourly global solar radiations at four different locations (Austin, TX; El Paso, TX; Desert Rock, NV; Seattle, WA) of the United States. The model performance was assessed using correlation coefficient (r), Mean Absolute Bias Error (MABE), Root Mean Square Error (RMSE), and coefficient of determinations (R2). The sensitivities of parameter to prediction were estimated. Results show that the model performed very well. The correlation coefficients (r) range from 0.96 to 0.99, while coefficients of determination (R2) range from 0.92 to 0.98. For daily and monthly prediction, error percentages (i.e. MABE and RMSE) were less than 20%. The approach we proposed here can be potentially useful for predicting average hourly global solar radiation on the horizontal surface for different locations, with the use of readily available data (i.e. latitude and longitude of the location) as inputs.
NASA Astrophysics Data System (ADS)
Pernot, Pascal; Savin, Andreas
2018-06-01
Benchmarking studies in computational chemistry use reference datasets to assess the accuracy of a method through error statistics. The commonly used error statistics, such as the mean signed and mean unsigned errors, do not inform end-users on the expected amplitude of prediction errors attached to these methods. We show that, the distributions of model errors being neither normal nor zero-centered, these error statistics cannot be used to infer prediction error probabilities. To overcome this limitation, we advocate for the use of more informative statistics, based on the empirical cumulative distribution function of unsigned errors, namely, (1) the probability for a new calculation to have an absolute error below a chosen threshold and (2) the maximal amplitude of errors one can expect with a chosen high confidence level. Those statistics are also shown to be well suited for benchmarking and ranking studies. Moreover, the standard error on all benchmarking statistics depends on the size of the reference dataset. Systematic publication of these standard errors would be very helpful to assess the statistical reliability of benchmarking conclusions.
NASA Astrophysics Data System (ADS)
Goulden, T.; Hopkinson, C.
2013-12-01
The quantification of LiDAR sensor measurement uncertainty is important for evaluating the quality of derived DEM products, compiling risk assessment of management decisions based from LiDAR information, and enhancing LiDAR mission planning capabilities. Current quality assurance estimates of LiDAR measurement uncertainty are limited to post-survey empirical assessments or vendor estimates from commercial literature. Empirical evidence can provide valuable information for the performance of the sensor in validated areas; however, it cannot characterize the spatial distribution of measurement uncertainty throughout the extensive coverage of typical LiDAR surveys. Vendor advertised error estimates are often restricted to strict and optimal survey conditions, resulting in idealized values. Numerical modeling of individual pulse uncertainty provides an alternative method for estimating LiDAR measurement uncertainty. LiDAR measurement uncertainty is theoretically assumed to fall into three distinct categories, 1) sensor sub-system errors, 2) terrain influences, and 3) vegetative influences. This research details the procedures for numerical modeling of measurement uncertainty from the sensor sub-system (GPS, IMU, laser scanner, laser ranger) and terrain influences. Results show that errors tend to increase as the laser scan angle, altitude or laser beam incidence angle increase. An experimental survey over a flat and paved runway site, performed with an Optech ALTM 3100 sensor, showed an increase in modeled vertical errors of 5 cm, at a nadir scan orientation, to 8 cm at scan edges; for an aircraft altitude of 1200 m and half scan angle of 15°. In a survey with the same sensor, at a highly sloped glacial basin site absent of vegetation, modeled vertical errors reached over 2 m. Validation of error models within the glacial environment, over three separate flight lines, respectively showed 100%, 85%, and 75% of elevation residuals fell below error predictions. Future work in LiDAR sensor measurement uncertainty must focus on the development of vegetative error models to create more robust error prediction algorithms. To achieve this objective, comprehensive empirical exploratory analysis is recommended to relate vegetative parameters to observed errors.
Faris, A M; Wang, H-H; Tarone, A M; Grant, W E
2016-05-31
Estimates of insect age can be informative in death investigations and, when certain assumptions are met, can be useful for estimating the postmortem interval (PMI). Currently, the accuracy and precision of PMI estimates is unknown, as error can arise from sources of variation such as measurement error, environmental variation, or genetic variation. Ecological models are an abstract, mathematical representation of an ecological system that can make predictions about the dynamics of the real system. To quantify the variation associated with the pre-appearance interval (PAI), we developed an ecological model that simulates the colonization of vertebrate remains by Cochliomyia macellaria (Fabricius) (Diptera: Calliphoridae), a primary colonizer in the southern United States. The model is based on a development data set derived from a local population and represents the uncertainty in local temperature variability to address PMI estimates at local sites. After a PMI estimate is calculated for each individual, the model calculates the maximum, minimum, and mean PMI, as well as the range and standard deviation for stadia collected. The model framework presented here is one manner by which errors in PMI estimates can be addressed in court when no empirical data are available for the parameter of interest. We show that PAI is a potential important source of error and that an ecological model is one way to evaluate its impact. Such models can be re-parameterized with any development data set, PAI function, temperature regime, assumption of interest, etc., to estimate PMI and quantify uncertainty that arises from specific prediction systems. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Judt, Falko
2017-04-01
A tremendous increase in computing power has facilitated the advent of global convection-resolving numerical weather prediction (NWP) models. Although this technological breakthrough allows for the seamless prediction of weather from local to global scales, the predictability of multiscale weather phenomena in these models is not very well known. To address this issue, we conducted a global high-resolution (4-km) predictability experiment using the Model for Prediction Across Scales (MPAS), a state-of-the-art global NWP model developed at the National Center for Atmospheric Research. The goals of this experiment are to investigate error growth from convective to planetary scales and to quantify the intrinsic, scale-dependent predictability limits of atmospheric motions. The globally uniform resolution of 4 km allows for the explicit treatment of organized deep moist convection, alleviating grave limitations of previous predictability studies that either used high-resolution limited-area models or global simulations with coarser grids and cumulus parameterization. Error growth is analyzed within the context of an "identical twin" experiment setup: the error is defined as the difference between a 20-day long "nature run" and a simulation that was perturbed with small-amplitude noise, but is otherwise identical. It is found that in convectively active regions, errors grow by several orders of magnitude within the first 24 h ("super-exponential growth"). The errors then spread to larger scales and begin a phase of exponential growth after 2-3 days when contaminating the baroclinic zones. After 16 days, the globally averaged error saturates—suggesting that the intrinsic limit of atmospheric predictability (in a general sense) is about two weeks, which is in line with earlier estimates. However, error growth rates differ between the tropics and mid-latitudes as well as between the troposphere and stratosphere, highlighting that atmospheric predictability is a complex problem. The comparatively slower error growth in the tropics and in the stratosphere indicates that certain weather phenomena could potentially have longer predictability than currently thought.
A Simple Model Predicting Individual Weight Change in Humans
Thomas, Diana M.; Martin, Corby K.; Heymsfield, Steven; Redman, Leanne M.; Schoeller, Dale A.; Levine, James A.
2010-01-01
Excessive weight in adults is a national concern with over 2/3 of the US population deemed overweight. Because being overweight has been correlated to numerous diseases such as heart disease and type 2 diabetes, there is a need to understand mechanisms and predict outcomes of weight change and weight maintenance. A simple mathematical model that accurately predicts individual weight change offers opportunities to understand how individuals lose and gain weight and can be used to foster patient adherence to diets in clinical settings. For this purpose, we developed a one dimensional differential equation model of weight change based on the energy balance equation is paired to an algebraic relationship between fat free mass and fat mass derived from a large nationally representative sample of recently released data collected by the Centers for Disease Control. We validate the model's ability to predict individual participants’ weight change by comparing model estimates of final weight data from two recent underfeeding studies and one overfeeding study. Mean absolute error and standard deviation between model predictions and observed measurements of final weights are less than 1.8 ± 1.3 kg for the underfeeding studies and 2.5 ± 1.6 kg for the overfeeding study. Comparison of the model predictions to other one dimensional models of weight change shows improvement in mean absolute error, standard deviation of mean absolute error, and group mean predictions. The maximum absolute individual error decreased by approximately 60% substantiating reliability in individual weight change predictions. The model provides a viable method for estimating individual weight change as a result of changes in intake and determining individual dietary adherence during weight change studies. PMID:24707319
Armstrong, Bonnie; Spaniol, Julia; Persaud, Nav
2018-02-13
Clinicians often overestimate the probability of a disease given a positive test result (positive predictive value; PPV) and the probability of no disease given a negative test result (negative predictive value; NPV). The purpose of this study was to investigate whether experiencing simulated patient cases (ie, an 'experience format') would promote more accurate PPV and NPV estimates compared with a numerical format. Participants were presented with information about three diagnostic tests for the same fictitious disease and were asked to estimate the PPV and NPV of each test. Tests varied with respect to sensitivity and specificity. Information about each test was presented once in the numerical format and once in the experience format. The study used a 2 (format: numerical vs experience) × 3 (diagnostic test: gold standard vs low sensitivity vs low specificity) within-subjects design. The study was completed online, via Qualtrics (Provo, Utah, USA). 50 physicians (12 clinicians and 38 residents) from the Department of Family and Community Medicine at St Michael's Hospital in Toronto, Canada, completed the study. All participants had completed at least 1 year of residency. Estimation accuracy was quantified by the mean absolute error (MAE; absolute difference between estimate and true predictive value). PPV estimation errors were larger in the numerical format (MAE=32.6%, 95% CI 26.8% to 38.4%) compared with the experience format (MAE=15.9%, 95% CI 11.8% to 20.0%, d =0.697, P<0.001). Likewise, NPV estimation errors were larger in the numerical format (MAE=24.4%, 95% CI 14.5% to 34.3%) than in the experience format (MAE=11.0%, 95% CI 6.5% to 15.5%, d =0.303, P=0.015). Exposure to simulated patient cases promotes accurate estimation of predictive values in clinicians. This finding carries implications for diagnostic training and practice. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Liu, Xingguo; Niu, Jianwei; Ran, Linghua; Liu, Taijie
2017-08-01
This study aimed to develop estimation formulae for the total human body volume (BV) of adult males using anthropometric measurements based on a three-dimensional (3D) scanning technique. Noninvasive and reliable methods to predict the total BV from anthropometric measurements based on a 3D scan technique were addressed in detail. A regression analysis of BV based on four key measurements was conducted for approximately 160 adult male subjects. Eight total models of human BV show that the predicted results fitted by the regression models were highly correlated with the actual BV (p < 0.001). Two metrics, the mean value of the absolute difference between the actual and predicted BV (V error ) and the mean value of the ratio between V error and actual BV (RV error ), were calculated. The linear model based on human weight was recommended as the most optimal due to its simplicity and high efficiency. The proposed estimation formulae are valuable for estimating total body volume in circumstances in which traditional underwater weighing or air displacement plethysmography is not applicable or accessible. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.
Nagwani, Naresh Kumar; Deo, Shirish V
2014-01-01
Understanding of the compressive strength of concrete is important for activities like construction arrangement, prestressing operations, and proportioning new mixtures and for the quality assurance. Regression techniques are most widely used for prediction tasks where relationship between the independent variables and dependent (prediction) variable is identified. The accuracy of the regression techniques for prediction can be improved if clustering can be used along with regression. Clustering along with regression will ensure the more accurate curve fitting between the dependent and independent variables. In this work cluster regression technique is applied for estimating the compressive strength of the concrete and a novel state of the art is proposed for predicting the concrete compressive strength. The objective of this work is to demonstrate that clustering along with regression ensures less prediction errors for estimating the concrete compressive strength. The proposed technique consists of two major stages: in the first stage, clustering is used to group the similar characteristics concrete data and then in the second stage regression techniques are applied over these clusters (groups) to predict the compressive strength from individual clusters. It is found from experiments that clustering along with regression techniques gives minimum errors for predicting compressive strength of concrete; also fuzzy clustering algorithm C-means performs better than K-means algorithm.
Nagwani, Naresh Kumar; Deo, Shirish V.
2014-01-01
Understanding of the compressive strength of concrete is important for activities like construction arrangement, prestressing operations, and proportioning new mixtures and for the quality assurance. Regression techniques are most widely used for prediction tasks where relationship between the independent variables and dependent (prediction) variable is identified. The accuracy of the regression techniques for prediction can be improved if clustering can be used along with regression. Clustering along with regression will ensure the more accurate curve fitting between the dependent and independent variables. In this work cluster regression technique is applied for estimating the compressive strength of the concrete and a novel state of the art is proposed for predicting the concrete compressive strength. The objective of this work is to demonstrate that clustering along with regression ensures less prediction errors for estimating the concrete compressive strength. The proposed technique consists of two major stages: in the first stage, clustering is used to group the similar characteristics concrete data and then in the second stage regression techniques are applied over these clusters (groups) to predict the compressive strength from individual clusters. It is found from experiments that clustering along with regression techniques gives minimum errors for predicting compressive strength of concrete; also fuzzy clustering algorithm C-means performs better than K-means algorithm. PMID:25374939
Dang, Mia; Ramsaran, Kalinda D; Street, Melissa E; Syed, S Noreen; Barclay-Goddard, Ruth; Stratford, Paul W; Miller, Patricia A
2011-01-01
To estimate the predictive accuracy and clinical usefulness of the Chedoke-McMaster Stroke Assessment (CMSA) predictive equations. A longitudinal prognostic study using historical data obtained from 104 patients admitted post cerebrovascular accident was undertaken. Data were abstracted for all patients undergoing rehabilitation post stroke who also had documented admission and discharge CMSA scores. Published predictive equations were used to determine predicted outcomes. To determine the accuracy and clinical usefulness of the predictive model, shrinkage coefficients and predictions with 95% confidence bands were calculated. Complete data were available for 74 patients with a mean age of 65.3±12.4 years. The shrinkage values for the six Impairment Inventory (II) dimensions varied from -0.05 to 0.09; the shrinkage value for the Activity Inventory (AI) was 0.21. The error associated with predictive values was greater than ±1.5 stages for the II dimensions and greater than ±24 points for the AI. This study shows that the large error associated with the predictions (as defined by the confidence band) for the CMSA II and AI limits their clinical usefulness as a predictive measure. Further research to establish predictive models using alternative statistical procedures is warranted.
Flow Mapping Based on the Motion-Integration Errors of Autonomous Underwater Vehicles
NASA Astrophysics Data System (ADS)
Chang, D.; Edwards, C. R.; Zhang, F.
2016-02-01
Knowledge of a flow field is crucial in the navigation of autonomous underwater vehicles (AUVs) since the motion of AUVs is affected by ambient flow. Due to the imperfect knowledge of the flow field, it is typical to observe a difference between the actual and predicted trajectories of an AUV, which is referred to as a motion-integration error (also known as a dead-reckoning error if an AUV navigates via dead-reckoning). The motion-integration error has been essential for an underwater glider to compute its flow estimate from the travel information of the last leg and to improve navigation performance by using the estimate for the next leg. However, the estimate by nature exhibits a phase difference compared to ambient flow experienced by gliders, prohibiting its application in a flow field with strong temporal and spatial gradients. In our study, to mitigate the phase problem, we have developed a local ocean model by combining the flow estimate based on the motion-integration error with flow predictions from a tidal ocean model. Our model has been used to create desired trajectories of gliders for guidance. Our method is validated by Long Bay experiments in 2012 and 2013 in which we deployed multiple gliders on the shelf of South Atlantic Bight and near the edge of Gulf Stream. In our recent study, the application of the motion-integration error is further extended to create a spatial flow map. Considering that the motion-integration errors of AUVs accumulate along their trajectories, the motion-integration error is formulated as a line integral of ambient flow which is then reformulated into algebraic equations. By solving an inverse problem for these algebraic equations, we obtain the knowledge of such flow in near real time, allowing more effective and precise guidance of AUVs in a dynamic environment. This method is referred to as motion tomography. We provide the results of non-parametric and parametric flow mapping from both simulated and experimental data.
Leão, William L.; Chen, Ming-Hui
2017-01-01
A stochastic volatility-in-mean model with correlated errors using the generalized hyperbolic skew Student-t (GHST) distribution provides a robust alternative to the parameter estimation for daily stock returns in the absence of normality. An efficient Markov chain Monte Carlo (MCMC) sampling algorithm is developed for parameter estimation. The deviance information, the Bayesian predictive information and the log-predictive score criterion are used to assess the fit of the proposed model. The proposed method is applied to an analysis of the daily stock return data from the Standard & Poor’s 500 index (S&P 500). The empirical results reveal that the stochastic volatility-in-mean model with correlated errors and GH-ST distribution leads to a significant improvement in the goodness-of-fit for the S&P 500 index returns dataset over the usual normal model. PMID:29333210
Leão, William L; Abanto-Valle, Carlos A; Chen, Ming-Hui
2017-01-01
A stochastic volatility-in-mean model with correlated errors using the generalized hyperbolic skew Student-t (GHST) distribution provides a robust alternative to the parameter estimation for daily stock returns in the absence of normality. An efficient Markov chain Monte Carlo (MCMC) sampling algorithm is developed for parameter estimation. The deviance information, the Bayesian predictive information and the log-predictive score criterion are used to assess the fit of the proposed model. The proposed method is applied to an analysis of the daily stock return data from the Standard & Poor's 500 index (S&P 500). The empirical results reveal that the stochastic volatility-in-mean model with correlated errors and GH-ST distribution leads to a significant improvement in the goodness-of-fit for the S&P 500 index returns dataset over the usual normal model.
Liang, Yuzhen; Kuo, Dave T F; Allen, Herbert E; Di Toro, Dominic M
2016-10-01
There is concern about the environmental fate and effects of munition constituents (MCs). Polyparameter linear free energy relationships (pp-LFERs) that employ Abraham solute parameters can aid in evaluating the risk of MCs to the environment. However, poor predictions using pp-LFERs and ABSOLV estimated Abraham solute parameters are found for some key physico-chemical properties. In this work, the Abraham solute parameters are determined using experimental partition coefficients in various solvent-water systems. The compounds investigated include hexahydro-1,3,5-trinitro-1,3,5-triazacyclohexane (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (HMX), hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX), hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX), hexahydro-1,3-dinitroso-5- nitro-1,3,5-triazine (DNX), 2,4,6-trinitrotoluene (TNT), 1,3,5-trinitrobenzene (TNB), and 4-nitroanisole. The solvents in the solvent-water systems are hexane, dichloromethane, trichloromethane, octanol, and toluene. The only available reported solvent-water partition coefficients are for octanol-water for some of the investigated compounds and they are in good agreement with the experimental measurements from this study. Solvent-water partition coefficients fitted using experimentally derived solute parameters from this study have significantly smaller root mean square errors (RMSE = 0.38) than predictions using ABSOLV estimated solute parameters (RMSE = 3.56) for the investigated compounds. Additionally, the predictions for various physico-chemical properties using the experimentally derived solute parameters agree with available literature reported values with prediction errors within 0.79 log units except for water solubility of RDX and HMX with errors of 1.48 and 2.16 log units respectively. However, predictions using ABSOLV estimated solute parameters have larger prediction errors of up to 7.68 log units. This large discrepancy is probably due to the missing R2NNO2 and R2NNO2 functional groups in the ABSOLV fragment database. Copyright © 2016. Published by Elsevier Ltd.
Technical note: Bayesian calibration of dynamic ruminant nutrition models.
Reed, K F; Arhonditsis, G B; France, J; Kebreab, E
2016-08-01
Mechanistic models of ruminant digestion and metabolism have advanced our understanding of the processes underlying ruminant animal physiology. Deterministic modeling practices ignore the inherent variation within and among individual animals and thus have no way to assess how sources of error influence model outputs. We introduce Bayesian calibration of mathematical models to address the need for robust mechanistic modeling tools that can accommodate error analysis by remaining within the bounds of data-based parameter estimation. For the purpose of prediction, the Bayesian approach generates a posterior predictive distribution that represents the current estimate of the value of the response variable, taking into account both the uncertainty about the parameters and model residual variability. Predictions are expressed as probability distributions, thereby conveying significantly more information than point estimates in regard to uncertainty. Our study illustrates some of the technical advantages of Bayesian calibration and discusses the future perspectives in the context of animal nutrition modeling. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
McGinitie, Teague M; Ebrahimi-Najafabadi, Heshmatollah; Harynuk, James J
2014-01-17
A new method for estimating the thermodynamic parameters of ΔH(T0), ΔS(T0), and ΔCP for use in thermodynamic modeling of GC×GC separations has been developed. The method is an alternative to the traditional isothermal separations required to fit a three-parameter thermodynamic model to retention data. Herein, a non-linear optimization technique is used to estimate the parameters from a series of temperature-programmed separations using the Nelder-Mead simplex algorithm. With this method, the time required to obtain estimates of thermodynamic parameters a series of analytes is significantly reduced. This new method allows for precise predictions of retention time with the average error being only 0.2s for 1D separations. Predictions for GC×GC separations were also in agreement with experimental measurements; having an average relative error of 0.37% for (1)tr and 2.1% for (2)tr. Copyright © 2013 Elsevier B.V. All rights reserved.
Angelaki, Dora E
2017-01-01
Brainstem and cerebellar neurons implement an internal model to accurately estimate self-motion during externally generated (‘passive’) movements. However, these neurons show reduced responses during self-generated (‘active’) movements, indicating that predicted sensory consequences of motor commands cancel sensory signals. Remarkably, the computational processes underlying sensory prediction during active motion and their relationship to internal model computations during passive movements remain unknown. We construct a Kalman filter that incorporates motor commands into a previously established model of optimal passive self-motion estimation. The simulated sensory error and feedback signals match experimentally measured neuronal responses during active and passive head and trunk rotations and translations. We conclude that a single sensory internal model can combine motor commands with vestibular and proprioceptive signals optimally. Thus, although neurons carrying sensory prediction error or feedback signals show attenuated modulation, the sensory cues and internal model are both engaged and critically important for accurate self-motion estimation during active head movements. PMID:29043978
Poster - 49: Assessment of Synchrony respiratory compensation error for CyberKnife liver treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ming; Cygler,
The goal of this work is to quantify respiratory motion compensation errors for liver tumor patients treated by the CyberKnife system with Synchrony tracking, to identify patients with the smallest tracking errors and to eventually help coach patient’s breathing patterns to minimize dose delivery errors. The accuracy of CyberKnife Synchrony respiratory motion compensation was assessed for 37 patients treated for liver lesions by analyzing data from system logfiles. A predictive model is used to modulate the direction of individual beams during dose delivery based on the positions of internally implanted fiducials determined using an orthogonal x-ray imaging system and themore » current location of LED external markers. For each x-ray pair acquired, system logfiles report the prediction error, the difference between the measured and predicted fiducial positions, and the delivery error, which is an estimate of the statistical error in the model overcoming the latency between x-ray acquisition and robotic repositioning. The total error was calculated at the time of each x-ray pair, for the number of treatment fractions and the number of patients, giving the average respiratory motion compensation error in three dimensions. The 99{sup th} percentile for the total radial error is 3.85 mm, with the highest contribution of 2.79 mm in superior/inferior (S/I) direction. The absolute mean compensation error is 1.78 mm radially with a 1.27 mm contribution in the S/I direction. Regions of high total error may provide insight into features predicting groups of patients with larger or smaller total errors.« less
Estimating the magnitude of peak flows for streams in Kentucky for selected recurrence intervals
Hodgkins, Glenn A.; Martin, Gary R.
2003-01-01
This report gives estimates of, and presents techniques for estimating, the magnitude of peak flows for streams in Kentucky for recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years. A flowchart in this report guides the user to the appropriate estimates and (or) estimating techniques for a site on a specific stream. Estimates of peak flows are given for 222 U.S. Geological Survey streamflow-gaging stations in Kentucky. In the development of the peak-flow estimates at gaging stations, a new generalized skew coefficient was calculated for the State. This single statewide value of 0.011 (with a standard error of prediction of 0.520) is more appropriate for Kentucky than the national skew isoline map in Bulletin 17B of the Interagency Advisory Committee on Water Data. Regression equations are presented for estimating the peak flows on ungaged, unregulated streams in rural drainage basins. The equations were developed by use of generalized-least-squares regression procedures at 187 U.S. Geological Survey gaging stations in Kentucky and 51 stations in surrounding States. Kentucky was divided into seven flood regions. Total drainage area is used in the final regression equations as the sole explanatory variable, except in Regions 1 and 4 where main-channel slope also was used. The smallest average standard errors of prediction were in Region 3 (from -13.1 to +15.0 percent) and the largest average standard errors of prediction were in Region 5 (from -37.6 to +60.3 percent). One section of this report describes techniques for estimating peak flows for ungaged sites on gaged, unregulated streams in rural drainage basins. Another section references two previous U.S. Geological Survey reports for peak-flow estimates on ungaged, unregulated, urban streams. Estimating peak flows at ungaged sites on regulated streams is beyond the scope of this report, because peak flows on regulated streams are dependent upon variable human activities.
Incorporating Measurement Error from Modeled Air Pollution Exposures into Epidemiological Analyses.
Samoli, Evangelia; Butland, Barbara K
2017-12-01
Outdoor air pollution exposures used in epidemiological studies are commonly predicted from spatiotemporal models incorporating limited measurements, temporal factors, geographic information system variables, and/or satellite data. Measurement error in these exposure estimates leads to imprecise estimation of health effects and their standard errors. We reviewed methods for measurement error correction that have been applied in epidemiological studies that use model-derived air pollution data. We identified seven cohort studies and one panel study that have employed measurement error correction methods. These methods included regression calibration, risk set regression calibration, regression calibration with instrumental variables, the simulation extrapolation approach (SIMEX), and methods under the non-parametric or parameter bootstrap. Corrections resulted in small increases in the absolute magnitude of the health effect estimate and its standard error under most scenarios. Limited application of measurement error correction methods in air pollution studies may be attributed to the absence of exposure validation data and the methodological complexity of the proposed methods. Future epidemiological studies should consider in their design phase the requirements for the measurement error correction method to be later applied, while methodological advances are needed under the multi-pollutants setting.
NASA Technical Reports Server (NTRS)
Ballabrera-Poy, J.; Busalacchi, A.; Murtugudde, R.
2000-01-01
A reduced order Kalman Filter, based on a simplification of the Singular Evolutive Extended Kalman (SEEK) filter equations, is used to assimilate observed fields of the surface wind stress, sea surface temperature and sea level into the nonlinear coupled ocean-atmosphere model of Zebiak and Cane. The SEEK filter projects the Kalman Filter equations onto a subspace defined by the eigenvalue decomposition of the error forecast matrix, allowing its application to high dimensional systems. The Zebiak and Cane model couples a linear reduced gravity ocean model with a single vertical mode atmospheric model of Zebiak. The compatibility between the simplified physics of the model and each observed variable is studied separately and together. The results show the ability of the model to represent the simultaneous value of the wind stress, SST and sea level, when the fields are limited to the latitude band 10 deg S - 10 deg N In this first application of the Kalman Filter to a coupled ocean-atmosphere prediction model, the sea level fields are assimilated in terms of the Kelvin and Rossby modes of the thermocline depth anomaly. An estimation of the error of these modes is derived from the projection of an estimation of the sea level error over such modes. This method gives a value of 12 for the error of the Kelvin amplitude, and 6 m of error for the Rossby component of the thermocline depth. The ability of the method to reconstruct the state of the equatorial Pacific and predict its time evolution is demonstrated. The method is shown to be quite robust for predictions up to six months, and able to predict the onset of the 1997 warm event fifteen months before its occurrence.
NASA Technical Reports Server (NTRS)
Ballabrera-Poy, Joaquim; Busalacchi, Antonio J.; Murtugudde, Ragu
2000-01-01
A reduced order Kalman Filter, based on a simplification of the Singular Evolutive Extended Kalman (SEEK) filter equations, is used to assimilate observed fields of the surface wind stress, sea surface temperature and sea level into the nonlinear coupled ocean-atmosphere model. The SEEK filter projects the Kalman Filter equations onto a subspace defined by the eigenvalue decomposition of the error forecast matrix, allowing its application to high dimensional systems. The Zebiak and Cane model couples a linear reduced gravity ocean model with a single vertical mode atmospheric model of Zebiak. The compatibility between the simplified physics of the model and each observed variable is studied separately and together. The results show the ability of the model to represent the simultaneous value of the wind stress, SST and sea level, when the fields are limited to the latitude band 10 deg S - 10 deg N. In this first application of the Kalman Filter to a coupled ocean-atmosphere prediction model, the sea level fields are assimilated in terms of the Kelvin and Rossby modes of the thermocline depth anomaly. An estimation of the error of these modes is derived from the projection of an estimation of the sea level error over such modes. This method gives a value of 12 for the error of the Kelvin amplitude, and 6 m of error for the Rossby component of the thermocline depth. The ability of the method to reconstruct the state of the equatorial Pacific and predict its time evolution is demonstrated. The method is shown to be quite robust for predictions I up to six months, and able to predict the onset of the 1997 warm event fifteen months before its occurrence.
Pittman, Jeremy Joshua; Arnall, Daryl Brian; Interrante, Sindy M.; Moffet, Corey A.; Butler, Twain J.
2015-01-01
Non-destructive biomass estimation of vegetation has been performed via remote sensing as well as physical measurements. An effective method for estimating biomass must have accuracy comparable to the accepted standard of destructive removal. Estimation or measurement of height is commonly employed to create a relationship between height and mass. This study examined several types of ground-based mobile sensing strategies for forage biomass estimation. Forage production experiments consisting of alfalfa (Medicago sativa L.), bermudagrass [Cynodon dactylon (L.) Pers.], and wheat (Triticum aestivum L.) were employed to examine sensor biomass estimation (laser, ultrasonic, and spectral) as compared to physical measurements (plate meter and meter stick) and the traditional harvest method (clipping). Predictive models were constructed via partial least squares regression and modeled estimates were compared to the physically measured biomass. Least significant difference separated mean estimates were examined to evaluate differences in the physical measurements and sensor estimates for canopy height and biomass. Differences between methods were minimal (average percent error of 11.2% for difference between predicted values versus machine and quadrat harvested biomass values (1.64 and 4.91 t·ha−1, respectively), except at the lowest measured biomass (average percent error of 89% for harvester and quad harvested biomass < 0.79 t·ha−1) and greatest measured biomass (average percent error of 18% for harvester and quad harvested biomass >6.4 t·ha−1). These data suggest that using mobile sensor-based biomass estimation models could be an effective alternative to the traditional clipping method for rapid, accurate in-field biomass estimation. PMID:25635415
Estimate of Errors of Pressure Predictions Without Meteorological Forecasts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1957-07-31
Independent methods of estimating pressure were considered-- the range of application in height is from that of baro-fuzed tactical weapons (a few thousand feet) to that of the control of height of aircraft at high altitude (45,000 feet).
Accounting for measurement error in log regression models with applications to accelerated testing.
Richardson, Robert; Tolley, H Dennis; Evenson, William E; Lunt, Barry M
2018-01-01
In regression settings, parameter estimates will be biased when the explanatory variables are measured with error. This bias can significantly affect modeling goals. In particular, accelerated lifetime testing involves an extrapolation of the fitted model, and a small amount of bias in parameter estimates may result in a significant increase in the bias of the extrapolated predictions. Additionally, bias may arise when the stochastic component of a log regression model is assumed to be multiplicative when the actual underlying stochastic component is additive. To account for these possible sources of bias, a log regression model with measurement error and additive error is approximated by a weighted regression model which can be estimated using Iteratively Re-weighted Least Squares. Using the reduced Eyring equation in an accelerated testing setting, the model is compared to previously accepted approaches to modeling accelerated testing data with both simulations and real data.
A Bayesian model for estimating multi-state disease progression.
Shen, Shiwen; Han, Simon X; Petousis, Panayiotis; Weiss, Robert E; Meng, Frank; Bui, Alex A T; Hsu, William
2017-02-01
A growing number of individuals who are considered at high risk of cancer are now routinely undergoing population screening. However, noted harms such as radiation exposure, overdiagnosis, and overtreatment underscore the need for better temporal models that predict who should be screened and at what frequency. The mean sojourn time (MST), an average duration period when a tumor can be detected by imaging but with no observable clinical symptoms, is a critical variable for formulating screening policy. Estimation of MST has been long studied using continuous Markov model (CMM) with Maximum likelihood estimation (MLE). However, a lot of traditional methods assume no observation error of the imaging data, which is unlikely and can bias the estimation of the MST. In addition, the MLE may not be stably estimated when data is sparse. Addressing these shortcomings, we present a probabilistic modeling approach for periodic cancer screening data. We first model the cancer state transition using a three state CMM model, while simultaneously considering observation error. We then jointly estimate the MST and observation error within a Bayesian framework. We also consider the inclusion of covariates to estimate individualized rates of disease progression. Our approach is demonstrated on participants who underwent chest x-ray screening in the National Lung Screening Trial (NLST) and validated using posterior predictive p-values and Pearson's chi-square test. Our model demonstrates more accurate and sensible estimates of MST in comparison to MLE. Copyright © 2016 Elsevier Ltd. All rights reserved.
2014-01-01
Background Exposure measurement error is a concern in long-term PM2.5 health studies using ambient concentrations as exposures. We assessed error magnitude by estimating calibration coefficients as the association between personal PM2.5 exposures from validation studies and typically available surrogate exposures. Methods Daily personal and ambient PM2.5, and when available sulfate, measurements were compiled from nine cities, over 2 to 12 days. True exposure was defined as personal exposure to PM2.5 of ambient origin. Since PM2.5 of ambient origin could only be determined for five cities, personal exposure to total PM2.5 was also considered. Surrogate exposures were estimated as ambient PM2.5 at the nearest monitor or predicted outside subjects’ homes. We estimated calibration coefficients by regressing true on surrogate exposures in random effects models. Results When monthly-averaged personal PM2.5 of ambient origin was used as the true exposure, calibration coefficients equaled 0.31 (95% CI:0.14, 0.47) for nearest monitor and 0.54 (95% CI:0.42, 0.65) for outdoor home predictions. Between-city heterogeneity was not found for outdoor home PM2.5 for either true exposure. Heterogeneity was significant for nearest monitor PM2.5, for both true exposures, but not after adjusting for city-average motor vehicle number for total personal PM2.5. Conclusions Calibration coefficients were <1, consistent with previously reported chronic health risks using nearest monitor exposures being under-estimated when ambient concentrations are the exposure of interest. Calibration coefficients were closer to 1 for outdoor home predictions, likely reflecting less spatial error. Further research is needed to determine how our findings can be incorporated in future health studies. PMID:24410940
NASA Astrophysics Data System (ADS)
Ragon, Théa; Sladen, Anthony; Simons, Mark
2018-05-01
The ill-posed nature of earthquake source estimation derives from several factors including the quality and quantity of available observations and the fidelity of our forward theory. Observational errors are usually accounted for in the inversion process. Epistemic errors, which stem from our simplified description of the forward problem, are rarely dealt with despite their potential to bias the estimate of a source model. In this study, we explore the impact of uncertainties related to the choice of a fault geometry in source inversion problems. The geometry of a fault structure is generally reduced to a set of parameters, such as position, strike and dip, for one or a few planar fault segments. While some of these parameters can be solved for, more often they are fixed to an uncertain value. We propose a practical framework to address this limitation by following a previously implemented method exploring the impact of uncertainties on the elastic properties of our models. We develop a sensitivity analysis to small perturbations of fault dip and position. The uncertainties in fault geometry are included in the inverse problem under the formulation of the misfit covariance matrix that combines both prediction and observation uncertainties. We validate this approach with the simplified case of a fault that extends infinitely along strike, using both Bayesian and optimization formulations of a static inversion. If epistemic errors are ignored, predictions are overconfident in the data and source parameters are not reliably estimated. In contrast, inclusion of uncertainties in fault geometry allows us to infer a robust posterior source model. Epistemic uncertainties can be many orders of magnitude larger than observational errors for great earthquakes (Mw > 8). Not accounting for uncertainties in fault geometry may partly explain observed shallow slip deficits for continental earthquakes. Similarly, ignoring the impact of epistemic errors can also bias estimates of near surface slip and predictions of tsunamis induced by megathrust earthquakes. (Mw > 8)
NASA Astrophysics Data System (ADS)
Harudin, N.; Jamaludin, K. R.; Muhtazaruddin, M. Nabil; Ramlie, F.; Muhamad, Wan Zuki Azman Wan
2018-03-01
T-Method is one of the techniques governed under Mahalanobis Taguchi System that developed specifically for multivariate data predictions. Prediction using T-Method is always possible even with very limited sample size. The user of T-Method required to clearly understanding the population data trend since this method is not considering the effect of outliers within it. Outliers may cause apparent non-normality and the entire classical methods breakdown. There exist robust parameter estimate that provide satisfactory results when the data contain outliers, as well as when the data are free of them. The robust parameter estimates of location and scale measure called Shamos Bickel (SB) and Hodges Lehman (HL) which are used as a comparable method to calculate the mean and standard deviation of classical statistic is part of it. Embedding these into T-Method normalize stage feasibly help in enhancing the accuracy of the T-Method as well as analysing the robustness of T-method itself. However, the result of higher sample size case study shows that T-method is having lowest average error percentages (3.09%) on data with extreme outliers. HL and SB is having lowest error percentages (4.67%) for data without extreme outliers with minimum error differences compared to T-Method. The error percentages prediction trend is vice versa for lower sample size case study. The result shows that with minimum sample size, which outliers always be at low risk, T-Method is much better on that, while higher sample size with extreme outliers, T-Method as well show better prediction compared to others. For the case studies conducted in this research, it shows that normalization of T-Method is showing satisfactory results and it is not feasible to adapt HL and SB or normal mean and standard deviation into it since it’s only provide minimum effect of percentages errors. Normalization using T-method is still considered having lower risk towards outlier’s effect.
Motion prediction in MRI-guided radiotherapy based on interleaved orthogonal cine-MRI
NASA Astrophysics Data System (ADS)
Seregni, M.; Paganelli, C.; Lee, D.; Greer, P. B.; Baroni, G.; Keall, P. J.; Riboldi, M.
2016-01-01
In-room cine-MRI guidance can provide non-invasive target localization during radiotherapy treatment. However, in order to cope with finite imaging frequency and system latencies between target localization and dose delivery, tumour motion prediction is required. This work proposes a framework for motion prediction dedicated to cine-MRI guidance, aiming at quantifying the geometric uncertainties introduced by this process for both tumour tracking and beam gating. The tumour position, identified through scale invariant features detected in cine-MRI slices, is estimated at high-frequency (25 Hz) using three independent predictors, one for each anatomical coordinate. Linear extrapolation, auto-regressive and support vector machine algorithms are compared against systems that use no prediction or surrogate-based motion estimation. Geometric uncertainties are reported as a function of image acquisition period and system latency. Average results show that the tracking error RMS can be decreased down to a [0.2; 1.2] mm range, for acquisition periods between 250 and 750 ms and system latencies between 50 and 300 ms. Except for the linear extrapolator, tracking and gating prediction errors were, on average, lower than those measured for surrogate-based motion estimation. This finding suggests that cine-MRI guidance, combined with appropriate prediction algorithms, could relevantly decrease geometric uncertainties in motion compensated treatments.
Prediction-error variance in Bayesian model updating: a comparative study
NASA Astrophysics Data System (ADS)
Asadollahi, Parisa; Li, Jian; Huang, Yong
2017-04-01
In Bayesian model updating, the likelihood function is commonly formulated by stochastic embedding in which the maximum information entropy probability model of prediction error variances plays an important role and it is Gaussian distribution subject to the first two moments as constraints. The selection of prediction error variances can be formulated as a model class selection problem, which automatically involves a trade-off between the average data-fit of the model class and the information it extracts from the data. Therefore, it is critical for the robustness in the updating of the structural model especially in the presence of modeling errors. To date, three ways of considering prediction error variances have been seem in the literature: 1) setting constant values empirically, 2) estimating them based on the goodness-of-fit of the measured data, and 3) updating them as uncertain parameters by applying Bayes' Theorem at the model class level. In this paper, the effect of different strategies to deal with the prediction error variances on the model updating performance is investigated explicitly. A six-story shear building model with six uncertain stiffness parameters is employed as an illustrative example. Transitional Markov Chain Monte Carlo is used to draw samples of the posterior probability density function of the structure model parameters as well as the uncertain prediction variances. The different levels of modeling uncertainty and complexity are modeled through three FE models, including a true model, a model with more complexity, and a model with modeling error. Bayesian updating is performed for the three FE models considering the three aforementioned treatments of the prediction error variances. The effect of number of measurements on the model updating performance is also examined in the study. The results are compared based on model class assessment and indicate that updating the prediction error variances as uncertain parameters at the model class level produces more robust results especially when the number of measurement is small.
NASA Technical Reports Server (NTRS)
Furnstenau, Norbert; Ellis, Stephen R.
2015-01-01
In order to determine the required visual frame rate (FR) for minimizing prediction errors with out-the-window video displays at remote/virtual airport towers, thirteen active air traffic controllers viewed high dynamic fidelity simulations of landing aircraft and decided whether aircraft would stop as if to be able to make a turnoff or whether a runway excursion would be expected. The viewing conditions and simulation dynamics replicated visual rates and environments of transport aircraft landing at small commercial airports. The required frame rate was estimated using Bayes inference on prediction errors by linear FRextrapolation of event probabilities conditional on predictions (stop, no-stop). Furthermore estimates were obtained from exponential model fits to the parametric and non-parametric perceptual discriminabilities d' and A (average area under ROC-curves) as dependent on FR. Decision errors are biased towards preference of overshoot and appear due to illusionary increase in speed at low frames rates. Both Bayes and A - extrapolations yield a framerate requirement of 35 < FRmin < 40 Hz. When comparing with published results [12] on shooter game scores the model based d'(FR)-extrapolation exhibits the best agreement and indicates even higher FRmin > 40 Hz for minimizing decision errors. Definitive recommendations require further experiments with FR > 30 Hz.
Bias and uncertainty in regression-calibrated models of groundwater flow in heterogeneous media
Cooley, R.L.; Christensen, S.
2006-01-01
Groundwater models need to account for detailed but generally unknown spatial variability (heterogeneity) of the hydrogeologic model inputs. To address this problem we replace the large, m-dimensional stochastic vector ?? that reflects both small and large scales of heterogeneity in the inputs by a lumped or smoothed m-dimensional approximation ????*, where ?? is an interpolation matrix and ??* is a stochastic vector of parameters. Vector ??* has small enough dimension to allow its estimation with the available data. The consequence of the replacement is that model function f(????*) written in terms of the approximate inputs is in error with respect to the same model function written in terms of ??, ??,f(??), which is assumed to be nearly exact. The difference f(??) - f(????*), termed model error, is spatially correlated, generates prediction biases, and causes standard confidence and prediction intervals to be too small. Model error is accounted for in the weighted nonlinear regression methodology developed to estimate ??* and assess model uncertainties by incorporating the second-moment matrix of the model errors into the weight matrix. Techniques developed by statisticians to analyze classical nonlinear regression methods are extended to analyze the revised method. The analysis develops analytical expressions for bias terms reflecting the interaction of model nonlinearity and model error, for correction factors needed to adjust the sizes of confidence and prediction intervals for this interaction, and for correction factors needed to adjust the sizes of confidence and prediction intervals for possible use of a diagonal weight matrix in place of the correct one. If terms expressing the degree of intrinsic nonlinearity for f(??) and f(????*) are small, then most of the biases are small and the correction factors are reduced in magnitude. Biases, correction factors, and confidence and prediction intervals were obtained for a test problem for which model error is large to test robustness of the methodology. Numerical results conform with the theoretical analysis. ?? 2005 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Weinstein, Bernice
1999-01-01
A strategy for detecting control law calculation errors in critical flight control computers during laboratory validation testing is presented. This paper addresses Part I of the detection strategy which involves the use of modeling of the aircraft control laws and the design of Kalman filters to predict the correct control commands. Part II of the strategy which involves the use of the predicted control commands to detect control command errors is presented in the companion paper.
NASA Technical Reports Server (NTRS)
Davis, John H.
1993-01-01
Lunar spherical harmonic gravity coefficients are estimated from simulated observations of a near-circular low altitude polar orbiter disturbed by lunar mascons. Lunar gravity sensing missions using earth-based nearside observations with and without satellite-based far-side observations are simulated and least squares maximum likelihood estimates are developed for spherical harmonic expansion fit models. Simulations and parameter estimations are performed by a modified version of the Smithsonian Astrophysical Observatory's Planetary Ephemeris Program. Two different lunar spacecraft mission phases are simulated to evaluate the estimated fit models. Results for predicting state covariances one orbit ahead are presented along with the state errors resulting from the mismodeled gravity field. The position errors from planning a lunar landing maneuver with a mismodeled gravity field are also presented. These simulations clearly demonstrate the need to include observations of satellite motion over the far side in estimating the lunar gravity field. The simulations also illustrate that the eighth degree and order expansions used in the simulated fits were unable to adequately model lunar mascons.
Modified linear predictive coding approach for moving target tracking by Doppler radar
NASA Astrophysics Data System (ADS)
Ding, Yipeng; Lin, Xiaoyi; Sun, Ke-Hui; Xu, Xue-Mei; Liu, Xi-Yao
2016-07-01
Doppler radar is a cost-effective tool for moving target tracking, which can support a large range of civilian and military applications. A modified linear predictive coding (LPC) approach is proposed to increase the target localization accuracy of the Doppler radar. Based on the time-frequency analysis of the received echo, the proposed approach first real-time estimates the noise statistical parameters and constructs an adaptive filter to intelligently suppress the noise interference. Then, a linear predictive model is applied to extend the available data, which can help improve the resolution of the target localization result. Compared with the traditional LPC method, which empirically decides the extension data length, the proposed approach develops an error array to evaluate the prediction accuracy and thus, adjust the optimum extension data length intelligently. Finally, the prediction error array is superimposed with the predictor output to correct the prediction error. A series of experiments are conducted to illustrate the validity and performance of the proposed techniques.
Experiences from the testing of a theory for modelling groundwater flow in heterogeneous media
Christensen, S.; Cooley, R.L.
2002-01-01
Usually, small-scale model error is present in groundwater modelling because the model only represents average system characteristics having the same form as the drift and small-scale variability is neglected. These errors cause the true errors of a regression model to be correlated. Theory and an example show that the errors also contribute to bias in the estimates of model parameters. This bias originates from model nonlinearity. In spite of this bias, predictions of hydraulic head are nearly unbiased if the model intrinsic nonlinearity is small. Individual confidence and prediction intervals are accurate if the t-statistic is multiplied by a correction factor. The correction factor can be computed from the true error second moment matrix, which can be determined when the stochastic properties of the system characteristics are known.
Experience gained in testing a theory for modelling groundwater flow in heterogeneous media
Christensen, S.; Cooley, R.L.
2002-01-01
Usually, small-scale model error is present in groundwater modelling because the model only represents average system characteristics having the same form as the drift, and small-scale variability is neglected. These errors cause the true errors of a regression model to be correlated. Theory and an example show that the errors also contribute to bias in the estimates of model parameters. This bias originates from model nonlinearity. In spite of this bias, predictions of hydraulic head are nearly unbiased if the model intrinsic nonlinearity is small. Individual confidence and prediction intervals are accurate if the t-statistic is multiplied by a correction factor. The correction factor can be computed from the true error second moment matrix, which can be determined when the stochastic properties of the system characteristics are known.
Are Divorce Studies Trustworthy? The Effects of Survey Nonresponse and Response Errors
ERIC Educational Resources Information Center
Mitchell, Colter
2010-01-01
Researchers rely on relationship data to measure the multifaceted nature of families. This article speaks to relationship data quality by examining the ramifications of different types of error on divorce estimates, models predicting divorce behavior, and models employing divorce as a predictor. Comparing matched survey and divorce certificate…
León Blanco, José M; González-R, Pedro L; Arroyo García, Carmen Martina; Cózar-Bernal, María José; Calle Suárez, Marcos; Canca Ortiz, David; Rabasco Álvarez, Antonio María; González Rodríguez, María Luisa
2018-01-01
This work was aimed at determining the feasibility of artificial neural networks (ANN) by implementing backpropagation algorithms with default settings to generate better predictive models than multiple linear regression (MLR) analysis. The study was hypothesized on timolol-loaded liposomes. As tutorial data for ANN, causal factors were used, which were fed into the computer program. The number of training cycles has been identified in order to optimize the performance of the ANN. The optimization was performed by minimizing the error between the predicted and real response values in the training step. The results showed that training was stopped at 10 000 training cycles with 80% of the pattern values, because at this point the ANN generalizes better. Minimum validation error was achieved at 12 hidden neurons in a single layer. MLR has great prediction ability, with errors between predicted and real values lower than 1% in some of the parameters evaluated. Thus, the performance of this model was compared to that of the MLR using a factorial design. Optimal formulations were identified by minimizing the distance among measured and theoretical parameters, by estimating the prediction errors. Results indicate that the ANN shows much better predictive ability than the MLR model. These findings demonstrate the increased efficiency of the combination of ANN and design of experiments, compared to the conventional MLR modeling techniques.
Ohta, Megumi; Midorikawa, Taishi; Hikihara, Yuki; Masuo, Yoshihisa; Sakamoto, Shizuo; Torii, Suguru; Kawakami, Yasuo; Fukunaga, Tetsuo; Kanehisa, Hiroaki
2017-02-01
This study examined the validity of segmental bioelectrical impedance (BI) analysis for predicting the fat-free masses (FFMs) of whole-body and body segments in children including overweight individuals. The FFM and impedance (Z) values of arms, trunk, legs, and whole body were determined using a dual-energy X-ray absorptiometry and segmental BI analyses, respectively, in 149 boys and girls aged 6 to 12 years, who were divided into model-development (n = 74), cross-validation (n = 35), and overweight (n = 40) groups. Simple regression analysis was applied to (length) 2 /Z (BI index) for each of the whole-body and 3 segments to develop the prediction equations of the measured FFM of the related body part. In the model-development group, the BI index of each of the 3 segments and whole body was significantly correlated to the measured FFM (R 2 = 0.867-0.932, standard error of estimation = 0.18-1.44 kg (5.9%-8.7%)). There was no significant difference between the measured and predicted FFM values without systematic error. The application of each equation derived in the model-development group to the cross-validation and overweight groups did not produce significant differences between the measured and predicted FFM values and systematic errors, with an exception that the arm FFM in the overweight group was overestimated. Segmental bioelectrical impedance analysis is useful for predicting the FFM of each of whole-body and body segments in children including overweight individuals, although the application for estimating arm FFM in overweight individuals requires a certain modification.
2013-01-01
Background This study aims to improve accuracy of Bioelectrical Impedance Analysis (BIA) prediction equations for estimating fat free mass (FFM) of the elderly by using non-linear Back Propagation Artificial Neural Network (BP-ANN) model and to compare the predictive accuracy with the linear regression model by using energy dual X-ray absorptiometry (DXA) as reference method. Methods A total of 88 Taiwanese elderly adults were recruited in this study as subjects. Linear regression equations and BP-ANN prediction equation were developed using impedances and other anthropometrics for predicting the reference FFM measured by DXA (FFMDXA) in 36 male and 26 female Taiwanese elderly adults. The FFM estimated by BIA prediction equations using traditional linear regression model (FFMLR) and BP-ANN model (FFMANN) were compared to the FFMDXA. The measuring results of an additional 26 elderly adults were used to validate than accuracy of the predictive models. Results The results showed the significant predictors were impedance, gender, age, height and weight in developed FFMLR linear model (LR) for predicting FFM (coefficient of determination, r2 = 0.940; standard error of estimate (SEE) = 2.729 kg; root mean square error (RMSE) = 2.571kg, P < 0.001). The above predictors were set as the variables of the input layer by using five neurons in the BP-ANN model (r2 = 0.987 with a SD = 1.192 kg and relatively lower RMSE = 1.183 kg), which had greater (improved) accuracy for estimating FFM when compared with linear model. The results showed a better agreement existed between FFMANN and FFMDXA than that between FFMLR and FFMDXA. Conclusion When compared the performance of developed prediction equations for estimating reference FFMDXA, the linear model has lower r2 with a larger SD in predictive results than that of BP-ANN model, which indicated ANN model is more suitable for estimating FFM. PMID:23388042
Alexeeff, Stacey E.; Schwartz, Joel; Kloog, Itai; Chudnovsky, Alexandra; Koutrakis, Petros; Coull, Brent A.
2016-01-01
Many epidemiological studies use predicted air pollution exposures as surrogates for true air pollution levels. These predicted exposures contain exposure measurement error, yet simulation studies have typically found negligible bias in resulting health effect estimates. However, previous studies typically assumed a statistical spatial model for air pollution exposure, which may be oversimplified. We address this shortcoming by assuming a realistic, complex exposure surface derived from fine-scale (1km x 1km) remote-sensing satellite data. Using simulation, we evaluate the accuracy of epidemiological health effect estimates in linear and logistic regression when using spatial air pollution predictions from kriging and land use regression models. We examined chronic (long-term) and acute (short-term) exposure to air pollution. Results varied substantially across different scenarios. Exposure models with low out-of-sample R2 yielded severe biases in the health effect estimates of some models, ranging from 60% upward bias to 70% downward bias. One land use regression exposure model with greater than 0.9 out-of-sample R2 yielded upward biases up to 13% for acute health effect estimates. Almost all models drastically underestimated the standard errors. Land use regression models performed better in chronic effects simulations. These results can help researchers when interpreting health effect estimates in these types of studies. PMID:24896768
NASA Astrophysics Data System (ADS)
Chang, Guobin; Xu, Tianhe; Yao, Yifei; Wang, Qianxin
2018-01-01
In order to incorporate the time smoothness of ionospheric delay to aid the cycle slip detection, an adaptive Kalman filter is developed based on variance component estimation. The correlations between measurements at neighboring epochs are fully considered in developing a filtering algorithm for colored measurement noise. Within this filtering framework, epoch-differenced ionospheric delays are predicted. Using this prediction, the potential cycle slips are repaired for triple-frequency signals of global navigation satellite systems. Cycle slips are repaired in a stepwise manner; i.e., for two extra wide lane combinations firstly and then for the third frequency. In the estimation for the third frequency, a stochastic model is followed in which the correlations between the ionospheric delay prediction errors and the errors in the epoch-differenced phase measurements are considered. The implementing details of the proposed method are tabulated. A real BeiDou Navigation Satellite System data set is used to check the performance of the proposed method. Most cycle slips, no matter trivial or nontrivial, can be estimated in float values with satisfactorily high accuracy and their integer values can hence be correctly obtained by simple rounding. To be more specific, all manually introduced nontrivial cycle slips are correctly repaired.
NASA Astrophysics Data System (ADS)
Jeffries, G. R.; Cohn, A.
2016-12-01
Soy-corn double cropping (DC) has been widely adopted in Central Brazil alongside single cropped (SC) soybean production. DC involves different cropping calendars, soy varieties, and may be associated with different crop yield patterns and volatility than SC. Study of the performance of the region's agriculture in a changing climate depends on tracking differences in the productivity of SC vs. DC, but has been limited by crop yield data that conflate the two systems. We predicted SC and DC yields across Central Brazil, drawing on field observations and remotely sensed data. We first modeled field yield estimates as a function of remotely sensed DC status and vegetation index (VI) metrics, and other management and biophysical factors. We then used the statistical model estimated to predict SC and DC soybean yields at each 500 m2 grid cell of Central Brazil for harvest years 2001 - 2015. The yield estimation model was constructed using 1) a repeated cross-sectional survey of soybean yields and management factors for years 2007-2015, 2) a custom agricultural land cover classification dataset which assimilates earlier datasets for the region, and 3) 500m 8-day MODIS image composites used to calculate the wide dynamic range vegetation index (WDRVI) and derivative metrics such as area under the curve for WDRVI values in critical crop development periods. A statistical yield estimation model which primarily entails WDRVI metrics, DC status, and spatial fixed effects was developed on a subset of the yield dataset. Model validation was conducted by predicting previously withheld yield records, and then assessing error and goodness-of-fit for predicted values with metrics including root mean squared error (RMSE), mean squared error (MSE), and R2. We found a statistical yield estimation model which incorporates WDRVI and DC status to be way to estimate crop yields over the region. Statistical properties of the resulting gridded yield dataset may be valuable for understanding linkages between crop yields, farm management factors, and climate.
NASA Astrophysics Data System (ADS)
Hernández-López, Mario R.; Romero-Cuéllar, Jonathan; Camilo Múnera-Estrada, Juan; Coccia, Gabriele; Francés, Félix
2017-04-01
It is noticeably important to emphasize the role of uncertainty particularly when the model forecasts are used to support decision-making and water management. This research compares two approaches for the evaluation of the predictive uncertainty in hydrological modeling. First approach is the Bayesian Joint Inference of hydrological and error models. Second approach is carried out through the Model Conditional Processor using the Truncated Normal Distribution in the transformed space. This comparison is focused on the predictive distribution reliability. The case study is applied to two basins included in the Model Parameter Estimation Experiment (MOPEX). These two basins, which have different hydrological complexity, are the French Broad River (North Carolina) and the Guadalupe River (Texas). The results indicate that generally, both approaches are able to provide similar predictive performances. However, the differences between them can arise in basins with complex hydrology (e.g. ephemeral basins). This is because obtained results with Bayesian Joint Inference are strongly dependent on the suitability of the hypothesized error model. Similarly, the results in the case of the Model Conditional Processor are mainly influenced by the selected model of tails or even by the selected full probability distribution model of the data in the real space, and by the definition of the Truncated Normal Distribution in the transformed space. In summary, the different hypotheses that the modeler choose on each of the two approaches are the main cause of the different results. This research also explores a proper combination of both methodologies which could be useful to achieve less biased hydrological parameter estimation. For this approach, firstly the predictive distribution is obtained through the Model Conditional Processor. Secondly, this predictive distribution is used to derive the corresponding additive error model which is employed for the hydrological parameter estimation with the Bayesian Joint Inference methodology.
Yilmaz, Banu; Aras, Egemen; Nacar, Sinan; Kankal, Murat
2018-05-23
The functional life of a dam is often determined by the rate of sediment delivery to its reservoir. Therefore, an accurate estimate of the sediment load in rivers with dams is essential for designing and predicting a dam's useful lifespan. The most credible method is direct measurements of sediment input, but this can be very costly and it cannot always be implemented at all gauging stations. In this study, we tested various regression models to estimate suspended sediment load (SSL) at two gauging stations on the Çoruh River in Turkey, including artificial bee colony (ABC), teaching-learning-based optimization algorithm (TLBO), and multivariate adaptive regression splines (MARS). These models were also compared with one another and with classical regression analyses (CRA). Streamflow values and previously collected data of SSL were used as model inputs with predicted SSL data as output. Two different training and testing dataset configurations were used to reinforce the model accuracy. For the MARS method, the root mean square error value was found to range between 35% and 39% for the test two gauging stations, which was lower than errors for other models. Error values were even lower (7% to 15%) using another dataset. Our results indicate that simultaneous measurements of streamflow with SSL provide the most effective parameter for obtaining accurate predictive models and that MARS is the most accurate model for predicting SSL. Copyright © 2017 Elsevier B.V. All rights reserved.
Peak flood estimation using gene expression programming
NASA Astrophysics Data System (ADS)
Zorn, Conrad R.; Shamseldin, Asaad Y.
2015-12-01
As a case study for the Auckland Region of New Zealand, this paper investigates the potential use of gene-expression programming (GEP) in predicting specific return period events in comparison to the established and widely used Regional Flood Estimation (RFE) method. Initially calibrated to 14 gauged sites, the GEP derived model was further validated to 10 and 100 year flood events with a relative errors of 29% and 18%, respectively. This is compared to the RFE method providing 48% and 44% errors for the same flood events. While the effectiveness of GEP in predicting specific return period events is made apparent, it is argued that the derived equations should be used in conjunction with those existing methodologies rather than as a replacement.
Claumann, Carlos Alberto; Wüst Zibetti, André; Bolzan, Ariovaldo; Machado, Ricardo A F; Pinto, Leonel Teixeira
2015-12-18
For this work, an analysis of parameter estimation for the retention factor in GC model was performed, considering two different criteria: sum of square error, and maximum error in absolute value; relevant statistics are described for each case. The main contribution of this work is the implementation of an initialization scheme (specialized) for the estimated parameters, which features fast convergence (low computational time) and is based on knowledge of the surface of the error criterion. In an application to a series of alkanes, specialized initialization resulted in significant reduction to the number of evaluations of the objective function (reducing computational time) in the parameter estimation. The obtained reduction happened between one and two orders of magnitude, compared with the simple random initialization. Copyright © 2015 Elsevier B.V. All rights reserved.
Forces associated with pneumatic power screwdriver operation: statics and dynamics.
Lin, Jia-Hua; Radwin, Robert G; Fronczak, Frank J; Richard, Terry G
2003-10-10
The statics and dynamics of pneumatic power screwdriver operation were investigated in the context of predicting forces acting against the human operator. A static force model is described in the paper, based on tool geometry, mass, orientation in space, feed force, torque build up, and stall torque. Three common power hand tool shapes are considered, including pistol grip, right angle, and in-line. The static model estimates handle force needed to support a power nutrunner when it acts against the tightened fastener with a constant torque. A system of equations for static force and moment equilibrium conditions are established, and the resultant handle force (resolved in orthogonal directions) is calculated in matrix form. A dynamic model is formulated to describe pneumatic motor torque build-up characteristics dependent on threaded fastener joint hardness. Six pneumatic tools were tested to validate the deterministic model. The average torque prediction error was 6.6% (SD = 5.4%) and the average handle force prediction error was 6.7% (SD = 6.4%) for a medium-soft threaded fastener joint. The average torque prediction error was 5.2% (SD = 5.3%) and the average handle force prediction error was 3.6% (SD = 3.2%) for a hard threaded fastener joint. Use of these equations for estimating handle forces based on passive mechanical elements representing the human operator is also described. These models together should be useful for considering tool handle force in the selection and design of power screwdrivers, particularly for minimizing handle forces in the prevention of injuries and work related musculoskeletal disorders.
TU-AB-202-03: Prediction of PET Transfer Uncertainty by DIR Error Estimating Software, AUTODIRECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, H; Chen, J; Phillips, J
2016-06-15
Purpose: Deformable image registration (DIR) is a powerful tool, but DIR errors can adversely affect its clinical applications. To estimate voxel-specific DIR uncertainty, a software tool, called AUTODIRECT (automated DIR evaluation of confidence tool), has been developed and validated. This work tests the ability of this software to predict uncertainty for the transfer of standard uptake values (SUV) from positron-emission tomography (PET) with DIR. Methods: Virtual phantoms are used for this study. Each phantom has a planning computed tomography (CT) image and a diagnostic PET-CT image set. A deformation was digitally applied to the diagnostic CT to create the planningmore » CT image and establish a known deformation between the images. One lung and three rectum patient datasets were employed to create the virtual phantoms. Both of these sites have difficult deformation scenarios associated with them, which can affect DIR accuracy (lung tissue sliding and changes in rectal filling). The virtual phantoms were created to simulate these scenarios by introducing discontinuities in the deformation field at the lung rectum border. The DIR algorithm from Plastimatch software was applied to these phantoms. The SUV mapping errors from the DIR were then compared to that predicted by AUTODIRECT. Results: The SUV error distributions closely followed the AUTODIRECT predicted error distribution for the 4 test cases. The minimum and maximum PET SUVs were produced from AUTODIRECT at 95% confidence interval before applying gradient-based SUV segmentation for each of these volumes. Notably, 93.5% of the target volume warped by the true deformation was included within the AUTODIRECT-predicted maximum SUV volume after the segmentation, while 78.9% of the target volume was within the target volume warped by Plastimatch. Conclusion: The AUTODIRECT framework is able to predict PET transfer uncertainty caused by DIR, which enables an understanding of the associated target volume uncertainty.« less
Prediction and standard error estimation for a finite universe total when a stratum is not sampled
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, T.
1994-01-01
In the context of a universe of trucks operating in the United States in 1990, this paper presents statistical methodology for estimating a finite universe total on a second occasion when a part of the universe is sampled and the remainder of the universe is not sampled. Prediction is used to compensate for the lack of data from the unsampled portion of the universe. The sample is assumed to be a subsample of an earlier sample where stratification is used on both occasions before sample selection. Accounting for births and deaths in the universe between the two points in time,more » the detailed sampling plan, estimator, standard error, and optimal sample allocation, are presented with a focus on the second occasion. If prior auxiliary information is available, the methodology is also applicable to a first occasion.« less
Forecasting Construction Cost Index based on visibility graph: A network approach
NASA Astrophysics Data System (ADS)
Zhang, Rong; Ashuri, Baabak; Shyr, Yu; Deng, Yong
2018-03-01
Engineering News-Record (ENR), a professional magazine in the field of global construction engineering, publishes Construction Cost Index (CCI) every month. Cost estimators and contractors assess projects, arrange budgets and prepare bids by forecasting CCI. However, fluctuations and uncertainties of CCI cause irrational estimations now and then. This paper aims at achieving more accurate predictions of CCI based on a network approach in which time series is firstly converted into a visibility graph and future values are forecasted relied on link prediction. According to the experimental results, the proposed method shows satisfactory performance since the error measures are acceptable. Compared with other methods, the proposed method is easier to implement and is able to forecast CCI with less errors. It is convinced that the proposed method is efficient to provide considerably accurate CCI predictions, which will make contributions to the construction engineering by assisting individuals and organizations in reducing costs and making project schedules.
Dang, Mia; Ramsaran, Kalinda D.; Street, Melissa E.; Syed, S. Noreen; Barclay-Goddard, Ruth; Miller, Patricia A.
2011-01-01
ABSTRACT Purpose: To estimate the predictive accuracy and clinical usefulness of the Chedoke–McMaster Stroke Assessment (CMSA) predictive equations. Method: A longitudinal prognostic study using historical data obtained from 104 patients admitted post cerebrovascular accident was undertaken. Data were abstracted for all patients undergoing rehabilitation post stroke who also had documented admission and discharge CMSA scores. Published predictive equations were used to determine predicted outcomes. To determine the accuracy and clinical usefulness of the predictive model, shrinkage coefficients and predictions with 95% confidence bands were calculated. Results: Complete data were available for 74 patients with a mean age of 65.3±12.4 years. The shrinkage values for the six Impairment Inventory (II) dimensions varied from −0.05 to 0.09; the shrinkage value for the Activity Inventory (AI) was 0.21. The error associated with predictive values was greater than ±1.5 stages for the II dimensions and greater than ±24 points for the AI. Conclusions: This study shows that the large error associated with the predictions (as defined by the confidence band) for the CMSA II and AI limits their clinical usefulness as a predictive measure. Further research to establish predictive models using alternative statistical procedures is warranted. PMID:22654239
Syamlal, Madhava; Celik, Ismail B.; Benyahia, Sofiane
2017-07-12
The two-fluid model (TFM) has become a tool for the design and troubleshooting of industrial fluidized bed reactors. To use TFM for scale up with confidence, the uncertainty in its predictions must be quantified. Here, we study two sources of uncertainty: discretization and time-averaging. First, we show that successive grid refinement may not yield grid-independent transient quantities, including cross-section–averaged quantities. Successive grid refinement would yield grid-independent time-averaged quantities on sufficiently fine grids. A Richardson extrapolation can then be used to estimate the discretization error, and the grid convergence index gives an estimate of the uncertainty. Richardson extrapolation may not workmore » for industrial-scale simulations that use coarse grids. We present an alternative method for coarse grids and assess its ability to estimate the discretization error. Second, we assess two methods (autocorrelation and binning) and find that the autocorrelation method is more reliable for estimating the uncertainty introduced by time-averaging TFM data.« less
Estimates of runoff using water-balance and atmospheric general circulation models
Wolock, D.M.; McCabe, G.J.
1999-01-01
The effects of potential climate change on mean annual runoff in the conterminous United States (U.S.) are examined using a simple water-balance model and output from two atmospheric general circulation models (GCMs). The two GCMs are from the Canadian Centre for Climate Prediction and Analysis (CCC) and the Hadley Centre for Climate Prediction and Research (HAD). In general, the CCC GCM climate results in decreases in runoff for the conterminous U.S., and the HAD GCM climate produces increases in runoff. These estimated changes in runoff primarily are the result of estimated changes in precipitation. The changes in mean annual runoff, however, mostly are smaller than the decade-to-decade variability in GCM-based mean annual runoff and errors in GCM-based runoff. The differences in simulated runoff between the two GCMs, together with decade-to-decade variability and errors in GCM-based runoff, cause the estimates of changes in runoff to be uncertain and unreliable.
Data Analysis & Statistical Methods for Command File Errors
NASA Technical Reports Server (NTRS)
Meshkat, Leila; Waggoner, Bruce; Bryant, Larry
2014-01-01
This paper explains current work on modeling for managing the risk of command file errors. It is focused on analyzing actual data from a JPL spaceflight mission to build models for evaluating and predicting error rates as a function of several key variables. We constructed a rich dataset by considering the number of errors, the number of files radiated, including the number commands and blocks in each file, as well as subjective estimates of workload and operational novelty. We have assessed these data using different curve fitting and distribution fitting techniques, such as multiple regression analysis, and maximum likelihood estimation to see how much of the variability in the error rates can be explained with these. We have also used goodness of fit testing strategies and principal component analysis to further assess our data. Finally, we constructed a model of expected error rates based on the what these statistics bore out as critical drivers to the error rate. This model allows project management to evaluate the error rate against a theoretically expected rate as well as anticipate future error rates.
A theoretical framework to predict the most likely ion path in particle imaging.
Collins-Fekete, Charles-Antoine; Volz, Lennart; Portillo, Stephen K N; Beaulieu, Luc; Seco, Joao
2017-03-07
In this work, a generic rigorous Bayesian formalism is introduced to predict the most likely path of any ion crossing a medium between two detection points. The path is predicted based on a combination of the particle scattering in the material and measurements of its initial and final position, direction and energy. The path estimate's precision is compared to the Monte Carlo simulated path. Every ion from hydrogen to carbon is simulated in two scenarios, (1) where the range is fixed and (2) where the initial velocity is fixed. In the scenario where the range is kept constant, the maximal root-mean-square error between the estimated path and the Monte Carlo path drops significantly between the proton path estimate (0.50 mm) and the helium path estimate (0.18 mm), but less so up to the carbon path estimate (0.09 mm). However, this scenario is identified as the configuration that maximizes the dose while minimizing the path resolution. In the scenario where the initial velocity is fixed, the maximal root-mean-square error between the estimated path and the Monte Carlo path drops significantly between the proton path estimate (0.29 mm) and the helium path estimate (0.09 mm) but increases for heavier ions up to carbon (0.12 mm). As a result, helium is found to be the particle with the most accurate path estimate for the lowest dose, potentially leading to tomographic images of higher spatial resolution.
Distribution of kriging errors, the implications and how to communicate them
NASA Astrophysics Data System (ADS)
Li, Hong Yi; Milne, Alice; Webster, Richard
2016-04-01
Kriging in one form or another has become perhaps the most popular method for spatial prediction in environmental science. Each prediction is unbiased and of minimum variance, which itself is estimated. The kriging variances depend on the mathematical model chosen to describe the spatial variation; different models, however plausible, give rise to different minimized variances. Practitioners often compare models by so-called cross-validation before finally choosing the most appropriate for their kriging. One proceeds as follows. One removes a unit (a sampling point) from the whole set, kriges the value there and compares the kriged value with the value observed to obtain the deviation or error. One repeats the process for each and every point in turn and for all plausible models. One then computes the mean errors (MEs) and the mean of the squared errors (MSEs). Ideally a squared error should equal the corresponding kriging variance (σK2), and so one is advised to choose the model for which on average the squared errors most nearly equal the kriging variances, i.e. the ratio MSDR = MSE/σK2 ≈ 1. Maximum likelihood estimation of models almost guarantees that the MSDR equals 1, and so the kriging variances are unbiased predictors of the squared error across the region. The method is based on the assumption that the errors have a normal distribution. The squared deviation ratio (SDR) should therefore be distributed as χ2 with one degree of freedom with a median of 0.455. We have found that often the median of the SDR (MedSDR) is less, in some instances much less, than 0.455 even though the mean of the SDR is close to 1. It seems that in these cases the distributions of the errors are leptokurtic, i.e. they have an excess of predictions close to the true values, excesses near the extremes and a dearth of predictions in between. In these cases the kriging variances are poor measures of the uncertainty at individual sites. The uncertainty is typically under-estimated for the extreme observations and compensated for by over estimating for other observations. Statisticians must tell users when they present maps of predictions. We illustrate the situation with results from mapping salinity in land reclaimed from the Yangtze delta in the Gulf of Hangzhou, China. There the apparent electrical conductivity (ECa) of the topsoil was measured at 525 points in a field of 2.3 ha. The marginal distribution of the observations was strongly positively skewed, and so the observed ECas were transformed to their logarithms to give an approximately symmetric distribution. That distribution was strongly platykurtic with short tails and no evident outliers. The logarithms were analysed as a mixed model of quadratic drift plus correlated random residuals with a spherical variogram. The kriged predictions that deviated from their true values with an MSDR of 0.993, but with a medSDR=0.324. The coefficient of kurtosis of the deviations was 1.45, i.e. substantially larger than 0 for a normal distribution. The reasons for this behaviour are being sought. The most likely explanation is that there are spatial outliers, i.e. points at which the observed values that differ markedly from those at their their closest neighbours.
Distribution of kriging errors, the implications and how to communicate them
NASA Astrophysics Data System (ADS)
Li, HongYi; Milne, Alice; Webster, Richard
2015-04-01
Kriging in one form or another has become perhaps the most popular method for spatial prediction in environmental science. Each prediction is unbiased and of minimum variance, which itself is estimated. The kriging variances depend on the mathematical model chosen to describe the spatial variation; different models, however plausible, give rise to different minimized variances. Practitioners often compare models by so-called cross-validation before finally choosing the most appropriate for their kriging. One proceeds as follows. One removes a unit (a sampling point) from the whole set, kriges the value there and compares the kriged value with the value observed to obtain the deviation or error. One repeats the process for each and every point in turn and for all plausible models. One then computes the mean errors (MEs) and the mean of the squared errors (MSEs). Ideally a squared error should equal the corresponding kriging variance (σ_K^2), and so one is advised to choose the model for which on average the squared errors most nearly equal the kriging variances, i.e. the ratio MSDR=MSE/ σ_K2 ≈1. Maximum likelihood estimation of models almost guarantees that the MSDR equals 1, and so the kriging variances are unbiased predictors of the squared error across the region. The method is based on the assumption that the errors have a normal distribution. The squared deviation ratio (SDR) should therefore be distributed as χ2 with one degree of freedom with a median of 0.455. We have found that often the median of the SDR (MedSDR) is less, in some instances much less, than 0.455 even though the mean of the SDR is close to 1. It seems that in these cases the distributions of the errors are leptokurtic, i.e. they have an excess of predictions close to the true values, excesses near the extremes and a dearth of predictions in between. In these cases the kriging variances are poor measures of the uncertainty at individual sites. The uncertainty is typically under-estimated for the extreme observations and compensated for by over estimating for other observations. Statisticians must tell users when they present maps of predictions. We illustrate the situation with results from mapping salinity in land reclaimed from the Yangtze delta in the Gulf of Hangzhou, China. There the apparent electrical conductivity (EC_a) of the topsoil was measured at 525 points in a field of 2.3~ha. The marginal distribution of the observations was strongly positively skewed, and so the observed EC_as were transformed to their logarithms to give an approximately symmetric distribution. That distribution was strongly platykurtic with short tails and no evident outliers. The logarithms were analysed as a mixed model of quadratic drift plus correlated random residuals with a spherical variogram. The kriged predictions that deviated from their true values with an MSDR of 0.993, but with a medSDR=0.324. The coefficient of kurtosis of the deviations was 1.45, i.e. substantially larger than 0 for a normal distribution. The reasons for this behaviour are being sought. The most likely explanation is that there are spatial outliers, i.e. points at which the observed values that differ markedly from those at their their closest neighbours.
NASA Astrophysics Data System (ADS)
Hakim, Layal; Lacaze, Guilhem; Khalil, Mohammad; Sargsyan, Khachik; Najm, Habib; Oefelein, Joseph
2018-05-01
This paper demonstrates the development of a simple chemical kinetics model designed for autoignition of n-dodecane in air using Bayesian inference with a model-error representation. The model error, i.e. intrinsic discrepancy from a high-fidelity benchmark model, is represented by allowing additional variability in selected parameters. Subsequently, we quantify predictive uncertainties in the results of autoignition simulations of homogeneous reactors at realistic diesel engine conditions. We demonstrate that these predictive error bars capture model error as well. The uncertainty propagation is performed using non-intrusive spectral projection that can also be used in principle with larger scale computations, such as large eddy simulation. While the present calibration is performed to match a skeletal mechanism, it can be done with equal success using experimental data only (e.g. shock-tube measurements). Since our method captures the error associated with structural model simplifications, we believe that the optimised model could then lead to better qualified predictions of autoignition delay time in high-fidelity large eddy simulations than the existing detailed mechanisms. This methodology provides a way to reduce the cost of reaction kinetics in simulations systematically, while quantifying the accuracy of predictions of important target quantities.
Performance of Trajectory Models with Wind Uncertainty
NASA Technical Reports Server (NTRS)
Lee, Alan G.; Weygandt, Stephen S.; Schwartz, Barry; Murphy, James R.
2009-01-01
Typical aircraft trajectory predictors use wind forecasts but do not account for the forecast uncertainty. A method for generating estimates of wind prediction uncertainty is described and its effect on aircraft trajectory prediction uncertainty is investigated. The procedure for estimating the wind prediction uncertainty relies uses a time-lagged ensemble of weather model forecasts from the hourly updated Rapid Update Cycle (RUC) weather prediction system. Forecast uncertainty is estimated using measures of the spread amongst various RUC time-lagged ensemble forecasts. This proof of concept study illustrates the estimated uncertainty and the actual wind errors, and documents the validity of the assumed ensemble-forecast accuracy relationship. Aircraft trajectory predictions are made using RUC winds with provision for the estimated uncertainty. Results for a set of simulated flights indicate this simple approach effectively translates the wind uncertainty estimate into an aircraft trajectory uncertainty. A key strength of the method is the ability to relate uncertainty to specific weather phenomena (contained in the various ensemble members) allowing identification of regional variations in uncertainty.
A new Method for the Estimation of Initial Condition Uncertainty Structures in Mesoscale Models
NASA Astrophysics Data System (ADS)
Keller, J. D.; Bach, L.; Hense, A.
2012-12-01
The estimation of fast growing error modes of a system is a key interest of ensemble data assimilation when assessing uncertainty in initial conditions. Over the last two decades three methods (and variations of these methods) have evolved for global numerical weather prediction models: ensemble Kalman filter, singular vectors and breeding of growing modes (or now ensemble transform). While the former incorporates a priori model error information and observation error estimates to determine ensemble initial conditions, the latter two techniques directly address the error structures associated with Lyapunov vectors. However, in global models these structures are mainly associated with transient global wave patterns. When assessing initial condition uncertainty in mesoscale limited area models, several problems regarding the aforementioned techniques arise: (a) additional sources of uncertainty on the smaller scales contribute to the error and (b) error structures from the global scale may quickly move through the model domain (depending on the size of the domain). To address the latter problem, perturbation structures from global models are often included in the mesoscale predictions as perturbed boundary conditions. However, the initial perturbations (when used) are often generated with a variant of an ensemble Kalman filter which does not necessarily focus on the large scale error patterns. In the framework of the European regional reanalysis project of the Hans-Ertel-Center for Weather Research we use a mesoscale model with an implemented nudging data assimilation scheme which does not support ensemble data assimilation at all. In preparation of an ensemble-based regional reanalysis and for the estimation of three-dimensional atmospheric covariance structures, we implemented a new method for the assessment of fast growing error modes for mesoscale limited area models. The so-called self-breeding is development based on the breeding of growing modes technique. Initial perturbations are integrated forward for a short time period and then rescaled and added to the initial state again. Iterating this rapid breeding cycle provides estimates for the initial uncertainty structure (or local Lyapunov vectors) given a specific norm. To avoid that all ensemble perturbations converge towards the leading local Lyapunov vector we apply an ensemble transform variant to orthogonalize the perturbations in the sub-space spanned by the ensemble. By choosing different kind of norms to measure perturbation growth, this technique allows for estimating uncertainty patterns targeted at specific sources of errors (e.g. convection, turbulence). With case study experiments we show applications of the self-breeding method for different sources of uncertainty and different horizontal scales.
Ignjatovic, Anita Rakic; Miljkovic, Branislava; Todorovic, Dejan; Timotijevic, Ivana; Pokrajac, Milena
2011-05-01
Because moclobemide pharmacokinetics vary considerably among individuals, monitoring of plasma concentrations lends insight into its pharmacokinetic behavior and enhances its rational use in clinical practice. The aim of this study was to evaluate whether single concentration-time points could adequately predict moclobemide systemic exposure. Pharmacokinetic data (full 7-point pharmacokinetic profiles), obtained from 21 depressive inpatients receiving moclobemide (150 mg 3 times daily), were randomly split into development (n = 18) and validation (n = 16) sets. Correlations between the single concentration-time points and the area under the concentration-time curve within a 6-hour dosing interval at steady-state (AUC(0-6)) were assessed by linear regression analyses. The predictive performance of single-point sampling strategies was evaluated in the validation set by mean prediction error, mean absolute error, and root mean square error. Plasma concentrations in the absorption phase yielded unsatisfactory predictions of moclobemide AUC(0-6). The best estimation of AUC(0-6) was achieved from concentrations at 4 and 6 hours following dosing. As the most reliable surrogate for moclobemide systemic exposure, concentrations at 4 and 6 hours should be used instead of predose trough concentrations as an indicator of between-patient variability and a guide for dose adjustments in specific clinical situations.
Reliability and concurrent validity of Futrex and bioelectrical impedance.
Vehrs, P; Morrow, J R; Butte, N
1998-11-01
Thirty Caucasian males (aged 19-32yr) participated in this study designed to investigate the reliability of multiple bioelectrical impedance analysis (BIA) and near-infrared spectroscopy (Futrex, FTX) measurements and the validity of BIA and FTX estimations of hydrostatically (UW) determined percent body fat (%BF). Two BIA and two FTX instruments were used to make 6 measurements each of resistance (R) and optical density (OD) respectively over a 30 min period on two consecutive days. Repeated measures ANOVA indicated that FTX and BIA, using manufacturer's equations, significantly (p<0.01) under predicted UW by 2.4 and 3.8%BF respectively. Standard error of estimate (SEE) and total error (TE) terms provided by regression analysis for FTX (4.6 and 5.31%BF respectively) and BIA (5.65 and 6.95%BF, respectively) were high. Dependent t-tests revealed no significant differences in either FTX or BIA predictions of %BF using two machines. Intraclass reliabilities for BIA and FTX estimates of UW %BF across trials, days, and machines all exceeded 0.97. A significant random error term associated with FTX and a significant subject-by-day interaction associated with BIA was revealed using the generalizability model. Although FTX and BIA estimates of UW %BF were reliable, due to the significant underestimation of UW %BF and high SEE and TE, neither FTX nor BIA were considered valid estimates of hydrostatically determined %BF.
Classification based upon gene expression data: bias and precision of error rates.
Wood, Ian A; Visscher, Peter M; Mengersen, Kerrie L
2007-06-01
Gene expression data offer a large number of potentially useful predictors for the classification of tissue samples into classes, such as diseased and non-diseased. The predictive error rate of classifiers can be estimated using methods such as cross-validation. We have investigated issues of interpretation and potential bias in the reporting of error rate estimates. The issues considered here are optimization and selection biases, sampling effects, measures of misclassification rate, baseline error rates, two-level external cross-validation and a novel proposal for detection of bias using the permutation mean. Reporting an optimal estimated error rate incurs an optimization bias. Downward bias of 3-5% was found in an existing study of classification based on gene expression data and may be endemic in similar studies. Using a simulated non-informative dataset and two example datasets from existing studies, we show how bias can be detected through the use of label permutations and avoided using two-level external cross-validation. Some studies avoid optimization bias by using single-level cross-validation and a test set, but error rates can be more accurately estimated via two-level cross-validation. In addition to estimating the simple overall error rate, we recommend reporting class error rates plus where possible the conditional risk incorporating prior class probabilities and a misclassification cost matrix. We also describe baseline error rates derived from three trivial classifiers which ignore the predictors. R code which implements two-level external cross-validation with the PAMR package, experiment code, dataset details and additional figures are freely available for non-commercial use from http://www.maths.qut.edu.au/profiles/wood/permr.jsp
NASA Astrophysics Data System (ADS)
Fenicia, Fabrizio; Reichert, Peter; Kavetski, Dmitri; Albert, Calro
2016-04-01
The calibration of hydrological models based on signatures (e.g. Flow Duration Curves - FDCs) is often advocated as an alternative to model calibration based on the full time series of system responses (e.g. hydrographs). Signature based calibration is motivated by various arguments. From a conceptual perspective, calibration on signatures is a way to filter out errors that are difficult to represent when calibrating on the full time series. Such errors may for example occur when observed and simulated hydrographs are shifted, either on the "time" axis (i.e. left or right), or on the "streamflow" axis (i.e. above or below). These shifts may be due to errors in the precipitation input (time or amount), and if not properly accounted in the likelihood function, may cause biased parameter estimates (e.g. estimated model parameters that do not reproduce the recession characteristics of a hydrograph). From a practical perspective, signature based calibration is seen as a possible solution for making predictions in ungauged basins. Where streamflow data are not available, it may in fact be possible to reliably estimate streamflow signatures. Previous research has for example shown how FDCs can be reliably estimated at ungauged locations based on climatic and physiographic influence factors. Typically, the goal of signature based calibration is not the prediction of the signatures themselves, but the prediction of the system responses. Ideally, the prediction of system responses should be accompanied by a reliable quantification of the associated uncertainties. Previous approaches for signature based calibration, however, do not allow reliable estimates of streamflow predictive distributions. Here, we illustrate how the Bayesian approach can be employed to obtain reliable streamflow predictive distributions based on signatures. A case study is presented, where a hydrological model is calibrated on FDCs and additional signatures. We propose an approach where the likelihood function for the signatures is derived from the likelihood for streamflow (rather than using an "ad-hoc" likelihood for the signatures as done in previous approaches). This likelihood is not easily tractable analytically and we therefore cannot apply "simple" MCMC methods. This numerical problem is solved using Approximate Bayesian Computation (ABC). Our result indicate that the proposed approach is suitable for producing reliable streamflow predictive distributions based on calibration to signature data. Moreover, our results provide indications on which signatures are more appropriate to represent the information content of the hydrograph.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mauk, F.J.; Christensen, D.H.
1980-09-01
Probabilistic estimations of earthquake detection and location capabilities for the states of Illinois, Indiana, Kentucky, Ohio and West Virginia are presented in this document. The algorithm used in these epicentrality and minimum-magnitude estimations is a version of the program NETWORTH by Wirth, Blandford, and Husted (DARPA Order No. 2551, 1978) which was modified for local array evaluation at the University of Michigan Seismological Observatory. Estimations of earthquake detection capability for the years 1970 and 1980 are presented in four regional minimum m/sub b/ magnitude contour maps. Regional 90% confidence error ellipsoids are included for m/sub b/ magnitude events from 2.0more » through 5.0 at 0.5 m/sub b/ unit increments. The close agreement between these predicted epicentral 90% confidence estimates and the calculated error ellipses associated with actual earthquakes within the studied region suggest that these error determinations can be used to estimate the reliability of epicenter location. 8 refs., 14 figs., 2 tabs.« less
ERIC Educational Resources Information Center
Rodriguez, Paul F.
2009-01-01
Memory systems are known to be influenced by feedback and error processing, but it is not well known what aspects of outcome contingencies are related to different memory systems. Here we use the Rescorla-Wagner model to estimate prediction errors in an fMRI study of stimulus-outcome association learning. The conditional probabilities of outcomes…
Alan K. Swanson; Solomon Z. Dobrowski; Andrew O. Finley; James H. Thorne; Michael K. Schwartz
2013-01-01
The uncertainty associated with species distribution model (SDM) projections is poorly characterized, despite its potential value to decision makers. Error estimates from most modelling techniques have been shown to be biased due to their failure to account for spatial autocorrelation (SAC) of residual error. Generalized linear mixed models (GLMM) have the ability to...
A Demonstration of Regression False Positive Selection in Data Mining
ERIC Educational Resources Information Center
Pinder, Jonathan P.
2014-01-01
Business analytics courses, such as marketing research, data mining, forecasting, and advanced financial modeling, have substantial predictive modeling components. The predictive modeling in these courses requires students to estimate and test many linear regressions. As a result, false positive variable selection ("type I errors") is…
A New Ensemble Canonical Correlation Prediction Scheme for Seasonal Precipitation
NASA Technical Reports Server (NTRS)
Kim, Kyu-Myong; Lau, William K. M.; Li, Guilong; Shen, Samuel S. P.; Lau, William K. M. (Technical Monitor)
2001-01-01
Department of Mathematical Sciences, University of Alberta, Edmonton, Canada This paper describes the fundamental theory of the ensemble canonical correlation (ECC) algorithm for the seasonal climate forecasting. The algorithm is a statistical regression sch eme based on maximal correlation between the predictor and predictand. The prediction error is estimated by a spectral method using the basis of empirical orthogonal functions. The ECC algorithm treats the predictors and predictands as continuous fields and is an improvement from the traditional canonical correlation prediction. The improvements include the use of area-factor, estimation of prediction error, and the optimal ensemble of multiple forecasts. The ECC is applied to the seasonal forecasting over various parts of the world. The example presented here is for the North America precipitation. The predictor is the sea surface temperature (SST) from different ocean basins. The Climate Prediction Center's reconstructed SST (1951-1999) is used as the predictor's historical data. The optimally interpolated global monthly precipitation is used as the predictand?s historical data. Our forecast experiments show that the ECC algorithm renders very high skill and the optimal ensemble is very important to the high value.
Reducing hydrologic model uncertainty in monthly streamflow predictions using multimodel combination
NASA Astrophysics Data System (ADS)
Li, Weihua; Sankarasubramanian, A.
2012-12-01
Model errors are inevitable in any prediction exercise. One approach that is currently gaining attention in reducing model errors is by combining multiple models to develop improved predictions. The rationale behind this approach primarily lies on the premise that optimal weights could be derived for each model so that the developed multimodel predictions will result in improved predictions. A new dynamic approach (MM-1) to combine multiple hydrological models by evaluating their performance/skill contingent on the predictor state is proposed. We combine two hydrological models, "abcd" model and variable infiltration capacity (VIC) model, to develop multimodel streamflow predictions. To quantify precisely under what conditions the multimodel combination results in improved predictions, we compare multimodel scheme MM-1 with optimal model combination scheme (MM-O) by employing them in predicting the streamflow generated from a known hydrologic model (abcd model orVICmodel) with heteroscedastic error variance as well as from a hydrologic model that exhibits different structure than that of the candidate models (i.e., "abcd" model or VIC model). Results from the study show that streamflow estimated from single models performed better than multimodels under almost no measurement error. However, under increased measurement errors and model structural misspecification, both multimodel schemes (MM-1 and MM-O) consistently performed better than the single model prediction. Overall, MM-1 performs better than MM-O in predicting the monthly flow values as well as in predicting extreme monthly flows. Comparison of the weights obtained from each candidate model reveals that as measurement errors increase, MM-1 assigns weights equally for all the models, whereas MM-O assigns higher weights for always the best-performing candidate model under the calibration period. Applying the multimodel algorithms for predicting streamflows over four different sites revealed that MM-1 performs better than all single models and optimal model combination scheme, MM-O, in predicting the monthly flows as well as the flows during wetter months.
Stevens, Antoine; Nocita, Marco; Tóth, Gergely; Montanarella, Luca; van Wesemael, Bas
2013-01-01
Soil organic carbon is a key soil property related to soil fertility, aggregate stability and the exchange of CO2 with the atmosphere. Existing soil maps and inventories can rarely be used to monitor the state and evolution in soil organic carbon content due to their poor spatial resolution, lack of consistency and high updating costs. Visible and Near Infrared diffuse reflectance spectroscopy is an alternative method to provide cheap and high-density soil data. However, there are still some uncertainties on its capacity to produce reliable predictions for areas characterized by large soil diversity. Using a large-scale EU soil survey of about 20,000 samples and covering 23 countries, we assessed the performance of reflectance spectroscopy for the prediction of soil organic carbon content. The best calibrations achieved a root mean square error ranging from 4 to 15 g C kg(-1) for mineral soils and a root mean square error of 50 g C kg(-1) for organic soil materials. Model errors are shown to be related to the levels of soil organic carbon and variations in other soil properties such as sand and clay content. Although errors are ∼5 times larger than the reproducibility error of the laboratory method, reflectance spectroscopy provides unbiased predictions of the soil organic carbon content. Such estimates could be used for assessing the mean soil organic carbon content of large geographical entities or countries. This study is a first step towards providing uniform continental-scale spectroscopic estimations of soil organic carbon, meeting an increasing demand for information on the state of the soil that can be used in biogeochemical models and the monitoring of soil degradation.
Measurement Error Correction for Predicted Spatiotemporal Air Pollution Exposures.
Keller, Joshua P; Chang, Howard H; Strickland, Matthew J; Szpiro, Adam A
2017-05-01
Air pollution cohort studies are frequently analyzed in two stages, first modeling exposure then using predicted exposures to estimate health effects in a second regression model. The difference between predicted and unobserved true exposures introduces a form of measurement error in the second stage health model. Recent methods for spatial data correct for measurement error with a bootstrap and by requiring the study design ensure spatial compatibility, that is, monitor and subject locations are drawn from the same spatial distribution. These methods have not previously been applied to spatiotemporal exposure data. We analyzed the association between fine particulate matter (PM2.5) and birth weight in the US state of Georgia using records with estimated date of conception during 2002-2005 (n = 403,881). We predicted trimester-specific PM2.5 exposure using a complex spatiotemporal exposure model. To improve spatial compatibility, we restricted to mothers residing in counties with a PM2.5 monitor (n = 180,440). We accounted for additional measurement error via a nonparametric bootstrap. Third trimester PM2.5 exposure was associated with lower birth weight in the uncorrected (-2.4 g per 1 μg/m difference in exposure; 95% confidence interval [CI]: -3.9, -0.8) and bootstrap-corrected (-2.5 g, 95% CI: -4.2, -0.8) analyses. Results for the unrestricted analysis were attenuated (-0.66 g, 95% CI: -1.7, 0.35). This study presents a novel application of measurement error correction for spatiotemporal air pollution exposures. Our results demonstrate the importance of spatial compatibility between monitor and subject locations and provide evidence of the association between air pollution exposure and birth weight.
Stevens, Antoine; Nocita, Marco; Tóth, Gergely; Montanarella, Luca; van Wesemael, Bas
2013-01-01
Soil organic carbon is a key soil property related to soil fertility, aggregate stability and the exchange of CO2 with the atmosphere. Existing soil maps and inventories can rarely be used to monitor the state and evolution in soil organic carbon content due to their poor spatial resolution, lack of consistency and high updating costs. Visible and Near Infrared diffuse reflectance spectroscopy is an alternative method to provide cheap and high-density soil data. However, there are still some uncertainties on its capacity to produce reliable predictions for areas characterized by large soil diversity. Using a large-scale EU soil survey of about 20,000 samples and covering 23 countries, we assessed the performance of reflectance spectroscopy for the prediction of soil organic carbon content. The best calibrations achieved a root mean square error ranging from 4 to 15 g C kg−1 for mineral soils and a root mean square error of 50 g C kg−1 for organic soil materials. Model errors are shown to be related to the levels of soil organic carbon and variations in other soil properties such as sand and clay content. Although errors are ∼5 times larger than the reproducibility error of the laboratory method, reflectance spectroscopy provides unbiased predictions of the soil organic carbon content. Such estimates could be used for assessing the mean soil organic carbon content of large geographical entities or countries. This study is a first step towards providing uniform continental-scale spectroscopic estimations of soil organic carbon, meeting an increasing demand for information on the state of the soil that can be used in biogeochemical models and the monitoring of soil degradation. PMID:23840459
Benchmarking NLDAS-2 Soil Moisture and Evapotranspiration to Separate Uncertainty Contributions
NASA Technical Reports Server (NTRS)
Nearing, Grey S.; Mocko, David M.; Peters-Lidard, Christa D.; Kumar, Sujay V.; Xia, Youlong
2016-01-01
Model benchmarking allows us to separate uncertainty in model predictions caused 1 by model inputs from uncertainty due to model structural error. We extend this method with a large-sample approach (using data from multiple field sites) to measure prediction uncertainty caused by errors in (i) forcing data, (ii) model parameters, and (iii) model structure, and use it to compare the efficiency of soil moisture state and evapotranspiration flux predictions made by the four land surface models in the North American Land Data Assimilation System Phase 2 (NLDAS-2). Parameters dominated uncertainty in soil moisture estimates and forcing data dominated uncertainty in evapotranspiration estimates; however, the models themselves used only a fraction of the information available to them. This means that there is significant potential to improve all three components of the NLDAS-2 system. In particular, continued work toward refining the parameter maps and look-up tables, the forcing data measurement and processing, and also the land surface models themselves, has potential to result in improved estimates of surface mass and energy balances.
Benchmarking NLDAS-2 Soil Moisture and Evapotranspiration to Separate Uncertainty Contributions
Nearing, Grey S.; Mocko, David M.; Peters-Lidard, Christa D.; Kumar, Sujay V.; Xia, Youlong
2018-01-01
Model benchmarking allows us to separate uncertainty in model predictions caused by model inputs from uncertainty due to model structural error. We extend this method with a “large-sample” approach (using data from multiple field sites) to measure prediction uncertainty caused by errors in (i) forcing data, (ii) model parameters, and (iii) model structure, and use it to compare the efficiency of soil moisture state and evapotranspiration flux predictions made by the four land surface models in the North American Land Data Assimilation System Phase 2 (NLDAS-2). Parameters dominated uncertainty in soil moisture estimates and forcing data dominated uncertainty in evapotranspiration estimates; however, the models themselves used only a fraction of the information available to them. This means that there is significant potential to improve all three components of the NLDAS-2 system. In particular, continued work toward refining the parameter maps and look-up tables, the forcing data measurement and processing, and also the land surface models themselves, has potential to result in improved estimates of surface mass and energy balances. PMID:29697706
Benchmarking NLDAS-2 Soil Moisture and Evapotranspiration to Separate Uncertainty Contributions.
Nearing, Grey S; Mocko, David M; Peters-Lidard, Christa D; Kumar, Sujay V; Xia, Youlong
2016-03-01
Model benchmarking allows us to separate uncertainty in model predictions caused by model inputs from uncertainty due to model structural error. We extend this method with a "large-sample" approach (using data from multiple field sites) to measure prediction uncertainty caused by errors in (i) forcing data, (ii) model parameters, and (iii) model structure, and use it to compare the efficiency of soil moisture state and evapotranspiration flux predictions made by the four land surface models in the North American Land Data Assimilation System Phase 2 (NLDAS-2). Parameters dominated uncertainty in soil moisture estimates and forcing data dominated uncertainty in evapotranspiration estimates; however, the models themselves used only a fraction of the information available to them. This means that there is significant potential to improve all three components of the NLDAS-2 system. In particular, continued work toward refining the parameter maps and look-up tables, the forcing data measurement and processing, and also the land surface models themselves, has potential to result in improved estimates of surface mass and energy balances.
Model Predictive Flight Control System with Full State Observer using H∞ Method
NASA Astrophysics Data System (ADS)
Sanwale, Jitu; Singh, Dhan Jeet
2018-03-01
This paper presents the application of the model predictive approach to design a flight control system (FCS) for longitudinal dynamics of a fixed wing aircraft. Longitudinal dynamics is derived for a conventional aircraft. Open loop aircraft response analysis is carried out. Simulation studies are illustrated to prove the efficacy of the proposed model predictive controller using H ∞ state observer. The estimation criterion used in the {H}_{∞} observer design is to minimize the worst possible effects of the modelling errors and additive noise on the parameter estimation.
Martire, Kristy A; Growns, Bethany; Navarro, Danielle J
2018-04-17
Forensic handwriting examiners currently testify to the origin of questioned handwriting for legal purposes. However, forensic scientists are increasingly being encouraged to assign probabilities to their observations in the form of a likelihood ratio. This study is the first to examine whether handwriting experts are able to estimate the frequency of US handwriting features more accurately than novices. The results indicate that the absolute error for experts was lower than novices, but the size of the effect is modest, and the overall error rate even for experts is large enough as to raise questions about whether their estimates can be sufficiently trustworthy for presentation in courts. When errors are separated into effects caused by miscalibration and those caused by imprecision, we find systematic differences between individuals. Finally, we consider several ways of aggregating predictions from multiple experts, suggesting that quite substantial improvements in expert predictions are possible when a suitable aggregation method is used.
Error estimation for CFD aeroheating prediction under rarefied flow condition
NASA Astrophysics Data System (ADS)
Jiang, Yazhong; Gao, Zhenxun; Jiang, Chongwen; Lee, Chunhian
2014-12-01
Both direct simulation Monte Carlo (DSMC) and Computational Fluid Dynamics (CFD) methods have become widely used for aerodynamic prediction when reentry vehicles experience different flow regimes during flight. The implementation of slip boundary conditions in the traditional CFD method under Navier-Stokes-Fourier (NSF) framework can extend the validity of this approach further into transitional regime, with the benefit that much less computational cost is demanded compared to DSMC simulation. Correspondingly, an increasing error arises in aeroheating calculation as the flow becomes more rarefied. To estimate the relative error of heat flux when applying this method for a rarefied flow in transitional regime, theoretical derivation is conducted and a dimensionless parameter ɛ is proposed by approximately analyzing the ratio of the second order term to first order term in the heat flux expression in Burnett equation. DSMC simulation for hypersonic flow over a cylinder in transitional regime is performed to test the performance of parameter ɛ, compared with two other parameters, Knρ and MaṡKnρ.
Modeling longitudinal data, I: principles of multivariate analysis.
Ravani, Pietro; Barrett, Brendan; Parfrey, Patrick
2009-01-01
Statistical models are used to study the relationship between exposure and disease while accounting for the potential role of other factors' impact on outcomes. This adjustment is useful to obtain unbiased estimates of true effects or to predict future outcomes. Statistical models include a systematic component and an error component. The systematic component explains the variability of the response variable as a function of the predictors and is summarized in the effect estimates (model coefficients). The error element of the model represents the variability in the data unexplained by the model and is used to build measures of precision around the point estimates (confidence intervals).
Trotta-Moreu, Nuria; Lobo, Jorge M
2010-02-01
Predictions from individual distribution models for Mexican Geotrupinae species were overlaid to obtain a total species richness map for this group. A database (GEOMEX) that compiles available information from the literature and from several entomological collections was used. A Maximum Entropy method (MaxEnt) was applied to estimate the distribution of each species, taking into account 19 climatic variables as predictors. For each species, suitability values ranging from 0 to 100 were calculated for each grid cell on the map, and 21 different thresholds were used to convert these continuous suitability values into binary ones (presence-absence). By summing all of the individual binary maps, we generated a species richness prediction for each of the considered thresholds. The number of species and faunal composition thus predicted for each Mexican state were subsequently compared with those observed in a preselected set of well-surveyed states. Our results indicate that the sum of individual predictions tends to overestimate species richness but that the selection of an appropriate threshold can reduce this bias. Even under the most optimistic prediction threshold, the mean species richness error is 61% of the observed species richness, with commission errors being significantly more common than omission errors (71 +/- 29 versus 18 +/- 10%). The estimated distribution of Geotrupinae species richness in Mexico in discussed, although our conclusions are preliminary and contingent on the scarce and probably biased available data.
Interpolation Method Needed for Numerical Uncertainty
NASA Technical Reports Server (NTRS)
Groves, Curtis E.; Ilie, Marcel; Schallhorn, Paul A.
2014-01-01
Using Computational Fluid Dynamics (CFD) to predict a flow field is an approximation to the exact problem and uncertainties exist. There is a method to approximate the errors in CFD via Richardson's Extrapolation. This method is based off of progressive grid refinement. To estimate the errors, the analyst must interpolate between at least three grids. This paper describes a study to find an appropriate interpolation scheme that can be used in Richardson's extrapolation or other uncertainty method to approximate errors.
Comparison of Predictive Modeling Methods of Aircraft Landing Speed
NASA Technical Reports Server (NTRS)
Diallo, Ousmane H.
2012-01-01
Expected increases in air traffic demand have stimulated the development of air traffic control tools intended to assist the air traffic controller in accurately and precisely spacing aircraft landing at congested airports. Such tools will require an accurate landing-speed prediction to increase throughput while decreasing necessary controller interventions for avoiding separation violations. There are many practical challenges to developing an accurate landing-speed model that has acceptable prediction errors. This paper discusses the development of a near-term implementation, using readily available information, to estimate/model final approach speed from the top of the descent phase of flight to the landing runway. As a first approach, all variables found to contribute directly to the landing-speed prediction model are used to build a multi-regression technique of the response surface equation (RSE). Data obtained from operations of a major airlines for a passenger transport aircraft type to the Dallas/Fort Worth International Airport are used to predict the landing speed. The approach was promising because it decreased the standard deviation of the landing-speed error prediction by at least 18% from the standard deviation of the baseline error, depending on the gust condition at the airport. However, when the number of variables is reduced to the most likely obtainable at other major airports, the RSE model shows little improvement over the existing methods. Consequently, a neural network that relies on a nonlinear regression technique is utilized as an alternative modeling approach. For the reduced number of variables cases, the standard deviation of the neural network models errors represent over 5% reduction compared to the RSE model errors, and at least 10% reduction over the baseline predicted landing-speed error standard deviation. Overall, the constructed models predict the landing-speed more accurately and precisely than the current state-of-the-art.
NASA Astrophysics Data System (ADS)
Christensen, N. K.; Christensen, S.; Ferre, T. P. A.
2015-09-01
Despite geophysics is being used increasingly, it is still unclear how and when the integration of geophysical data improves the construction and predictive capability of groundwater models. Therefore, this paper presents a newly developed HYdrogeophysical TEst-Bench (HYTEB) which is a collection of geological, groundwater and geophysical modeling and inversion software wrapped to make a platform for generation and consideration of multi-modal data for objective hydrologic analysis. It is intentionally flexible to allow for simple or sophisticated treatments of geophysical responses, hydrologic processes, parameterization, and inversion approaches. It can also be used to discover potential errors that can be introduced through petrophysical models and approaches to correlating geophysical and hydrologic parameters. With HYTEB we study alternative uses of electromagnetic (EM) data for groundwater modeling in a hydrogeological environment consisting of various types of glacial deposits with typical hydraulic conductivities and electrical resistivities covering impermeable bedrock with low resistivity. It is investigated to what extent groundwater model calibration and, often more importantly, model predictions can be improved by including in the calibration process electrical resistivity estimates obtained from TEM data. In all calibration cases, the hydraulic conductivity field is highly parameterized and the estimation is stabilized by regularization. For purely hydrologic inversion (HI, only using hydrologic data) we used Tikhonov regularization combined with singular value decomposition. For joint hydrogeophysical inversion (JHI) and sequential hydrogeophysical inversion (SHI) the resistivity estimates from TEM are used together with a petrophysical relationship to formulate the regularization term. In all cases, the regularization stabilizes the inversion, but neither the HI nor the JHI objective function could be minimized uniquely. SHI or JHI with regularization based on the use of TEM data produced estimated hydraulic conductivity fields that bear more resemblance to the reference fields than when using HI with Tikhonov regularization. However, for the studied system the resistivities estimated by SHI or JHI must be used with caution as estimators of hydraulic conductivity or as regularization means for subsequent hydrological inversion. Much of the lack of value of the geophysical data arises from a mistaken faith in the power of the petrophysical model in combination with geophysical data of low sensitivity, thereby propagating geophysical estimation errors into the hydrologic model parameters. With respect to reducing model prediction error, it depends on the type of prediction whether it has value to include geophysical data in the model calibration. It is found that all calibrated models are good predictors of hydraulic head. When the stress situation is changed from that of the hydrologic calibration data, then all models make biased predictions of head change. All calibrated models turn out to be a very poor predictor of the pumping well's recharge area and groundwater age. The reason for this is that distributed recharge is parameterized as depending on estimated hydraulic conductivity of the upper model layer which tends to be underestimated. Another important insight from the HYTEB analysis is thus that either recharge should be parameterized and estimated in a different way, or other types of data should be added to better constrain the recharge estimates.
Low-dimensional Representation of Error Covariance
NASA Technical Reports Server (NTRS)
Tippett, Michael K.; Cohn, Stephen E.; Todling, Ricardo; Marchesin, Dan
2000-01-01
Ensemble and reduced-rank approaches to prediction and assimilation rely on low-dimensional approximations of the estimation error covariances. Here stability properties of the forecast/analysis cycle for linear, time-independent systems are used to identify factors that cause the steady-state analysis error covariance to admit a low-dimensional representation. A useful measure of forecast/analysis cycle stability is the bound matrix, a function of the dynamics, observation operator and assimilation method. Upper and lower estimates for the steady-state analysis error covariance matrix eigenvalues are derived from the bound matrix. The estimates generalize to time-dependent systems. If much of the steady-state analysis error variance is due to a few dominant modes, the leading eigenvectors of the bound matrix approximate those of the steady-state analysis error covariance matrix. The analytical results are illustrated in two numerical examples where the Kalman filter is carried to steady state. The first example uses the dynamics of a generalized advection equation exhibiting nonmodal transient growth. Failure to observe growing modes leads to increased steady-state analysis error variances. Leading eigenvectors of the steady-state analysis error covariance matrix are well approximated by leading eigenvectors of the bound matrix. The second example uses the dynamics of a damped baroclinic wave model. The leading eigenvectors of a lowest-order approximation of the bound matrix are shown to approximate well the leading eigenvectors of the steady-state analysis error covariance matrix.
Lima, Luiz Rodrigo Augustemak de; Martins, Priscila Custódio; Junior, Carlos Alencar Souza Alves; Castro, João Antônio Chula de; Silva, Diego Augusto Santos; Petroski, Edio Luiz
The aim of this study was to assess the validity of traditional anthropometric equations and to develop predictive equations of total body and trunk fat for children and adolescents living with HIV based on anthropometric measurements. Forty-eight children and adolescents of both sexes (24 boys) aged 7-17 years, living in Santa Catarina, Brazil, participated in the study. Dual-energy X-ray absorptiometry was used as the reference method to evaluate total body and trunk fat. Height, body weight, circumferences and triceps, subscapular, abdominal and calf skinfolds were measured. The traditional equations of Lohman and Slaughter were used to estimate body fat. Multiple regression models were fitted to predict total body fat (Model 1) and trunk fat (Model 2) using a backward selection procedure. Model 1 had an R 2 =0.85 and a standard error of the estimate of 1.43. Model 2 had an R 2 =0.80 and standard error of the estimate=0.49. The traditional equations of Lohman and Slaughter showed poor performance in estimating body fat in children and adolescents living with HIV. The prediction models using anthropometry provided reliable estimates and can be used by clinicians and healthcare professionals to monitor total body and trunk fat in children and adolescents living with HIV. Copyright © 2017 Sociedade Brasileira de Infectologia. Published by Elsevier Editora Ltda. All rights reserved.
High dimensional linear regression models under long memory dependence and measurement error
NASA Astrophysics Data System (ADS)
Kaul, Abhishek
This dissertation consists of three chapters. The first chapter introduces the models under consideration and motivates problems of interest. A brief literature review is also provided in this chapter. The second chapter investigates the properties of Lasso under long range dependent model errors. Lasso is a computationally efficient approach to model selection and estimation, and its properties are well studied when the regression errors are independent and identically distributed. We study the case, where the regression errors form a long memory moving average process. We establish a finite sample oracle inequality for the Lasso solution. We then show the asymptotic sign consistency in this setup. These results are established in the high dimensional setup (p> n) where p can be increasing exponentially with n. Finally, we show the consistency, n½ --d-consistency of Lasso, along with the oracle property of adaptive Lasso, in the case where p is fixed. Here d is the memory parameter of the stationary error sequence. The performance of Lasso is also analysed in the present setup with a simulation study. The third chapter proposes and investigates the properties of a penalized quantile based estimator for measurement error models. Standard formulations of prediction problems in high dimension regression models assume the availability of fully observed covariates and sub-Gaussian and homogeneous model errors. This makes these methods inapplicable to measurement errors models where covariates are unobservable and observations are possibly non sub-Gaussian and heterogeneous. We propose weighted penalized corrected quantile estimators for the regression parameter vector in linear regression models with additive measurement errors, where unobservable covariates are nonrandom. The proposed estimators forgo the need for the above mentioned model assumptions. We study these estimators in both the fixed dimension and high dimensional sparse setups, in the latter setup, the dimensionality can grow exponentially with the sample size. In the fixed dimensional setting we provide the oracle properties associated with the proposed estimators. In the high dimensional setting, we provide bounds for the statistical error associated with the estimation, that hold with asymptotic probability 1, thereby providing the ℓ1-consistency of the proposed estimator. We also establish the model selection consistency in terms of the correctly estimated zero components of the parameter vector. A simulation study that investigates the finite sample accuracy of the proposed estimator is also included in this chapter.
NASA Astrophysics Data System (ADS)
Aminah, Agustin Siti; Pawitan, Gandhi; Tantular, Bertho
2017-03-01
So far, most of the data published by Statistics Indonesia (BPS) as data providers for national statistics are still limited to the district level. Less sufficient sample size for smaller area levels to make the measurement of poverty indicators with direct estimation produced high standard error. Therefore, the analysis based on it is unreliable. To solve this problem, the estimation method which can provide a better accuracy by combining survey data and other auxiliary data is required. One method often used for the estimation is the Small Area Estimation (SAE). There are many methods used in SAE, one of them is Empirical Best Linear Unbiased Prediction (EBLUP). EBLUP method of maximum likelihood (ML) procedures does not consider the loss of degrees of freedom due to estimating β with β ^. This drawback motivates the use of the restricted maximum likelihood (REML) procedure. This paper proposed EBLUP with REML procedure for estimating poverty indicators by modeling the average of household expenditures per capita and implemented bootstrap procedure to calculate MSE (Mean Square Error) to compare the accuracy EBLUP method with the direct estimation method. Results show that EBLUP method reduced MSE in small area estimation.
A mass-energy preserving Galerkin FEM for the coupled nonlinear fractional Schrödinger equations
NASA Astrophysics Data System (ADS)
Zhang, Guoyu; Huang, Chengming; Li, Meng
2018-04-01
We consider the numerical simulation of the coupled nonlinear space fractional Schrödinger equations. Based on the Galerkin finite element method in space and the Crank-Nicolson (CN) difference method in time, a fully discrete scheme is constructed. Firstly, we focus on a rigorous analysis of conservation laws for the discrete system. The definitions of discrete mass and energy here correspond with the original ones in physics. Then, we prove that the fully discrete system is uniquely solvable. Moreover, we consider the unconditionally convergent properties (that is to say, we complete the error estimates without any mesh ratio restriction). We derive L2-norm error estimates for the nonlinear equations and L^{∞}-norm error estimates for the linear equations. Finally, some numerical experiments are included showing results in agreement with the theoretical predictions.
Adjustment of regional regression equations for urban storm-runoff quality using at-site data
Barks, C.S.
1996-01-01
Regional regression equations have been developed to estimate urban storm-runoff loads and mean concentrations using a national data base. Four statistical methods using at-site data to adjust the regional equation predictions were developed to provide better local estimates. The four adjustment procedures are a single-factor adjustment, a regression of the observed data against the predicted values, a regression of the observed values against the predicted values and additional local independent variables, and a weighted combination of a local regression with the regional prediction. Data collected at five representative storm-runoff sites during 22 storms in Little Rock, Arkansas, were used to verify, and, when appropriate, adjust the regional regression equation predictions. Comparison of observed values of stormrunoff loads and mean concentrations to the predicted values from the regional regression equations for nine constituents (chemical oxygen demand, suspended solids, total nitrogen as N, total ammonia plus organic nitrogen as N, total phosphorus as P, dissolved phosphorus as P, total recoverable copper, total recoverable lead, and total recoverable zinc) showed large prediction errors ranging from 63 percent to more than several thousand percent. Prediction errors for 6 of the 18 regional regression equations were less than 100 percent and could be considered reasonable for water-quality prediction equations. The regression adjustment procedure was used to adjust five of the regional equation predictions to improve the predictive accuracy. For seven of the regional equations the observed and the predicted values are not significantly correlated. Thus neither the unadjusted regional equations nor any of the adjustments were appropriate. The mean of the observed values was used as a simple estimator when the regional equation predictions and adjusted predictions were not appropriate.
Liu, Geng; Niu, Junjie; Zhang, Chao; Guo, Guanlin
2015-12-01
Data distribution is usually skewed severely by the presence of hot spots in contaminated sites. This causes difficulties for accurate geostatistical data transformation. Three types of typical normal distribution transformation methods termed the normal score, Johnson, and Box-Cox transformations were applied to compare the effects of spatial interpolation with normal distribution transformation data of benzo(b)fluoranthene in a large-scale coking plant-contaminated site in north China. Three normal transformation methods decreased the skewness and kurtosis of the benzo(b)fluoranthene, and all the transformed data passed the Kolmogorov-Smirnov test threshold. Cross validation showed that Johnson ordinary kriging has a minimum root-mean-square error of 1.17 and a mean error of 0.19, which was more accurate than the other two models. The area with fewer sampling points and that with high levels of contamination showed the largest prediction standard errors based on the Johnson ordinary kriging prediction map. We introduce an ideal normal transformation method prior to geostatistical estimation for severely skewed data, which enhances the reliability of risk estimation and improves the accuracy for determination of remediation boundaries.
Further Improvements to Linear Mixed Models for Genome-Wide Association Studies
Widmer, Christian; Lippert, Christoph; Weissbrod, Omer; Fusi, Nicolo; Kadie, Carl; Davidson, Robert; Listgarten, Jennifer; Heckerman, David
2014-01-01
We examine improvements to the linear mixed model (LMM) that better correct for population structure and family relatedness in genome-wide association studies (GWAS). LMMs rely on the estimation of a genetic similarity matrix (GSM), which encodes the pairwise similarity between every two individuals in a cohort. These similarities are estimated from single nucleotide polymorphisms (SNPs) or other genetic variants. Traditionally, all available SNPs are used to estimate the GSM. In empirical studies across a wide range of synthetic and real data, we find that modifications to this approach improve GWAS performance as measured by type I error control and power. Specifically, when only population structure is present, a GSM constructed from SNPs that well predict the phenotype in combination with principal components as covariates controls type I error and yields more power than the traditional LMM. In any setting, with or without population structure or family relatedness, a GSM consisting of a mixture of two component GSMs, one constructed from all SNPs and another constructed from SNPs that well predict the phenotype again controls type I error and yields more power than the traditional LMM. Software implementing these improvements and the experimental comparisons are available at http://microsoft.com/science. PMID:25387525
Further Improvements to Linear Mixed Models for Genome-Wide Association Studies
NASA Astrophysics Data System (ADS)
Widmer, Christian; Lippert, Christoph; Weissbrod, Omer; Fusi, Nicolo; Kadie, Carl; Davidson, Robert; Listgarten, Jennifer; Heckerman, David
2014-11-01
We examine improvements to the linear mixed model (LMM) that better correct for population structure and family relatedness in genome-wide association studies (GWAS). LMMs rely on the estimation of a genetic similarity matrix (GSM), which encodes the pairwise similarity between every two individuals in a cohort. These similarities are estimated from single nucleotide polymorphisms (SNPs) or other genetic variants. Traditionally, all available SNPs are used to estimate the GSM. In empirical studies across a wide range of synthetic and real data, we find that modifications to this approach improve GWAS performance as measured by type I error control and power. Specifically, when only population structure is present, a GSM constructed from SNPs that well predict the phenotype in combination with principal components as covariates controls type I error and yields more power than the traditional LMM. In any setting, with or without population structure or family relatedness, a GSM consisting of a mixture of two component GSMs, one constructed from all SNPs and another constructed from SNPs that well predict the phenotype again controls type I error and yields more power than the traditional LMM. Software implementing these improvements and the experimental comparisons are available at http://microsoft.com/science.
Further improvements to linear mixed models for genome-wide association studies.
Widmer, Christian; Lippert, Christoph; Weissbrod, Omer; Fusi, Nicolo; Kadie, Carl; Davidson, Robert; Listgarten, Jennifer; Heckerman, David
2014-11-12
We examine improvements to the linear mixed model (LMM) that better correct for population structure and family relatedness in genome-wide association studies (GWAS). LMMs rely on the estimation of a genetic similarity matrix (GSM), which encodes the pairwise similarity between every two individuals in a cohort. These similarities are estimated from single nucleotide polymorphisms (SNPs) or other genetic variants. Traditionally, all available SNPs are used to estimate the GSM. In empirical studies across a wide range of synthetic and real data, we find that modifications to this approach improve GWAS performance as measured by type I error control and power. Specifically, when only population structure is present, a GSM constructed from SNPs that well predict the phenotype in combination with principal components as covariates controls type I error and yields more power than the traditional LMM. In any setting, with or without population structure or family relatedness, a GSM consisting of a mixture of two component GSMs, one constructed from all SNPs and another constructed from SNPs that well predict the phenotype again controls type I error and yields more power than the traditional LMM. Software implementing these improvements and the experimental comparisons are available at http://microsoft.com/science.
Multistage classification of multispectral Earth observational data: The design approach
NASA Technical Reports Server (NTRS)
Bauer, M. E. (Principal Investigator); Muasher, M. J.; Landgrebe, D. A.
1981-01-01
An algorithm is proposed which predicts the optimal features at every node in a binary tree procedure. The algorithm estimates the probability of error by approximating the area under the likelihood ratio function for two classes and taking into account the number of training samples used in estimating each of these two classes. Some results on feature selection techniques, particularly in the presence of a very limited set of training samples, are presented. Results comparing probabilities of error predicted by the proposed algorithm as a function of dimensionality as compared to experimental observations are shown for aircraft and LANDSAT data. Results are obtained for both real and simulated data. Finally, two binary tree examples which use the algorithm are presented to illustrate the usefulness of the procedure.
Mbah, Chamberlain; De Ruyck, Kim; De Schrijver, Silke; De Sutter, Charlotte; Schiettecatte, Kimberly; Monten, Chris; Paelinck, Leen; De Neve, Wilfried; Thierens, Hubert; West, Catharine; Amorim, Gustavo; Thas, Olivier; Veldeman, Liv
2018-05-01
Evaluation of patient characteristics inducing toxicity in breast radiotherapy, using simultaneous modeling of multiple endpoints. In 269 early-stage breast cancer patients treated with whole-breast irradiation (WBI) after breast-conserving surgery, toxicity was scored, based on five dichotomized endpoints. Five logistic regression models were fitted, one for each endpoint and the effect sizes of all variables were estimated using maximum likelihood (MLE). The MLEs are improved with James-Stein estimates (JSEs). The method combines all the MLEs, obtained for the same variable but from different endpoints. Misclassification errors were computed using MLE- and JSE-based prediction models. For associations, p-values from the sum of squares of MLEs were compared with p-values from the Standardized Total Average Toxicity (STAT) Score. With JSEs, 19 highest ranked variables were predictive of the five different endpoints. Important variables increasing radiation-induced toxicity were chemotherapy, age, SATB2 rs2881208 SNP and nodal irradiation. Treatment position (prone position) was most protective and ranked eighth. Overall, the misclassification errors were 45% and 34% for the MLE- and JSE-based models, respectively. p-Values from the sum of squares of MLEs and p-values from STAT score led to very similar conclusions, except for the variables nodal irradiation and treatment position, for which STAT p-values suggested an association with radiosensitivity, whereas p-values from the sum of squares indicated no association. Breast volume was ranked as the most significant variable in both strategies. The James-Stein estimator was used for selecting variables that are predictive for multiple toxicity endpoints. With this estimator, 19 variables were predictive for all toxicities of which four were significantly associated with overall radiosensitivity. JSEs led to almost 25% reduction in the misclassification error rate compared to conventional MLEs. Finally, patient characteristics that are associated with radiosensitivity were identified without explicitly quantifying radiosensitivity.
Gaussian copula as a likelihood function for environmental models
NASA Astrophysics Data System (ADS)
Wani, O.; Espadas, G.; Cecinati, F.; Rieckermann, J.
2017-12-01
Parameter estimation of environmental models always comes with uncertainty. To formally quantify this parametric uncertainty, a likelihood function needs to be formulated, which is defined as the probability of observations given fixed values of the parameter set. A likelihood function allows us to infer parameter values from observations using Bayes' theorem. The challenge is to formulate a likelihood function that reliably describes the error generating processes which lead to the observed monitoring data, such as rainfall and runoff. If the likelihood function is not representative of the error statistics, the parameter inference will give biased parameter values. Several uncertainty estimation methods that are currently being used employ Gaussian processes as a likelihood function, because of their favourable analytical properties. Box-Cox transformation is suggested to deal with non-symmetric and heteroscedastic errors e.g. for flow data which are typically more uncertain in high flows than in periods with low flows. Problem with transformations is that the results are conditional on hyper-parameters, for which it is difficult to formulate the analyst's belief a priori. In an attempt to address this problem, in this research work we suggest learning the nature of the error distribution from the errors made by the model in the "past" forecasts. We use a Gaussian copula to generate semiparametric error distributions . 1) We show that this copula can be then used as a likelihood function to infer parameters, breaking away from the practice of using multivariate normal distributions. Based on the results from a didactical example of predicting rainfall runoff, 2) we demonstrate that the copula captures the predictive uncertainty of the model. 3) Finally, we find that the properties of autocorrelation and heteroscedasticity of errors are captured well by the copula, eliminating the need to use transforms. In summary, our findings suggest that copulas are an interesting departure from the usage of fully parametric distributions as likelihood functions - and they could help us to better capture the statistical properties of errors and make more reliable predictions.
Doble, Brett; Lorgelly, Paula
2016-04-01
To determine the external validity of existing mapping algorithms for predicting EQ-5D-3L utility values from EORTC QLQ-C30 responses and to establish their generalizability in different types of cancer. A main analysis (pooled) sample of 3560 observations (1727 patients) and two disease severity patient samples (496 and 93 patients) with repeated observations over time from Cancer 2015 were used to validate the existing algorithms. Errors were calculated between observed and predicted EQ-5D-3L utility values using a single pooled sample and ten pooled tumour type-specific samples. Predictive accuracy was assessed using mean absolute error (MAE) and standardized root-mean-squared error (RMSE). The association between observed and predicted EQ-5D utility values and other covariates across the distribution was tested using quantile regression. Quality-adjusted life years (QALYs) were calculated using observed and predicted values to test responsiveness. Ten 'preferred' mapping algorithms were identified. Two algorithms estimated via response mapping and ordinary least-squares regression using dummy variables performed well on number of validation criteria, including accurate prediction of the best and worst QLQ-C30 health states, predicted values within the EQ-5D tariff range, relatively small MAEs and RMSEs, and minimal differences between estimated QALYs. Comparison of predictive accuracy across ten tumour type-specific samples highlighted that algorithms are relatively insensitive to grouping by tumour type and affected more by differences in disease severity. Two of the 'preferred' mapping algorithms suggest more accurate predictions, but limitations exist. We recommend extensive scenario analyses if mapped utilities are used in cost-utility analyses.
NASA Astrophysics Data System (ADS)
Ghosh, S.; Lopez-Coto, I.; Prasad, K.; Karion, A.; Mueller, K.; Gourdji, S.; Martin, C.; Whetstone, J. R.
2017-12-01
The National Institute of Standards and Technology (NIST) supports the North-East Corridor Baltimore Washington (NEC-B/W) project and Indianapolis Flux Experiment (INFLUX) aiming to quantify sources of Greenhouse Gas (GHG) emissions as well as their uncertainties. These projects employ different flux estimation methods including top-down inversion approaches. The traditional Bayesian inversion method estimates emission distributions by updating prior information using atmospheric observations of Green House Gases (GHG) coupled to an atmospheric and dispersion model. The magnitude of the update is dependent upon the observed enhancement along with the assumed errors such as those associated with prior information and the atmospheric transport and dispersion model. These errors are specified within the inversion covariance matrices. The assumed structure and magnitude of the specified errors can have large impact on the emission estimates from the inversion. The main objective of this work is to build a data-adaptive model for these covariances matrices. We construct a synthetic data experiment using a Kalman Filter inversion framework (Lopez et al., 2017) employing different configurations of transport and dispersion model and an assumed prior. Unlike previous traditional Bayesian approaches, we estimate posterior emissions using regularized sample covariance matrices associated with prior errors to investigate whether the structure of the matrices help to better recover our hypothetical true emissions. To incorporate transport model error, we use ensemble of transport models combined with space-time analytical covariance to construct a covariance that accounts for errors in space and time. A Kalman Filter is then run using these covariances along with Maximum Likelihood Estimates (MLE) of the involved parameters. Preliminary results indicate that specifying sptio-temporally varying errors in the error covariances can improve the flux estimates and uncertainties. We also demonstrate that differences between the modeled and observed meteorology can be used to predict uncertainties associated with atmospheric transport and dispersion modeling which can help improve the skill of an inversion at urban scales.
Adam-Poupart, Ariane; Brand, Allan; Fournier, Michel; Jerrett, Michael; Smargiassi, Audrey
2014-09-01
Ambient air ozone (O3) is a pulmonary irritant that has been associated with respiratory health effects including increased lung inflammation and permeability, airway hyperreactivity, respiratory symptoms, and decreased lung function. Estimation of O3 exposure is a complex task because the pollutant exhibits complex spatiotemporal patterns. To refine the quality of exposure estimation, various spatiotemporal methods have been developed worldwide. We sought to compare the accuracy of three spatiotemporal models to predict summer ground-level O3 in Quebec, Canada. We developed a land-use mixed-effects regression (LUR) model based on readily available data (air quality and meteorological monitoring data, road networks information, latitude), a Bayesian maximum entropy (BME) model incorporating both O3 monitoring station data and the land-use mixed model outputs (BME-LUR), and a kriging method model based only on available O3 monitoring station data (BME kriging). We performed leave-one-station-out cross-validation and visually assessed the predictive capability of each model by examining the mean temporal and spatial distributions of the average estimated errors. The BME-LUR was the best predictive model (R2 = 0.653) with the lowest root mean-square error (RMSE ;7.06 ppb), followed by the LUR model (R2 = 0.466, RMSE = 8.747) and the BME kriging model (R2 = 0.414, RMSE = 9.164). Our findings suggest that errors of estimation in the interpolation of O3 concentrations with BME can be greatly reduced by incorporating outputs from a LUR model developed with readily available data.
NASA Technical Reports Server (NTRS)
Abdol-Hamid, Khaled S.; Ghaffari, Farhad
2011-01-01
Numerical predictions of the longitudinal aerodynamic characteristics for the Ares I class of vehicles, along with the associated error estimate derived from an iterative convergence grid refinement, are presented. Computational results are based on the unstructured grid, Reynolds-averaged Navier-Stokes flow solver USM3D, with an assumption that the flow is fully turbulent over the entire vehicle. This effort was designed to complement the prior computational activities conducted over the past five years in support of the Ares I Project with the emphasis on the vehicle s last design cycle designated as the A106 configuration. Due to a lack of flight data for this particular design s outer mold line, the initial vehicle s aerodynamic predictions and the associated error estimates were first assessed and validated against the available experimental data at representative wind tunnel flow conditions pertinent to the ascent phase of the trajectory without including any propulsion effects. Subsequently, the established procedures were then applied to obtain the longitudinal aerodynamic predictions at the selected flight flow conditions. Sample computed results and the correlations with the experimental measurements are presented. In addition, the present analysis includes the relevant data to highlight the balance between the prediction accuracy against the grid size and, thus, the corresponding computer resource requirements for the computations at both wind tunnel and flight flow conditions. NOTE: Some details have been removed from selected plots and figures in compliance with the sensitive but unclassified (SBU) restrictions. However, the content still conveys the merits of the technical approach and the relevant results.
Salomon, Joshua A
2003-01-01
Background In survey studies on health-state valuations, ordinal ranking exercises often are used as precursors to other elicitation methods such as the time trade-off (TTO) or standard gamble, but the ranking data have not been used in deriving cardinal valuations. This study reconsiders the role of ordinal ranks in valuing health and introduces a new approach to estimate interval-scaled valuations based on aggregate ranking data. Methods Analyses were undertaken on data from a previously published general population survey study in the United Kingdom that included rankings and TTO values for hypothetical states described using the EQ-5D classification system. The EQ-5D includes five domains (mobility, self-care, usual activities, pain/discomfort and anxiety/depression) with three possible levels on each. Rank data were analysed using a random utility model, operationalized through conditional logit regression. In the statistical model, probabilities of observed rankings were related to the latent utilities of different health states, modeled as a linear function of EQ-5D domain scores, as in previously reported EQ-5D valuation functions. Predicted valuations based on the conditional logit model were compared to observed TTO values for the 42 states in the study and to predictions based on a model estimated directly from the TTO values. Models were evaluated using the intraclass correlation coefficient (ICC) between predictions and mean observations, and the root mean squared error of predictions at the individual level. Results Agreement between predicted valuations from the rank model and observed TTO values was very high, with an ICC of 0.97, only marginally lower than for predictions based on the model estimated directly from TTO values (ICC = 0.99). Individual-level errors were also comparable in the two models, with root mean squared errors of 0.503 and 0.496 for the rank-based and TTO-based predictions, respectively. Conclusions Modeling health-state valuations based on ordinal ranks can provide results that are similar to those obtained from more widely analyzed valuation techniques such as the TTO. The information content in aggregate ranking data is not currently exploited to full advantage. The possibility of estimating cardinal valuations from ordinal ranks could also simplify future data collection dramatically and facilitate wider empirical study of health-state valuations in diverse settings and population groups. PMID:14687419
Inventory implications of using sampling variances in estimation of growth model coefficients
Albert R. Stage; William R. Wykoff
2000-01-01
Variables based on stand densities or stocking have sampling errors that depend on the relation of tree size to plot size and on the spatial structure of the population, ignoring the sampling errors of such variables, which include most measures of competition used in both distance-dependent and distance-independent growth models, can bias the predictions obtained from...
Remote Estimation of Vegetation Fraction and Yield in Oilseed Rape with Unmanned Aerial Vehicle Data
NASA Astrophysics Data System (ADS)
Peng, Y.; Fang, S.; Liu, K.; Gong, Y.
2017-12-01
This study developed an approach for remote estimation of Vegetation Fraction (VF) and yield in oilseed rape, which is a crop species with conspicuous flowers during reproduction. Canopy reflectance in green, red, red edge and NIR bands was obtained by a camera system mounted on an unmanned aerial vehicle (UAV) when oilseed rape was in the vegetative growth and flowering stage. The relationship of several widely-used Vegetation Indices (VI) vs. VF was tested and found to be different in different phenology stages. At the same VF when oilseed rape was flowering, canopy reflectance increased in all bands, and the tested VI decreased. Therefore, two algorithms to estimate VF were calibrated respectively, one for samples during vegetative growth and the other for samples during flowering stage. During the flowering season, we also explored the potential of using canopy reflectance or VIs to estimate Flower Fraction (FF) in oilseed rape. Based on FF estimates, rape yield can be estimated using canopy reflectance data. Our model was validated in oilseed rape planted under different nitrogen fertilization applications and in different phenology stages. The results showed that it was able to predict VF and FF accurately in oilseed rape with estimation error below 6% and predict yield with estimation error below 20%.
Quantifying the uncertainty of regional and national estimates of soil carbon stocks
NASA Astrophysics Data System (ADS)
Papritz, Andreas
2013-04-01
At regional and national scales, carbon (C) stocks are frequently estimated by means of regression models. Such statistical models link measurements of carbons stocks, recorded for a set of soil profiles or soil cores, to covariates that characterize soil formation conditions and land management. A prerequisite is that these covariates are available for any location within a region of interest G because they are used along with the fitted regression coefficients to predict the carbon stocks at the nodes of a fine-meshed grid that is laid over G. The mean C stock in G is then estimated by the arithmetic mean of the stock predictions for the grid nodes. Apart from the mean stock, the precision of the estimate is often also of interest, for example to judge whether the mean C stock has changed significantly between two inventories. The standard error of the estimated mean stock in G can be computed from the regression results as well. Two issues are thereby important: (i) How large is the area of G relative to the support of the measurements? (ii) Are the residuals of the regression model spatially auto-correlated or is the assumption of statistical independence tenable? Both issues are correctly handled if one adopts a geostatistical block kriging approach for estimating the mean C stock within a region and its standard error. In the presentation I shall summarize the main ideas of external drift block kriging. To compute the standard error of the mean stock, one has in principle to sum the elements a potentially very large covariance matrix of point prediction errors, but I shall show that the required term can be approximated very well by Monte Carlo techniques. I shall further illustrated with a few examples how the standard error of the mean stock estimate changes with the size of G and with the strenght of the auto-correlation of the regression residuals. As an application a robust variant of block kriging is used to quantify the mean carbon stock stored in the soils of Swiss forests (Nussbaum et al., 2012). Nussbaum, M., Papritz, A., Baltensweiler, A., and Walthert, L. (2012). Organic carbon stocks of swiss forest soils. Final report, Institute of Terrestrial Ecosystems, ETH Zürich and Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), pp. 51, http://e-collection.library.ethz.ch/eserv/eth:6027/eth-6027-01.pdf
Darrington, Richard T; Jiao, Jim
2004-04-01
Rapid and accurate stability prediction is essential to pharmaceutical formulation development. Commonly used stability prediction methods include monitoring parent drug loss at intended storage conditions or initial rate determination of degradants under accelerated conditions. Monitoring parent drug loss at the intended storage condition does not provide a rapid and accurate stability assessment because often <0.5% drug loss is all that can be observed in a realistic time frame, while the accelerated initial rate method in conjunction with extrapolation of rate constants using the Arrhenius or Eyring equations often introduces large errors in shelf-life prediction. In this study, the shelf life prediction of a model pharmaceutical preparation utilizing sensitive high-performance liquid chromatography-mass spectrometry (LC/MS) to directly quantitate degradant formation rates at the intended storage condition is proposed. This method was compared to traditional shelf life prediction approaches in terms of time required to predict shelf life and associated error in shelf life estimation. Results demonstrated that the proposed LC/MS method using initial rates analysis provided significantly improved confidence intervals for the predicted shelf life and required less overall time and effort to obtain the stability estimation compared to the other methods evaluated. Copyright 2004 Wiley-Liss, Inc. and the American Pharmacists Association.
June and August median streamflows estimated for ungaged streams in southern Maine
Lombard, Pamela J.
2010-01-01
Methods for estimating June and August median streamflows were developed for ungaged, unregulated streams in southern Maine. The methods apply to streams with drainage areas ranging in size from 0.4 to 74 square miles, with percentage of basin underlain by a sand and gravel aquifer ranging from 0 to 84 percent, and with distance from the centroid of the basin to a Gulf of Maine line paralleling the coast ranging from 14 to 94 miles. Equations were developed with data from 4 long-term continuous-record streamgage stations and 27 partial-record streamgage stations. Estimates of median streamflows at the continuous-record and partial-record stations are presented. A mathematical technique for estimating standard low-flow statistics, such as June and August median streamflows, at partial-record streamgage stations was applied by relating base-flow measurements at these stations to concurrent daily streamflows at nearby long-term (at least 10 years of record) continuous-record streamgage stations (index stations). Weighted least-squares regression analysis (WLS) was used to relate estimates of June and August median streamflows at streamgage stations to basin characteristics at these same stations to develop equations that can be used to estimate June and August median streamflows on ungaged streams. WLS accounts for different periods of record at the gaging stations. Three basin characteristics-drainage area, percentage of basin underlain by a sand and gravel aquifer, and distance from the centroid of the basin to a Gulf of Maine line paralleling the coast-are used in the final regression equation to estimate June and August median streamflows for ungaged streams. The three-variable equation to estimate June median streamflow has an average standard error of prediction from -35 to 54 percent. The three-variable equation to estimate August median streamflow has an average standard error of prediction from -45 to 83 percent. Simpler one-variable equations that use only drainage area to estimate June and August median streamflows were developed for use when less accuracy is acceptable. These equations have average standard errors of prediction from -46 to 87 percent and from -57 to 133 percent, respectively.
Gueto, Carlos; Ruiz, José L; Torres, Juan E; Méndez, Jefferson; Vivas-Reyes, Ricardo
2008-03-01
Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were performed on a series of benzotriazine derivatives, as Src inhibitors. Ligand molecular superimposition on the template structure was performed by database alignment method. The statistically significant model was established of 72 molecules, which were validated by a test set of six compounds. The CoMFA model yielded a q(2)=0.526, non cross-validated R(2) of 0.781, F value of 88.132, bootstrapped R(2) of 0.831, standard error of prediction=0.587, and standard error of estimate=0.351 while the CoMSIA model yielded the best predictive model with a q(2)=0.647, non cross-validated R(2) of 0.895, F value of 115.906, bootstrapped R(2) of 0.953, standard error of prediction=0.519, and standard error of estimate=0.178. The contour maps obtained from 3D-QSAR studies were appraised for activity trends for the molecules analyzed. Results indicate that small steric volumes in the hydrophobic region, electron-withdrawing groups next to the aryl linker region, and atoms close to the solvent accessible region increase the Src inhibitory activity of the compounds. In fact, adding substituents at positions 5, 6, and 8 of the benzotriazine nucleus were generated new compounds having a higher predicted activity. The data generated from the present study will further help to design novel, potent, and selective Src inhibitors as anticancer therapeutic agents.
NASA Astrophysics Data System (ADS)
Baldwin, D.; Manfreda, S.; Keller, K.; Smithwick, E. A. H.
2017-03-01
Satellite-based near-surface (0-2 cm) soil moisture estimates have global coverage, but do not capture variations of soil moisture in the root zone (up to 100 cm depth) and may be biased with respect to ground-based soil moisture measurements. Here, we present an ensemble Kalman filter (EnKF) hydrologic data assimilation system that predicts bias in satellite soil moisture data to support the physically based Soil Moisture Analytical Relationship (SMAR) infiltration model, which estimates root zone soil moisture with satellite soil moisture data. The SMAR-EnKF model estimates a regional-scale bias parameter using available in situ data. The regional bias parameter is added to satellite soil moisture retrievals before their use in the SMAR model, and the bias parameter is updated continuously over time with the EnKF algorithm. In this study, the SMAR-EnKF assimilates in situ soil moisture at 43 Soil Climate Analysis Network (SCAN) monitoring locations across the conterminous U.S. Multivariate regression models are developed to estimate SMAR parameters using soil physical properties and the moderate resolution imaging spectroradiometer (MODIS) evapotranspiration data product as covariates. SMAR-EnKF root zone soil moisture predictions are in relatively close agreement with in situ observations when using optimal model parameters, with root mean square errors averaging 0.051 [cm3 cm-3] (standard error, s.e. = 0.005). The average root mean square error associated with a 20-fold cross-validation analysis with permuted SMAR parameter regression models increases moderately (0.082 [cm3 cm-3], s.e. = 0.004). The expected regional-scale satellite correction bias is negative in four out of six ecoregions studied (mean = -0.12 [-], s.e. = 0.002), excluding the Great Plains and Eastern Temperate Forests (0.053 [-], s.e. = 0.001). With its capability of estimating regional-scale satellite bias, the SMAR-EnKF system can predict root zone soil moisture over broad extents and has applications in drought predictions and other operational hydrologic modeling purposes.
Body composition in elderly people: effect of criterion estimates on predictive equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baumgartner, R.N.; Heymsfield, S.B.; Lichtman, S.
1991-06-01
The purposes of this study were to determine whether there are significant differences between two- and four-compartment model estimates of body composition, whether these differences are associated with aqueous and mineral fractions of the fat-free mass (FFM); and whether the differences are retained in equations for predicting body composition from anthropometry and bioelectric resistance. Body composition was estimated in 98 men and women aged 65-94 y by using a four-compartment model based on hydrodensitometry, {sup 3}H{sub 2}O dilution, and dual-photon absorptiometry. These estimates were significantly different from those obtained by using Siri's two-compartment model. The differences were associated significantly (Pmore » less than 0.0001) with variation in the aqueous fraction of FFM. Equations for predicting body composition from anthropometry and resistance, when calibrated against two-compartment model estimates, retained these systematic errors. Equations predicting body composition in elderly people should be calibrated against estimates from multicompartment models that consider variability in FFM composition.« less
Real-Time Ensemble Forecasting of Coronal Mass Ejections Using the Wsa-Enlil+Cone Model
NASA Astrophysics Data System (ADS)
Mays, M. L.; Taktakishvili, A.; Pulkkinen, A. A.; Odstrcil, D.; MacNeice, P. J.; Rastaetter, L.; LaSota, J. A.
2014-12-01
Ensemble forecasting of coronal mass ejections (CMEs) provides significant information in that it provides an estimation of the spread or uncertainty in CME arrival time predictions. Real-time ensemble modeling of CME propagation is performed by forecasters at the Space Weather Research Center (SWRC) using the WSA-ENLIL+cone model available at the Community Coordinated Modeling Center (CCMC). To estimate the effect of uncertainties in determining CME input parameters on arrival time predictions, a distribution of n (routinely n=48) CME input parameter sets are generated using the CCMC Stereo CME Analysis Tool (StereoCAT) which employs geometrical triangulation techniques. These input parameters are used to perform n different simulations yielding an ensemble of solar wind parameters at various locations of interest, including a probability distribution of CME arrival times (for hits), and geomagnetic storm strength (for Earth-directed hits). We present the results of ensemble simulations for a total of 38 CME events in 2013-2014. For 28 of the ensemble runs containing hits, the observed CME arrival was within the range of ensemble arrival time predictions for 14 runs (half). The average arrival time prediction was computed for each of the 28 ensembles predicting hits and using the actual arrival time, an average absolute error of 10.0 hours (RMSE=11.4 hours) was found for all 28 ensembles, which is comparable to current forecasting errors. Some considerations for the accuracy of ensemble CME arrival time predictions include the importance of the initial distribution of CME input parameters, particularly the mean and spread. When the observed arrivals are not within the predicted range, this still allows the ruling out of prediction errors caused by tested CME input parameters. Prediction errors can also arise from ambient model parameters such as the accuracy of the solar wind background, and other limitations. Additionally the ensemble modeling sysem was used to complete a parametric event case study of the sensitivity of the CME arrival time prediction to free parameters for ambient solar wind model and CME. The parameter sensitivity study suggests future directions for the system, such as running ensembles using various magnetogram inputs to the WSA model.
Modeling habitat dynamics accounting for possible misclassification
Veran, Sophie; Kleiner, Kevin J.; Choquet, Remi; Collazo, Jaime; Nichols, James D.
2012-01-01
Land cover data are widely used in ecology as land cover change is a major component of changes affecting ecological systems. Landscape change estimates are characterized by classification errors. Researchers have used error matrices to adjust estimates of areal extent, but estimation of land cover change is more difficult and more challenging, with error in classification being confused with change. We modeled land cover dynamics for a discrete set of habitat states. The approach accounts for state uncertainty to produce unbiased estimates of habitat transition probabilities using ground information to inform error rates. We consider the case when true and observed habitat states are available for the same geographic unit (pixel) and when true and observed states are obtained at one level of resolution, but transition probabilities estimated at a different level of resolution (aggregations of pixels). Simulation results showed a strong bias when estimating transition probabilities if misclassification was not accounted for. Scaling-up does not necessarily decrease the bias and can even increase it. Analyses of land cover data in the Southeast region of the USA showed that land change patterns appeared distorted if misclassification was not accounted for: rate of habitat turnover was artificially increased and habitat composition appeared more homogeneous. Not properly accounting for land cover misclassification can produce misleading inferences about habitat state and dynamics and also misleading predictions about species distributions based on habitat. Our models that explicitly account for state uncertainty should be useful in obtaining more accurate inferences about change from data that include errors.
Effects of exposure estimation errors on estimated exposure-response relations for PM2.5.
Cox, Louis Anthony Tony
2018-07-01
Associations between fine particulate matter (PM2.5) exposure concentrations and a wide variety of undesirable outcomes, from autism and auto theft to elderly mortality, suicide, and violent crime, have been widely reported. Influential articles have argued that reducing National Ambient Air Quality Standards for PM2.5 is desirable to reduce these outcomes. Yet, other studies have found that reducing black smoke and other particulate matter by as much as 70% and dozens of micrograms per cubic meter has not detectably affected all-cause mortality rates even after decades, despite strong, statistically significant positive exposure concentration-response (C-R) associations between them. This paper examines whether this disconnect between association and causation might be explained in part by ignored estimation errors in estimated exposure concentrations. We use EPA air quality monitor data from the Los Angeles area of California to examine the shapes of estimated C-R functions for PM2.5 when the true C-R functions are assumed to be step functions with well-defined response thresholds. The estimated C-R functions mistakenly show risk as smoothly increasing with concentrations even well below the response thresholds, thus incorrectly predicting substantial risk reductions from reductions in concentrations that do not affect health risks. We conclude that ignored estimation errors obscure the shapes of true C-R functions, including possible thresholds, possibly leading to unrealistic predictions of the changes in risk caused by changing exposures. Instead of estimating improvements in public health per unit reduction (e.g., per 10 µg/m 3 decrease) in average PM2.5 concentrations, it may be essential to consider how interventions change the distributions of exposure concentrations. Copyright © 2018 Elsevier Inc. All rights reserved.
Real-Time Dynamic Modeling - Data Information Requirements and Flight Test Results
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.; Smith, Mark S.
2010-01-01
Practical aspects of identifying dynamic models for aircraft in real time were studied. Topics include formulation of an equation-error method in the frequency domain to estimate non-dimensional stability and control derivatives in real time, data information content for accurate modeling results, and data information management techniques such as data forgetting, incorporating prior information, and optimized excitation. Real-time dynamic modeling was applied to simulation data and flight test data from a modified F-15B fighter aircraft, and to operational flight data from a subscale jet transport aircraft. Estimated parameter standard errors, prediction cases, and comparisons with results from a batch output-error method in the time domain were used to demonstrate the accuracy of the identified real-time models.
Determination of suitable drying curve model for bread moisture loss during baking
NASA Astrophysics Data System (ADS)
Soleimani Pour-Damanab, A. R.; Jafary, A.; Rafiee, S.
2013-03-01
This study presents mathematical modelling of bread moisture loss or drying during baking in a conventional bread baking process. In order to estimate and select the appropriate moisture loss curve equation, 11 different models, semi-theoretical and empirical, were applied to the experimental data and compared according to their correlation coefficients, chi-squared test and root mean square error which were predicted by nonlinear regression analysis. Consequently, of all the drying models, a Page model was selected as the best one, according to the correlation coefficients, chi-squared test, and root mean square error values and its simplicity. Mean absolute estimation error of the proposed model by linear regression analysis for natural and forced convection modes was 2.43, 4.74%, respectively.
NASA Astrophysics Data System (ADS)
Sadi, Maryam
2018-01-01
In this study a group method of data handling model has been successfully developed to predict heat capacity of ionic liquid based nanofluids by considering reduced temperature, acentric factor and molecular weight of ionic liquids, and nanoparticle concentration as input parameters. In order to accomplish modeling, 528 experimental data points extracted from the literature have been divided into training and testing subsets. The training set has been used to predict model coefficients and the testing set has been applied for model validation. The ability and accuracy of developed model, has been evaluated by comparison of model predictions with experimental values using different statistical parameters such as coefficient of determination, mean square error and mean absolute percentage error. The mean absolute percentage error of developed model for training and testing sets are 1.38% and 1.66%, respectively, which indicate excellent agreement between model predictions and experimental data. Also, the results estimated by the developed GMDH model exhibit a higher accuracy when compared to the available theoretical correlations.
Regionalization of harmonic-mean streamflows in Kentucky
Martin, Gary R.; Ruhl, Kevin J.
1993-01-01
Harmonic-mean streamflow (Qh), defined as the reciprocal of the arithmetic mean of the reciprocal daily streamflow values, was determined for selected stream sites in Kentucky. Daily mean discharges for the available period of record through the 1989 water year at 230 continuous record streamflow-gaging stations located in and adjacent to Kentucky were used in the analysis. Periods of record affected by regulation were identified and analyzed separately from periods of record unaffected by regulation. Record-extension procedures were applied to short-term stations to reducetime-sampling error and, thus, improve estimates of the long-term Qh. Techniques to estimate the Qh at ungaged stream sites in Kentucky were developed. A regression model relating Qh to total drainage area and streamflow-variability index was presented with example applications. The regression model has a standard error of estimate of 76 percent and a standard error of prediction of 78 percent.
NASA Astrophysics Data System (ADS)
Adineh-Vand, A.; Torabi, M.; Roshani, G. H.; Taghipour, M.; Feghhi, S. A. H.; Rezaei, M.; Sadati, S. M.
2013-09-01
This paper presents a soft computing based artificial intelligent technique, adaptive neuro-fuzzy inference system (ANFIS) to predict the neutron production rate (NPR) of IR-IECF device in wide discharge current and voltage ranges. A hybrid learning algorithm consists of back-propagation and least-squares estimation is used for training the ANFIS model. The performance of the proposed ANFIS model is tested using the experimental data using four performance measures: correlation coefficient, mean absolute error, mean relative error percentage (MRE%) and root mean square error. The obtained results show that the proposed ANFIS model has achieved good agreement with the experimental results. In comparison to the experimental data the proposed ANFIS model has MRE% <1.53 and 2.85 % for training and testing data respectively. Therefore, this model can be used as an efficient tool to predict the NPR in the IR-IECF device.
An assessment of air pollutant exposure methods in Mexico City, Mexico.
Rivera-González, Luis O; Zhang, Zhenzhen; Sánchez, Brisa N; Zhang, Kai; Brown, Daniel G; Rojas-Bracho, Leonora; Osornio-Vargas, Alvaro; Vadillo-Ortega, Felipe; O'Neill, Marie S
2015-05-01
Geostatistical interpolation methods to estimate individual exposure to outdoor air pollutants can be used in pregnancy cohorts where personal exposure data are not collected. Our objectives were to a) develop four assessment methods (citywide average (CWA); nearest monitor (NM); inverse distance weighting (IDW); and ordinary Kriging (OK)), and b) compare daily metrics and cross-validations of interpolation models. We obtained 2008 hourly data from Mexico City's outdoor air monitoring network for PM10, PM2.5, O3, CO, NO2, and SO2 and constructed daily exposure metrics for 1,000 simulated individual locations across five populated geographic zones. Descriptive statistics from all methods were calculated for dry and wet seasons, and by zone. We also evaluated IDW and OK methods' ability to predict measured concentrations at monitors using cross validation and a coefficient of variation (COV). All methods were performed using SAS 9.3, except ordinary Kriging which was modeled using R's gstat package. Overall, mean concentrations and standard deviations were similar among the different methods for each pollutant. Correlations between methods were generally high (r=0.77 to 0.99). However, ranges of estimated concentrations determined by NM, IDW, and OK were wider than the ranges for CWA. Root mean square errors for OK were consistently equal to or lower than for the IDW method. OK standard errors varied considerably between pollutants and the computed COVs ranged from 0.46 (least error) for SO2 and PM10 to 3.91 (most error) for PM2.5. OK predicted concentrations measured at the monitors better than IDW and NM. Given the similarity in results for the exposure methods, OK is preferred because this method alone provides predicted standard errors which can be incorporated in statistical models. The daily estimated exposures calculated using these different exposure methods provide flexibility to evaluate multiple windows of exposure during pregnancy, not just trimester or pregnancy-long exposures. Many studies evaluating associations between outdoor air pollution and adverse pregnancy outcomes rely on outdoor air pollution monitoring data linked to information gathered from large birth registries, and often lack residence location information needed to estimate individual exposure. This study simulated 1,000 residential locations to evaluate four air pollution exposure assessment methods, and describes possible exposure misclassification from using spatial averaging versus geostatistical interpolation models. An implication of this work is that policies to reduce air pollution and exposure among pregnant women based on epidemiologic literature should take into account possible error in estimates of effect when spatial averages alone are evaluated.
Event-Based Sensing and Control for Remote Robot Guidance: An Experimental Case
Santos, Carlos; Martínez-Rey, Miguel; Santiso, Enrique
2017-01-01
This paper describes the theoretical and practical foundations for remote control of a mobile robot for nonlinear trajectory tracking using an external localisation sensor. It constitutes a classical networked control system, whereby event-based techniques for both control and state estimation contribute to efficient use of communications and reduce sensor activity. Measurement requests are dictated by an event-based state estimator by setting an upper bound to the estimation error covariance matrix. The rest of the time, state prediction is carried out with the Unscented transformation. This prediction method makes it possible to select the appropriate instants at which to perform actuations on the robot so that guidance performance does not degrade below a certain threshold. Ultimately, we obtained a combined event-based control and estimation solution that drastically reduces communication accesses. The magnitude of this reduction is set according to the tracking error margin of a P3-DX robot following a nonlinear trajectory, remotely controlled with a mini PC and whose pose is detected by a camera sensor. PMID:28878144
NASA Astrophysics Data System (ADS)
Khademian, Amir; Abdollahipour, Hamed; Bagherpour, Raheb; Faramarzi, Lohrasb
2017-10-01
In addition to the numerous planning and executive challenges, underground excavation in urban areas is always followed by certain destructive effects especially on the ground surface; ground settlement is the most important of these effects for which estimation there exist different empirical, analytical and numerical methods. Since geotechnical models are associated with considerable model uncertainty, this study characterized the model uncertainty of settlement estimation models through a systematic comparison between model predictions and past performance data derived from instrumentation. To do so, the amount of surface settlement induced by excavation of the Qom subway tunnel was estimated via empirical (Peck), analytical (Loganathan and Poulos) and numerical (FDM) methods; the resulting maximum settlement value of each model were 1.86, 2.02 and 1.52 cm, respectively. The comparison of these predicted amounts with the actual data from instrumentation was employed to specify the uncertainty of each model. The numerical model outcomes, with a relative error of 3.8%, best matched the reality and the analytical method, with a relative error of 27.8%, yielded the highest level of model uncertainty.
NASA Astrophysics Data System (ADS)
Dushkin, A. V.; Kasatkina, T. I.; Novoseltsev, V. I.; Ivanov, S. V.
2018-03-01
The article proposes a forecasting method that allows, based on the given values of entropy and error level of the first and second kind, to determine the allowable time for forecasting the development of the characteristic parameters of a complex information system. The main feature of the method under consideration is the determination of changes in the characteristic parameters of the development of the information system in the form of the magnitude of the increment in the ratios of its entropy. When a predetermined value of the prediction error ratio is reached, that is, the entropy of the system, the characteristic parameters of the system and the depth of the prediction in time are estimated. The resulting values of the characteristics and will be optimal, since at that moment the system possessed the best ratio of entropy as a measure of the degree of organization and orderliness of the structure of the system. To construct a method for estimating the depth of prediction, it is expedient to use the maximum principle of the value of entropy.
A Formal Approach to Empirical Dynamic Model Optimization and Validation
NASA Technical Reports Server (NTRS)
Crespo, Luis G; Morelli, Eugene A.; Kenny, Sean P.; Giesy, Daniel P.
2014-01-01
A framework was developed for the optimization and validation of empirical dynamic models subject to an arbitrary set of validation criteria. The validation requirements imposed upon the model, which may involve several sets of input-output data and arbitrary specifications in time and frequency domains, are used to determine if model predictions are within admissible error limits. The parameters of the empirical model are estimated by finding the parameter realization for which the smallest of the margins of requirement compliance is as large as possible. The uncertainty in the value of this estimate is characterized by studying the set of model parameters yielding predictions that comply with all the requirements. Strategies are presented for bounding this set, studying its dependence on admissible prediction error set by the analyst, and evaluating the sensitivity of the model predictions to parameter variations. This information is instrumental in characterizing uncertainty models used for evaluating the dynamic model at operating conditions differing from those used for its identification and validation. A practical example based on the short period dynamics of the F-16 is used for illustration.
Analysis of the impact of error detection on computer performance
NASA Technical Reports Server (NTRS)
Shin, K. C.; Lee, Y. H.
1983-01-01
Conventionally, reliability analyses either assume that a fault/error is detected immediately following its occurrence, or neglect damages caused by latent errors. Though unrealistic, this assumption was imposed in order to avoid the difficulty of determining the respective probabilities that a fault induces an error and the error is then detected in a random amount of time after its occurrence. As a remedy for this problem a model is proposed to analyze the impact of error detection on computer performance under moderate assumptions. Error latency, the time interval between occurrence and the moment of detection, is used to measure the effectiveness of a detection mechanism. This model is used to: (1) predict the probability of producing an unreliable result, and (2) estimate the loss of computation due to fault and/or error.
Limited sampling strategy models for estimating the AUC of gliclazide in Chinese healthy volunteers.
Huang, Ji-Han; Wang, Kun; Huang, Xiao-Hui; He, Ying-Chun; Li, Lu-Jin; Sheng, Yu-Cheng; Yang, Juan; Zheng, Qing-Shan
2013-06-01
The aim of this work is to reduce the cost of required sampling for the estimation of the area under the gliclazide plasma concentration versus time curve within 60 h (AUC0-60t ). The limited sampling strategy (LSS) models were established and validated by the multiple regression model within 4 or fewer gliclazide concentration values. Absolute prediction error (APE), root of mean square error (RMSE) and visual prediction check were used as criterion. The results of Jack-Knife validation showed that 10 (25.0 %) of the 40 LSS based on the regression analysis were not within an APE of 15 % using one concentration-time point. 90.2, 91.5 and 92.4 % of the 40 LSS models were capable of prediction using 2, 3 and 4 points, respectively. Limited sampling strategies were developed and validated for estimating AUC0-60t of gliclazide. This study indicates that the implementation of an 80 mg dosage regimen enabled accurate predictions of AUC0-60t by the LSS model. This study shows that 12, 6, 4, 2 h after administration are the key sampling times. The combination of (12, 2 h), (12, 8, 2 h) or (12, 8, 4, 2 h) can be chosen as sampling hours for predicting AUC0-60t in practical application according to requirement.
Pomeroy, Emma; Macintosh, Alison; Wells, Jonathan C K; Cole, Tim J; Stock, Jay T
2018-05-01
Estimating body mass from skeletal dimensions is widely practiced, but methods for estimating its components (lean and fat mass) are poorly developed. The ability to estimate these characteristics would offer new insights into the evolution of body composition and its variation relative to past and present health. This study investigates the potential of long bone cross-sectional properties as predictors of body, lean, and fat mass. Humerus, femur and tibia midshaft cross-sectional properties were measured by peripheral quantitative computed tomography in sample of young adult women (n = 105) characterized by a range of activity levels. Body composition was estimated from bioimpedance analysis. Lean mass correlated most strongly with both upper and lower limb bone properties (r values up to 0.74), while fat mass showed weak correlations (r ≤ 0.29). Estimation equations generated from tibial midshaft properties indicated that lean mass could be estimated relatively reliably, with some improvement using logged data and including bone length in the models (minimum standard error of estimate = 8.9%). Body mass prediction was less reliable and fat mass only poorly predicted (standard errors of estimate ≥11.9% and >33%, respectively). Lean mass can be predicted more reliably than body mass from limb bone cross-sectional properties. The results highlight the potential for studying evolutionary trends in lean mass from skeletal remains, and have implications for understanding the relationship between bone morphology and body mass or composition. © 2018 The Authors. American Journal of Physical Anthropology Published by Wiley Periodicals, Inc.
Skeletal Correlates for Body Mass Estimation in Modern and Fossil Flying Birds
Field, Daniel J.; Lynner, Colton; Brown, Christian; Darroch, Simon A. F.
2013-01-01
Scaling relationships between skeletal dimensions and body mass in extant birds are often used to estimate body mass in fossil crown-group birds, as well as in stem-group avialans. However, useful statistical measurements for constraining the precision and accuracy of fossil mass estimates are rarely provided, which prevents the quantification of robust upper and lower bound body mass estimates for fossils. Here, we generate thirteen body mass correlations and associated measures of statistical robustness using a sample of 863 extant flying birds. By providing robust body mass regressions with upper- and lower-bound prediction intervals for individual skeletal elements, we address the longstanding problem of body mass estimation for highly fragmentary fossil birds. We demonstrate that the most precise proxy for estimating body mass in the overall dataset, measured both as coefficient determination of ordinary least squares regression and percent prediction error, is the maximum diameter of the coracoid’s humeral articulation facet (the glenoid). We further demonstrate that this result is consistent among the majority of investigated avian orders (10 out of 18). As a result, we suggest that, in the majority of cases, this proxy may provide the most accurate estimates of body mass for volant fossil birds. Additionally, by presenting statistical measurements of body mass prediction error for thirteen different body mass regressions, this study provides a much-needed quantitative framework for the accurate estimation of body mass and associated ecological correlates in fossil birds. The application of these regressions will enhance the precision and robustness of many mass-based inferences in future paleornithological studies. PMID:24312392
Assessing the external validity of algorithms to estimate EQ-5D-3L from the WOMAC.
Kiadaliri, Aliasghar A; Englund, Martin
2016-10-04
The use of mapping algorithms have been suggested as a solution to predict health utilities when no preference-based measure is included in the study. However, validity and predictive performance of these algorithms are highly variable and hence assessing the accuracy and validity of algorithms before use them in a new setting is of importance. The aim of the current study was to assess the predictive accuracy of three mapping algorithms to estimate the EQ-5D-3L from the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) among Swedish people with knee disorders. Two of these algorithms developed using ordinary least squares (OLS) models and one developed using mixture model. The data from 1078 subjects mean (SD) age 69.4 (7.2) years with frequent knee pain and/or knee osteoarthritis from the Malmö Osteoarthritis study in Sweden were used. The algorithms' performance was assessed using mean error, mean absolute error, and root mean squared error. Two types of prediction were estimated for mixture model: weighted average (WA), and conditional on estimated component (CEC). The overall mean was overpredicted by an OLS model and underpredicted by two other algorithms (P < 0.001). All predictions but the CEC predictions of mixture model had a narrower range than the observed scores (22 to 90 %). All algorithms suffered from overprediction for severe health states and underprediction for mild health states with lesser extent for mixture model. While the mixture model outperformed OLS models at the extremes of the EQ-5D-3D distribution, it underperformed around the center of the distribution. While algorithm based on mixture model reflected the distribution of EQ-5D-3L data more accurately compared with OLS models, all algorithms suffered from systematic bias. This calls for caution in applying these mapping algorithms in a new setting particularly in samples with milder knee problems than original sample. Assessing the impact of the choice of these algorithms on cost-effectiveness studies through sensitivity analysis is recommended.
Rogers, Paul; Fisk, John E; Lowrie, Emma
2017-11-01
The present study examines the extent to which stronger belief in either extrasensory perception, psychokinesis or life-after-death is associated with a proneness to making conjunction errors (CEs). One hundred and sixty members of the UK public read eight hypothetical scenarios and for each estimated the likelihood that two constituent events alone plus their conjunction would occur. The impact of paranormal belief plus constituents' conditional relatedness type, estimates of the subjectively less likely and more likely constituents plus relevant interaction terms tested via three Generalized Linear Mixed Models. General qualification levels were controlled for. As expected, stronger PK beliefs and depiction of a positively conditionally related (verses conditionally unrelated) constituent pairs predicted higher CE generation. ESP and LAD beliefs had no impact with, surprisingly, higher estimates of the less likely constituent predicting fewer - not more - CEs. Theoretical implications, methodological issues and ideas for future research are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.
Nakling, Jakob; Buhaug, Harald; Backe, Bjorn
2005-10-01
In a large unselected population of normal spontaneous pregnancies, to estimate the biologic variation of the interval from the first day of the last menstrual period to start of pregnancy, and the biologic variation of gestational length to delivery; and to estimate the random error of routine ultrasound assessment of gestational age in mid-second trimester. Cohort study of 11,238 singleton pregnancies, with spontaneous onset of labour and reliable last menstrual period. The day of delivery was predicted with two independent methods: According to the rule of Nägele and based on ultrasound examination in gestational weeks 17-19. For both methods, the mean difference between observed and predicted day of delivery was calculated. The variances of the differences were combined to estimate the variances of the two partitions of pregnancy. The biologic variation of the time from last menstrual period to pregnancy start was estimated to 7.0 days (standard deviation), and the standard deviation of the time to spontaneous delivery was estimated to 12.4 days. The estimate of the standard deviation of the random error of ultrasound assessed foetal age was 5.2 days. Even when the last menstrual period is reliable, the biologic variation of the time from last menstrual period to the real start of pregnancy is substantial, and must be taken into account. Reliable information about the first day of the last menstrual period is not equivalent with reliable information about the start of pregnancy.
Stature estimation equations for South Asian skeletons based on DXA scans of contemporary adults.
Pomeroy, Emma; Mushrif-Tripathy, Veena; Wells, Jonathan C K; Kulkarni, Bharati; Kinra, Sanjay; Stock, Jay T
2018-05-03
Stature estimation from the skeleton is a classic anthropological problem, and recent years have seen the proliferation of population-specific regression equations. Many rely on the anatomical reconstruction of stature from archaeological skeletons to derive regression equations based on long bone lengths, but this requires a collection with very good preservation. In some regions, for example, South Asia, typical environmental conditions preclude the sufficient preservation of skeletal remains. Large-scale epidemiological studies that include medical imaging of the skeleton by techniques such as dual-energy X-ray absorptiometry (DXA) offer new potential datasets for developing such equations. We derived estimation equations based on known height and bone lengths measured from DXA scans from the Andhra Pradesh Children and Parents Study (Hyderabad, India). Given debates on the most appropriate regression model to use, multiple methods were compared, and the performance of the equations was tested on a published skeletal dataset of individuals with known stature. The equations have standard errors of estimates and prediction errors similar to those derived using anatomical reconstruction or from cadaveric datasets. As measured by the number of significant differences between true and estimated stature, and the prediction errors, the new equations perform as well as, and generally better than, published equations commonly used on South Asian skeletons or based on Indian cadaveric datasets. This study demonstrates the utility of DXA scans as a data source for developing stature estimation equations and offer a new set of equations for use with South Asian datasets. © 2018 Wiley Periodicals, Inc.
David W. MacFarlane; Neil R. Ver Planck
2012-01-01
Data from hardwood trees in Michigan were analyzed to investigate how differences in whole-tree form and wood density between trees of different stem diameter relate to residual error in standard-type biomass equations. The results suggested that whole-tree wood density, measured at breast height, explained a significant proportion of residual error in standard-type...
An improved procedure for the validation of satellite-based precipitation estimates
NASA Astrophysics Data System (ADS)
Tang, Ling; Tian, Yudong; Yan, Fang; Habib, Emad
2015-09-01
The objective of this study is to propose and test a new procedure to improve the validation of remote-sensing, high-resolution precipitation estimates. Our recent studies show that many conventional validation measures do not accurately capture the unique error characteristics in precipitation estimates to better inform both data producers and users. The proposed new validation procedure has two steps: 1) an error decomposition approach to separate the total retrieval error into three independent components: hit error, false precipitation and missed precipitation; and 2) the hit error is further analyzed based on a multiplicative error model. In the multiplicative error model, the error features are captured by three model parameters. In this way, the multiplicative error model separates systematic and random errors, leading to more accurate quantification of the uncertainties. The proposed procedure is used to quantitatively evaluate the recent two versions (Version 6 and 7) of TRMM's Multi-sensor Precipitation Analysis (TMPA) real-time and research product suite (3B42 and 3B42RT) for seven years (2005-2011) over the continental United States (CONUS). The gauge-based National Centers for Environmental Prediction (NCEP) Climate Prediction Center (CPC) near-real-time daily precipitation analysis is used as the reference. In addition, the radar-based NCEP Stage IV precipitation data are also model-fitted to verify the effectiveness of the multiplicative error model. The results show that winter total bias is dominated by the missed precipitation over the west coastal areas and the Rocky Mountains, and the false precipitation over large areas in Midwest. The summer total bias is largely coming from the hit bias in Central US. Meanwhile, the new version (V7) tends to produce more rainfall in the higher rain rates, which moderates the significant underestimation exhibited in the previous V6 products. Moreover, the error analysis from the multiplicative error model provides a clear and concise picture of the systematic and random errors, with both versions of 3B42RT have higher errors in varying degrees than their research (post-real-time) counterparts. The new V7 algorithm shows obvious improvements in reducing random errors in both winter and summer seasons, compared to its predecessors V6. Stage IV, as expected, surpasses the satellite-based datasets in all the metrics over CONUS. Based on the results, we recommend the new procedure be adopted for routine validation of satellite-based precipitation datasets, and we expect the procedure will work effectively for higher resolution data to be produced in the Global Precipitation Measurement (GPM) era.
Dai, Wenrui; Xiong, Hongkai; Jiang, Xiaoqian; Chen, Chang Wen
2014-01-01
This paper proposes a novel model on intra coding for High Efficiency Video Coding (HEVC), which simultaneously predicts blocks of pixels with optimal rate distortion. It utilizes the spatial statistical correlation for the optimal prediction based on 2-D contexts, in addition to formulating the data-driven structural interdependences to make the prediction error coherent with the probability distribution, which is desirable for successful transform and coding. The structured set prediction model incorporates a max-margin Markov network (M3N) to regulate and optimize multiple block predictions. The model parameters are learned by discriminating the actual pixel value from other possible estimates to maximize the margin (i.e., decision boundary bandwidth). Compared to existing methods that focus on minimizing prediction error, the M3N-based model adaptively maintains the coherence for a set of predictions. Specifically, the proposed model concurrently optimizes a set of predictions by associating the loss for individual blocks to the joint distribution of succeeding discrete cosine transform coefficients. When the sample size grows, the prediction error is asymptotically upper bounded by the training error under the decomposable loss function. As an internal step, we optimize the underlying Markov network structure to find states that achieve the maximal energy using expectation propagation. For validation, we integrate the proposed model into HEVC for optimal mode selection on rate-distortion optimization. The proposed prediction model obtains up to 2.85% bit rate reduction and achieves better visual quality in comparison to the HEVC intra coding. PMID:25505829
NASA Astrophysics Data System (ADS)
Setiyorini, Anis; Suprijadi, Jadi; Handoko, Budhi
2017-03-01
Geographically Weighted Regression (GWR) is a regression model that takes into account the spatial heterogeneity effect. In the application of the GWR, inference on regression coefficients is often of interest, as is estimation and prediction of the response variable. Empirical research and studies have demonstrated that local correlation between explanatory variables can lead to estimated regression coefficients in GWR that are strongly correlated, a condition named multicollinearity. It later results on a large standard error on estimated regression coefficients, and, hence, problematic for inference on relationships between variables. Geographically Weighted Lasso (GWL) is a method which capable to deal with spatial heterogeneity and local multicollinearity in spatial data sets. GWL is a further development of GWR method, which adds a LASSO (Least Absolute Shrinkage and Selection Operator) constraint in parameter estimation. In this study, GWL will be applied by using fixed exponential kernel weights matrix to establish a poverty modeling of Java Island, Indonesia. The results of applying the GWL to poverty datasets show that this method stabilizes regression coefficients in the presence of multicollinearity and produces lower prediction and estimation error of the response variable than GWR does.
NASA Astrophysics Data System (ADS)
Shastri, Niket; Pathak, Kamlesh
2018-05-01
The water vapor content in atmosphere plays very important role in climate. In this paper the application of GPS signal in meteorology is discussed, which is useful technique that is used to estimate the perceptible water vapor of atmosphere. In this paper various algorithms like artificial neural network, support vector machine and multiple linear regression are use to predict perceptible water vapor. The comparative studies in terms of root mean square error and mean absolute errors are also carried out for all the algorithms.
Quantifying confidence in density functional theory predictions of magnetic ground states
NASA Astrophysics Data System (ADS)
Houchins, Gregory; Viswanathan, Venkatasubramanian
2017-10-01
Density functional theory (DFT) simulations, at the generalized gradient approximation (GGA) level, are being routinely used for material discovery based on high-throughput descriptor-based searches. The success of descriptor-based material design relies on eliminating bad candidates and keeping good candidates for further investigation. While DFT has been widely successfully for the former, oftentimes good candidates are lost due to the uncertainty associated with the DFT-predicted material properties. Uncertainty associated with DFT predictions has gained prominence and has led to the development of exchange correlation functionals that have built-in error estimation capability. In this work, we demonstrate the use of built-in error estimation capabilities within the BEEF-vdW exchange correlation functional for quantifying the uncertainty associated with the magnetic ground state of solids. We demonstrate this approach by calculating the uncertainty estimate for the energy difference between the different magnetic states of solids and compare them against a range of GGA exchange correlation functionals as is done in many first-principles calculations of materials. We show that this estimate reasonably bounds the range of values obtained with the different GGA functionals. The estimate is determined as a postprocessing step and thus provides a computationally robust and systematic approach to estimating uncertainty associated with predictions of magnetic ground states. We define a confidence value (c-value) that incorporates all calculated magnetic states in order to quantify the concurrence of the prediction at the GGA level and argue that predictions of magnetic ground states from GGA level DFT is incomplete without an accompanying c-value. We demonstrate the utility of this method using a case study of Li-ion and Na-ion cathode materials and the c-value metric correctly identifies that GGA-level DFT will have low predictability for NaFePO4F . Further, there needs to be a systematic test of a collection of plausible magnetic states, especially in identifying antiferromagnetic (AFM) ground states. We believe that our approach of estimating uncertainty can be readily incorporated into all high-throughput computational material discovery efforts and this will lead to a dramatic increase in the likelihood of finding good candidate materials.
Jones, J.W.; Jarnagin, T.
2009-01-01
Given the relatively high cost of mapping impervious surfaces at regional scales, substantial effort is being expended in the development of moderate-resolution, satellite-based methods for estimating impervious surface area (ISA). To rigorously assess the accuracy of these data products high quality, independently derived validation data are needed. High-resolution data were collected across a gradient of development within the Mid-Atlantic region to assess the accuracy of National Land Cover Data (NLCD) Landsat-based ISA estimates. Absolute error (satellite predicted area - "reference area") and relative error [satellite (predicted area - "reference area")/ "reference area"] were calculated for each of 240 sample regions that are each more than 15 Landsat pixels on a side. The ability to compile and examine ancillary data in a geographic information system environment provided for evaluation of both validation and NLCD data and afforded efficient exploration of observed errors. In a minority of cases, errors could be explained by temporal discontinuities between the date of satellite image capture and validation source data in rapidly changing places. In others, errors were created by vegetation cover over impervious surfaces and by other factors that bias the satellite processing algorithms. On average in the Mid-Atlantic region, the NLCD product underestimates ISA by approximately 5%. While the error range varies between 2 and 8%, this underestimation occurs regardless of development intensity. Through such analyses the errors, strengths, and weaknesses of particular satellite products can be explored to suggest appropriate uses for regional, satellite-based data in rapidly developing areas of environmental significance. ?? 2009 ASCE.
Multivariate poisson lognormal modeling of crashes by type and severity on rural two lane highways.
Wang, Kai; Ivan, John N; Ravishanker, Nalini; Jackson, Eric
2017-02-01
In an effort to improve traffic safety, there has been considerable interest in estimating crash prediction models and identifying factors contributing to crashes. To account for crash frequency variations among crash types and severities, crash prediction models have been estimated by type and severity. The univariate crash count models have been used by researchers to estimate crashes by crash type or severity, in which the crash counts by type or severity are assumed to be independent of one another and modelled separately. When considering crash types and severities simultaneously, this may neglect the potential correlations between crash counts due to the presence of shared unobserved factors across crash types or severities for a specific roadway intersection or segment, and might lead to biased parameter estimation and reduce model accuracy. The focus on this study is to estimate crashes by both crash type and crash severity using the Integrated Nested Laplace Approximation (INLA) Multivariate Poisson Lognormal (MVPLN) model, and identify the different effects of contributing factors on different crash type and severity counts on rural two-lane highways. The INLA MVPLN model can simultaneously model crash counts by crash type and crash severity by accounting for the potential correlations among them and significantly decreases the computational time compared with a fully Bayesian fitting of the MVPLN model using Markov Chain Monte Carlo (MCMC) method. This paper describes estimation of MVPLN models for three-way stop controlled (3ST) intersections, four-way stop controlled (4ST) intersections, four-way signalized (4SG) intersections, and roadway segments on rural two-lane highways. Annual Average Daily traffic (AADT) and variables describing roadway conditions (including presence of lighting, presence of left-turn/right-turn lane, lane width and shoulder width) were used as predictors. A Univariate Poisson Lognormal (UPLN) was estimated by crash type and severity for each highway facility, and their prediction results are compared with the MVPLN model based on the Average Predicted Mean Absolute Error (APMAE) statistic. A UPLN model for total crashes was also estimated to compare the coefficients of contributing factors with the models that estimate crashes by crash type and severity. The model coefficient estimates show that the signs of coefficients for presence of left-turn lane, presence of right-turn lane, land width and speed limit are different across crash type or severity counts, which suggest that estimating crashes by crash type or severity might be more helpful in identifying crash contributing factors. The standard errors of covariates in the MVPLN model are slightly lower than the UPLN model when the covariates are statistically significant, and the crash counts by crash type and severity are significantly correlated. The model prediction comparisons illustrate that the MVPLN model outperforms the UPLN model in prediction accuracy. Therefore, when predicting crash counts by crash type and crash severity for rural two-lane highways, the MVPLN model should be considered to avoid estimation error and to account for the potential correlations among crash type counts and crash severity counts. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Pauwels, V. R. N.; DeLannoy, G. J. M.; Hendricks Franssen, H.-J.; Vereecken, H.
2013-01-01
In this paper, we present a two-stage hybrid Kalman filter to estimate both observation and forecast bias in hydrologic models, in addition to state variables. The biases are estimated using the discrete Kalman filter, and the state variables using the ensemble Kalman filter. A key issue in this multi-component assimilation scheme is the exact partitioning of the difference between observation and forecasts into state, forecast bias and observation bias updates. Here, the error covariances of the forecast bias and the unbiased states are calculated as constant fractions of the biased state error covariance, and the observation bias error covariance is a function of the observation prediction error covariance. In a series of synthetic experiments, focusing on the assimilation of discharge into a rainfall-runoff model, it is shown that both static and dynamic observation and forecast biases can be successfully estimated. The results indicate a strong improvement in the estimation of the state variables and resulting discharge as opposed to the use of a bias-unaware ensemble Kalman filter. Furthermore, minimal code modification in existing data assimilation software is needed to implement the method. The results suggest that a better performance of data assimilation methods should be possible if both forecast and observation biases are taken into account.
Nonspinning numerical relativity waveform surrogates: assessing the model
NASA Astrophysics Data System (ADS)
Field, Scott; Blackman, Jonathan; Galley, Chad; Scheel, Mark; Szilagyi, Bela; Tiglio, Manuel
2015-04-01
Recently, multi-modal gravitational waveform surrogate models have been built directly from data numerically generated by the Spectral Einstein Code (SpEC). I will describe ways in which the surrogate model error can be quantified. This task, in turn, requires (i) characterizing differences between waveforms computed by SpEC with those predicted by the surrogate model and (ii) estimating errors associated with the SpEC waveforms from which the surrogate is built. Both pieces can have numerous sources of numerical and systematic errors. We make an attempt to study the most dominant error sources and, ultimately, the surrogate model's fidelity. These investigations yield information about the surrogate model's uncertainty as a function of time (or frequency) and parameter, and could be useful in parameter estimation studies which seek to incorporate model error. Finally, I will conclude by comparing the numerical relativity surrogate model to other inspiral-merger-ringdown models. A companion talk will cover the building of multi-modal surrogate models.
Predictive momentum management for a space station measurement and computation requirements
NASA Technical Reports Server (NTRS)
Adams, John Carl
1986-01-01
An analysis is made of the effects of errors and uncertainties in the predicting of disturbance torques on the peak momentum buildup on a space station. Models of the disturbance torques acting on a space station in low Earth orbit are presented, to estimate how accurately they can be predicted. An analysis of the torque and momentum buildup about the pitch axis of the Dual Keel space station configuration is formulated, and a derivation of the Average Torque Equilibrium Attitude (ATEA) is presented, for the case of no MRMS (Mobile Remote Manipulation System) motion, Y vehicle axis MRMS motion, and Z vehicle axis MRMS motion. Results showed the peak momentum buildup to be approximately 20000 N-m-s and to be relatively insensitive to errors in the predicting torque models, for Z axis motion of the MRMS was found to vary significantly with model errors, but not exceed a value of approximately 15000 N-m-s for the Y axis MRMS motion with 1 deg attitude hold error. Minimum peak disturbance momentum was found not to occur at the ATEA angle, but at a slightly smaller angle. However, this minimum peak momentum attitude was found to produce significant disturbance momentum at the end of the predicting time interval.
Luo, Ke; Hong, Sung-Sam; Wang, Jun; Chung, Mi-Ja; Deog-Hwan, Oh
2015-05-01
This study was conducted to develop a predictive model to estimate the growth of Listeria monocytogenes on fresh pork during storage at constant temperatures (5, 10, 15, 20, 25, 30, and 35°C). The Baranyi model was fitted to growth data (log CFU per gram) to calculate the specific growth rate (SGR) and lag time (LT) with a high coefficient of determination (R(2) > 0.98). As expected, SGR increased with a decline in LT with rising temperatures in all samples. Secondary models were then developed to describe the variation of SGR and LT as a function of temperature. Subsequently, the developed models were validated with additional independent growth data collected at 7, 17, 27, and 37°C and from published reports using proportion of relative errors and proportion of standard error of prediction. The proportion of relative errors of the SGR and LT models developed herein were 0.79 and 0.18, respectively. In addition, the standard error of prediction values of the SGR and LT of L. monocytogenes ranged from 25.7 to 33.1% and from 44.92 to 58.44%, respectively. These results suggest that the model developed in this study was capable of predicting the growth of L. monocytogenes under various isothermal conditions.
Creel, Scott; Creel, Michael
2009-11-01
1. Sampling error in annual estimates of population size creates two widely recognized problems for the analysis of population growth. First, if sampling error is mistakenly treated as process error, one obtains inflated estimates of the variation in true population trajectories (Staples, Taper & Dennis 2004). Second, treating sampling error as process error is thought to overestimate the importance of density dependence in population growth (Viljugrein et al. 2005; Dennis et al. 2006). 2. In ecology, state-space models are used to account for sampling error when estimating the effects of density and other variables on population growth (Staples et al. 2004; Dennis et al. 2006). In econometrics, regression with instrumental variables is a well-established method that addresses the problem of correlation between regressors and the error term, but requires fewer assumptions than state-space models (Davidson & MacKinnon 1993; Cameron & Trivedi 2005). 3. We used instrumental variables to account for sampling error and fit a generalized linear model to 472 annual observations of population size for 35 Elk Management Units in Montana, from 1928 to 2004. We compared this model with state-space models fit with the likelihood function of Dennis et al. (2006). We discuss the general advantages and disadvantages of each method. Briefly, regression with instrumental variables is valid with fewer distributional assumptions, but state-space models are more efficient when their distributional assumptions are met. 4. Both methods found that population growth was negatively related to population density and winter snow accumulation. Summer rainfall and wolf (Canis lupus) presence had much weaker effects on elk (Cervus elaphus) dynamics [though limitation by wolves is strong in some elk populations with well-established wolf populations (Creel et al. 2007; Creel & Christianson 2008)]. 5. Coupled with predictions for Montana from global and regional climate models, our results predict a substantial reduction in the limiting effect of snow accumulation on Montana elk populations in the coming decades. If other limiting factors do not operate with greater force, population growth rates would increase substantially.
Butler, Troy; Wildey, Timothy
2018-01-01
In thist study, we develop a procedure to utilize error estimates for samples of a surrogate model to compute robust upper and lower bounds on estimates of probabilities of events. We show that these error estimates can also be used in an adaptive algorithm to simultaneously reduce the computational cost and increase the accuracy in estimating probabilities of events using computationally expensive high-fidelity models. Specifically, we introduce the notion of reliability of a sample of a surrogate model, and we prove that utilizing the surrogate model for the reliable samples and the high-fidelity model for the unreliable samples gives preciselymore » the same estimate of the probability of the output event as would be obtained by evaluation of the original model for each sample. The adaptive algorithm uses the additional evaluations of the high-fidelity model for the unreliable samples to locally improve the surrogate model near the limit state, which significantly reduces the number of high-fidelity model evaluations as the limit state is resolved. Numerical results based on a recently developed adjoint-based approach for estimating the error in samples of a surrogate are provided to demonstrate (1) the robustness of the bounds on the probability of an event, and (2) that the adaptive enhancement algorithm provides a more accurate estimate of the probability of the QoI event than standard response surface approximation methods at a lower computational cost.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, Troy; Wildey, Timothy
In thist study, we develop a procedure to utilize error estimates for samples of a surrogate model to compute robust upper and lower bounds on estimates of probabilities of events. We show that these error estimates can also be used in an adaptive algorithm to simultaneously reduce the computational cost and increase the accuracy in estimating probabilities of events using computationally expensive high-fidelity models. Specifically, we introduce the notion of reliability of a sample of a surrogate model, and we prove that utilizing the surrogate model for the reliable samples and the high-fidelity model for the unreliable samples gives preciselymore » the same estimate of the probability of the output event as would be obtained by evaluation of the original model for each sample. The adaptive algorithm uses the additional evaluations of the high-fidelity model for the unreliable samples to locally improve the surrogate model near the limit state, which significantly reduces the number of high-fidelity model evaluations as the limit state is resolved. Numerical results based on a recently developed adjoint-based approach for estimating the error in samples of a surrogate are provided to demonstrate (1) the robustness of the bounds on the probability of an event, and (2) that the adaptive enhancement algorithm provides a more accurate estimate of the probability of the QoI event than standard response surface approximation methods at a lower computational cost.« less
NASA Astrophysics Data System (ADS)
Al-Mudhafar, W. J.
2013-12-01
Precisely prediction of rock facies leads to adequate reservoir characterization by improving the porosity-permeability relationships to estimate the properties in non-cored intervals. It also helps to accurately identify the spatial facies distribution to perform an accurate reservoir model for optimal future reservoir performance. In this paper, the facies estimation has been done through Multinomial logistic regression (MLR) with respect to the well logs and core data in a well in upper sandstone formation of South Rumaila oil field. The entire independent variables are gamma rays, formation density, water saturation, shale volume, log porosity, core porosity, and core permeability. Firstly, Robust Sequential Imputation Algorithm has been considered to impute the missing data. This algorithm starts from a complete subset of the dataset and estimates sequentially the missing values in an incomplete observation by minimizing the determinant of the covariance of the augmented data matrix. Then, the observation is added to the complete data matrix and the algorithm continues with the next observation with missing values. The MLR has been chosen to estimate the maximum likelihood and minimize the standard error for the nonlinear relationships between facies & core and log data. The MLR is used to predict the probabilities of the different possible facies given each independent variable by constructing a linear predictor function having a set of weights that are linearly combined with the independent variables by using a dot product. Beta distribution of facies has been considered as prior knowledge and the resulted predicted probability (posterior) has been estimated from MLR based on Baye's theorem that represents the relationship between predicted probability (posterior) with the conditional probability and the prior knowledge. To assess the statistical accuracy of the model, the bootstrap should be carried out to estimate extra-sample prediction error by randomly drawing datasets with replacement from the training data. Each sample has the same size of the original training set and it can be conducted N times to produce N bootstrap datasets to re-fit the model accordingly to decrease the squared difference between the estimated and observed categorical variables (facies) leading to decrease the degree of uncertainty.
Optimal full motion video registration with rigorous error propagation
NASA Astrophysics Data System (ADS)
Dolloff, John; Hottel, Bryant; Doucette, Peter; Theiss, Henry; Jocher, Glenn
2014-06-01
Optimal full motion video (FMV) registration is a crucial need for the Geospatial community. It is required for subsequent and optimal geopositioning with simultaneous and reliable accuracy prediction. An overall approach being developed for such registration is presented that models relevant error sources in terms of the expected magnitude and correlation of sensor errors. The corresponding estimator is selected based on the level of accuracy of the a priori information of the sensor's trajectory and attitude (pointing) information, in order to best deal with non-linearity effects. Estimator choices include near real-time Kalman Filters and batch Weighted Least Squares. Registration solves for corrections to the sensor a priori information for each frame. It also computes and makes available a posteriori accuracy information, i.e., the expected magnitude and correlation of sensor registration errors. Both the registered sensor data and its a posteriori accuracy information are then made available to "down-stream" Multi-Image Geopositioning (MIG) processes. An object of interest is then measured on the registered frames and a multi-image optimal solution, including reliable predicted solution accuracy, is then performed for the object's 3D coordinates. This paper also describes a robust approach to registration when a priori information of sensor attitude is unavailable. It makes use of structure-from-motion principles, but does not use standard Computer Vision techniques, such as estimation of the Essential Matrix which can be very sensitive to noise. The approach used instead is a novel, robust, direct search-based technique.
Representation of deformable motion for compression of dynamic cardiac image data
NASA Astrophysics Data System (ADS)
Weinlich, Andreas; Amon, Peter; Hutter, Andreas; Kaup, André
2012-02-01
We present a new approach for efficient estimation and storage of tissue deformation in dynamic medical image data like 3-D+t computed tomography reconstructions of human heart acquisitions. Tissue deformation between two points in time can be described by means of a displacement vector field indicating for each voxel of a slice, from which position in the previous slice at a fixed position in the third dimension it has moved to this position. Our deformation model represents the motion in a compact manner using a down-sampled potential function of the displacement vector field. This function is obtained by a Gauss-Newton minimization of the estimation error image, i. e., the difference between the current and the deformed previous slice. For lossless or lossy compression of volume slices, the potential function and the error image can afterwards be coded separately. By assuming deformations instead of translational motion, a subsequent coding algorithm using this method will achieve better compression ratios for medical volume data than with conventional block-based motion compensation known from video coding. Due to the smooth prediction without block artifacts, particularly whole-image transforms like wavelet decomposition as well as intra-slice prediction methods can benefit from this approach. We show that with discrete cosine as well as with Karhunen-Lo`eve transform the method can achieve a better energy compaction of the error image than block-based motion compensation while reaching approximately the same prediction error energy.
Mendiburu, Andrés Z; de Carvalho, João A; Coronado, Christian R
2015-03-21
Estimation of the lower flammability limits of C-H compounds at 25 °C and 1 atm; at moderate temperatures and in presence of diluent was the objective of this study. A set of 120 C-H compounds was divided into a correlation set and a prediction set of 60 compounds each. The absolute average relative error for the total set was 7.89%; for the correlation set, it was 6.09%; and for the prediction set it was 9.68%. However, it was shown that by considering different sources of experimental data the values were reduced to 6.5% for the prediction set and to 6.29% for the total set. The method showed consistency with Le Chatelier's law for binary mixtures of C-H compounds. When tested for a temperature range from 5 °C to 100 °C, the absolute average relative errors were 2.41% for methane; 4.78% for propane; 0.29% for iso-butane and 3.86% for propylene. When nitrogen was added, the absolute average relative errors were 2.48% for methane; 5.13% for propane; 0.11% for iso-butane and 0.15% for propylene. When carbon dioxide was added, the absolute relative errors were 1.80% for methane; 5.38% for propane; 0.86% for iso-butane and 1.06% for propylene. Copyright © 2014 Elsevier B.V. All rights reserved.
Assessing uncertainty in high-resolution spatial climate data across the US Northeast.
Bishop, Daniel A; Beier, Colin M
2013-01-01
Local and regional-scale knowledge of climate change is needed to model ecosystem responses, assess vulnerabilities and devise effective adaptation strategies. High-resolution gridded historical climate (GHC) products address this need, but come with multiple sources of uncertainty that are typically not well understood by data users. To better understand this uncertainty in a region with a complex climatology, we conducted a ground-truthing analysis of two 4 km GHC temperature products (PRISM and NRCC) for the US Northeast using 51 Cooperative Network (COOP) weather stations utilized by both GHC products. We estimated GHC prediction error for monthly temperature means and trends (1980-2009) across the US Northeast and evaluated any landscape effects (e.g., elevation, distance from coast) on those prediction errors. Results indicated that station-based prediction errors for the two GHC products were similar in magnitude, but on average, the NRCC product predicted cooler than observed temperature means and trends, while PRISM was cooler for means and warmer for trends. We found no evidence for systematic sources of uncertainty across the US Northeast, although errors were largest at high elevations. Errors in the coarse-scale (4 km) digital elevation models used by each product were correlated with temperature prediction errors, more so for NRCC than PRISM. In summary, uncertainty in spatial climate data has many sources and we recommend that data users develop an understanding of uncertainty at the appropriate scales for their purposes. To this end, we demonstrate a simple method for utilizing weather stations to assess local GHC uncertainty and inform decisions among alternative GHC products.
Achievable accuracy of hip screw holding power estimation by insertion torque measurement.
Erani, Paolo; Baleani, Massimiliano
2018-02-01
To ensure stability of proximal femoral fractures, the hip screw must firmly engage into the femoral head. Some studies suggested that screw holding power into trabecular bone could be evaluated, intraoperatively, through measurement of screw insertion torque. However, those studies used synthetic bone, instead of trabecular bone, as host material or they did not evaluate accuracy of predictions. We determined prediction accuracy, also assessing the impact of screw design and host material. We measured, under highly-repeatable experimental conditions, disregarding clinical procedure complexities, insertion torque and pullout strength of four screw designs, both in 120 synthetic and 80 trabecular bone specimens of variable density. For both host materials, we calculated the root-mean-square error and the mean-absolute-percentage error of predictions based on the best fitting model of torque-pullout data, in both single-screw and merged dataset. Predictions based on screw-specific regression models were the most accurate. Host material impacts on prediction accuracy: the replacement of synthetic with trabecular bone decreased both root-mean-square errors, from 0.54 ÷ 0.76 kN to 0.21 ÷ 0.40 kN, and mean-absolute-percentage errors, from 14 ÷ 21% to 10 ÷ 12%. However, holding power predicted on low insertion torque remained inaccurate, with errors up to 40% for torques below 1 Nm. In poor-quality trabecular bone, tissue inhomogeneities likely affect pullout strength and insertion torque to different extents, limiting the predictive power of the latter. This bias decreases when the screw engages good-quality bone. Under this condition, predictions become more accurate although this result must be confirmed by close in-vitro simulation of the clinical procedure. Copyright © 2018 Elsevier Ltd. All rights reserved.
Application of RBFN network and GM (1, 1) for groundwater level simulation
NASA Astrophysics Data System (ADS)
Li, Zijun; Yang, Qingchun; Wang, Luchen; Martín, Jordi Delgado
2017-10-01
Groundwater is a prominent resource of drinking and domestic water in the world. In this context, a feasible water resources management plan necessitates acceptable predictions of groundwater table depth fluctuations, which can help ensure the sustainable use of a watershed's aquifers for urban and rural water supply. Due to the difficulties of identifying non-linear model structure and estimating the associated parameters, in this study radial basis function neural network (RBFNN) and GM (1, 1) models are used for the prediction of monthly groundwater level fluctuations in the city of Longyan, Fujian Province (South China). The monthly groundwater level data monitored from January 2003 to December 2011 are used in both models. The error criteria are estimated using the coefficient of determination ( R 2), mean absolute error (E) and root mean squared error (RMSE). The results show that both the models can forecast the groundwater level with fairly high accuracy, but the RBFN network model can be a promising tool to simulate and forecast groundwater level since it has a relatively smaller RMSE and MAE.
Survey and Method for Determination of Trajectory Predictor Requirements
NASA Technical Reports Server (NTRS)
Rentas, Tamika L.; Green, Steven M.; Cate, Karen Tung
2009-01-01
A survey of air-traffic-management researchers, representing a broad range of automation applications, was conducted to document trajectory-predictor requirements for future decision-support systems. Results indicated that the researchers were unable to articulate a basic set of trajectory-prediction requirements for their automation concepts. Survey responses showed the need to establish a process to help developers determine the trajectory-predictor-performance requirements for their concepts. Two methods for determining trajectory-predictor requirements are introduced. A fast-time simulation method is discussed that captures the sensitivity of a concept to the performance of its trajectory-prediction capability. A characterization method is proposed to provide quicker, yet less precise results, based on analysis and simulation to characterize the trajectory-prediction errors associated with key modeling options for a specific concept. Concept developers can then identify the relative sizes of errors associated with key modeling options, and qualitatively determine which options lead to significant errors. The characterization method is demonstrated for a case study involving future airport surface traffic management automation. Of the top four sources of error, results indicated that the error associated with accelerations to and from turn speeds was unacceptable, the error associated with the turn path model was acceptable, and the error associated with taxi-speed estimation was of concern and needed a higher fidelity concept simulation to obtain a more precise result
Dorazio, Robert M.
2012-01-01
Several models have been developed to predict the geographic distribution of a species by combining measurements of covariates of occurrence at locations where the species is known to be present with measurements of the same covariates at other locations where species occurrence status (presence or absence) is unknown. In the absence of species detection errors, spatial point-process models and binary-regression models for case-augmented surveys provide consistent estimators of a species’ geographic distribution without prior knowledge of species prevalence. In addition, these regression models can be modified to produce estimators of species abundance that are asymptotically equivalent to those of the spatial point-process models. However, if species presence locations are subject to detection errors, neither class of models provides a consistent estimator of covariate effects unless the covariates of species abundance are distinct and independently distributed from the covariates of species detection probability. These analytical results are illustrated using simulation studies of data sets that contain a wide range of presence-only sample sizes. Analyses of presence-only data of three avian species observed in a survey of landbirds in western Montana and northern Idaho are compared with site-occupancy analyses of detections and nondetections of these species.
Joshi, Shuchi N; Srinivas, Nuggehally R; Parmar, Deven V
2018-03-01
Our aim was to develop and validate the extrapolative performance of a regression model using a limited sampling strategy for accurate estimation of the area under the plasma concentration versus time curve for saroglitazar. Healthy subject pharmacokinetic data from a well-powered food-effect study (fasted vs fed treatments; n = 50) was used in this work. The first 25 subjects' serial plasma concentration data up to 72 hours and corresponding AUC 0-t (ie, 72 hours) from the fasting group comprised a training dataset to develop the limited sampling model. The internal datasets for prediction included the remaining 25 subjects from the fasting group and all 50 subjects from the fed condition of the same study. The external datasets included pharmacokinetic data for saroglitazar from previous single-dose clinical studies. Limited sampling models were composed of 1-, 2-, and 3-concentration-time points' correlation with AUC 0-t of saroglitazar. Only models with regression coefficients (R 2 ) >0.90 were screened for further evaluation. The best R 2 model was validated for its utility based on mean prediction error, mean absolute prediction error, and root mean square error. Both correlations between predicted and observed AUC 0-t of saroglitazar and verification of precision and bias using Bland-Altman plot were carried out. None of the evaluated 1- and 2-concentration-time points models achieved R 2 > 0.90. Among the various 3-concentration-time points models, only 4 equations passed the predefined criterion of R 2 > 0.90. Limited sampling models with time points 0.5, 2, and 8 hours (R 2 = 0.9323) and 0.75, 2, and 8 hours (R 2 = 0.9375) were validated. Mean prediction error, mean absolute prediction error, and root mean square error were <30% (predefined criterion) and correlation (r) was at least 0.7950 for the consolidated internal and external datasets of 102 healthy subjects for the AUC 0-t prediction of saroglitazar. The same models, when applied to the AUC 0-t prediction of saroglitazar sulfoxide, showed mean prediction error, mean absolute prediction error, and root mean square error <30% and correlation (r) was at least 0.9339 in the same pool of healthy subjects. A 3-concentration-time points limited sampling model predicts the exposure of saroglitazar (ie, AUC 0-t ) within predefined acceptable bias and imprecision limit. Same model was also used to predict AUC 0-∞ . The same limited sampling model was found to predict the exposure of saroglitazar sulfoxide within predefined criteria. This model can find utility during late-phase clinical development of saroglitazar in the patient population. Copyright © 2018 Elsevier HS Journals, Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Rodríguez-Rincón, J. P.; Pedrozo-Acuña, A.; Breña-Naranjo, J. A.
2015-07-01
This investigation aims to study the propagation of meteorological uncertainty within a cascade modelling approach to flood prediction. The methodology was comprised of a numerical weather prediction (NWP) model, a distributed rainfall-runoff model and a 2-D hydrodynamic model. The uncertainty evaluation was carried out at the meteorological and hydrological levels of the model chain, which enabled the investigation of how errors that originated in the rainfall prediction interact at a catchment level and propagate to an estimated inundation area and depth. For this, a hindcast scenario is utilised removing non-behavioural ensemble members at each stage, based on the fit with observed data. At the hydrodynamic level, an uncertainty assessment was not incorporated; instead, the model was setup following guidelines for the best possible representation of the case study. The selected extreme event corresponds to a flood that took place in the southeast of Mexico during November 2009, for which field data (e.g. rain gauges; discharge) and satellite imagery were available. Uncertainty in the meteorological model was estimated by means of a multi-physics ensemble technique, which is designed to represent errors from our limited knowledge of the processes generating precipitation. In the hydrological model, a multi-response validation was implemented through the definition of six sets of plausible parameters from past flood events. Precipitation fields from the meteorological model were employed as input in a distributed hydrological model, and resulting flood hydrographs were used as forcing conditions in the 2-D hydrodynamic model. The evolution of skill within the model cascade shows a complex aggregation of errors between models, suggesting that in valley-filling events hydro-meteorological uncertainty has a larger effect on inundation depths than that observed in estimated flood inundation extents.
Body mass prediction from skeletal frame size in elite athletes.
Ruff, C B
2000-12-01
Body mass can be estimated from measures of skeletal frame size (stature and bi-iliac (maximum pelvic) breadth) fairly accurately in modern human populations. However, it is not clear whether such a technique will lead to systematic biases in body mass estimation when applied to earlier hominins. Here the stature/bi-iliac method is tested, using data available for modern Olympic and Olympic-caliber athletes, with the rationale that these individuals may be more representative of the general physique and degree of physical conditioning characteristic of earlier populations. The average percent prediction error of body mass among both male and female athletes is less than 3%, with males slightly underestimated and females slightly overestimated. Among males, the ratio of shoulder to hip (biacromial/bi-iliac) breadth is correlated with prediction error, while lower limb/trunk length has only a weak inconsistent effect. In both sexes, athletes in "weight" events (e.g. , shot put, weight-lifting), which emphasize strength, are underestimated, while those in more endurance-related events (e.g., long distance running) are overestimated. It is likely that the environmental pressures facing earlier hominins would have favored more generalized physiques adapted for a combination of strength, speed, agility, and endurance. The events most closely approximating these requirements in Olympic athletes are the decathlon, pentathlon, and wrestling, all of which have average percent prediction errors of body mass of 5% or less. Thus, "morphometric" estimation of body mass from skeletal frame size appears to work reasonably well in both "normal" and highly athletic modern humans, increasing confidence that the technique will also be applicable to earlier hominins. Copyright 2000 Wiley-Liss, Inc.
Hidalgo-Rodríguez, Marta; Soriano-Meseguer, Sara; Fuguet, Elisabet; Ràfols, Clara; Rosés, Martí
2013-12-18
Several chromatographic systems (three systems of high-performance liquid chromatography and two micellar electrokinetic chromatography systems) besides the reference octanol-water partition system are evaluated by a systematic procedure previously proposed in order to know their ability to model human skin permeation. The precision achieved when skin-water permeability coefficients are correlated against chromatographic retention factors is predicted within the framework of the solvation parameter model. It consists in estimating the contribution of error due to the biological and chromatographic data, as well as the error coming from the dissimilarity between the human skin permeation and the chromatographic systems. Both predictions and experimental tests show that all correlations are greatly affected by the considerable uncertainty of the skin permeability data and the error associated to the dissimilarity between the systems. Correlations with much better predictive abilities are achieved when the volume of the solute is used as additional variable, which illustrates the main roles of both lipophilicity and size of the solute to penetrate through the skin. In this way, the considered systems are able to give precise estimations of human skin permeability coefficients. In particular, the HPLC systems with common C18 columns provide the best performances in emulating the permeation of neutral compounds from aqueous solution through the human skin. As a result, a methodology based on easy, fast, and economical HPLC measurements in a common C18 column has been developed. After a validation based on training and test sets, the method has been applied with good results to the estimation of skin permeation of several hormones and pesticides. Copyright © 2013 Elsevier B.V. All rights reserved.
A fresh look at the predictors of naming accuracy and errors in Alzheimer's disease.
Cuetos, Fernando; Rodríguez-Ferreiro, Javier; Sage, Karen; Ellis, Andrew W
2012-09-01
In recent years, a considerable number of studies have tried to establish which characteristics of objects and their names predict the responses of patients with Alzheimer's disease (AD) in the picture-naming task. The frequency of use of words and their age of acquisition (AoA) have been implicated as two of the most influential variables, with naming being best preserved for objects with high-frequency, early-acquired names. The present study takes a fresh look at the predictors of naming success in Spanish and English AD patients using a range of measures of word frequency and AoA along with visual complexity, imageability, and word length as predictors. Analyses using generalized linear mixed modelling found that naming accuracy was better predicted by AoA ratings taken from older adults than conventional ratings from young adults. Older frequency measures based on written language samples predicted accuracy better than more modern measures based on the frequencies of words in film subtitles. Replacing adult frequency with an estimate of cumulative (lifespan) frequency did not reduce the impact of AoA. Semantic error rates were predicted by both written word frequency and senior AoA while null response errors were only predicted by frequency. Visual complexity, imageability, and word length did not predict naming accuracy or errors. ©2012 The British Psychological Society.
Bouchez, A; Goffinet, B
1990-02-01
Selection indices can be used to predict one trait from information available on several traits in order to improve the prediction accuracy. Plant or animal breeders are interested in selecting only the best individuals, and need to compare the efficiency of different trait combinations in order to choose the index ensuring the best prediction quality for individual values. As the usual tools for index evaluation do not remain unbiased in all cases, we propose a robust way of evaluation by means of an estimator of the mean-square error of prediction (EMSEP). This estimator remains valid even when parameters are not known, as usually assumed, but are estimated. EMSEP is applied to the choice of an indirect multitrait selection index at the F5 generation of a classical breeding scheme for soybeans. Best predictions for precocity are obtained by means of indices using only part of the available information.
Sando, Roy; Chase, Katherine J.
2017-03-23
A common statistical procedure for estimating streamflow statistics at ungaged locations is to develop a relational model between streamflow and drainage basin characteristics at gaged locations using least squares regression analysis; however, least squares regression methods are parametric and make constraining assumptions about the data distribution. The random forest regression method provides an alternative nonparametric method for estimating streamflow characteristics at ungaged sites and requires that the data meet fewer statistical conditions than least squares regression methods.Random forest regression analysis was used to develop predictive models for 89 streamflow characteristics using Precipitation-Runoff Modeling System simulated streamflow data and drainage basin characteristics at 179 sites in central and eastern Montana. The predictive models were developed from streamflow data simulated for current (baseline, water years 1982–99) conditions and three future periods (water years 2021–38, 2046–63, and 2071–88) under three different climate-change scenarios. These predictive models were then used to predict streamflow characteristics for baseline conditions and three future periods at 1,707 fish sampling sites in central and eastern Montana. The average root mean square error for all predictive models was about 50 percent. When streamflow predictions at 23 fish sampling sites were compared to nearby locations with simulated data, the mean relative percent difference was about 43 percent. When predictions were compared to streamflow data recorded at 21 U.S. Geological Survey streamflow-gaging stations outside of the calibration basins, the average mean absolute percent error was about 73 percent.
Mapping ecological systems with a random foret model: tradeoffs between errors and bias
Emilie Grossmann; Janet Ohmann; James Kagan; Heather May; Matthew Gregory
2010-01-01
New methods for predictive vegetation mapping allow improved estimations of plant community composition across large regions. Random Forest (RF) models limit over-fitting problems of other methods, and are known for making accurate classification predictions from noisy, nonnormal data, but can be biased when plot samples are unbalanced. We developed two contrasting...
The output least-squares approach to estimating Lamé moduli
NASA Astrophysics Data System (ADS)
Gockenbach, Mark S.
2007-12-01
The Lamé moduli of a heterogeneous, isotropic, planar membrane can be estimated by observing the displacement of the membrane under a known edge traction, and choosing estimates of the moduli that best predict the observed displacement under a finite-element simulation. This algorithm converges to the exact moduli given pointwise measurements of the displacement on an increasingly fine mesh. The error estimates that prove this convergence also show the instability of the inverse problem.
Chemical library subset selection algorithms: a unified derivation using spatial statistics.
Hamprecht, Fred A; Thiel, Walter; van Gunsteren, Wilfred F
2002-01-01
If similar compounds have similar activity, rational subset selection becomes superior to random selection in screening for pharmacological lead discovery programs. Traditional approaches to this experimental design problem fall into two classes: (i) a linear or quadratic response function is assumed (ii) some space filling criterion is optimized. The assumptions underlying the first approach are clear but not always defendable; the second approach yields more intuitive designs but lacks a clear theoretical foundation. We model activity in a bioassay as realization of a stochastic process and use the best linear unbiased estimator to construct spatial sampling designs that optimize the integrated mean square prediction error, the maximum mean square prediction error, or the entropy. We argue that our approach constitutes a unifying framework encompassing most proposed techniques as limiting cases and sheds light on their underlying assumptions. In particular, vector quantization is obtained, in dimensions up to eight, in the limiting case of very smooth response surfaces for the integrated mean square error criterion. Closest packing is obtained for very rough surfaces under the integrated mean square error and entropy criteria. We suggest to use either the integrated mean square prediction error or the entropy as optimization criteria rather than approximations thereof and propose a scheme for direct iterative minimization of the integrated mean square prediction error. Finally, we discuss how the quality of chemical descriptors manifests itself and clarify the assumptions underlying the selection of diverse or representative subsets.
Interpolation Method Needed for Numerical Uncertainty Analysis of Computational Fluid Dynamics
NASA Technical Reports Server (NTRS)
Groves, Curtis; Ilie, Marcel; Schallhorn, Paul
2014-01-01
Using Computational Fluid Dynamics (CFD) to predict a flow field is an approximation to the exact problem and uncertainties exist. There is a method to approximate the errors in CFD via Richardson's Extrapolation. This method is based off of progressive grid refinement. To estimate the errors in an unstructured grid, the analyst must interpolate between at least three grids. This paper describes a study to find an appropriate interpolation scheme that can be used in Richardson's extrapolation or other uncertainty method to approximate errors. Nomenclature
Ahearn, Elizabeth A.
2010-01-01
Multiple linear regression equations for determining flow-duration statistics were developed to estimate select flow exceedances ranging from 25- to 99-percent for six 'bioperiods'-Salmonid Spawning (November), Overwinter (December-February), Habitat Forming (March-April), Clupeid Spawning (May), Resident Spawning (June), and Rearing and Growth (July-October)-in Connecticut. Regression equations also were developed to estimate the 25- and 99-percent flow exceedances without reference to a bioperiod. In total, 32 equations were developed. The predictive equations were based on regression analyses relating flow statistics from streamgages to GIS-determined basin and climatic characteristics for the drainage areas of those streamgages. Thirty-nine streamgages (and an additional 6 short-term streamgages and 28 partial-record sites for the non-bioperiod 99-percent exceedance) in Connecticut and adjacent areas of neighboring States were used in the regression analysis. Weighted least squares regression analysis was used to determine the predictive equations; weights were assigned based on record length. The basin characteristics-drainage area, percentage of area with coarse-grained stratified deposits, percentage of area with wetlands, mean monthly precipitation (November), mean seasonal precipitation (December, January, and February), and mean basin elevation-are used as explanatory variables in the equations. Standard errors of estimate of the 32 equations ranged from 10.7 to 156 percent with medians of 19.2 and 55.4 percent to predict the 25- and 99-percent exceedances, respectively. Regression equations to estimate high and median flows (25- to 75-percent exceedances) are better predictors (smaller variability of the residual values around the regression line) than the equations to estimate low flows (less than 75-percent exceedance). The Habitat Forming (March-April) bioperiod had the smallest standard errors of estimate, ranging from 10.7 to 20.9 percent. In contrast, the Rearing and Growth (July-October) bioperiod had the largest standard errors, ranging from 30.9 to 156 percent. The adjusted coefficient of determination of the equations ranged from 77.5 to 99.4 percent with medians of 98.5 and 90.6 percent to predict the 25- and 99-percent exceedances, respectively. Descriptive information on the streamgages used in the regression, measured basin and climatic characteristics, and estimated flow-duration statistics are provided in this report. Flow-duration statistics and the 32 regression equations for estimating flow-duration statistics in Connecticut are stored on the U.S. Geological Survey World Wide Web application ?StreamStats? (http://water.usgs.gov/osw/streamstats/index.html). The regression equations developed in this report can be used to produce unbiased estimates of select flow exceedances statewide.
NASA Astrophysics Data System (ADS)
Pichardo, Samuel; Moreno-Hernández, Carlos; Drainville, Robert Andrew; Sin, Vivian; Curiel, Laura; Hynynen, Kullervo
2017-09-01
A better understanding of ultrasound transmission through the human skull is fundamental to develop optimal imaging and therapeutic applications. In this study, we present global attenuation values and functions that correlate apparent density calculated from computed tomography scans to shear speed of sound. For this purpose, we used a model for sound propagation based on the viscoelastic wave equation (VWE) assuming isotropic conditions. The model was validated using a series of measurements with plates of different plastic materials and angles of incidence of 0°, 15° and 50°. The optimal functions for transcranial ultrasound propagation were established using the VWE, scan measurements of transcranial propagation with an angle of incidence of 40° and a genetic optimization algorithm. Ten (10) locations over three (3) skulls were used for ultrasound frequencies of 270 kHz and 836 kHz. Results with plastic materials demonstrated that the viscoelastic modeling predicted both longitudinal and shear propagation with an average (±s.d.) error of 9(±7)% of the wavelength in the predicted delay and an error of 6.7(±5)% in the estimation of transmitted power. Using the new optimal functions of speed of sound and global attenuation for the human skull, the proposed model predicted the transcranial ultrasound transmission for a frequency of 270 kHz with an expected error in the predicted delay of 5(±2.7)% of the wavelength. The sound propagation model predicted accurately the sound propagation regardless of either shear or longitudinal sound transmission dominated. For 836 kHz, the model predicted accurately in average with an error in the predicted delay of 17(±16)% of the wavelength. Results indicated the importance of the specificity of the information at a voxel level to better understand ultrasound transmission through the skull. These results and new model will be very valuable tools for the future development of transcranial applications of ultrasound therapy and imaging.
Lopes, Antonio Augusto; dos Anjos Miranda, Rogério; Gonçalves, Rilvani Cavalcante; Thomaz, Ana Maria
2009-01-01
BACKGROUND: In patients with congenital heart disease undergoing cardiac catheterization for hemodynamic purposes, parameter estimation by the indirect Fick method using a single predicted value of oxygen consumption has been a matter of criticism. OBJECTIVE: We developed a computer-based routine for rapid estimation of replicate hemodynamic parameters using multiple predicted values of oxygen consumption. MATERIALS AND METHODS: Using Microsoft® Excel facilities, we constructed a matrix containing 5 models (equations) for prediction of oxygen consumption, and all additional formulas needed to obtain replicate estimates of hemodynamic parameters. RESULTS: By entering data from 65 patients with ventricular septal defects, aged 1 month to 8 years, it was possible to obtain multiple predictions for oxygen consumption, with clear between-age groups (P <.001) and between-methods (P <.001) differences. Using these predictions in the individual patient, it was possible to obtain the upper and lower limits of a likely range for any given parameter, which made estimation more realistic. CONCLUSION: The organized matrix allows for rapid obtainment of replicate parameter estimates, without error due to exhaustive calculations. PMID:19641642
Impact of hindcast length on estimates of seasonal climate predictability.
Shi, W; Schaller, N; MacLeod, D; Palmer, T N; Weisheimer, A
2015-03-16
It has recently been argued that single-model seasonal forecast ensembles are overdispersive, implying that the real world is more predictable than indicated by estimates of so-called perfect model predictability, particularly over the North Atlantic. However, such estimates are based on relatively short forecast data sets comprising just 20 years of seasonal predictions. Here we study longer 40 year seasonal forecast data sets from multimodel seasonal forecast ensemble projects and show that sampling uncertainty due to the length of the hindcast periods is large. The skill of forecasting the North Atlantic Oscillation during winter varies within the 40 year data sets with high levels of skill found for some subperiods. It is demonstrated that while 20 year estimates of seasonal reliability can show evidence of overdispersive behavior, the 40 year estimates are more stable and show no evidence of overdispersion. Instead, the predominant feature on these longer time scales is underdispersion, particularly in the tropics. Predictions can appear overdispersive due to hindcast length sampling errorLonger hindcasts are more robust and underdispersive, especially in the tropicsTwenty hindcasts are an inadequate sample size to assess seasonal forecast skill.
Piñero, David P.; Camps, Vicente J.; Ramón, María L.; Mateo, Verónica; Pérez-Cambrodí, Rafael J.
2015-01-01
AIM To evaluate the prediction error in intraocular lens (IOL) power calculation for a rotationally asymmetric refractive multifocal IOL and the impact on this error of the optimization of the keratometric estimation of the corneal power and the prediction of the effective lens position (ELP). METHODS Retrospective study including a total of 25 eyes of 13 patients (age, 50 to 83y) with previous cataract surgery with implantation of the Lentis Mplus LS-312 IOL (Oculentis GmbH, Germany). In all cases, an adjusted IOL power (PIOLadj) was calculated based on Gaussian optics using a variable keratometric index value (nkadj) for the estimation of the corneal power (Pkadj) and on a new value for ELP (ELPadj) obtained by multiple regression analysis. This PIOLadj was compared with the IOL power implanted (PIOLReal) and the value proposed by three conventional formulas (Haigis, Hoffer Q and Holladay I). RESULTS PIOLReal was not significantly different than PIOLadj and Holladay IOL power (P>0.05). In the Bland and Altman analysis, PIOLadj showed lower mean difference (-0.07 D) and limits of agreement (of 1.47 and -1.61 D) when compared to PIOLReal than the IOL power value obtained with the Holladay formula. Furthermore, ELPadj was significantly lower than ELP calculated with other conventional formulas (P<0.01) and was found to be dependent on axial length, anterior chamber depth and Pkadj. CONCLUSION Refractive outcomes after cataract surgery with implantation of the multifocal IOL Lentis Mplus LS-312 can be optimized by minimizing the keratometric error and by estimating ELP using a mathematical expression dependent on anatomical factors. PMID:26085998
Piñero, David P; Camps, Vicente J; Ramón, María L; Mateo, Verónica; Pérez-Cambrodí, Rafael J
2015-01-01
To evaluate the prediction error in intraocular lens (IOL) power calculation for a rotationally asymmetric refractive multifocal IOL and the impact on this error of the optimization of the keratometric estimation of the corneal power and the prediction of the effective lens position (ELP). Retrospective study including a total of 25 eyes of 13 patients (age, 50 to 83y) with previous cataract surgery with implantation of the Lentis Mplus LS-312 IOL (Oculentis GmbH, Germany). In all cases, an adjusted IOL power (PIOLadj) was calculated based on Gaussian optics using a variable keratometric index value (nkadj) for the estimation of the corneal power (Pkadj) and on a new value for ELP (ELPadj) obtained by multiple regression analysis. This PIOLadj was compared with the IOL power implanted (PIOLReal) and the value proposed by three conventional formulas (Haigis, Hoffer Q and Holladay I). PIOLReal was not significantly different than PIOLadj and Holladay IOL power (P>0.05). In the Bland and Altman analysis, PIOLadj showed lower mean difference (-0.07 D) and limits of agreement (of 1.47 and -1.61 D) when compared to PIOLReal than the IOL power value obtained with the Holladay formula. Furthermore, ELPadj was significantly lower than ELP calculated with other conventional formulas (P<0.01) and was found to be dependent on axial length, anterior chamber depth and Pkadj. Refractive outcomes after cataract surgery with implantation of the multifocal IOL Lentis Mplus LS-312 can be optimized by minimizing the keratometric error and by estimating ELP using a mathematical expression dependent on anatomical factors.
A gentle introduction to quantile regression for ecologists
Cade, B.S.; Noon, B.R.
2003-01-01
Quantile regression is a way to estimate the conditional quantiles of a response variable distribution in the linear model that provides a more complete view of possible causal relationships between variables in ecological processes. Typically, all the factors that affect ecological processes are not measured and included in the statistical models used to investigate relationships between variables associated with those processes. As a consequence, there may be a weak or no predictive relationship between the mean of the response variable (y) distribution and the measured predictive factors (X). Yet there may be stronger, useful predictive relationships with other parts of the response variable distribution. This primer relates quantile regression estimates to prediction intervals in parametric error distribution regression models (eg least squares), and discusses the ordering characteristics, interval nature, sampling variation, weighting, and interpretation of the estimates for homogeneous and heterogeneous regression models.
Nevers, Meredith B.; Whitman, Richard L.
2011-01-01
Efforts to improve public health protection in recreational swimming waters have focused on obtaining real-time estimates of water quality. Current monitoring techniques rely on the time-intensive culturing of fecal indicator bacteria (FIB) from water samples, but rapidly changing FIB concentrations result in management errors that lead to the public being exposed to high FIB concentrations (type II error) or beaches being closed despite acceptable water quality (type I error). Empirical predictive models may provide a rapid solution, but their effectiveness at improving health protection has not been adequately assessed. We sought to determine if emerging monitoring approaches could effectively reduce risk of illness exposure by minimizing management errors. We examined four monitoring approaches (inactive, current protocol, a single predictive model for all beaches, and individual models for each beach) with increasing refinement at 14 Chicago beaches using historical monitoring and hydrometeorological data and compared management outcomes using different standards for decision-making. Predictability (R2) of FIB concentration improved with model refinement at all beaches but one. Predictive models did not always reduce the number of management errors and therefore the overall illness burden. Use of a Chicago-specific single-sample standard-rather than the default 235 E. coli CFU/100 ml widely used-together with predictive modeling resulted in the greatest number of open beach days without any increase in public health risk. These results emphasize that emerging monitoring approaches such as empirical models are not equally applicable at all beaches, and combining monitoring approaches may expand beach access.
NASA Astrophysics Data System (ADS)
Shulman, Igor; Gould, Richard W.; Frolov, Sergey; McCarthy, Sean; Penta, Brad; Anderson, Stephanie; Sakalaukus, Peter
2018-03-01
An ensemble-based approach to specify observational error covariance in the data assimilation of satellite bio-optical properties is proposed. The observational error covariance is derived from statistical properties of the generated ensemble of satellite MODIS-Aqua chlorophyll (Chl) images. The proposed observational error covariance is used in the Optimal Interpolation scheme for the assimilation of MODIS-Aqua Chl observations. The forecast error covariance is specified in the subspace of the multivariate (bio-optical, physical) empirical orthogonal functions (EOFs) estimated from a month-long model run. The assimilation of surface MODIS-Aqua Chl improved surface and subsurface model Chl predictions. Comparisons with surface and subsurface water samples demonstrate that data assimilation run with the proposed observational error covariance has higher RMSE than the data assimilation run with "optimistic" assumption about observational errors (10% of the ensemble mean), but has smaller or comparable RMSE than data assimilation run with an assumption that observational errors equal to 35% of the ensemble mean (the target error for satellite data product for chlorophyll). Also, with the assimilation of the MODIS-Aqua Chl data, the RMSE between observed and model-predicted fractions of diatoms to the total phytoplankton is reduced by a factor of two in comparison to the nonassimilative run.
MO-G-18C-05: Real-Time Prediction in Free-Breathing Perfusion MRI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, H; Liu, W; Ruan, D
Purpose: The aim is to minimize frame-wise difference errors caused by respiratory motion and eliminate the need for breath-holds in magnetic resonance imaging (MRI) sequences with long acquisitions and repeat times (TRs). The technique is being applied to perfusion MRI using arterial spin labeling (ASL). Methods: Respiratory motion prediction (RMP) using navigator echoes was implemented in ASL. A least-square method was used to extract the respiratory motion information from the 1D navigator. A generalized artificial neutral network (ANN) with three layers was developed to simultaneously predict 10 time points forward in time and correct for respiratory motion during MRI acquisition.more » During the training phase, the parameters of the ANN were optimized to minimize the aggregated prediction error based on acquired navigator data. During realtime prediction, the trained ANN was applied to the most recent estimated displacement trajectory to determine in real-time the amount of spatial Results: The respiratory motion information extracted from the least-square method can accurately represent the navigator profiles, with a normalized chi-square value of 0.037±0.015 across the training phase. During the 60-second training phase, the ANN successfully learned the respiratory motion pattern from the navigator training data. During real-time prediction, the ANN received displacement estimates and predicted the motion in the continuum of a 1.0 s prediction window. The ANN prediction was able to provide corrections for different respiratory states (i.e., inhalation/exhalation) during real-time scanning with a mean absolute error of < 1.8 mm. Conclusion: A new technique enabling free-breathing acquisition during MRI is being developed. A generalized ANN development has demonstrated its efficacy in predicting a continuum of motion profile for volumetric imaging based on navigator inputs. Future work will enhance the robustness of ANN and verify its effectiveness with human subjects. Research supported by National Institutes of Health National Cancer Institute Grant R01 CA159471-01.« less
NASA Astrophysics Data System (ADS)
Raju, P. V. S.; Potty, Jayaraman; Mohanty, U. C.
2011-09-01
Comprehensive sensitivity analyses on physical parameterization schemes of Weather Research Forecast (WRF-ARW core) model have been carried out for the prediction of track and intensity of tropical cyclones by taking the example of cyclone Nargis, which formed over the Bay of Bengal and hit Myanmar on 02 May 2008, causing widespread damages in terms of human and economic losses. The model performances are also evaluated with different initial conditions of 12 h intervals starting from the cyclogenesis to the near landfall time. The initial and boundary conditions for all the model simulations are drawn from the global operational analysis and forecast products of National Center for Environmental Prediction (NCEP-GFS) available for the public at 1° lon/lat resolution. The results of the sensitivity analyses indicate that a combination of non-local parabolic type exchange coefficient PBL scheme of Yonsei University (YSU), deep and shallow convection scheme with mass flux approach for cumulus parameterization (Kain-Fritsch), and NCEP operational cloud microphysics scheme with diagnostic mixed phase processes (Ferrier), predicts better track and intensity as compared against the Joint Typhoon Warning Center (JTWC) estimates. Further, the final choice of the physical parameterization schemes selected from the above sensitivity experiments is used for model integration with different initial conditions. The results reveal that the cyclone track, intensity and time of landfall are well simulated by the model with an average intensity error of about 8 hPa, maximum wind error of 12 m s-1and track error of 77 km. The simulations also show that the landfall time error and intensity error are decreasing with delayed initial condition, suggesting that the model forecast is more dependable when the cyclone approaches the coast. The distribution and intensity of rainfall are also well simulated by the model and comparable with the TRMM estimates.
The Theory and Practice of Estimating the Accuracy of Dynamic Flight-Determined Coefficients
NASA Technical Reports Server (NTRS)
Maine, R. E.; Iliff, K. W.
1981-01-01
Means of assessing the accuracy of maximum likelihood parameter estimates obtained from dynamic flight data are discussed. The most commonly used analytical predictors of accuracy are derived and compared from both statistical and simplified geometrics standpoints. The accuracy predictions are evaluated with real and simulated data, with an emphasis on practical considerations, such as modeling error. Improved computations of the Cramer-Rao bound to correct large discrepancies due to colored noise and modeling error are presented. The corrected Cramer-Rao bound is shown to be the best available analytical predictor of accuracy, and several practical examples of the use of the Cramer-Rao bound are given. Engineering judgement, aided by such analytical tools, is the final arbiter of accuracy estimation.
Methods to Improve the Maintenance of the Earth Catalog of Satellites During Severe Solar Storms
NASA Technical Reports Server (NTRS)
Wilkin, Paul G.; Tolson, Robert H.
1998-01-01
The objective of this thesis is to investigate methods to improve the ability to maintain the inventory of orbital elements of Earth satellites during periods of atmospheric disturbance brought on by severe solar activity. Existing techniques do not account for such atmospheric dynamics, resulting in tracking errors of several seconds in predicted crossing time. Two techniques are examined to reduce of these tracking errors. First, density predicted from various atmospheric models is fit to the orbital decay rate for a number of satellites. An orbital decay model is then developed that could be used to reduce tracking errors by accounting for atmospheric changes. The second approach utilizes a Kalman filter to estimate the orbital decay rate of a satellite after every observation. The new information is used to predict the next observation. Results from the first approach demonstrated the feasibility of building an orbital decay model based on predicted atmospheric density. Correlation of atmospheric density to orbital decay was as high as 0.88. However, it is clear that contemporary: atmospheric models need further improvement in modeling density perturbations polar region brought on by solar activity. The second approach resulted in a dramatic reduction in tracking errors for certain satellites during severe solar Storms. For example, in the limited cases studied, the reduction in tracking errors ranged from 79 to 25 percent.
Predictive equations for the estimation of body size in seals and sea lions (Carnivora: Pinnipedia)
Churchill, Morgan; Clementz, Mark T; Kohno, Naoki
2014-01-01
Body size plays an important role in pinniped ecology and life history. However, body size data is often absent for historical, archaeological, and fossil specimens. To estimate the body size of pinnipeds (seals, sea lions, and walruses) for today and the past, we used 14 commonly preserved cranial measurements to develop sets of single variable and multivariate predictive equations for pinniped body mass and total length. Principal components analysis (PCA) was used to test whether separate family specific regressions were more appropriate than single predictive equations for Pinnipedia. The influence of phylogeny was tested with phylogenetic independent contrasts (PIC). The accuracy of these regressions was then assessed using a combination of coefficient of determination, percent prediction error, and standard error of estimation. Three different methods of multivariate analysis were examined: bidirectional stepwise model selection using Akaike information criteria; all-subsets model selection using Bayesian information criteria (BIC); and partial least squares regression. The PCA showed clear discrimination between Otariidae (fur seals and sea lions) and Phocidae (earless seals) for the 14 measurements, indicating the need for family-specific regression equations. The PIC analysis found that phylogeny had a minor influence on relationship between morphological variables and body size. The regressions for total length were more accurate than those for body mass, and equations specific to Otariidae were more accurate than those for Phocidae. Of the three multivariate methods, the all-subsets approach required the fewest number of variables to estimate body size accurately. We then used the single variable predictive equations and the all-subsets approach to estimate the body size of two recently extinct pinniped taxa, the Caribbean monk seal (Monachus tropicalis) and the Japanese sea lion (Zalophus japonicus). Body size estimates using single variable regressions generally under or over-estimated body size; however, the all-subset regression produced body size estimates that were close to historically recorded body length for these two species. This indicates that the all-subset regression equations developed in this study can estimate body size accurately. PMID:24916814
The effects of training on errors of perceived direction in perspective displays
NASA Technical Reports Server (NTRS)
Tharp, Gregory K.; Ellis, Stephen R.
1990-01-01
An experiment was conducted to determine the effects of training on the characteristic direction errors that are observed when subjects estimate exocentric directions on perspective displays. Changes in five subjects' perceptual errors were measured during a training procedure designed to eliminate the error. The training was provided by displaying to each subject both the sign and the direction of his judgment error. The feedback provided by the error display was found to decrease but not eliminate the error. A lookup table model of the source of the error was developed in which the judgement errors were attributed to overestimates of both the pitch and the yaw of the viewing direction used to produce the perspective projection. The model predicts the quantitative characteristics of the data somewhat better than previous models did. A mechanism is proposed for the observed learning, and further tests of the model are suggested.
Estimation of viscous dissipation in nanodroplet impact and spreading
NASA Astrophysics Data System (ADS)
Li, Xin-Hao; Zhang, Xiang-Xiong; Chen, Min
2015-05-01
The developments in nanocoating and nanospray technology have resulted in the increasing importance of the impact of micro-/nanoscale liquid droplets on solid surface. In this paper, the impact of a nanodroplet on a flat solid surface is examined using molecular dynamics simulations. The impact velocity ranges from 58 m/s to 1044 m/s, in accordance with the Weber number ranging from 0.62 to 200.02 and the Reynolds number ranging from 0.89 to 16.14. The obtained maximum spreading factors are compared with previous models in the literature. The predicted results from the previous models largely deviate from our simulation results, with mean relative errors up to 58.12%. The estimated viscous dissipation is refined to present a modified theoretical model, which reduces the mean relative error to 15.12% in predicting the maximum spreading factor for cases of nanodroplet impact.
NASA Astrophysics Data System (ADS)
Dikmen, Erkan; Ayaz, Mahir; Gül, Doğan; Şahin, Arzu Şencan
2017-07-01
The determination of drying behavior of herbal plants is a complex process. In this study, gene expression programming (GEP) model was used to determine drying behavior of herbal plants as fresh sweet basil, parsley and dill leaves. Time and drying temperatures are input parameters for the estimation of moisture ratio of herbal plants. The results of the GEP model are compared with experimental drying data. The statistical values as mean absolute percentage error, root-mean-squared error and R-square are used to calculate the difference between values predicted by the GEP model and the values actually observed from the experimental study. It was found that the results of the GEP model and experimental study are in moderately well agreement. The results have shown that the GEP model can be considered as an efficient modelling technique for the prediction of moisture ratio of herbal plants.
Mapping CHU9D Utility Scores from the PedsQLTM 4.0 SF-15.
Mpundu-Kaambwa, Christine; Chen, Gang; Russo, Remo; Stevens, Katherine; Petersen, Karin Dam; Ratcliffe, Julie
2017-04-01
The Pediatric Quality of Life Inventory™ 4.0 Short Form 15 Generic Core Scales (hereafter the PedsQL) and the Child Health Utility-9 Dimensions (CHU9D) are two generic instruments designed to measure health-related quality of life in children and adolescents in the general population and paediatric patient groups living with specific health conditions. Although the PedsQL is widely used among paediatric patient populations, presently it is not possible to directly use the scores from the instrument to calculate quality-adjusted life-years (QALYs) for application in economic evaluation because it produces summary scores which are not preference-based. This paper examines different econometric mapping techniques for estimating CHU9D utility scores from the PedsQL for the purpose of calculating QALYs for cost-utility analysis. The PedsQL and the CHU9D were completed by a community sample of 755 Australian adolescents aged 15-17 years. Seven regression models were estimated: ordinary least squares estimator, generalised linear model, robust MM estimator, multivariate factorial polynomial estimator, beta-binomial estimator, finite mixture model and multinomial logistic model. The mean absolute error (MAE) and the mean squared error (MSE) were used to assess predictive ability of the models. The MM estimator with stepwise-selected PedsQL dimension scores as explanatory variables had the best predictive accuracy using MAE and the equivalent beta-binomial model had the best predictive accuracy using MSE. Our mapping algorithm facilitates the estimation of health-state utilities for use within economic evaluations where only PedsQL data is available and is suitable for use in community-based adolescents aged 15-17 years. Applicability of the algorithm in younger populations should be assessed in further research.
Developing a Data Driven Process-Based Model for Remote Sensing of Ecosystem Production
NASA Astrophysics Data System (ADS)
Elmasri, B.; Rahman, A. F.
2010-12-01
Estimating ecosystem carbon fluxes at various spatial and temporal scales is essential for quantifying the global carbon cycle. Numerous models have been developed for this purpose using several environmental variables as well as vegetation indices derived from remotely sensed data. Here we present a data driven modeling approach for gross primary production (GPP) that is based on a process based model BIOME-BGC. The proposed model was run using available remote sensing data and it does not depend on look-up tables. Furthermore, this approach combines the merits of both empirical and process models, and empirical models were used to estimate certain input variables such as light use efficiency (LUE). This was achieved by using remotely sensed data to the mathematical equations that represent biophysical photosynthesis processes in the BIOME-BGC model. Moreover, a new spectral index for estimating maximum photosynthetic activity, maximum photosynthetic rate index (MPRI), is also developed and presented here. This new index is based on the ratio between the near infrared and the green bands (ρ858.5/ρ555). The model was tested and validated against MODIS GPP product and flux measurements from two eddy covariance flux towers located at Morgan Monroe State Forest (MMSF) in Indiana and Harvard Forest in Massachusetts. Satellite data acquired by the Advanced Microwave Scanning Radiometer (AMSR-E) and MODIS were used. The data driven model showed a strong correlation between the predicted and measured GPP at the two eddy covariance flux towers sites. This methodology produced better predictions of GPP than did the MODIS GPP product. Moreover, the proportion of error in the predicted GPP for MMSF and Harvard forest was dominated by unsystematic errors suggesting that the results are unbiased. The analysis indicated that maintenance respiration is one of the main factors that dominate the overall model outcome errors and improvement in maintenance respiration estimation will result in improved GPP predictions. Although there might be a room for improvements in our model outcomes through improved parameterization, our results suggest that such a methodology for running BIOME-BGC model based entirely on routinely available data can produce good predictions of GPP.
HHV Predicting Correlations for Torrefied Biomass Using Proximate and Ultimate Analyses
Nhuchhen, Daya Ram; Afzal, Muhammad T.
2017-01-01
Many correlations are available in the literature to predict the higher heating value (HHV) of raw biomass using the proximate and ultimate analyses. Studies on biomass torrefaction are growing tremendously, which suggest that the fuel characteristics, such as HHV, proximate analysis and ultimate analysis, have changed significantly after torrefaction. Such changes may cause high estimation errors if the existing HHV correlations were to be used in predicting the HHV of torrefied biomass. No study has been carried out so far to verify this. Therefore, this study seeks answers to the question: “Can the existing correlations be used to determine the HHV of the torrefied biomass”? To answer this, the existing HHV predicting correlations were tested using torrefied biomass data points. Estimation errors were found to be significantly high for the existing HHV correlations, and thus, they are not suitable for predicting the HHV of the torrefied biomass. New correlations were then developed using data points of torrefied biomass. The ranges of reported data for HHV, volatile matter (VM), fixed carbon (FC), ash (ASH), carbon (C), hydrogen (H) and oxygen (O) contents were 14.90 MJ/kg–33.30 MJ/kg, 13.30%–88.57%, 11.25%–82.74%, 0.08%–47.62%, 35.08%–86.28%, 0.53%–7.46% and 4.31%–44.70%, respectively. Correlations with the minimum mean absolute errors and having all components of proximate and ultimate analyses were selected for future use. The selected new correlations have a good accuracy of prediction when they are validated using another set of data (26 samples). Thus, these new and more accurate correlations can be useful in modeling different thermochemical processes, including combustion, pyrolysis and gasification processes of torrefied biomass. PMID:28952487
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, Deukwoo; Little, Mark P.; Miller, Donald L.
Purpose: To determine more accurate regression formulas for estimating peak skin dose (PSD) from reference air kerma (RAK) or kerma-area product (KAP). Methods: After grouping of the data from 21 procedures into 13 clinically similar groups, assessments were made of optimal clustering using the Bayesian information criterion to obtain the optimal linear regressions of (log-transformed) PSD vs RAK, PSD vs KAP, and PSD vs RAK and KAP. Results: Three clusters of clinical groups were optimal in regression of PSD vs RAK, seven clusters of clinical groups were optimal in regression of PSD vs KAP, and six clusters of clinical groupsmore » were optimal in regression of PSD vs RAK and KAP. Prediction of PSD using both RAK and KAP is significantly better than prediction of PSD with either RAK or KAP alone. The regression of PSD vs RAK provided better predictions of PSD than the regression of PSD vs KAP. The partial-pooling (clustered) method yields smaller mean squared errors compared with the complete-pooling method.Conclusion: PSD distributions for interventional radiology procedures are log-normal. Estimates of PSD derived from RAK and KAP jointly are most accurate, followed closely by estimates derived from RAK alone. Estimates of PSD derived from KAP alone are the least accurate. Using a stochastic search approach, it is possible to cluster together certain dissimilar types of procedures to minimize the total error sum of squares.« less
Smith, Brian J; Zhang, Lixun; Field, R William
2007-11-10
This paper presents a Bayesian model that allows for the joint prediction of county-average radon levels and estimation of the associated leukaemia risk. The methods are motivated by radon data from an epidemiologic study of residential radon in Iowa that include 2726 outdoor and indoor measurements. Prediction of county-average radon is based on a geostatistical model for the radon data which assumes an underlying continuous spatial process. In the radon model, we account for uncertainties due to incomplete spatial coverage, spatial variability, characteristic differences between homes, and detector measurement error. The predicted radon averages are, in turn, included as a covariate in Poisson models for incident cases of acute lymphocytic (ALL), acute myelogenous (AML), chronic lymphocytic (CLL), and chronic myelogenous (CML) leukaemias reported to the Iowa cancer registry from 1973 to 2002. Since radon and leukaemia risk are modelled simultaneously in our approach, the resulting risk estimates accurately reflect uncertainties in the predicted radon exposure covariate. Posterior mean (95 per cent Bayesian credible interval) estimates of the relative risk associated with a 1 pCi/L increase in radon for ALL, AML, CLL, and CML are 0.91 (0.78-1.03), 1.01 (0.92-1.12), 1.06 (0.96-1.16), and 1.12 (0.98-1.27), respectively. Copyright 2007 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Bassam, S.; Ren, J.
2017-12-01
Predicting future water availability in watersheds is very important for proper water resources management, especially in semi-arid regions with scarce water resources. Hydrological models have been considered as powerful tools in predicting future hydrological conditions in watershed systems in the past two decades. Streamflow and evapotranspiration are the two important components in watershed water balance estimation as the former is the most commonly-used indicator of the overall water budget estimation, and the latter is the second biggest component of water budget (biggest outflow from the system). One of the main concerns in watershed scale hydrological modeling is the uncertainties associated with model prediction, which could arise from errors in model parameters and input meteorological data, or errors in model representation of the physics of hydrological processes. Understanding and quantifying these uncertainties are vital to water resources managers for proper decision making based on model predictions. In this study, we evaluated the impacts of different climate change scenarios on the future stream discharge and evapotranspiration, and their associated uncertainties, throughout a large semi-arid basin using a stochastically-calibrated, physically-based, semi-distributed hydrological model. The results of this study could provide valuable insights in applying hydrological models in large scale watersheds, understanding the associated sensitivity and uncertainties in model parameters, and estimating the corresponding impacts on interested hydrological process variables under different climate change scenarios.
NASA Astrophysics Data System (ADS)
Pegion, K.; DelSole, T. M.; Becker, E.; Cicerone, T.
2016-12-01
Predictability represents the upper limit of prediction skill if we had an infinite member ensemble and a perfect model. It is an intrinsic limit of the climate system associated with the chaotic nature of the atmosphere. Producing a forecast system that can make predictions very near to this limit is the ultimate goal of forecast system development. Estimates of predictability together with calculations of current prediction skill are often used to define the gaps in our prediction capabilities on subseasonal to seasonal timescales and to inform the scientific issues that must be addressed to build the next forecast system. Quantification of the predictability is also important for providing a scientific basis for relaying to stakeholders what kind of climate information can be provided to inform decision-making and what kind of information is not possible given the intrinsic predictability of the climate system. One challenge with predictability estimates is that different prediction systems can give different estimates of the upper limit of skill. How do we know which estimate of predictability is most representative of the true predictability of the climate system? Previous studies have used the spread-error relationship and the autocorrelation to evaluate the fidelity of the signal and noise estimates. Using a multi-model ensemble prediction system, we can quantify whether these metrics accurately indicate an individual model's ability to properly estimate the signal, noise, and predictability. We use this information to identify the best estimates of predictability for 2-meter temperature, precipitation, and sea surface temperature from the North American Multi-model Ensemble and compare with current skill to indicate the regions with potential for improving skill.
Young, Mariel; Johannesdottir, Fjola; Poole, Ken; Shaw, Colin; Stock, J T
2018-02-01
Femoral head diameter is commonly used to estimate body mass from the skeleton. The three most frequently employed methods, designed by Ruff, Grine, and McHenry, were developed using different populations to address different research questions. They were not specifically designed for application to female remains, and their accuracy for this purpose has rarely been assessed or compared in living populations. This study analyzes the accuracy of these methods using a sample of modern British women through the use of pelvic CT scans (n = 97) and corresponding information about the individuals' known height and weight. Results showed that all methods provided reasonably accurate body mass estimates (average percent prediction errors under 20%) for the normal weight and overweight subsamples, but were inaccurate for the obese and underweight subsamples (average percent prediction errors over 20%). When women of all body mass categories were combined, the methods provided reasonable estimates (average percent prediction errors between 16 and 18%). The results demonstrate that different methods provide more accurate results within specific body mass index (BMI) ranges. The McHenry Equation provided the most accurate estimation for women of small body size, while the original Ruff Equation is most likely to be accurate if the individual was obese or severely obese. The refined Ruff Equation was the most accurate predictor of body mass on average for the entire sample, indicating that it should be utilized when there is no knowledge of the individual's body size or if the individual is assumed to be of a normal body size. The study also revealed a correlation between pubis length and body mass, and an equation for body mass estimation using pubis length was accurate in a dummy sample, suggesting that pubis length can also be used to acquire reliable body mass estimates. This has implications for how we interpret body mass in fossil hominins and has particular relevance to the interpretation of the long pubic ramus that is characteristic of Neandertals. Copyright © 2017 Elsevier Ltd. All rights reserved.
Methods for estimating selected low-flow frequency statistics for unregulated streams in Kentucky
Martin, Gary R.; Arihood, Leslie D.
2010-01-01
This report provides estimates of, and presents methods for estimating, selected low-flow frequency statistics for unregulated streams in Kentucky including the 30-day mean low flows for recurrence intervals of 2 and 5 years (30Q2 and 30Q5) and the 7-day mean low flows for recurrence intervals of 5, 10, and 20 years (7Q2, 7Q10, and 7Q20). Estimates of these statistics are provided for 121 U.S. Geological Survey streamflow-gaging stations with data through the 2006 climate year, which is the 12-month period ending March 31 of each year. Data were screened to identify the periods of homogeneous, unregulated flows for use in the analyses. Logistic-regression equations are presented for estimating the annual probability of the selected low-flow frequency statistics being equal to zero. Weighted-least-squares regression equations were developed for estimating the magnitude of the nonzero 30Q2, 30Q5, 7Q2, 7Q10, and 7Q20 low flows. Three low-flow regions were defined for estimating the 7-day low-flow frequency statistics. The explicit explanatory variables in the regression equations include total drainage area and the mapped streamflow-variability index measured from a revised statewide coverage of this characteristic. The percentage of the station low-flow statistics correctly classified as zero or nonzero by use of the logistic-regression equations ranged from 87.5 to 93.8 percent. The average standard errors of prediction of the weighted-least-squares regression equations ranged from 108 to 226 percent. The 30Q2 regression equations have the smallest standard errors of prediction, and the 7Q20 regression equations have the largest standard errors of prediction. The regression equations are applicable only to stream sites with low flows unaffected by regulation from reservoirs and local diversions of flow and to drainage basins in specified ranges of basin characteristics. Caution is advised when applying the equations for basins with characteristics near the applicable limits and for basins with karst drainage features.
Trajectory prediction for ballistic missiles based on boost-phase LOS measurements
NASA Astrophysics Data System (ADS)
Yeddanapudi, Murali; Bar-Shalom, Yaakov
1997-10-01
This paper addresses the problem of the estimation of the trajectory of a tactical ballistic missile using line of sight (LOS) measurements from one or more passive sensors (typically satellites). The major difficulties of this problem include: the estimation of the unknown time of launch, incorporation of (inaccurate) target thrust profiles to model the target dynamics during the boost phase and an overall ill-conditioning of the estimation problem due to poor observability of the target motion via the LOS measurements. We present a robust estimation procedure based on the Levenberg-Marquardt algorithm that provides both the target state estimate and error covariance taking into consideration the complications mentioned above. An important consideration in the defense against tactical ballistic missiles is the determination of the target position and error covariance at the acquisition range of a surveillance radar in the vicinity of the impact point. We present a systematic procedure to propagate the target state and covariance to a nominal time, when it is within the detection range of a surveillance radar to obtain a cueing volume. Mont Carlo simulation studies on typical single and two sensor scenarios indicate that the proposed algorithms are accurate in terms of the estimates and the estimator calculated covariances are consistent with the errors.
Submillimeter, millimeter, and microwave spectral line catalogue
NASA Technical Reports Server (NTRS)
Poynter, R. L.; Pickett, H. M.
1980-01-01
A computer accessible catalogue of submillimeter, millimeter, and microwave spectral lines in the frequency range between O and 3000 GHz (such as; wavelengths longer than 100 m) is discussed. The catalogue was used as a planning guide and as an aid in the identification and analysis of observed spectral lines. The information listed for each spectral line includes the frequency and its estimated error, the intensity, lower state energy, and quantum number assignment. The catalogue was constructed by using theoretical least squares fits of published spectral lines to accepted molecular models. The associated predictions and their estimated errors are based upon the resultant fitted parameters and their covariances.
NASA Astrophysics Data System (ADS)
Sinha, T.; Arumugam, S.
2012-12-01
Seasonal streamflow forecasts contingent on climate forecasts can be effectively utilized in updating water management plans and optimize generation of hydroelectric power. Streamflow in the rainfall-runoff dominated basins critically depend on forecasted precipitation in contrast to snow dominated basins, where initial hydrological conditions (IHCs) are more important. Since precipitation forecasts from Atmosphere-Ocean-General Circulation Models are available at coarse scale (~2.8° by 2.8°), spatial and temporal downscaling of such forecasts are required to implement land surface models, which typically runs on finer spatial and temporal scales. Consequently, multiple sources are introduced at various stages in predicting seasonal streamflow. Therefore, in this study, we addresses the following science questions: 1) How do we attribute the errors in monthly streamflow forecasts to various sources - (i) model errors, (ii) spatio-temporal downscaling, (iii) imprecise initial conditions, iv) no forecasts, and (iv) imprecise forecasts? and 2) How does monthly streamflow forecast errors propagate with different lead time over various seasons? In this study, the Variable Infiltration Capacity (VIC) model is calibrated over Apalachicola River at Chattahoochee, FL in the southeastern US and implemented with observed 1/8° daily forcings to estimate reference streamflow during 1981 to 2010. The VIC model is then forced with different schemes under updated IHCs prior to forecasting period to estimate relative mean square errors due to: a) temporally disaggregation, b) spatial downscaling, c) Reverse Ensemble Streamflow Prediction (imprecise IHCs), d) ESP (no forecasts), and e) ECHAM4.5 precipitation forecasts. Finally, error propagation under different schemes are analyzed with different lead time over different seasons.
NASA Technical Reports Server (NTRS)
Chambon, Philippe; Zhang, Sara Q.; Hou, Arthur Y.; Zupanski, Milija; Cheung, Samson
2013-01-01
The forthcoming Global Precipitation Measurement (GPM) Mission will provide next generation precipitation observations from a constellation of satellites. Since precipitation by nature has large variability and low predictability at cloud-resolving scales, the impact of precipitation data on the skills of mesoscale numerical weather prediction (NWP) is largely affected by the characterization of background and observation errors and the representation of nonlinear cloud/precipitation physics in an NWP data assimilation system. We present a data impact study on the assimilation of precipitation-affected microwave (MW) radiances from a pre-GPM satellite constellation using the Goddard WRF Ensemble Data Assimilation System (Goddard WRF-EDAS). A series of assimilation experiments are carried out in a Weather Research Forecast (WRF) model domain of 9 km resolution in western Europe. Sensitivities to observation error specifications, background error covariance estimated from ensemble forecasts with different ensemble sizes, and MW channel selections are examined through single-observation assimilation experiments. An empirical bias correction for precipitation-affected MW radiances is developed based on the statistics of radiance innovations in rainy areas. The data impact is assessed by full data assimilation cycling experiments for a storm event that occurred in France in September 2010. Results show that the assimilation of MW precipitation observations from a satellite constellation mimicking GPM has a positive impact on the accumulated rain forecasts verified with surface radar rain estimates. The case-study on a convective storm also reveals that the accuracy of ensemble-based background error covariance is limited by sampling errors and model errors such as precipitation displacement and unresolved convective scale instability.
Design of a digital voice data compression technique for orbiter voice channels
NASA Technical Reports Server (NTRS)
1975-01-01
Candidate techniques were investigated for digital voice compression to a transmission rate of 8 kbps. Good voice quality, speaker recognition, and robustness in the presence of error bursts were considered. The technique of delayed-decision adaptive predictive coding is described and compared with conventional adaptive predictive coding. Results include a set of experimental simulations recorded on analog tape. The two FM broadcast segments produced show the delayed-decision technique to be virtually undegraded or minimally degraded at .001 and .01 Viterbi decoder bit error rates. Preliminary estimates of the hardware complexity of this technique indicate potential for implementation in space shuttle orbiters.
Error-Rate Bounds for Coded PPM on a Poisson Channel
NASA Technical Reports Server (NTRS)
Moision, Bruce; Hamkins, Jon
2009-01-01
Equations for computing tight bounds on error rates for coded pulse-position modulation (PPM) on a Poisson channel at high signal-to-noise ratio have been derived. These equations and elements of the underlying theory are expected to be especially useful in designing codes for PPM optical communication systems. The equations and the underlying theory apply, more specifically, to a case in which a) At the transmitter, a linear outer code is concatenated with an inner code that includes an accumulator and a bit-to-PPM-symbol mapping (see figure) [this concatenation is known in the art as "accumulate-PPM" (abbreviated "APPM")]; b) The transmitted signal propagates on a memoryless binary-input Poisson channel; and c) At the receiver, near-maximum-likelihood (ML) decoding is effected through an iterative process. Such a coding/modulation/decoding scheme is a variation on the concept of turbo codes, which have complex structures, such that an exact analytical expression for the performance of a particular code is intractable. However, techniques for accurately estimating the performances of turbo codes have been developed. The performance of a typical turbo code includes (1) a "waterfall" region consisting of a steep decrease of error rate with increasing signal-to-noise ratio (SNR) at low to moderate SNR, and (2) an "error floor" region with a less steep decrease of error rate with increasing SNR at moderate to high SNR. The techniques used heretofore for estimating performance in the waterfall region have differed from those used for estimating performance in the error-floor region. For coded PPM, prior to the present derivations, equations for accurate prediction of the performance of coded PPM at high SNR did not exist, so that it was necessary to resort to time-consuming simulations in order to make such predictions. The present derivation makes it unnecessary to perform such time-consuming simulations.
Optimizing the learning rate for adaptive estimation of neural encoding models
2018-01-01
Closed-loop neurotechnologies often need to adaptively learn an encoding model that relates the neural activity to the brain state, and is used for brain state decoding. The speed and accuracy of adaptive learning algorithms are critically affected by the learning rate, which dictates how fast model parameters are updated based on new observations. Despite the importance of the learning rate, currently an analytical approach for its selection is largely lacking and existing signal processing methods vastly tune it empirically or heuristically. Here, we develop a novel analytical calibration algorithm for optimal selection of the learning rate in adaptive Bayesian filters. We formulate the problem through a fundamental trade-off that learning rate introduces between the steady-state error and the convergence time of the estimated model parameters. We derive explicit functions that predict the effect of learning rate on error and convergence time. Using these functions, our calibration algorithm can keep the steady-state parameter error covariance smaller than a desired upper-bound while minimizing the convergence time, or keep the convergence time faster than a desired value while minimizing the error. We derive the algorithm both for discrete-valued spikes modeled as point processes nonlinearly dependent on the brain state, and for continuous-valued neural recordings modeled as Gaussian processes linearly dependent on the brain state. Using extensive closed-loop simulations, we show that the analytical solution of the calibration algorithm accurately predicts the effect of learning rate on parameter error and convergence time. Moreover, the calibration algorithm allows for fast and accurate learning of the encoding model and for fast convergence of decoding to accurate performance. Finally, larger learning rates result in inaccurate encoding models and decoders, and smaller learning rates delay their convergence. The calibration algorithm provides a novel analytical approach to predictably achieve a desired level of error and convergence time in adaptive learning, with application to closed-loop neurotechnologies and other signal processing domains. PMID:29813069
Optimizing the learning rate for adaptive estimation of neural encoding models.
Hsieh, Han-Lin; Shanechi, Maryam M
2018-05-01
Closed-loop neurotechnologies often need to adaptively learn an encoding model that relates the neural activity to the brain state, and is used for brain state decoding. The speed and accuracy of adaptive learning algorithms are critically affected by the learning rate, which dictates how fast model parameters are updated based on new observations. Despite the importance of the learning rate, currently an analytical approach for its selection is largely lacking and existing signal processing methods vastly tune it empirically or heuristically. Here, we develop a novel analytical calibration algorithm for optimal selection of the learning rate in adaptive Bayesian filters. We formulate the problem through a fundamental trade-off that learning rate introduces between the steady-state error and the convergence time of the estimated model parameters. We derive explicit functions that predict the effect of learning rate on error and convergence time. Using these functions, our calibration algorithm can keep the steady-state parameter error covariance smaller than a desired upper-bound while minimizing the convergence time, or keep the convergence time faster than a desired value while minimizing the error. We derive the algorithm both for discrete-valued spikes modeled as point processes nonlinearly dependent on the brain state, and for continuous-valued neural recordings modeled as Gaussian processes linearly dependent on the brain state. Using extensive closed-loop simulations, we show that the analytical solution of the calibration algorithm accurately predicts the effect of learning rate on parameter error and convergence time. Moreover, the calibration algorithm allows for fast and accurate learning of the encoding model and for fast convergence of decoding to accurate performance. Finally, larger learning rates result in inaccurate encoding models and decoders, and smaller learning rates delay their convergence. The calibration algorithm provides a novel analytical approach to predictably achieve a desired level of error and convergence time in adaptive learning, with application to closed-loop neurotechnologies and other signal processing domains.
NASA Technical Reports Server (NTRS)
Groves, Curtis; Ilie, Marcel; Schallhorn, Paul
2014-01-01
Spacecraft components may be damaged due to airflow produced by Environmental Control Systems (ECS). There are uncertainties and errors associated with using Computational Fluid Dynamics (CFD) to predict the flow field around a spacecraft from the ECS System. This paper describes an approach to estimate the uncertainty in using CFD to predict the airflow speeds around an encapsulated spacecraft.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xing, Y; Macq, B; Bondar, L
Purpose: To quantify the accuracy in predicting the Bragg peak position using simulated in-room measurements of prompt gamma (PG) emissions for realistic treatment error scenarios that combine several sources of errors. Methods: Prompt gamma measurements by a knife-edge slit camera were simulated using an experimentally validated analytical simulation tool. Simulations were performed, for 143 treatment error scenarios, on an anthropomorphic phantom and a pencil beam scanning plan for nasal cavity. Three types of errors were considered: translation along each axis, rotation around each axis, and CT-calibration errors with magnitude ranging respectively, between −3 and 3 mm, −5 and 5 degrees,more » and between −5 and +5%. We investigated the correlation between the Bragg peak (BP) shift and the horizontal shift of PG profiles. The shifts were calculated between the planned (reference) position and the position by the error scenario. The prediction error for one spot was calculated as the absolute difference between the PG profile shift and the BP shift. Results: The PG shift was significantly and strongly correlated with the BP shift for 92% of the cases (p<0.0001, Pearson correlation coefficient R>0.8). Moderate but significant correlations were obtained for all cases that considered only CT-calibration errors and for 1 case that combined translation and CT-errors (p<0.0001, R ranged between 0.61 and 0.8). The average prediction errors for the simulated scenarios ranged between 0.08±0.07 and 1.67±1.3 mm (grand mean 0.66±0.76 mm). The prediction error was moderately correlated with the value of the BP shift (p=0, R=0.64). For the simulated scenarios the average BP shift ranged between −8±6.5 mm and 3±1.1 mm. Scenarios that considered combinations of the largest treatment errors were associated with large BP shifts. Conclusion: Simulations of in-room measurements demonstrate that prompt gamma profiles provide reliable estimation of the Bragg peak position for complex error scenarios. Yafei Xing and Luiza Bondar are funded by BEWARE grants from the Walloon Region. The work presents simulations results for a prompt gamma camera prototype developed by IBA.« less
Convergence in parameters and predictions using computational experimental design.
Hagen, David R; White, Jacob K; Tidor, Bruce
2013-08-06
Typically, biological models fitted to experimental data suffer from significant parameter uncertainty, which can lead to inaccurate or uncertain predictions. One school of thought holds that accurate estimation of the true parameters of a biological system is inherently problematic. Recent work, however, suggests that optimal experimental design techniques can select sets of experiments whose members probe complementary aspects of a biochemical network that together can account for its full behaviour. Here, we implemented an experimental design approach for selecting sets of experiments that constrain parameter uncertainty. We demonstrated with a model of the epidermal growth factor-nerve growth factor pathway that, after synthetically performing a handful of optimal experiments, the uncertainty in all 48 parameters converged below 10 per cent. Furthermore, the fitted parameters converged to their true values with a small error consistent with the residual uncertainty. When untested experimental conditions were simulated with the fitted models, the predicted species concentrations converged to their true values with errors that were consistent with the residual uncertainty. This paper suggests that accurate parameter estimation is achievable with complementary experiments specifically designed for the task, and that the resulting parametrized models are capable of accurate predictions.
Evaluation of a Mysis bioenergetics model
Chipps, S.R.; Bennett, D.H.
2002-01-01
Direct approaches for estimating the feeding rate of the opossum shrimp Mysis relicta can be hampered by variable gut residence time (evacuation rate models) and non-linear functional responses (clearance rate models). Bioenergetics modeling provides an alternative method, but the reliability of this approach needs to be evaluated using independent measures of growth and food consumption. In this study, we measured growth and food consumption for M. relicta and compared experimental results with those predicted from a Mysis bioenergetics model. For Mysis reared at 10??C, model predictions were not significantly different from observed values. Moreover, decomposition of mean square error indicated that 70% of the variation between model predictions and observed values was attributable to random error. On average, model predictions were within 12% of observed values. A sensitivity analysis revealed that Mysis respiration and prey energy density were the most sensitive parameters affecting model output. By accounting for uncertainty (95% CLs) in Mysis respiration, we observed a significant improvement in the accuracy of model output (within 5% of observed values), illustrating the importance of sensitive input parameters for model performance. These findings help corroborate the Mysis bioenergetics model and demonstrate the usefulness of this approach for estimating Mysis feeding rate.
NASA Astrophysics Data System (ADS)
Dettmer, Jan; Molnar, Sheri; Steininger, Gavin; Dosso, Stan E.; Cassidy, John F.
2012-02-01
This paper applies a general trans-dimensional Bayesian inference methodology and hierarchical autoregressive data-error models to the inversion of microtremor array dispersion data for shear wave velocity (vs) structure. This approach accounts for the limited knowledge of the optimal earth model parametrization (e.g. the number of layers in the vs profile) and of the data-error statistics in the resulting vs parameter uncertainty estimates. The assumed earth model parametrization influences estimates of parameter values and uncertainties due to different parametrizations leading to different ranges of data predictions. The support of the data for a particular model is often non-unique and several parametrizations may be supported. A trans-dimensional formulation accounts for this non-uniqueness by including a model-indexing parameter as an unknown so that groups of models (identified by the indexing parameter) are considered in the results. The earth model is parametrized in terms of a partition model with interfaces given over a depth-range of interest. In this work, the number of interfaces (layers) in the partition model represents the trans-dimensional model indexing. In addition, serial data-error correlations are addressed by augmenting the geophysical forward model with a hierarchical autoregressive error model that can account for a wide range of error processes with a small number of parameters. Hence, the limited knowledge about the true statistical distribution of data errors is also accounted for in the earth model parameter estimates, resulting in more realistic uncertainties and parameter values. Hierarchical autoregressive error models do not rely on point estimates of the model vector to estimate data-error statistics, and have no requirement for computing the inverse or determinant of a data-error covariance matrix. This approach is particularly useful for trans-dimensional inverse problems, as point estimates may not be representative of the state space that spans multiple subspaces of different dimensionalities. The order of the autoregressive process required to fit the data is determined here by posterior residual-sample examination and statistical tests. Inference for earth model parameters is carried out on the trans-dimensional posterior probability distribution by considering ensembles of parameter vectors. In particular, vs uncertainty estimates are obtained by marginalizing the trans-dimensional posterior distribution in terms of vs-profile marginal distributions. The methodology is applied to microtremor array dispersion data collected at two sites with significantly different geology in British Columbia, Canada. At both sites, results show excellent agreement with estimates from invasive measurements.
Somarathna, P D S N; Minasny, Budiman; Malone, Brendan P; Stockmann, Uta; McBratney, Alex B
2018-08-01
Spatial modelling of environmental data commonly only considers spatial variability as the single source of uncertainty. In reality however, the measurement errors should also be accounted for. In recent years, infrared spectroscopy has been shown to offer low cost, yet invaluable information needed for digital soil mapping at meaningful spatial scales for land management. However, spectrally inferred soil carbon data are known to be less accurate compared to laboratory analysed measurements. This study establishes a methodology to filter out the measurement error variability by incorporating the measurement error variance in the spatial covariance structure of the model. The study was carried out in the Lower Hunter Valley, New South Wales, Australia where a combination of laboratory measured, and vis-NIR and MIR inferred topsoil and subsoil soil carbon data are available. We investigated the applicability of residual maximum likelihood (REML) and Markov Chain Monte Carlo (MCMC) simulation methods to generate parameters of the Matérn covariance function directly from the data in the presence of measurement error. The results revealed that the measurement error can be effectively filtered-out through the proposed technique. When the measurement error was filtered from the data, the prediction variance almost halved, which ultimately yielded a greater certainty in spatial predictions of soil carbon. Further, the MCMC technique was successfully used to define the posterior distribution of measurement error. This is an important outcome, as the MCMC technique can be used to estimate the measurement error if it is not explicitly quantified. Although this study dealt with soil carbon data, this method is amenable for filtering the measurement error of any kind of continuous spatial environmental data. Copyright © 2018 Elsevier B.V. All rights reserved.
On the predictivity of pore-scale simulations: Estimating uncertainties with multilevel Monte Carlo
NASA Astrophysics Data System (ADS)
Icardi, Matteo; Boccardo, Gianluca; Tempone, Raúl
2016-09-01
A fast method with tunable accuracy is proposed to estimate errors and uncertainties in pore-scale and Digital Rock Physics (DRP) problems. The overall predictivity of these studies can be, in fact, hindered by many factors including sample heterogeneity, computational and imaging limitations, model inadequacy and not perfectly known physical parameters. The typical objective of pore-scale studies is the estimation of macroscopic effective parameters such as permeability, effective diffusivity and hydrodynamic dispersion. However, these are often non-deterministic quantities (i.e., results obtained for specific pore-scale sample and setup are not totally reproducible by another ;equivalent; sample and setup). The stochastic nature can arise due to the multi-scale heterogeneity, the computational and experimental limitations in considering large samples, and the complexity of the physical models. These approximations, in fact, introduce an error that, being dependent on a large number of complex factors, can be modeled as random. We propose a general simulation tool, based on multilevel Monte Carlo, that can reduce drastically the computational cost needed for computing accurate statistics of effective parameters and other quantities of interest, under any of these random errors. This is, to our knowledge, the first attempt to include Uncertainty Quantification (UQ) in pore-scale physics and simulation. The method can also provide estimates of the discretization error and it is tested on three-dimensional transport problems in heterogeneous materials, where the sampling procedure is done by generation algorithms able to reproduce realistic consolidated and unconsolidated random sphere and ellipsoid packings and arrangements. A totally automatic workflow is developed in an open-source code [1], that include rigid body physics and random packing algorithms, unstructured mesh discretization, finite volume solvers, extrapolation and post-processing techniques. The proposed method can be efficiently used in many porous media applications for problems such as stochastic homogenization/upscaling, propagation of uncertainty from microscopic fluid and rock properties to macro-scale parameters, robust estimation of Representative Elementary Volume size for arbitrary physics.
Mapping from disease-specific measures to health-state utility values in individuals with migraine.
Gillard, Patrick J; Devine, Beth; Varon, Sepideh F; Liu, Lei; Sullivan, Sean D
2012-05-01
The objective of this study was to develop empirical algorithms that estimate health-state utility values from disease-specific quality-of-life scores in individuals with migraine. Data from a cross-sectional, multicountry study were used. Individuals with episodic and chronic migraine were randomly assigned to training or validation samples. Spearman's correlation coefficients between paired EuroQol five-dimensional (EQ-5D) questionnaire utility values and both Headache Impact Test (HIT-6) scores and Migraine-Specific Quality-of-Life Questionnaire version 2.1 (MSQ) domain scores (role restrictive, role preventive, and emotional function) were examined. Regression models were constructed to estimate EQ-5D questionnaire utility values from the HIT-6 score or the MSQ domain scores. Preferred algorithms were confirmed in the validation samples. In episodic migraine, the preferred HIT-6 and MSQ algorithms explained 22% and 25% of the variance (R(2)) in the training samples, respectively, and had similar prediction errors (root mean square errors of 0.30). In chronic migraine, the preferred HIT-6 and MSQ algorithms explained 36% and 45% of the variance in the training samples, respectively, and had similar prediction errors (root mean square errors 0.31 and 0.29). In episodic and chronic migraine, no statistically significant differences were observed between the mean observed and the mean estimated EQ-5D questionnaire utility values for the preferred HIT-6 and MSQ algorithms in the validation samples. The relationship between the EQ-5D questionnaire and the HIT-6 or the MSQ is adequate to use regression equations to estimate EQ-5D questionnaire utility values. The preferred HIT-6 and MSQ algorithms will be useful in estimating health-state utilities in migraine trials in which no preference-based measure is present. Copyright © 2012 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
Flight Test Results: CTAS Cruise/Descent Trajectory Prediction Accuracy for En route ATC Advisories
NASA Technical Reports Server (NTRS)
Green, S.; Grace, M.; Williams, D.
1999-01-01
The Center/TRACON Automation System (CTAS), under development at NASA Ames Research Center, is designed to assist controllers with the management and control of air traffic transitioning to/from congested airspace. This paper focuses on the transition from the en route environment, to high-density terminal airspace, under a time-based arrival-metering constraint. Two flight tests were conducted at the Denver Air Route Traffic Control Center (ARTCC) to study trajectory-prediction accuracy, the key to accurate Decision Support Tool advisories such as conflict detection/resolution and fuel-efficient metering conformance. In collaboration with NASA Langley Research Center, these test were part of an overall effort to research systems and procedures for the integration of CTAS and flight management systems (FMS). The Langley Transport Systems Research Vehicle Boeing 737 airplane flew a combined total of 58 cruise-arrival trajectory runs while following CTAS clearance advisories. Actual trajectories of the airplane were compared to CTAS and FMS predictions to measure trajectory-prediction accuracy and identify the primary sources of error for both. The research airplane was used to evaluate several levels of cockpit automation ranging from conventional avionics to a performance-based vertical navigation (VNAV) FMS. Trajectory prediction accuracy was analyzed with respect to both ARTCC radar tracking and GPS-based aircraft measurements. This paper presents detailed results describing the trajectory accuracy and error sources. Although differences were found in both accuracy and error sources, CTAS accuracy was comparable to the FMS in terms of both meter-fix arrival-time performance (in support of metering) and 4D-trajectory prediction (key to conflict prediction). Overall arrival time errors (mean plus standard deviation) were measured to be approximately 24 seconds during the first flight test (23 runs) and 15 seconds during the second flight test (25 runs). The major source of error during these tests was found to be the predicted winds aloft used by CTAS. Position and velocity estimates of the airplane provided to CTAS by the ATC Host radar tracker were found to be a relatively insignificant error source for the trajectory conditions evaluated. Airplane performance modeling errors within CTAS were found to not significantly affect arrival time errors when the constrained descent procedures were used. The most significant effect related to the flight guidance was observed to be the cross-track and turn-overshoot errors associated with conventional VOR guidance. Lateral navigation (LNAV) guidance significantly reduced both the cross-track and turn-overshoot error. Pilot procedures and VNAV guidance were found to significantly reduce the vertical profile errors associated with atmospheric and aircraft performance model errors.
Skylab S-193 radar altimeter experiment analyses and results
NASA Technical Reports Server (NTRS)
Brown, G. S. (Editor)
1977-01-01
The design of optimum filtering procedures for geoid recovery is discussed. Statistical error bounds are obtained for pointing angle estimates using average waveform data. A correlation of tracking loop bandwidth with magnitude of pointing error is established. The impact of ocean currents and precipitation on the received power are shown to be measurable effects. For large sea state conditions, measurements of sigma 0 deg indicate a distinct saturation level of about 8 dB. Near-nadir less than 15 deg values of sigma 0 deg are also presented and compared with theoretical models. Examination of Great Salt Lake Desert scattering data leads to rejection of a previously hypothesized specularly reflecting surface. Pulse-to-pulse correlation results are in agreement with quasi-monochromatic optics theoretical predictions and indicate a means for estimating direction of pointing error. Pulse compression techniques for and results of estimating significant waveheight from waveform data are presented and are also shown to be in good agreement with surface truth data. A number of results pertaining to system performance are presented.
Estimation of State Transition Probabilities: A Neural Network Model
NASA Astrophysics Data System (ADS)
Saito, Hiroshi; Takiyama, Ken; Okada, Masato
2015-12-01
Humans and animals can predict future states on the basis of acquired knowledge. This prediction of the state transition is important for choosing the best action, and the prediction is only possible if the state transition probability has already been learned. However, how our brains learn the state transition probability is unknown. Here, we propose a simple algorithm for estimating the state transition probability by utilizing the state prediction error. We analytically and numerically confirmed that our algorithm is able to learn the probability completely with an appropriate learning rate. Furthermore, our learning rule reproduced experimentally reported psychometric functions and neural activities in the lateral intraparietal area in a decision-making task. Thus, our algorithm might describe the manner in which our brains learn state transition probabilities and predict future states.
Error Estimates of the Ares I Computed Turbulent Ascent Longitudinal Aerodynamic Analysis
NASA Technical Reports Server (NTRS)
Abdol-Hamid, Khaled S.; Ghaffari, Farhad
2012-01-01
Numerical predictions of the longitudinal aerodynamic characteristics for the Ares I class of vehicles, along with the associated error estimate derived from an iterative convergence grid refinement, are presented. Computational results are based on an unstructured grid, Reynolds-averaged Navier-Stokes analysis. The validity of the approach to compute the associated error estimates, derived from a base grid to an extrapolated infinite-size grid, was first demonstrated on a sub-scaled wind tunnel model at representative ascent flow conditions for which the experimental data existed. Such analysis at the transonic flow conditions revealed a maximum deviation of about 23% between the computed longitudinal aerodynamic coefficients with the base grid and the measured data across the entire roll angles. This maximum deviation from the wind tunnel data was associated with the computed normal force coefficient at the transonic flow condition and was reduced to approximately 16% based on the infinite-size grid. However, all the computed aerodynamic coefficients with the base grid at the supersonic flow conditions showed a maximum deviation of only about 8% with that level being improved to approximately 5% for the infinite-size grid. The results and the error estimates based on the established procedure are also presented for the flight flow conditions.
Rawlins, B G; Scheib, C; Tyler, A N; Beamish, D
2012-12-01
Regulatory authorities need ways to estimate natural terrestrial gamma radiation dose rates (nGy h⁻¹) across the landscape accurately, to assess its potential deleterious health effects. The primary method for estimating outdoor dose rate is to use an in situ detector supported 1 m above the ground, but such measurements are costly and cannot capture the landscape-scale variation in dose rates which are associated with changes in soil and parent material mineralogy. We investigate the potential for improving estimates of terrestrial gamma dose rates across Northern Ireland (13,542 km²) using measurements from 168 sites and two sources of ancillary data: (i) a map based on a simplified classification of soil parent material, and (ii) dose estimates from a national-scale, airborne radiometric survey. We used the linear mixed modelling framework in which the two ancillary variables were included in separate models as fixed effects, plus a correlation structure which captures the spatially correlated variance component. We used a cross-validation procedure to determine the magnitude of the prediction errors for the different models. We removed a random subset of 10 terrestrial measurements and formed the model from the remainder (n = 158), and then used the model to predict values at the other 10 sites. We repeated this procedure 50 times. The measurements of terrestrial dose vary between 1 and 103 (nGy h⁻¹). The median absolute model prediction errors (nGy h⁻¹) for the three models declined in the following order: no ancillary data (10.8) > simple geological classification (8.3) > airborne radiometric dose (5.4) as a single fixed effect. Estimates of airborne radiometric gamma dose rate can significantly improve the spatial prediction of terrestrial dose rate.
Prediction of Sublimation Pressures of Low Volatility Solids
NASA Astrophysics Data System (ADS)
Drake, Bruce Douglas
Sublimation pressures are required for solid-vapor phase equilibrium models in design of processes such as supercritical fluid extraction, sublimation purification and vapor epitaxy. The objective of this work is to identify and compare alternative methods for predicting sublimation pressures. A bibliography of recent sublimation data is included. Corresponding states methods based on the triple point (rather than critical point) are examined. A modified Trouton's rule is the preferred method for estimating triple point pressure in the absence of any sublimation data. Only boiling and melting temperatures are required. Typical error in log_{10} P _{rm triple} is 0.3. For lower temperature estimates, the slope of the sublimation curve is predicted by a correlation based on molar volume. Typical error is 10% of slope. Molecular dynamics methods for surface modeling are tested as estimators of vapor pressure. The time constants of the vapor and solid phases are too different to allow the vapor to come to thermal equilibrium with the solid. The method shows no advantages in prediction of sublimation pressure but provides insight into appropriate models and experimental methods for sublimation. Density-dependent augmented van der Waals equations of state based on hard-sphere distribution functions are examined. The perturbation term is almost linear and is well fit by a simple quadratic. Use of the equation provides reasonable fitting of sublimation pressures from one data point. Order-of-magnitude estimation is possible from melting temperature and solid molar volume. The inverse -12 fluid is used to develop an additional equation of state. Sublimation pressure results, including quality of pressure predictions, are similar to the hard-sphere results. Three-body (Axilrod -Teller) interactions are used to improve results.
Gao, Huilin; Dong, Lihu; Li, Fengri; Zhang, Lianjun
2015-01-01
A total of 89 trees of Korean pine (Pinus koraiensis) were destructively sampled from the plantations in Heilongjiang Province, P.R. China. The sample trees were measured and calculated for the biomass and carbon stocks of tree components (i.e., stem, branch, foliage and root). Both compatible biomass and carbon stock models were developed with the total biomass and total carbon stocks as the constraints, respectively. Four methods were used to evaluate the carbon stocks of tree components. The first method predicted carbon stocks directly by the compatible carbon stocks models (Method 1). The other three methods indirectly predicted the carbon stocks in two steps: (1) estimating the biomass by the compatible biomass models, and (2) multiplying the estimated biomass by three different carbon conversion factors (i.e., carbon conversion factor 0.5 (Method 2), average carbon concentration of the sample trees (Method 3), and average carbon concentration of each tree component (Method 4)). The prediction errors of estimating the carbon stocks were compared and tested for the differences between the four methods. The results showed that the compatible biomass and carbon models with tree diameter (D) as the sole independent variable performed well so that Method 1 was the best method for predicting the carbon stocks of tree components and total. There were significant differences among the four methods for the carbon stock of stem. Method 2 produced the largest error, especially for stem and total. Methods 3 and Method 4 were slightly worse than Method 1, but the differences were not statistically significant. In practice, the indirect method using the mean carbon concentration of individual trees was sufficient to obtain accurate carbon stocks estimation if carbon stocks models are not available. PMID:26659257
Feaster, Toby D.; Tasker, Gary D.
2002-01-01
Data from 167 streamflow-gaging stations in or near South Carolina with 10 or more years of record through September 30, 1999, were used to develop two methods for estimating the magnitude and frequency of floods in South Carolina for rural ungaged basins that are not significantly affected by regulation. Flood frequency estimates for 54 gaged sites in South Carolina were computed by fitting the water-year peak flows for each site to a log-Pearson Type III distribution. As part of the computation of flood-frequency estimates for gaged sites, new values for generalized skew coefficients were developed. Flood-frequency analyses also were made for gaging stations that drain basins from more than one physiographic province. The U.S. Geological Survey, in cooperation with the South Carolina Department of Transportation, updated these data from previous flood-frequency reports to aid officials who are active in floodplain management as well as those who design bridges, culverts, and levees, or other structures near streams where flooding is likely to occur. Regional regression analysis, using generalized least squares regression, was used to develop a set of predictive equations that can be used to estimate the 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence-interval flows for rural ungaged basins in the Blue Ridge, Piedmont, upper Coastal Plain, and lower Coastal Plain physiographic provinces of South Carolina. The predictive equations are all functions of drainage area. Average errors of prediction for these regression equations ranged from -16 to 19 percent for the 2-year recurrence-interval flow in the upper Coastal Plain to -34 to 52 percent for the 500-year recurrence interval flow in the lower Coastal Plain. A region-of-influence method also was developed that interactively estimates recurrence- interval flows for rural ungaged basins in the Blue Ridge of South Carolina. The region-of-influence method uses regression techniques to develop a unique relation between flow and basin characteristics for an individual watershed. This, then, can be used to estimate flows at ungaged sites. Because the computations required for this method are somewhat complex, a computer application was developed that performs the computations and compares the predictive errors for this method. The computer application includes the option of using the region-of-influence method, or the generalized least squares regression equations from this report to compute estimated flows and errors of prediction specific to each ungaged site. From a comparison of predictive errors using the region-of-influence method with those computed using the regional regression method, the region-of-influence method performed systematically better only in the Blue Ridge and is, therefore, not recommended for use in the other physiographic provinces. Peak-flow data for the South Carolina stations used in the regionalization study are provided in appendix A, which contains gaging station information, log-Pearson Type III statistics, information on stage-flow relations, and water-year peak stages and flows. For informational purposes, water-year peak-flow data for stations on regulated streams in South Carolina also are provided in appendix D. Other information pertaining to the regulated streams is provided in the text of the report.
Predictability Experiments With the Navy Operational Global Atmospheric Prediction System
NASA Astrophysics Data System (ADS)
Reynolds, C. A.; Gelaro, R.; Rosmond, T. E.
2003-12-01
There are several areas of research in numerical weather prediction and atmospheric predictability, such as targeted observations and ensemble perturbation generation, where it is desirable to combine information about the uncertainty of the initial state with information about potential rapid perturbation growth. Singular vectors (SVs) provide a framework to accomplish this task in a mathematically rigorous and computationally feasible manner. In this study, SVs are calculated using the tangent and adjoint models of the Navy Operational Global Atmospheric Prediction System (NOGAPS). The analysis error variance information produced by the NRL Atmospheric Variational Data Assimilation System is used as the initial-time SV norm. These VAR SVs are compared to SVs for which total energy is both the initial and final time norms (TE SVs). The incorporation of analysis error variance information has a significant impact on the structure and location of the SVs. This in turn has a significant impact on targeted observing applications. The utility and implications of such experiments in assessing the analysis error variance estimates will be explored. Computing support has been provided by the Department of Defense High Performance Computing Center at the Naval Oceanographic Office Major Shared Resource Center at Stennis, Mississippi.
A Study of the Groundwater Level Spatial Variability in the Messara Valley of Crete
NASA Astrophysics Data System (ADS)
Varouchakis, E. A.; Hristopulos, D. T.; Karatzas, G. P.
2009-04-01
The island of Crete (Greece) has a dry sub-humid climate and marginal groundwater resources, which are extensively used for agricultural activities and human consumption. The Messara valley is located in the south of the Heraklion prefecture, it covers an area of 398 km2, and it is the largest and most productive valley of the island. Over-exploitation during the past thirty (30) years has led to a dramatic decrease of thirty five (35) meters in the groundwater level. Possible future climatic changes in the Mediterranean region, potential desertification, population increase, and extensive agricultural activity generate concern over the sustainability of the water resources of the area. The accurate estimation of the water table depth is important for an integrated groundwater resource management plan. This study focuses on the Mires basin of the Messara valley for reasons of hydro-geological data availability and geological homogeneity. The research goal is to model and map the spatial variability of the basin's groundwater level accurately. The data used in this study consist of seventy (70) piezometric head measurements for the hydrological year 2001-2002. These are unevenly distributed and mostly concentrated along a temporary river that crosses the basin. The range of piezometric heads varies from an extreme low value of 9.4 meters above sea level (masl) to 62 masl, for the wet period of the year (October to April). An initial goal of the study is to develop spatial models for the accurate generation of static maps of groundwater level. At a second stage, these maps should extend the models to dynamic (space-time) situations for the prediction of future water levels. Preliminary data analysis shows that the piezometric head variations are not normally distributed. Several methods including Box-Cox transformation and a modified version of it, transgaussian Kriging, and Gaussian anamorphosis have been used to obtain a spatial model for the piezometric head. A trend model was constructed that accounted for the distance of the wells from the river bed. The spatial dependence of the fluctuations was studied by fitting isotropic and anisotropic empirical variograms with classical models, the Matérn model and the Spartan variogram family (Hristopulos, 2003; Hristopoulos and Elogne, 2007). The most accurate results, mean absolute prediction error of 4.57 masl, were obtained using the modified Box-Cox transform of the original data. The exponential and the isotropic Spartan variograms provided the best fits to the experimental variogram. Using Ordinary Kriging with either variogram function gave a mean absolute estimation error of 4.57 masl based on leave-one-out cross validation. The bias error of the predictions was calculated equal to -0.38 masl and the correlation coefficient of the predictions with respect of the original data equal to 0.8. The estimates located on the borders of the study domain presented a higher prediction error that varies from 8 to 14 masl due to the limited number of neighbor data. The maximum estimation error, observed at the extreme low value calculation, was 23 masl. The method of locally weighted regression (LWR), (NIST/SEMATECH 2009) was also investigated as an alternative approach for spatial modeling. The trend calculated from a second order LWR method showed a remarkable fit to the original data marked by a mean absolute estimation error of 4.4 masl. The bias prediction error was calculated equal to -0.16 masl and the correlation coefficient between predicted and original data equal to 0.88 masl. Higher estimation errors were found at the same locations and vary within the same range. The extreme low value calculation error has improved to 21 masl. Plans for future research include the incorporation of spatial anisotropy in the kriging algorithm, the investigation of kernel functions other than the tricube in LWR, as well as the use of locally adapted bandwidth values. Furthermore, pumping rates for fifty eight (58) of the seventy (70) wells are available display a correlation coefficient of -0.6 with the respective ground water levels. A Digital Elevation Model (DEM) of the area will provide additional information about the unsampled locations of the basin. The pumping rates and the DEM will be used as secondary information in a co-kriging approach, leading to more accurate estimation of the basin's water table. NIST/SEMATECH e-Handbook of Statitical Methods, http://www.itl.nist.gov/div898/handbook/, 12/01/09. D.T. Hristopulos, "Spartan Gibbs random field models for geostatistical applications," SIAM J. Scient. Comput., vol. 24, no. 6, pp. 2125-2162, 2003 D.T. Hristopulos and S. Elogne, "Analytic properties and covariance functions for a new class of generalized Gibbs random fields," IEEE TRANSACTIONS ON INFORMATION THEORY, vol. 53, no 12, pp. 4667-4679, 2007
Admire, Brittany; Lian, Bo; Yalkowsky, Samuel H
2015-01-01
The UPPER (Unified Physicochemical Property Estimation Relationships) model uses enthalpic and entropic parameters to estimate 20 biologically relevant properties of organic compounds. The model has been validated by Lian and Yalkowsky on a data set of 700 hydrocarbons. The aim of this work is to expand the UPPER model to estimate the boiling and melting points of polyhalogenated compounds. In this work, 19 new group descriptors are defined and used to predict the transition temperatures of an additional 1288 compounds. The boiling points of 808 and the melting points of 742 polyhalogenated compounds are predicted with average absolute errors of 13.56 K and 25.85 K, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Charonko, John J.; Vlachos, Pavlos P.
2013-06-01
Numerous studies have established firmly that particle image velocimetry (PIV) is a robust method for non-invasive, quantitative measurements of fluid velocity, and that when carefully conducted, typical measurements can accurately detect displacements in digital images with a resolution well below a single pixel (in some cases well below a hundredth of a pixel). However, to date, these estimates have only been able to provide guidance on the expected error for an average measurement under specific image quality and flow conditions. This paper demonstrates a new method for estimating the uncertainty bounds to within a given confidence interval for a specific, individual measurement. Here, cross-correlation peak ratio, the ratio of primary to secondary peak height, is shown to correlate strongly with the range of observed error values for a given measurement, regardless of flow condition or image quality. This relationship is significantly stronger for phase-only generalized cross-correlation PIV processing, while the standard correlation approach showed weaker performance. Using an analytical model of the relationship derived from synthetic data sets, the uncertainty bounds at a 95% confidence interval are then computed for several artificial and experimental flow fields, and the resulting errors are shown to match closely to the predicted uncertainties. While this method stops short of being able to predict the true error for a given measurement, knowledge of the uncertainty level for a PIV experiment should provide great benefits when applying the results of PIV analysis to engineering design studies and computational fluid dynamics validation efforts. Moreover, this approach is exceptionally simple to implement and requires negligible additional computational cost.
Sun, Libo; Wan, Ying
2018-04-22
Conditional power and predictive power provide estimates of the probability of success at the end of the trial based on the information from the interim analysis. The observed value of the time to event endpoint at the interim analysis could be biased for the true treatment effect due to early censoring, leading to a biased estimate of conditional power and predictive power. In such cases, the estimates and inference for this right censored primary endpoint are enhanced by incorporating a fully observed auxiliary variable. We assume a bivariate normal distribution of the transformed primary variable and a correlated auxiliary variable. Simulation studies are conducted that not only shows enhanced conditional power and predictive power but also can provide the framework for a more efficient futility interim analysis in terms of an improved accuracy in estimator, a smaller inflation in type II error and an optimal timing for such analysis. We also illustrated the new approach by a real clinical trial example. Copyright © 2018 John Wiley & Sons, Ltd.
Trajectory-based visual localization in underwater surveying missions.
Burguera, Antoni; Bonin-Font, Francisco; Oliver, Gabriel
2015-01-14
We present a new vision-based localization system applied to an autonomous underwater vehicle (AUV) with limited sensing and computation capabilities. The traditional EKF-SLAM approaches are usually expensive in terms of execution time; the approach presented in this paper strengthens this method by adopting a trajectory-based schema that reduces the computational requirements. The pose of the vehicle is estimated using an extended Kalman filter (EKF), which predicts the vehicle motion by means of a visual odometer and corrects these predictions using the data associations (loop closures) between the current frame and the previous ones. One of the most important steps in this procedure is the image registration method, as it reinforces the data association and, thus, makes it possible to close loops reliably. Since the use of standard EKFs entail linearization errors that can distort the vehicle pose estimations, the approach has also been tested using an iterated Kalman filter (IEKF). Experiments have been conducted using a real underwater vehicle in controlled scenarios and in shallow sea waters, showing an excellent performance with very small errors, both in the vehicle pose and in the overall trajectory estimates.
Estimating top-of-atmosphere thermal infrared radiance using MERRA-2 atmospheric data
NASA Astrophysics Data System (ADS)
Kleynhans, Tania; Montanaro, Matthew; Gerace, Aaron; Kanan, Christopher
2017-05-01
Thermal infrared satellite images have been widely used in environmental studies. However, satellites have limited temporal resolution, e.g., 16 day Landsat or 1 to 2 day Terra MODIS. This paper investigates the use of the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) reanalysis data product, produced by NASA's Global Modeling and Assimilation Office (GMAO) to predict global topof-atmosphere (TOA) thermal infrared radiance. The high temporal resolution of the MERRA-2 data product presents opportunities for novel research and applications. Various methods were applied to estimate TOA radiance from MERRA-2 variables namely (1) a parameterized physics based method, (2) Linear regression models and (3) non-linear Support Vector Regression. Model prediction accuracy was evaluated using temporally and spatially coincident Moderate Resolution Imaging Spectroradiometer (MODIS) thermal infrared data as reference data. This research found that Support Vector Regression with a radial basis function kernel produced the lowest error rates. Sources of errors are discussed and defined. Further research is currently being conducted to train deep learning models to predict TOA thermal radiance
Fiber-optic evanescent-wave spectroscopy for fast multicomponent analysis of human blood
NASA Astrophysics Data System (ADS)
Simhi, Ronit; Gotshal, Yaron; Bunimovich, David; Katzir, Abraham; Sela, Ben-Ami
1996-07-01
A spectral analysis of human blood serum was undertaken by fiber-optic evanescent-wave spectroscopy (FEWS) by the use of a Fourier-transform infrared spectrometer. A special cell for the FEWS measurements was designed and built that incorporates an IR-transmitting silver halide fiber and a means for introducing the blood-serum sample. Further improvements in analysis were obtained by the adoption of multivariate calibration techniques that are already used in clinical chemistry. The partial least-squares algorithm was used to calculate the concentrations of cholesterol, total protein, urea, and uric acid in human blood serum. The estimated prediction errors obtained (in percent from the average value) were 6% for total protein, 15% for cholesterol, 30% for urea, and 30% for uric acid. These results were compared with another independent prediction method that used a neural-network model. This model yielded estimated prediction errors of 8.8% for total protein, 25% for cholesterol, and 21% for uric acid. spectroscopy, fiber-optic evanescent-wave spectroscopy, Fourier-transform infrared spectrometer, blood, multivariate calibration, neural networks.
Anticoagulation therapy advisor: a decision-support system for heparin therapy during ECMO.
Peverini, R. L.; Sale, M.; Rhine, W. D.; Fagan, L. M.; Lenert, L. A.
1992-01-01
We present a case study describing our development of a mathematical model to control a clinical parameter in a patient--in this case, the degree of anticoagulation during extracorporeal membrane oxygenation (ECMO) support. During ECMO therapy, an anticoagulant agent (heparin) is administered to prevent thrombosis. Under- or over-coagulation can have grave consequences. To improve control of anticoagulation, we developed a pharmacokinetic-pharmacodynamic (PK-PD) model that predicts activated clotting times (ACT) using the NONMEM program. We then integrated this model into a decision-support system, and validated it with an independent data set. The population model had a mean absolute error of prediction for ACT values of 33.5 seconds, with a mean bias in estimation of -14.3 seconds. Individualization of model-parameter estimates using nonlinear regression improved the absolute error prediction to 25.5 seconds, and lowered the mean bias to -3.1 seconds. The PK-PD model is coupled with software for heuristic interpretation of model results to provide a complete environment for the management of anticoagulation. PMID:1482937
Mathematical foundations of hybrid data assimilation from a synchronization perspective
NASA Astrophysics Data System (ADS)
Penny, Stephen G.
2017-12-01
The state-of-the-art data assimilation methods used today in operational weather prediction centers around the world can be classified as generalized one-way coupled impulsive synchronization. This classification permits the investigation of hybrid data assimilation methods, which combine dynamic error estimates of the system state with long time-averaged (climatological) error estimates, from a synchronization perspective. Illustrative results show how dynamically informed formulations of the coupling matrix (via an Ensemble Kalman Filter, EnKF) can lead to synchronization when observing networks are sparse and how hybrid methods can lead to synchronization when those dynamic formulations are inadequate (due to small ensemble sizes). A large-scale application with a global ocean general circulation model is also presented. Results indicate that the hybrid methods also have useful applications in generalized synchronization, in particular, for correcting systematic model errors.
Mathematical foundations of hybrid data assimilation from a synchronization perspective.
Penny, Stephen G
2017-12-01
The state-of-the-art data assimilation methods used today in operational weather prediction centers around the world can be classified as generalized one-way coupled impulsive synchronization. This classification permits the investigation of hybrid data assimilation methods, which combine dynamic error estimates of the system state with long time-averaged (climatological) error estimates, from a synchronization perspective. Illustrative results show how dynamically informed formulations of the coupling matrix (via an Ensemble Kalman Filter, EnKF) can lead to synchronization when observing networks are sparse and how hybrid methods can lead to synchronization when those dynamic formulations are inadequate (due to small ensemble sizes). A large-scale application with a global ocean general circulation model is also presented. Results indicate that the hybrid methods also have useful applications in generalized synchronization, in particular, for correcting systematic model errors.
Huang, Haoqian; Chen, Xiyuan; Zhang, Bo; Wang, Jian
2017-01-01
The underwater navigation system, mainly consisting of MEMS inertial sensors, is a key technology for the wide application of underwater gliders and plays an important role in achieving high accuracy navigation and positioning for a long time of period. However, the navigation errors will accumulate over time because of the inherent errors of inertial sensors, especially for MEMS grade IMU (Inertial Measurement Unit) generally used in gliders. The dead reckoning module is added to compensate the errors. In the complicated underwater environment, the performance of MEMS sensors is degraded sharply and the errors will become much larger. It is difficult to establish the accurate and fixed error model for the inertial sensor. Therefore, it is very hard to improve the accuracy of navigation information calculated by sensors. In order to solve the problem mentioned, the more suitable filter which integrates the multi-model method with an EKF approach can be designed according to different error models to give the optimal estimation for the state. The key parameters of error models can be used to determine the corresponding filter. The Adams explicit formula which has an advantage of high precision prediction is simultaneously fused into the above filter to achieve the much more improvement in attitudes estimation accuracy. The proposed algorithm has been proved through theory analyses and has been tested by both vehicle experiments and lake trials. Results show that the proposed method has better accuracy and effectiveness in terms of attitudes estimation compared with other methods mentioned in the paper for inertial navigation applied to underwater gliders. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Multiple-Event Seismic Location Using the Markov-Chain Monte Carlo Technique
NASA Astrophysics Data System (ADS)
Myers, S. C.; Johannesson, G.; Hanley, W.
2005-12-01
We develop a new multiple-event location algorithm (MCMCloc) that utilizes the Markov-Chain Monte Carlo (MCMC) method. Unlike most inverse methods, the MCMC approach produces a suite of solutions, each of which is consistent with observations and prior estimates of data and model uncertainties. Model parameters in MCMCloc consist of event hypocenters, and travel-time predictions. Data are arrival time measurements and phase assignments. Posteriori estimates of event locations, path corrections, pick errors, and phase assignments are made through analysis of the posteriori suite of acceptable solutions. Prior uncertainty estimates include correlations between travel-time predictions, correlations between measurement errors, the probability of misidentifying one phase for another, and the probability of spurious data. Inclusion of prior constraints on location accuracy allows direct utilization of ground-truth locations or well-constrained location parameters (e.g. from InSAR) that aid in the accuracy of the solution. Implementation of a correlation structure for travel-time predictions allows MCMCloc to operate over arbitrarily large geographic areas. Transition in behavior between a multiple-event locator for tightly clustered events and a single-event locator for solitary events is controlled by the spatial correlation of travel-time predictions. We test the MCMC locator on a regional data set of Nevada Test Site nuclear explosions. Event locations and origin times are known for these events, allowing us to test the features of MCMCloc using a high-quality ground truth data set. Preliminary tests suggest that MCMCloc provides excellent relative locations, often outperforming traditional multiple-event location algorithms, and excellent absolute locations are attained when constraints from one or more ground truth event are included. When phase assignments are switched, we find that MCMCloc properly corrects the error when predicted arrival times are separated by several seconds. In cases where the predicted arrival times are within the combined uncertainty of prediction and measurement errors, MCMCloc determines the probability of one or the other phase assignment and propagates this uncertainty into all model parameters. We find that MCMCloc is a promising method for simultaneously locating large, geographically distributed data sets. Because we incorporate prior knowledge on many parameters, MCMCloc is ideal for combining trusted data with data of unknown reliability. This work was performed under the auspices of the U.S. Department of Energy by the University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48, Contribution UCRL-ABS-215048
Wood, Molly S.; Fosness, Ryan L.; Skinner, Kenneth D.; Veilleux, Andrea G.
2016-06-27
The U.S. Geological Survey, in cooperation with the Idaho Transportation Department, updated regional regression equations to estimate peak-flow statistics at ungaged sites on Idaho streams using recent streamflow (flow) data and new statistical techniques. Peak-flow statistics with 80-, 67-, 50-, 43-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities (1.25-, 1.50-, 2.00-, 2.33-, 5.00-, 10.0-, 25.0-, 50.0-, 100-, 200-, and 500-year recurrence intervals, respectively) were estimated for 192 streamgages in Idaho and bordering States with at least 10 years of annual peak-flow record through water year 2013. The streamgages were selected from drainage basins with little or no flow diversion or regulation. The peak-flow statistics were estimated by fitting a log-Pearson type III distribution to records of annual peak flows and applying two additional statistical methods: (1) the Expected Moments Algorithm to help describe uncertainty in annual peak flows and to better represent missing and historical record; and (2) the generalized Multiple Grubbs Beck Test to screen out potentially influential low outliers and to better fit the upper end of the peak-flow distribution. Additionally, a new regional skew was estimated for the Pacific Northwest and used to weight at-station skew at most streamgages. The streamgages were grouped into six regions (numbered 1_2, 3, 4, 5, 6_8, and 7, to maintain consistency in region numbering with a previous study), and the estimated peak-flow statistics were related to basin and climatic characteristics to develop regional regression equations using a generalized least squares procedure. Four out of 24 evaluated basin and climatic characteristics were selected for use in the final regional peak-flow regression equations.Overall, the standard error of prediction for the regional peak-flow regression equations ranged from 22 to 132 percent. Among all regions, regression model fit was best for region 4 in west-central Idaho (average standard error of prediction=46.4 percent; pseudo-R2>92 percent) and region 5 in central Idaho (average standard error of prediction=30.3 percent; pseudo-R2>95 percent). Regression model fit was poor for region 7 in southern Idaho (average standard error of prediction=103 percent; pseudo-R2<78 percent) compared to other regions because few streamgages in region 7 met the criteria for inclusion in the study, and the region’s semi-arid climate and associated variability in precipitation patterns causes substantial variability in peak flows.A drainage area ratio-adjustment method, using ratio exponents estimated using generalized least-squares regression, was presented as an alternative to the regional regression equations if peak-flow estimates are desired at an ungaged site that is close to a streamgage selected for inclusion in this study. The alternative drainage area ratio-adjustment method is appropriate for use when the drainage area ratio between the ungaged and gaged sites is between 0.5 and 1.5.The updated regional peak-flow regression equations had lower total error (standard error of prediction) than all regression equations presented in a 1982 study and in four of six regions presented in 2002 and 2003 studies in Idaho. A more extensive streamgage screening process used in the current study resulted in fewer streamgages used in the current study than in the 1982, 2002, and 2003 studies. Fewer streamgages used and the selection of different explanatory variables were likely causes of increased error in some regions compared to previous studies, but overall, regional peak‑flow regression model fit was generally improved for Idaho. The revised statistical procedures and increased streamgage screening applied in the current study most likely resulted in a more accurate representation of natural peak-flow conditions.The updated, regional peak-flow regression equations will be integrated in the U.S. Geological Survey StreamStats program to allow users to estimate basin and climatic characteristics and peak-flow statistics at ungaged locations of interest. StreamStats estimates peak-flow statistics with quantifiable certainty only when used at sites with basin and climatic characteristics within the range of input variables used to develop the regional regression equations. Both the regional regression equations and StreamStats should be used to estimate peak-flow statistics only in naturally flowing, relatively unregulated streams without substantial local influences to flow, such as large seeps, springs, or other groundwater-surface water interactions that are not widespread or characteristic of the respective region.
Furlanello, Cesare; Serafini, Maria; Merler, Stefano; Jurman, Giuseppe
2003-11-06
We describe the E-RFE method for gene ranking, which is useful for the identification of markers in the predictive classification of array data. The method supports a practical modeling scheme designed to avoid the construction of classification rules based on the selection of too small gene subsets (an effect known as the selection bias, in which the estimated predictive errors are too optimistic due to testing on samples already considered in the feature selection process). With E-RFE, we speed up the recursive feature elimination (RFE) with SVM classifiers by eliminating chunks of uninteresting genes using an entropy measure of the SVM weights distribution. An optimal subset of genes is selected according to a two-strata model evaluation procedure: modeling is replicated by an external stratified-partition resampling scheme, and, within each run, an internal K-fold cross-validation is used for E-RFE ranking. Also, the optimal number of genes can be estimated according to the saturation of Zipf's law profiles. Without a decrease of classification accuracy, E-RFE allows a speed-up factor of 100 with respect to standard RFE, while improving on alternative parametric RFE reduction strategies. Thus, a process for gene selection and error estimation is made practical, ensuring control of the selection bias, and providing additional diagnostic indicators of gene importance.
Medeiros, Maria Nilza Lima; Cavalcante, Nádia Carenina Nunes; Mesquita, Fabrício José Alencar; Batista, Rosângela Lucena Fernandes; Simões, Vanda Maria Ferreira; Cavalli, Ricardo de Carvalho; Cardoso, Viviane Cunha; Bettiol, Heloisa; Barbieri, Marco Antonio; Silva, Antônio Augusto Moura da
2015-04-01
The aim of this study was to assess the validity of the last menstrual period (LMP) estimate in determining pre and post-term birth rates, in a prenatal cohort from two Brazilian cities, São Luís and Ribeirão Preto. Pregnant women with a single fetus and less than 20 weeks' gestation by obstetric ultrasonography who received prenatal care in 2010 and 2011 were included. The LMP was obtained on two occasions (at 22-25 weeks gestation and after birth). The sensitivity of LMP obtained prenatally to estimate the preterm birth rate was 65.6% in São Luís and 78.7% in Ribeirão Preto and the positive predictive value was 57.3% in São Luís and 73.3% in Ribeirão Preto. LMP errors in identifying preterm birth were lower in the more developed city, Ribeirão Preto. The sensitivity and positive predictive value of LMP for the estimate of the post-term birth rate was very low and tended to overestimate it. LMP can be used with some errors to identify the preterm birth rate when obstetric ultrasonography is not available, but is not suitable for predicting post-term birth.
Edge Modeling by Two Blur Parameters in Varying Contrasts.
Seo, Suyoung
2018-06-01
This paper presents a method of modeling edge profiles with two blur parameters, and estimating and predicting those edge parameters with varying brightness combinations and camera-to-object distances (COD). First, the validity of the edge model is proven mathematically. Then, it is proven experimentally with edges from a set of images captured for specifically designed target sheets and with edges from natural images. Estimation of the two blur parameters for each observed edge profile is performed with a brute-force method to find parameters that produce global minimum errors. Then, using the estimated blur parameters, actual blur parameters of edges with arbitrary brightness combinations are predicted using a surface interpolation method (i.e., kriging). The predicted surfaces show that the two blur parameters of the proposed edge model depend on both dark-side edge brightness and light-side edge brightness following a certain global trend. This is similar across varying CODs. The proposed edge model is compared with a one-blur parameter edge model using experiments of the root mean squared error for fitting the edge models to each observed edge profile. The comparison results suggest that the proposed edge model has superiority over the one-blur parameter edge model in most cases where edges have varying brightness combinations.
The regionalization of national-scale SPARROW models for stream nutrients
Schwarz, Gregory E.; Alexander, Richard B.; Smith, Richard A.; Preston, Stephen D.
2011-01-01
This analysis modifies the parsimonious specification of recently published total nitrogen (TN) and total phosphorus (TP) national-scale SPAtially Referenced Regressions On Watershed attributes models to allow each model coefficient to vary geographically among three major river basins of the conterminous United States. Regionalization of the national models reduces the standard errors in the prediction of TN and TP loads, expressed as a percentage of the predicted load, by about 6 and 7%. We develop and apply a method for combining national-scale and regional-scale information to estimate a hybrid model that imposes cross-region constraints that limit regional variation in model coefficients, effectively reducing the number of free model parameters as compared to a collection of independent regional models. The hybrid TN and TP regional models have improved model fit relative to the respective national models, reducing the standard error in the prediction of loads, expressed as a percentage of load, by about 5 and 4%. Only 19% of the TN hybrid model coefficients and just 2% of the TP hybrid model coefficients show evidence of substantial regional specificity (more than ±100% deviation from the national model estimate). The hybrid models have much greater precision in the estimated coefficients than do the unconstrained regional models, demonstrating the efficacy of pooling information across regions to improve regional models.
Estimating the magnitude and frequency of floods for streams in west-central Florida, 2001
Hammett, Kathleen M.; DelCharco, Michael J.
2005-01-01
Flood discharges were estimated for recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years for 94 streamflow stations in west-central Florida. Most of the stations are located within the 10,000 square-mile, 16-county area that forms the Southwest Florida Water Management District. All stations had at least 10 years of homogeneous record, and none have flood discharges that are significantly affected by regulation or urbanization. Guidelines established by the U.S. Water Resources Council in Bulletin 17B were used to estimate flood discharges from gaging station records. Multiple linear regression analysis was then used to mathematically relate estimates of flood discharge for selected recurrence intervals to explanatory basin characteristics. Contributing drainage area, channel slope, and the percent of total drainage area covered by lakes (percent lake area) were the basin characteristics that provided the best regression estimates. The study area was subdivided into four geographic regions to further refine the regression equations. Region 1 at the northern end of the study area includes large rivers that are characteristic of the rolling karst terrain of northern Florida. Only a small part of Region 1 lies within the boundaries of the Southwest Florida Water Management District. Contributing drainage area and percent lake area were the most statistically significant basin characteristics in Region 1; the prediction error of the regression equations varied with the recurrence interval and ranged from 57 to 69 percent. In the three other regions of the study area, contributing drainage area, channel slope, and percent lake area were the most statistically significant basin characteristics, and are the three characteristics that can be used to best estimate the magnitude and frequency of floods on most streams within the Southwest Florida Water Management District. The Withlacoochee River Basin dominates Region 2; the prediction error of the regression models in the region ranged from 65 to 68 percent. The basins that drain into the northern part of Tampa Bay and the upper reaches of the Peace River Basin are in Region 3, which had prediction errors ranging from 54 to 74 percent. Region 4, at the southern end of the study area, had prediction errors that ranged from 40 to 56 percent. Estimates of flood discharge become more accurate as longer periods of record are used for analyses; results of this study should be used in lieu of results from earlier U.S. Geological Survey studies of flood magnitude and frequency in west-central Florida. A comparison of current results with earlier studies indicates that use of a longer period of record with additional high-water events produces substantially higher flood-discharge estimates for many gaging stations. Another comparison indicates that the use of a computed, generalized skew in a previous study in 1979 tended to overestimate flood discharges.
NASA Astrophysics Data System (ADS)
Liu, Deyang; An, Ping; Ma, Ran; Yang, Chao; Shen, Liquan; Li, Kai
2016-07-01
Three-dimensional (3-D) holoscopic imaging, also known as integral imaging, light field imaging, or plenoptic imaging, can provide natural and fatigue-free 3-D visualization. However, a large amount of data is required to represent the 3-D holoscopic content. Therefore, efficient coding schemes for this particular type of image are needed. A 3-D holoscopic image coding scheme with kernel-based minimum mean square error (MMSE) estimation is proposed. In the proposed scheme, the coding block is predicted by an MMSE estimator under statistical modeling. In order to obtain the signal statistical behavior, kernel density estimation (KDE) is utilized to estimate the probability density function of the statistical modeling. As bandwidth estimation (BE) is a key issue in the KDE problem, we also propose a BE method based on kernel trick. The experimental results demonstrate that the proposed scheme can achieve a better rate-distortion performance and a better visual rendering quality.
Modeling aboveground tree woody biomass using national-scale allometric methods and airborne lidar
NASA Astrophysics Data System (ADS)
Chen, Qi
2015-08-01
Estimating tree aboveground biomass (AGB) and carbon (C) stocks using remote sensing is a critical component for understanding the global C cycle and mitigating climate change. However, the importance of allometry for remote sensing of AGB has not been recognized until recently. The overarching goals of this study are to understand the differences and relationships among three national-scale allometric methods (CRM, Jenkins, and the regional models) of the Forest Inventory and Analysis (FIA) program in the U.S. and to examine the impacts of using alternative allometry on the fitting statistics of remote sensing-based woody AGB models. Airborne lidar data from three study sites in the Pacific Northwest, USA were used to predict woody AGB estimated from the different allometric methods. It was found that the CRM and Jenkins estimates of woody AGB are related via the CRM adjustment factor. In terms of lidar-biomass modeling, CRM had the smallest model errors, while the Jenkins method had the largest ones and the regional method was between. The best model fitting from CRM is attributed to its inclusion of tree height in calculating merchantable stem volume and the strong dependence of non-merchantable stem biomass on merchantable stem biomass. This study also argues that it is important to characterize the allometric model errors for gaining a complete understanding of the remotely-sensed AGB prediction errors.
Cost Risk Analysis Based on Perception of the Engineering Process
NASA Technical Reports Server (NTRS)
Dean, Edwin B.; Wood, Darrell A.; Moore, Arlene A.; Bogart, Edward H.
1986-01-01
In most cost estimating applications at the NASA Langley Research Center (LaRC), it is desirable to present predicted cost as a range of possible costs rather than a single predicted cost. A cost risk analysis generates a range of cost for a project and assigns a probability level to each cost value in the range. Constructing a cost risk curve requires a good estimate of the expected cost of a project. It must also include a good estimate of expected variance of the cost. Many cost risk analyses are based upon an expert's knowledge of the cost of similar projects in the past. In a common scenario, a manager or engineer, asked to estimate the cost of a project in his area of expertise, will gather historical cost data from a similar completed project. The cost of the completed project is adjusted using the perceived technical and economic differences between the two projects. This allows errors from at least three sources. The historical cost data may be in error by some unknown amount. The managers' evaluation of the new project and its similarity to the old project may be in error. The factors used to adjust the cost of the old project may not correctly reflect the differences. Some risk analyses are based on untested hypotheses about the form of the statistical distribution that underlies the distribution of possible cost. The usual problem is not just to come up with an estimate of the cost of a project, but to predict the range of values into which the cost may fall and with what level of confidence the prediction is made. Risk analysis techniques that assume the shape of the underlying cost distribution and derive the risk curve from a single estimate plus and minus some amount usually fail to take into account the actual magnitude of the uncertainty in cost due to technical factors in the project itself. This paper addresses a cost risk method that is based on parametric estimates of the technical factors involved in the project being costed. The engineering process parameters are elicited from the engineer/expert on the project and are based on that expert's technical knowledge. These are converted by a parametric cost model into a cost estimate. The method discussed makes no assumptions about the distribution underlying the distribution of possible costs, and is not tied to the analysis of previous projects, except through the expert calibrations performed by the parametric cost analyst.
Kyme, Andre; Meikle, Steven; Baldock, Clive; Fulton, Roger
2012-08-01
Motion-compensated radiotracer imaging of fully conscious rodents represents an important paradigm shift for preclinical investigations. In such studies, if motion tracking is performed through a transparent enclosure containing the awake animal, light refraction at the interface will introduce errors in stereo pose estimation. We have performed a thorough investigation of how this impacts the accuracy of pose estimates and the resulting motion correction, and developed an efficient method to predict and correct for refraction-based error. The refraction model underlying this study was validated using a state-of-the-art motion tracking system. Refraction-based error was shown to be dependent on tracking marker size, working distance, and interface thickness and tilt. Correcting for refraction error improved the spatial resolution and quantitative accuracy of motion-corrected positron emission tomography images. Since the methods are general, they may also be useful in other contexts where data are corrupted by refraction effects. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.
Consequences of land-cover misclassification in models of impervious surface
McMahon, G.
2007-01-01
Model estimates of impervious area as a function of landcover area may be biased and imprecise because of errors in the land-cover classification. This investigation of the effects of land-cover misclassification on impervious surface models that use National Land Cover Data (NLCD) evaluates the consequences of adjusting land-cover within a watershed to reflect uncertainty assessment information. Model validation results indicate that using error-matrix information to adjust land-cover values used in impervious surface models does not substantially improve impervious surface predictions. Validation results indicate that the resolution of the landcover data (Level I and Level II) is more important in predicting impervious surface accurately than whether the land-cover data have been adjusted using information in the error matrix. Level I NLCD, adjusted for land-cover misclassification, is preferable to the other land-cover options for use in models of impervious surface. This result is tied to the lower classification error rates for the Level I NLCD. ?? 2007 American Society for Photogrammetry and Remote Sensing.
NASA Technical Reports Server (NTRS)
Christensen, E. J.; Haines, B. J.; Mccoll, K. C.; Nerem, R. S.
1994-01-01
We have compared Global Positioning System (GPS)-based dynamic and reduced-dynamic TOPEX/Poseidon orbits over three 10-day repeat cycles of the ground-track. The results suggest that the prelaunch joint gravity model (JGM-1) introduces geographically correlated errors (GCEs) which have a strong meridional dependence. The global distribution and magnitude of these GCEs are consistent with a prelaunch covariance analysis, with estimated and predicted global rms error statistics of 2.3 and 2.4 cm rms, respectively. Repeating the analysis with the post-launch joint gravity model (JGM-2) suggests that a portion of the meridional dependence observed in JGM-1 still remains, with global rms error of 1.2 cm.
NASA Astrophysics Data System (ADS)
Genberg, Victor L.; Michels, Gregory J.
2017-08-01
The ultimate design goal of an optical system subjected to dynamic loads is to minimize system level wavefront error (WFE). In random response analysis, system WFE is difficult to predict from finite element results due to the loss of phase information. In the past, the use of ystem WFE was limited by the difficulty of obtaining a linear optics model. In this paper, an automated method for determining system level WFE using a linear optics model is presented. An error estimate is included in the analysis output based on fitting errors of mode shapes. The technique is demonstrated by example with SigFit, a commercially available tool integrating mechanical analysis with optical analysis.
Performance of the Keck Observatory adaptive-optics system.
van Dam, Marcos A; Le Mignant, David; Macintosh, Bruce A
2004-10-10
The adaptive-optics (AO) system at the W. M. Keck Observatory is characterized. We calculate the error budget of the Keck AO system operating in natural guide star mode with a near-infrared imaging camera. The measurement noise and bandwidth errors are obtained by modeling the control loops and recording residual centroids. Results of sky performance tests are presented: The AO system is shown to deliver images with average Strehl ratios of as much as 0.37 at 1.58 microm when a bright guide star is used and of 0.19 for a magnitude 12 star. The images are consistent with the predicted wave-front error based on our error budget estimates.
Niioka, Takenori; Uno, Tsukasa; Yasui-Furukori, Norio; Takahata, Takenori; Shimizu, Mikiko; Sugawara, Kazunobu; Tateishi, Tomonori
2007-04-01
The aim of this study was to determine the pharmacokinetics of low-dose nedaplatin combined with paclitaxel and radiation therapy in patients having non-small-cell lung carcinoma and establish the optimal dosage regimen for low-dose nedaplatin. We also evaluated predictive accuracy of reported formulas to estimate the area under the plasma concentration-time curve (AUC) of low-dose nedaplatin. A total of 19 patients were administered a constant intravenous infusion of 20 mg/m(2) body surface area (BSA) nedaplatin for an hour, and blood samples were collected at 1, 2, 3, 4, 6, 8, and 19 h after the administration. Plasma concentrations of unbound platinum were measured, and the actual value of platinum AUC (actual AUC) was calculated based on these data. The predicted value of platinum AUC (predicted AUC) was determined by three predictive methods reported in previous studies, consisting of Bayesian method, limited sampling strategies with plasma concentration at a single time point, and simple formula method (SFM) without measured plasma concentration. Three error indices, mean prediction error (ME, measure of bias), mean absolute error (MAE, measure of accuracy), and root mean squared prediction error (RMSE, measure of precision), were obtained from the difference between the actual and the predicted AUC, to compare the accuracy between the three predictive methods. The AUC showed more than threefold inter-patient variation, and there was a favorable correlation between nedaplatin clearance and creatinine clearance (Ccr) (r = 0.832, P < 0.01). In three error indices, MAE and RMSE showed significant difference between the three AUC predictive methods, and the method of SFM had the most favorable results, in which %ME, %MAE, and %RMSE were 5.5, 10.7, and 15.4, respectively. The dosage regimen of low-dose nedaplatin should be established based on Ccr rather than on BSA. Since prediction accuracy of SFM, which did not require measured plasma concentration, was most favorable among the three methods evaluated in this study, SFM could be the most practical method to predict AUC of low-dose nedaplatin in a clinical situation judging from its high accuracy in predicting AUC without measured plasma concentration.
Measurement error in epidemiologic studies of air pollution based on land-use regression models.
Basagaña, Xavier; Aguilera, Inmaculada; Rivera, Marcela; Agis, David; Foraster, Maria; Marrugat, Jaume; Elosua, Roberto; Künzli, Nino
2013-10-15
Land-use regression (LUR) models are increasingly used to estimate air pollution exposure in epidemiologic studies. These models use air pollution measurements taken at a small set of locations and modeling based on geographical covariates for which data are available at all study participant locations. The process of LUR model development commonly includes a variable selection procedure. When LUR model predictions are used as explanatory variables in a model for a health outcome, measurement error can lead to bias of the regression coefficients and to inflation of their variance. In previous studies dealing with spatial predictions of air pollution, bias was shown to be small while most of the effect of measurement error was on the variance. In this study, we show that in realistic cases where LUR models are applied to health data, bias in health-effect estimates can be substantial. This bias depends on the number of air pollution measurement sites, the number of available predictors for model selection, and the amount of explainable variability in the true exposure. These results should be taken into account when interpreting health effects from studies that used LUR models.
NASA Astrophysics Data System (ADS)
Gong, L.
2013-12-01
Large-scale hydrological models and land surface models are by far the only tools for accessing future water resources in climate change impact studies. Those models estimate discharge with large uncertainties, due to the complex interaction between climate and hydrology, the limited quality and availability of data, as well as model uncertainties. A new purely data-based scale-extrapolation method is proposed, to estimate water resources for a large basin solely from selected small sub-basins, which are typically two-orders-of-magnitude smaller than the large basin. Those small sub-basins contain sufficient information, not only on climate and land surface, but also on hydrological characteristics for the large basin In the Baltic Sea drainage basin, best discharge estimation for the gauged area was achieved with sub-basins that cover 2-4% of the gauged area. There exist multiple sets of sub-basins that resemble the climate and hydrology of the basin equally well. Those multiple sets estimate annual discharge for gauged area consistently well with 5% average error. The scale-extrapolation method is completely data-based; therefore it does not force any modelling error into the prediction. The multiple predictions are expected to bracket the inherent variations and uncertainties of the climate and hydrology of the basin. The method can be applied in both un-gauged basins and un-gauged periods with uncertainty estimation.
Prediction of heat capacities of solid inorganic salts from group contributions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mostafa, A.T.M.G.; Eakman, J.M.; Yarbro, S.L.
1997-01-01
A group contribution technique is proposed to predict the coefficients in the heat capacity correlation, C{sub p} = a + bT + c/T{sup 2} + dT{sup 2}, for solid inorganic salts. The results from this work are compared with fits to experimental data from the literature. It is shown to give good predictions for both simple and complex solid inorganic salts. Literature heat capacities for a large number (664) of solid inorganic salts covering a broad range of cations (129), anions (17) and ligands (2) have been used in regressions to obtain group contributions for the parameters in the heatmore » capacity temperature function. A mean error of 3.18% is found when predicted values are compared with literature values for heat capacity at 298{degrees} K. Estimates of the error standard deviation from the regression for each additivity constant are also determined.« less
Model for estimating enteric methane emissions from United States dairy and feedlot cattle.
Kebreab, E; Johnson, K A; Archibeque, S L; Pape, D; Wirth, T
2008-10-01
Methane production from enteric fermentation in cattle is one of the major sources of anthropogenic greenhouse gas emission in the United States and worldwide. National estimates of methane emissions rely on mathematical models such as the one recommended by the Intergovernmental Panel for Climate Change (IPCC). Models used for prediction of methane emissions from cattle range from empirical to mechanistic with varying input requirements. Two empirical and 2 mechanistic models (COWPOLL and MOLLY) were evaluated for their prediction ability using individual cattle measurements. Model selection was based on mean square prediction error (MSPE), concordance correlation coefficient, and residuals vs. predicted values analyses. In dairy cattle, COWPOLL had the lowest root MSPE and greatest accuracy and precision of predicting methane emissions (correlation coefficient estimate = 0.75). The model simulated differences in diet more accurately than the other models, and the residuals vs. predicted value analysis showed no mean bias (P = 0.71). In feedlot cattle, MOLLY had the lowest root MSPE with almost all errors from random sources (correlation coefficient estimate = 0.69). The IPCC model also had good agreement with observed values, and no significant mean (P = 0.74) or linear bias (P = 0.11) was detected when residuals were plotted against predicted values. A fixed methane conversion factor (Ym) might be an easier alternative to diet-dependent variable Ym. Based on the results, the 2 mechanistic models were used to simulate methane emissions from representative US diets and were compared with the IPCC model. The average Ym in dairy cows was 5.63% of GE (range 3.78 to 7.43%) compared with 6.5% +/- 1% recommended by IPCC. In feedlot cattle, the average Ym was 3.88% (range 3.36 to 4.56%) compared with 3% +/- 1% recommended by IPCC. Based on our simulations, using IPCC values can result in an overestimate of about 12.5% and underestimate of emissions by about 9.8% for dairy and feedlot cattle, respectively. In addition to providing improved estimates of emissions based on diets, mechanistic models can be used to assess mitigation options such as changing source of carbohydrate or addition of fat to decrease methane, which is not possible with empirical models. We recommend national inventories use diet-specific Ym values predicted by mechanistic models to estimate methane emissions from cattle.
Optimal reentry prediction of space objects from LEO using RSM and GA
NASA Astrophysics Data System (ADS)
Mutyalarao, M.; Raj, M. Xavier James
2012-07-01
The accurate estimation of the orbital life time (OLT) of decaying near-Earth objects is of considerable importance for the prediction of risk object re-entry time and hazard assessment as well as for mitigation strategies. Recently, due to the reentries of large number of risk objects, which poses threat to the human life and property, a great concern is developed in the space scientific community all over the World. The evolution of objects in Low Earth Orbit (LEO) is determined by a complex interplay of the perturbing forces, mainly due to atmospheric drag and Earth gravity. These orbits are mostly in low eccentric (eccentricity < 0.2) and have variations in perigee and apogee altitudes due to perturbations during a revolution. The changes in the perigee and apogee altitudes of these orbits are mainly due to the gravitational perturbations of the Earth and the atmospheric density. It has become necessary to use extremely complex force models to match with the present operational requirements and observational techniques. Further the re-entry time of the objects in such orbits is sensitive to the initial conditions. In this paper the problem of predicting re-entry time is attempted as an optimal estimation problem. It is known that the errors are more in eccentricity for the observations based on two line elements (TLEs). Thus two parameters, initial eccentricity and ballistic coefficient, are chosen for optimal estimation. These two parameters are computed with response surface method (RSM) using a genetic algorithm (GA) for the selected time zones, based on rough linear variation of response parameter, the mean semi-major axis during orbit evolution. Error minimization between the observed and predicted mean Semi-major axis is achieved by the application of an optimization algorithm such as Genetic Algorithm (GA). The basic feature of the present approach is that the model and measurement errors are accountable in terms of adjusting the ballistic coefficient and eccentricity. The methodology is tested with the recently reentered objects ROSAT and PHOBOS GRUNT satellites. The study reveals a good agreement with the actual reentry time of these objects. It is also observed that the absolute percentage error in re-entry prediction time for all the two objects is found to be very less. Keywords: low eccentric, Response surface method, Genetic algorithm, apogee altitude, Ballistic coefficient
A Radial Basis Function Approach to Financial Time Series Analysis
1993-12-01
including efficient methods for parameter estimation and pruning, a pointwise prediction error estimator, and a methodology for controlling the "data...collection of practical techniques to address these issues for a modeling methodology . Radial Basis Function networks. These techniques in- clude efficient... methodology often then amounts to a careful consideration of the interplay between model complexity and reliability. These will be recurrent themes
Crown-rise and crown-length dynamics: applications to loblolly pine
Harry T. Valentine; Ralph L. Amateis; Jeffrey H. Gove; Annikki Makela
2013-01-01
The original crown-rise model estimates the average height of a crown-base in an even-aged mono-species stand of trees. We have elaborated this model to reduce bias and prediction error, and to also provide crown-base estimates for individual trees. Results for the latter agree with a theory of branch death based on resource availability and allocation.We use the...
Marini, Francesco; Scott, Jerry; Aron, Adam R; Ester, Edward F
2017-07-01
Visual short-term memory (VSTM) enables the representation of information in a readily accessible state. VSTM is typically conceptualized as a form of "active" storage that is resistant to interference or disruption, yet several recent studies have shown that under some circumstances task-irrelevant distractors may indeed disrupt performance. Here, we investigated how task-irrelevant visual distractors affected VSTM by asking whether distractors induce a general loss of remembered information or selectively interfere with memory representations. In a VSTM task, participants recalled the spatial location of a target visual stimulus after a delay in which distractors were presented on 75% of trials. Notably, the distractor's eccentricity always matched the eccentricity of the target, while in the critical conditions the distractor's angular position was shifted either clockwise or counterclockwise relative to the target. We then computed estimates of recall error for both eccentricity and polar angle. A general interference model would predict an effect of distractors on both polar angle and eccentricity errors, while a selective interference model would predict effects of distractors on angle but not on eccentricity errors. Results showed that for stimulus angle there was an increase in the magnitude and variability of recall errors. However, distractors had no effect on estimates of stimulus eccentricity. Our results suggest that distractors selectively interfere with VSTM for spatial locations.
NASA Astrophysics Data System (ADS)
Rodi, A. R.; Leon, D. C.
2012-11-01
A method is described that estimates the error in the static pressure measurement on an aircraft from differential pressure measurements on the hemispherical surface of a Rosemount model 858AJ air velocity probe mounted on a boom ahead of the aircraft. The theoretical predictions for how the pressure should vary over the surface of the hemisphere, involving an unknown sensitivity parameter, leads to a set of equations that can be solved for the unknowns - angle of attack, angle of sideslip, dynamic pressure and the error in static pressure - if the sensitivity factor can be determined. The sensitivity factor was determined on the University of Wyoming King Air research aircraft by comparisons with the error measured with a carefully designed sonde towed on connecting tubing behind the aircraft - a trailing cone - and the result was shown to have a precision of about ±10 Pa over a wide range of conditions, including various altitudes, power settings, and gear and flap extensions. Under accelerated flight conditions, geometric altitude data from a combined Global Navigation Satellite System (GNSS) and inertial measurement unit (IMU) system are used to estimate acceleration effects on the error, and the algorithm is shown to predict corrections to a precision of better than ±20 Pa under those conditions. Some limiting factors affecting the precision of static pressure measurement on a research aircraft are discussed.
NASA Astrophysics Data System (ADS)
Norton, Andrew S.
An integral component of managing game species is an understanding of population dynamics and relative abundance. Harvest data are frequently used to estimate abundance of white-tailed deer. Unless harvest age-structure is representative of the population age-structure and harvest vulnerability remains constant from year to year, these data alone are of limited value. Additional model structure and auxiliary information has accommodated this shortcoming. Specifically, integrated age-at-harvest (AAH) state-space population models can formally combine multiple sources of data, and regularization via hierarchical model structure can increase flexibility of model parameters. I collected known fates data, which I evaluated and used to inform trends in survival parameters for an integrated AAH model. I used temperature and snow depth covariates to predict survival outside of the hunting season, and opening weekend temperature and percent of corn harvest covariates to predict hunting season survival. When auxiliary empirical data were unavailable for the AAH model, moderately informative priors provided sufficient information for convergence and parameter estimates. The AAH model was most sensitive to errors in initial abundance, but this error was calibrated after 3 years. Among vital rates, the AAH model was most sensitive to reporting rates (percentage of mortality during the hunting season related to harvest). The AAH model, using only harvest data, was able to track changing abundance trends due to changes in survival rates even when prior models did not inform these changes (i.e. prior models were constant when truth varied). I also compared AAH model results with estimates from the Wisconsin Department of Natural Resources (WIDNR). Trends in abundance estimates from both models were similar, although AAH model predictions were systematically higher than WIDNR estimates in the East study area. When I incorporated auxiliary information (i.e. integrated AAH model) about survival outside the hunting season from known fates data, predicted trends appeared more closely related to what was expected. Disagreements between the AAH model and WIDNR estimates in the East were likely related to biased predictions for reporting and survival rates from the AAH model.
WE-D-BRF-05: Quantitative Dual-Energy CT Imaging for Proton Stopping Power Computation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, D; Williamson, J; Siebers, J
2014-06-15
Purpose: To extend the two-parameter separable basis-vector model (BVM) to estimation of proton stopping power from dual-energy CT (DECT) imaging. Methods: BVM assumes that the photon cross sections of any unknown material can be represented as a linear combination of the corresponding quantities for two bracketing basis materials. We show that both the electron density (ρe) and mean excitation energy (Iex) can be modeled by BVM, enabling stopping power to be estimated from the Bethe-Bloch equation. We have implemented an idealized post-processing dual energy imaging (pDECT) simulation consisting of monogenetic 45 keV and 80 keV scanning beams with polystyrene-water andmore » water-CaCl2 solution basis pairs for soft tissues and bony tissues, respectively. The coefficients of 24 standard ICRU tissue compositions were estimated by pDECT. The corresponding ρe, Iex, and stopping power tables were evaluated via BVM and compared to tabulated ICRU 44 reference values. Results: BVM-based pDECT was found to estimate ρe and Iex with average and maximum errors of 0.5% and 2%, respectively, for the 24 tissues. Proton stopping power values at 175 MeV, show average/maximum errors of 0.8%/1.4%. For adipose, muscle and bone, these errors result range prediction accuracies less than 1%. Conclusion: A new two-parameter separable DECT model (BVM) for estimating proton stopping power was developed. Compared to competing parametric fit DECT models, BVM has the comparable prediction accuracy without necessitating iterative solution of nonlinear equations or a sample-dependent empirical relationship between effective atomic number and Iex. Based on the proton BVM, an efficient iterative statistical DECT reconstruction model is under development.« less
Developing a new solar radiation estimation model based on Buckingham theorem
NASA Astrophysics Data System (ADS)
Ekici, Can; Teke, Ismail
2018-06-01
While the value of solar radiation can be expressed physically in the days without clouds, this expression becomes difficult in cloudy and complicated weather conditions. In addition, solar radiation measurements are often not taken in developing countries. In such cases, solar radiation estimation models are used. Solar radiation prediction models estimate solar radiation using other measured meteorological parameters those are available in the stations. In this study, a solar radiation estimation model was obtained using Buckingham theorem. This theory has been shown to be useful in predicting solar radiation. In this study, Buckingham theorem is used to express the solar radiation by derivation of dimensionless pi parameters. This derived model is compared with temperature based models in the literature. MPE, RMSE, MBE and NSE error analysis methods are used in this comparison. Allen, Hargreaves, Chen and Bristow-Campbell models in the literature are used for comparison. North Dakota's meteorological data were used to compare the models. Error analysis were applied through the comparisons between the models in the literature and the model that is derived in the study. These comparisons were made using data obtained from North Dakota's agricultural climate network. In these applications, the model obtained within the scope of the study gives better results. Especially, in terms of short-term performance, it has been found that the obtained model gives satisfactory results. It has been seen that this model gives better accuracy in comparison with other models. It is possible in RMSE analysis results. Buckingham theorem was found useful in estimating solar radiation. In terms of long term performances and percentage errors, the model has given good results.
Estimation of flood-frequency characteristics of small urban streams in North Carolina
Robbins, J.C.; Pope, B.F.
1996-01-01
A statewide study was conducted to develop methods for estimating the magnitude and frequency of floods of small urban streams in North Carolina. This type of information is critical in the design of bridges, culverts and water-control structures, establishment of flood-insurance rates and flood-plain regulation, and for other uses by urban planners and engineers. Concurrent records of rainfall and runoff data collected in small urban basins were used to calibrate rainfall-runoff models. Historic rain- fall records were used with the calibrated models to synthesize a long- term record of annual peak discharges. The synthesized record of annual peak discharges were used in a statistical analysis to determine flood- frequency distributions. These frequency distributions were used with distributions from previous investigations to develop a database for 32 small urban basins in the Blue Ridge-Piedmont, Sand Hills, and Coastal Plain hydrologic areas. The study basins ranged in size from 0.04 to 41.0 square miles. Data describing the size and shape of the basin, level of urban development, and climate and rural flood charac- teristics also were included in the database. Estimation equations were developed by relating flood-frequency char- acteristics to basin characteristics in a generalized least-squares regression analysis. The most significant basin characteristics are drainage area, impervious area, and rural flood discharge. The model error and prediction errors for the estimating equations were less than those for the national flood-frequency equations previously reported. Resulting equations, which have prediction errors generally less than 40 percent, can be used to estimate flood-peak discharges for 2-, 5-, 10-, 25-, 50-, and 100-year recurrence intervals for small urban basins across the State assuming negligible, sustainable, in- channel detention or basin storage.
Aberg, Kristoffer C; Müller, Julia; Schwartz, Sophie
2017-01-01
Anticipation and delivery of rewards improves memory formation, but little effort has been made to disentangle their respective contributions to memory enhancement. Moreover, it has been suggested that the effects of reward on memory are mediated by dopaminergic influences on hippocampal plasticity. Yet, evidence linking memory improvements to actual reward computations reflected in the activity of the dopaminergic system, i.e., prediction errors and expected values, is scarce and inconclusive. For example, different previous studies reported that the magnitude of prediction errors during a reinforcement learning task was a positive, negative, or non-significant predictor of successfully encoding simultaneously presented images. Individual sensitivities to reward and punishment have been found to influence the activation of the dopaminergic reward system and could therefore help explain these seemingly discrepant results. Here, we used a novel associative memory task combined with computational modeling and showed independent effects of reward-delivery and reward-anticipation on memory. Strikingly, the computational approach revealed positive influences from both reward delivery, as mediated by prediction error magnitude, and reward anticipation, as mediated by magnitude of expected value, even in the absence of behavioral effects when analyzed using standard methods, i.e., by collapsing memory performance across trials within conditions. We additionally measured trait estimates of reward and punishment sensitivity and found that individuals with increased reward (vs. punishment) sensitivity had better memory for associations encoded during positive (vs. negative) prediction errors when tested after 20 min, but a negative trend when tested after 24 h. In conclusion, modeling trial-by-trial fluctuations in the magnitude of reward, as we did here for prediction errors and expected value computations, provides a comprehensive and biologically plausible description of the dynamic interplay between reward, dopamine, and associative memory formation. Our results also underline the importance of considering individual traits when assessing reward-related influences on memory.
PREVAIL: Predicting Recovery through Estimation and Visualization of Active and Incident Lesions.
Dworkin, Jordan D; Sweeney, Elizabeth M; Schindler, Matthew K; Chahin, Salim; Reich, Daniel S; Shinohara, Russell T
2016-01-01
The goal of this study was to develop a model that integrates imaging and clinical information observed at lesion incidence for predicting the recovery of white matter lesions in multiple sclerosis (MS) patients. Demographic, clinical, and magnetic resonance imaging (MRI) data were obtained from 60 subjects with MS as part of a natural history study at the National Institute of Neurological Disorders and Stroke. A total of 401 lesions met the inclusion criteria and were used in the study. Imaging features were extracted from the intensity-normalized T1-weighted (T1w) and T2-weighted sequences as well as magnetization transfer ratio (MTR) sequence acquired at lesion incidence. T1w and MTR signatures were also extracted from images acquired one-year post-incidence. Imaging features were integrated with clinical and demographic data observed at lesion incidence to create statistical prediction models for long-term damage within the lesion. The performance of the T1w and MTR predictions was assessed in two ways: first, the predictive accuracy was measured quantitatively using leave-one-lesion-out cross-validated (CV) mean-squared predictive error. Then, to assess the prediction performance from the perspective of expert clinicians, three board-certified MS clinicians were asked to individually score how similar the CV model-predicted one-year appearance was to the true one-year appearance for a random sample of 100 lesions. The cross-validated root-mean-square predictive error was 0.95 for normalized T1w and 0.064 for MTR, compared to the estimated measurement errors of 0.48 and 0.078 respectively. The three expert raters agreed that T1w and MTR predictions closely resembled the true one-year follow-up appearance of the lesions in both degree and pattern of recovery within lesions. This study demonstrates that by using only information from a single visit at incidence, we can predict how a new lesion will recover using relatively simple statistical techniques. The potential to visualize the likely course of recovery has implications for clinical decision-making, as well as trial enrichment.
Predictability of the Lagrangian Motion in the Upper Ocean
NASA Astrophysics Data System (ADS)
Piterbarg, L. I.; Griffa, A.; Griffa, A.; Mariano, A. J.; Ozgokmen, T. M.; Ryan, E. H.
2001-12-01
The complex non-linear dynamics of the upper ocean leads to chaotic behavior of drifter trajectories in the ocean. Our study is focused on estimating the predictability limit for the position of an individual Lagrangian particle or a particle cluster based on the knowledge of mean currents and observations of nearby particles (predictors). The Lagrangian prediction problem, besides being a fundamental scientific problem, is also of great importance for practical applications such as search and rescue operations and for modeling the spread of fish larvae. A stochastic multi-particle model for the Lagrangian motion has been rigorously formulated and is a generalization of the well known "random flight" model for a single particle. Our model is mathematically consistent and includes a few easily interpreted parameters, such as the Lagrangian velocity decorrelation time scale, the turbulent velocity variance, and the velocity decorrelation radius, that can be estimated from data. The top Lyapunov exponent for an isotropic version of the model is explicitly expressed as a function of these parameters enabling us to approximate the predictability limit to first order. Lagrangian prediction errors for two new prediction algorithms are evaluated against simple algorithms and each other and are used to test the predictability limits of the stochastic model for isotropic turbulence. The first algorithm is based on a Kalman filter and uses the developed stochastic model. Its implementation for drifter clusters in both the Tropical Pacific and Adriatic Sea, showed good prediction skill over a period of 1-2 weeks. The prediction error is primarily a function of the data density, defined as the number of predictors within a velocity decorrelation spatial scale from the particle to be predicted. The second algorithm is model independent and is based on spatial regression considerations. Preliminary results, based on simulated, as well as, real data, indicate that it performs better than the Kalman-based algorithm in strong shear flows. An important component of our research is the optimal predictor location problem; Where should floats be launched in order to minimize the Lagrangian prediction error? Preliminary Lagrangian sampling results for different flow scenarios will be presented.
NASA Technical Reports Server (NTRS)
Walker, R.; Gupta, N.
1984-01-01
The important algorithm issues necessary to achieve a real time flutter monitoring system; namely, the guidelines for choosing appropriate model forms, reduction of the parameter convergence transient, handling multiple modes, the effect of over parameterization, and estimate accuracy predictions, both online and for experiment design are addressed. An approach for efficiently computing continuous-time flutter parameter Cramer-Rao estimate error bounds were developed. This enables a convincing comparison of theoretical and simulation results, as well as offline studies in preparation for a flight test. Theoretical predictions, simulation and flight test results from the NASA Drones for Aerodynamic and Structural Test (DAST) Program are compared.
Developing a generalized allometric equation for aboveground biomass estimation
NASA Astrophysics Data System (ADS)
Xu, Q.; Balamuta, J. J.; Greenberg, J. A.; Li, B.; Man, A.; Xu, Z.
2015-12-01
A key potential uncertainty in estimating carbon stocks across multiple scales stems from the use of empirically calibrated allometric equations, which estimate aboveground biomass (AGB) from plant characteristics such as diameter at breast height (DBH) and/or height (H). The equations themselves contain significant and, at times, poorly characterized errors. Species-specific equations may be missing. Plant responses to their local biophysical environment may lead to spatially varying allometric relationships. The structural predictor may be difficult or impossible to measure accurately, particularly when derived from remote sensing data. All of these issues may lead to significant and spatially varying uncertainties in the estimation of AGB that are unexplored in the literature. We sought to quantify the errors in predicting AGB at the tree and plot level for vegetation plots in California. To accomplish this, we derived a generalized allometric equation (GAE) which we used to model the AGB on a full set of tree information such as DBH, H, taxonomy, and biophysical environment. The GAE was derived using published allometric equations in the GlobAllomeTree database. The equations were sparse in details about the error since authors provide the coefficient of determination (R2) and the sample size. A more realistic simulation of tree AGB should also contain the noise that was not captured by the allometric equation. We derived an empirically corrected variance estimate for the amount of noise to represent the errors in the real biomass. Also, we accounted for the hierarchical relationship between different species by treating each taxonomic level as a covariate nested within a higher taxonomic level (e.g. species < genus). This approach provides estimation under incomplete tree information (e.g. missing species) or blurred information (e.g. conjecture of species), plus the biophysical environment. The GAE allowed us to quantify contribution of each different covariate in estimating the AGB of trees. Lastly, we applied the GAE to an existing vegetation plot database - Forest Inventory and Analysis database - to derive per-tree and per-plot AGB estimations, their errors, and how much the error could be contributed to the original equations, the plant's taxonomy, and their biophysical environment.
Lu, Dan; Ye, Ming; Meyer, Philip D.; Curtis, Gary P.; Shi, Xiaoqing; Niu, Xu-Feng; Yabusaki, Steve B.
2013-01-01
When conducting model averaging for assessing groundwater conceptual model uncertainty, the averaging weights are often evaluated using model selection criteria such as AIC, AICc, BIC, and KIC (Akaike Information Criterion, Corrected Akaike Information Criterion, Bayesian Information Criterion, and Kashyap Information Criterion, respectively). However, this method often leads to an unrealistic situation in which the best model receives overwhelmingly large averaging weight (close to 100%), which cannot be justified by available data and knowledge. It was found in this study that this problem was caused by using the covariance matrix, CE, of measurement errors for estimating the negative log likelihood function common to all the model selection criteria. This problem can be resolved by using the covariance matrix, Cek, of total errors (including model errors and measurement errors) to account for the correlation between the total errors. An iterative two-stage method was developed in the context of maximum likelihood inverse modeling to iteratively infer the unknown Cek from the residuals during model calibration. The inferred Cek was then used in the evaluation of model selection criteria and model averaging weights. While this method was limited to serial data using time series techniques in this study, it can be extended to spatial data using geostatistical techniques. The method was first evaluated in a synthetic study and then applied to an experimental study, in which alternative surface complexation models were developed to simulate column experiments of uranium reactive transport. It was found that the total errors of the alternative models were temporally correlated due to the model errors. The iterative two-stage method using Cekresolved the problem that the best model receives 100% model averaging weight, and the resulting model averaging weights were supported by the calibration results and physical understanding of the alternative models. Using Cek obtained from the iterative two-stage method also improved predictive performance of the individual models and model averaging in both synthetic and experimental studies.
NASA Technical Reports Server (NTRS)
Dardner, B. R.; Blad, B. L.; Thompson, D. R.; Henderson, K. E.
1985-01-01
Reflectance and agronomic Thematic Mapper (TM) data were analyzed to determine possible data transformations for evaluating several plant parameters of corn. Three transformation forms were used: the ratio of two TM bands, logarithms of two-band ratios, and normalized differences of two bands. Normalized differences and logarithms of two-band ratios responsed similarly in the equations for estimating the plant growth parameters evaluated in this study. Two-term equations were required to obtain the maximum predictability of percent ground cover, canopy moisture content, and total wet phytomass. Standard error of estimate values were 15-26 percent lower for two-term estimates of these parameters than for one-term estimates. The terms log(TM4/TM2) and (TM4/TM5) produced the maximum predictability for leaf area and dry green leaf weight, respectively. The middle infrared bands TM5 and TM7 are essential for maximizing predictability for all measured plant parameters except leaf area index. The estimating models were evaluated over bare soil to discriminate between equations which are statistically similar. Qualitative interpretations of the resulting prediction equations are consistent with general agronomic and remote sensing theory.
Saliba, Christopher M; Brandon, Scott C E; Deluzio, Kevin J
2017-05-24
Musculoskeletal models are increasingly used to estimate medial and lateral knee contact forces, which are difficult to measure in vivo. The sensitivity of contact force predictions to modeling parameters is important to the interpretation and implication of results generated by the model. The purpose of this study was to quantify the sensitivity of knee contact force predictions to simultaneous errors in frontal plane knee alignment and contact locations under different dynamic conditions. We scaled a generic musculoskeletal model for N=23 subjects' stature and radiographic knee alignment, then perturbed frontal plane alignment and mediolateral contact locations within experimentally-possible ranges of 10° to -10° and 10 to -10mm, respectively. The sensitivity of first peak, second peak, and mean medial and lateral knee contact forces to knee adduction angle and contact locations was modeled using linear regression. Medial loads increased, and lateral loads decreased, by between 3% and 6% bodyweight for each degree of varus perturbation. Shifting the medial contact point medially increased medial loads and decreased lateral loads by between 1% and 4% bodyweight per millimeter. This study demonstrates that realistic measurement errors of 5mm (contact distance) or 5° (frontal plane alignment) could result in a combined 50% BW error in subject specific contact force estimates. We also show that model sensitivity varies between subjects as a result of differences in gait dynamics. These results demonstrate that predicted knee joint contact forces should be considered as a range of possible values determined by model uncertainty. Copyright © 2017 Elsevier Ltd. All rights reserved.
Regression models to predict hip joint centers in pathological hip population.
Mantovani, Giulia; Ng, K C Geoffrey; Lamontagne, Mario
2016-02-01
The purpose was to investigate the validity of Harrington's and Davis's hip joint center (HJC) regression equations on a population affected by a hip deformity, (i.e., femoroacetabular impingement). Sixty-seven participants (21 healthy controls, 46 with a cam-type deformity) underwent pelvic CT imaging. Relevant bony landmarks and geometric HJCs were digitized from the images, and skin thickness was measured for the anterior and posterior superior iliac spines. Non-parametric statistical and Bland-Altman tests analyzed differences between the predicted HJC (from regression equations) and the actual HJC (from CT images). The error from Davis's model (25.0 ± 6.7 mm) was larger than Harrington's (12.3 ± 5.9 mm, p<0.001). There were no differences between groups, thus, studies on femoroacetabular impingement can implement conventional regression models. Measured skin thickness was 9.7 ± 7.0mm and 19.6 ± 10.9 mm for the anterior and posterior bony landmarks, respectively, and correlated with body mass index. Skin thickness estimates can be considered to reduce the systematic error introduced by surface markers. New adult-specific regression equations were developed from the CT dataset, with the hypothesis that they could provide better estimates when tuned to a larger adult-specific dataset. The linear models were validated on external datasets and using leave-one-out cross-validation techniques; Prediction errors were comparable to those of Harrington's model, despite the adult-specific population and the larger sample size, thus, prediction accuracy obtained from these parameters could not be improved. Copyright © 2015 Elsevier B.V. All rights reserved.
Comparison of total body water estimates from O-18 and bioelectrical response prediction equations
NASA Technical Reports Server (NTRS)
Barrows, Linda H.; Inners, L. Daniel; Stricklin, Marcella D.; Klein, Peter D.; Wong, William W.; Siconolfi, Steven F.
1993-01-01
Identification of an indirect, rapid means to measure total body water (TBW) during space flight may aid in quantifying hydration status and assist in countermeasure development. Bioelectrical response testing and hydrostatic weighing were performed on 27 subjects who ingested O-18, a naturally occurring isotope of oxygen, to measure true TBW. TBW estimates from three bioelectrical response prediction equations and fat-free mass (FFM) were compared to TBW measured from O-18. A repeated measures MANOVA with post-hoc Dunnett's Test indicated a significant (p less than 0.05) difference between TBW estimates from two of the three bioelectrical response prediction equations and O-18. TBW estimates from FFM and the Kushner & Schoeller (1986) equation yielded results that were similar to those given by O-18. Strong correlations existed between each prediction method and O-18; however, standard errors, identified through regression analyses, were higher for the bioelectrical response prediction equations compared to those derived from FFM. These findings suggest (1) the Kushner & Schoeller (1986) equation may provide a valid measure of TBW, (2) other TBW prediction equations need to be identified that have variability similar to that of FFM, and (3) bioelectrical estimates of TBW may prove valuable in quantifying hydration status during space flight.
NASA Astrophysics Data System (ADS)
Jeong, U.; Kim, J.; Liu, X.; Lee, K. H.; Chance, K.; Song, C. H.
2015-12-01
The predicted accuracy of the trace gases and aerosol retrievals from the geostationary environment monitoring spectrometer (GEMS) was investigated. The GEMS is one of the first sensors to monitor NO2, SO2, HCHO, O3, and aerosols onboard geostationary earth orbit (GEO) over Asia. Since the GEMS is not launched yet, the simulated measurements and its precision were used in this study. The random and systematic component of the measurement error was estimated based on the instrument design. The atmospheric profiles were obtained from Model for Ozone And Related chemical Tracers (MOZART) simulations and surface reflectances were obtained from climatology of OMI Lambertian equivalent reflectance. The uncertainties of the GEMS trace gas and aerosol products were estimated based on the OE method using the atmospheric profile and surface reflectance. Most of the estimated uncertainties of NO2, HCHO, stratospheric and total O3 products satisfied the user's requirements with sufficient margin. However, about 26% of the estimated uncertainties of SO2 and about 30% of the estimated uncertainties of tropospheric O3 do not meet the required precision. Particularly the estimated uncertainty of SO2 is high in winter, when the emission is strong in East Asia. Further efforts are necessary in order to improve the retrieval accuracy of SO2 and tropospheric O3 in order to reach the scientific goal of GEMS. Random measurement error of GEMS was important for the NO2, SO2, and HCHO retrieval, while both the random and systematic measurement errors were important for the O3 retrievals. The degree of freedom for signal of tropospheric O3 was 0.8 ± 0.2 and that for stratospheric O3 was 2.9 ± 0.5. The estimated uncertainties of the aerosol retrieval from GEMS measurements were predicted to be lower than the required precision for the SZA range of the trace gas retrievals.
Junttila, Virpi; Kauranne, Tuomo; Finley, Andrew O.; Bradford, John B.
2015-01-01
Modern operational forest inventory often uses remotely sensed data that cover the whole inventory area to produce spatially explicit estimates of forest properties through statistical models. The data obtained by airborne light detection and ranging (LiDAR) correlate well with many forest inventory variables, such as the tree height, the timber volume, and the biomass. To construct an accurate model over thousands of hectares, LiDAR data must be supplemented with several hundred field sample measurements of forest inventory variables. This can be costly and time consuming. Different LiDAR-data-based and spatial-data-based sampling designs can reduce the number of field sample plots needed. However, problems arising from the features of the LiDAR data, such as a large number of predictors compared with the sample size (overfitting) or a strong correlation among predictors (multicollinearity), may decrease the accuracy and precision of the estimates and predictions. To overcome these problems, a Bayesian linear model with the singular value decomposition of predictors, combined with regularization, is proposed. The model performance in predicting different forest inventory variables is verified in ten inventory areas from two continents, where the number of field sample plots is reduced using different sampling designs. The results show that, with an appropriate field plot selection strategy and the proposed linear model, the total relative error of the predicted forest inventory variables is only 5%–15% larger using 50 field sample plots than the error of a linear model estimated with several hundred field sample plots when we sum up the error due to both the model noise variance and the model’s lack of fit.
Model-Based Wavefront Control for CCAT
NASA Technical Reports Server (NTRS)
Redding, David; Lou, John Z.; Kissil, Andy; Bradford, Matt; Padin, Steve; Woody, David
2011-01-01
The 25-m aperture CCAT submillimeter-wave telescope will have a primary mirror that is divided into 162 individual segments, each of which is provided with 3 positioning actuators. CCAT will be equipped with innovative Imaging Displacement Sensors (IDS) inexpensive optical edge sensors capable of accurately measuring all segment relative motions. These measurements are used in a Kalman-filter-based Optical State Estimator to estimate wavefront errors, permitting use of a minimum-wavefront controller without direct wavefront measurement. This controller corrects the optical impact of errors in 6 degrees of freedom per segment, including lateral translations of the segments, using only the 3 actuated degrees of freedom per segment. The global motions of the Primary and Secondary Mirrors are not measured by the edge sensors. These are controlled using a gravity-sag look-up table. Predicted performance is illustrated by simulated response to errors such as gravity sag.
Prediction of the compression ratio for municipal solid waste using decision tree.
Heshmati R, Ali Akbar; Mokhtari, Maryam; Shakiba Rad, Saeed
2014-01-01
The compression ratio of municipal solid waste (MSW) is an essential parameter for evaluation of waste settlement and landfill design. However, no appropriate model has been proposed to estimate the waste compression ratio so far. In this study, a decision tree method was utilized to predict the waste compression ratio (C'c). The tree was constructed using Quinlan's M5 algorithm. A reliable database retrieved from the literature was used to develop a practical model that relates C'c to waste composition and properties, including dry density, dry weight water content, and percentage of biodegradable organic waste using the decision tree method. The performance of the developed model was examined in terms of different statistical criteria, including correlation coefficient, root mean squared error, mean absolute error and mean bias error, recommended by researchers. The obtained results demonstrate that the suggested model is able to evaluate the compression ratio of MSW effectively.
Xiaopeng, Q I; Liang, Wei; Barker, Laurie; Lekiachvili, Akaki; Xingyou, Zhang
Temperature changes are known to have significant impacts on human health. Accurate estimates of population-weighted average monthly air temperature for US counties are needed to evaluate temperature's association with health behaviours and disease, which are sampled or reported at the county level and measured on a monthly-or 30-day-basis. Most reported temperature estimates were calculated using ArcGIS, relatively few used SAS. We compared the performance of geostatistical models to estimate population-weighted average temperature in each month for counties in 48 states using ArcGIS v9.3 and SAS v 9.2 on a CITGO platform. Monthly average temperature for Jan-Dec 2007 and elevation from 5435 weather stations were used to estimate the temperature at county population centroids. County estimates were produced with elevation as a covariate. Performance of models was assessed by comparing adjusted R 2 , mean squared error, root mean squared error, and processing time. Prediction accuracy for split validation was above 90% for 11 months in ArcGIS and all 12 months in SAS. Cokriging in SAS achieved higher prediction accuracy and lower estimation bias as compared to cokriging in ArcGIS. County-level estimates produced by both packages were positively correlated (adjusted R 2 range=0.95 to 0.99); accuracy and precision improved with elevation as a covariate. Both methods from ArcGIS and SAS are reliable for U.S. county-level temperature estimates; However, ArcGIS's merits in spatial data pre-processing and processing time may be important considerations for software selection, especially for multi-year or multi-state projects.
August Median Streamflow on Ungaged Streams in Eastern Aroostook County, Maine
Lombard, Pamela J.; Tasker, Gary D.; Nielsen, Martha G.
2003-01-01
Methods for estimating August median streamflow were developed for ungaged, unregulated streams in the eastern part of Aroostook County, Maine, with drainage areas from 0.38 to 43 square miles and mean basin elevations from 437 to 1,024 feet. Few long-term, continuous-record streamflow-gaging stations with small drainage areas were available from which to develop the equations; therefore, 24 partial-record gaging stations were established in this investigation. A mathematical technique for estimating a standard low-flow statistic, August median streamflow, at partial-record stations was applied by relating base-flow measurements at these stations to concurrent daily flows at nearby long-term, continuous-record streamflow- gaging stations (index stations). Generalized least-squares regression analysis (GLS) was used to relate estimates of August median streamflow at gaging stations to basin characteristics at these same stations to develop equations that can be applied to estimate August median streamflow on ungaged streams. GLS accounts for varying periods of record at the gaging stations and the cross correlation of concurrent streamflows among gaging stations. Twenty-three partial-record stations and one continuous-record station were used for the final regression equations. The basin characteristics of drainage area and mean basin elevation are used in the calculated regression equation for ungaged streams to estimate August median flow. The equation has an average standard error of prediction from -38 to 62 percent. A one-variable equation uses only drainage area to estimate August median streamflow when less accuracy is acceptable. This equation has an average standard error of prediction from -40 to 67 percent. Model error is larger than sampling error for both equations, indicating that additional basin characteristics could be important to improved estimates of low-flow statistics. Weighted estimates of August median streamflow, which can be used when making estimates at partial-record or continuous-record gaging stations, range from 0.03 to 11.7 cubic feet per second or from 0.1 to 0.4 cubic feet per second per square mile. Estimates of August median streamflow on ungaged streams in the eastern part of Aroostook County, within the range of acceptable explanatory variables, range from 0.03 to 30 cubic feet per second or 0.1 to 0.7 cubic feet per second per square mile. Estimates of August median streamflow per square mile of drainage area generally increase as mean elevation and drainage area increase.
Influence of outliers on accuracy estimation in genomic prediction in plant breeding.
Estaghvirou, Sidi Boubacar Ould; Ogutu, Joseph O; Piepho, Hans-Peter
2014-10-01
Outliers often pose problems in analyses of data in plant breeding, but their influence on the performance of methods for estimating predictive accuracy in genomic prediction studies has not yet been evaluated. Here, we evaluate the influence of outliers on the performance of methods for accuracy estimation in genomic prediction studies using simulation. We simulated 1000 datasets for each of 10 scenarios to evaluate the influence of outliers on the performance of seven methods for estimating accuracy. These scenarios are defined by the number of genotypes, marker effect variance, and magnitude of outliers. To mimic outliers, we added to one observation in each simulated dataset, in turn, 5-, 8-, and 10-times the error SD used to simulate small and large phenotypic datasets. The effect of outliers on accuracy estimation was evaluated by comparing deviations in the estimated and true accuracies for datasets with and without outliers. Outliers adversely influenced accuracy estimation, more so at small values of genetic variance or number of genotypes. A method for estimating heritability and predictive accuracy in plant breeding and another used to estimate accuracy in animal breeding were the most accurate and resistant to outliers across all scenarios and are therefore preferable for accuracy estimation in genomic prediction studies. The performances of the other five methods that use cross-validation were less consistent and varied widely across scenarios. The computing time for the methods increased as the size of outliers and sample size increased and the genetic variance decreased. Copyright © 2014 Ould Estaghvirou et al.
Bonmati, Ester; Hu, Yipeng; Villarini, Barbara; Rodell, Rachael; Martin, Paul; Han, Lianghao; Donaldson, Ian; Ahmed, Hashim U; Moore, Caroline M; Emberton, Mark; Barratt, Dean C
2018-04-01
Image-guided systems that fuse magnetic resonance imaging (MRI) with three-dimensional (3D) ultrasound (US) images for performing targeted prostate needle biopsy and minimally invasive treatments for prostate cancer are of increasing clinical interest. To date, a wide range of different accuracy estimation procedures and error metrics have been reported, which makes comparing the performance of different systems difficult. A set of nine measures are presented to assess the accuracy of MRI-US image registration, needle positioning, needle guidance, and overall system error, with the aim of providing a methodology for estimating the accuracy of instrument placement using a MR/US-guided transperineal approach. Using the SmartTarget fusion system, an MRI-US image alignment error was determined to be 2.0 ± 1.0 mm (mean ± SD), and an overall system instrument targeting error of 3.0 ± 1.2 mm. Three needle deployments for each target phantom lesion was found to result in a 100% lesion hit rate and a median predicted cancer core length of 5.2 mm. The application of a comprehensive, unbiased validation assessment for MR/US guided systems can provide useful information on system performance for quality assurance and system comparison. Furthermore, such an analysis can be helpful in identifying relationships between these errors, providing insight into the technical behavior of these systems. © 2018 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Merker, Claire; Ament, Felix; Clemens, Marco
2017-04-01
The quantification of measurement uncertainty for rain radar data remains challenging. Radar reflectivity measurements are affected, amongst other things, by calibration errors, noise, blocking and clutter, and attenuation. Their combined impact on measurement accuracy is difficult to quantify due to incomplete process understanding and complex interdependencies. An improved quality assessment of rain radar measurements is of interest for applications both in meteorology and hydrology, for example for precipitation ensemble generation, rainfall runoff simulations, or in data assimilation for numerical weather prediction. Especially a detailed description of the spatial and temporal structure of errors is beneficial in order to make best use of the areal precipitation information provided by radars. Radar precipitation ensembles are one promising approach to represent spatially variable radar measurement errors. We present a method combining ensemble radar precipitation nowcasting with data assimilation to estimate radar measurement uncertainty at each pixel. This combination of ensemble forecast and observation yields a consistent spatial and temporal evolution of the radar error field. We use an advection-based nowcasting method to generate an ensemble reflectivity forecast from initial data of a rain radar network. Subsequently, reflectivity data from single radars is assimilated into the forecast using the Local Ensemble Transform Kalman Filter. The spread of the resulting analysis ensemble provides a flow-dependent, spatially and temporally correlated reflectivity error estimate at each pixel. We will present first case studies that illustrate the method using data from a high-resolution X-band radar network.
Estimating Flow-Duration and Low-Flow Frequency Statistics for Unregulated Streams in Oregon
Risley, John; Stonewall, Adam J.; Haluska, Tana
2008-01-01
Flow statistical datasets, basin-characteristic datasets, and regression equations were developed to provide decision makers with surface-water information needed for activities such as water-quality regulation, water-rights adjudication, biological habitat assessment, infrastructure design, and water-supply planning and management. The flow statistics, which included annual and monthly period of record flow durations (5th, 10th, 25th, 50th, and 95th percent exceedances) and annual and monthly 7-day, 10-year (7Q10) and 7-day, 2-year (7Q2) low flows, were computed at 466 streamflow-gaging stations at sites with unregulated flow conditions throughout Oregon and adjacent areas of neighboring States. Regression equations, created from the flow statistics and basin characteristics of the stations, can be used to estimate flow statistics at ungaged stream sites in Oregon. The study area was divided into 10 regression modeling regions based on ecological, topographic, geologic, hydrologic, and climatic criteria. In total, 910 annual and monthly regression equations were created to predict the 7 flow statistics in the 10 regions. Equations to predict the five flow-duration exceedance percentages and the two low-flow frequency statistics were created with Ordinary Least Squares and Generalized Least Squares regression, respectively. The standard errors of estimate of the equations created to predict the 5th and 95th percent exceedances had medians of 42.4 and 64.4 percent, respectively. The standard errors of prediction of the equations created to predict the 7Q2 and 7Q10 low-flow statistics had medians of 51.7 and 61.2 percent, respectively. Standard errors for regression equations for sites in western Oregon were smaller than those in eastern Oregon partly because of a greater density of available streamflow-gaging stations in western Oregon than eastern Oregon. High-flow regression equations (such as the 5th and 10th percent exceedances) also generally were more accurate than the low-flow regression equations (such as the 95th percent exceedance and 7Q10 low-flow statistic). The regression equations predict unregulated flow conditions in Oregon. Flow estimates need to be adjusted if they are used at ungaged sites that are regulated by reservoirs or affected by water-supply and agricultural withdrawals if actual flow conditions are of interest. The regression equations are installed in the USGS StreamStats Web-based tool (http://water.usgs.gov/osw/streamstats/index.html, accessed July 16, 2008). StreamStats provides users with a set of annual and monthly flow-duration and low-flow frequency estimates for ungaged sites in Oregon in addition to the basin characteristics for the sites. Prediction intervals at the 90-percent confidence level also are automatically computed.
Application of parameter estimation to aircraft stability and control: The output-error approach
NASA Technical Reports Server (NTRS)
Maine, Richard E.; Iliff, Kenneth W.
1986-01-01
The practical application of parameter estimation methodology to the problem of estimating aircraft stability and control derivatives from flight test data is examined. The primary purpose of the document is to present a comprehensive and unified picture of the entire parameter estimation process and its integration into a flight test program. The document concentrates on the output-error method to provide a focus for detailed examination and to allow us to give specific examples of situations that have arisen. The document first derives the aircraft equations of motion in a form suitable for application to estimation of stability and control derivatives. It then discusses the issues that arise in adapting the equations to the limitations of analysis programs, using a specific program for an example. The roles and issues relating to mass distribution data, preflight predictions, maneuver design, flight scheduling, instrumentation sensors, data acquisition systems, and data processing are then addressed. Finally, the document discusses evaluation and the use of the analysis results.
Modal Correction Method For Dynamically Induced Errors In Wind-Tunnel Model Attitude Measurements
NASA Technical Reports Server (NTRS)
Buehrle, R. D.; Young, C. P., Jr.
1995-01-01
This paper describes a method for correcting the dynamically induced bias errors in wind tunnel model attitude measurements using measured modal properties of the model system. At NASA Langley Research Center, the predominant instrumentation used to measure model attitude is a servo-accelerometer device that senses the model attitude with respect to the local vertical. Under smooth wind tunnel operating conditions, this inertial device can measure the model attitude with an accuracy of 0.01 degree. During wind tunnel tests when the model is responding at high dynamic amplitudes, the inertial device also senses the centrifugal acceleration associated with model vibration. This centrifugal acceleration results in a bias error in the model attitude measurement. A study of the response of a cantilevered model system to a simulated dynamic environment shows significant bias error in the model attitude measurement can occur and is vibration mode and amplitude dependent. For each vibration mode contributing to the bias error, the error is estimated from the measured modal properties and tangential accelerations at the model attitude device. Linear superposition is used to combine the bias estimates for individual modes to determine the overall bias error as a function of time. The modal correction model predicts the bias error to a high degree of accuracy for the vibration modes characterized in the simulated dynamic environment.
Using satellite radiotelemetry data to delineate and manage wildlife populations
Amstrup, Steven C.; McDonald, T.L.; Durner, George M.
2004-01-01
The greatest promise of radiotelemetry always has been a better understanding of animal movements. Telemetry has helped us know when animals are active, how active they are, how far and how fast they move, the geographic areas they occupy, and whether individuals vary in these traits. Unfortunately, the inability to estimate the error in animals utilization distributions (UDs), has prevented probabilistic linkage of movements data, which are always retrospective, with future management actions. We used the example of the harvested population of polar bears (Ursus maritimus) in the Southern Beaufort Sea to illustrate a method that provides that linkage. We employed a 2-dimensional Gaussian kernel density estimator to smooth and scale frequencies of polar bear radio locations within cells of a grid overlying our study area. True 2-dimensional smoothing allowed us to create accurate descriptions of the UDs of individuals and groups of bears. We used a new method of clustering, based upon the relative use collared bears made of each cell in our grid, to assign individual animals to populations. We applied the fast Fourier transform to make bootstrapped estimates of the error in UDs computationally feasible. Clustering and kernel smoothing identified 3 populations of polar bears in the region between Wrangel Island, Russia, and Banks Island, Canada. The relative probability of occurrence of animals from each population varied significantly among grid cells distributed across the study area. We displayed occurrence probabilities as contour maps wherein each contour line corresponded with a change in relative probability. Only at the edges of our study area and in some offshore regions were bootstrapped estimates of error in occurrence probabilities too high to allow prediction. Error estimates, which also were displayed as contours, allowed us to show that occurrence probabilities did not vary by season. Near Barrow, Alaska, 50% of bears observed are predicted to be from the Chukchi Sea population and 50% from the Southern Beaufort Sea population. At Tuktoyaktuk, Northwest Territories, Canada, 50% are from the Southern Beaufort Sea and 50% from the Northern Beaufort Sea population. The methods described here will aid managers of all wildlife that can be studied by telemetry to allocate harvests and other human perturbations to the appropriate populations, make risk assessments, and predict impacts of human activities. They will aid researchers by providing the refined descriptions of study populations that are necessary for population estimation and other investigative tasks. Arctic, Beaufort Sea, boundaries, clustering, Fourier transform, kernel, management, polar bears, population delineation, radiotelemetry, satellite, smoothing, Ursus maritimus
Evaluation of procedures for prediction of unconventional gas in the presence of geologic trends
Attanasi, E.D.; Coburn, T.C.
2009-01-01
This study extends the application of local spatial nonparametric prediction models to the estimation of recoverable gas volumes in continuous-type gas plays to regimes where there is a single geologic trend. A transformation is presented, originally proposed by Tomczak, that offsets the distortions caused by the trend. This article reports on numerical experiments that compare predictive and classification performance of the local nonparametric prediction models based on the transformation with models based on Euclidean distance. The transformation offers improvement in average root mean square error when the trend is not severely misspecified. Because of the local nature of the models, even those based on Euclidean distance in the presence of trends are reasonably robust. The tests based on other model performance metrics such as prediction error associated with the high-grade tracts and the ability of the models to identify sites with the largest gas volumes also demonstrate the robustness of both local modeling approaches. ?? International Association for Mathematical Geology 2009.
The Limitations of Model-Based Experimental Design and Parameter Estimation in Sloppy Systems.
White, Andrew; Tolman, Malachi; Thames, Howard D; Withers, Hubert Rodney; Mason, Kathy A; Transtrum, Mark K
2016-12-01
We explore the relationship among experimental design, parameter estimation, and systematic error in sloppy models. We show that the approximate nature of mathematical models poses challenges for experimental design in sloppy models. In many models of complex biological processes it is unknown what are the relevant physical mechanisms that must be included to explain system behaviors. As a consequence, models are often overly complex, with many practically unidentifiable parameters. Furthermore, which mechanisms are relevant/irrelevant vary among experiments. By selecting complementary experiments, experimental design may inadvertently make details that were ommitted from the model become relevant. When this occurs, the model will have a large systematic error and fail to give a good fit to the data. We use a simple hyper-model of model error to quantify a model's discrepancy and apply it to two models of complex biological processes (EGFR signaling and DNA repair) with optimally selected experiments. We find that although parameters may be accurately estimated, the discrepancy in the model renders it less predictive than it was in the sloppy regime where systematic error is small. We introduce the concept of a sloppy system-a sequence of models of increasing complexity that become sloppy in the limit of microscopic accuracy. We explore the limits of accurate parameter estimation in sloppy systems and argue that identifying underlying mechanisms controlling system behavior is better approached by considering a hierarchy of models of varying detail rather than focusing on parameter estimation in a single model.
The Limitations of Model-Based Experimental Design and Parameter Estimation in Sloppy Systems
Tolman, Malachi; Thames, Howard D.; Mason, Kathy A.
2016-01-01
We explore the relationship among experimental design, parameter estimation, and systematic error in sloppy models. We show that the approximate nature of mathematical models poses challenges for experimental design in sloppy models. In many models of complex biological processes it is unknown what are the relevant physical mechanisms that must be included to explain system behaviors. As a consequence, models are often overly complex, with many practically unidentifiable parameters. Furthermore, which mechanisms are relevant/irrelevant vary among experiments. By selecting complementary experiments, experimental design may inadvertently make details that were ommitted from the model become relevant. When this occurs, the model will have a large systematic error and fail to give a good fit to the data. We use a simple hyper-model of model error to quantify a model’s discrepancy and apply it to two models of complex biological processes (EGFR signaling and DNA repair) with optimally selected experiments. We find that although parameters may be accurately estimated, the discrepancy in the model renders it less predictive than it was in the sloppy regime where systematic error is small. We introduce the concept of a sloppy system–a sequence of models of increasing complexity that become sloppy in the limit of microscopic accuracy. We explore the limits of accurate parameter estimation in sloppy systems and argue that identifying underlying mechanisms controlling system behavior is better approached by considering a hierarchy of models of varying detail rather than focusing on parameter estimation in a single model. PMID:27923060
Prediction of oxygen consumption in cardiac rehabilitation patients performing leg ergometry
NASA Astrophysics Data System (ADS)
Alvarez, John Gershwin
The purpose of this study was two-fold. First, to determine the validity of the ACSM leg ergometry equation in the prediction of steady-state oxygen consumption (VO2) in a heterogeneous population of cardiac patients. Second, to determine whether a more accurate prediction equation could be developed for use in the cardiac population. Thirty-one cardiac rehabilitation patients participated in the study of which 24 were men and 7 were women. Biometric variables (mean +/- sd) of the participants were as follows: age = 61.9 +/- 9.5 years; height = 172.6 +/- 1.6 cm; and body mass = 82.3 +/- 10.6 kg. Subjects exercised on a MonarchTM cycle ergometer at 0, 180, 360, 540 and 720 kgm ˙ min-1. The length of each stage was five minutes. Heart rate, ECG, and VO2 were continuously monitored. Blood pressure and heart rate were collected at the end of each stage. Steady state VO 2 was calculated for each stage using the average of the last two minutes. Correlation coefficients, standard error of estimate, coefficient of determination, total error, and mean bias were used to determine the accuracy of the ACSM equation (1995). The analysis found the ACSM equation to be a valid means of estimating VO2 in cardiac patients. Simple linear regression was used to develop a new equation. Regression analysis found workload to be a significant predictor of VO2. The following equation is the result: VO2 = (1.6 x kgm ˙ min-1) + 444 ml ˙ min-1. The r of the equation was .78 (p < .05) and the standard error of estimate was 211 ml ˙ min-1. Analysis of variance was used to determine significant differences between means for actual and predicted VO2 values for each equation. The analysis found the ACSM and new equation to significantly (p < .05) under predict VO2 during unloaded pedaling. Furthermore, the ACSM equation was found to significantly (p < .05) under predict VO 2 during the first loaded stage of exercise. When the accuracy of the ACSM and new equations were compared based on correlation coefficients, coefficients of determinations, SEEs, total error, and mean bias the new equation was found to have equal or better accuracy at all workloads. The final form of the new equation is: VO2 (ml ˙ min-1) = (kgm ˙ min-1 x 1.6 ml ˙ kgm-1) + (3.5 ml ˙ kg-1 ˙ min-1 x body mass in kg) + 156 ml ˙ min-1.
Adam-Poupart, Ariane; Brand, Allan; Fournier, Michel; Jerrett, Michael
2014-01-01
Background: Ambient air ozone (O3) is a pulmonary irritant that has been associated with respiratory health effects including increased lung inflammation and permeability, airway hyperreactivity, respiratory symptoms, and decreased lung function. Estimation of O3 exposure is a complex task because the pollutant exhibits complex spatiotemporal patterns. To refine the quality of exposure estimation, various spatiotemporal methods have been developed worldwide. Objectives: We sought to compare the accuracy of three spatiotemporal models to predict summer ground-level O3 in Quebec, Canada. Methods: We developed a land-use mixed-effects regression (LUR) model based on readily available data (air quality and meteorological monitoring data, road networks information, latitude), a Bayesian maximum entropy (BME) model incorporating both O3 monitoring station data and the land-use mixed model outputs (BME-LUR), and a kriging method model based only on available O3 monitoring station data (BME kriging). We performed leave-one-station-out cross-validation and visually assessed the predictive capability of each model by examining the mean temporal and spatial distributions of the average estimated errors. Results: The BME-LUR was the best predictive model (R2 = 0.653) with the lowest root mean-square error (RMSE ;7.06 ppb), followed by the LUR model (R2 = 0.466, RMSE = 8.747) and the BME kriging model (R2 = 0.414, RMSE = 9.164). Conclusions: Our findings suggest that errors of estimation in the interpolation of O3 concentrations with BME can be greatly reduced by incorporating outputs from a LUR model developed with readily available data. Citation: Adam-Poupart A, Brand A, Fournier M, Jerrett M, Smargiassi A. 2014. Spatiotemporal modeling of ozone levels in Quebec (Canada): a comparison of kriging, land-use regression (LUR), and combined Bayesian maximum entropy–LUR approaches. Environ Health Perspect 122:970–976; http://dx.doi.org/10.1289/ehp.1306566 PMID:24879650
Running Speed Can Be Predicted from Foot Contact Time during Outdoor over Ground Running.
de Ruiter, Cornelis J; van Oeveren, Ben; Francke, Agnieta; Zijlstra, Patrick; van Dieen, Jaap H
2016-01-01
The number of validation studies of commercially available foot pods that provide estimates of running speed is limited and these studies have been conducted under laboratory conditions. Moreover, internal data handling and algorithms used to derive speed from these pods are proprietary and thereby unclear. The present study investigates the use of foot contact time (CT) for running speed estimations, which potentially can be used in addition to the global positioning system (GPS) in situations where GPS performance is limited. CT was measured with tri axial inertial sensors attached to the feet of 14 runners, during natural over ground outdoor running, under optimized conditions for GPS. The individual relationships between running speed and CT were established during short runs at different speeds on two days. These relations were subsequently used to predict instantaneous speed during a straight line 4 km run with a single turning point halfway. Stopwatch derived speed, measured for each of 32 consecutive 125m intervals during the 4 km runs, was used as reference. Individual speed-CT relations were strong (r2 >0.96 for all trials) and consistent between days. During the 4km runs, median error (ranges) in predicted speed from CT 2.5% (5.2) was higher (P<0.05) than for GPS 1.6% (0.8). However, around the turning point and during the first and last 125m interval, error for GPS-speed increased to 5.0% (4.5) and became greater (P<0.05) than the error predicted from CT: 2.7% (4.4). Small speed fluctuations during 4km runs were adequately monitored with both methods: CT and GPS respectively explained 85% and 73% of the total speed variance during 4km runs. In conclusion, running speed estimates bases on speed-CT relations, have acceptable accuracy and could serve to backup or substitute for GPS during tarmac running on flat terrain whenever GPS performance is limited.
Estimation of global snow cover using passive microwave data
NASA Astrophysics Data System (ADS)
Chang, Alfred T. C.; Kelly, Richard E.; Foster, James L.; Hall, Dorothy K.
2003-04-01
This paper describes an approach to estimate global snow cover using satellite passive microwave data. Snow cover is detected using the high frequency scattering signal from natural microwave radiation, which is observed by passive microwave instruments. Developed for the retrieval of global snow depth and snow water equivalent using Advanced Microwave Scanning Radiometer EOS (AMSR-E), the algorithm uses passive microwave radiation along with a microwave emission model and a snow grain growth model to estimate snow depth. The microwave emission model is based on the Dense Media Radiative Transfer (DMRT) model that uses the quasi-crystalline approach and sticky particle theory to predict the brightness temperature from a single layered snowpack. The grain growth model is a generic single layer model based on an empirical approach to predict snow grain size evolution with time. Gridding to the 25 km EASE-grid projection, a daily record of Special Sensor Microwave Imager (SSM/I) snow depth estimates was generated for December 2000 to March 2001. The estimates are tested using ground measurements from two continental-scale river catchments (Nelson River and the Ob River in Russia). This regional-scale testing of the algorithm shows that for passive microwave estimates, the average daily snow depth retrieval standard error between estimated and measured snow depths ranges from 0 cm to 40 cm of point observations. Bias characteristics are different for each basin. A fraction of the error is related to uncertainties about the grain growth initialization states and uncertainties about grain size changes through the winter season that directly affect the parameterization of the snow depth estimation in the DMRT model. Also, the algorithm does not include a correction for forest cover and this effect is clearly observed in the retrieval. Finally, error is also related to scale differences between in situ ground measurements and area-integrated satellite estimates. With AMSR-E data, improvements to snow depth and water equivalent estimates are expected since AMSR-E will have twice the spatial resolution of the SSM/I and will be able to characterize better the subnivean snow environment from an expanded range of microwave frequencies.
Robust geostatistical analysis of spatial data
NASA Astrophysics Data System (ADS)
Papritz, A.; Künsch, H. R.; Schwierz, C.; Stahel, W. A.
2012-04-01
Most of the geostatistical software tools rely on non-robust algorithms. This is unfortunate, because outlying observations are rather the rule than the exception, in particular in environmental data sets. Outlying observations may results from errors (e.g. in data transcription) or from local perturbations in the processes that are responsible for a given pattern of spatial variation. As an example, the spatial distribution of some trace metal in the soils of a region may be distorted by emissions of local anthropogenic sources. Outliers affect the modelling of the large-scale spatial variation, the so-called external drift or trend, the estimation of the spatial dependence of the residual variation and the predictions by kriging. Identifying outliers manually is cumbersome and requires expertise because one needs parameter estimates to decide which observation is a potential outlier. Moreover, inference after the rejection of some observations is problematic. A better approach is to use robust algorithms that prevent automatically that outlying observations have undue influence. Former studies on robust geostatistics focused on robust estimation of the sample variogram and ordinary kriging without external drift. Furthermore, Richardson and Welsh (1995) [2] proposed a robustified version of (restricted) maximum likelihood ([RE]ML) estimation for the variance components of a linear mixed model, which was later used by Marchant and Lark (2007) [1] for robust REML estimation of the variogram. We propose here a novel method for robust REML estimation of the variogram of a Gaussian random field that is possibly contaminated by independent errors from a long-tailed distribution. It is based on robustification of estimating equations for the Gaussian REML estimation. Besides robust estimates of the parameters of the external drift and of the variogram, the method also provides standard errors for the estimated parameters, robustified kriging predictions at both sampled and unsampled locations and kriging variances. The method has been implemented in an R package. Apart from presenting our modelling framework, we shall present selected simulation results by which we explored the properties of the new method. This will be complemented by an analysis of the Tarrawarra soil moisture data set [3].
Pre-Test Assessment of the Upper Bound of the Drag Coefficient Repeatability of a Wind Tunnel Model
NASA Technical Reports Server (NTRS)
Ulbrich, N.; L'Esperance, A.
2017-01-01
A new method is presented that computes a pre{test estimate of the upper bound of the drag coefficient repeatability of a wind tunnel model. This upper bound is a conservative estimate of the precision error of the drag coefficient. For clarity, precision error contributions associated with the measurement of the dynamic pressure are analyzed separately from those that are associated with the measurement of the aerodynamic loads. The upper bound is computed by using information about the model, the tunnel conditions, and the balance in combination with an estimate of the expected output variations as input. The model information consists of the reference area and an assumed angle of attack. The tunnel conditions are described by the Mach number and the total pressure or unit Reynolds number. The balance inputs are the partial derivatives of the axial and normal force with respect to all balance outputs. Finally, an empirical output variation of 1.0 microV/V is used to relate both random instrumentation and angle measurement errors to the precision error of the drag coefficient. Results of the analysis are reported by plotting the upper bound of the precision error versus the tunnel conditions. The analysis shows that the influence of the dynamic pressure measurement error on the precision error of the drag coefficient is often small when compared with the influence of errors that are associated with the load measurements. Consequently, the sensitivities of the axial and normal force gages of the balance have a significant influence on the overall magnitude of the drag coefficient's precision error. Therefore, results of the error analysis can be used for balance selection purposes as the drag prediction characteristics of balances of similar size and capacities can objectively be compared. Data from two wind tunnel models and three balances are used to illustrate the assessment of the precision error of the drag coefficient.
Alonso-Carné, Jorge; García-Martín, Alberto; Estrada-Peña, Agustin
2013-11-01
The modelling of habitat suitability for parasites is a growing area of research due to its association with climate change and ensuing shifts in the distribution of infectious diseases. Such models depend on remote sensing data and require accurate, high-resolution temperature measurements. The temperature is critical for accurate estimation of development rates and potential habitat ranges for a given parasite. The MODIS sensors aboard the Aqua and Terra satellites provide high-resolution temperature data for remote sensing applications. This paper describes comparative analysis of MODIS-derived temperatures relative to ground records of surface temperature in the western Palaearctic. The results show that MODIS overestimated maximum temperature values and underestimated minimum temperatures by up to 5-6 °C. The combined use of both Aqua and Terra datasets provided the most accurate temperature estimates around latitude 35-44° N, with an overestimation during spring-summer months and an underestimation in autumn-winter. Errors in temperature estimation were associated with specific ecological regions within the target area as well as technical limitations in the temporal and orbital coverage of the satellites (e.g. sensor limitations and satellite transit times). We estimated error propagation of temperature uncertainties in parasite habitat suitability models by comparing outcomes of published models. Error estimates reached 36% of annual respective measurements depending on the model used. Our analysis demonstrates the importance of adequate image processing and points out the limitations of MODIS temperature data as inputs into predictive models concerning parasite lifecycles.
Statistical modelling of thermal annealing of fission tracks in apatite
NASA Astrophysics Data System (ADS)
Laslett, G. M.; Galbraith, R. F.
1996-12-01
We develop an improved methodology for modelling the relationship between mean track length, temperature, and time in fission track annealing experiments. We consider "fanning Arrhenius" models, in which contours of constant mean length on an Arrhenius plot are straight lines meeting at a common point. Features of our approach are explicit use of subject matter knowledge, treating mean length as the response variable, modelling of the mean-variance relationship with two components of variance, improved modelling of the control sample, and using information from experiments in which no tracks are seen. This approach overcomes several weaknesses in previous models and provides a robust six parameter model that is widely applicable. Estimation is via direct maximum likelihood which can be implemented using a standard numerical optimisation package. Because the model is highly nonlinear, some reparameterisations are needed to achieve stable estimation and calculation of precisions. Experience suggests that precisions are more convincingly estimated from profile log-likelihood functions than from the information matrix. We apply our method to the B-5 and Sr fluorapatite data of Crowley et al. (1991) and obtain well-fitting models in both cases. For the B-5 fluorapatite, our model exhibits less fanning than that of Crowley et al. (1991), although fitted mean values above 12 μm are fairly similar. However, predictions can be different, particularly for heavy annealing at geological time scales, where our model is less retentive. In addition, the refined error structure of our model results in tighter prediction errors, and has components of error that are easier to verify or modify. For the Sr fluorapatite, our fitted model for mean lengths does not differ greatly from that of Crowley et al. (1991), but our error structure is quite different.
Frontal Theta Reflects Uncertainty and Unexpectedness during Exploration and Exploitation
Figueroa, Christina M.; Cohen, Michael X; Frank, Michael J.
2012-01-01
In order to understand the exploitation/exploration trade-off in reinforcement learning, previous theoretical and empirical accounts have suggested that increased uncertainty may precede the decision to explore an alternative option. To date, the neural mechanisms that support the strategic application of uncertainty-driven exploration remain underspecified. In this study, electroencephalography (EEG) was used to assess trial-to-trial dynamics relevant to exploration and exploitation. Theta-band activities over middle and lateral frontal areas have previously been implicated in EEG studies of reinforcement learning and strategic control. It was hypothesized that these areas may interact during top-down strategic behavioral control involved in exploratory choices. Here, we used a dynamic reward–learning task and an associated mathematical model that predicted individual response times. This reinforcement-learning model generated value-based prediction errors and trial-by-trial estimates of exploration as a function of uncertainty. Mid-frontal theta power correlated with unsigned prediction error, although negative prediction errors had greater power overall. Trial-to-trial variations in response-locked frontal theta were linearly related to relative uncertainty and were larger in individuals who used uncertainty to guide exploration. This finding suggests that theta-band activities reflect prefrontal-directed strategic control during exploratory choices. PMID:22120491
Model identification using stochastic differential equation grey-box models in diabetes.
Duun-Henriksen, Anne Katrine; Schmidt, Signe; Røge, Rikke Meldgaard; Møller, Jonas Bech; Nørgaard, Kirsten; Jørgensen, John Bagterp; Madsen, Henrik
2013-03-01
The acceptance of virtual preclinical testing of control algorithms is growing and thus also the need for robust and reliable models. Models based on ordinary differential equations (ODEs) can rarely be validated with standard statistical tools. Stochastic differential equations (SDEs) offer the possibility of building models that can be validated statistically and that are capable of predicting not only a realistic trajectory, but also the uncertainty of the prediction. In an SDE, the prediction error is split into two noise terms. This separation ensures that the errors are uncorrelated and provides the possibility to pinpoint model deficiencies. An identifiable model of the glucoregulatory system in a type 1 diabetes mellitus (T1DM) patient is used as the basis for development of a stochastic-differential-equation-based grey-box model (SDE-GB). The parameters are estimated on clinical data from four T1DM patients. The optimal SDE-GB is determined from likelihood-ratio tests. Finally, parameter tracking is used to track the variation in the "time to peak of meal response" parameter. We found that the transformation of the ODE model into an SDE-GB resulted in a significant improvement in the prediction and uncorrelated errors. Tracking of the "peak time of meal absorption" parameter showed that the absorption rate varied according to meal type. This study shows the potential of using SDE-GBs in diabetes modeling. Improved model predictions were obtained due to the separation of the prediction error. SDE-GBs offer a solid framework for using statistical tools for model validation and model development. © 2013 Diabetes Technology Society.
NASA Astrophysics Data System (ADS)
Begnaud, M. L.; Anderson, D. N.; Phillips, W. S.; Myers, S. C.; Ballard, S.
2016-12-01
The Regional Seismic Travel Time (RSTT) tomography model has been developed to improve travel time predictions for regional phases (Pn, Sn, Pg, Lg) in order to increase seismic location accuracy, especially for explosion monitoring. The RSTT model is specifically designed to exploit regional phases for location, especially when combined with teleseismic arrivals. The latest RSTT model (version 201404um) has been released (http://www.sandia.gov/rstt). Travel time uncertainty estimates for RSTT are determined using one-dimensional (1D), distance-dependent error models, that have the benefit of being very fast to use in standard location algorithms, but do not account for path-dependent variations in error, and structural inadequacy of the RSTTT model (e.g., model error). Although global in extent, the RSTT tomography model is only defined in areas where data exist. A simple 1D error model does not accurately model areas where RSTT has not been calibrated. We are developing and validating a new error model for RSTT phase arrivals by mathematically deriving this multivariate model directly from a unified model of RSTT embedded into a statistical random effects model that captures distance, path and model error effects. An initial method developed is a two-dimensional path-distributed method using residuals. The goals for any RSTT uncertainty method are for it to be both readily useful for the standard RSTT user as well as improve travel time uncertainty estimates for location. We have successfully tested using the new error model for Pn phases and will demonstrate the method and validation of the error model for Sn, Pg, and Lg phases.
NASA Astrophysics Data System (ADS)
Hendricks Franssen, H. J.; Post, H.; Vrugt, J. A.; Fox, A. M.; Baatz, R.; Kumbhar, P.; Vereecken, H.
2015-12-01
Estimation of net ecosystem exchange (NEE) by land surface models is strongly affected by uncertain ecosystem parameters and initial conditions. A possible approach is the estimation of plant functional type (PFT) specific parameters for sites with measurement data like NEE and application of the parameters at other sites with the same PFT and no measurements. This upscaling strategy was evaluated in this work for sites in Germany and France. Ecosystem parameters and initial conditions were estimated with NEE-time series of one year length, or a time series of only one season. The DREAM(zs) algorithm was used for the estimation of parameters and initial conditions. DREAM(zs) is not limited to Gaussian distributions and can condition to large time series of measurement data simultaneously. DREAM(zs) was used in combination with the Community Land Model (CLM) v4.5. Parameter estimates were evaluated by model predictions at the same site for an independent verification period. In addition, the parameter estimates were evaluated at other, independent sites situated >500km away with the same PFT. The main conclusions are: i) simulations with estimated parameters reproduced better the NEE measurement data in the verification periods, including the annual NEE-sum (23% improvement), annual NEE-cycle and average diurnal NEE course (error reduction by factor 1,6); ii) estimated parameters based on seasonal NEE-data outperformed estimated parameters based on yearly data; iii) in addition, those seasonal parameters were often also significantly different from their yearly equivalents; iv) estimated parameters were significantly different if initial conditions were estimated together with the parameters. We conclude that estimated PFT-specific parameters improve land surface model predictions significantly at independent verification sites and for independent verification periods so that their potential for upscaling is demonstrated. However, simulation results also indicate that possibly the estimated parameters mask other model errors. This would imply that their application at climatic time scales would not improve model predictions. A central question is whether the integration of many different data streams (e.g., biomass, remotely sensed LAI) could solve the problems indicated here.
Intelligent Planning for Laser Refractive Surgeries
NASA Astrophysics Data System (ADS)
Wang, Wei; Yue, Yong; Elsheikh, Ahmed; Bao, Fangjun
2018-02-01
Refractive error is one of leading ophthalmic diseases for both genders all over the world. Laser refractive correction surgery, e.g., laser in-situ keratomileusis (LASIK), has been commonly used worldwide. The prediction of surgical parameters, e.g., corneal ablation depth, depends on the doctor’s experience, theoretical formula and surgery reference manual in the preoperative diagnosis. The error of prediction may present a potential surgical risk and complication. Being aware of the surgery parameters is important because these can be used to estimate a patient’s post-operative visual quality and help the surgeon plan a suitable treatment. Therefore, in this paper we discuss data mining techniques that can be utilized for the prediction of laser refractive correction surgery parameters. It can provide the surgeon with a reference for possible surgical parameters and outcomes of the patient before the laser refractive correction surgery.
Numerical Predictions of Static-Pressure-Error Corrections for a Modified T-38C Aircraft
2014-12-15
but the more modern work of Latif et al . [11] demonstrated that compensated Pitot-static probes can be simulated accurately for subsonic and...what was originally estimated from CFD simulations in Bhamidipati et al . [3] by extracting the static-pressure error in front of the production probe...Aerodynamically Compensating Pitot Tube,” Journal of Aircraft, Vol. 25, No. 6, 1988, pp. 544–547. doi:10.2514/3.45620 [11] Latif , A., Masud, J., Sheikh, S. R., and
Investigation of empirical damping laws for the space shuttle
NASA Technical Reports Server (NTRS)
Bernstein, E. L.
1973-01-01
An analysis of dynamic test data from vibration testing of a number of aerospace vehicles was made to develop an empirical structural damping law. A systematic attempt was made to fit dissipated energy/cycle to combinations of all dynamic variables. The best-fit laws for bending, torsion, and longitudinal motion are given, with error bounds. A discussion and estimate are made of error sources. Programs are developed for predicting equivalent linear structural damping coefficients and finding the response of nonlinearly damped structures.
Cart3D Simulations for the First AIAA Sonic Boom Prediction Workshop
NASA Technical Reports Server (NTRS)
Aftosmis, Michael J.; Nemec, Marian
2014-01-01
Simulation results for the First AIAA Sonic Boom Prediction Workshop (LBW1) are presented using an inviscid, embedded-boundary Cartesian mesh method. The method employs adjoint-based error estimation and adaptive meshing to automatically determine resolution requirements of the computational domain. Results are presented for both mandatory and optional test cases. These include an axisymmetric body of revolution, a 69deg delta wing model and a complete model of the Lockheed N+2 supersonic tri-jet with V-tail and flow through nacelles. In addition to formal mesh refinement studies and examination of the adjoint-based error estimates, mesh convergence is assessed by presenting simulation results for meshes at several resolutions which are comparable in size to the unstructured grids distributed by the workshop organizers. Data provided includes both the pressure signals required by the workshop and information on code performance in both memory and processing time. Various enhanced techniques offering improved simulation efficiency will be demonstrated and discussed.
Estimating False Positive Contamination in Crater Annotations from Citizen Science Data
NASA Astrophysics Data System (ADS)
Tar, P. D.; Bugiolacchi, R.; Thacker, N. A.; Gilmour, J. D.
2017-01-01
Web-based citizen science often involves the classification of image features by large numbers of minimally trained volunteers, such as the identification of lunar impact craters under the Moon Zoo project. Whilst such approaches facilitate the analysis of large image data sets, the inexperience of users and ambiguity in image content can lead to contamination from false positive identifications. We give an approach, using Linear Poisson Models and image template matching, that can quantify levels of false positive contamination in citizen science Moon Zoo crater annotations. Linear Poisson Models are a form of machine learning which supports predictive error modelling and goodness-of-fits, unlike most alternative machine learning methods. The proposed supervised learning system can reduce the variability in crater counts whilst providing predictive error assessments of estimated quantities of remaining true verses false annotations. In an area of research influenced by human subjectivity, the proposed method provides a level of objectivity through the utilisation of image evidence, guided by candidate crater identifications.
Isohaline position as a habitat indicator for estuarine populations
Jassby, Alan D.; Kimmerer, W.J.; Monismith, Stephen G.; Armor, C.; Cloern, James E.; Powell, T.M.; Vedlinski, Timothy J.
1995-01-01
The striped bass survival data were also used to illustrate a related important point: incorporating additionalexplanatory variables may decrease the prediction error for a population or process, but it can increase theuncertainty in parameter estimates and management strategies based on these estimates. Even in cases wherethe uncertainty is currently too large to guide management decisions, an uncertainty analysis can identify themost practical direction for future data acquisition.
Lin, P.-S.; Chiou, B.; Abrahamson, N.; Walling, M.; Lee, C.-T.; Cheng, C.-T.
2011-01-01
In this study, we quantify the reduction in the standard deviation for empirical ground-motion prediction models by removing ergodic assumption.We partition the modeling error (residual) into five components, three of which represent the repeatable source-location-specific, site-specific, and path-specific deviations from the population mean. A variance estimation procedure of these error components is developed for use with a set of recordings from earthquakes not heavily clustered in space.With most source locations and propagation paths sampled only once, we opt to exploit the spatial correlation of residuals to estimate the variances associated with the path-specific and the source-location-specific deviations. The estimation procedure is applied to ground-motion amplitudes from 64 shallow earthquakes in Taiwan recorded at 285 sites with at least 10 recordings per site. The estimated variance components are used to quantify the reduction in aleatory variability that can be used in hazard analysis for a single site and for a single path. For peak ground acceleration and spectral accelerations at periods of 0.1, 0.3, 0.5, 1.0, and 3.0 s, we find that the singlesite standard deviations are 9%-14% smaller than the total standard deviation, whereas the single-path standard deviations are 39%-47% smaller.
NASA Astrophysics Data System (ADS)
Zounemat-Kermani, Mohammad
2012-08-01
In this study, the ability of two models of multi linear regression (MLR) and Levenberg-Marquardt (LM) feed-forward neural network was examined to estimate the hourly dew point temperature. Dew point temperature is the temperature at which water vapor in the air condenses into liquid. This temperature can be useful in estimating meteorological variables such as fog, rain, snow, dew, and evapotranspiration and in investigating agronomical issues as stomatal closure in plants. The availability of hourly records of climatic data (air temperature, relative humidity and pressure) which could be used to predict dew point temperature initiated the practice of modeling. Additionally, the wind vector (wind speed magnitude and direction) and conceptual input of weather condition were employed as other input variables. The three quantitative standard statistical performance evaluation measures, i.e. the root mean squared error, mean absolute error, and absolute logarithmic Nash-Sutcliffe efficiency coefficient ( {| {{{Log}}({{NS}})} |} ) were employed to evaluate the performances of the developed models. The results showed that applying wind vector and weather condition as input vectors along with meteorological variables could slightly increase the ANN and MLR predictive accuracy. The results also revealed that LM-NN was superior to MLR model and the best performance was obtained by considering all potential input variables in terms of different evaluation criteria.
Phase-demodulation error of a fiber-optic Fabry-Perot sensor with complex reflection coefficients.
Kilpatrick, J M; MacPherson, W N; Barton, J S; Jones, J D
2000-03-20
The influence of reflector losses attracts little discussion in standard treatments of the Fabry-Perot interferometer yet may be an important factor contributing to errors in phase-stepped demodulation of fiber optic Fabry-Perot (FFP) sensors. We describe a general transfer function for FFP sensors with complex reflection coefficients and estimate systematic phase errors that arise when the asymmetry of the reflected fringe system is neglected, as is common in the literature. The measured asymmetric response of higher-finesse metal-dielectric FFP constructions corroborates a model that predicts systematic phase errors of 0.06 rad in three-step demodulation of a low-finesse FFP sensor (R = 0.05) with internal reflector losses of 25%.
Draft versus finished sequence data for DNA and protein diagnostic signature development
Gardner, Shea N.; Lam, Marisa W.; Smith, Jason R.; Torres, Clinton L.; Slezak, Tom R.
2005-01-01
Sequencing pathogen genomes is costly, demanding careful allocation of limited sequencing resources. We built a computational Sequencing Analysis Pipeline (SAP) to guide decisions regarding the amount of genomic sequencing necessary to develop high-quality diagnostic DNA and protein signatures. SAP uses simulations to estimate the number of target genomes and close phylogenetic relatives (near neighbors or NNs) to sequence. We use SAP to assess whether draft data are sufficient or finished sequencing is required using Marburg and variola virus sequences. Simulations indicate that intermediate to high-quality draft with error rates of 10−3–10−5 (∼8× coverage) of target organisms is suitable for DNA signature prediction. Low-quality draft with error rates of ∼1% (3× to 6× coverage) of target isolates is inadequate for DNA signature prediction, although low-quality draft of NNs is sufficient, as long as the target genomes are of high quality. For protein signature prediction, sequencing errors in target genomes substantially reduce the detection of amino acid sequence conservation, even if the draft is of high quality. In summary, high-quality draft of target and low-quality draft of NNs appears to be a cost-effective investment for DNA signature prediction, but may lead to underestimation of predicted protein signatures. PMID:16243783
A joint source-channel distortion model for JPEG compressed images.
Sabir, Muhammad F; Sheikh, Hamid Rahim; Heath, Robert W; Bovik, Alan C
2006-06-01
The need for efficient joint source-channel coding (JSCC) is growing as new multimedia services are introduced in commercial wireless communication systems. An important component of practical JSCC schemes is a distortion model that can predict the quality of compressed digital multimedia such as images and videos. The usual approach in the JSCC literature for quantifying the distortion due to quantization and channel errors is to estimate it for each image using the statistics of the image for a given signal-to-noise ratio (SNR). This is not an efficient approach in the design of real-time systems because of the computational complexity. A more useful and practical approach would be to design JSCC techniques that minimize average distortion for a large set of images based on some distortion model rather than carrying out per-image optimizations. However, models for estimating average distortion due to quantization and channel bit errors in a combined fashion for a large set of images are not available for practical image or video coding standards employing entropy coding and differential coding. This paper presents a statistical model for estimating the distortion introduced in progressive JPEG compressed images due to quantization and channel bit errors in a joint manner. Statistical modeling of important compression techniques such as Huffman coding, differential pulse-coding modulation, and run-length coding are included in the model. Examples show that the distortion in terms of peak signal-to-noise ratio (PSNR) can be predicted within a 2-dB maximum error over a variety of compression ratios and bit-error rates. To illustrate the utility of the proposed model, we present an unequal power allocation scheme as a simple application of our model. Results show that it gives a PSNR gain of around 6.5 dB at low SNRs, as compared to equal power allocation.
Calibration of Ocean Forcing with satellite Flux Estimates (COFFEE)
NASA Astrophysics Data System (ADS)
Barron, Charlie; Jan, Dastugue; Jackie, May; Rowley, Clark; Smith, Scott; Spence, Peter; Gremes-Cordero, Silvia
2016-04-01
Predicting the evolution of ocean temperature in regional ocean models depends on estimates of surface heat fluxes and upper-ocean processes over the forecast period. Within the COFFEE project (Calibration of Ocean Forcing with satellite Flux Estimates, real-time satellite observations are used to estimate shortwave, longwave, sensible, and latent air-sea heat flux corrections to a background estimate from the prior day's regional or global model forecast. These satellite-corrected fluxes are used to prepare a corrected ocean hindcast and to estimate flux error covariances to project the heat flux corrections for a 3-5 day forecast. In this way, satellite remote sensing is applied to not only inform the initial ocean state but also to mitigate errors in surface heat flux and model representations affecting the distribution of heat in the upper ocean. While traditional assimilation of sea surface temperature (SST) observations re-centers ocean models at the start of each forecast cycle, COFFEE endeavors to appropriately partition and reduce among various surface heat flux and ocean dynamics sources. A suite of experiments in the southern California Current demonstrates a range of COFFEE capabilities, showing the impact on forecast error relative to a baseline three-dimensional variational (3DVAR) assimilation using operational global or regional atmospheric forcing. Experiment cases combine different levels of flux calibration with assimilation alternatives. The cases use the original fluxes, apply full satellite corrections during the forecast period, or extend hindcast corrections into the forecast period. Assimilation is either baseline 3DVAR or standard strong-constraint 4DVAR, with work proceeding to add a 4DVAR expanded to include a weak constraint treatment of the surface flux errors. Covariance of flux errors is estimated from the recent time series of forecast and calibrated flux terms. While the California Current examples are shown, the approach is equally applicable to other regions. These approaches within a 3DVAR application are anticipated to be useful for global and larger regional domains where a full 4DVAR methodology may be cost-prohibitive.
Kang, Le; Chen, Weijie; Petrick, Nicholas A.; Gallas, Brandon D.
2014-01-01
The area under the receiver operating characteristic (ROC) curve (AUC) is often used as a summary index of the diagnostic ability in evaluating biomarkers when the clinical outcome (truth) is binary. When the clinical outcome is right-censored survival time, the C index, motivated as an extension of AUC, has been proposed by Harrell as a measure of concordance between a predictive biomarker and the right-censored survival outcome. In this work, we investigate methods for statistical comparison of two diagnostic or predictive systems, of which they could either be two biomarkers or two fixed algorithms, in terms of their C indices. We adopt a U-statistics based C estimator that is asymptotically normal and develop a nonparametric analytical approach to estimate the variance of the C estimator and the covariance of two C estimators. A z-score test is then constructed to compare the two C indices. We validate our one-shot nonparametric method via simulation studies in terms of the type I error rate and power. We also compare our one-shot method with resampling methods including the jackknife and the bootstrap. Simulation results show that the proposed one-shot method provides almost unbiased variance estimations and has satisfactory type I error control and power. Finally, we illustrate the use of the proposed method with an example from the Framingham Heart Study. PMID:25399736
Damiano, Diane L.; Bulea, Thomas C.
2016-01-01
Individuals with cerebral palsy frequently exhibit crouch gait, a pathological walking pattern characterized by excessive knee flexion. Knowledge of the knee joint moment during crouch gait is necessary for the design and control of assistive devices used for treatment. Our goal was to 1) develop statistical models to estimate knee joint moment extrema and dynamic stiffness during crouch gait, and 2) use the models to estimate the instantaneous joint moment during weight-acceptance. We retrospectively computed knee moments from 10 children with crouch gait and used stepwise linear regression to develop statistical models describing the knee moment features. The models explained at least 90% of the response value variability: peak moment in early (99%) and late (90%) stance, and dynamic stiffness of weight-acceptance flexion (94%) and extension (98%). We estimated knee extensor moment profiles from the predicted dynamic stiffness and instantaneous knee angle. This approach captured the timing and shape of the computed moment (root-mean-squared error: 2.64 Nm); including the predicted early-stance peak moment as a correction factor improved model performance (root-mean-squared error: 1.37 Nm). Our strategy provides a practical, accurate method to estimate the knee moment during crouch gait, and could be used for real-time, adaptive control of robotic orthoses. PMID:27101612
Ensemble Kalman Filter Data Assimilation in a Solar Dynamo Model
NASA Astrophysics Data System (ADS)
Dikpati, M.
2017-12-01
Despite great advancement in solar dynamo models since the first model by Parker in 1955, there remain many challenges in the quest to build a dynamo-based prediction scheme that can accurately predict the solar cycle features. One of these challenges is to implement modern data assimilation techniques, which have been used in the oceanic and atmospheric prediction models. Development of data assimilation in solar models are in the early stages. Recently, observing system simulation experiments (OSSE's) have been performed using Ensemble Kalman Filter data assimilation, in the framework of Data Assimilation Research Testbed of NCAR (NCAR-DART), for estimating parameters in a solar dynamo model. I will demonstrate how the selection of ensemble size, number of observations, amount of error in observations and the choice of assimilation interval play important role in parameter estimation. I will also show how the results of parameter reconstruction improve when accuracy in low-latitude observations is increased, despite large error in polar region data. I will then describe how implementation of data assimilation in a solar dynamo model can bring more accuracy in the prediction of polar fields in North and South hemispheres during the declining phase of cycle 24. Recent evidence indicates that the strength of the Sun's polar field during the cycle minima might be a reliable predictor for the next sunspot cycle's amplitude; therefore it is crucial to accurately predict the polar field strength and pattern.
Selective Weighted Least Squares Method for Fourier Transform Infrared Quantitative Analysis.
Wang, Xin; Li, Yan; Wei, Haoyun; Chen, Xia
2017-06-01
Classical least squares (CLS) regression is a popular multivariate statistical method used frequently for quantitative analysis using Fourier transform infrared (FT-IR) spectrometry. Classical least squares provides the best unbiased estimator for uncorrelated residual errors with zero mean and equal variance. However, the noise in FT-IR spectra, which accounts for a large portion of the residual errors, is heteroscedastic. Thus, if this noise with zero mean dominates in the residual errors, the weighted least squares (WLS) regression method described in this paper is a better estimator than CLS. However, if bias errors, such as the residual baseline error, are significant, WLS may perform worse than CLS. In this paper, we compare the effect of noise and bias error in using CLS and WLS in quantitative analysis. Results indicated that for wavenumbers with low absorbance, the bias error significantly affected the error, such that the performance of CLS is better than that of WLS. However, for wavenumbers with high absorbance, the noise significantly affected the error, and WLS proves to be better than CLS. Thus, we propose a selective weighted least squares (SWLS) regression that processes data with different wavenumbers using either CLS or WLS based on a selection criterion, i.e., lower or higher than an absorbance threshold. The effects of various factors on the optimal threshold value (OTV) for SWLS have been studied through numerical simulations. These studies reported that: (1) the concentration and the analyte type had minimal effect on OTV; and (2) the major factor that influences OTV is the ratio between the bias error and the standard deviation of the noise. The last part of this paper is dedicated to quantitative analysis of methane gas spectra, and methane/toluene mixtures gas spectra as measured using FT-IR spectrometry and CLS, WLS, and SWLS. The standard error of prediction (SEP), bias of prediction (bias), and the residual sum of squares of the errors (RSS) from the three quantitative analyses were compared. In methane gas analysis, SWLS yielded the lowest SEP and RSS among the three methods. In methane/toluene mixture gas analysis, a modification of the SWLS has been presented to tackle the bias error from other components. The SWLS without modification presents the lowest SEP in all cases but not bias and RSS. The modification of SWLS reduced the bias, which showed a lower RSS than CLS, especially for small components.
Tiyip, Tashpolat; Ding, Jianli; Zhang, Dong; Liu, Wei; Wang, Fei; Tashpolat, Nigara
2017-01-01
Effective pretreatment of spectral reflectance is vital to model accuracy in soil parameter estimation. However, the classic integer derivative has some disadvantages, including spectral information loss and the introduction of high-frequency noise. In this paper, the fractional order derivative algorithm was applied to the pretreatment and partial least squares regression (PLSR) was used to assess the clay content of desert soils. Overall, 103 soil samples were collected from the Ebinur Lake basin in the Xinjiang Uighur Autonomous Region of China, and used as data sets for calibration and validation. Following laboratory measurements of spectral reflectance and clay content, the raw spectral reflectance and absorbance data were treated using the fractional derivative order from the 0.0 to the 2.0 order (order interval: 0.2). The ratio of performance to deviation (RPD), determinant coefficients of calibration (Rc2), root mean square errors of calibration (RMSEC), determinant coefficients of prediction (Rp2), and root mean square errors of prediction (RMSEP) were applied to assess the performance of predicting models. The results showed that models built on the fractional derivative order performed better than when using the classic integer derivative. Comparison of the predictive effects of 22 models for estimating clay content, calibrated by PLSR, showed that those models based on the fractional derivative 1.8 order of spectral reflectance (Rc2 = 0.907, RMSEC = 0.425%, Rp2 = 0.916, RMSEP = 0.364%, and RPD = 2.484 ≥ 2.000) and absorbance (Rc2 = 0.888, RMSEC = 0.446%, Rp2 = 0.918, RMSEP = 0.383% and RPD = 2.511 ≥ 2.000) were most effective. Furthermore, they performed well in quantitative estimations of the clay content of soils in the study area. PMID:28934274
NASA Technical Reports Server (NTRS)
Roberts, J. Brent; Clayson, C. A.
2012-01-01
Residual forcing necessary to close the MLTB on seasonal time scales are largest in regions of strongest surface heat flux forcing. Identifying the dominant source of error - surface heat flux error, mixed layer depth estimation, ocean dynamical forcing - remains a challenge in the eastern tropical oceans where ocean processes are very active. Improved sub-surface observations are necessary to better constrain errors. 1. Mixed layer depth evolution is critical to the seasonal evolution of mixed layer temperatures. It determines the inertia of the mixed layer, and scales the sensitivity of the MLTB to errors in surface heat flux and ocean dynamical forcing. This role produces timing impacts for errors in SST prediction. 2. Errors in the MLTB are larger than the historical 10Wm-2 target accuracy. In some regions, a larger accuracy can be tolerated if the goal is to resolve the seasonal SST cycle.
Improved Rainfall Estimates and Predictions for 21st Century Drought Early Warning
NASA Technical Reports Server (NTRS)
Funk, Chris; Peterson, Pete; Shukla, Shraddhanand; Husak, Gregory; Landsfeld, Marty; Hoell, Andrew; Pedreros, Diego; Roberts, J. B.; Robertson, F. R.; Tadesse, Tsegae;
2015-01-01
As temperatures increase, the onset and severity of droughts is likely to become more intense. Improved tools for understanding, monitoring and predicting droughts will be a key component of 21st century climate adaption. The best drought monitoring systems will bring together accurate precipitation estimates with skillful climate and weather forecasts. Such systems combine the predictive power inherent in the current land surface state with the predictive power inherent in low frequency ocean-atmosphere dynamics. To this end, researchers at the Climate Hazards Group (CHG), in collaboration with partners at the USGS and NASA, have developed i) a long (1981-present) quasi-global (50degS-50degN, 180degW-180degE) high resolution (0.05deg) homogenous precipitation data set designed specifically for drought monitoring, ii) tools for understanding and predicting East African boreal spring droughts, and iii) an integrated land surface modeling (LSM) system that combines rainfall observations and predictions to provide effective drought early warning. This talk briefly describes these three components. Component 1: CHIRPS The Climate Hazards group InfraRed Precipitation with Stations (CHIRPS), blends station data with geostationary satellite observations to provide global near real time daily, pentadal and monthly precipitation estimates. We describe the CHIRPS algorithm and compare CHIRPS and other estimates to validation data. The CHIRPS is shown to have high correlation, low systematic errors (bias) and low mean absolute errors. Component 2: Hybrid statistical-dynamic forecast strategies East African droughts have increased in frequency, but become more predictable as Indo- Pacific SST gradients and Walker circulation disruptions intensify. We describe hybrid statistical-dynamic forecast strategies that are far superior to the raw output of coupled forecast models. These forecasts can be translated into probabilities that can be used to generate bootstrapped ensembles describing future climate conditions. Component 3: Assimilation using LSMs CHIRPS rainfall observations (component 1) and bootstrapped forecast ensembles (component 2) can be combined using LSMs to predict soil moisture deficits. We evaluate the skill such a system in East Africa, and demonstrate results for 2013.
NASA Astrophysics Data System (ADS)
Lin, H.; Baldwin, D. C.; Smithwick, E. A. H.
2015-12-01
Predicting root zone (0-100 cm) soil moisture (RZSM) content at a catchment-scale is essential for drought and flood predictions, irrigation planning, weather forecasting, and many other applications. Satellites, such as the NASA Soil Moisture Active Passive (SMAP), can estimate near-surface (0-5 cm) soil moisture content globally at coarse spatial resolutions. We develop a hierarchical Ensemble Kalman Filter (EnKF) data assimilation modeling system to downscale satellite-based near-surface soil moisture and to estimate RZSM content across the Shale Hills Critical Zone Observatory at a 1-m resolution in combination with ground-based soil moisture sensor data. In this example, a simple infiltration model within the EnKF-model has been parameterized for 6 soil-terrain units to forecast daily RZSM content in the catchment from 2009 - 2012 based on AMSRE. LiDAR-derived terrain variables define intra-unit RZSM variability using a novel covariance localization technique. This method also allows the mapping of uncertainty with our RZSM estimates for each time-step. A catchment-wide satellite-to-surface downscaling parameter, which nudges the satellite measurement closer to in situ near-surface data, is also calculated for each time-step. We find significant differences in predicted root zone moisture storage for different terrain units across the experimental time-period. Root mean square error from a cross-validation analysis of RZSM predictions using an independent dataset of catchment-wide in situ Time-Domain Reflectometry (TDR) measurements ranges from 0.060-0.096 cm3 cm-3, and the RZSM predictions are significantly (p < 0.05) correlated with TDR measurements [r = 0.47-0.68]. The predictive skill of this data assimilation system is similar to the Penn State Integrated Hydrologic Modeling (PIHM) system. Uncertainty estimates are significantly (p < 0.05) correlated to cross validation error during wet and dry conditions, but more so in dry summer seasons. Developing an EnKF-model system that downscales satellite data and predicts catchment-scale RZSM content is especially timely, given the anticipated release of SMAP surface moisture data in 2015.
Prediction of resource volumes at untested locations using simple local prediction models
Attanasi, E.D.; Coburn, T.C.; Freeman, P.A.
2006-01-01
This paper shows how local spatial nonparametric prediction models can be applied to estimate volumes of recoverable gas resources at individual undrilled sites, at multiple sites on a regional scale, and to compute confidence bounds for regional volumes based on the distribution of those estimates. An approach that combines cross-validation, the jackknife, and bootstrap procedures is used to accomplish this task. Simulation experiments show that cross-validation can be applied beneficially to select an appropriate prediction model. The cross-validation procedure worked well for a wide range of different states of nature and levels of information. Jackknife procedures are used to compute individual prediction estimation errors at undrilled locations. The jackknife replicates also are used with a bootstrap resampling procedure to compute confidence bounds for the total volume. The method was applied to data (partitioned into a training set and target set) from the Devonian Antrim Shale continuous-type gas play in the Michigan Basin in Otsego County, Michigan. The analysis showed that the model estimate of total recoverable volumes at prediction sites is within 4 percent of the total observed volume. The model predictions also provide frequency distributions of the cell volumes at the production unit scale. Such distributions are the basis for subsequent economic analyses. ?? Springer Science+Business Media, LLC 2007.