NASA Astrophysics Data System (ADS)
Itoh, Masato; Hagimori, Yuki; Nonaka, Kenichiro; Sekiguchi, Kazuma
2016-09-01
In this study, we apply a hierarchical model predictive control to omni-directional mobile vehicle, and improve the tracking performance. We deal with an independent four-wheel driving/steering vehicle (IFWDS) equipped with four coaxial steering mechanisms (CSM). The coaxial steering mechanism is a special one composed of two steering joints on the same axis. In our previous study with respect to IFWDS with ideal steering, we proposed a model predictive tracking control. However, this method did not consider constraints of the coaxial steering mechanism which causes delay of steering. We also proposed a model predictive steering control considering constraints of this mechanism. In this study, we propose a hierarchical system combining above two control methods for IFWDS. An upper controller, which deals with vehicle kinematics, runs a model predictive tracking control, and a lower controller, which considers constraints of coaxial steering mechanism, runs a model predictive steering control which tracks the predicted steering angle optimized an upper controller. We verify the superiority of this method by comparing this method with the previous method.
Choosing the appropriate forecasting model for predictive parameter control.
Aleti, Aldeida; Moser, Irene; Meedeniya, Indika; Grunske, Lars
2014-01-01
All commonly used stochastic optimisation algorithms have to be parameterised to perform effectively. Adaptive parameter control (APC) is an effective method used for this purpose. APC repeatedly adjusts parameter values during the optimisation process for optimal algorithm performance. The assignment of parameter values for a given iteration is based on previously measured performance. In recent research, time series prediction has been proposed as a method of projecting the probabilities to use for parameter value selection. In this work, we examine the suitability of a variety of prediction methods for the projection of future parameter performance based on previous data. All considered prediction methods have assumptions the time series data has to conform to for the prediction method to provide accurate projections. Looking specifically at parameters of evolutionary algorithms (EAs), we find that all standard EA parameters with the exception of population size conform largely to the assumptions made by the considered prediction methods. Evaluating the performance of these prediction methods, we find that linear regression provides the best results by a very small and statistically insignificant margin. Regardless of the prediction method, predictive parameter control outperforms state of the art parameter control methods when the performance data adheres to the assumptions made by the prediction method. When a parameter's performance data does not adhere to the assumptions made by the forecasting method, the use of prediction does not have a notable adverse impact on the algorithm's performance.
An improved predictive functional control method with application to PMSM systems
NASA Astrophysics Data System (ADS)
Li, Shihua; Liu, Huixian; Fu, Wenshu
2017-01-01
In common design of prediction model-based control method, usually disturbances are not considered in the prediction model as well as the control design. For the control systems with large amplitude or strong disturbances, it is difficult to precisely predict the future outputs according to the conventional prediction model, and thus the desired optimal closed-loop performance will be degraded to some extent. To this end, an improved predictive functional control (PFC) method is developed in this paper by embedding disturbance information into the system model. Here, a composite prediction model is thus obtained by embedding the estimated value of disturbances, where disturbance observer (DOB) is employed to estimate the lumped disturbances. So the influence of disturbances on system is taken into account in optimisation procedure. Finally, considering the speed control problem for permanent magnet synchronous motor (PMSM) servo system, a control scheme based on the improved PFC method is designed to ensure an optimal closed-loop performance even in the presence of disturbances. Simulation and experimental results based on a hardware platform are provided to confirm the effectiveness of the proposed algorithm.
NASA Astrophysics Data System (ADS)
Jin, N.; Yang, F.; Shang, S. Y.; Tao, T.; Liu, J. S.
2016-08-01
According to the limitations of the LVRT technology of traditional photovoltaic inverter existed, this paper proposes a low voltage ride through (LVRT) control method based on model current predictive control (MCPC). This method can effectively improve the photovoltaic inverter output characteristics and response speed. The MCPC method of photovoltaic grid-connected inverter designed, the sum of the absolute value of the predictive current and the given current error is adopted as the cost function with the model predictive control method. According to the MCPC, the optimal space voltage vector is selected. Photovoltaic inverter has achieved automatically switches of priority active or reactive power control of two control modes according to the different operating states, which effectively improve the inverter capability of LVRT. The simulation and experimental results proves that the proposed method is correct and effective.
Neural network based automatic limit prediction and avoidance system and method
NASA Technical Reports Server (NTRS)
Calise, Anthony J. (Inventor); Prasad, Jonnalagadda V. R. (Inventor); Horn, Joseph F. (Inventor)
2001-01-01
A method for performance envelope boundary cueing for a vehicle control system comprises the steps of formulating a prediction system for a neural network and training the neural network to predict values of limited parameters as a function of current control positions and current vehicle operating conditions. The method further comprises the steps of applying the neural network to the control system of the vehicle, where the vehicle has capability for measuring current control positions and current vehicle operating conditions. The neural network generates a map of current control positions and vehicle operating conditions versus the limited parameters in a pre-determined vehicle operating condition. The method estimates critical control deflections from the current control positions required to drive the vehicle to a performance envelope boundary. Finally, the method comprises the steps of communicating the critical control deflection to the vehicle control system; and driving the vehicle control system to provide a tactile cue to an operator of the vehicle as the control positions approach the critical control deflections.
Effect of accuracy of wind power prediction on power system operator
NASA Technical Reports Server (NTRS)
Schlueter, R. A.; Sigari, G.; Costi, T.
1985-01-01
This research project proposed a modified unit commitment that schedules connection and disconnection of generating units in response to load. A modified generation control is also proposed that controls steam units under automatic generation control, fast responding diesels, gas turbines and hydro units under a feedforward control, and wind turbine array output under a closed loop array control. This modified generation control and unit commitment require prediction of trend wind power variation one hour ahead and the prediction of error in this trend wind power prediction one half hour ahead. An improved meter for predicting trend wind speed variation is developed. Methods for accurately simulating the wind array power from a limited number of wind speed prediction records was developed. Finally, two methods for predicting the error in the trend wind power prediction were developed. This research provides a foundation for testing and evaluating the modified unit commitment and generation control that was developed to maintain operating reliability at a greatly reduced overall production cost for utilities with wind generation capacity.
Power maximization of a point absorber wave energy converter using improved model predictive control
NASA Astrophysics Data System (ADS)
Milani, Farideh; Moghaddam, Reihaneh Kardehi
2017-08-01
This paper considers controlling and maximizing the absorbed power of wave energy converters for irregular waves. With respect to physical constraints of the system, a model predictive control is applied. Irregular waves' behavior is predicted by Kalman filter method. Owing to the great influence of controller parameters on the absorbed power, these parameters are optimized by imperialist competitive algorithm. The results illustrate the method's efficiency in maximizing the extracted power in the presence of unknown excitation force which should be predicted by Kalman filter.
Generalized Predictive and Neural Generalized Predictive Control of Aerospace Systems
NASA Technical Reports Server (NTRS)
Kelkar, Atul G.
2000-01-01
The research work presented in this thesis addresses the problem of robust control of uncertain linear and nonlinear systems using Neural network-based Generalized Predictive Control (NGPC) methodology. A brief overview of predictive control and its comparison with Linear Quadratic (LQ) control is given to emphasize advantages and drawbacks of predictive control methods. It is shown that the Generalized Predictive Control (GPC) methodology overcomes the drawbacks associated with traditional LQ control as well as conventional predictive control methods. It is shown that in spite of the model-based nature of GPC it has good robustness properties being special case of receding horizon control. The conditions for choosing tuning parameters for GPC to ensure closed-loop stability are derived. A neural network-based GPC architecture is proposed for the control of linear and nonlinear uncertain systems. A methodology to account for parametric uncertainty in the system is proposed using on-line training capability of multi-layer neural network. Several simulation examples and results from real-time experiments are given to demonstrate the effectiveness of the proposed methodology.
Simulation analysis of adaptive cruise prediction control
NASA Astrophysics Data System (ADS)
Zhang, Li; Cui, Sheng Min
2017-09-01
Predictive control is suitable for multi-variable and multi-constraint system control.In order to discuss the effect of predictive control on the vehicle longitudinal motion, this paper establishes the expected spacing model by combining variable pitch spacing and the of safety distance strategy. The model predictive control theory and the optimization method based on secondary planning are designed to obtain and track the best expected acceleration trajectory quickly. Simulation models are established including predictive and adaptive fuzzy control. Simulation results show that predictive control can realize the basic function of the system while ensuring the safety. The application of predictive and fuzzy adaptive algorithm in cruise condition indicates that the predictive control effect is better.
USDA-ARS?s Scientific Manuscript database
Water resources are limited in many agricultural areas. One method to improve the effective use of water is to improve delivery service from irrigation canals. This can be done by applying automatic control methods that control the gates in an irrigation canal. The model predictive control MPC is ...
Recursive Deadbeat Controller Design
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Phan, Minh Q.
1997-01-01
This paper presents a recursive algorithm for a deadbeat predictive controller design. The method combines together the concepts of system identification and deadbeat controller designs. It starts with the multi-step output prediction equation and derives the control force in terms of past input and output time histories. The formulation thus derived satisfies simultaneously system identification and deadbeat controller design requirements. As soon as the coefficient matrices are identified satisfying the output prediction equation, no further work is required to compute the deadbeat control gain matrices. The method can be implemented recursively just as any typical recursive system identification techniques.
Method and device for predicting wavelength dependent radiation influences in thermal systems
Kee, Robert J.; Ting, Aili
1996-01-01
A method and apparatus for predicting the spectral (wavelength-dependent) radiation transport in thermal systems including interaction by the radiation with partially transmitting medium. The predicted model of the thermal system is used to design and control the thermal system. The predictions are well suited to be implemented in design and control of rapid thermal processing (RTP) reactors. The method involves generating a spectral thermal radiation transport model of an RTP reactor. The method also involves specifying a desired wafer time dependent temperature profile. The method further involves calculating an inverse of the generated model using the desired wafer time dependent temperature to determine heating element parameters required to produce the desired profile. The method also involves controlling the heating elements of the RTP reactor in accordance with the heating element parameters to heat the wafer in accordance with the desired profile.
Liu, Xudong; Zhang, Chenghui; Li, Ke; Zhang, Qi
2017-11-01
This paper addresses the current control of permanent magnet synchronous motor (PMSM) for electric drives with model uncertainties and disturbances. A generalized predictive current control method combined with sliding mode disturbance compensation is proposed to satisfy the requirement of fast response and strong robustness. Firstly, according to the generalized predictive control (GPC) theory based on the continuous time model, a predictive current control method is presented without considering the disturbance, which is convenient to be realized in the digital controller. In fact, it's difficult to derive the exact motor model and parameters in the practical system. Thus, a sliding mode disturbance compensation controller is studied to improve the adaptiveness and robustness of the control system. The designed controller attempts to combine the merits of both predictive control and sliding mode control, meanwhile, the controller parameters are easy to be adjusted. Lastly, the proposed controller is tested on an interior PMSM by simulation and experiment, and the results indicate that it has good performance in both current tracking and disturbance rejection. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Improved model predictive control of resistive wall modes by error field estimator in EXTRAP T2R
NASA Astrophysics Data System (ADS)
Setiadi, A. C.; Brunsell, P. R.; Frassinetti, L.
2016-12-01
Many implementations of a model-based approach for toroidal plasma have shown better control performance compared to the conventional type of feedback controller. One prerequisite of model-based control is the availability of a control oriented model. This model can be obtained empirically through a systematic procedure called system identification. Such a model is used in this work to design a model predictive controller to stabilize multiple resistive wall modes in EXTRAP T2R reversed-field pinch. Model predictive control is an advanced control method that can optimize the future behaviour of a system. Furthermore, this paper will discuss an additional use of the empirical model which is to estimate the error field in EXTRAP T2R. Two potential methods are discussed that can estimate the error field. The error field estimator is then combined with the model predictive control and yields better radial magnetic field suppression.
NASA Astrophysics Data System (ADS)
Ji, Yu; Sheng, Wanxing; Jin, Wei; Wu, Ming; Liu, Haitao; Chen, Feng
2018-02-01
A coordinated optimal control method of active and reactive power of distribution network with distributed PV cluster based on model predictive control is proposed in this paper. The method divides the control process into long-time scale optimal control and short-time scale optimal control with multi-step optimization. The models are transformed into a second-order cone programming problem due to the non-convex and nonlinear of the optimal models which are hard to be solved. An improved IEEE 33-bus distribution network system is used to analyse the feasibility and the effectiveness of the proposed control method
Predictive Control of Speededness in Adaptive Testing
ERIC Educational Resources Information Center
van der Linden, Wim J.
2009-01-01
An adaptive testing method is presented that controls the speededness of a test using predictions of the test takers' response times on the candidate items in the pool. Two different types of predictions are investigated: posterior predictions given the actual response times on the items already administered and posterior predictions that use the…
A Two-Time Scale Decentralized Model Predictive Controller Based on Input and Output Model
Niu, Jian; Zhao, Jun; Xu, Zuhua; Qian, Jixin
2009-01-01
A decentralized model predictive controller applicable for some systems which exhibit different dynamic characteristics in different channels was presented in this paper. These systems can be regarded as combinations of a fast model and a slow model, the response speeds of which are in two-time scale. Because most practical models used for control are obtained in the form of transfer function matrix by plant tests, a singular perturbation method was firstly used to separate the original transfer function matrix into two models in two-time scale. Then a decentralized model predictive controller was designed based on the two models derived from the original system. And the stability of the control method was proved. Simulations showed that the method was effective. PMID:19834542
Wu, Xiao; Shen, Jiong; Li, Yiguo; Lee, Kwang Y
2014-05-01
This paper develops a novel data-driven fuzzy modeling strategy and predictive controller for boiler-turbine unit using fuzzy clustering and subspace identification (SID) methods. To deal with the nonlinear behavior of boiler-turbine unit, fuzzy clustering is used to provide an appropriate division of the operation region and develop the structure of the fuzzy model. Then by combining the input data with the corresponding fuzzy membership functions, the SID method is extended to extract the local state-space model parameters. Owing to the advantages of the both methods, the resulting fuzzy model can represent the boiler-turbine unit very closely, and a fuzzy model predictive controller is designed based on this model. As an alternative approach, a direct data-driven fuzzy predictive control is also developed following the same clustering and subspace methods, where intermediate subspace matrices developed during the identification procedure are utilized directly as the predictor. Simulation results show the advantages and effectiveness of the proposed approach. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Predicting Loss-of-Control Boundaries Toward a Piloting Aid
NASA Technical Reports Server (NTRS)
Barlow, Jonathan; Stepanyan, Vahram; Krishnakumar, Kalmanje
2012-01-01
This work presents an approach to predicting loss-of-control with the goal of providing the pilot a decision aid focused on maintaining the pilot's control action within predicted loss-of-control boundaries. The predictive architecture combines quantitative loss-of-control boundaries, a data-based predictive control boundary estimation algorithm and an adaptive prediction method to estimate Markov model parameters in real-time. The data-based loss-of-control boundary estimation algorithm estimates the boundary of a safe set of control inputs that will keep the aircraft within the loss-of-control boundaries for a specified time horizon. The adaptive prediction model generates estimates of the system Markov Parameters, which are used by the data-based loss-of-control boundary estimation algorithm. The combined algorithm is applied to a nonlinear generic transport aircraft to illustrate the features of the architecture.
Model Predictive Control of LCL Three-level Photovoltaic Grid-connected Inverter
NASA Astrophysics Data System (ADS)
Liang, Cheng; Tian, Engang; Pang, Baobing; Li, Juan; Yang, Yang
2018-05-01
In this paper, neutral point clamped three-level inverter circuit is analyzed to establish a mathematical model of the three-level inverter in the αβ coordinate system. The causes and harms of the midpoint potential imbalance problem are described. The paper use the method of model predictive control to control the entire inverter circuit[1]. The simulation model of the inverter system is built in Matlab/Simulink software. It is convenient to control the grid-connected current, suppress the unbalance of the midpoint potential and reduce the switching frequency by changing the weight coefficient in the cost function. The superiority of the model predictive control in the control method of the inverter system is verified.
Applying Sigma Metrics to Reduce Outliers.
Litten, Joseph
2017-03-01
Sigma metrics can be used to predict assay quality, allowing easy comparison of instrument quality and predicting which tests will require minimal quality control (QC) rules to monitor the performance of the method. A Six Sigma QC program can result in fewer controls and fewer QC failures for methods with a sigma metric of 5 or better. The higher the number of methods with a sigma metric of 5 or better, the lower the costs for reagents, supplies, and control material required to monitor the performance of the methods. Copyright © 2016 Elsevier Inc. All rights reserved.
Stability theory applications to laminar-flow control
NASA Technical Reports Server (NTRS)
Malik, Mujeeb R.
1987-01-01
In order to design Laminar Flow Control (LFC) configurations, reliable methods are needed for boundary-layer transition predictions. Among the available methods, there are correlations based upon R sub e, shape factors, Goertler number and crossflow Reynolds number. The most advanced transition prediction method is based upon linear stability theory in the form of the e sup N method which has proven to be successful in predicting transition in two- and three-dimensional boundary layers. When transition occurs in a low disturbance environment, the e sup N method provides a viable design tool for transition prediction and LFC in both 2-D and 3-D subsonic/supersonic flows. This is true for transition dominated by either TS, crossflow, or Goertler instability. If Goertler/TS or crossflow/TS interaction is present, the e sup N will fail to predict transition. However, there is no evidence of such interaction at low amplitudes of Goertler and crossflow vortices.
NASA Astrophysics Data System (ADS)
Zhang, Jia-shi; Yang, Xi-xiang
2017-11-01
The stratospheric airship has the characteristics of large inertia, long time delay and large disturbance of wind field , so the trajectory control is very difficult .Build the lateral three degrees of freedom dynamic model which consider the wind interference , the dynamics equation is linearized by the small perturbation theory, propose a trajectory control method Combine with the sliding mode control and prediction, design the trajectory controller , takes the HAA airship as the reference to carry out simulation analysis. Results show that the improved sliding mode control with front-feedback method not only can solve well control problems of airship trajectory in wind field, but also can effectively improve the control accuracy of the traditional sliding mode control method, solved problems that using the traditional sliding mode control to control. It provides a useful reference for dynamic modeling and trajectory control of stratospheric airship.
On Application of Model Predictive Control to Power Converter with Switching
NASA Astrophysics Data System (ADS)
Zanma, Tadanao; Fukuta, Junichi; Doki, Shinji; Ishida, Muneaki; Okuma, Shigeru; Matsumoto, Takashi; Nishimori, Eiji
This paper concerns a DC-DC converter control. In DC-DC converters, there exist both continuous components such as inductance, conductance and resistance and discrete ones, IGBT and MOSFET as semiconductor switching elements. Such a system can be regarded as a hybrid dynamical system. Thus, this paper presents a dc-dc control technique based on the model predictive control. Specifically, a case in which the load of the dc-dc converter changes from active to sleep is considered. In the case, a control method which makes the output voltage follow to the reference quickly in transition, and the switching frequency be constant in steady state. In addition, in applying the model predictive control to power electronics circuits, the switching characteristic of the device and the restriction condition for protection are also considered. The effectiveness of the proposed method is illustrated by comparing a conventional method through some simulation results.
NASA Astrophysics Data System (ADS)
Sun, Chao; Zhang, Chunran; Gu, Xinfeng; Liu, Bin
2017-10-01
Constraints of the optimization objective are often unable to be met when predictive control is applied to industrial production process. Then, online predictive controller will not find a feasible solution or a global optimal solution. To solve this problem, based on Back Propagation-Auto Regressive with exogenous inputs (BP-ARX) combined control model, nonlinear programming method is used to discuss the feasibility of constrained predictive control, feasibility decision theorem of the optimization objective is proposed, and the solution method of soft constraint slack variables is given when the optimization objective is not feasible. Based on this, for the interval control requirements of the controlled variables, the slack variables that have been solved are introduced, the adaptive weighted interval predictive control algorithm is proposed, achieving adaptive regulation of the optimization objective and automatically adjust of the infeasible interval range, expanding the scope of the feasible region, and ensuring the feasibility of the interval optimization objective. Finally, feasibility and effectiveness of the algorithm is validated through the simulation comparative experiments.
NASA Technical Reports Server (NTRS)
Young, J. W.; Schy, A. A.; Johnson, K. G.
1977-01-01
An analytical method has been developed for predicting critical control inputs for which nonlinear rotational coupling may cause sudden jumps in aircraft response. The analysis includes the effect of aerodynamics which are nonlinear in angle of attack. The method involves the simultaneous solution of two polynomials in roll rate, whose coefficients are functions of angle of attack and the control inputs. Results obtained using this procedure are compared with calculated time histories to verify the validity of the method for predicting jump-like instabilities.
NASA Astrophysics Data System (ADS)
Li, Guang
2017-01-01
This paper presents a fast constrained optimization approach, which is tailored for nonlinear model predictive control of wave energy converters (WEC). The advantage of this approach relies on its exploitation of the differential flatness of the WEC model. This can reduce the dimension of the resulting nonlinear programming problem (NLP) derived from the continuous constrained optimal control of WEC using pseudospectral method. The alleviation of computational burden using this approach helps to promote an economic implementation of nonlinear model predictive control strategy for WEC control problems. The method is applicable to nonlinear WEC models, nonconvex objective functions and nonlinear constraints, which are commonly encountered in WEC control problems. Numerical simulations demonstrate the efficacy of this approach.
NASA Astrophysics Data System (ADS)
Bürger, Adrian; Sawant, Parantapa; Bohlayer, Markus; Altmann-Dieses, Angelika; Braun, Marco; Diehl, Moritz
2017-10-01
Within this work, the benefits of using predictive control methods for the operation of Adsorption Cooling Machines (ACMs) are shown on a simulation study. Since the internal control decisions of series-manufactured ACMs often cannot be influenced, the work focuses on optimized scheduling of an ACM considering its internal functioning as well as forecasts for load and driving energy occurrence. For illustration, an assumed solar thermal climate system is introduced and a system model suitable for use within gradient-based optimization methods is developed. The results of a system simulation using a conventional scheme for ACM scheduling are compared to the results of a predictive, optimization-based scheduling approach for the same exemplary scenario of load and driving energy occurrence. The benefits of the latter approach are shown and future actions for application of these methods for system control are addressed.
Automatic Train Operation Using Autonomic Prediction of Train Runs
NASA Astrophysics Data System (ADS)
Asuka, Masashi; Kataoka, Kenji; Komaya, Kiyotoshi; Nishida, Syogo
In this paper, we present an automatic train control method adaptable to disturbed train traffic conditions. The proposed method presumes transmission of detected time of a home track clearance to trains approaching to the station by employing equipment of Digital ATC (Automatic Train Control). Using the information, each train controls its acceleration by the method that consists of two approaches. First, by setting a designated restricted speed, the train controls its running time to arrive at the next station in accordance with predicted delay. Second, the train predicts the time at which it will reach the current braking pattern generated by Digital ATC, along with the time when the braking pattern transits ahead. By comparing them, the train correctly chooses the coasting drive mode in advance to avoid deceleration due to the current braking pattern. We evaluated the effectiveness of the proposed method regarding driving conditions, energy consumption and reduction of delays by simulation.
NASA Astrophysics Data System (ADS)
Qiu, Peng; D'Souza, Warren D.; McAvoy, Thomas J.; Liu, K. J. Ray
2007-09-01
Tumor motion induced by respiration presents a challenge to the reliable delivery of conformal radiation treatments. Real-time motion compensation represents the technologically most challenging clinical solution but has the potential to overcome the limitations of existing methods. The performance of a real-time couch-based motion compensation system is mainly dependent on two aspects: the ability to infer the internal anatomical position and the performance of the feedback control system. In this paper, we propose two novel methods for the two aspects respectively, and then combine the proposed methods into one system. To accurately estimate the internal tumor position, we present partial-least squares (PLS) regression to predict the position of the diaphragm using skin-based motion surrogates. Four radio-opaque markers were placed on the abdomen of patients who underwent fluoroscopic imaging of the diaphragm. The coordinates of the markers served as input variables and the position of the diaphragm served as the output variable. PLS resulted in lower prediction errors compared with standard multiple linear regression (MLR). The performance of the feedback control system depends on the system dynamics and dead time (delay between the initiation and execution of the control action). While the dynamics of the system can be inverted in a feedback control system, the dead time cannot be inverted. To overcome the dead time of the system, we propose a predictive feedback control system by incorporating forward prediction using least-mean-square (LMS) and recursive least square (RLS) filtering into the couch-based control system. Motion data were obtained using a skin-based marker. The proposed predictive feedback control system was benchmarked against pure feedback control (no forward prediction) and resulted in a significant performance gain. Finally, we combined the PLS inference model and the predictive feedback control to evaluate the overall performance of the feedback control system. Our results show that, with the tumor motion unknown but inferred by skin-based markers through the PLS model, the predictive feedback control system was able to effectively compensate intra-fraction motion.
Nonprincipal plane scattering of flat plates and pattern control of horn antennas
NASA Technical Reports Server (NTRS)
Balanis, Constantine A.; Polka, Lesley A.; Liu, Kefeng
1989-01-01
Using the geometrical theory of diffraction, the traditional method of high frequency scattering analysis, the prediction of the radar cross section of a perfectly conducting, flat, rectangular plate is limited to principal planes. Part A of this report predicts the radar cross section in nonprincipal planes using the method of equivalent currents. This technique is based on an asymptotic end-point reduction of the surface radiation integrals for an infinite wedge and enables nonprincipal plane prediction. The predicted radar cross sections for both horizontal and vertical polarizations are compared to moment method results and experimental data from Arizona State University's anechoic chamber. In part B, a variational calculus approach to the pattern control of the horn antenna is outlined. The approach starts with the optimization of the aperture field distribution so that the control of the radiation pattern in a range of directions can be realized. A control functional is thus formulated. Next, a spectral analysis method is introduced to solve for the eigenfunctions from the extremal condition of the formulated functional. Solutions to the optimized aperture field distribution are then obtained.
Control surface hinge moment prediction using computational fluid dynamics
NASA Astrophysics Data System (ADS)
Simpson, Christopher David
The following research determines the feasibility of predicting control surface hinge moments using various computational methods. A detailed analysis is conducted using a 2D GA(W)-1 airfoil with a 20% plain flap. Simple hinge moment prediction methods are tested, including empirical Datcom relations and XFOIL. Steady-state and time-accurate turbulent, viscous, Navier-Stokes solutions are computed using Fun3D. Hinge moment coefficients are computed. Mesh construction techniques are discussed. An adjoint-based mesh adaptation case is also evaluated. An NACA 0012 45-degree swept horizontal stabilizer with a 25% elevator is also evaluated using Fun3D. Results are compared with experimental wind-tunnel data obtained from references. Finally, the costs of various solution methods are estimated. Results indicate that while a steady-state Navier-Stokes solution can accurately predict control surface hinge moments for small angles of attack and deflection angles, a time-accurate solution is necessary to accurately predict hinge moments in the presence of flow separation. The ability to capture the unsteady vortex shedding behavior present in moderate to large control surface deflections is found to be critical to hinge moment prediction accuracy. Adjoint-based mesh adaptation is shown to give hinge moment predictions similar to a globally-refined mesh for a steady-state 2D simulation.
Intelligent monitoring and control of semiconductor manufacturing equipment
NASA Technical Reports Server (NTRS)
Murdock, Janet L.; Hayes-Roth, Barbara
1991-01-01
The use of AI methods to monitor and control semiconductor fabrication in a state-of-the-art manufacturing environment called the Rapid Thermal Multiprocessor is described. Semiconductor fabrication involves many complex processing steps with limited opportunities to measure process and product properties. By applying additional process and product knowledge to that limited data, AI methods augment classical control methods by detecting abnormalities and trends, predicting failures, diagnosing, planning corrective action sequences, explaining diagnoses or predictions, and reacting to anomalous conditions that classical control systems typically would not correct. Research methodology and issues are discussed, and two diagnosis scenarios are examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adigun, Babatunde John; Fensin, Michael Lorne; Galloway, Jack D.
Our burnup study examined the effect of a predicted critical control rod position on the nuclide predictability of several axial and radial locations within a 4×4 graphite moderated gas cooled reactor fuel cluster geometry. To achieve this, a control rod position estimator (CRPE) tool was developed within the framework of the linkage code Monteburns between the transport code MCNP and depletion code CINDER90, and four methodologies were proposed within the tool for maintaining criticality. Two of the proposed methods used an inverse multiplication approach - where the amount of fissile material in a set configuration is slowly altered until criticalitymore » is attained - in estimating the critical control rod position. Another method carried out several MCNP criticality calculations at different control rod positions, then used a linear fit to estimate the critical rod position. The final method used a second-order polynomial fit of several MCNP criticality calculations at different control rod positions to guess the critical rod position. The results showed that consistency in prediction of power densities as well as uranium and plutonium isotopics was mutual among methods within the CRPE tool that predicted critical position consistently well. Finall, while the CRPE tool is currently limited to manipulating a single control rod, future work could be geared toward implementing additional criticality search methodologies along with additional features.« less
Wang, Tong; Gao, Huijun; Qiu, Jianbin
2016-02-01
This paper investigates the multirate networked industrial process control problem in double-layer architecture. First, the output tracking problem for sampled-data nonlinear plant at device layer with sampling period T(d) is investigated using adaptive neural network (NN) control, and it is shown that the outputs of subsystems at device layer can track the decomposed setpoints. Then, the outputs and inputs of the device layer subsystems are sampled with sampling period T(u) at operation layer to form the index prediction, which is used to predict the overall performance index at lower frequency. Radial basis function NN is utilized as the prediction function due to its approximation ability. Then, considering the dynamics of the overall closed-loop system, nonlinear model predictive control method is proposed to guarantee the system stability and compensate the network-induced delays and packet dropouts. Finally, a continuous stirred tank reactor system is given in the simulation part to demonstrate the effectiveness of the proposed method.
Hybrid robust predictive optimization method of power system dispatch
Chandra, Ramu Sharat [Niskayuna, NY; Liu, Yan [Ballston Lake, NY; Bose, Sumit [Niskayuna, NY; de Bedout, Juan Manuel [West Glenville, NY
2011-08-02
A method of power system dispatch control solves power system dispatch problems by integrating a larger variety of generation, load and storage assets, including without limitation, combined heat and power (CHP) units, renewable generation with forecasting, controllable loads, electric, thermal and water energy storage. The method employs a predictive algorithm to dynamically schedule different assets in order to achieve global optimization and maintain the system normal operation.
Dubay, Rickey; Hassan, Marwan; Li, Chunying; Charest, Meaghan
2014-09-01
This paper presents a unique approach for active vibration control of a one-link flexible manipulator. The method combines a finite element model of the manipulator and an advanced model predictive controller to suppress vibration at its tip. This hybrid methodology improves significantly over the standard application of a predictive controller for vibration control. The finite element model used in place of standard modelling in the control algorithm provides a more accurate prediction of dynamic behavior, resulting in enhanced control. Closed loop control experiments were performed using the flexible manipulator, instrumented with strain gauges and piezoelectric actuators. In all instances, experimental and simulation results demonstrate that the finite element based predictive controller provides improved active vibration suppression in comparison with using a standard predictive control strategy. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Comparison of predictive control methods for high consumption industrial furnace.
Stojanovski, Goran; Stankovski, Mile
2013-01-01
We describe several predictive control approaches for high consumption industrial furnace control. These furnaces are major consumers in production industries, and reducing their fuel consumption and optimizing the quality of the products is one of the most important engineer tasks. In order to demonstrate the benefits from implementation of the advanced predictive control algorithms, we have compared several major criteria for furnace control. On the basis of the analysis, some important conclusions have been drawn.
Validation of engineering methods for predicting hypersonic vehicle controls forces and moments
NASA Technical Reports Server (NTRS)
Maughmer, M.; Straussfogel, D.; Long, L.; Ozoroski, L.
1991-01-01
This work examines the ability of the aerodynamic analysis methods contained in an industry standard conceptual design code, the Aerodynamic Preliminary Analysis System (APAS II), to estimate the forces and moments generated through control surface deflections from low subsonic to high hypersonic speeds. Predicted control forces and moments generated by various control effectors are compared with previously published wind-tunnel and flight-test data for three vehicles: the North American X-15, a hypersonic research airplane concept, and the Space Shuttle Orbiter. Qualitative summaries of the results are given for each force and moment coefficient and each control derivative in the various speed ranges. Results show that all predictions of longitudinal stability and control derivatives are acceptable for use at the conceptual design stage.
Control, Filtering and Prediction for Phased Arrays in Directed Energy Systems
2016-04-30
adaptive optics. 15. SUBJECT TERMS control, filtering, prediction, system identification, adaptive optics, laser beam pointing, target tracking, phase... laser beam control; furthermore, wavefront sensors are plagued by the difficulty of maintaining the required alignment and focusing in dynamic mission...developed new methods for filtering, prediction and system identification in adaptive optics for high energy laser systems including phased arrays. The
Prediction of forces and moments for hypersonic flight vehicle control effectors
NASA Technical Reports Server (NTRS)
Maughmer, Mark D.; Long, Lyle N.; Pagano, Peter J.
1991-01-01
Developing methods of predicting flight control forces and moments for hypersonic vehicles, included a preliminary assessment of subsonic/supersonic panel methods and hypersonic local flow inclination methods for such predictions. While these findings clearly indicate the usefulness of such methods for conceptual design activities, deficiencies exist in some areas. Thus, a second phase of research was proposed in which a better understanding is sought for the reasons of the successes and failures of the methods considered, particularly for the cases at hypersonic Mach numbers. To obtain this additional understanding, a more careful study of the results obtained relative to the methods used was undertaken. In addition, where appropriate and necessary, a more complete modeling of the flow was performed using well proven methods of computational fluid dynamics. As a result, assessments will be made which are more quantitative than those of phase 1 regarding the uncertainty involved in the prediction of the aerodynamic derivatives. In addition, with improved understanding, it is anticipated that improvements resulting in better accuracy will be made to the simple force and moment prediction.
Adigun, Babatunde John; Fensin, Michael Lorne; Galloway, Jack D.; ...
2016-10-01
Our burnup study examined the effect of a predicted critical control rod position on the nuclide predictability of several axial and radial locations within a 4×4 graphite moderated gas cooled reactor fuel cluster geometry. To achieve this, a control rod position estimator (CRPE) tool was developed within the framework of the linkage code Monteburns between the transport code MCNP and depletion code CINDER90, and four methodologies were proposed within the tool for maintaining criticality. Two of the proposed methods used an inverse multiplication approach - where the amount of fissile material in a set configuration is slowly altered until criticalitymore » is attained - in estimating the critical control rod position. Another method carried out several MCNP criticality calculations at different control rod positions, then used a linear fit to estimate the critical rod position. The final method used a second-order polynomial fit of several MCNP criticality calculations at different control rod positions to guess the critical rod position. The results showed that consistency in prediction of power densities as well as uranium and plutonium isotopics was mutual among methods within the CRPE tool that predicted critical position consistently well. Finall, while the CRPE tool is currently limited to manipulating a single control rod, future work could be geared toward implementing additional criticality search methodologies along with additional features.« less
Water hammer prediction and control: the Green's function method
NASA Astrophysics Data System (ADS)
Xuan, Li-Jun; Mao, Feng; Wu, Jie-Zhi
2012-04-01
By Green's function method we show that the water hammer (WH) can be analytically predicted for both laminar and turbulent flows (for the latter, with an eddy viscosity depending solely on the space coordinates), and thus its hazardous effect can be rationally controlled and minimized. To this end, we generalize a laminar water hammer equation of Wang et al. (J. Hydrodynamics, B2, 51, 1995) to include arbitrary initial condition and variable viscosity, and obtain its solution by Green's function method. The predicted characteristic WH behaviors by the solutions are in excellent agreement with both direct numerical simulation of the original governing equations and, by adjusting the eddy viscosity coefficient, experimentally measured turbulent flow data. Optimal WH control principle is thereby constructed and demonstrated.
NASA Technical Reports Server (NTRS)
Maughmer, Mark D.; Ozoroski, L.; Ozoroski, T.; Straussfogel, D.
1990-01-01
Many types of hypersonic aircraft configurations are currently being studied for feasibility of future development. Since the control of the hypersonic configurations throughout the speed range has a major impact on acceptable designs, it must be considered in the conceptual design stage. The ability of the aerodynamic analysis methods contained in an industry standard conceptual design system, APAS II, to estimate the forces and moments generated through control surface deflections from low subsonic to high hypersonic speeds is considered. Predicted control forces and moments generated by various control effectors are compared with previously published wind tunnel and flight test data for three configurations: the North American X-15, the Space Shuttle Orbiter, and a hypersonic research airplane concept. Qualitative summaries of the results are given for each longitudinal force and moment and each control derivative in the various speed ranges. Results show that all predictions of longitudinal stability and control derivatives are acceptable for use at the conceptual design stage. Results for most lateral/directional control derivatives are acceptable for conceptual design purposes; however, predictions at supersonic Mach numbers for the change in yawing moment due to aileron deflection and the change in rolling moment due to rudder deflection are found to be unacceptable. Including shielding effects in the analysis is shown to have little effect on lift and pitching moment predictions while improving drag predictions.
Adaptive MPC based on MIMO ARX-Laguerre model.
Ben Abdelwahed, Imen; Mbarek, Abdelkader; Bouzrara, Kais
2017-03-01
This paper proposes a method for synthesizing an adaptive predictive controller using a reduced complexity model. This latter is given by the projection of the ARX model on Laguerre bases. The resulting model is entitled MIMO ARX-Laguerre and it is characterized by an easy recursive representation. The adaptive predictive control law is computed based on multi-step-ahead finite-element predictors, identified directly from experimental input/output data. The model is tuned in each iteration by an online identification algorithms of both model parameters and Laguerre poles. The proposed approach avoids time consuming numerical optimization algorithms associated with most common linear predictive control strategies, which makes it suitable for real-time implementation. The method is used to synthesize and test in numerical simulations adaptive predictive controllers for the CSTR process benchmark. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Results of an integrated structure/control law design sensitivity analysis
NASA Technical Reports Server (NTRS)
Gilbert, Michael G.
1989-01-01
A design sensitivity analysis method for Linear Quadratic Cost, Gaussian (LQG) optimal control laws, which predicts change in the optimal control law due to changes in fixed problem parameters using analytical sensitivity equations is discussed. Numerical results of a design sensitivity analysis for a realistic aeroservoelastic aircraft example are presented. In this example, the sensitivity of the optimally controlled aircraft's response to various problem formulation and physical aircraft parameters is determined. These results are used to predict the aircraft's new optimally controlled response if the parameter was to have some other nominal value during the control law design process. The sensitivity results are validated by recomputing the optimal control law for discrete variations in parameters, computing the new actual aircraft response, and comparing with the predicted response. These results show an improvement in sensitivity accuracy for integrated design purposes over methods which do not include changes in the optimal control law. Use of the analytical LQG sensitivity expressions is also shown to be more efficient than finite difference methods for the computation of the equivalent sensitivity information.
Model predictive controller design for boost DC-DC converter using T-S fuzzy cost function
NASA Astrophysics Data System (ADS)
Seo, Sang-Wha; Kim, Yong; Choi, Han Ho
2017-11-01
This paper proposes a Takagi-Sugeno (T-S) fuzzy method to select cost function weights of finite control set model predictive DC-DC converter control algorithms. The proposed method updates the cost function weights at every sample time by using T-S type fuzzy rules derived from the common optimal control engineering knowledge that a state or input variable with an excessively large magnitude can be penalised by increasing the weight corresponding to the variable. The best control input is determined via the online optimisation of the T-S fuzzy cost function for all the possible control input sequences. This paper implements the proposed model predictive control algorithm in real time on a Texas Instruments TMS320F28335 floating-point Digital Signal Processor (DSP). Some experimental results are given to illuminate the practicality and effectiveness of the proposed control system under several operating conditions. The results verify that our method can yield not only good transient and steady-state responses (fast recovery time, small overshoot, zero steady-state error, etc.) but also insensitiveness to abrupt load or input voltage parameter variations.
Tang, Xiaoming; Qu, Hongchun; Wang, Ping; Zhao, Meng
2015-03-01
This paper investigates the off-line synthesis approach of model predictive control (MPC) for a class of networked control systems (NCSs) with network-induced delays. A new augmented model which can be readily applied to time-varying control law, is proposed to describe the NCS where bounded deterministic network-induced delays may occur in both sensor to controller (S-A) and controller to actuator (C-A) links. Based on this augmented model, a sufficient condition of the closed-loop stability is derived by applying the Lyapunov method. The off-line synthesis approach of model predictive control is addressed using the stability results of the system, which explicitly considers the satisfaction of input and state constraints. Numerical example is given to illustrate the effectiveness of the proposed method. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Improved LTVMPC design for steering control of autonomous vehicle
NASA Astrophysics Data System (ADS)
Velhal, Shridhar; Thomas, Susy
2017-01-01
An improved linear time varying model predictive control for steering control of autonomous vehicle running on slippery road is presented. Control strategy is designed such that the vehicle will follow the predefined trajectory with highest possible entry speed. In linear time varying model predictive control, nonlinear vehicle model is successively linearized at each sampling instant. This linear time varying model is used to design MPC which will predict the future horizon. By incorporating predicted input horizon in each successive linearization the effectiveness of controller has been improved. The tracking performance using steering with front wheel and braking at four wheels are presented to illustrate the effectiveness of the proposed method.
Data-Based Predictive Control with Multirate Prediction Step
NASA Technical Reports Server (NTRS)
Barlow, Jonathan S.
2010-01-01
Data-based predictive control is an emerging control method that stems from Model Predictive Control (MPC). MPC computes current control action based on a prediction of the system output a number of time steps into the future and is generally derived from a known model of the system. Data-based predictive control has the advantage of deriving predictive models and controller gains from input-output data. Thus, a controller can be designed from the outputs of complex simulation code or a physical system where no explicit model exists. If the output data happens to be corrupted by periodic disturbances, the designed controller will also have the built-in ability to reject these disturbances without the need to know them. When data-based predictive control is implemented online, it becomes a version of adaptive control. One challenge of MPC is computational requirements increasing with prediction horizon length. This paper develops a closed-loop dynamic output feedback controller that minimizes a multi-step-ahead receding-horizon cost function with multirate prediction step. One result is a reduced influence of prediction horizon and the number of system outputs on the computational requirements of the controller. Another result is an emphasis on portions of the prediction window that are sampled more frequently. A third result is the ability to include more outputs in the feedback path than in the cost function.
Control Theory and Statistical Generalizations.
ERIC Educational Resources Information Center
Powers, William T.
1990-01-01
Contrasts modeling methods in control theory to the methods of statistical generalizations in empirical studies of human or animal behavior. Presents a computer simulation that predicts behavior based on variables (effort and rewards) determined by the invariable (desired reward). Argues that control theory methods better reflect relationships to…
Cell fate reprogramming by control of intracellular network dynamics
NASA Astrophysics Data System (ADS)
Zanudo, Jorge G. T.; Albert, Reka
Identifying control strategies for biological networks is paramount for practical applications that involve reprogramming a cell's fate, such as disease therapeutics and stem cell reprogramming. Although the topic of controlling the dynamics of a system has a long history in control theory, most of this work is not directly applicable to intracellular networks. Here we present a network control method that integrates the structural and functional information available for intracellular networks to predict control targets. Formulated in a logical dynamic scheme, our control method takes advantage of certain function-dependent network components and their relation to steady states in order to identify control targets, which are guaranteed to drive any initial state to the target state with 100% effectiveness and need to be applied only transiently for the system to reach and stay in the desired state. We illustrate our method's potential to find intervention targets for cancer treatment and cell differentiation by applying it to a leukemia signaling network and to the network controlling the differentiation of T cells. We find that the predicted control targets are effective in a broad dynamic framework. Moreover, several of the predicted interventions are supported by experiments. This work was supported by NSF Grant PHY 1205840.
Prediction of forces and moments for hypersonic flight vehicle control effectors
NASA Technical Reports Server (NTRS)
Maughmer, Mark D.; Long, Lyle N.; Guilmette, Neal; Pagano, Peter
1993-01-01
This research project includes three distinct phases. For completeness, all three phases of the work are briefly described in this report. The goal was to develop methods of predicting flight control forces and moments for hypersonic vehicles which could be used in a preliminary design environment. The first phase included a preliminary assessment of subsonic/supersonic panel methods and hypersonic local flow inclination methods for such predictions. While these findings clearly indicated the usefulness of such methods for conceptual design activities, deficiencies exist in some areas. Thus, a second phase of research was conducted in which a better understanding was sought for the reasons behind the successes and failures of the methods considered, particularly for the cases at hypersonic Mach numbers. This second phase involved using computational fluid dynamics methods to examine the flow fields in detail. Through these detailed predictions, the deficiencies in the simple surface inclination methods were determined. In the third phase of this work, an improvement to the surface inclination methods was developed. This used a novel method for including viscous effects by modifying the geometry to include the viscous/shock layer.
Model predictive control based on reduced order models applied to belt conveyor system.
Chen, Wei; Li, Xin
2016-11-01
In the paper, a model predictive controller based on reduced order model is proposed to control belt conveyor system, which is an electro-mechanics complex system with long visco-elastic body. Firstly, in order to design low-degree controller, the balanced truncation method is used for belt conveyor model reduction. Secondly, MPC algorithm based on reduced order model for belt conveyor system is presented. Because of the error bound between the full-order model and reduced order model, two Kalman state estimators are applied in the control scheme to achieve better system performance. Finally, the simulation experiments are shown that balanced truncation method can significantly reduce the model order with high-accuracy and model predictive control based on reduced-model performs well in controlling the belt conveyor system. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Nonparametric method for failures diagnosis in the actuating subsystem of aircraft control system
NASA Astrophysics Data System (ADS)
Terentev, M. N.; Karpenko, S. S.; Zybin, E. Yu; Kosyanchuk, V. V.
2018-02-01
In this paper we design a nonparametric method for failures diagnosis in the aircraft control system that uses the measurements of the control signals and the aircraft states only. It doesn’t require a priori information of the aircraft model parameters, training or statistical calculations, and is based on analytical nonparametric one-step-ahead state prediction approach. This makes it possible to predict the behavior of unidentified and failure dynamic systems, to weaken the requirements to control signals, and to reduce the diagnostic time and problem complexity.
Applied Distributed Model Predictive Control for Energy Efficient Buildings and Ramp Metering
NASA Astrophysics Data System (ADS)
Koehler, Sarah Muraoka
Industrial large-scale control problems present an interesting algorithmic design challenge. A number of controllers must cooperate in real-time on a network of embedded hardware with limited computing power in order to maximize system efficiency while respecting constraints and despite communication delays. Model predictive control (MPC) can automatically synthesize a centralized controller which optimizes an objective function subject to a system model, constraints, and predictions of disturbance. Unfortunately, the computations required by model predictive controllers for large-scale systems often limit its industrial implementation only to medium-scale slow processes. Distributed model predictive control (DMPC) enters the picture as a way to decentralize a large-scale model predictive control problem. The main idea of DMPC is to split the computations required by the MPC problem amongst distributed processors that can compute in parallel and communicate iteratively to find a solution. Some popularly proposed solutions are distributed optimization algorithms such as dual decomposition and the alternating direction method of multipliers (ADMM). However, these algorithms ignore two practical challenges: substantial communication delays present in control systems and also problem non-convexity. This thesis presents two novel and practically effective DMPC algorithms. The first DMPC algorithm is based on a primal-dual active-set method which achieves fast convergence, making it suitable for large-scale control applications which have a large communication delay across its communication network. In particular, this algorithm is suited for MPC problems with a quadratic cost, linear dynamics, forecasted demand, and box constraints. We measure the performance of this algorithm and show that it significantly outperforms both dual decomposition and ADMM in the presence of communication delay. The second DMPC algorithm is based on an inexact interior point method which is suited for nonlinear optimization problems. The parallel computation of the algorithm exploits iterative linear algebra methods for the main linear algebra computations in the algorithm. We show that the splitting of the algorithm is flexible and can thus be applied to various distributed platform configurations. The two proposed algorithms are applied to two main energy and transportation control problems. The first application is energy efficient building control. Buildings represent 40% of energy consumption in the United States. Thus, it is significant to improve the energy efficiency of buildings. The goal is to minimize energy consumption subject to the physics of the building (e.g. heat transfer laws), the constraints of the actuators as well as the desired operating constraints (thermal comfort of the occupants), and heat load on the system. In this thesis, we describe the control systems of forced air building systems in practice. We discuss the "Trim and Respond" algorithm which is a distributed control algorithm that is used in practice, and show that it performs similarly to a one-step explicit DMPC algorithm. Then, we apply the novel distributed primal-dual active-set method and provide extensive numerical results for the building MPC problem. The second main application is the control of ramp metering signals to optimize traffic flow through a freeway system. This application is particularly important since urban congestion has more than doubled in the past few decades. The ramp metering problem is to maximize freeway throughput subject to freeway dynamics (derived from mass conservation), actuation constraints, freeway capacity constraints, and predicted traffic demand. In this thesis, we develop a hybrid model predictive controller for ramp metering that is guaranteed to be persistently feasible and stable. This contrasts to previous work on MPC for ramp metering where such guarantees are absent. We apply a smoothing method to the hybrid model predictive controller and apply the inexact interior point method to this nonlinear non-convex ramp metering problem.
Life extending control for rocket engines
NASA Technical Reports Server (NTRS)
Lorenzo, C. F.; Saus, J. R.; Ray, A.; Carpino, M.; Wu, M.-K.
1992-01-01
The concept of life extending control is defined. A brief discussion of current fatigue life prediction methods is given and the need for an alternative life prediction model based on a continuous functional relationship is established. Two approaches to life extending control are considered: (1) the implicit approach which uses cyclic fatigue life prediction as a basis for control design; and (2) the continuous life prediction approach which requires a continuous damage law. Progress on an initial formulation of a continuous (in time) fatigue model is presented. Finally, nonlinear programming is used to develop initial results for life extension for a simplified rocket engine (model).
Head-target tracking control of well drilling
NASA Astrophysics Data System (ADS)
Agzamov, Z. V.
2018-05-01
The method of directional drilling trajectory control for oil and gas wells using predictive models is considered in the paper. The developed method does not apply optimization and therefore there is no need for the high-performance computing. Nevertheless, it allows following the well-plan with high precision taking into account process input saturation. Controller output is calculated both from the present target reference point of the well-plan and from well trajectory prediction with using the analytical model. This method allows following a well-plan not only on angular, but also on the Cartesian coordinates. Simulation of the control system has confirmed the high precision and operation performance with a wide range of random disturbance action.
Adjoint Method and Predictive Control for 1-D Flow in NASA Ames 11-Foot Transonic Wind Tunnel
NASA Technical Reports Server (NTRS)
Nguyen, Nhan; Ardema, Mark
2006-01-01
This paper describes a modeling method and a new optimal control approach to investigate a Mach number control problem for the NASA Ames 11-Foot Transonic Wind Tunnel. The flow in the wind tunnel is modeled by the 1-D unsteady Euler equations whose boundary conditions prescribe a controlling action by a compressor. The boundary control inputs to the compressor are in turn controlled by a drive motor system and an inlet guide vane system whose dynamics are modeled by ordinary differential equations. The resulting Euler equations are thus coupled to the ordinary differential equations via the boundary conditions. Optimality conditions are established by an adjoint method and are used to develop a model predictive linear-quadratic optimal control for regulating the Mach number due to a test model disturbance during a continuous pitch
Results of an integrated structure-control law design sensitivity analysis
NASA Technical Reports Server (NTRS)
Gilbert, Michael G.
1988-01-01
Next generation air and space vehicle designs are driven by increased performance requirements, demanding a high level of design integration between traditionally separate design disciplines. Interdisciplinary analysis capabilities have been developed, for aeroservoelastic aircraft and large flexible spacecraft control for instance, but the requisite integrated design methods are only beginning to be developed. One integrated design method which has received attention is based on hierarchal problem decompositions, optimization, and design sensitivity analyses. This paper highlights a design sensitivity analysis method for Linear Quadratic Cost, Gaussian (LQG) optimal control laws, which predicts change in the optimal control law due to changes in fixed problem parameters using analytical sensitivity equations. Numerical results of a design sensitivity analysis for a realistic aeroservoelastic aircraft example are presented. In this example, the sensitivity of the optimally controlled aircraft's response to various problem formulation and physical aircraft parameters is determined. These results are used to predict the aircraft's new optimally controlled response if the parameter was to have some other nominal value during the control law design process. The sensitivity results are validated by recomputing the optimal control law for discrete variations in parameters, computing the new actual aircraft response, and comparing with the predicted response. These results show an improvement in sensitivity accuracy for integrated design purposes over methods which do not include changess in the optimal control law. Use of the analytical LQG sensitivity expressions is also shown to be more efficient that finite difference methods for the computation of the equivalent sensitivity information.
Unmanned Tactical Autonomous Control and Collaboration (UTACC) Immediate Actions
2017-06-01
12 3. Observability , Predictability, and Directability ........................13 4. Coactive Design Method ...suitable method . Depending on the overall patrol mission and the disposition of observed enemy force, the team leader will make an appropriate...design method is the understanding of the relationship between interdependence and observability , predictability, and directability. Johnson (2014
Esna-Ashari, Mojgan; Zekri, Maryam; Askari, Masood; Khalili, Noushin
2017-01-01
Because of increasing risk of diabetes, the measurement along with control of blood sugar has been of great importance in recent decades. In type I diabetes, because of the lack of insulin secretion, the cells cannot absorb glucose leading to low level of glucose. To control blood glucose (BG), the insulin must be injected to the body. This paper proposes a method for BG level regulation in type I diabetes. The control strategy is based on nonlinear model predictive control. The aim of the proposed controller optimized with genetics algorithms is to measure BG level each time and predict it for the next time interval. This merit causes a less amount of control effort, which is the rate of insulin delivered to the patient body. Consequently, this method can decrease the risk of hypoglycemia, a lethal phenomenon in regulating BG level in diabetes caused by a low BG level. Two delay differential equation models, namely Wang model and Enhanced Wang model, are applied as controller model and plant, respectively. The simulation results exhibit an acceptable performance of the proposed controller in meal disturbance rejection and robustness against parameter changes. As a result, if the nutrition of the person decreases instantly, the hypoglycemia will not happen. Furthermore, comparing this method with other works, it was shown that the new method outperforms previous studies.
Esna-Ashari, Mojgan; Zekri, Maryam; Askari, Masood; Khalili, Noushin
2017-01-01
Because of increasing risk of diabetes, the measurement along with control of blood sugar has been of great importance in recent decades. In type I diabetes, because of the lack of insulin secretion, the cells cannot absorb glucose leading to low level of glucose. To control blood glucose (BG), the insulin must be injected to the body. This paper proposes a method for BG level regulation in type I diabetes. The control strategy is based on nonlinear model predictive control. The aim of the proposed controller optimized with genetics algorithms is to measure BG level each time and predict it for the next time interval. This merit causes a less amount of control effort, which is the rate of insulin delivered to the patient body. Consequently, this method can decrease the risk of hypoglycemia, a lethal phenomenon in regulating BG level in diabetes caused by a low BG level. Two delay differential equation models, namely Wang model and Enhanced Wang model, are applied as controller model and plant, respectively. The simulation results exhibit an acceptable performance of the proposed controller in meal disturbance rejection and robustness against parameter changes. As a result, if the nutrition of the person decreases instantly, the hypoglycemia will not happen. Furthermore, comparing this method with other works, it was shown that the new method outperforms previous studies. PMID:28487828
A Numerical Process Control Method for Circular-Tube Hydroforming Prediction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Kenneth I.; Nguyen, Ba Nghiep; Davies, Richard W.
2004-03-01
This paper describes the development of a solution control method that tracks the stresses, strains and mechanical behavior of a tube during hydroforming to estimate the proper axial feed (end-feed) and internal pressure loads through time. The analysis uses the deformation theory of plasticity and Hill?s criterion to describe the plastic flow. Before yielding, the pressure and end-feed increments are estimated based on the initial tube geometry, elastic properties and yield stress. After yielding, the pressure increment is calculated based on the tube geometry at the previous solution increment and the current hoop stress increment. The end-feed increment is computedmore » from the increment of the axial plastic strain. Limiting conditions such as column buckling (of long tubes), local axi-symmetric wrinkling of shorter tubes, and bursting due to localized wall thinning are considered. The process control method has been implemented in the Marc finite element code. Hydroforming simulations using this process control method were conducted to predict the load histories for controlled expansion of 6061-T4 aluminum tubes within a conical die shape and under free hydroforming conditions. The predicted loading paths were transferred to the hydroforming equipment to form the conical and free-formed tube shapes. The model predictions and experimental results are compared for deformed shape, strains and the extent of forming at rupture.« less
Class-Related Emotions in Secondary Physical Education: A Control-Value Theory Approach
ERIC Educational Resources Information Center
Simonton, Kelly L.; Garn, Alex C.; Solmon, Melinda Ann
2017-01-01
Purpose: Grounded in control-value theory, a model of students' achievement emotions in physical education (PE) was investigated. Methods: A path analysis tested hypotheses that students' (N = 529) perceptions of teacher responsiveness, assertiveness, and clarity predict control and value beliefs which, in turn, predict enjoyment and boredom.…
CADDIS Volume 4. Data Analysis: Advanced Analyses - Controlling for Natural Variability
Methods for controlling natural variability, predicting environmental conditions from biological observations method, biological trait data, species sensitivity distributions, propensity scores, Advanced Analyses of Data Analysis references.
Model Predictive Control-based gait pattern generation for wearable exoskeletons.
Wang, Letian; van Asseldonk, Edwin H F; van der Kooij, Herman
2011-01-01
This paper introduces a new method for controlling wearable exoskeletons that do not need predefined joint trajectories. Instead, it only needs basic gait descriptors such as step length, swing duration, and walking speed. End point Model Predictive Control (MPC) is used to generate the online joint trajectories based on these gait parameters. Real-time ability and control performance of the method during the swing phase of gait cycle is studied in this paper. Experiments are performed by helping a human subject swing his leg with different patterns in the LOPES gait trainer. Results show that the method is able to assist subjects to make steps with different step length and step duration without predefined joint trajectories and is fast enough for real-time implementation. Future study of the method will focus on controlling the exoskeletons in the entire gait cycle. © 2011 IEEE
Model Predictive Control considering Reachable Range of Wheels for Leg / Wheel Mobile Robots
NASA Astrophysics Data System (ADS)
Suzuki, Naito; Nonaka, Kenichiro; Sekiguchi, Kazuma
2016-09-01
Obstacle avoidance is one of the important tasks for mobile robots. In this paper, we study obstacle avoidance control for mobile robots equipped with four legs comprised of three DoF SCARA leg/wheel mechanism, which enables the robot to change its shape adapting to environments. Our previous method achieves obstacle avoidance by model predictive control (MPC) considering obstacle size and lateral wheel positions. However, this method does not ensure existence of joint angles which achieves reference wheel positions calculated by MPC. In this study, we propose a model predictive control considering reachable mobile ranges of wheels positions by combining multiple linear constraints, where each reachable mobile range is approximated as a convex trapezoid. Thus, we achieve to formulate a MPC as a quadratic problem with linear constraints for nonlinear problem of longitudinal and lateral wheel position control. By optimization of MPC, the reference wheel positions are calculated, while each joint angle is determined by inverse kinematics. Considering reachable mobile ranges explicitly, the optimal joint angles are calculated, which enables wheels to reach the reference wheel positions. We verify its advantages by comparing the proposed method with the previous method through numerical simulations.
Observation method to predict meander migration and vertical degradation of rivers.
DOT National Transportation Integrated Search
2014-05-01
Meander migration and vertical degradation of river bed are processes that have been studied for years. : Different methods have been proposed to make predictions of the behavior of rivers with respect to these : processes. These two erosion controll...
Application of indoor noise prediction in the real world
NASA Astrophysics Data System (ADS)
Lewis, David N.
2002-11-01
Predicting indoor noise in industrial workrooms is an important part of the process of designing industrial plants. Predicted levels are used in the design process to determine compliance with occupational-noise regulations, and to estimate levels inside the walls in order to predict community noise radiated from the building. Once predicted levels are known, noise-control strategies can be developed. In this paper an overview of over 20 years of experience is given with the use of various prediction approaches to manage noise in Unilever plants. This work has applied empirical and ray-tracing approaches separately, and in combination, to design various packaging and production plants and other facilities. The advantages of prediction methods in general, and of the various approaches in particular, will be discussed. A case-study application of prediction methods to the optimization of noise-control measures in a food-packaging plant will be presented. Plans to acquire a simplified prediction model for use as a company noise-screening tool will be discussed.
Improved fuzzy PID controller design using predictive functional control structure.
Wang, Yuzhong; Jin, Qibing; Zhang, Ridong
2017-11-01
In conventional PID scheme, the ensemble control performance may be unsatisfactory due to limited degrees of freedom under various kinds of uncertainty. To overcome this disadvantage, a novel PID control method that inherits the advantages of fuzzy PID control and the predictive functional control (PFC) is presented and further verified on the temperature model of a coke furnace. Based on the framework of PFC, the prediction of the future process behavior is first obtained using the current process input signal. Then, the fuzzy PID control based on the multi-step prediction is introduced to acquire the optimal control law. Finally, the case study on a temperature model of a coke furnace shows the effectiveness of the fuzzy PID control scheme when compared with conventional PID control and fuzzy self-adaptive PID control. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Structured Kernel Subspace Learning for Autonomous Robot Navigation.
Kim, Eunwoo; Choi, Sungjoon; Oh, Songhwai
2018-02-14
This paper considers two important problems for autonomous robot navigation in a dynamic environment, where the goal is to predict pedestrian motion and control a robot with the prediction for safe navigation. While there are several methods for predicting the motion of a pedestrian and controlling a robot to avoid incoming pedestrians, it is still difficult to safely navigate in a dynamic environment due to challenges, such as the varying quality and complexity of training data with unwanted noises. This paper addresses these challenges simultaneously by proposing a robust kernel subspace learning algorithm based on the recent advances in nuclear-norm and l 1 -norm minimization. We model the motion of a pedestrian and the robot controller using Gaussian processes. The proposed method efficiently approximates a kernel matrix used in Gaussian process regression by learning low-rank structured matrix (with symmetric positive semi-definiteness) to find an orthogonal basis, which eliminates the effects of erroneous and inconsistent data. Based on structured kernel subspace learning, we propose a robust motion model and motion controller for safe navigation in dynamic environments. We evaluate the proposed robust kernel learning in various tasks, including regression, motion prediction, and motion control problems, and demonstrate that the proposed learning-based systems are robust against outliers and outperform existing regression and navigation methods.
Methods for controlling natural variability, predicting environmental conditions from biological observations method, biological trait data, species sensitivity distributions, propensity scores, Advanced Analyses of Data Analysis references.
2005-06-15
61 9.2.7 Reynolds Number Effects...............................................................................................62 9.2.8...appropriate for control, and is therefore very useful for airfoil and wing design. However, Arnal (1994) and Schrauf (1994) review the different approaches...evaluation of new airfoil shapes for wings, even in 3- D, in a comparative sense. In summary, carefully used LST is the method of choice for
NASA Astrophysics Data System (ADS)
Kim, Jae-Chang; Moon, Sung-Ki; Kwak, Sangshin
2018-04-01
This paper presents a direct model-based predictive control scheme for voltage source inverters (VSIs) with reduced common-mode voltages (CMVs). The developed method directly finds optimal vectors without using repetitive calculation of a cost function. To adjust output currents with the CMVs in the range of -Vdc/6 to +Vdc/6, the developed method uses voltage vectors, as finite control resources, excluding zero voltage vectors which produce the CMVs in the VSI within ±Vdc/2. In a model-based predictive control (MPC), not using zero voltage vectors increases the output current ripples and the current errors. To alleviate these problems, the developed method uses two non-zero voltage vectors in one sampling step. In addition, the voltage vectors scheduled to be used are directly selected at every sampling step once the developed method calculates the future reference voltage vector, saving the efforts of repeatedly calculating the cost function. And the two non-zero voltage vectors are optimally allocated to make the output current approach the reference current as close as possible. Thus, low CMV, rapid current-following capability and sufficient output current ripple performance are attained by the developed method. The results of a simulation and an experiment verify the effectiveness of the developed method.
Edwards, Ann L; Dawson, Michael R; Hebert, Jacqueline S; Sherstan, Craig; Sutton, Richard S; Chan, K Ming; Pilarski, Patrick M
2016-10-01
Myoelectric prostheses currently used by amputees can be difficult to control. Machine learning, and in particular learned predictions about user intent, could help to reduce the time and cognitive load required by amputees while operating their prosthetic device. The goal of this study was to compare two switching-based methods of controlling a myoelectric arm: non-adaptive (or conventional) control and adaptive control (involving real-time prediction learning). Case series study. We compared non-adaptive and adaptive control in two different experiments. In the first, one amputee and one non-amputee subject controlled a robotic arm to perform a simple task; in the second, three able-bodied subjects controlled a robotic arm to perform a more complex task. For both tasks, we calculated the mean time and total number of switches between robotic arm functions over three trials. Adaptive control significantly decreased the number of switches and total switching time for both tasks compared with the conventional control method. Real-time prediction learning was successfully used to improve the control interface of a myoelectric robotic arm during uninterrupted use by an amputee subject and able-bodied subjects. Adaptive control using real-time prediction learning has the potential to help decrease both the time and the cognitive load required by amputees in real-world functional situations when using myoelectric prostheses. © The International Society for Prosthetics and Orthotics 2015.
NASA Astrophysics Data System (ADS)
Pohjoranta, Antti; Halinen, Matias; Pennanen, Jari; Kiviaho, Jari
2015-03-01
Generalized predictive control (GPC) is applied to control the maximum temperature in a solid oxide fuel cell (SOFC) stack and the temperature difference over the stack. GPC is a model predictive control method and the models utilized in this work are ARX-type (autoregressive with extra input), multiple input-multiple output, polynomial models that were identified from experimental data obtained from experiments with a complete SOFC system. The proposed control is evaluated by simulation with various input-output combinations, with and without constraints. A comparison with conventional proportional-integral-derivative (PID) control is also made. It is shown that if only the stack maximum temperature is controlled, a standard PID controller can be used to obtain output performance comparable to that obtained with the significantly more complex model predictive controller. However, in order to control the temperature difference over the stack, both the stack minimum and the maximum temperature need to be controlled and this cannot be done with a single PID controller. In such a case the model predictive controller provides a feasible and effective solution.
Predicting Baseline for Analysis of Electricity Pricing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, T.; Lee, D.; Choi, J.
2016-05-03
To understand the impact of new pricing structure on residential electricity demands, we need a baseline model that captures every factor other than the new price. The standard baseline is a randomized control group, however, a good control group is hard to design. This motivates us to devlop data-driven approaches. We explored many techniques and designed a strategy, named LTAP, that could predict the hourly usage years ahead. The key challenge in this process is that the daily cycle of electricity demand peaks a few hours after the temperature reaching its peak. Existing methods rely on the lagged variables ofmore » recent past usages to enforce this daily cycle. These methods have trouble making predictions years ahead. LTAP avoids this trouble by assuming the daily usage profile is determined by temperature and other factors. In a comparison against a well-designed control group, LTAP is found to produce accurate predictions.« less
Taheri, Asghar; Zhalebaghi, Mohammad Hadi
2017-11-01
This paper presents a new control strategy based on finite-control-set model-predictive control (FCS-MPC) for Neutral-point-clamped (NPC) three-level converters. Containing some advantages like fast dynamic response, easy inclusion of constraints and simple control loop, makes the FCS-MPC method attractive to use as a switching strategy for converters. However, the large amount of required calculations is a problem in the widespread of this method. In this way, to resolve this problem this paper presents a modified method that effectively reduces the computation load compare with conventional FCS-MPC method and at the same time does not affect on control performance. The proposed method can be used for exchanging power between electrical grid and DC resources by providing active and reactive power compensations. Experiments on three-level converter for three Power Factor Correction (PFC), inductive and capacitive compensation modes verify the good and comparable performance. The results have been simulated using MATLAB/SIMULINK software. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Fourier transform wavefront control with adaptive prediction of the atmosphere.
Poyneer, Lisa A; Macintosh, Bruce A; Véran, Jean-Pierre
2007-09-01
Predictive Fourier control is a temporal power spectral density-based adaptive method for adaptive optics that predicts the atmosphere under the assumption of frozen flow. The predictive controller is based on Kalman filtering and a Fourier decomposition of atmospheric turbulence using the Fourier transform reconstructor. It provides a stable way to compensate for arbitrary numbers of atmospheric layers. For each Fourier mode, efficient and accurate algorithms estimate the necessary atmospheric parameters from closed-loop telemetry and determine the predictive filter, adjusting as conditions change. This prediction improves atmospheric rejection, leading to significant improvements in system performance. For a 48x48 actuator system operating at 2 kHz, five-layer prediction for all modes is achievable in under 2x10(9) floating-point operations/s.
Generalized Predictive Control of Dynamic Systems with Rigid-Body Modes
NASA Technical Reports Server (NTRS)
Kvaternik, Raymond G.
2013-01-01
Numerical simulations to assess the effectiveness of Generalized Predictive Control (GPC) for active control of dynamic systems having rigid-body modes are presented. GPC is a linear, time-invariant, multi-input/multi-output predictive control method that uses an ARX model to characterize the system and to design the controller. Although the method can accommodate both embedded (implicit) and explicit feedforward paths for incorporation of disturbance effects, only the case of embedded feedforward in which the disturbances are assumed to be unknown is considered here. Results from numerical simulations using mathematical models of both a free-free three-degree-of-freedom mass-spring-dashpot system and the XV-15 tiltrotor research aircraft are presented. In regulation mode operation, which calls for zero system response in the presence of disturbances, the simulations showed reductions of nearly 100%. In tracking mode operations, where the system is commanded to follow a specified path, the GPC controllers produced the desired responses, even in the presence of disturbances.
A Simple Microsoft Excel Method to Predict Antibiotic Outbreaks and Underutilization.
Miglis, Cristina; Rhodes, Nathaniel J; Avedissian, Sean N; Zembower, Teresa R; Postelnick, Michael; Wunderink, Richard G; Sutton, Sarah H; Scheetz, Marc H
2017-07-01
Benchmarking strategies are needed to promote the appropriate use of antibiotics. We have adapted a simple regressive method in Microsoft Excel that is easily implementable and creates predictive indices. This method trends consumption over time and can identify periods of over- and underuse at the hospital level. Infect Control Hosp Epidemiol 2017;38:860-862.
Combination of acoustical radiosity and the image source method.
Koutsouris, Georgios I; Brunskog, Jonas; Jeong, Cheol-Ho; Jacobsen, Finn
2013-06-01
A combined model for room acoustic predictions is developed, aiming to treat both diffuse and specular reflections in a unified way. Two established methods are incorporated: acoustical radiosity, accounting for the diffuse part, and the image source method, accounting for the specular part. The model is based on conservation of acoustical energy. Losses are taken into account by the energy absorption coefficient, and the diffuse reflections are controlled via the scattering coefficient, which defines the portion of energy that has been diffusely reflected. The way the model is formulated allows for a dynamic control of the image source production, so that no fixed maximum reflection order is required. The model is optimized for energy impulse response predictions in arbitrary polyhedral rooms. The predictions are validated by comparison with published measured data for a real music studio hall. The proposed model turns out to be promising for acoustic predictions providing a high level of detail and accuracy.
Prediction of final error level in learning and repetitive control
NASA Astrophysics Data System (ADS)
Levoci, Peter A.
Repetitive control (RC) is a field that creates controllers to eliminate the effects of periodic disturbances on a feedback control system. The methods have applications in spacecraft problems, to isolate fine pointing equipment from periodic vibration disturbances such as slight imbalances in momentum wheels or cryogenic pumps. A closely related field of control design is iterative learning control (ILC) which aims to eliminate tracking error in a task that repeats, each time starting from the same initial condition. Experiments done on a robot at NASA Langley Research Center showed that the final error levels produced by different candidate repetitive and learning controllers can be very different, even when each controller is analytically proven to converge to zero error in the deterministic case. Real world plant and measurement noise and quantization noise (from analog to digital and digital to analog converters) in these control methods are acted on as if they were error sources that will repeat and should be cancelled, which implies that the algorithms amplify such errors. Methods are developed that predict the final error levels of general first order ILC, of higher order ILC including current cycle learning, and of general RC, in the presence of noise, using frequency response methods. The method involves much less computation than the corresponding time domain approach that involves large matrices. The time domain approach was previously developed for ILC and handles a certain class of ILC methods. Here methods are created to include zero-phase filtering that is very important in creating practical designs. Also, time domain methods are developed for higher order ILC and for repetitive control. Since RC and ILC must be implemented digitally, all of these methods predict final error levels at the sample times. It is shown here that RC can easily converge to small error levels between sample times, but that ILC in most applications will have large and diverging intersample error if in fact zero error is reached at the sample times. This is independent of the ILC law used, and is purely a property of the physical system. Methods are developed to address this issue.
Predictive onboard flow control for packet switching satellites
NASA Technical Reports Server (NTRS)
Bobinsky, Eric A.
1992-01-01
We outline two alternate approaches to predicting the onset of congestion in a packet switching satellite, and argue that predictive, rather than reactive, flow control is necessary for the efficient operation of such a system. The first method discussed is based on standard, statistical techniques which are used to periodically calculate a probability of near-term congestion based on arrival rate statistics. If this probability exceeds a present threshold, the satellite would transmit a rate-reduction signal to all active ground stations. The second method discussed would utilize a neural network to periodically predict the occurrence of buffer overflow based on input data which would include, in addition to arrival rates, the distributions of packet lengths, source addresses, and destination addresses.
Xu, Rengyi; Mesaros, Clementina; Weng, Liwei; Snyder, Nathaniel W; Vachani, Anil; Blair, Ian A; Hwang, Wei-Ting
2017-07-01
We compared three statistical methods in selecting a panel of serum lipid biomarkers for mesothelioma and asbestos exposure. Serum samples from mesothelioma, asbestos-exposed subjects and controls (40 per group) were analyzed. Three variable selection methods were considered: top-ranked predictors from univariate model, stepwise and least absolute shrinkage and selection operator. Crossed-validated area under the receiver operating characteristic curve was used to compare the prediction performance. Lipids with high crossed-validated area under the curve were identified. Lipid with mass-to-charge ratio of 372.31 was selected by all three methods comparing mesothelioma versus control. Lipids with mass-to-charge ratio of 1464.80 and 329.21 were selected by two models for asbestos exposure versus control. Different methods selected a similar set of serum lipids. Combining candidate biomarkers can improve prediction.
Kim, Kwang-Yon; Shin, Seong Eun; No, Kyoung Tai
2015-01-01
Objectives For successful adoption of legislation controlling registration and assessment of chemical substances, it is important to obtain sufficient toxicological experimental evidence and other related information. It is also essential to obtain a sufficient number of predicted risk and toxicity results. Particularly, methods used in predicting toxicities of chemical substances during acquisition of required data, ultimately become an economic method for future dealings with new substances. Although the need for such methods is gradually increasing, the-required information about reliability and applicability range has not been systematically provided. Methods There are various representative environmental and human toxicity models based on quantitative structure-activity relationships (QSAR). Here, we secured the 10 representative QSAR-based prediction models and its information that can make predictions about substances that are expected to be regulated. We used models that predict and confirm usability of the information expected to be collected and submitted according to the legislation. After collecting and evaluating each predictive model and relevant data, we prepared methods quantifying the scientific validity and reliability, which are essential conditions for using predictive models. Results We calculated predicted values for the models. Furthermore, we deduced and compared adequacies of the models using the Alternative non-testing method assessed for Registration, Evaluation, Authorization, and Restriction of Chemicals Substances scoring system, and deduced the applicability domains for each model. Additionally, we calculated and compared inclusion rates of substances expected to be regulated, to confirm the applicability. Conclusions We evaluated and compared the data, adequacy, and applicability of our selected QSAR-based toxicity prediction models, and included them in a database. Based on this data, we aimed to construct a system that can be used with predicted toxicity results. Furthermore, by presenting the suitability of individual predicted results, we aimed to provide a foundation that could be used in actual assessments and regulations. PMID:26206368
Kumar, Aditya; Shi, Ruijie; Kumar, Rajeeva; Dokucu, Mustafa
2013-04-09
Control system and method for controlling an integrated gasification combined cycle (IGCC) plant are provided. The system may include a controller coupled to a dynamic model of the plant to process a prediction of plant performance and determine a control strategy for the IGCC plant over a time horizon subject to plant constraints. The control strategy may include control functionality to meet a tracking objective and control functionality to meet an optimization objective. The control strategy may be configured to prioritize the tracking objective over the optimization objective based on a coordinate transformation, such as an orthogonal or quasi-orthogonal projection. A plurality of plant control knobs may be set in accordance with the control strategy to generate a sequence of coordinated multivariable control inputs to meet the tracking objective and the optimization objective subject to the prioritization resulting from the coordinate transformation.
Predictive powertrain control using powertrain history and GPS data
Weslati, Feisel; Krupadanam, Ashish A
2015-03-03
A method and powertrain apparatus that predicts a route of travel for a vehicle and uses historical powertrain loads and speeds for the predicted route of travel to optimize at least one powertrain operation for the vehicle.
A feasibility study for long-path multiple detection using a neural network
NASA Technical Reports Server (NTRS)
Feuerbacher, G. A.; Moebes, T. A.
1994-01-01
Least-squares inverse filters have found widespread use in the deconvolution of seismograms and the removal of multiples. The use of least-squares prediction filters with prediction distances greater than unity leads to the method of predictive deconvolution which can be used for the removal of long path multiples. The predictive technique allows one to control the length of the desired output wavelet by control of the predictive distance, and hence to specify the desired degree of resolution. Events which are periodic within given repetition ranges can be attenuated selectively. The method is thus effective in the suppression of rather complex reverberation patterns. A back propagation(BP) neural network is constructed to perform the detection of first arrivals of the multiples and therefore aid in the more accurate determination of the predictive distance of the multiples. The neural detector is applied to synthetic reflection coefficients and synthetic seismic traces. The processing results show that the neural detector is accurate and should lead to an automated fast method for determining predictive distances across vast amounts of data such as seismic field records. The neural network system used in this study was the NASA Software Technology Branch's NETS system.
Adaptive Data-based Predictive Control for Short Take-off and Landing (STOL) Aircraft
NASA Technical Reports Server (NTRS)
Barlow, Jonathan Spencer; Acosta, Diana Michelle; Phan, Minh Q.
2010-01-01
Data-based Predictive Control is an emerging control method that stems from Model Predictive Control (MPC). MPC computes current control action based on a prediction of the system output a number of time steps into the future and is generally derived from a known model of the system. Data-based predictive control has the advantage of deriving predictive models and controller gains from input-output data. Thus, a controller can be designed from the outputs of complex simulation code or a physical system where no explicit model exists. If the output data happens to be corrupted by periodic disturbances, the designed controller will also have the built-in ability to reject these disturbances without the need to know them. When data-based predictive control is implemented online, it becomes a version of adaptive control. The characteristics of adaptive data-based predictive control are particularly appropriate for the control of nonlinear and time-varying systems, such as Short Take-off and Landing (STOL) aircraft. STOL is a capability of interest to NASA because conceptual Cruise Efficient Short Take-off and Landing (CESTOL) transport aircraft offer the ability to reduce congestion in the terminal area by utilizing existing shorter runways at airports, as well as to lower community noise by flying steep approach and climb-out patterns that reduce the noise footprint of the aircraft. In this study, adaptive data-based predictive control is implemented as an integrated flight-propulsion controller for the outer-loop control of a CESTOL-type aircraft. Results show that the controller successfully tracks velocity while attempting to maintain a constant flight path angle, using longitudinal command, thrust and flap setting as the control inputs.
Ross, Mindy K; Yoon, Jinsung; van der Schaar, Auke; van der Schaar, Mihaela
2018-01-01
Pediatric asthma has variable underlying inflammation and symptom control. Approaches to addressing this heterogeneity, such as clustering methods to find phenotypes and predict outcomes, have been investigated. However, clustering based on the relationship between treatment and clinical outcome has not been performed, and machine learning approaches for long-term outcome prediction in pediatric asthma have not been studied in depth. Our objectives were to use our novel machine learning algorithm, predictor pursuit (PP), to discover pediatric asthma phenotypes on the basis of asthma control in response to controller medications, to predict longitudinal asthma control among children with asthma, and to identify features associated with asthma control within each discovered pediatric phenotype. We applied PP to the Childhood Asthma Management Program study data (n = 1,019) to discover phenotypes on the basis of asthma control between assigned controller therapy groups (budesonide vs. nedocromil). We confirmed PP's ability to discover phenotypes using the Asthma Clinical Research Network/Childhood Asthma Research and Education network data. We next predicted children's asthma control over time and compared PP's performance with that of traditional prediction methods. Last, we identified clinical features most correlated with asthma control in the discovered phenotypes. Four phenotypes were discovered in both datasets: allergic not obese (A + /O - ), obese not allergic (A - /O + ), allergic and obese (A + /O + ), and not allergic not obese (A - /O - ). Of the children with well-controlled asthma in the Childhood Asthma Management Program dataset, we found more nonobese children treated with budesonide than with nedocromil (P = 0.015) and more obese children treated with nedocromil than with budesonide (P = 0.008). Within the obese group, more A + /O + children's asthma was well controlled with nedocromil than with budesonide (P = 0.022) or with placebo (P = 0.011). The PP algorithm performed significantly better (P < 0.001) than traditional machine learning algorithms for both short- and long-term asthma control prediction. Asthma control and bronchodilator response were the features most predictive of short-term asthma control, regardless of type of controller medication or phenotype. Bronchodilator response and serum eosinophils were the most predictive features of asthma control, regardless of type of controller medication or phenotype. Advanced statistical machine learning approaches can be powerful tools for discovery of phenotypes based on treatment response and can aid in asthma control prediction in complex medical conditions such as asthma.
Extended active disturbance rejection controller
NASA Technical Reports Server (NTRS)
Tian, Gang (Inventor); Gao, Zhiqiang (Inventor)
2012-01-01
Multiple designs, systems, methods and processes for controlling a system or plant using an extended active disturbance rejection control (ADRC) based controller are presented. The extended ADRC controller accepts sensor information from the plant. The sensor information is used in conjunction with an extended state observer in combination with a predictor that estimates and predicts the current state of the plant and a co-joined estimate of the system disturbances and system dynamics. The extended state observer estimates and predictions are used in conjunction with a control law that generates an input to the system based in part on the extended state observer estimates and predictions as well as a desired trajectory for the plant to follow.
Extended Active Disturbance Rejection Controller
NASA Technical Reports Server (NTRS)
Gao, Zhiqiang (Inventor); Tian, Gang (Inventor)
2016-01-01
Multiple designs, systems, methods and processes for controlling a system or plant using an extended active disturbance rejection control (ADRC) based controller are presented. The extended ADRC controller accepts sensor information from the plant. The sensor information is used in conjunction with an extended state observer in combination with a predictor that estimates and predicts the current state of the plant and a co-joined estimate of the system disturbances and system dynamics. The extended state observer estimates and predictions are used in conjunction with a control law that generates an input to the system based in part on the extended state observer estimates and predictions as well as a desired trajectory for the plant to follow.
Extended Active Disturbance Rejection Controller
NASA Technical Reports Server (NTRS)
Tian, Gang (Inventor); Gao, Zhiqiang (Inventor)
2014-01-01
Multiple designs, systems, methods and processes for controlling a system or plant using an extended active disturbance rejection control (ADRC) based controller are presented. The extended ADRC controller accepts sensor information from the plant. The sensor information is used in conjunction with an extended state observer in combination with a predictor that estimates and predicts the current state of the plant and a co-joined estimate of the system disturbances and system dynamics. The extended state observer estimates and predictions are used in conjunction with a control law that generates an input to the system based in part on the extended state observer estimates and predictions as well as a desired trajectory for the plant to follow.
Short-term PV/T module temperature prediction based on PCA-RBF neural network
NASA Astrophysics Data System (ADS)
Li, Jiyong; Zhao, Zhendong; Li, Yisheng; Xiao, Jing; Tang, Yunfeng
2018-02-01
Aiming at the non-linearity and large inertia of temperature control in PV/T system, short-term temperature prediction of PV/T module is proposed, to make the PV/T system controller run forward according to the short-term forecasting situation to optimize control effect. Based on the analysis of the correlation between PV/T module temperature and meteorological factors, and the temperature of adjacent time series, the principal component analysis (PCA) method is used to pre-process the original input sample data. Combined with the RBF neural network theory, the simulation results show that the PCA method makes the prediction accuracy of the network model higher and the generalization performance stronger than that of the RBF neural network without the main component extraction.
Adaptive envelope protection methods for aircraft
NASA Astrophysics Data System (ADS)
Unnikrishnan, Suraj
Carefree handling refers to the ability of a pilot to operate an aircraft without the need to continuously monitor aircraft operating limits. At the heart of all carefree handling or maneuvering systems, also referred to as envelope protection systems, are algorithms and methods for predicting future limit violations. Recently, envelope protection methods that have gained more acceptance, translate limit proximity information to its equivalent in the control channel. Envelope protection algorithms either use very small prediction horizon or are static methods with no capability to adapt to changes in system configurations. Adaptive approaches maximizing prediction horizon such as dynamic trim, are only applicable to steady-state-response critical limit parameters. In this thesis, a new adaptive envelope protection method is developed that is applicable to steady-state and transient response critical limit parameters. The approach is based upon devising the most aggressive optimal control profile to the limit boundary and using it to compute control limits. Pilot-in-the-loop evaluations of the proposed approach are conducted at the Georgia Tech Carefree Maneuver lab for transient longitudinal hub moment limit protection. Carefree maneuvering is the dual of carefree handling in the realm of autonomous Uninhabited Aerial Vehicles (UAVs). Designing a flight control system to fully and effectively utilize the operational flight envelope is very difficult. With the increasing role and demands for extreme maneuverability there is a need for developing envelope protection methods for autonomous UAVs. In this thesis, a full-authority automatic envelope protection method is proposed for limit protection in UAVs. The approach uses adaptive estimate of limit parameter dynamics and finite-time horizon predictions to detect impending limit boundary violations. Limit violations are prevented by treating the limit boundary as an obstacle and by correcting nominal control/command inputs to track a limit parameter safe-response profile near the limit boundary. The method is evaluated using software-in-the-loop and flight evaluations on the Georgia Tech unmanned rotorcraft platform---GTMax. The thesis also develops and evaluates an extension for calculating control margins based on restricting limit parameter response aggressiveness near the limit boundary.
A proposed method for electronic feedback compensation of damping in ferromagnetic resonance
Zohar, S.; Sterbinsky, G. E.
2017-07-10
Here, we propose an experimental technique for extending feedback compensation of dissipative radiation used in nuclear magnetic resonance (NMR) to encompass ferromagnetic resonance (FMR). This method uses a balanced microwave power detector whose output is phase shifted π/2, amplified, and fed back to drive precession. Using classical control theory, we predict an electronically controllable narrowing of field swept FMR line-widths. This technique is predicted to compensate other sources of spin dissipation in addition to radiative loss.
A proposed method for electronic feedback compensation of damping in ferromagnetic resonance
NASA Astrophysics Data System (ADS)
Zohar, S.; Sterbinsky, G. E.
2017-12-01
We propose an experimental technique for extending feedback compensation of dissipative radiation used in nuclear magnetic resonance (NMR) to encompass ferromagnetic resonance (FMR). This method uses a balanced microwave power detector whose output is phase shifted π / 2 , amplified, and fed back to drive precession. Using classical control theory, we predict an electronically controllable narrowing of field swept FMR line-widths. This technique is predicted to compensate other sources of spin dissipation in addition to radiative loss.
Model Predictive Flight Control System with Full State Observer using H∞ Method
NASA Astrophysics Data System (ADS)
Sanwale, Jitu; Singh, Dhan Jeet
2018-03-01
This paper presents the application of the model predictive approach to design a flight control system (FCS) for longitudinal dynamics of a fixed wing aircraft. Longitudinal dynamics is derived for a conventional aircraft. Open loop aircraft response analysis is carried out. Simulation studies are illustrated to prove the efficacy of the proposed model predictive controller using H ∞ state observer. The estimation criterion used in the {H}_{∞} observer design is to minimize the worst possible effects of the modelling errors and additive noise on the parameter estimation.
Neural network-based run-to-run controller using exposure and resist thickness adjustment
NASA Astrophysics Data System (ADS)
Geary, Shane; Barry, Ronan
2003-06-01
This paper describes the development of a run-to-run control algorithm using a feedforward neural network, trained using the backpropagation training method. The algorithm is used to predict the critical dimension of the next lot using previous lot information. It is compared to a common prediction algorithm - the exponentially weighted moving average (EWMA) and is shown to give superior prediction performance in simulations. The manufacturing implementation of the final neural network showed significantly improved process capability when compared to the case where no run-to-run control was utilised.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Ping; Song, Heda; Wang, Hong
Blast furnace (BF) in ironmaking is a nonlinear dynamic process with complicated physical-chemical reactions, where multi-phase and multi-field coupling and large time delay occur during its operation. In BF operation, the molten iron temperature (MIT) as well as Si, P and S contents of molten iron are the most essential molten iron quality (MIQ) indices, whose measurement, modeling and control have always been important issues in metallurgic engineering and automation field. This paper develops a novel data-driven nonlinear state space modeling for the prediction and control of multivariate MIQ indices by integrating hybrid modeling and control techniques. First, to improvemore » modeling efficiency, a data-driven hybrid method combining canonical correlation analysis and correlation analysis is proposed to identify the most influential controllable variables as the modeling inputs from multitudinous factors would affect the MIQ indices. Then, a Hammerstein model for the prediction of MIQ indices is established using the LS-SVM based nonlinear subspace identification method. Such a model is further simplified by using piecewise cubic Hermite interpolating polynomial method to fit the complex nonlinear kernel function. Compared to the original Hammerstein model, this simplified model can not only significantly reduce the computational complexity, but also has almost the same reliability and accuracy for a stable prediction of MIQ indices. Last, in order to verify the practicability of the developed model, it is applied in designing a genetic algorithm based nonlinear predictive controller for multivariate MIQ indices by directly taking the established model as a predictor. Industrial experiments show the advantages and effectiveness of the proposed approach.« less
NASA Astrophysics Data System (ADS)
Lingren, Joe; Vanstone, Leon; Hashemi, Kelley; Gogineni, Sivaram; Donbar, Jeffrey; Akella, Maruthi; Clemens, Noel
2016-11-01
This study develops an analytical model for predicting the leading shock of a shock-train in the constant area isolator section in a Mach 2.2 direct-connect scramjet simulation tunnel. The effective geometry of the isolator is assumed to be a weakly converging duct owing to boundary-layer growth. For some given pressure rise across the isolator, quasi-1D equations relating to isentropic or normal shock flows can be used to predict the normal shock location in the isolator. The surface pressure distribution through the isolator was measured during experiments and both the actual and predicted locations can be calculated. Three methods of finding the shock-train location are examined, one based on the measured pressure rise, one using a non-physics-based control model, and one using the physics-based analytical model. It is shown that the analytical model performs better than the non-physics-based model in all cases. The analytic model is less accurate than the pressure threshold method but requires significantly less information to compute. In contrast to other methods for predicting shock-train location, this method is relatively accurate and requires as little as a single pressure measurement. This makes this method potentially useful for unstart control applications.
Literature-based condition-specific miRNA-mRNA target prediction.
Oh, Minsik; Rhee, Sungmin; Moon, Ji Hwan; Chae, Heejoon; Lee, Sunwon; Kang, Jaewoo; Kim, Sun
2017-01-01
miRNAs are small non-coding RNAs that regulate gene expression by binding to the 3'-UTR of genes. Many recent studies have reported that miRNAs play important biological roles by regulating specific mRNAs or genes. Many sequence-based target prediction algorithms have been developed to predict miRNA targets. However, these methods are not designed for condition-specific target predictions and produce many false positives; thus, expression-based target prediction algorithms have been developed for condition-specific target predictions. A typical strategy to utilize expression data is to leverage the negative control roles of miRNAs on genes. To control false positives, a stringent cutoff value is typically set, but in this case, these methods tend to reject many true target relationships, i.e., false negatives. To overcome these limitations, additional information should be utilized. The literature is probably the best resource that we can utilize. Recent literature mining systems compile millions of articles with experiments designed for specific biological questions, and the systems provide a function to search for specific information. To utilize the literature information, we used a literature mining system, BEST, that automatically extracts information from the literature in PubMed and that allows the user to perform searches of the literature with any English words. By integrating omics data analysis methods and BEST, we developed Context-MMIA, a miRNA-mRNA target prediction method that combines expression data analysis results and the literature information extracted based on the user-specified context. In the pathway enrichment analysis using genes included in the top 200 miRNA-targets, Context-MMIA outperformed the four existing target prediction methods that we tested. In another test on whether prediction methods can re-produce experimentally validated target relationships, Context-MMIA outperformed the four existing target prediction methods. In summary, Context-MMIA allows the user to specify a context of the experimental data to predict miRNA targets, and we believe that Context-MMIA is very useful for predicting condition-specific miRNA targets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasch, James Jay
A method of resolving a balanced condition that generates control parameters for start-up and steady state operating points and various component and cycle performances for a closed split flow recompression cycle system. The method provides for improved control of a Brayton cycle thermal to electrical power conversion system. The method may also be used for system design, operational simulation and/or parameter prediction.
Wheeler, David C.; Archer, Kellie J.; Burstyn, Igor; Yu, Kai; Stewart, Patricia A.; Colt, Joanne S.; Baris, Dalsu; Karagas, Margaret R.; Schwenn, Molly; Johnson, Alison; Armenti, Karla; Silverman, Debra T.; Friesen, Melissa C.
2015-01-01
Objectives: To evaluate occupational exposures in case–control studies, exposure assessors typically review each job individually to assign exposure estimates. This process lacks transparency and does not provide a mechanism for recreating the decision rules in other studies. In our previous work, nominal (unordered categorical) classification trees (CTs) generally successfully predicted expert-assessed ordinal exposure estimates (i.e. none, low, medium, high) derived from occupational questionnaire responses, but room for improvement remained. Our objective was to determine if using recently developed ordinal CTs would improve the performance of nominal trees in predicting ordinal occupational diesel exhaust exposure estimates in a case–control study. Methods: We used one nominal and four ordinal CT methods to predict expert-assessed probability, intensity, and frequency estimates of occupational diesel exhaust exposure (each categorized as none, low, medium, or high) derived from questionnaire responses for the 14983 jobs in the New England Bladder Cancer Study. To replicate the common use of a single tree, we applied each method to a single sample of 70% of the jobs, using 15% to test and 15% to validate each method. To characterize variability in performance, we conducted a resampling analysis that repeated the sample draws 100 times. We evaluated agreement between the tree predictions and expert estimates using Somers’ d, which measures differences in terms of ordinal association between predicted and observed scores and can be interpreted similarly to a correlation coefficient. Results: From the resampling analysis, compared with the nominal tree, an ordinal CT method that used a quadratic misclassification function and controlled tree size based on total misclassification cost had a slightly better predictive performance that was statistically significant for the frequency metric (Somers’ d: nominal tree = 0.61; ordinal tree = 0.63) and similar performance for the probability (nominal = 0.65; ordinal = 0.66) and intensity (nominal = 0.65; ordinal = 0.65) metrics. The best ordinal CT predicted fewer cases of large disagreement with the expert assessments (i.e. no exposure predicted for a job with high exposure and vice versa) compared with the nominal tree across all of the exposure metrics. For example, the percent of jobs with expert-assigned high intensity of exposure that the model predicted as no exposure was 29% for the nominal tree and 22% for the best ordinal tree. Conclusions: The overall agreements were similar across CT models; however, the use of ordinal models reduced the magnitude of the discrepancy when disagreements occurred. As the best performing model can vary by situation, researchers should consider evaluating multiple CT methods to maximize the predictive performance within their data. PMID:25433003
Tsukiji, Jun; Cho, Soo Jung; Echevarria, Ghislaine C.; Kwon, Sophia; Joseph, Phillip; Schenck, Edward J.; Naveed, Bushra; Prezant, David J.; Rom, William N.; Schmidt, Ann Marie; Weiden, Michael D.; Nolan, Anna
2014-01-01
Rationale Metabolic syndrome, inflammatory and vascular injury markers measured in serum after WTC exposures predict abnormal FEV1. We hypothesized that elevated LPA levels predict FEV1
Kwon, Kideok; Yang, Jihoon; Yoo, Younghwan
2015-04-24
A number of research works has studied packet scheduling policies in energy scavenging wireless sensor networks, based on the predicted amount of harvested energy. Most of them aim to achieve energy neutrality, which means that an embedded system can operate perpetually while meeting application requirements. Unlike other renewable energy sources, solar energy has the feature of distinct periodicity in the amount of harvested energy over a day. Using this feature, this paper proposes a packet transmission control policy that can enhance the network performance while keeping sensor nodes alive. Furthermore, this paper suggests a novel solar energy prediction method that exploits the relation between cloudiness and solar radiation. The experimental results and analyses show that the proposed packet transmission policy outperforms others in terms of the deadline miss rate and data throughput. Furthermore, the proposed solar energy prediction method can predict more accurately than others by 6.92%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di, Sheng; Berrocal, Eduardo; Cappello, Franck
The silent data corruption (SDC) problem is attracting more and more attentions because it is expected to have a great impact on exascale HPC applications. SDC faults are hazardous in that they pass unnoticed by hardware and can lead to wrong computation results. In this work, we formulate SDC detection as a runtime one-step-ahead prediction method, leveraging multiple linear prediction methods in order to improve the detection results. The contributions are twofold: (1) we propose an error feedback control model that can reduce the prediction errors for different linear prediction methods, and (2) we propose a spatial-data-based even-sampling method tomore » minimize the detection overheads (including memory and computation cost). We implement our algorithms in the fault tolerance interface, a fault tolerance library with multiple checkpoint levels, such that users can conveniently protect their HPC applications against both SDC errors and fail-stop errors. We evaluate our approach by using large-scale traces from well-known, large-scale HPC applications, as well as by running those HPC applications on a real cluster environment. Experiments show that our error feedback control model can improve detection sensitivity by 34-189% for bit-flip memory errors injected with the bit positions in the range [20,30], without any degradation on detection accuracy. Furthermore, memory size can be reduced by 33% with our spatial-data even-sampling method, with only a slight and graceful degradation in the detection sensitivity.« less
Datamining approaches for modeling tumor control probability.
Naqa, Issam El; Deasy, Joseph O; Mu, Yi; Huang, Ellen; Hope, Andrew J; Lindsay, Patricia E; Apte, Aditya; Alaly, James; Bradley, Jeffrey D
2010-11-01
Tumor control probability (TCP) to radiotherapy is determined by complex interactions between tumor biology, tumor microenvironment, radiation dosimetry, and patient-related variables. The complexity of these heterogeneous variable interactions constitutes a challenge for building predictive models for routine clinical practice. We describe a datamining framework that can unravel the higher order relationships among dosimetric dose-volume prognostic variables, interrogate various radiobiological processes, and generalize to unseen data before when applied prospectively. Several datamining approaches are discussed that include dose-volume metrics, equivalent uniform dose, mechanistic Poisson model, and model building methods using statistical regression and machine learning techniques. Institutional datasets of non-small cell lung cancer (NSCLC) patients are used to demonstrate these methods. The performance of the different methods was evaluated using bivariate Spearman rank correlations (rs). Over-fitting was controlled via resampling methods. Using a dataset of 56 patients with primary NCSLC tumors and 23 candidate variables, we estimated GTV volume and V75 to be the best model parameters for predicting TCP using statistical resampling and a logistic model. Using these variables, the support vector machine (SVM) kernel method provided superior performance for TCP prediction with an rs=0.68 on leave-one-out testing compared to logistic regression (rs=0.4), Poisson-based TCP (rs=0.33), and cell kill equivalent uniform dose model (rs=0.17). The prediction of treatment response can be improved by utilizing datamining approaches, which are able to unravel important non-linear complex interactions among model variables and have the capacity to predict on unseen data for prospective clinical applications.
Salehifar, Mehdi; Moreno-Equilaz, Manuel
2016-01-01
Due to its fault tolerance, a multiphase brushless direct current (BLDC) motor can meet high reliability demand for application in electric vehicles. The voltage-source inverter (VSI) supplying the motor is subjected to open circuit faults. Therefore, it is necessary to design a fault-tolerant (FT) control algorithm with an embedded fault diagnosis (FD) block. In this paper, finite control set-model predictive control (FCS-MPC) is developed to implement the fault-tolerant control algorithm of a five-phase BLDC motor. The developed control method is fast, simple, and flexible. A FD method based on available information from the control block is proposed; this method is simple, robust to common transients in motor and able to localize multiple open circuit faults. The proposed FD and FT control algorithm are embedded in a five-phase BLDC motor drive. In order to validate the theory presented, simulation and experimental results are conducted on a five-phase two-level VSI supplying a five-phase BLDC motor. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Manktelow, Bradley N; Seaton, Sarah E; Evans, T Alun
2016-12-01
There is an increasing use of statistical methods, such as funnel plots, to identify poorly performing healthcare providers. Funnel plots comprise the construction of control limits around a benchmark and providers with outcomes falling outside the limits are investigated as potential outliers. The benchmark is usually estimated from observed data but uncertainty in this estimate is usually ignored when constructing control limits. In this paper, the use of funnel plots in the presence of uncertainty in the value of the benchmark is reviewed for outcomes from a Binomial distribution. Two methods to derive the control limits are shown: (i) prediction intervals; (ii) tolerance intervals Tolerance intervals formally include the uncertainty in the value of the benchmark while prediction intervals do not. The probability properties of 95% control limits derived using each method were investigated through hypothesised scenarios. Neither prediction intervals nor tolerance intervals produce funnel plot control limits that satisfy the nominal probability characteristics when there is uncertainty in the value of the benchmark. This is not necessarily to say that funnel plots have no role to play in healthcare, but that without the development of intervals satisfying the nominal probability characteristics they must be interpreted with care. © The Author(s) 2014.
Development of Predictive Energy Management Strategies for Hybrid Electric Vehicles
NASA Astrophysics Data System (ADS)
Baker, David
Studies have shown that obtaining and utilizing information about the future state of vehicles can improve vehicle fuel economy (FE). However, there has been a lack of research into the impact of real-world prediction error on FE improvements, and whether near-term technologies can be utilized to improve FE. This study seeks to research the effect of prediction error on FE. First, a speed prediction method is developed, and trained with real-world driving data gathered only from the subject vehicle (a local data collection method). This speed prediction method informs a predictive powertrain controller to determine the optimal engine operation for various prediction durations. The optimal engine operation is input into a high-fidelity model of the FE of a Toyota Prius. A tradeoff analysis between prediction duration and prediction fidelity was completed to determine what duration of prediction resulted in the largest FE improvement. Results demonstrate that 60-90 second predictions resulted in the highest FE improvement over the baseline, achieving up to a 4.8% FE increase. A second speed prediction method utilizing simulated vehicle-to-vehicle (V2V) communication was developed to understand if incorporating near-term technologies could be utilized to further improve prediction fidelity. This prediction method produced lower variation in speed prediction error, and was able to realize a larger FE improvement over the local prediction method for longer prediction durations, achieving up to 6% FE improvement. This study concludes that speed prediction and prediction-informed optimal vehicle energy management can produce FE improvements with real-world prediction error and drive cycle variability, as up to 85% of the FE benefit of perfect speed prediction was achieved with the proposed prediction methods.
Cross-organism learning method to discover new gene functionalities.
Domeniconi, Giacomo; Masseroli, Marco; Moro, Gianluca; Pinoli, Pietro
2016-04-01
Knowledge of gene and protein functions is paramount for the understanding of physiological and pathological biological processes, as well as in the development of new drugs and therapies. Analyses for biomedical knowledge discovery greatly benefit from the availability of gene and protein functional feature descriptions expressed through controlled terminologies and ontologies, i.e., of gene and protein biomedical controlled annotations. In the last years, several databases of such annotations have become available; yet, these valuable annotations are incomplete, include errors and only some of them represent highly reliable human curated information. Computational techniques able to reliably predict new gene or protein annotations with an associated likelihood value are thus paramount. Here, we propose a novel cross-organisms learning approach to reliably predict new functionalities for the genes of an organism based on the known controlled annotations of the genes of another, evolutionarily related and better studied, organism. We leverage a new representation of the annotation discovery problem and a random perturbation of the available controlled annotations to allow the application of supervised algorithms to predict with good accuracy unknown gene annotations. Taking advantage of the numerous gene annotations available for a well-studied organism, our cross-organisms learning method creates and trains better prediction models, which can then be applied to predict new gene annotations of a target organism. We tested and compared our method with the equivalent single organism approach on different gene annotation datasets of five evolutionarily related organisms (Homo sapiens, Mus musculus, Bos taurus, Gallus gallus and Dictyostelium discoideum). Results show both the usefulness of the perturbation method of available annotations for better prediction model training and a great improvement of the cross-organism models with respect to the single-organism ones, without influence of the evolutionary distance between the considered organisms. The generated ranked lists of reliably predicted annotations, which describe novel gene functionalities and have an associated likelihood value, are very valuable both to complement available annotations, for better coverage in biomedical knowledge discovery analyses, and to quicken the annotation curation process, by focusing it on the prioritized novel annotations predicted. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Zhou, Weiqiang; Sherwood, Ben; Ji, Hongkai
2017-01-01
Technological advances have led to an explosive growth of high-throughput functional genomic data. Exploiting the correlation among different data types, it is possible to predict one functional genomic data type from other data types. Prediction tools are valuable in understanding the relationship among different functional genomic signals. They also provide a cost-efficient solution to inferring the unknown functional genomic profiles when experimental data are unavailable due to resource or technological constraints. The predicted data may be used for generating hypotheses, prioritizing targets, interpreting disease variants, facilitating data integration, quality control, and many other purposes. This article reviews various applications of prediction methods in functional genomics, discusses analytical challenges, and highlights some common and effective strategies used to develop prediction methods for functional genomic data. PMID:28076869
Boundary layer control for airships
NASA Technical Reports Server (NTRS)
Pake, F. A.; Pipitone, S. J.
1975-01-01
An investigation is summarized of the aerodynamic principle of boundary layer control for nonrigid LTA craft. The project included a wind tunnel test on a BLC body of revolution at zero angle of attack. Theoretical analysis is shown to be in excellent agreement with the test data. Methods are evolved for predicting the boundary layer development on a body of revolution and the suction pumping and propulsive power requirements. These methods are used to predict the performance characteristics of a full-scale airship. The analysis indicates that propulsive power reductions of 15 to 25 percent and endurance improvements of 20 to 40 percent may be realized in employing boundary-layer control to nonrigid airships.
Kiiski, Hanni; Jollans, Lee; Donnchadha, Seán Ó; Nolan, Hugh; Lonergan, Róisín; Kelly, Siobhán; O'Brien, Marie Claire; Kinsella, Katie; Bramham, Jessica; Burke, Teresa; Hutchinson, Michael; Tubridy, Niall; Reilly, Richard B; Whelan, Robert
2018-05-01
Event-related potentials (ERPs) show promise to be objective indicators of cognitive functioning. The aim of the study was to examine if ERPs recorded during an oddball task would predict cognitive functioning and information processing speed in Multiple Sclerosis (MS) patients and controls at the individual level. Seventy-eight participants (35 MS patients, 43 healthy age-matched controls) completed visual and auditory 2- and 3-stimulus oddball tasks with 128-channel EEG, and a neuropsychological battery, at baseline (month 0) and at Months 13 and 26. ERPs from 0 to 700 ms and across the whole scalp were transformed into 1728 individual spatio-temporal datapoints per participant. A machine learning method that included penalized linear regression used the entire spatio-temporal ERP to predict composite scores of both cognitive functioning and processing speed at baseline (month 0), and months 13 and 26. The results showed ERPs during the visual oddball tasks could predict cognitive functioning and information processing speed at baseline and a year later in a sample of MS patients and healthy controls. In contrast, ERPs during auditory tasks were not predictive of cognitive performance. These objective neurophysiological indicators of cognitive functioning and processing speed, and machine learning methods that can interrogate high-dimensional data, show promise in outcome prediction.
ERIC Educational Resources Information Center
Tomasone, Jennifer R.; Meikle, Natasha; Bray, Steven R.
2015-01-01
Objective: To examine the independent and combined effects of Theory of Planned Behavior (TPB) variables and trait self-control (TSC) in the prediction of fruit and vegetable consumption (FVC) among first-year university students. Participants: Seventy-six first-year undergraduate university students. Methods: In their first week of class…
NASA Astrophysics Data System (ADS)
Mu, G. Y.; Mi, X. Z.; Wang, F.
2018-01-01
The high temperature low cycle fatigue tests of TC4 titanium alloy and TC11 titanium alloy are carried out under strain controlled. The relationships between cyclic stress-life and strain-life are analyzed. The high temperature low cycle fatigue life prediction model of two kinds of titanium alloys is established by using Manson-Coffin method. The relationship between failure inverse number and plastic strain range presents nonlinear in the double logarithmic coordinates. Manson-Coffin method assumes that they have linear relation. Therefore, there is bound to be a certain prediction error by using the Manson-Coffin method. In order to solve this problem, a new method based on exponential function is proposed. The results show that the fatigue life of the two kinds of titanium alloys can be predicted accurately and effectively by using these two methods. Prediction accuracy is within ±1.83 times scatter zone. The life prediction capability of new methods based on exponential function proves more effective and accurate than Manson-Coffin method for two kinds of titanium alloys. The new method based on exponential function can give better fatigue life prediction results with the smaller standard deviation and scatter zone than Manson-Coffin method. The life prediction results of two methods for TC4 titanium alloy prove better than TC11 titanium alloy.
Impact of active controls technology on structural integrity
NASA Technical Reports Server (NTRS)
Noll, Thomas; Austin, Edward; Donley, Shawn; Graham, George; Harris, Terry
1991-01-01
This paper summarizes the findings of The Technical Cooperation Program to assess the impact of active controls technology on the structural integrity of aeronautical vehicles and to evaluate the present state-of-the-art for predicting the loads caused by a flight-control system modification and the resulting change in the fatigue life of the flight vehicle. The potential for active controls to adversely affect structural integrity is described, and load predictions obtained using two state-of-the-art analytical methods are given.
Predictive Thermal Control Applied to HabEx
NASA Technical Reports Server (NTRS)
Brooks, Thomas E.
2017-01-01
Exoplanet science can be accomplished with a telescope that has an internal coronagraph or with an external starshade. An internal coronagraph architecture requires extreme wavefront stability (10 pm change/10 minutes for 10(exp -10) contrast), so every source of wavefront error (WFE) must be controlled. Analysis has been done to estimate the thermal stability required to meet the wavefront stability requirement. This paper illustrates the potential of a new thermal control method called predictive thermal control (PTC) to achieve the required thermal stability. A simple development test using PTC indicates that PTC may meet the thermal stability requirements. Further testing of the PTC method in flight-like environments will be conducted in the X-ray and Cryogenic Facility (XRCF) at Marshall Space Flight Center (MSFC).
Predictive thermal control applied to HabEx
NASA Astrophysics Data System (ADS)
Brooks, Thomas E.
2017-09-01
Exoplanet science can be accomplished with a telescope that has an internal coronagraph or with an external starshade. An internal coronagraph architecture requires extreme wavefront stability (10 pm change/10 minutes for 10-10 contrast), so every source of wavefront error (WFE) must be controlled. Analysis has been done to estimate the thermal stability required to meet the wavefront stability requirement. This paper illustrates the potential of a new thermal control method called predictive thermal control (PTC) to achieve the required thermal stability. A simple development test using PTC indicates that PTC may meet the thermal stability requirements. Further testing of the PTC method in flight-like environments will be conducted in the X-ray and Cryogenic Facility (XRCF) at Marshall Space Flight Center (MSFC).
Traffic Predictive Control: Case Study and Evaluation
DOT National Transportation Integrated Search
2017-06-26
This project developed a quantile regression method for predicting future traffic flow at a signalized intersection by combining both historical and real-time data. The algorithm exploits nonlinear correlations in historical measurements and efficien...
NASA Technical Reports Server (NTRS)
Groves, Curtis Edward
2014-01-01
Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This paper describes an approach to quantify the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft without the use of test data. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional "validation by test only" mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions. Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computational Fluid Dynamics can be used to verify these requirements; however, the model must be validated by test data. This research includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available and open source solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT, STARCCM+, and OPENFOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid Dynamics model using the methodology found in "Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations". This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics predictions. The method accounts for all uncertainty terms from both numerical and input variables. Objective three is to compile a table of uncertainty parameters that could be used to estimate the error in a Computational Fluid Dynamics model of the Environmental Control System /spacecraft system. Previous studies have looked at the uncertainty in a Computational Fluid Dynamics model for a single output variable at a single point, for example the re-attachment length of a backward facing step. For the flow regime being analyzed (turbulent, three-dimensional, incompressible), the error at a single point can propagate into the solution both via flow physics and numerical methods. Calculating the uncertainty in using Computational Fluid Dynamics to accurately predict airflow speeds around encapsulated spacecraft in is imperative to the success of future missions.
NASA Technical Reports Server (NTRS)
Groves, Curtis Edward
2014-01-01
Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This paper describes an approach to quantify the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft without the use of test data. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional validation by test only mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions.Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computational Fluid Dynamics can be used to verify these requirements; however, the model must be validated by test data. This research includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available and open source solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT, STARCCM+, and OPENFOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid Dynamics model using the methodology found in Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations. This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics predictions. The method accounts for all uncertainty terms from both numerical and input variables. Objective three is to compile a table of uncertainty parameters that could be used to estimate the error in a Computational Fluid Dynamics model of the Environmental Control System spacecraft system.Previous studies have looked at the uncertainty in a Computational Fluid Dynamics model for a single output variable at a single point, for example the re-attachment length of a backward facing step. For the flow regime being analyzed (turbulent, three-dimensional, incompressible), the error at a single point can propagate into the solution both via flow physics and numerical methods. Calculating the uncertainty in using Computational Fluid Dynamics to accurately predict airflow speeds around encapsulated spacecraft in is imperative to the success of future missions.
NASA Technical Reports Server (NTRS)
Groves, Curtis E.
2013-01-01
Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This proposal describes an approach to validate the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft. The research described here is absolutely cutting edge. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional"validation by test only'' mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions. Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computationaf Fluid Dynamics can be used to veritY these requirements; however, the model must be validated by test data. The proposed research project includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT and OPEN FOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid . . . Dynamics model using the methodology found in "Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations". This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics predictions. The method accounts for all uncertainty terms from both numerical and input variables. Objective three is to compile a table of uncertainty parameters that could be used to estimate the error in a Computational Fluid Dynamics model of the Environmental Control System /spacecraft system. Previous studies have looked at the uncertainty in a Computational Fluid Dynamics model for a single output variable at a single point, for example the re-attachment length of a backward facing step. To date, the author is the only person to look at the uncertainty in the entire computational domain. For the flow regime being analyzed (turbulent, threedimensional, incompressible), the error at a single point can propagate into the solution both via flow physics and numerical methods. Calculating the uncertainty in using Computational Fluid Dynamics to accurately predict airflow speeds around encapsulated spacecraft in is imperative to the success of future missions.
Absolute Stability Analysis of a Phase Plane Controlled Spacecraft
NASA Technical Reports Server (NTRS)
Jang, Jiann-Woei; Plummer, Michael; Bedrossian, Nazareth; Hall, Charles; Jackson, Mark; Spanos, Pol
2010-01-01
Many aerospace attitude control systems utilize phase plane control schemes that include nonlinear elements such as dead zone and ideal relay. To evaluate phase plane control robustness, stability margin prediction methods must be developed. Absolute stability is extended to predict stability margins and to define an abort condition. A constrained optimization approach is also used to design flex filters for roll control. The design goal is to optimize vehicle tracking performance while maintaining adequate stability margins. Absolute stability is shown to provide satisfactory stability constraints for the optimization.
Methods of Si based ceramic components volatilization control in a gas turbine engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia-Crespo, Andres Jose; Delvaux, John; Dion Ouellet, Noemie
A method of controlling volatilization of silicon based components in a gas turbine engine includes measuring, estimating and/or predicting a variable related to operation of the gas turbine engine; correlating the variable to determine an amount of silicon to control volatilization of the silicon based components in the gas turbine engine; and injecting silicon into the gas turbine engine to control volatilization of the silicon based components. A gas turbine with a compressor, combustion system, turbine section and silicon injection system may be controlled by a controller that implements the control method.
Predictive functional control for active queue management in congested TCP/IP networks.
Bigdeli, N; Haeri, M
2009-01-01
Predictive functional control (PFC) as a new active queue management (AQM) method in dynamic TCP networks supporting explicit congestion notification (ECN) is proposed. The ability of the controller in handling system delay along with its simplicity and low computational load makes PFC a privileged AQM method in the high speed networks. Besides, considering the disturbance term (which represents model/process mismatches, external disturbances, and existing noise) in the control formulation adds some level of robustness into the PFC-AQM controller. This is an important and desired property in the control of dynamically-varying computer networks. In this paper, the controller is designed based on a small signal linearized fluid-flow model of the TCP/AQM networks. Then, closed-loop transfer function representation of the system is derived to analyze the robustness with respect to the network and controller parameters. The analytical as well as the packet-level ns-2 simulation results show the out-performance of the developed controller for both queue regulation and resource utilization. Fast response, low queue fluctuations (and consequently low delay jitter), high link utilization, good disturbance rejection, scalability, and low packet marking probability are other features of the developed method with respect to other well-known AQM methods such as RED, PI, and REM which are also simulated for comparison.
En Route Spacing System and Method
NASA Technical Reports Server (NTRS)
Erzberger, Heinz (Inventor); Green, Steven M. (Inventor)
2002-01-01
A method of and computer software for minimizing aircraft deviations needed to comply with an en route miles-in-trail spacing requirement imposed during air traffic control operations via establishing a spacing reference geometry, predicting spatial locations of a plurality of aircraft at a predicted time of intersection of a path of a first of said plurality of aircraft with the spacing reference geometry, and determining spacing of each of the plurality of aircraft based on the predicted spatial locations.
En route spacing system and method
NASA Technical Reports Server (NTRS)
Erzberger, Heinz (Inventor); Green, Steven M. (Inventor)
2002-01-01
A method of and computer software for minimizing aircraft deviations needed to comply with an en route miles-in-trail spacing requirement imposed during air traffic control operations via establishing a spacing reference geometry, predicting spatial locations of a plurality of aircraft at a predicted time of intersection of a path of a first of said plurality of aircraft with the spacing reference geometry, and determining spacing of each of the plurality of aircraft based on the predicted spatial locations.
Predicting energy savings attributed to daylighting
NASA Astrophysics Data System (ADS)
Robbins, C. L.
1983-11-01
A method for estimating a building's energy savings attributable to daylighting by predicting the percentage of the year that the electric lighting system is not in use is described. This method depends upon the particular control stragegy chosen, a standard work year, and the amount of light (as a daylight factor, DF) reaching any given station in the building.
Method for detecting gas turbine engine flashback
Singh, Kapil Kumar; Varatharajan, Balachandar; Kraemer, Gilbert Otto; Yilmaz, Ertan; Lacy, Benjamin Paul
2012-09-04
A method for monitoring and controlling a gas turbine, comprises predicting frequencies of combustion dynamics in a combustor using operating conditions of a gas turbine, receiving a signal from a sensor that is indicative of combustion dynamics in the combustor, and detecting a flashback if a frequency of the received signal does not correspond to the predicted frequencies.
Prediction of forces and moments for flight vehicle control effectors: Workplan
NASA Technical Reports Server (NTRS)
Maughmer, Mark D.
1989-01-01
Two research activities directed at hypersonic vehicle configurations are currently underway. The first involves the validation of a number of classical local surface inclination methods commonly employed in preliminary design studies of hypersonic flight vehicles. Unlike studies aimed at validating such methods for predicting overall vehicle aerodynamics, this effort emphasizes validating the prediction of forces and moments for flight control studies. Specifically, several vehicle configurations for which experimental or flight-test data are available are being examined. By comparing the theoretical predictions with these data, the strengths and weaknesses of the local surface inclination methods can be ascertained and possible improvements suggested. The second research effort, of significance to control during take-off and landing of most proposed hypersonic vehicle configurations, is aimed at determining the change due to ground effect in control effectiveness of highly swept delta planforms. Central to this research is the development of a vortex-lattice computer program which incorporates an unforced trailing vortex sheet and an image ground plane. With this program, the change in pitching moment of the basic vehicle due to ground proximity, and whether or not there is sufficient control power available to trim, can be determined. In addition to the current work, two different research directions are suggested for future study. The first is aimed at developing an interactive computer program to assist the flight controls engineer in determining the forces and moments generated by different types of control effectors that might be used on hypersonic vehicles. The first phase of this work would deal in the subsonic portion of the flight envelope, while later efforts would explore the supersonic/hypersonic flight regimes. The second proposed research direction would explore methods for determining the aerodynamic trim drag of a generic hypersonic flight vehicle and ways in which it can be minimized through vehicle design and trajectory optimization.
Prediction-Correction Algorithms for Time-Varying Constrained Optimization
Simonetto, Andrea; Dall'Anese, Emiliano
2017-07-26
This article develops online algorithms to track solutions of time-varying constrained optimization problems. Particularly, resembling workhorse Kalman filtering-based approaches for dynamical systems, the proposed methods involve prediction-correction steps to provably track the trajectory of the optimal solutions of time-varying convex problems. The merits of existing prediction-correction methods have been shown for unconstrained problems and for setups where computing the inverse of the Hessian of the cost function is computationally affordable. This paper addresses the limitations of existing methods by tackling constrained problems and by designing first-order prediction steps that rely on the Hessian of the cost function (and do notmore » require the computation of its inverse). In addition, the proposed methods are shown to improve the convergence speed of existing prediction-correction methods when applied to unconstrained problems. Numerical simulations corroborate the analytical results and showcase performance and benefits of the proposed algorithms. A realistic application of the proposed method to real-time control of energy resources is presented.« less
Transient flow thrust prediction for an ejector propulsion concept
NASA Technical Reports Server (NTRS)
Drummond, Colin K.
1989-01-01
A method for predicting transient thrust augmenting ejector characteristics is introduced. The analysis blends classic self-similar turbulent jet descriptions with a mixing region control volume analysis to predict transient effects in a new way. Details of the theoretical foundation, the solution algorithm, and sample calculations are given.
Adaptive State Predictor Based Human Operator Modeling on Longitudinal and Lateral Control
NASA Technical Reports Server (NTRS)
Trujillo, Anna C.; Gregory, Irene M.; Hempley, Lucas E.
2015-01-01
Control-theoretic modeling of the human operator dynamic behavior in manual control tasks has a long and rich history. In the last two decades, there has been a renewed interest in modeling the human operator. There has also been significant work on techniques used to identify the pilot model of a given structure. The purpose of this research is to attempt to go beyond pilot identification based on collected experimental data and to develop a predictor of pilot behavior. An experiment was conducted to categorize these interactions of the pilot with an adaptive controller compensating during control surface failures. A general linear in-parameter model structure is used to represent a pilot. Three different estimation methods are explored. A gradient descent estimator (GDE), a least squares estimator with exponential forgetting (LSEEF), and a least squares estimator with bounded gain forgetting (LSEBGF) used the experiment data to predict pilot stick input. Previous results have found that the GDE and LSEEF methods are fairly accurate in predicting longitudinal stick input from commanded pitch. This paper discusses the accuracy of each of the three methods - GDE, LSEEF, and LSEBGF - to predict both pilot longitudinal and lateral stick input from the flight director's commanded pitch and bank attitudes.
COMSAC: Computational Methods for Stability and Control. Part 2
NASA Technical Reports Server (NTRS)
Fremaux, C. Michael (Compiler); Hall, Robert M. (Compiler)
2004-01-01
The unprecedented advances being made in computational fluid dynamic (CFD) technology have demonstrated the powerful capabilities of codes in applications to civil and military aircraft. Used in conjunction with wind-tunnel and flight investigations, many codes are now routinely used by designers in diverse applications such as aerodynamic performance predictions and propulsion integration. Typically, these codes are most reliable for attached, steady, and predominantly turbulent flows. As a result of increasing reliability and confidence in CFD, wind-tunnel testing for some new configurations has been substantially reduced in key areas, such as wing trade studies for mission performance guarantees. Interest is now growing in the application of computational methods to other critical design challenges. One of the most important disciplinary elements for civil and military aircraft is prediction of stability and control characteristics. CFD offers the potential for significantly increasing the basic understanding, prediction, and control of flow phenomena associated with requirements for satisfactory aircraft handling characteristics.
Job Design and Ethnic Differences in Working Women’s Physical Activity
Grzywacz, Joseph G.; Crain, A. Lauren; Martinson, Brian C.; Quandt, Sara A.
2014-01-01
Objective To document the role job control and schedule control play in shaping women’s physical activity, and how it delineates educational and racial variability in associations of job and social control with physical activity. Methods Prospective data were obtained from a community-based sample of working women (N = 302). Validated instruments measured job control and schedule control. Steps per day were assessed using New Lifestyles 800 activity monitors. Results Greater job control predicted more steps per day, whereas greater schedule control predicted fewer steps. Small indirect associations between ethnicity and physical activity were observed among women with a trade school degree or less but not for women with a college degree. Conclusions Low job control created barriers to physical activity among working women with a trade school degree or less. Greater schedule control predicted less physical activity, suggesting women do not use time “created” by schedule flexibility for personal health enhancement. PMID:24034681
NASA Astrophysics Data System (ADS)
Zakaria, M. A.; Majeed, A. P. P. A.; Taha, Z.; Alim, M. M.; Baarath, K.
2018-03-01
The movement of a lower limb exoskeleton requires a reasonably accurate control method to allow for an effective gait therapy session to transpire. Trajectory tracking is a nontrivial means of passive rehabilitation technique to correct the motion of the patients’ impaired limb. This paper proposes an inverse predictive model that is coupled together with the forward kinematics of the exoskeleton to estimate the behaviour of the system. A conventional PID control system is used to converge the required joint angles based on the desired input from the inverse predictive model. It was demonstrated through the present study, that the inverse predictive model is capable of meeting the trajectory demand with acceptable error tolerance. The findings further suggest the ability of the predictive model of the exoskeleton to predict a correct joint angle command to the system.
Likelihood of achieving air quality targets under model uncertainties.
Digar, Antara; Cohan, Daniel S; Cox, Dennis D; Kim, Byeong-Uk; Boylan, James W
2011-01-01
Regulatory attainment demonstrations in the United States typically apply a bright-line test to predict whether a control strategy is sufficient to attain an air quality standard. Photochemical models are the best tools available to project future pollutant levels and are a critical part of regulatory attainment demonstrations. However, because photochemical models are uncertain and future meteorology is unknowable, future pollutant levels cannot be predicted perfectly and attainment cannot be guaranteed. This paper introduces a computationally efficient methodology for estimating the likelihood that an emission control strategy will achieve an air quality objective in light of uncertainties in photochemical model input parameters (e.g., uncertain emission and reaction rates, deposition velocities, and boundary conditions). The method incorporates Monte Carlo simulations of a reduced form model representing pollutant-precursor response under parametric uncertainty to probabilistically predict the improvement in air quality due to emission control. The method is applied to recent 8-h ozone attainment modeling for Atlanta, Georgia, to assess the likelihood that additional controls would achieve fixed (well-defined) or flexible (due to meteorological variability and uncertain emission trends) targets of air pollution reduction. The results show that in certain instances ranking of the predicted effectiveness of control strategies may differ between probabilistic and deterministic analyses.
van Luijtelaar, Gilles; Lüttjohann, Annika; Makarov, Vladimir V; Maksimenko, Vladimir A; Koronovskii, Alexei A; Hramov, Alexander E
2016-02-15
Genetic rat models for childhood absence epilepsy have become instrumental in developing theories on the origin of absence epilepsy, the evaluation of new and experimental treatments, as well as in developing new methods for automatic seizure detection, prediction, and/or interference of seizures. Various methods for automated off and on-line analyses of ECoG in rodent models are reviewed, as well as data on how to interfere with the spike-wave discharges by different types of invasive and non-invasive electrical, magnetic, and optical brain stimulation. Also a new method for seizure prediction is proposed. Many selective and specific methods for off- and on-line spike-wave discharge detection seem excellent, with possibilities to overcome the issue of individual differences. Moreover, electrical deep brain stimulation is rather effective in interrupting ongoing spike-wave discharges with low stimulation intensity. A network based method is proposed for absence seizures prediction with a high sensitivity but a low selectivity. Solutions that prevent false alarms, integrated in a closed loop brain stimulation system open the ways for experimental seizure control. The presence of preictal cursor activity detected with state of the art time frequency and network analyses shows that spike-wave discharges are not caused by sudden and abrupt transitions but that there are detectable dynamic events. Their changes in time-space-frequency characteristics might yield new options for seizure prediction and seizure control. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Bobbitt, P. J.; Manro, M. E.; Kulfan, R. M.
1980-01-01
Wind tunnel tests of an arrow wing body configuration consisting of flat, twisted, and cambered twisted wings were conducted at Mach numbers from 0.40 to 2.50 to provide an experimental data base for comparison with theoretical methods. A variety of leading and trailing edge control surface deflections were included in these tests, and in addition, the cambered twisted wing was tested with an outboard vertical fin to determine its effect on wing and control surface loads. Theory experiment comparisons show that current state of the art linear and nonlinear attached flow methods were adequate at small angles of attack typical of cruise conditions. The incremental effects of outboard fin, wing twist, and wing camber are most accurately predicted by the advanced panel method PANAIR. Results of the advanced panel separated flow method, obtained with an early version of the program, show promise that accurate detailed pressure predictions may soon be possible for an aeroelasticity deformed wing at high angles of attack.
Method of controlling temperature of a thermoelectric generator in an exhaust system
Prior, Gregory P; Reynolds, Michael G; Cowgill, Joshua D
2013-05-21
A method of controlling the temperature of a thermoelectric generator (TEG) in an exhaust system of an engine is provided. The method includes determining the temperature of the heated side of the TEG, determining exhaust gas flow rate through the TEG, and determining the exhaust gas temperature through the TEG. A rate of change in temperature of the heated side of the TEG is predicted based on the determined temperature, the determined exhaust gas flow rate, and the determined exhaust gas temperature through the TEG. Using the predicted rate of change of temperature of the heated side, exhaust gas flow rate through the TEG is calculated that will result in a maximum temperature of the heated side of the TEG less than a predetermined critical temperature given the predicted rate of change in temperature of the heated side of the TEG. A corresponding apparatus is provided.
A support vector machine based control application to the experimental three-tank system.
Iplikci, Serdar
2010-07-01
This paper presents a support vector machine (SVM) approach to generalized predictive control (GPC) of multiple-input multiple-output (MIMO) nonlinear systems. The possession of higher generalization potential and at the same time avoidance of getting stuck into the local minima have motivated us to employ SVM algorithms for modeling MIMO systems. Based on the SVM model, detailed and compact formulations for calculating predictions and gradient information, which are used in the computation of the optimal control action, are given in the paper. The proposed MIMO SVM-based GPC method has been verified on an experimental three-tank liquid level control system. Experimental results have shown that the proposed method can handle the control task successfully for different reference trajectories. Moreover, a detailed discussion on data gathering, model selection and effects of the control parameters have been given in this paper. 2010 ISA. Published by Elsevier Ltd. All rights reserved.
Optimal Predictive Control for Path Following of a Full Drive-by-Wire Vehicle at Varying Speeds
NASA Astrophysics Data System (ADS)
SONG, Pan; GAO, Bolin; XIE, Shugang; FANG, Rui
2017-05-01
The current research of the global chassis control problem for the full drive-by-wire vehicle focuses on the control allocation (CA) of the four-wheel-distributed traction/braking/steering systems. However, the path following performance and the handling stability of the vehicle can be enhanced a step further by automatically adjusting the vehicle speed to the optimal value. The optimal solution for the combined longitudinal and lateral motion control (MC) problem is given. First, a new variable step-size spatial transformation method is proposed and utilized in the prediction model to derive the dynamics of the vehicle with respect to the road, such that the tracking errors can be explicitly obtained over the prediction horizon at varying speeds. Second, a nonlinear model predictive control (NMPC) algorithm is introduced to handle the nonlinear coupling between any two directions of the vehicular planar motion and computes the sequence of the optimal motion states for following the desired path. Third, a hierarchical control structure is proposed to separate the motion controller into a NMPC based path planner and a terminal sliding mode control (TSMC) based path follower. As revealed through off-line simulations, the hierarchical methodology brings nearly 1700% improvement in computational efficiency without loss of control performance. Finally, the control algorithm is verified through a hardware in-the-loop simulation system. Double-lane-change (DLC) test results show that by using the optimal predictive controller, the root-mean-square (RMS) values of the lateral deviations and the orientation errors can be reduced by 41% and 30%, respectively, comparing to those by the optimal preview acceleration (OPA) driver model with the non-preview speed-tracking method. Additionally, the average vehicle speed is increased by 0.26 km/h with the peak sideslip angle suppressed to 1.9°. This research proposes a novel motion controller, which provides the full drive-by-wire vehicle with better lane-keeping and collision-avoidance capabilities during autonomous driving.
NASA Astrophysics Data System (ADS)
TayyebTaher, M.; Esmaeilzadeh, S. Majid
2017-07-01
This article presents an application of Model Predictive Controller (MPC) to the attitude control of a geostationary flexible satellite. SIMO model has been used for the geostationary satellite, using the Lagrange equations. Flexibility is also included in the modelling equations. The state space equations are expressed in order to simplify the controller. Naturally there is no specific tuning rule to find the best parameters of an MPC controller which fits the desired controller. Being an intelligence method for optimizing problem, Genetic Algorithm has been used for optimizing the performance of MPC controller by tuning the controller parameter due to minimum rise time, settling time, overshoot of the target point of the flexible structure and its mode shape amplitudes to make large attitude maneuvers possible. The model included geosynchronous orbit environment and geostationary satellite parameters. The simulation results of the flexible satellite with attitude maneuver shows the efficiency of proposed optimization method in comparison with LQR optimal controller.
A predictive control framework for optimal energy extraction of wind farms
NASA Astrophysics Data System (ADS)
Vali, M.; van Wingerden, J. W.; Boersma, S.; Petrović, V.; Kühn, M.
2016-09-01
This paper proposes an adjoint-based model predictive control for optimal energy extraction of wind farms. It employs the axial induction factor of wind turbines to influence their aerodynamic interactions through the wake. The performance index is defined here as the total power production of the wind farm over a finite prediction horizon. A medium-fidelity wind farm model is utilized to predict the inflow propagation in advance. The adjoint method is employed to solve the formulated optimization problem in a cost effective way and the first part of the optimal solution is implemented over the control horizon. This procedure is repeated at the next controller sample time providing the feedback into the optimization. The effectiveness and some key features of the proposed approach are studied for a two turbine test case through simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bickmore, Barry R.; Rosso, Kevin M.; Tadanier, Christopher J.
2006-08-15
In a previous contribution, we outlined a method for predicting (hydr)oxy-acid and oxide surface acidity constants based on three main factors: bond valence, Me?O bond ionicity, and molecular shape. Here electrostatics calculations and ab initio molecular dynamics simulations are used to qualitatively show that Me?O bond ionicity controls the extent to which the electrostatic work of proton removal departs from ideality, bond valence controls the extent of solvation of individual functional groups, and bond valence and molecular shape controls local dielectric response. These results are consistent with our model of acidity, but completely at odds with other methods of predictingmore » acidity constants for use in multisite complexation models. In particular, our ab initio molecular dynamics simulations of solvated monomers clearly indicate that hydrogen bonding between (hydr)oxo-groups and water molecules adjusts to obey the valence sum rule, rather than maintaining a fixed valence based on the coordination of the oxygen atom as predicted by the standard MUSIC model.« less
Bick, Christian; Kolodziejski, Christoph; Timme, Marc
2014-09-01
Predictive feedback control is an easy-to-implement method to stabilize unknown unstable periodic orbits in chaotic dynamical systems. Predictive feedback control is severely limited because asymptotic convergence speed decreases with stronger instabilities which in turn are typical for larger target periods, rendering it harder to effectively stabilize periodic orbits of large period. Here, we study stalled chaos control, where the application of control is stalled to make use of the chaotic, uncontrolled dynamics, and introduce an adaptation paradigm to overcome this limitation and speed up convergence. This modified control scheme is not only capable of stabilizing more periodic orbits than the original predictive feedback control but also speeds up convergence for typical chaotic maps, as illustrated in both theory and application. The proposed adaptation scheme provides a way to tune parameters online, yielding a broadly applicable, fast chaos control that converges reliably, even for periodic orbits of large period.
Braun, Alexandra C; Ilko, David; Merget, Benjamin; Gieseler, Henning; Germershaus, Oliver; Holzgrabe, Ulrike; Meinel, Lorenz
2015-08-01
This manuscript addresses the capability of compendial methods in controlling polysorbate 80 (PS80) functionality. Based on the analysis of sixteen batches, functionality related characteristics (FRC) including critical micelle concentration (CMC), cloud point, hydrophilic-lipophilic balance (HLB) value and micelle molecular weight were correlated to chemical composition including fatty acids before and after hydrolysis, content of non-esterified polyethylene glycols and sorbitan polyethoxylates, sorbitan- and isosorbide polyethoxylate fatty acid mono- and diesters, polyoxyethylene diesters, and peroxide values. Batches from some suppliers had a high variability in functionality related characteristic (FRC), questioning the ability of the current monograph in controlling these. Interestingly, the combined use of the input parameters oleic acid content and peroxide value - both of which being monographed methods - resulted in a model adequately predicting CMC. Confining the batches to those complying with specifications for peroxide value proved oleic acid content alone as being predictive for CMC. Similarly, a four parameter model based on chemical analyses alone was instrumental in predicting the molecular weight of PS80 micelles. Improved models based on analytical outcome from fingerprint analyses are also presented. A road map controlling PS80 batches with respect to FRC and based on chemical analyses alone is provided for the formulator. Copyright © 2014 Elsevier B.V. All rights reserved.
A Novel Calibration-Minimum Method for Prediction of Mole Fraction in Non-Ideal Mixture.
Shibayama, Shojiro; Kaneko, Hiromasa; Funatsu, Kimito
2017-04-01
This article proposes a novel concentration prediction model that requires little training data and is useful for rapid process understanding. Process analytical technology is currently popular, especially in the pharmaceutical industry, for enhancement of process understanding and process control. A calibration-free method, iterative optimization technology (IOT), was proposed to predict pure component concentrations, because calibration methods such as partial least squares, require a large number of training samples, leading to high costs. However, IOT cannot be applied to concentration prediction in non-ideal mixtures because its basic equation is derived from the Beer-Lambert law, which cannot be applied to non-ideal mixtures. We proposed a novel method that realizes prediction of pure component concentrations in mixtures from a small number of training samples, assuming that spectral changes arising from molecular interactions can be expressed as a function of concentration. The proposed method is named IOT with virtual molecular interaction spectra (IOT-VIS) because the method takes spectral change as a virtual spectrum x nonlin,i into account. It was confirmed through the two case studies that the predictive accuracy of IOT-VIS was the highest among existing IOT methods.
Initial Evaluations of LoC Prediction Algorithms Using the NASA Vertical Motion Simulator
NASA Technical Reports Server (NTRS)
Krishnakumar, Kalmanje; Stepanyan, Vahram; Barlow, Jonathan; Hardy, Gordon; Dorais, Greg; Poolla, Chaitanya; Reardon, Scott; Soloway, Donald
2014-01-01
Flying near the edge of the safe operating envelope is an inherently unsafe proposition. Edge of the envelope here implies that small changes or disturbances in system state or system dynamics can take the system out of the safe envelope in a short time and could result in loss-of-control events. This study evaluated approaches to predicting loss-of-control safety margins as the aircraft gets closer to the edge of the safe operating envelope. The goal of the approach is to provide the pilot aural, visual, and tactile cues focused on maintaining the pilot's control action within predicted loss-of-control boundaries. Our predictive architecture combines quantitative loss-of-control boundaries, an adaptive prediction method to estimate in real-time Markov model parameters and associated stability margins, and a real-time data-based predictive control margins estimation algorithm. The combined architecture is applied to a nonlinear transport class aircraft. Evaluations of various feedback cues using both test and commercial pilots in the NASA Ames Vertical Motion-base Simulator (VMS) were conducted in the summer of 2013. The paper presents results of this evaluation focused on effectiveness of these approaches and the cues in preventing the pilots from entering a loss-of-control event.
Control and prediction components of movement planning in stuttering vs. nonstuttering adults
Daliri, Ayoub; Prokopenko, Roman A.; Flanagan, J. Randall; Max, Ludo
2014-01-01
Purpose Stuttering individuals show speech and nonspeech sensorimotor deficiencies. To perform accurate movements, the sensorimotor system needs to generate appropriate control signals and correctly predict their sensory consequences. Using a reaching task, we examined the integrity of these control and prediction components, separately, for movements unrelated to the speech motor system. Method Nine stuttering and nine nonstuttering adults made fast reaching movements to visual targets while sliding an object under the index finger. To quantify control, we determined initial direction error and end-point error. To quantify prediction, we calculated the correlation between vertical and horizontal forces applied to the object—an index of how well vertical force (preventing slip) anticipated direction-dependent variations in horizontal force (moving the object). Results Directional and end-point error were significantly larger for the stuttering group. Both groups performed similarly in scaling vertical force with horizontal force. Conclusions The stuttering group's reduced reaching accuracy suggests limitations in generating control signals for voluntary movements, even for non-orofacial effectors. Typical scaling of vertical force with horizontal force suggests an intact ability to predict the consequences of planned control signals. Stuttering may be associated with generalized deficiencies in planning control signals rather than predicting the consequences of those signals. PMID:25203459
Hypoglycemia prediction with subject-specific recursive time-series models.
Eren-Oruklu, Meriyan; Cinar, Ali; Quinn, Lauretta
2010-01-01
Avoiding hypoglycemia while keeping glucose within the narrow normoglycemic range (70-120 mg/dl) is a major challenge for patients with type 1 diabetes. Continuous glucose monitors can provide hypoglycemic alarms when the measured glucose decreases below a threshold. However, a better approach is to provide an early alarm that predicts a hypoglycemic episode before it occurs, allowing enough time for the patient to take the necessary precaution to avoid hypoglycemia. We have previously proposed subject-specific recursive models for the prediction of future glucose concentrations and evaluated their prediction performance. In this work, our objective was to evaluate this algorithm further to predict hypoglycemia and provide early hypoglycemic alarms. Three different methods were proposed for alarm decision, where (A) absolute predicted glucose values, (B) cumulative-sum (CUSUM) control chart, and (C) exponentially weighted moving-average (EWMA) control chart were used. Each method was validated using data from the Diabetes Research in Children Network, which consist of measurements from a continuous glucose sensor during an insulin-induced hypoglycemia. Reference serum glucose measurements were used to determine the sensitivity to predict hypoglycemia and the false alarm rate. With the hypoglycemic threshold set to 60 mg/dl, sensitivity of 89, 87.5, and 89% and specificity of 67, 74, and 78% were reported for methods A, B, and C, respectively. Mean values for time to detection were 30 +/- 5.51 (A), 25.8 +/- 6.46 (B), and 27.7 +/- 5.32 (C) minutes. Compared to the absolute value method, both CUSUM and EWMA methods behaved more conservatively before raising an alarm (reduced time to detection), which significantly decreased the false alarm rate and increased the specificity. 2010 Diabetes Technology Society.
Application of model predictive control for optimal operation of wind turbines
NASA Astrophysics Data System (ADS)
Yuan, Yuan; Cao, Pei; Tang, J.
2017-04-01
For large-scale wind turbines, reducing maintenance cost is a major challenge. Model predictive control (MPC) is a promising approach to deal with multiple conflicting objectives using the weighed sum approach. In this research, model predictive control method is applied to wind turbine to find an optimal balance between multiple objectives, such as the energy capture, loads on turbine components, and the pitch actuator usage. The actuator constraints are integrated into the objective function at the control design stage. The analysis is carried out in both the partial load region and full load region, and the performances are compared with those of a baseline gain scheduling PID controller. The application of this strategy achieves enhanced balance of component loads, the average power and actuator usages in partial load region.
NASA Technical Reports Server (NTRS)
Schweikhard, W. G.; Chen, Y. S.
1986-01-01
The Melick method of inlet flow dynamic distortion prediction by statistical means is outlined. A hypothetic vortex model is used as the basis for the mathematical formulations. The main variables are identified by matching the theoretical total pressure rms ratio with the measured total pressure rms ratio. Data comparisons, using the HiMAT inlet test data set, indicate satisfactory prediction of the dynamic peak distortion for cases with boundary layer control device vortex generators. A method for the dynamic probe selection was developed. Validity of the probe selection criteria is demonstrated by comparing the reduced-probe predictions with the 40-probe predictions. It is indicated that the the number of dynamic probes can be reduced to as few as two and still retain good accuracy.
NASA Astrophysics Data System (ADS)
Rajapakse, G.; Jayasinghe, S. G.; Fleming, A.; Shahnia, F.
2017-07-01
Australia’s extended coastline asserts abundance of wave and tidal power. The predictability of these energy sources and their proximity to cities and towns make them more desirable. Several tidal current turbine and ocean wave energy conversion projects have already been planned in the coastline of southern Australia. Some of these projects use air turbine technology with air driven turbines to harvest the energy from an oscillating water column. This study focuses on the power take-off control of a single stage unidirectional oscillating water column air turbine generator system, and proposes a model predictive control-based speed controller for the generator-turbine assembly. The proposed method is verified with simulation results that show the efficacy of the controller in extracting power from the turbine while maintaining the speed at the desired level.
Predictive modeling and reducing cyclic variability in autoignition engines
Hellstrom, Erik; Stefanopoulou, Anna; Jiang, Li; Larimore, Jacob
2016-08-30
Methods and systems are provided for controlling a vehicle engine to reduce cycle-to-cycle combustion variation. A predictive model is applied to predict cycle-to-cycle combustion behavior of an engine based on observed engine performance variables. Conditions are identified, based on the predicted cycle-to-cycle combustion behavior, that indicate high cycle-to-cycle combustion variation. Corrective measures are then applied to prevent the predicted high cycle-to-cycle combustion variation.
Reducing usage of the computational resources by event driven approach to model predictive control
NASA Astrophysics Data System (ADS)
Misik, Stefan; Bradac, Zdenek; Cela, Arben
2017-08-01
This paper deals with a real-time and optimal control of dynamic systems while also considers the constraints which these systems might be subject to. Main objective of this work is to propose a simple modification of the existing Model Predictive Control approach to better suit needs of computational resource-constrained real-time systems. An example using model of a mechanical system is presented and the performance of the proposed method is evaluated in a simulated environment.
Controlling the Shannon Entropy of Quantum Systems
Xing, Yifan; Wu, Jun
2013-01-01
This paper proposes a new quantum control method which controls the Shannon entropy of quantum systems. For both discrete and continuous entropies, controller design methods are proposed based on probability density function control, which can drive the quantum state to any target state. To drive the entropy to any target at any prespecified time, another discretization method is proposed for the discrete entropy case, and the conditions under which the entropy can be increased or decreased are discussed. Simulations are done on both two- and three-dimensional quantum systems, where division and prediction are used to achieve more accurate tracking. PMID:23818819
Controlling the shannon entropy of quantum systems.
Xing, Yifan; Wu, Jun
2013-01-01
This paper proposes a new quantum control method which controls the Shannon entropy of quantum systems. For both discrete and continuous entropies, controller design methods are proposed based on probability density function control, which can drive the quantum state to any target state. To drive the entropy to any target at any prespecified time, another discretization method is proposed for the discrete entropy case, and the conditions under which the entropy can be increased or decreased are discussed. Simulations are done on both two- and three-dimensional quantum systems, where division and prediction are used to achieve more accurate tracking.
Role of parenting style in achieving metabolic control in adolescents with type 1 diabetes.
Shorer, Maayan; David, Ravit; Schoenberg-Taz, Michal; Levavi-Lavi, Ifat; Phillip, Moshe; Meyerovitch, Joseph
2011-08-01
To examine the role of parenting style in achieving metabolic control and treatment adherence in adolescents with type 1 diabetes. Parents of 100 adolescents with type 1 diabetes completed assessments of their parenting style and sense of helplessness. Parents and patients rated patient adherence to the treatment regimen. Glycemic control was evaluated by HbA(1c) values. An authoritative paternal parenting style predicted better glycemic control and adherence in the child; a permissive maternal parenting style predicted poor adherence. A higher sense of helplessness in both parents predicted worse glycemic control and lesser adherence to treatment. Parental sense of helplessness was a significant predictor of diabetes control after correcting for other confounders (patient age, sex, and treatment method). An authoritative nonhelpless parenting style is associated with better diabetes control in adolescents. Paternal involvement is important in adolescent diabetes management. These results have implications for psychological interventions.
Implementation of model predictive control for resistive wall mode stabilization on EXTRAP T2R
NASA Astrophysics Data System (ADS)
Setiadi, A. C.; Brunsell, P. R.; Frassinetti, L.
2015-10-01
A model predictive control (MPC) method for stabilization of the resistive wall mode (RWM) in the EXTRAP T2R reversed-field pinch is presented. The system identification technique is used to obtain a linearized empirical model of EXTRAP T2R. MPC employs the model for prediction and computes optimal control inputs that satisfy performance criterion. The use of a linearized form of the model allows for compact formulation of MPC, implemented on a millisecond timescale, that can be used for real-time control. The design allows the user to arbitrarily suppress any selected Fourier mode. The experimental results from EXTRAP T2R show that the designed and implemented MPC successfully stabilizes the RWM.
An introduction to high speed aircraft noise prediction
NASA Technical Reports Server (NTRS)
Wilson, Mark R.
1992-01-01
The Aircraft Noise Prediction Program's High Speed Research prediction system (ANOPP-HSR) is introduced. This mini-manual is an introduction which gives a brief overview of the ANOPP system and the components of the HSR prediction method. ANOPP information resources are given. Twelve of the most common ANOPP-HSR control statements are described. Each control statement's purpose and format are stated and relevant examples are provided. More detailed examples of the use of the control statements are presented in the manual along with ten ANOPP-HSR templates. The purpose of the templates is to provide the user with working ANOPP-HSR programs which can be modified to serve particular prediction requirements. Also included in this manual is a brief discussion of common errors and how to solve these problems. The appendices include the following useful information: a summary of all ANOPP-HSR functional research modules, a data unit directory, a discussion of one of the more complex control statements, and input data unit and table examples.
Kuniya, Toshikazu; Sano, Hideki
2016-05-10
In mathematical epidemiology, age-structured epidemic models have usually been formulated as the boundary-value problems of the partial differential equations. On the other hand, in engineering, the backstepping method has recently been developed and widely studied by many authors. Using the backstepping method, we obtained a boundary feedback control which plays the role of the threshold criteria for the prediction of increase or decrease of newly infected population. Under an assumption that the period of infectiousness is same for all infected individuals (that is, the recovery rate is given by the Dirac delta function multiplied by a sufficiently large positive constant), the prediction method is simplified to the comparison of the numbers of reported cases at the current and previous time steps. Our prediction method was applied to the reported cases per sentinel of influenza in Japan from 2006 to 2015 and its accuracy was 0.81 (404 correct predictions to the total 500 predictions). It was higher than that of the ARIMA models with different orders of the autoregressive part, differencing and moving-average process. In addition, a proposed method for the estimation of the number of reported cases, which is consistent with our prediction method, was better than that of the best-fitted ARIMA model ARIMA(1,1,0) in the sense of mean square error. Our prediction method based on the backstepping method can be simplified to the comparison of the numbers of reported cases of the current and previous time steps. In spite of its simplicity, it can provide a good prediction for the spread of influenza in Japan.
Lin, Jing; Bruni, Francesca M.; Fu, Zhiyan; Maloney, Jennifer; Bardina, Ludmilla; Boner, Attilio L.; Gimenez, Gustavo; Sampson, Hugh A.
2013-01-01
Background Peanut allergy is relatively common, typically permanent, and often severe. Double-blind, placebo-controlled food challenge is considered the gold standard for the diagnosis of food allergy–related disorders. However, the complexity and potential of double-blind, placebo-controlled food challenge to cause life-threatening allergic reactions affects its clinical application. A laboratory test that could accurately diagnose symptomatic peanut allergy would greatly facilitate clinical practice. Objective We sought to develop an allergy diagnostic method that could correctly predict symptomatic peanut allergy by using peptide microarray immunoassays and bioinformatic methods. Methods Microarray immunoassays were performed by using the sera from 62 patients (31 with symptomatic peanut allergy and 31 who had outgrown their peanut allergy or were sensitized but were clinically tolerant to peanut). Specific IgE and IgG4 binding to 419 overlapping peptides (15 mers, 3 offset) covering the amino acid sequences of Ara h 1, Ara h 2, and Ara h 3 were measured by using a peptide microarray immunoassay. Bioinformatic methods were applied for data analysis. Results Individuals with peanut allergy showed significantly greater IgE binding and broader epitope diversity than did peanut-tolerant individuals. No significant difference in IgG4 binding was found between groups. By using machine learning methods, 4 peptide biomarkers were identified and prediction models that can predict the outcome of double-blind, placebo-controlled food challenges with high accuracy were developed by using a combination of the biomarkers. Conclusions In this study, we developed a novel diagnostic approach that can predict peanut allergy with high accuracy by combining the results of a peptide microarray immunoassay and bioinformatic methods. Further studies are needed to validate the efficacy of this assay in clinical practice. PMID:22444503
Hinge Moment Coefficient Prediction Tool and Control Force Analysis of Extra-300 Aerobatic Aircraft
NASA Astrophysics Data System (ADS)
Nurohman, Chandra; Arifianto, Ony; Barecasco, Agra
2018-04-01
This paper presents the development of tool that is applicable to predict hinge moment coefficients of subsonic aircraft based on Roskam’s method, including the validation and its application to predict hinge moment coefficient of an Extra-300. The hinge moment coefficients are used to predict the stick forces of the aircraft during several aerobatic maneuver i.e. inside loop, half cuban 8, split-s, and aileron roll. The maximum longitudinal stick force is 566.97 N occurs in inside loop while the maximum lateral stick force is 340.82 N occurs in aileron roll. Furthermore, validation hinge moment prediction method is performed using Cessna 172 data.
Deep learning and model predictive control for self-tuning mode-locked lasers
NASA Astrophysics Data System (ADS)
Baumeister, Thomas; Brunton, Steven L.; Nathan Kutz, J.
2018-03-01
Self-tuning optical systems are of growing importance in technological applications such as mode-locked fiber lasers. Such self-tuning paradigms require {\\em intelligent} algorithms capable of inferring approximate models of the underlying physics and discovering appropriate control laws in order to maintain robust performance for a given objective. In this work, we demonstrate the first integration of a {\\em deep learning} (DL) architecture with {\\em model predictive control} (MPC) in order to self-tune a mode-locked fiber laser. Not only can our DL-MPC algorithmic architecture approximate the unknown fiber birefringence, it also builds a dynamical model of the laser and appropriate control law for maintaining robust, high-energy pulses despite a stochastically drifting birefringence. We demonstrate the effectiveness of this method on a fiber laser which is mode-locked by nonlinear polarization rotation. The method advocated can be broadly applied to a variety of optical systems that require robust controllers.
Unscented Kalman Filter-Trained Neural Networks for Slip Model Prediction
Li, Zhencai; Wang, Yang; Liu, Zhen
2016-01-01
The purpose of this work is to investigate the accurate trajectory tracking control of a wheeled mobile robot (WMR) based on the slip model prediction. Generally, a nonholonomic WMR may increase the slippage risk, when traveling on outdoor unstructured terrain (such as longitudinal and lateral slippage of wheels). In order to control a WMR stably and accurately under the effect of slippage, an unscented Kalman filter and neural networks (NNs) are applied to estimate the slip model in real time. This method exploits the model approximating capabilities of nonlinear state–space NN, and the unscented Kalman filter is used to train NN’s weights online. The slip parameters can be estimated and used to predict the time series of deviation velocity, which can be used to compensate control inputs of a WMR. The results of numerical simulation show that the desired trajectory tracking control can be performed by predicting the nonlinear slip model. PMID:27467703
The predictive protective control of the heat exchanger
NASA Astrophysics Data System (ADS)
Nevriva, Pavel; Filipova, Blanka; Vilimec, Ladislav
2016-06-01
The paper deals with the predictive control applied to flexible cogeneration energy system FES. FES was designed and developed by the VITKOVICE POWER ENGINEERING joint-stock company and represents a new solution of decentralized cogeneration energy sources. In FES, the heating medium is flue gas generated by combustion of a solid fuel. The heated medium is power gas, which is a gas mixture of air and water steam. Power gas is superheated in the main heat exchanger and led to gas turbines. To protect the main heat exchanger against damage by overheating, the novel predictive protective control based on the mathematical model of exchanger was developed. The paper describes the principle, the design and the simulation of the predictive protective method applied to main heat exchanger of FES.
Dynamics and control of quadcopter using linear model predictive control approach
NASA Astrophysics Data System (ADS)
Islam, M.; Okasha, M.; Idres, M. M.
2017-12-01
This paper investigates the dynamics and control of a quadcopter using the Model Predictive Control (MPC) approach. The dynamic model is of high fidelity and nonlinear, with six degrees of freedom that include disturbances and model uncertainties. The control approach is developed based on MPC to track different reference trajectories ranging from simple ones such as circular to complex helical trajectories. In this control technique, a linearized model is derived and the receding horizon method is applied to generate the optimal control sequence. Although MPC is computer expensive, it is highly effective to deal with the different types of nonlinearities and constraints such as actuators’ saturation and model uncertainties. The MPC parameters (control and prediction horizons) are selected by trial-and-error approach. Several simulation scenarios are performed to examine and evaluate the performance of the proposed control approach using MATLAB and Simulink environment. Simulation results show that this control approach is highly effective to track a given reference trajectory.
Prediction of noise constrained optimum takeoff procedures
NASA Technical Reports Server (NTRS)
Padula, S. L.
1980-01-01
An optimization method is used to predict safe, maximum-performance takeoff procedures which satisfy noise constraints at multiple observer locations. The takeoff flight is represented by two-degree-of-freedom dynamical equations with aircraft angle-of-attack and engine power setting as control functions. The engine thrust, mass flow and noise source parameters are assumed to be given functions of the engine power setting and aircraft Mach number. Effective Perceived Noise Levels at the observers are treated as functionals of the control functions. The method is demonstrated by applying it to an Advanced Supersonic Transport aircraft design. The results indicate that automated takeoff procedures (continuously varying controls) can be used to significantly reduce community and certification noise without jeopardizing safety or degrading performance.
Cognitive task load in a naval ship control centre: from identification to prediction.
Grootjen, M; Neerincx, M A; Veltman, J A
Deployment of information and communication technology will lead to further automation of control centre tasks and an increasing amount of information to be processed. A method for establishing adequate levels of cognitive task load for the operators in such complex environments has been developed. It is based on a model distinguishing three load factors: time occupied, task-set switching, and level of information processing. Application of the method resulted in eight scenarios for eight extremes of task load (i.e. low and high values for each load factor). These scenarios were performed by 13 teams in a high-fidelity control centre simulator of the Royal Netherlands Navy. The results show that the method provides good prediction of the task load that will actually appear in the simulator. The model allowed identification of under- and overload situations showing negative effects on operator performance corresponding to controlled experiments in a less realistic task environment. Tools proposed to keep the operator at an optimum task load are (adaptive) task allocation and interface support.
Sun, Jimeng; McNaughton, Candace D; Zhang, Ping; Perer, Adam; Gkoulalas-Divanis, Aris; Denny, Joshua C; Kirby, Jacqueline; Lasko, Thomas; Saip, Alexander; Malin, Bradley A
2014-01-01
Objective Common chronic diseases such as hypertension are costly and difficult to manage. Our ultimate goal is to use data from electronic health records to predict the risk and timing of deterioration in hypertension control. Towards this goal, this work predicts the transition points at which hypertension is brought into, as well as pushed out of, control. Method In a cohort of 1294 patients with hypertension enrolled in a chronic disease management program at the Vanderbilt University Medical Center, patients are modeled as an array of features derived from the clinical domain over time, which are distilled into a core set using an information gain criteria regarding their predictive performance. A model for transition point prediction was then computed using a random forest classifier. Results The most predictive features for transitions in hypertension control status included hypertension assessment patterns, comorbid diagnoses, procedures and medication history. The final random forest model achieved a c-statistic of 0.836 (95% CI 0.830 to 0.842) and an accuracy of 0.773 (95% CI 0.766 to 0.780). Conclusions This study achieved accurate prediction of transition points of hypertension control status, an important first step in the long-term goal of developing personalized hypertension management plans. PMID:24045907
2014-06-20
concentrated on SACCON. The planform and section profiles were defined in cooperation between DLR and EADS -MAS during the early stages of AVT-161. DLR...however most predictions were made as first-order temporal predictions. Given the highly unsteady flow fields observed by the experiments, unsteady
NASA Technical Reports Server (NTRS)
Ottander, John A.; Hall, Robert A.; Powers, J. F.
2018-01-01
A method is presented that allows for the prediction of the magnitude of limit cycles due to adverse control-slosh interaction in liquid propelled space vehicles using non-linear slosh damping. Such a method is an alternative to the industry practice of assuming linear damping and relying on: mechanical slosh baffles to achieve desired stability margins; accepting minimal slosh stability margins; or time domain non-linear analysis to accept time periods of poor stability. Sinusoidal input describing functional analysis is used to develop a relationship between the non-linear slosh damping and an equivalent linear damping at a given slosh amplitude. In addition, a more accurate analytical prediction of the danger zone for slosh mass locations in a vehicle under proportional and derivative attitude control is presented. This method is used in the control-slosh stability analysis of the NASA Space Launch System.
NASA Technical Reports Server (NTRS)
Kraft, R. E.
1996-01-01
A computational method to predict modal reflection coefficients in cylindrical ducts has been developed based on the work of Homicz, Lordi, and Rehm, which uses the Wiener-Hopf method to account for the boundary conditions at the termination of a thin cylindrical pipe. The purpose of this study is to develop a computational routine to predict the reflection coefficients of higher order acoustic modes impinging on the unflanged termination of a cylindrical duct. This effort was conducted wider Task Order 5 of the NASA Lewis LET Program, Active Noise Control of aircraft Engines: Feasibility Study, and will be used as part of the development of an integrated source noise, acoustic propagation, ANC actuator coupling, and control system algorithm simulation. The reflection coefficient prediction will be incorporated into an existing cylindrical duct modal analysis to account for the reflection of modes from the duct termination. This will provide a more accurate, rapid computation design tool for evaluating the effect of reflected waves on active noise control systems mounted in the duct, as well as providing a tool for the design of acoustic treatment in inlet ducts. As an active noise control system design tool, the method can be used preliminary to more accurate but more numerically intensive acoustic propagation models such as finite element methods. The resulting computer program has been shown to give reasonable results, some examples of which are presented. Reliable data to use for comparison is scarce, so complete checkout is difficult, and further checkout is needed over a wider range of system parameters. In future efforts the method will be adapted as a subroutine to the GEAE segmented cylindrical duct modal analysis program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zohar, S.; Sterbinsky, G. E.
Here, we propose an experimental technique for extending feedback compensation of dissipative radiation used in nuclear magnetic resonance (NMR) to encompass ferromagnetic resonance (FMR). This method uses a balanced microwave power detector whose output is phase shifted π/2, amplified, and fed back to drive precession. Using classical control theory, we predict an electronically controllable narrowing of field swept FMR line-widths. This technique is predicted to compensate other sources of spin dissipation in addition to radiative loss.
Control of Systems With Slow Actuators Using Time Scale Separation
NASA Technical Reports Server (NTRS)
Stepanyan, Vehram; Nguyen, Nhan
2009-01-01
This paper addresses the problem of controlling a nonlinear plant with a slow actuator using singular perturbation method. For the known plant-actuator cascaded system the proposed scheme achieves tracking of a given reference model with considerably less control demand than would otherwise result when using conventional design techniques. This is the consequence of excluding the small parameter from the actuator dynamics via time scale separation. The resulting tracking error is within the order of this small parameter. For the unknown system the adaptive counterpart is developed based on the prediction model, which is driven towards the reference model by the control design. It is proven that the prediction model tracks the reference model with an error proportional to the small parameter, while the prediction error converges to zero. The resulting closed-loop system with all prediction models and adaptive laws remains stable. The benefits of the approach are demonstrated in simulation studies and compared to conventional control approaches.
Study on Noise Prediction Model and Control Schemes for Substation
Gao, Yang; Liu, Songtao
2014-01-01
With the government's emphasis on environmental issues of power transmission and transformation project, noise pollution has become a prominent problem now. The noise from the working transformer, reactor, and other electrical equipment in the substation will bring negative effect to the ambient environment. This paper focuses on using acoustic software for the simulation and calculation method to control substation noise. According to the characteristics of the substation noise and the techniques of noise reduction, a substation's acoustic field model was established with the SoundPLAN software to predict the scope of substation noise. On this basis, 4 reasonable noise control schemes were advanced to provide some helpful references for noise control during the new substation's design and construction process. And the feasibility and application effect of these control schemes can be verified by using the method of simulation modeling. The simulation results show that the substation always has the problem of excessive noise at boundary under the conventional measures. The excess noise can be efficiently reduced by taking the corresponding noise reduction methods. PMID:24672356
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozisik, H.; Keltie, R.F.
The open loop control technique of predicting a conditioned input signal based on a specified output response for a second order system has been analyzed both analytically and numerically to gain a firm understanding of the method. Differences between this method of control and digital closed loop control using pole cancellation were investigated as a follow up to previous experimental work. Application of the technique to diamond turning using a fast tool is also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simonetto, Andrea; Dall'Anese, Emiliano
This article develops online algorithms to track solutions of time-varying constrained optimization problems. Particularly, resembling workhorse Kalman filtering-based approaches for dynamical systems, the proposed methods involve prediction-correction steps to provably track the trajectory of the optimal solutions of time-varying convex problems. The merits of existing prediction-correction methods have been shown for unconstrained problems and for setups where computing the inverse of the Hessian of the cost function is computationally affordable. This paper addresses the limitations of existing methods by tackling constrained problems and by designing first-order prediction steps that rely on the Hessian of the cost function (and do notmore » require the computation of its inverse). In addition, the proposed methods are shown to improve the convergence speed of existing prediction-correction methods when applied to unconstrained problems. Numerical simulations corroborate the analytical results and showcase performance and benefits of the proposed algorithms. A realistic application of the proposed method to real-time control of energy resources is presented.« less
Model predictive control of non-linear systems over networks with data quantization and packet loss.
Yu, Jimin; Nan, Liangsheng; Tang, Xiaoming; Wang, Ping
2015-11-01
This paper studies the approach of model predictive control (MPC) for the non-linear systems under networked environment where both data quantization and packet loss may occur. The non-linear controlled plant in the networked control system (NCS) is represented by a Tagaki-Sugeno (T-S) model. The sensed data and control signal are quantized in both links and described as sector bound uncertainties by applying sector bound approach. Then, the quantized data are transmitted in the communication networks and may suffer from the effect of packet losses, which are modeled as Bernoulli process. A fuzzy predictive controller which guarantees the stability of the closed-loop system is obtained by solving a set of linear matrix inequalities (LMIs). A numerical example is given to illustrate the effectiveness of the proposed method. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Helgeson, Vicki S.; Palladino, Dianne K.; Reynolds, Kerry A.; Becker, Dorothy; Escobar, Oscar; Siminerio, Linda
2013-01-01
Background Emerging adulthood is a high-risk period for mental health problems and risk behaviors for youth generally and for physical health problems among those with type 1 diabetes. Purpose To examine whether adolescents’ relationships with parents and friends predict health and risk behaviors during emerging adulthood. Method Youth with and without diabetes were enrolled at average age 12 and followed for 7 years. Parent and friend relationship variables, measured during adolescence, were used to predict emerging adulthood outcomes: depression, risk behavior, and, for those with diabetes, diabetes outcomes. Results Parent relationship quality predicted decreased depressive symptoms and, for those with diabetes, decreased alcohol use. Parent control predicted increased smoking, reduced college attendance, and, for control participants, increased depressive symptoms. For those with diabetes, parent control predicted decreased depressive symptoms and better self-care. Friend relationship variables predicted few outcomes. Conclusions Adolescent parent relationships remain an important influence on emerging adults’ lives. PMID:24178509
A novel auto-tuning PID control mechanism for nonlinear systems.
Cetin, Meric; Iplikci, Serdar
2015-09-01
In this paper, a novel Runge-Kutta (RK) discretization-based model-predictive auto-tuning proportional-integral-derivative controller (RK-PID) is introduced for the control of continuous-time nonlinear systems. The parameters of the PID controller are tuned using RK model of the system through prediction error-square minimization where the predicted information of tracking error provides an enhanced tuning of the parameters. Based on the model-predictive control (MPC) approach, the proposed mechanism provides necessary PID parameter adaptations while generating additive correction terms to assist the initially inadequate PID controller. Efficiency of the proposed mechanism has been tested on two experimental real-time systems: an unstable single-input single-output (SISO) nonlinear magnetic-levitation system and a nonlinear multi-input multi-output (MIMO) liquid-level system. RK-PID has been compared to standard PID, standard nonlinear MPC (NMPC), RK-MPC and conventional sliding-mode control (SMC) methods in terms of control performance, robustness, computational complexity and design issue. The proposed mechanism exhibits acceptable tuning and control performance with very small steady-state tracking errors, and provides very short settling time for parameter convergence. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Efe İris, Nur; Yıldırmak, Taner; Gedik, Habip; Şimşek, Funda; Aydın, Demet; Demirel, Naciye; Yokuş, Osman
2017-06-05
The aim of this study is to investigate if neutrophil CD64 expression in febrile neutropenia patients could be used as an early indicator of bacteremia. All consecutive patients older than 18 years of age who had developed febrile neutropenia episodes due to hematological malignancies were included in the study. Those patients who had significant growth in their blood cultures constituted the case group, while those who had febrile neutropenia without any growth in their cultures and who did not have any documented infections formed the control group. Blood culture bottles were incubated in the Bact ALERT 3D system (bioMerieux, France), identification and susceptibility testing were performed using an automated broth microdilution method (VITEK 2, bioMerieux), and CD64 expression analysis was performed by the flow cytometry method. C-reactive protein (CRP) was measured by turbidimetric methods (Biosystems, Spain) and erythrocyte sedimentation rate (ESR) was measured by the Wintrobe method. In total, we prospectively evaluated 31 febrile episodes. The case group consisted of 17 patients while the control group included 14 patients. CD64 was found on neutrophils of the case group patients with a mean count of 8006 molecules/cell and of control group with a mean count of 2786 molecules/cell. CD64 levels of the case group were significantly higher than those of the control group (p=0.005). In the differentiation of the case group from the control group, a 2500 cut-off value for CD64 had significant [AUC=0.792 (0.619-0.965)] predictive value (p=0.001). In the prediction of patients with a 2500 cut-off value for CD64, sensitivity was 94.1%, positive predictive value was 76.2%, specificity was 64.3%, and negative predictive value was 90.0%. CRP levels and ESR values did not differ significantly between the groups (p=0.005). Neutrophil CD64 expression could be a good predictor as an immune parameter with high sensitivity and a negative predictive value for bacteremia in febrile neutropenic patients.
A Simple Two Aircraft Conflict Resolution Algorithm
NASA Technical Reports Server (NTRS)
Chatterji, Gano B.
1999-01-01
Conflict detection and resolution methods are crucial for distributed air-ground traffic management in which the crew in the cockpit, dispatchers in operation control centers and air traffic controllers in the ground-based air traffic management facilities share information and participate in the traffic flow and traffic control imctions.This paper describes a conflict detection and a conflict resolution method. The conflict detection method predicts the minimum separation and the time-to-go to the closest point of approach by assuming that both the aircraft will continue to fly at their current speeds along their current headings. The conflict resolution method described here is motivated by the proportional navigation algorithm. It generates speed and heading commands to rotate the line-of-sight either clockwise or counter-clockwise for conflict resolution. Once the aircraft achieve a positive range-rate and no further conflict is predicted, the algorithm generates heading commands to turn back the aircraft to their nominal trajectories. The speed commands are set to the optimal pre-resolution speeds. Six numerical examples are presented to demonstrate the conflict detection and resolution method.
Planner-Based Control of Advanced Life Support Systems
NASA Technical Reports Server (NTRS)
Muscettola, Nicola; Kortenkamp, David; Fry, Chuck; Bell, Scott
2005-01-01
The paper describes an approach to the integration of qualitative and quantitative modeling techniques for advanced life support (ALS) systems. Developing reliable control strategies that scale up to fully integrated life support systems requires augmenting quantitative models and control algorithms with the abstractions provided by qualitative, symbolic models and their associated high-level control strategies. This will allow for effective management of the combinatorics due to the integration of a large number of ALS subsystems. By focusing control actions at different levels of detail and reactivity we can use faster: simpler responses at the lowest level and predictive but complex responses at the higher levels of abstraction. In particular, methods from model-based planning and scheduling can provide effective resource management over long time periods. We describe reference implementation of an advanced control system using the IDEA control architecture developed at NASA Ames Research Center. IDEA uses planning/scheduling as the sole reasoning method for predictive and reactive closed loop control. We describe preliminary experiments in planner-based control of ALS carried out on an integrated ALS simulation developed at NASA Johnson Space Center.
Life extending control: An interdisciplinary engineering thrust
NASA Technical Reports Server (NTRS)
Lorenzo, Carl F.; Merrill, Walter C.
1991-01-01
The concept of Life Extending Control (LEC) is introduced. Possible extensions to the cyclic damage prediction approach are presented based on the identification of a model from elementary forms. Several candidate elementary forms are presented. These extensions will result in a continuous or differential form of the damage prediction model. Two possible approaches to the LEC based on the existing cyclic damage prediction method, the measured variables LEC and the estimated variables LEC, are defined. Here, damage estimates or measurements would be used directly in the LEC. A simple hydraulic actuator driven position control system example is used to illustrate the main ideas behind LEC. Results from a simple hydraulic actuator example demonstrate that overall system performance (dynamic plus life) can be maximized by accounting for component damage in the control design.
Predictive control of a chaotic permanent magnet synchronous generator in a wind turbine system
NASA Astrophysics Data System (ADS)
Manal, Messadi; Adel, Mellit; Karim, Kemih; Malek, Ghanes
2015-01-01
This paper investigates how to address the chaos problem in a permanent magnet synchronous generator (PMSG) in a wind turbine system. Predictive control approach is proposed to suppress chaotic behavior and make operating stable; the advantage of this method is that it can only be applied to one state of the wind turbine system. The use of the genetic algorithms to estimate the optimal parameter values of the wind turbine leads to maximization of the power generation. Moreover, some simulation results are included to visualize the effectiveness and robustness of the proposed method. Project supported by the CMEP-TASSILI Project (Grant No. 14MDU920).
Development of hybrid method for the prediction of underwater propeller noise
NASA Astrophysics Data System (ADS)
Seol, Hanshin; Suh, Jung-Chun; Lee, Soogab
2005-11-01
Noise reduction and control is an important problem in the performance of underwater acoustic systems and in the habitability of the passenger ship for crew and passenger. Furthermore, sound generated by a propeller is critical in underwater detection and it is often related to the survivability of the vessel especially for military purpose. This paper presents a numerical study on the non-cavitating and blade sheet cavitation noises of the underwater propeller. A brief summary of numerical method with verification and results are presented. The noise is predicted using time-domain acoustic analogy. The flow field is analyzed with potential-based panel method, and then the time-dependent pressure and sheet cavity volume data are used as the input for Ffowcs Williams-Hawkings formulation to predict the far-field acoustics. Noise characteristics are presented according to noise sources and conditions. Through this study, the dominant noise source of the underwater propeller is analyzed, which will provide a basis for proper noise control strategies.
Porsa, Sina; Lin, Yi-Chung; Pandy, Marcus G
2016-08-01
The aim of this study was to compare the computational performances of two direct methods for solving large-scale, nonlinear, optimal control problems in human movement. Direct shooting and direct collocation were implemented on an 8-segment, 48-muscle model of the body (24 muscles on each side) to compute the optimal control solution for maximum-height jumping. Both algorithms were executed on a freely-available musculoskeletal modeling platform called OpenSim. Direct collocation converged to essentially the same optimal solution up to 249 times faster than direct shooting when the same initial guess was assumed (3.4 h of CPU time for direct collocation vs. 35.3 days for direct shooting). The model predictions were in good agreement with the time histories of joint angles, ground reaction forces and muscle activation patterns measured for subjects jumping to their maximum achievable heights. Both methods converged to essentially the same solution when started from the same initial guess, but computation time was sensitive to the initial guess assumed. Direct collocation demonstrates exceptional computational performance and is well suited to performing predictive simulations of movement using large-scale musculoskeletal models.
NASA Astrophysics Data System (ADS)
Zäh, Ralf-Kilian; Mosbach, Benedikt; Hollwich, Jan; Faupel, Benedikt
2017-02-01
To ensure the competitiveness of manufacturing companies it is indispensable to optimize their manufacturing processes. Slight variations of process parameters and machine settings have only marginally effects on the product quality. Therefore, the largest possible editing window is required. Such parameters are, for example, the movement of the laser beam across the component for the laser keyhole welding. That`s why it is necessary to keep the formation of welding seams within specified limits. Therefore, the quality of laser welding processes is ensured, by using post-process methods, like ultrasonic inspection, or special in-process methods. These in-process systems only achieve a simple evaluation which shows whether the weld seam is acceptable or not. Furthermore, in-process systems use no feedback for changing the control variables such as speed of the laser or adjustment of laser power. In this paper the research group presents current results of the research field of Online Monitoring, Online Controlling and Model predictive controlling in laser welding processes to increase the product quality. To record the characteristics of the welding process, tested online methods are used during the process. Based on the measurement data, a state space model is ascertained, which includes all the control variables of the system. Depending on simulation tools the model predictive controller (MPC) is designed for the model and integrated into an NI-Real-Time-System.
NASA Astrophysics Data System (ADS)
Liu, Shulun; Li, Yuan; Pauwels, Valentijn R. N.; Walker, Jeffrey P.
2017-12-01
Rain gauges are widely used to obtain temporally continuous point rainfall records, which are then interpolated into spatially continuous data to force hydrological models. However, rainfall measurements and interpolation procedure are subject to various uncertainties, which can be reduced by applying quality control and selecting appropriate spatial interpolation approaches. Consequently, the integrated impact of rainfall quality control and interpolation on streamflow simulation has attracted increased attention but not been fully addressed. This study applies a quality control procedure to the hourly rainfall measurements obtained in the Warwick catchment in eastern Australia. The grid-based daily precipitation from the Australian Water Availability Project was used as a reference. The Pearson correlation coefficient between the daily accumulation of gauged rainfall and the reference data was used to eliminate gauges with significant quality issues. The unrealistic outliers were censored based on a comparison between gauged rainfall and the reference. Four interpolation methods, including the inverse distance weighting (IDW), nearest neighbors (NN), linear spline (LN), and ordinary Kriging (OK), were implemented. The four methods were firstly assessed through a cross-validation using the quality-controlled rainfall data. The impacts of the quality control and interpolation on streamflow simulation were then evaluated through a semi-distributed hydrological model. The results showed that the Nash–Sutcliffe model efficiency coefficient (NSE) and Bias of the streamflow simulations were significantly improved after quality control. In the cross-validation, the IDW and OK methods resulted in good interpolation rainfall, while the NN led to the worst result. In term of the impact on hydrological prediction, the IDW led to the most consistent streamflow predictions with the observations, according to the validation at five streamflow-gauged locations. The OK method performed second best according to streamflow predictions at the five gauges in the calibration period (01/01/2007–31/12/2011) and four gauges during the validation period (01/01/2012–30/06/2014). However, NN produced the worst prediction at the outlet of the catchment in the validation period, indicating a low robustness. While the IDW exhibited the best performance in the study catchment in terms of accuracy, robustness and efficiency, more general recommendations on the selection of rainfall interpolation methods need to be further explored.
NASA Astrophysics Data System (ADS)
Liu, Shulun; Li, Yuan; Pauwels, Valentijn R. N.; Walker, Jeffrey P.
2018-01-01
Rain gauges are widely used to obtain temporally continuous point rainfall records, which are then interpolated into spatially continuous data to force hydrological models. However, rainfall measurements and interpolation procedure are subject to various uncertainties, which can be reduced by applying quality control and selecting appropriate spatial interpolation approaches. Consequently, the integrated impact of rainfall quality control and interpolation on streamflow simulation has attracted increased attention but not been fully addressed. This study applies a quality control procedure to the hourly rainfall measurements obtained in the Warwick catchment in eastern Australia. The grid-based daily precipitation from the Australian Water Availability Project was used as a reference. The Pearson correlation coefficient between the daily accumulation of gauged rainfall and the reference data was used to eliminate gauges with significant quality issues. The unrealistic outliers were censored based on a comparison between gauged rainfall and the reference. Four interpolation methods, including the inverse distance weighting (IDW), nearest neighbors (NN), linear spline (LN), and ordinary Kriging (OK), were implemented. The four methods were firstly assessed through a cross-validation using the quality-controlled rainfall data. The impacts of the quality control and interpolation on streamflow simulation were then evaluated through a semi-distributed hydrological model. The results showed that the Nash–Sutcliffe model efficiency coefficient (NSE) and Bias of the streamflow simulations were significantly improved after quality control. In the cross-validation, the IDW and OK methods resulted in good interpolation rainfall, while the NN led to the worst result. In term of the impact on hydrological prediction, the IDW led to the most consistent streamflow predictions with the observations, according to the validation at five streamflow-gauged locations. The OK method performed second best according to streamflow predictions at the five gauges in the calibration period (01/01/2007–31/12/2011) and four gauges during the validation period (01/01/2012–30/06/2014). However, NN produced the worst prediction at the outlet of the catchment in the validation period, indicating a low robustness. While the IDW exhibited the best performance in the study catchment in terms of accuracy, robustness and efficiency, more general recommendations on the selection of rainfall interpolation methods need to be further explored.
Dhanda, Sandeep Kumar; Grifoni, Alba; Pham, John; Vaughan, Kerrie; Sidney, John; Peters, Bjoern; Sette, Alessandro
2018-01-01
Unwanted immune responses against protein therapeutics can reduce efficacy or lead to adverse reactions. T-cell responses are key in the development of such responses, and are directed against immunodominant regions within the protein sequence, often associated with binding to several allelic variants of HLA class II molecules (promiscuous binders). Herein, we report a novel computational strategy to predict 'de-immunized' peptides, based on previous studies of erythropoietin protein immunogenicity. This algorithm (or method) first predicts promiscuous binding regions within the target protein sequence and then identifies residue substitutions predicted to reduce HLA binding. Further, this method anticipates the effect of any given substitution on flanking peptides, thereby circumventing the creation of nascent HLA-binding regions. As a proof-of-principle, the algorithm was applied to Vatreptacog α, an engineered Factor VII molecule associated with unintended immunogenicity. The algorithm correctly predicted the two immunogenic peptides containing the engineered residues. As a further validation, we selected and evaluated the immunogenicity of seven substitutions predicted to simultaneously reduce HLA binding for both peptides, five control substitutions with no predicted reduction in HLA-binding capacity, and additional flanking region controls. In vitro immunogenicity was detected in 21·4% of the cultures of peptides predicted to have reduced HLA binding and 11·4% of the flanking regions, compared with 46% for the cultures of the peptides predicted to be immunogenic. This method has been implemented as an interactive application, freely available online at http://tools.iedb.org/deimmunization/. © 2017 John Wiley & Sons Ltd.
Sutherland, Kate; Ngiam, Joachim; Cistulli, Peter A.
2017-01-01
Study Objectives: Mandibular protrusion during sleep monitoring has been proposed as a method to predict oral appliance treatment outcome. A commercial remotely controlled mandibular protrusion (RCMP) device has become available for this purpose with predictive accuracy demonstrated in an initial study. Our aim was to validate this RCMP method for oral appliance treatment outcome prediction in a clinical sleep laboratory setting. Methods: Forty-two obstructive sleep apnea (OSA) patients (apnea-hypopnea index [AHI] > 10 events/h) were recruited to undergo a RCMP sleep study before commencing oral appliance treatment. The RCMP study was used to make a prediction of treatment “Success” or “Failure” based on a rule of ≤ 1 respiratory event per 5 min supine rapid eye movement sleep. Oral appliance treatment response was verified by polysomonography and defined as treatment AHI < 10 events/h with 50% reduction. Results: Participants were on average middle-aged (57.1 ± 11.6 y) and overweight (29.6 ± 4.5 kg/m2) with baseline AHI 31.5 ± 20.5 events/h, 39% severe OSA (AHI > 30 events/h). Two participants (5%) were not able to tolerate the RCMP study. Oral appliance treatment outcome was verified in 33 participants (RCMP results: “Success” n = 10, “Failure” n = 15, “Inconclusive” n = 8). In those with a treatment outcome prediction (n = 25) the diagnostic characteristics of the RCMP test were sensitivity 81.8%, specificity 92.9%, positive predictive value 90%, and negative predictive value 86.7% (n = 3 misclassified). Conclusions: The RCMP device was well tolerated by patients and successfully used to perform mandibular protrusion sleep studies in our sleep laboratory. The RCMP sleep study showed good accuracy as a prediction technique for oral appliance treatment outcome, although there was a high rate of inconclusive tests. Citation: Sutherland K, Ngiam J, Cistulli PA. Performance of remotely controlled mandibular protrusion sleep studies for prediction of oral appliance treatment response. J Clin Sleep Med. 2017;13(3):411–417. PMID:27923436
A new mathematical solution for predicting char activation reactions
Rafsanjani, H.H.; Jamshidi, E.; Rostam-Abadi, M.
2002-01-01
The differential conservation equations that describe typical gas-solid reactions, such as activation of coal chars, yield a set of coupled second-order partial differential equations. The solution of these coupled equations by exact analytical methods is impossible. In addition, an approximate or exact solution only provides predictions for either reaction- or diffusion-controlling cases. A new mathematical solution, the quantize method (QM), was applied to predict the gasification rates of coal char when both chemical reaction and diffusion through the porous char are present. Carbon conversion rates predicted by the QM were in closer agreement with the experimental data than those predicted by the random pore model and the simple particle model. ?? 2002 Elsevier Science Ltd. All rights reserved.
Sensitivity, Specificity, PPV, and NPV for Predictive Biomarkers
2015-01-01
Molecularly targeted cancer drugs are often developed with companion diagnostics that attempt to identify which patients will have better outcome on the new drug than the control regimen. Such predictive biomarkers are playing an increasingly important role in precision oncology. For diagnostic tests, sensitivity, specificity, positive predictive value, and negative predictive are usually used as performance measures. This paper discusses these indices for predictive biomarkers, provides methods for their calculation with survival or response endpoints, and describes assumptions involved in their use. PMID:26109105
Model predictive and reallocation problem for CubeSat fault recovery and attitude control
NASA Astrophysics Data System (ADS)
Franchi, Loris; Feruglio, Lorenzo; Mozzillo, Raffaele; Corpino, Sabrina
2018-01-01
In recent years, thanks to the increase of the know-how on machine-learning techniques and the advance of the computational capabilities of on-board processing, expensive computing algorithms, such as Model Predictive Control, have begun to spread in space applications even on small on-board processor. The paper presents an algorithm for an optimal fault recovery of a 3U CubeSat, developed in MathWorks Matlab & Simulink environment. This algorithm involves optimization techniques aiming at obtaining the optimal recovery solution, and involves a Model Predictive Control approach for the attitude control. The simulated system is a CubeSat in Low Earth Orbit: the attitude control is performed with three magnetic torquers and a single reaction wheel. The simulation neglects the errors in the attitude determination of the satellite, and focuses on the recovery approach and control method. The optimal recovery approach takes advantage of the properties of magnetic actuation, which gives the possibility of the redistribution of the control action when a fault occurs on a single magnetic torquer, even in absence of redundant actuators. In addition, the paper presents the results of the implementation of Model Predictive approach to control the attitude of the satellite.
Predictive analysis effectiveness in determining the epidemic disease infected area
NASA Astrophysics Data System (ADS)
Ibrahim, Najihah; Akhir, Nur Shazwani Md.; Hassan, Fadratul Hafinaz
2017-10-01
Epidemic disease outbreak had caused nowadays community to raise their great concern over the infectious disease controlling, preventing and handling methods to diminish the disease dissemination percentage and infected area. Backpropagation method was used for the counter measure and prediction analysis of the epidemic disease. The predictive analysis based on the backpropagation method can be determine via machine learning process that promotes the artificial intelligent in pattern recognition, statistics and features selection. This computational learning process will be integrated with data mining by measuring the score output as the classifier to the given set of input features through classification technique. The classification technique is the features selection of the disease dissemination factors that likely have strong interconnection between each other in causing infectious disease outbreaks. The predictive analysis of epidemic disease in determining the infected area was introduced in this preliminary study by using the backpropagation method in observation of other's findings. This study will classify the epidemic disease dissemination factors as the features for weight adjustment on the prediction of epidemic disease outbreaks. Through this preliminary study, the predictive analysis is proven to be effective method in determining the epidemic disease infected area by minimizing the error value through the features classification.
Flutter prediction for a wing with active aileron control
NASA Technical Reports Server (NTRS)
Penning, K.; Sandlin, D. R.
1983-01-01
A method for predicting the vibrational stability of an aircraft with an analog active aileron flutter suppression system (FSS) is expained. Active aileron refers to the use of an active control system connected to the aileron to damp vibrations. Wing vibrations are sensed by accelerometers and the information is used to deflect the aileron. Aerodynamic force caused by the aileron deflection oppose wing vibrations and effectively add additional damping to the system.
An architecture for designing fuzzy logic controllers using neural networks
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.
1991-01-01
Described here is an architecture for designing fuzzy controllers through a hierarchical process of control rule acquisition and by using special classes of neural network learning techniques. A new method for learning to refine a fuzzy logic controller is introduced. A reinforcement learning technique is used in conjunction with a multi-layer neural network model of a fuzzy controller. The model learns by updating its prediction of the plant's behavior and is related to the Sutton's Temporal Difference (TD) method. The method proposed here has the advantage of using the control knowledge of an experienced operator and fine-tuning it through the process of learning. The approach is applied to a cart-pole balancing system.
Analysis of explicit model predictive control for path-following control
2018-01-01
In this paper, explicit Model Predictive Control(MPC) is employed for automated lane-keeping systems. MPC has been regarded as the key to handle such constrained systems. However, the massive computational complexity of MPC, which employs online optimization, has been a major drawback that limits the range of its target application to relatively small and/or slow problems. Explicit MPC can reduce this computational burden using a multi-parametric quadratic programming technique(mp-QP). The control objective is to derive an optimal front steering wheel angle at each sampling time so that autonomous vehicles travel along desired paths, including straight, circular, and clothoid parts, at high entry speeds. In terms of the design of the proposed controller, a method of choosing weighting matrices in an optimization problem and the range of horizons for path-following control are described through simulations. For the verification of the proposed controller, simulation results obtained using other control methods such as MPC, Linear-Quadratic Regulator(LQR), and driver model are employed, and CarSim, which reflects the features of a vehicle more realistically than MATLAB/Simulink, is used for reliable demonstration. PMID:29534080
Analysis of explicit model predictive control for path-following control.
Lee, Junho; Chang, Hyuk-Jun
2018-01-01
In this paper, explicit Model Predictive Control(MPC) is employed for automated lane-keeping systems. MPC has been regarded as the key to handle such constrained systems. However, the massive computational complexity of MPC, which employs online optimization, has been a major drawback that limits the range of its target application to relatively small and/or slow problems. Explicit MPC can reduce this computational burden using a multi-parametric quadratic programming technique(mp-QP). The control objective is to derive an optimal front steering wheel angle at each sampling time so that autonomous vehicles travel along desired paths, including straight, circular, and clothoid parts, at high entry speeds. In terms of the design of the proposed controller, a method of choosing weighting matrices in an optimization problem and the range of horizons for path-following control are described through simulations. For the verification of the proposed controller, simulation results obtained using other control methods such as MPC, Linear-Quadratic Regulator(LQR), and driver model are employed, and CarSim, which reflects the features of a vehicle more realistically than MATLAB/Simulink, is used for reliable demonstration.
A Pressure Control Method for Emulsion Pump Station Based on Elman Neural Network
Tan, Chao; Qi, Nan; Yao, Xingang; Wang, Zhongbin; Si, Lei
2015-01-01
In order to realize pressure control of emulsion pump station which is key equipment of coal mine in the safety production, the control requirements were analyzed and a pressure control method based on Elman neural network was proposed. The key techniques such as system framework, pressure prediction model, pressure control model, and the flowchart of proposed approach were presented. Finally, a simulation example was carried out and comparison results indicated that the proposed approach was feasible and efficient and outperformed others. PMID:25861253
Tracking reliability for space cabin-borne equipment in development by Crow model.
Chen, J D; Jiao, S J; Sun, H L
2001-12-01
Objective. To study and track the reliability growth of manned spaceflight cabin-borne equipment in the course of its development. Method. A new technique of reliability growth estimation and prediction, which is composed of the Crow model and test data conversion (TDC) method was used. Result. The estimation and prediction value of the reliability growth conformed to its expectations. Conclusion. The method could dynamically estimate and predict the reliability of the equipment by making full use of various test information in the course of its development. It offered not only a possibility of tracking the equipment reliability growth, but also the reference for quality control in manned spaceflight cabin-borne equipment design and development process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miltiadis Alamaniotis; Vivek Agarwal
This paper places itself in the realm of anticipatory systems and envisions monitoring and control methods being capable of making predictions over system critical parameters. Anticipatory systems allow intelligent control of complex systems by predicting their future state. In the current work, an intelligent model aimed at implementing anticipatory monitoring and control in energy industry is presented and tested. More particularly, a set of support vector regressors (SVRs) are trained using both historical and observed data. The trained SVRs are used to predict the future value of the system based on current operational system parameter. The predicted values are thenmore » inputted to a fuzzy logic based module where the values are fused to obtain a single value, i.e., final system output prediction. The methodology is tested on real turbine degradation datasets. The outcome of the approach presented in this paper highlights the superiority over single support vector regressors. In addition, it is shown that appropriate selection of fuzzy sets and fuzzy rules plays an important role in improving system performance.« less
A Grammatical Approach to RNA-RNA Interaction Prediction
NASA Astrophysics Data System (ADS)
Kato, Yuki; Akutsu, Tatsuya; Seki, Hiroyuki
2007-11-01
Much attention has been paid to two interacting RNA molecules involved in post-transcriptional control of gene expression. Although there have been a few studies on RNA-RNA interaction prediction based on dynamic programming algorithm, no grammar-based approach has been proposed. The purpose of this paper is to provide a new modeling for RNA-RNA interaction based on multiple context-free grammar (MCFG). We present a polynomial time parsing algorithm for finding the most likely derivation tree for the stochastic version of MCFG, which is applicable to RNA joint secondary structure prediction including kissing hairpin loops. Also, elementary tests on RNA-RNA interaction prediction have shown that the proposed method is comparable to Alkan et al.'s method.
COMSAC: Computational Methods for Stability and Control. Part 1
NASA Technical Reports Server (NTRS)
Fremaux, C. Michael (Compiler); Hall, Robert M. (Compiler)
2004-01-01
Work on stability and control included the following reports:Introductory Remarks; Introduction to Computational Methods for Stability and Control (COMSAC); Stability & Control Challenges for COMSAC: a NASA Langley Perspective; Emerging CFD Capabilities and Outlook A NASA Langley Perspective; The Role for Computational Fluid Dynamics for Stability and Control:Is it Time?; Northrop Grumman Perspective on COMSAC; Boeing Integrated Defense Systems Perspective on COMSAC; Computational Methods in Stability and Control:WPAFB Perspective; Perspective: Raytheon Aircraft Company; A Greybeard's View of the State of Aerodynamic Prediction; Computational Methods for Stability and Control: A Perspective; Boeing TacAir Stability and Control Issues for Computational Fluid Dynamics; NAVAIR S&C Issues for CFD; An S&C Perspective on CFD; Issues, Challenges & Payoffs: A Boeing User s Perspective on CFD for S&C; and Stability and Control in Computational Simulations for Conceptual and Preliminary Design: the Past, Today, and Future?
NASA Technical Reports Server (NTRS)
He, Yuning
2015-01-01
Safety of unmanned aerial systems (UAS) is paramount, but the large number of dynamically changing controller parameters makes it hard to determine if the system is currently stable, and the time before loss of control if not. We propose a hierarchical statistical model using Treed Gaussian Processes to predict (i) whether a flight will be stable (success) or become unstable (failure), (ii) the time-to-failure if unstable, and (iii) time series outputs for flight variables. We first classify the current flight input into success or failure types, and then use separate models for each class to predict the time-to-failure and time series outputs. As different inputs may cause failures at different times, we have to model variable length output curves. We use a basis representation for curves and learn the mappings from input to basis coefficients. We demonstrate the effectiveness of our prediction methods on a NASA neuro-adaptive flight control system.
A Novel Method to Predict Circulation Control Noise
2016-03-17
Semi-empirical aeracoustic prediction code for wind turbines . In NREL/ TP-500-34478, National Wind Technology Center. MOSHER, M. 1983 Acoustics of...velocimetry, unsteady pressure and phased-acoustic- array data are acquired simultaneously in an aeroacoustic wind -tunnel facility. The velocity field...her open-jet wind tunnels or flight testing which makes noise prediction for underwater vehicles especially difficult . 1 In this document , a
Measured vs. Predicted Pedestal Pressure During RMP ELM Control in DIII-D
NASA Astrophysics Data System (ADS)
Zywicki, Bailey; Fenstermacher, Max; Groebner, Richard; Meneghini, Orso
2017-10-01
From database analysis of DIII-D plasmas with Resonant Magnetic Perturbations (RMPs) for ELM control, we will compare the experimental pedestal pressure (p_ped) to EPED code predictions and present the dependence of any p_ped differences from EPED on RMP parameters not included in the EPED model e.g. RMP field strength, toroidal and poloidal spectrum etc. The EPED code, based on Peeling-Ballooning and Kinetic Ballooning instability constraints, will also be used by ITER to predict the H-mode p_ped without RMPs. ITER plans to use RMPs as an effective ELM control method. The need to control ELMs in ITER is of the utmost priority, as it directly correlates to the lifetime of the plasma facing components. An accurate means of determining the impact of RMP ELM control on the p_ped is needed, because the device fusion power is strongly dependent on p_ped. With this new collection of data, we aim to provide guidance to predictions of the ITER pedestal during RMP ELM control that can be incorporated in a future predictive code. Work supported in part by US DoE under the Science Undergraduate Laboratory Internship (SULI) program and under DE-FC02-04ER54698, and DE-AC52-07NA27344.
Predictive IP controller for robust position control of linear servo system.
Lu, Shaowu; Zhou, Fengxing; Ma, Yajie; Tang, Xiaoqi
2016-07-01
Position control is a typical application of linear servo system. In this paper, to reduce the system overshoot, an integral plus proportional (IP) controller is used in the position control implementation. To further improve the control performance, a gain-tuning IP controller based on a generalized predictive control (GPC) law is proposed. Firstly, to represent the dynamics of the position loop, a second-order linear model is used and its model parameters are estimated on-line by using a recursive least squares method. Secondly, based on the GPC law, an optimal control sequence is obtained by using receding horizon, then directly supplies the IP controller with the corresponding control parameters in the real operations. Finally, simulation and experimental results are presented to show the efficiency of proposed scheme. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Jung, Su Jin
2016-01-01
Purpose We investigated whether C-reactive protein (CRP) levels, urine protein-creatinine ratio (uProt/Cr), and urine electrolytes can be useful for discriminating acute pyelonephritis (APN) from other febrile illnesses or the presence of a cortical defect on 99mTc dimercaptosuccinic acid (DMSA) scanning (true APN) from its absence in infants with febrile urinary tract infection (UTI). Materials and Methods We examined 150 infants experiencing their first febrile UTI and 100 controls with other febrile illnesses consecutively admitted to our hospital from January 2010 to December 2012. Blood (CRP, electrolytes, Cr) and urine tests [uProt/Cr, electrolytes, and sodium-potassium ratio (uNa/K)] were performed upon admission. All infants with UTI underwent DMSA scans during admission. All data were compared between infants with UTI and controls and between infants with or without a cortical defect on DMSA scans. Using multiple logistic regression analysis, the ability of the parameters to predict true APN was analyzed. Results CRP levels and uProt/Cr were significantly higher in infants with true APN than in controls. uNa levels and uNa/K were significantly lower in infants with true APN than in controls. CRP levels and uNa/K were relevant factors for predicting true APN. The method using CRP levels, u-Prot/Cr, u-Na levels, and uNa/K had a sensitivity of 94%, specificity of 65%, positive predictive value of 60%, and negative predictive value of 95% for predicting true APN. Conclusion We conclude that these parameters are useful for discriminating APN from other febrile illnesses or discriminating true APN in infants with febrile UTI. PMID:26632389
UAV Flight Control Using Distributed Actuation and Sensing
NASA Technical Reports Server (NTRS)
Barnwell, William G.; Heinzen, Stearns N.; Hall, Charles E., Jr.; Chokani, Ndaona; Raney, David L. (Technical Monitor)
2003-01-01
An array of effectors and sensors has been designed, tested and implemented on a Blended Wing Body Uninhabited Aerial Vehicle (UAV). This UAV is modified to serve as a flying, controls research, testbed. This effectorhensor array provides for the dynamic vehicle testing of controller designs and the study of decentralized control techniques. Each wing of the UAV is equipped with 12 distributed effectors that comprise a segmented array of independently actuated, contoured control surfaces. A single pressure sensor is installed near the base of each effector to provide a measure of deflections of the effectors. The UAV wings were tested in the North Carolina State University Subsonic Wind Tunnel and the pressure distribution that result from the deflections of the effectors are characterized. The results of the experiments are used to develop a simple, but accurate, prediction method, such that for any arrangement of the effector array the corresponding pressure distribution can be determined. Numerical analysis using the panel code CMARC verifies this prediction method.
Predictive momentum management for the Space Station
NASA Technical Reports Server (NTRS)
Hatis, P. D.
1986-01-01
Space station control moment gyro momentum management is addressed by posing a deterministic optimization problem with a performance index that includes station external torque loading, gyro control torque demand, and excursions from desired reference attitudes. It is shown that a simple analytic desired attitude solution exists for all axes with pitch prescription decoupled, but roll and yaw coupled. Continuous gyro desaturation is shown to fit neatly into the scheme. Example results for pitch axis control of the NASA power tower Space Station are shown based on predictive attitude prescription. Control effector loading is shown to be reduced by this method when compared to more conventional momentum management techniques.
Comparison of Predictive Modeling Methods of Aircraft Landing Speed
NASA Technical Reports Server (NTRS)
Diallo, Ousmane H.
2012-01-01
Expected increases in air traffic demand have stimulated the development of air traffic control tools intended to assist the air traffic controller in accurately and precisely spacing aircraft landing at congested airports. Such tools will require an accurate landing-speed prediction to increase throughput while decreasing necessary controller interventions for avoiding separation violations. There are many practical challenges to developing an accurate landing-speed model that has acceptable prediction errors. This paper discusses the development of a near-term implementation, using readily available information, to estimate/model final approach speed from the top of the descent phase of flight to the landing runway. As a first approach, all variables found to contribute directly to the landing-speed prediction model are used to build a multi-regression technique of the response surface equation (RSE). Data obtained from operations of a major airlines for a passenger transport aircraft type to the Dallas/Fort Worth International Airport are used to predict the landing speed. The approach was promising because it decreased the standard deviation of the landing-speed error prediction by at least 18% from the standard deviation of the baseline error, depending on the gust condition at the airport. However, when the number of variables is reduced to the most likely obtainable at other major airports, the RSE model shows little improvement over the existing methods. Consequently, a neural network that relies on a nonlinear regression technique is utilized as an alternative modeling approach. For the reduced number of variables cases, the standard deviation of the neural network models errors represent over 5% reduction compared to the RSE model errors, and at least 10% reduction over the baseline predicted landing-speed error standard deviation. Overall, the constructed models predict the landing-speed more accurately and precisely than the current state-of-the-art.
Aissa, Oualid; Moulahoum, Samir; Colak, Ilhami; Babes, Badreddine; Kabache, Nadir
2017-10-12
This paper discusses the use of the concept of classical and predictive direct power control for shunt active power filter function. These strategies are used to improve the active power filter performance by compensation of the reactive power and the elimination of the harmonic currents drawn by non-linear loads. A theoretical analysis followed by a simulation using MATLAB/Simulink software for the studied techniques has been established. Moreover, two test benches have been carried out using the dSPACE card 1104 for the classic and predictive DPC control to evaluate the studied methods in real time. Obtained results are presented and compared in this paper to confirm the superiority of the predictive technique. To overcome the pollution problems caused by the consumption of fossil fuels, renewable energies are the alternatives recommended to ensure green energy. In the same context, the tested predictive filter can easily be supplied by a renewable energy source that will give its impact to enhance the power quality.
NASA Astrophysics Data System (ADS)
Tofighi, Elham; Mahdizadeh, Amin
2016-09-01
This paper addresses the problem of automatic tuning of weighting coefficients for the nonlinear model predictive control (NMPC) of wind turbines. The choice of weighting coefficients in NMPC is critical due to their explicit impact on efficiency of the wind turbine control. Classically, these weights are selected based on intuitive understanding of the system dynamics and control objectives. The empirical methods, however, may not yield optimal solutions especially when the number of parameters to be tuned and the nonlinearity of the system increase. In this paper, the problem of determining weighting coefficients for the cost function of the NMPC controller is formulated as a two-level optimization process in which the upper- level PSO-based optimization computes the weighting coefficients for the lower-level NMPC controller which generates control signals for the wind turbine. The proposed method is implemented to tune the weighting coefficients of a NMPC controller which drives the NREL 5-MW wind turbine. The results are compared with similar simulations for a manually tuned NMPC controller. Comparison verify the improved performance of the controller for weights computed with the PSO-based technique.
Measurement of semiochemical release rates with a dedicated environmental control system
Heping Zhu; Harold W. Thistle; Christopher M. Ranger; Hongping Zhou; Brian L. Strom
2015-01-01
Insect semiochemical dispensers are commonly deployed under variable environmental conditions over a specified period. Predictions of their longevity are hampered by a lack of methods to accurately monitor and predict how primary variables affect semiochemical release rate. A system was constructed to precisely determine semiochemical release rates under...
Schearer, Eric M.; Liao, Yu-Wei; Perreault, Eric J.; Tresch, Matthew C.; Memberg, William D.; Kirsch, Robert F.; Lynch, Kevin M.
2016-01-01
We present a method to identify the dynamics of a human arm controlled by an implanted functional electrical stimulation neuroprosthesis. The method uses Gaussian process regression to predict shoulder and elbow torques given the shoulder and elbow joint positions and velocities and the electrical stimulation inputs to muscles. We compare the accuracy of torque predictions of nonparametric, semiparametric, and parametric model types. The most accurate of the three model types is a semiparametric Gaussian process model that combines the flexibility of a black box function approximator with the generalization power of a parameterized model. The semiparametric model predicted torques during stimulation of multiple muscles with errors less than 20% of the total muscle torque and passive torque needed to drive the arm. The identified model allows us to define an arbitrary reaching trajectory and approximately determine the muscle stimulations required to drive the arm along that trajectory. PMID:26955041
Predicting flight delay based on multiple linear regression
NASA Astrophysics Data System (ADS)
Ding, Yi
2017-08-01
Delay of flight has been regarded as one of the toughest difficulties in aviation control. How to establish an effective model to handle the delay prediction problem is a significant work. To solve the problem that the flight delay is difficult to predict, this study proposes a method to model the arriving flights and a multiple linear regression algorithm to predict delay, comparing with Naive-Bayes and C4.5 approach. Experiments based on a realistic dataset of domestic airports show that the accuracy of the proposed model approximates 80%, which is further improved than the Naive-Bayes and C4.5 approach approaches. The result testing shows that this method is convenient for calculation, and also can predict the flight delays effectively. It can provide decision basis for airport authorities.
NASA Technical Reports Server (NTRS)
Putnam, L. E.
1979-01-01
A Neumann solution for inviscid external flow was coupled to a modified Reshotko-Tucker integral boundary-layer technique, the control volume method of Presz for calculating flow in the separated region, and an inviscid one-dimensional solution for the jet exhaust flow in order to predict axisymmetric nozzle afterbody pressure distributions and drag. The viscous and inviscid flows are solved iteratively until convergence is obtained. A computer algorithm of this procedure was written and is called DONBOL. A description of the computer program and a guide to its use is given. Comparisons of the predictions of this method with experiments show that the method accurately predicts the pressure distributions of boattail afterbodies which have the jet exhaust flow simulated by solid bodies. For nozzle configurations which have the jet exhaust simulated by high-pressure air, the present method significantly underpredicts the magnitude of nozzle pressure drag. This deficiency results because the method neglects the effects of jet plume entrainment. This method is limited to subsonic free-stream Mach numbers below that for which the flow over the body of revolution becomes sonic.
Constructing the effect of alternative intervention strategies on historic epidemics.
Cook, A R; Gibson, G J; Gottwald, T R; Gilligan, C A
2008-10-06
Data from historical epidemics provide a vital and sometimes under-used resource from which to devise strategies for future control of disease. Previous methods for retrospective analysis of epidemics, in which alternative interventions are compared, do not make full use of the information; by using only partial information on the historical trajectory, augmentation of control may lead to predictions of a paradoxical increase in disease. Here we introduce a novel statistical approach that takes full account of the available information in constructing the effect of alternative intervention strategies in historic epidemics. The key to the method lies in identifying a suitable mapping between the historic and notional outbreaks, under alternative control strategies. We do this by using the Sellke construction as a latent process linking epidemics. We illustrate the application of the method with two examples. First, using temporal data for the common human cold, we show the improvement under the new method in the precision of predictions for different control strategies. Second, we show the generality of the method for retrospective analysis of epidemics by applying it to a spatially extended arboreal epidemic in which we demonstrate the relative effectiveness of host culling strategies that differ in frequency and spatial extent. Some of the inferential and philosophical issues that arise are discussed along with the scope of potential application of the new method.
GIS-based spatial regression and prediction of water quality in river networks: A case study in Iowa
Yang, X.; Jin, W.
2010-01-01
Nonpoint source pollution is the leading cause of the U.S.'s water quality problems. One important component of nonpoint source pollution control is an understanding of what and how watershed-scale conditions influence ambient water quality. This paper investigated the use of spatial regression to evaluate the impacts of watershed characteristics on stream NO3NO2-N concentration in the Cedar River Watershed, Iowa. An Arc Hydro geodatabase was constructed to organize various datasets on the watershed. Spatial regression models were developed to evaluate the impacts of watershed characteristics on stream NO3NO2-N concentration and predict NO3NO2-N concentration at unmonitored locations. Unlike the traditional ordinary least square (OLS) method, the spatial regression method incorporates the potential spatial correlation among the observations in its coefficient estimation. Study results show that NO3NO2-N observations in the Cedar River Watershed are spatially correlated, and by ignoring the spatial correlation, the OLS method tends to over-estimate the impacts of watershed characteristics on stream NO3NO2-N concentration. In conjunction with kriging, the spatial regression method not only makes better stream NO3NO2-N concentration predictions than the OLS method, but also gives estimates of the uncertainty of the predictions, which provides useful information for optimizing the design of stream monitoring network. It is a promising tool for better managing and controlling nonpoint source pollution. ?? 2010 Elsevier Ltd.
Current Trends in Modeling Research for Turbulent Aerodynamic Flows
NASA Technical Reports Server (NTRS)
Gatski, Thomas B.; Rumsey, Christopher L.; Manceau, Remi
2007-01-01
The engineering tools of choice for the computation of practical engineering flows have begun to migrate from those based on the traditional Reynolds-averaged Navier-Stokes approach to methodologies capable, in theory if not in practice, of accurately predicting some instantaneous scales of motion in the flow. The migration has largely been driven by both the success of Reynolds-averaged methods over a wide variety of flows as well as the inherent limitations of the method itself. Practitioners, emboldened by their ability to predict a wide-variety of statistically steady, equilibrium turbulent flows, have now turned their attention to flow control and non-equilibrium flows, that is, separation control. This review gives some current priorities in traditional Reynolds-averaged modeling research as well as some methodologies being applied to a new class of turbulent flow control problems.
System and Method for Providing Model-Based Alerting of Spatial Disorientation to a Pilot
NASA Technical Reports Server (NTRS)
Johnson, Steve (Inventor); Conner, Kevin J (Inventor); Mathan, Santosh (Inventor)
2015-01-01
A system and method monitor aircraft state parameters, for example, aircraft movement and flight parameters, applies those inputs to a spatial disorientation model, and makes a prediction of when pilot may become spatially disoriented. Once the system predicts a potentially disoriented pilot, the sensitivity for alerting the pilot to conditions exceeding a threshold can be increased and allow for an earlier alert to mitigate the possibility of an incorrect control input.
Dong, Yanhong; Li, Juan; Zhong, Xiaoxiao; Cao, Liya; Luo, Yang; Fan, Qi
2016-04-15
This paper establishes a novel method to simultaneously predict the tablet weight (TW) and trimethoprim (TMP) content of compound sulfamethoxazole tablets (SMZCO) by near infrared (NIR) spectroscopy with partial least squares (PLS) regression for controlling the uniformity of dosage units (UODU). The NIR spectra for 257 samples were measured using the optimized parameter values and pretreated using the optimized chemometric techniques. After the outliers were ignored, two PLS models for predicting TW and TMP content were respectively established by using the selected spectral sub-ranges and the reference values. The TW model reaches the correlation coefficient of calibration (R(c)) 0.9543 and the TMP content model has the R(c) 0.9205. The experimental results indicate that this strategy expands the NIR application in controlling UODU, especially in the high-throughput and rapid analysis of TWs and contents of the compound pharmaceutical tablets, and may be an important complement to the common NIR on-line analytical method for pharmaceutical tablets. Copyright © 2016 Elsevier B.V. All rights reserved.
A Simple Two Aircraft Conflict Resolution Algorithm
NASA Technical Reports Server (NTRS)
Chatterji, Gano B.
2006-01-01
Conflict detection and resolution methods are crucial for distributed air-ground traffic management in which the crew in, the cockpit, dispatchers in operation control centers sad and traffic controllers in the ground-based air traffic management facilities share information and participate in the traffic flow and traffic control functions. This paper describes a conflict detection, and a conflict resolution method. The conflict detection method predicts the minimum separation and the time-to-go to the closest point of approach by assuming that both the aircraft will continue to fly at their current speeds along their current headings. The conflict resolution method described here is motivated by the proportional navigation algorithm, which is often used for missile guidance during the terminal phase. It generates speed and heading commands to rotate the line-of-sight either clockwise or counter-clockwise for conflict resolution. Once the aircraft achieve a positive range-rate and no further conflict is predicted, the algorithm generates heading commands to turn back the aircraft to their nominal trajectories. The speed commands are set to the optimal pre-resolution speeds. Six numerical examples are presented to demonstrate the conflict detection, and the conflict resolution methods.
Rufo, Montaña; Antolín, Alicia; Paniagua, Jesús M; Jiménez, Antonio
2018-04-01
A comparative study was made of three methods of interpolation - inverse distance weighting (IDW), spline and ordinary kriging - after optimization of their characteristic parameters. These interpolation methods were used to represent the electric field levels for three emission frequencies (774kHz, 900kHz, and 1107kHz) and for the electrical stimulation quotient, Q E , characteristic of complex electromagnetic environments. Measurements were made with a spectrum analyser in a village in the vicinity of medium-wave radio broadcasting antennas. The accuracy of the models was quantified by comparing their predictions with levels measured at the control points not used to generate the models. The results showed that optimizing the characteristic parameters of each interpolation method allows any of them to be used. However, the best results in terms of the regression coefficient between each model's predictions and the actual control point field measurements were for the IDW method. Copyright © 2018 Elsevier Inc. All rights reserved.
Model-Based and Model-Free Pavlovian Reward Learning: Revaluation, Revision and Revelation
Dayan, Peter; Berridge, Kent C.
2014-01-01
Evidence supports at least two methods for learning about reward and punishment and making predictions for guiding actions. One method, called model-free, progressively acquires cached estimates of the long-run values of circumstances and actions from retrospective experience. The other method, called model-based, uses representations of the environment, expectations and prospective calculations to make cognitive predictions of future value. Extensive attention has been paid to both methods in computational analyses of instrumental learning. By contrast, although a full computational analysis has been lacking, Pavlovian learning and prediction has typically been presumed to be solely model-free. Here, we revise that presumption and review compelling evidence from Pavlovian revaluation experiments showing that Pavlovian predictions can involve their own form of model-based evaluation. In model-based Pavlovian evaluation, prevailing states of the body and brain influence value computations, and thereby produce powerful incentive motivations that can sometimes be quite new. We consider the consequences of this revised Pavlovian view for the computational landscape of prediction, response and choice. We also revisit differences between Pavlovian and instrumental learning in the control of incentive motivation. PMID:24647659
Model-based and model-free Pavlovian reward learning: revaluation, revision, and revelation.
Dayan, Peter; Berridge, Kent C
2014-06-01
Evidence supports at least two methods for learning about reward and punishment and making predictions for guiding actions. One method, called model-free, progressively acquires cached estimates of the long-run values of circumstances and actions from retrospective experience. The other method, called model-based, uses representations of the environment, expectations, and prospective calculations to make cognitive predictions of future value. Extensive attention has been paid to both methods in computational analyses of instrumental learning. By contrast, although a full computational analysis has been lacking, Pavlovian learning and prediction has typically been presumed to be solely model-free. Here, we revise that presumption and review compelling evidence from Pavlovian revaluation experiments showing that Pavlovian predictions can involve their own form of model-based evaluation. In model-based Pavlovian evaluation, prevailing states of the body and brain influence value computations, and thereby produce powerful incentive motivations that can sometimes be quite new. We consider the consequences of this revised Pavlovian view for the computational landscape of prediction, response, and choice. We also revisit differences between Pavlovian and instrumental learning in the control of incentive motivation.
Nouretdinov, Ilia; Costafreda, Sergi G; Gammerman, Alexander; Chervonenkis, Alexey; Vovk, Vladimir; Vapnik, Vladimir; Fu, Cynthia H Y
2011-05-15
There is rapidly accumulating evidence that the application of machine learning classification to neuroimaging measurements may be valuable for the development of diagnostic and prognostic prediction tools in psychiatry. However, current methods do not produce a measure of the reliability of the predictions. Knowing the risk of the error associated with a given prediction is essential for the development of neuroimaging-based clinical tools. We propose a general probabilistic classification method to produce measures of confidence for magnetic resonance imaging (MRI) data. We describe the application of transductive conformal predictor (TCP) to MRI images. TCP generates the most likely prediction and a valid measure of confidence, as well as the set of all possible predictions for a given confidence level. We present the theoretical motivation for TCP, and we have applied TCP to structural and functional MRI data in patients and healthy controls to investigate diagnostic and prognostic prediction in depression. We verify that TCP predictions are as accurate as those obtained with more standard machine learning methods, such as support vector machine, while providing the additional benefit of a valid measure of confidence for each prediction. Copyright © 2010 Elsevier Inc. All rights reserved.
Saliba, Christopher M; Clouthier, Allison L; Brandon, Scott C E; Rainbow, Michael J; Deluzio, Kevin J
2018-05-29
Abnormal loading of the knee joint contributes to the pathogenesis of knee osteoarthritis. Gait retraining is a non-invasive intervention that aims to reduce knee loads by providing audible, visual, or haptic feedback of gait parameters. The computational expense of joint contact force prediction has limited real-time feedback to surrogate measures of the contact force, such as the knee adduction moment. We developed a method to predict knee joint contact forces using motion analysis and a statistical regression model that can be implemented in near real-time. Gait waveform variables were deconstructed using principal component analysis and a linear regression was used to predict the principal component scores of the contact force waveforms. Knee joint contact force waveforms were reconstructed using the predicted scores. We tested our method using a heterogenous population of asymptomatic controls and subjects with knee osteoarthritis. The reconstructed contact force waveforms had mean (SD) RMS differences of 0.17 (0.05) bodyweight compared to the contact forces predicted by a musculoskeletal model. Our method successfully predicted subject-specific shape features of contact force waveforms and is a potentially powerful tool in biofeedback and clinical gait analysis.
Control Strategy of Active Power Filter Based on Modular Multilevel Converter
NASA Astrophysics Data System (ADS)
Xie, Xifeng
2018-03-01
To improve the capacity, pressure resistance and the equivalent switching frequency of active power filter (APF), a control strategy of APF based on Modular Multilevel Converter (MMC) is presented. In this Control Strategy, the indirect current control method is used to achieve active current and reactive current decoupling control; Voltage Balance Control Strategy is to stabilize sub-module capacitor voltage, the predictive current control method is used to Track and control of harmonic currents. As a result, the harmonic current is restrained, and power quality is improved. Finally, the simulation model of active power filter controller based on MMC is established in Matlab/Simulink, the simulation proves that the proposed strategy is feasible and correct.
Ensemble-based prediction of RNA secondary structures.
Aghaeepour, Nima; Hoos, Holger H
2013-04-24
Accurate structure prediction methods play an important role for the understanding of RNA function. Energy-based, pseudoknot-free secondary structure prediction is one of the most widely used and versatile approaches, and improved methods for this task have received much attention over the past five years. Despite the impressive progress that as been achieved in this area, existing evaluations of the prediction accuracy achieved by various algorithms do not provide a comprehensive, statistically sound assessment. Furthermore, while there is increasing evidence that no prediction algorithm consistently outperforms all others, no work has been done to exploit the complementary strengths of multiple approaches. In this work, we present two contributions to the area of RNA secondary structure prediction. Firstly, we use state-of-the-art, resampling-based statistical methods together with a previously published and increasingly widely used dataset of high-quality RNA structures to conduct a comprehensive evaluation of existing RNA secondary structure prediction procedures. The results from this evaluation clarify the performance relationship between ten well-known existing energy-based pseudoknot-free RNA secondary structure prediction methods and clearly demonstrate the progress that has been achieved in recent years. Secondly, we introduce AveRNA, a generic and powerful method for combining a set of existing secondary structure prediction procedures into an ensemble-based method that achieves significantly higher prediction accuracies than obtained from any of its component procedures. Our new, ensemble-based method, AveRNA, improves the state of the art for energy-based, pseudoknot-free RNA secondary structure prediction by exploiting the complementary strengths of multiple existing prediction procedures, as demonstrated using a state-of-the-art statistical resampling approach. In addition, AveRNA allows an intuitive and effective control of the trade-off between false negative and false positive base pair predictions. Finally, AveRNA can make use of arbitrary sets of secondary structure prediction procedures and can therefore be used to leverage improvements in prediction accuracy offered by algorithms and energy models developed in the future. Our data, MATLAB software and a web-based version of AveRNA are publicly available at http://www.cs.ubc.ca/labs/beta/Software/AveRNA.
Neural network feedforward control of a closed-circuit wind tunnel
NASA Astrophysics Data System (ADS)
Sutcliffe, Peter
Accurate control of wind-tunnel test conditions can be dramatically enhanced using feedforward control architectures which allow operating conditions to be maintained at a desired setpoint through the use of mathematical models as the primary source of prediction. However, as the desired accuracy of the feedforward prediction increases, the model complexity also increases, so that an ever increasing computational load is incurred. This drawback can be avoided by employing a neural network that is trained offline using the output of a high fidelity wind-tunnel mathematical model, so that the neural network can rapidly reproduce the predictions of the model with a greatly reduced computational overhead. A novel neural network database generation method, developed through the use of fractional factorial arrays, was employed such that a neural network can accurately predict wind-tunnel parameters across a wide range of operating conditions whilst trained upon a highly efficient database. The subsequent network was incorporated into a Neural Network Model Predictive Control (NNMPC) framework to allow an optimised output schedule capable of providing accurate control of the wind-tunnel operating parameters. Facilitation of an optimised path through the solution space is achieved through the use of a chaos optimisation algorithm such that a more globally optimum solution is likely to be found with less computational expense than the gradient descent method. The parameters associated with the NNMPC such as the control horizon are determined through the use of a Taguchi methodology enabling the minimum number of experiments to be carried out to determine the optimal combination. The resultant NNMPC scheme was employed upon the Hessert Low Speed Wind Tunnel at the University of Notre Dame to control the test-section temperature such that it follows a pre-determined reference trajectory during changes in the test-section velocity. Experimental testing revealed that the derived NNMPC controller provided an excellent level of control over the test-section temperature in adherence to a reference trajectory even when faced with unforeseen disturbances such as rapid changes in the operating environment.
NASA Technical Reports Server (NTRS)
Kvaternik, Raymond G.; Piatak, David J.; Nixon, Mark W.; Langston, Chester W.; Singleton, Jeffrey D.; Bennett, Richard L.; Brown, Ross K.
2001-01-01
The results of a joint NASA/Army/Bell Helicopter Textron wind-tunnel test to assess the potential of Generalized Predictive Control (GPC) for actively controlling the swashplate of tiltrotor aircraft to enhance aeroelastic stability in the airplane mode of flight are presented. GPC is an adaptive time-domain predictive control method that uses a linear difference equation to describe the input-output relationship of the system and to design the controller. The test was conducted in the Langley Transonic Dynamics Tunnel using an unpowered 1/5-scale semispan aeroelastic model of the V-22 that was modified to incorporate a GPC-based multi-input multi-output control algorithm to individually control each of the three swashplate actuators. Wing responses were used for feedback. The GPC-based control system was highly effective in increasing the stability of the critical wing mode for all of the conditions tested, without measurable degradation of the damping in the other modes. The algorithm was also robust with respect to its performance in adjusting to rapid changes in both the rotor speed and the tunnel airspeed.
Arrieta-Camacho, Juan José; Biegler, Lorenz T
2005-12-01
Real time optimal guidance is considered for a class of low thrust spacecraft. In particular, nonlinear model predictive control (NMPC) is utilized for computing the optimal control actions required to transfer a spacecraft from a low Earth orbit to a mission orbit. The NMPC methodology presented is able to cope with unmodeled disturbances. The dynamics of the transfer are modeled using a set of modified equinoctial elements because they do not exhibit singularities for zero inclination and zero eccentricity. The idea behind NMPC is the repeated solution of optimal control problems; at each time step, a new control action is computed. The optimal control problem is solved using a direct method-fully discretizing the equations of motion. The large scale nonlinear program resulting from the discretization procedure is solved using IPOPT--a primal-dual interior point algorithm. Stability and robustness characteristics of the NMPC algorithm are reviewed. A numerical example is presented that encourages further development of the proposed methodology: the transfer from low-Earth orbit to a molniya orbit.
Methods and kits for predicting a response to an erythropoietic agent
Merchant, Michael L.; Klein, Jon B.; Brier, Michael E.; Gaweda, Adam E.
2015-06-16
Methods for predicting a response to an erythropoietic agent in a subject include providing a biological sample from the subject, and determining an amount in the sample of at least one peptide selected from the group consisting of SEQ ID NOS: 1-17. If there is a measurable difference in the amount of the at least one peptide in the sample, when compared to a control level of the same peptide, the subject is then predicted to have a good response or a poor response to the erythropoietic agent. Kits for predicting a response to an erythropoietic agent are further provided and include one or more antibodies, or fragments thereof, that specifically recognize a peptide of SEQ ID NOS: 1-17.
Longitudinal Analysis of Depressive Symptoms and Glycemic Control in Type 2 Diabetes
Aikens, James E.; Perkins, Denise White; Lipton, Bonnie; Piette, John D.
2009-01-01
OBJECTIVE To compare whether depressive symptoms are more strongly related to subsequent or prior glycemic control in type 2 diabetes and to test whether patient characteristics modify these longitudinal associations. RESEARCH DESIGN AND METHODS On two occasions separated by 6 months, depressive symptoms and glycemic control were assessed in 253 adults with type 2 diabetes. Regression analyses examined depressive symptoms as both a predictor and outcome of glycemic control and tested whether medication regimen (e.g., insulin versus oral drugs) was an effect modifier before and after adjusting for baseline levels of the outcome being predicted. RESULTS Depressive symptom severity predicted poor glycemic control 6 months later (P = 0.018) but not after baseline glycemic control was taken into account (P = 0.361). Although baseline glycemic control did not generally predict depressive symptoms 6 months later (P = 0.558), it significantly interacted with regimen (P = 0.008). Specifically, glycemic control predicted depressive symptoms among patients prescribed insulin (β = 0.31, P = 0.002) but not among those prescribed oral medication alone (β = −0.10, P = 0.210). Classifying depression dichotomously produced similar but weaker findings. CONCLUSIONS Depressive symptoms do not necessarily lead to worsened glycemic control. In contrast, insulin-treated patients in poor glycemic control are at moderate risk for worsening of depressive symptoms. These patients should be carefully monitored to determine whether depression treatment should be initiated or intensified. PMID:19389814
Early strength prediction of concrete based on accelerated curing methods : final report.
DOT National Transportation Integrated Search
1995-12-01
Concrete mix designs and components may currently be changed during the course of a project. The possible negative effects of such changes on concrete strength, are not determined under the current plant control/project control process. Also, the cur...
Modeling a multivariable reactor and on-line model predictive control.
Yu, D W; Yu, D L
2005-10-01
A nonlinear first principle model is developed for a laboratory-scaled multivariable chemical reactor rig in this paper and the on-line model predictive control (MPC) is implemented to the rig. The reactor has three variables-temperature, pH, and dissolved oxygen with nonlinear dynamics-and is therefore used as a pilot system for the biochemical industry. A nonlinear discrete-time model is derived for each of the three output variables and their model parameters are estimated from the real data using an adaptive optimization method. The developed model is used in a nonlinear MPC scheme. An accurate multistep-ahead prediction is obtained for MPC, where the extended Kalman filter is used to estimate system unknown states. The on-line control is implemented and a satisfactory tracking performance is achieved. The MPC is compared with three decentralized PID controllers and the advantage of the nonlinear MPC over the PID is clearly shown.
Killeen, G F; McKenzie, F E; Foy, B D; Schieffelin, C; Billingsley, P F; Beier, J C
2000-05-01
We have used a relatively simple but accurate model for predicting the impact of integrated transmission control on the malaria entomologic inoculation rate (EIR) at four endemic sites from across sub-Saharan Africa and the southwest Pacific. The simulated campaign incorporated modestly effective vaccine coverage, bed net use, and larval control. The results indicate that such campaigns would reduce EIRs at all four sites by 30- to 50-fold. Even without the vaccine, 15- to 25-fold reductions of EIR were predicted, implying that integrated control with a few modestly effective tools can meaningfully reduce malaria transmission in a range of endemic settings. The model accurately predicts the effects of bed nets and indoor spraying and demonstrates that they are the most effective tools available for reducing EIR. However, the impact of domestic adult vector control is amplified by measures for reducing the rate of emergence of vectors or the level of infectiousness of the human reservoir. We conclude that available tools, including currently neglected methods for larval control, can reduce malaria transmission intensity enough to alleviate mortality. Integrated control programs should be implemented to the fullest extent possible, even in areas of intense transmission, using simple models as decision-making tools. However, we also conclude that to eliminate malaria in many areas of intense transmission is beyond the scope of methods which developing nations can currently afford. New, cost-effective, practical tools are needed if malaria is ever to be eliminated from highly endemic areas.
Isothermal life prediction of composite lamina using a damage mechanics approach
NASA Technical Reports Server (NTRS)
Abuelfoutouh, Nader M.; Verrilli, Michael J.; Halford, Gary R.
1989-01-01
A method for predicting isothermal plastic fatigue life of a composite lamina is presented in which both fibers and matrix are isotropic materials. In general, the fatigue resistances of the matrix, fibers, and interfacial material must be known in order to predict composite fatigue life. Composite fatigue life is predicted using only the matrix fatigue resistance due to inelasticity micromechanisms. The effect of the fiber orientation on loading direction is accounted for while predicting composite life. The application is currently limited to isothermal cases where the internal thermal stresses that might arise from thermal strain mismatch between fibers and matrix are negligible. The theory is formulated to predict the fatigue life of a composite lamina under either load or strain control. It is applied currently to predict the life of tungsten-copper composite lamina at 260 C under tension-tension load control. The calculated life of the lamina is in good agreement with available composite low cycle fatigue data.
Methodology for Software Reliability Prediction. Volume 2.
1987-11-01
The overall acquisition ,z program shall include the resources, schedule, management, structure , and controls necessary to ensure that specified AD...Independent Verification/Validation - Programming Team Structure - Educational Level of Team Members - Experience Level of Team Members * Methods Used...Prediction or Estimation Parameter Supported: Software - Characteristics 3. Objectives: Structured programming studies and Government Ur.’.. procurement
NASA Technical Reports Server (NTRS)
Slooff, J. W.
1986-01-01
The Special Course on Aircraft Drag Prediction was sponsored by the AGARD Fluid Dynamics Panel and the von Karman Institute and presented at the von Karman Institute, Rhode-Saint-Genese, Belgium, on 20 to 23 May 1985 and at the NASA Langley Research Center, Hampton, Virginia, USA, 5 to 6 August 1985. The course began with a general review of drag reduction technology. Then the possibility of reduction of skin friction through control of laminar flow and through modification of the structure of the turbulence in the boundary layer were discussed. Methods for predicting and reducing the drag of external stores, of nacelles, of fuselage protuberances, and of fuselage afterbodies were then presented followed by discussion of transonic drag rise. The prediction of viscous and wave drag by a method matching inviscid flow calculations and boundary layer integral calculations, and the reduction of transonic drag through boundary layer control are also discussed. This volume comprises Paper No. 9 Computational Drag Analyses and Minimization: Mission Impossible, which was not included in AGARD Report 723 (main volume).
Design and experiment of vehicular charger AC/DC system based on predictive control algorithm
NASA Astrophysics Data System (ADS)
He, Guangbi; Quan, Shuhai; Lu, Yuzhang
2018-06-01
For the car charging stage rectifier uncontrollable system, this paper proposes a predictive control algorithm of DC/DC converter based on the prediction model, established by the state space average method and its prediction model, obtained by the optimal mathematical description of mathematical calculation, to analysis prediction algorithm by Simulink simulation. The design of the structure of the car charging, at the request of the rated output power and output voltage adjustable control circuit, the first stage is the three-phase uncontrolled rectifier DC voltage Ud through the filter capacitor, after by using double-phase interleaved buck-boost circuit with wide range output voltage required value, analyzing its working principle and the the parameters for the design and selection of components. The analysis of current ripple shows that the double staggered parallel connection has the advantages of reducing the output current ripple and reducing the loss. The simulation experiment of the whole charging circuit is carried out by software, and the result is in line with the design requirements of the system. Finally combining the soft with hardware circuit to achieve charging of the system according to the requirements, experimental platform proved the feasibility and effectiveness of the proposed predictive control algorithm based on the car charging of the system, which is consistent with the simulation results.
NASA Astrophysics Data System (ADS)
Wu, Z. R.; Li, X.; Fang, L.; Song, Y. D.
2018-04-01
A new multiaxial fatigue life prediction model has been proposed in this paper. The concepts of nonlinear continuum damage mechanics and critical plane criteria were incorporated in the proposed model. The shear strain-based damage control parameter was chosen to account for multiaxial fatigue damage under constant amplitude loading. Fatigue tests were conducted on nickel-based superalloy GH4169 tubular specimens at the temperature of 400 °C under proportional and nonproportional loading. The proposed method was checked against the multiaxial fatigue test data of GH4169. Most of prediction results are within a factor of two scatter band of the test results.
Digital redesign of anti-wind-up controller for cascaded analog system.
Chen, Y S; Tsai, J S H; Shieh, L S; Moussighi, M M
2003-01-01
The cascaded conventional anti-wind-up (CAW) design method for integral controller is discussed. Then, the prediction-based digital redesign methodology is utilized to find the new pulse amplitude modulated (PAM) digital controller for effective digital control of the analog plant with input saturation constraint. The desired digital controller is determined from existing or pre-designed CAW analog controller. The proposed method provides a novel methodology for indirect digital design of a continuous-time unity output-feedback system with a cascaded analog controller as in the case of PID controllers for industrial control processes with the presence of actuator saturations. It enables us to implement an existing or pre-designed cascaded CAW analog controller via a digital controller effectively.
NASA Astrophysics Data System (ADS)
Anggraeni, Novia Antika
2015-04-01
The test of eruption time prediction is an effort to prepare volcanic disaster mitigation, especially in the volcano's inhabited slope area, such as Merapi Volcano. The test can be conducted by observing the increase of volcanic activity, such as seismicity degree, deformation and SO2 gas emission. One of methods that can be used to predict the time of eruption is Materials Failure Forecast Method (FFM). Materials Failure Forecast Method (FFM) is a predictive method to determine the time of volcanic eruption which was introduced by Voight (1988). This method requires an increase in the rate of change, or acceleration of the observed volcanic activity parameters. The parameter used in this study is the seismic energy value of Merapi Volcano from 1990 - 2012. The data was plotted in form of graphs of seismic energy rate inverse versus time with FFM graphical technique approach uses simple linear regression. The data quality control used to increase the time precision employs the data correlation coefficient value of the seismic energy rate inverse versus time. From the results of graph analysis, the precision of prediction time toward the real time of eruption vary between -2.86 up to 5.49 days.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anggraeni, Novia Antika, E-mail: novia.antika.a@gmail.com
The test of eruption time prediction is an effort to prepare volcanic disaster mitigation, especially in the volcano’s inhabited slope area, such as Merapi Volcano. The test can be conducted by observing the increase of volcanic activity, such as seismicity degree, deformation and SO2 gas emission. One of methods that can be used to predict the time of eruption is Materials Failure Forecast Method (FFM). Materials Failure Forecast Method (FFM) is a predictive method to determine the time of volcanic eruption which was introduced by Voight (1988). This method requires an increase in the rate of change, or acceleration ofmore » the observed volcanic activity parameters. The parameter used in this study is the seismic energy value of Merapi Volcano from 1990 – 2012. The data was plotted in form of graphs of seismic energy rate inverse versus time with FFM graphical technique approach uses simple linear regression. The data quality control used to increase the time precision employs the data correlation coefficient value of the seismic energy rate inverse versus time. From the results of graph analysis, the precision of prediction time toward the real time of eruption vary between −2.86 up to 5.49 days.« less
NASA Technical Reports Server (NTRS)
1982-01-01
A FORTRAN coded computer program and method to predict the reaction control fuel consumption statistics for a three axis stabilized rocket vehicle upper stage is described. A Monte Carlo approach is used which is more efficient by using closed form estimates of impulses. The effects of rocket motor thrust misalignment, static unbalance, aerodynamic disturbances, and deviations in trajectory, mass properties and control system characteristics are included. This routine can be applied to many types of on-off reaction controlled vehicles. The pseudorandom number generation and statistical analyses subroutines including the output histograms can be used for other Monte Carlo analyses problems.
Li, Y; Tan, J Q; Mai, Z Y; Yang, D Z
2018-01-25
Objective: Explore the value of anti-Müllerian hormone (AMH) in predicting pregnant outcomes of polycystic ovary syndrome (PCOS) patients undergone assisted reproductive technology. Methods: The study totally recruited 1 697 patients who underwent the first in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI) cycle in Sun Yat-sen Memorial Hospital from the January 2014 to December 2015. The patients were divided into two groups based on the age<35 ( n= 758) and ≥35 years old ( n= 939) , compare the basic data and pregnant outcomes of controlled ovarian hyerstimulation. Spearman correlation method was conducted to analyze the relations between AMH and clinical outcomes. The logistic regression method and partial correlation analysis were used to judge the main factors which determine pregnancy outcomes by controlled the confounding factors. The receiver operating characteristic curve (ROC) was used to evaluate the predictive sensitivity and specificity of AMH. Results: In the group of PCOS patient younger than 35 years, AMH were correlated with the number of antral follicles ( r= 0.388) and retrieved oocytes ( r= 0.235) . When the effect of total dosage and starting dosage of gonadotropin were controlled, AMH was still significantly associated with the number of retrieved oocytes ( P< 0.05) . AMH had no predictive value for the clinical pregnancy of PCOS patient younger than 35 years (area under ROC curve=0.481, P= 0.768) . In the group of PCOS patient≥35 years old, AMH were correlated with the number of antral follicles ( r= 0.450) , retrieved oocytes ( r= 0.399) , available embryo ( r= 0.336) and high quality embryo ( r= 0.235) . When the effect of total dosage and starting dosage of gonadotropin were controlled, the correlations were still significant between those indexes (all P< 0.05) . AMH had no predictive value for the clinical pregnancy of PCOS patient ≥35 years old (area under ROC curve=0.535, P= 0.560) . However, the clinical pregnancy rate of the group of PCOS patient ≥35 years old was slightly higher than the control group ( P= 0.062) . Conclusions: AMH has no predictive value for the pregnancy outcome of PCOS patient. The pregnancy rate of PCOS patient ≥35 years old is slightly higher than the younger group, because the PCOS patient may have better ovarian reserve.
NASA Astrophysics Data System (ADS)
Noh, Seong Jin; Rakovec, Oldrich; Kumar, Rohini; Samaniego, Luis
2016-04-01
There have been tremendous improvements in distributed hydrologic modeling (DHM) which made a process-based simulation with a high spatiotemporal resolution applicable on a large spatial scale. Despite of increasing information on heterogeneous property of a catchment, DHM is still subject to uncertainties inherently coming from model structure, parameters and input forcing. Sequential data assimilation (DA) may facilitate improved streamflow prediction via DHM using real-time observations to correct internal model states. In conventional DA methods such as state updating, parametric uncertainty is, however, often ignored mainly due to practical limitations of methodology to specify modeling uncertainty with limited ensemble members. If parametric uncertainty related with routing and runoff components is not incorporated properly, predictive uncertainty by DHM may be insufficient to capture dynamics of observations, which may deteriorate predictability. Recently, a multi-scale parameter regionalization (MPR) method was proposed to make hydrologic predictions at different scales using a same set of model parameters without losing much of the model performance. The MPR method incorporated within the mesoscale hydrologic model (mHM, http://www.ufz.de/mhm) could effectively represent and control uncertainty of high-dimensional parameters in a distributed model using global parameters. In this study, we present a global multi-parametric ensemble approach to incorporate parametric uncertainty of DHM in DA to improve streamflow predictions. To effectively represent and control uncertainty of high-dimensional parameters with limited number of ensemble, MPR method is incorporated with DA. Lagged particle filtering is utilized to consider the response times and non-Gaussian characteristics of internal hydrologic processes. The hindcasting experiments are implemented to evaluate impacts of the proposed DA method on streamflow predictions in multiple European river basins having different climate and catchment characteristics. Because augmentation of parameters is not required within an assimilation window, the approach could be stable with limited ensemble members and viable for practical uses.
NASA Astrophysics Data System (ADS)
Jeong, Jina; Park, Eungyu; Han, Weon Shik; Kim, Kue-Young; Jun, Seong-Chun; Choung, Sungwook; Yun, Seong-Taek; Oh, Junho; Kim, Hyun-Jun
2017-11-01
In this study, a data-driven method for predicting CO2 leaks and associated concentrations from geological CO2 sequestration is developed. Several candidate models are compared based on their reproducibility and predictive capability for CO2 concentration measurements from the Environment Impact Evaluation Test (EIT) site in Korea. Based on the data mining results, a one-dimensional solution of the advective-dispersive equation for steady flow (i.e., Ogata-Banks solution) is found to be most representative for the test data, and this model is adopted as the data model for the developed method. In the validation step, the method is applied to estimate future CO2 concentrations with the reference estimation by the Ogata-Banks solution, where a part of earlier data is used as the training dataset. From the analysis, it is found that the ensemble mean of multiple estimations based on the developed method shows high prediction accuracy relative to the reference estimation. In addition, the majority of the data to be predicted are included in the proposed quantile interval, which suggests adequate representation of the uncertainty by the developed method. Therefore, the incorporation of a reasonable physically-based data model enhances the prediction capability of the data-driven model. The proposed method is not confined to estimations of CO2 concentration and may be applied to various real-time monitoring data from subsurface sites to develop automated control, management or decision-making systems.
Wu, Sheng; Jin, Qibing; Zhang, Ridong; Zhang, Junfeng; Gao, Furong
2017-07-01
In this paper, an improved constrained tracking control design is proposed for batch processes under uncertainties. A new process model that facilitates process state and tracking error augmentation with further additional tuning is first proposed. Then a subsequent controller design is formulated using robust stable constrained MPC optimization. Unlike conventional robust model predictive control (MPC), the proposed method enables the controller design to bear more degrees of tuning so that improved tracking control can be acquired, which is very important since uncertainties exist inevitably in practice and cause model/plant mismatches. An injection molding process is introduced to illustrate the effectiveness of the proposed MPC approach in comparison with conventional robust MPC. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Wang, Youqing; Dassau, Eyal; Doyle, Francis J
2010-02-01
A novel combination of iterative learning control (ILC) and model predictive control (MPC), referred to here as model predictive iterative learning control (MPILC), is proposed for glycemic control in type 1 diabetes mellitus. MPILC exploits two key factors: frequent glucose readings made possible by continuous glucose monitoring technology; and the repetitive nature of glucose-meal-insulin dynamics with a 24-h cycle. The proposed algorithm can learn from an individual's lifestyle, allowing the control performance to be improved from day to day. After less than 10 days, the blood glucose concentrations can be kept within a range of 90-170 mg/dL. Generally, control performance under MPILC is better than that under MPC. The proposed methodology is robust to random variations in meal timings within +/-60 min or meal amounts within +/-75% of the nominal value, which validates MPILC's superior robustness compared to run-to-run control. Moreover, to further improve the algorithm's robustness, an automatic scheme for setpoint update that ensures safe convergence is proposed. Furthermore, the proposed method does not require user intervention; hence, the algorithm should be of particular interest for glycemic control in children and adolescents.
Text Mining Improves Prediction of Protein Functional Sites
Cohn, Judith D.; Ravikumar, Komandur E.
2012-01-01
We present an approach that integrates protein structure analysis and text mining for protein functional site prediction, called LEAP-FS (Literature Enhanced Automated Prediction of Functional Sites). The structure analysis was carried out using Dynamics Perturbation Analysis (DPA), which predicts functional sites at control points where interactions greatly perturb protein vibrations. The text mining extracts mentions of residues in the literature, and predicts that residues mentioned are functionally important. We assessed the significance of each of these methods by analyzing their performance in finding known functional sites (specifically, small-molecule binding sites and catalytic sites) in about 100,000 publicly available protein structures. The DPA predictions recapitulated many of the functional site annotations and preferentially recovered binding sites annotated as biologically relevant vs. those annotated as potentially spurious. The text-based predictions were also substantially supported by the functional site annotations: compared to other residues, residues mentioned in text were roughly six times more likely to be found in a functional site. The overlap of predictions with annotations improved when the text-based and structure-based methods agreed. Our analysis also yielded new high-quality predictions of many functional site residues that were not catalogued in the curated data sources we inspected. We conclude that both DPA and text mining independently provide valuable high-throughput protein functional site predictions, and that integrating the two methods using LEAP-FS further improves the quality of these predictions. PMID:22393388
The integrated manual and automatic control of complex flight systems
NASA Technical Reports Server (NTRS)
Schmidt, D. K.
1983-01-01
Development of a unified control synthesis methodology for complex and/or non-conventional flight vehicles, and prediction techniques for the handling characteristics of such vehicles are reported. Identification of pilot dynamics and objectives, using time domain and frequency domain methods is proposed.
Distributed Actuation and Sensing on an Uninhabited Aerial Vehicle
NASA Technical Reports Server (NTRS)
Barnwell, William Garrard
2003-01-01
An array of effectors and sensors has been designed, tested and implemented on a Blended Wing Body Uninhabited Aerial Vehicle (UAV). The UAV is modified to serve as a flying, controls research, testbed. This effector/sensor array provides for the dynamic vehicle testing of controller designs and the study of decentralized control techniques. Each wing of the UAV is equipped with 12 distributed effectors that comprise a segmented array of independently actuated, contoured control surfaces. A single pressure sensor is installed near the base of each effector to provide a measure of deflections of the effectors. The UAV wings were tested in the North Carolina State University Subsonic Wind Tunnel and the pressure distribution that result from the deflections of the effectors are characterized. The results of the experiments are used to develop a simple, but accurate, prediction method, such that for any arrangement of the effector array the corresponding pressure distribution can be determined. Numerical analysis using the panel code CMARC verifies this prediction method.
Predictor symbology in computer-generated pictorial displays
NASA Technical Reports Server (NTRS)
Grunwald, A. J.
1981-01-01
The display under investigation, is a tunnel display for the four-dimensional commercial aircraft approach-to-landing under instrument flight rules. It is investigated whether more complex predictive information such as a three-dimensional perspective vehicle symbol, predicting the future vehicle position as well as future vehicle attitude angles, contributes to a better system response, and suitable predictor laws for the predictor motions, are formulated. Methods for utilizing the predictor symbol in controlling the forward velocity of the aircraft in four-dimensional approaches, are investigated. The simulator tests show, that the complex perspective vehicle symbol yields improved damping in the lateral response as compared to a flat two-dimensional predictor cross, but yields generally larger vertical deviations. Methods of using the predictor symbol in controlling the forward velocity of the vehicle are shown to be effective. The tunnel display with superimposed perspective vehicle symbol yields very satisfactory results and pilot acceptance in the lateral control but is found to be unsatisfactory in the vertical control, as a result of too large vertical path-angle deviations.
Sampath, Sivananthan; Tkachenko, Pavlo; Renard, Eric; Pereverzev, Sergei V
2016-11-01
Despite the risk associated with nocturnal hypoglycemia (NH) there are only a few methods aiming at the prediction of such events based on intermittent blood glucose monitoring data. One of the first methods that potentially can be used for NH prediction is based on the low blood glucose index (LBGI) and suggested, for example, in Accu-Chek® Connect as a hypoglycemia risk indicator. On the other hand, nowadays there are other glucose control indices (GCI), which could be used for NH prediction in the same spirit as LBGI. In the present study we propose a general approach of combining NH predictors constructed from different GCI. The approach is based on a recently developed strategy for aggregating ranking algorithms in machine learning. NH predictors have been calibrated and tested on data extracted from clinical trials, performed in EU FP7-funded project DIAdvisor. Then, to show a portability of the method we have tested it on another dataset that was received from EU Horizon 2020-funded project AMMODIT. We exemplify the proposed approach by aggregating NH predictors that have been constructed based on 4 GCI associated with hypoglycemia. Even though these predictors have been preliminary optimized to exhibit better performance on the considered dataset, our aggregation approach allows a further performance improvement. On the dataset, where a portability of the proposed approach has been demonstrated, the aggregating predictor has exhibited the following performance: sensitivity 77%, specificity 83.4%, positive predictive value 80.2%, negative predictive value 80.6%, which is higher than conventionally considered as acceptable. The proposed approach shows potential to be used in telemedicine systems for NH prediction. © 2016 Diabetes Technology Society.
NASA Astrophysics Data System (ADS)
Milovančević, Miloš; Nikolić, Vlastimir; Anđelković, Boban
2017-01-01
Vibration-based structural health monitoring is widely recognized as an attractive strategy for early damage detection in civil structures. Vibration monitoring and prediction is important for any system since it can save many unpredictable behaviors of the system. If the vibration monitoring is properly managed, that can ensure economic and safe operations. Potentials for further improvement of vibration monitoring lie in the improvement of current control strategies. One of the options is the introduction of model predictive control. Multistep ahead predictive models of vibration are a starting point for creating a successful model predictive strategy. For the purpose of this article, predictive models of are created for vibration monitoring of planetary power transmissions in pellet mills. The models were developed using the novel method based on ANFIS (adaptive neuro fuzzy inference system). The aim of this study is to investigate the potential of ANFIS for selecting the most relevant variables for predictive models of vibration monitoring of pellet mills power transmission. The vibration data are collected by PIC (Programmable Interface Controller) microcontrollers. The goal of the predictive vibration monitoring of planetary power transmissions in pellet mills is to indicate deterioration in the vibration of the power transmissions before the actual failure occurs. The ANFIS process for variable selection was implemented in order to detect the predominant variables affecting the prediction of vibration monitoring. It was also used to select the minimal input subset of variables from the initial set of input variables - current and lagged variables (up to 11 steps) of vibration. The obtained results could be used for simplification of predictive methods so as to avoid multiple input variables. It was preferable to used models with less inputs because of overfitting between training and testing data. While the obtained results are promising, further work is required in order to get results that could be directly applied in practice.
NASA Astrophysics Data System (ADS)
Muldoon, F. H.
2018-04-01
Hydrothermal waves in flows driven by thermocapillary and buoyancy effects are suppressed by applying a predictive control method. Hydrothermal waves arise in the manufacturing of crystals, including the "open boat" crystal growth process, and lead to undesirable impurities in crystals. The open boat process is modeled using the two-dimensional unsteady incompressible Navier-Stokes equations under the Boussinesq approximation and the linear approximation of the surface thermocapillary force. The flow is controlled by a spatially and temporally varying heat flux density through the free surface. The heat flux density is determined by a conjugate gradient optimization algorithm. The gradient of the objective function with respect to the heat flux density is found by solving adjoint equations derived from the Navier-Stokes ones in the Boussinesq approximation. Special attention is given to heat flux density distributions over small free-surface areas and to the maximum admissible heat flux density.
Method for Controlled Mitochondrial Perturbation during Phosphorus MRS in Children
Cree-Green, Melanie; Newcomer, Bradley R.; Brown, Mark; Hull, Amber; West, Amy D.; Singel, Debra; Reusch, Jane E.B.; McFann, Kim; Regensteiner, Judith G.; Nadeau, Kristen J.
2014-01-01
Introduction Insulin resistance (IR) is increasingly prevalent in children, and may be related to muscle mitochondrial dysfunction, necessitating development of mitochondrial assessment techniques. Recent studies used 31Phosphorus magnetic resonance spectroscopy (31P-MRS), a non-invasive technique appealing for clinical research. 31P-MRS requires exercise at a precise percentage of maximum volitional contraction (MVC). MVC measurement in children, particularly with disease, is problematic due to variability in perception of effort and motivation. We therefore developed a method to predict MVC, using maximal calf muscle cross-sectional area (MCSA) to assure controlled and reproducible muscle metabolic perturbations. Methods Data were collected from 66 sedentary 12–20 year-olds. Plantar flexion-volitional MVC was assessed using a MRI-compatible exercise treadle device. MCSA of the calf muscles were measured from MRI images. Data from the first 26 participants were utilized to model the relationship between MVC and MCSA (predicted MVC = 24.763+0.0047*MCSA). This model was then applied to the subsequent 40 participants. Results Volitional vs. model-predicted mean MVC was 43.9±0.8 kg vs. 44.2±1.81 (P=0.90). 31P-MRS results when predicted and volitional MVC were similar showed expected changes during volitional MVC-based exercise. In contrast, volitional MVC was markedly lower than predicted in 4 participants, and produced minimal metabolic perturbation. Upon repeat testing, these individuals could perform their predicted MVC with coaching, which produced expected metabolic perturbations. Conclusions Compared to using MVC testing alone, utilizing MRI to predict muscle strength allows for a more accurate and standardized 31P-MRS protocol during exercise in children. This method overcomes a major obstacle in assessing mitochondrial function in youth. These studies have importance as we seek to determine the role of mitochondrial function in youth with IR and diabetes and response to interventions. PMID:24576856
Comparisons of several aerodynamic methods for application to dynamic loads analyses
NASA Technical Reports Server (NTRS)
Kroll, R. I.; Miller, R. D.
1976-01-01
The results of a study are presented in which the applicability at subsonic speeds of several aerodynamic methods for predicting dynamic gust loads on aircraft, including active control systems, was examined and compared. These aerodynamic methods varied from steady state to an advanced unsteady aerodynamic formulation. Brief descriptions of the structural and aerodynamic representations and of the motion and load equations are presented. Comparisons of numerical results achieved using the various aerodynamic methods are shown in detail. From these results, aerodynamic representations for dynamic gust analyses are identified. It was concluded that several aerodynamic methods are satisfactory for dynamic gust analyses of configurations having either controls fixed or active control systems that primarily affect the low frequency rigid body aircraft response.
In vivo brain electrophoresis - a novel method for chemotherapy of CNS diseases.
Ammirati, Mario; Lamki, Tariq; Chitnis, Girish; Yang, Xiangyu; Russell, Duncan; Coble, Dondrae; Kaur, Balveen; Knopp, Michael; Moore, Sarah; Ziaie, Babak
2015-05-01
The blood-brain barrier (BBB) is a protective mechanism that does its job superbly. So much so, that hitherto, brain chemotherapy has been limited by it. In fact, very few agents are effective against brain disease due to the inherent difficulties of penetrating the BBB. We describe a novel, extremely focused method for delivering drugs to specific diseased areas. This innovative method directly delivers putative substances to the pathological area, bypassing the BBB. Treatment of brain diseases could be improved by targeted, controlled delivery of therapeutic substances to diseased cerebral areas. Our described novel method - in vivo electrophoresis - achieves this. This technique was evaluated in beagles after craniotomy was performed and a custom-designed plate with electrodes inserted. The delivery of charged substances to selected areas with predictably guided movement was achieved via a created electrical field. Gadolinium, a compound unable to cross the BBB, was injected intracerebrally whereas an electrical field was created using the implanted electrodes surrounding the injection area. The electrical field-guided Gadolinium movement was evaluated using MRI. Gadolinium was moved predictably using the created electrical field without complications. The experiment successfully demonstrated controlled movement of the substance. This technique can significantly change treatment of brain diseases because substances: i) may be moved in a controlled, predictable way - exponentially increasing therapeutic interactions with the target; and ii) no longer need to conform to constraints dictated by the BBB (molecular mass < 500 d; lipophilic), thereby increasing potential number of usable substances.
Evaluation of the utility of a glycemic pattern identification system.
Otto, Erik A; Tannan, Vinay
2014-07-01
With the increasing prevalence of systems allowing automated, real-time transmission of blood glucose data there is a need for pattern recognition techniques that can inform of deleterious patterns in glycemic control when people test. We evaluated the utility of pattern identification with a novel pattern identification system named Vigilant™ and compared it to standard pattern identification methods in diabetes. To characterize the importance of an identified pattern we evaluated the relative risk of future hypoglycemic and hyperglycemic events in diurnal periods following identification of a pattern in a data set of 536 patients with diabetes. We evaluated events 2 days, 7 days, 30 days, and 61-90 days from pattern identification, across diabetes types and cohorts of glycemic control, and also compared the system to 6 pattern identification methods consisting of deleterious event counts and percentages over 5-, 14-, and 30-day windows. Episodes of hypoglycemia, hyperglycemia, severe hypoglycemia, and severe hyperglycemia were 120%, 46%, 123%, and 76% more likely after pattern identification, respectively, compared to periods when no pattern was identified. The system was also significantly more predictive of deleterious events than other pattern identification methods evaluated, and was persistently predictive up to 3 months after pattern identification. The system identified patterns that are significantly predictive of deleterious glycemic events, and more so relative to many pattern identification methods used in diabetes management today. Further study will inform how improved pattern identification can lead to improved glycemic control. © 2014 Diabetes Technology Society.
Jiang, Haihe; Yin, Yixin; Xiao, Wendong; Zhao, Baoyong
2018-01-01
Gas utilization ratio (GUR) is an important indicator that is used to evaluate the energy consumption of blast furnaces (BFs). Currently, the existing methods cannot predict the GUR accurately. In this paper, we present a novel data-driven model for predicting the GUR. The proposed approach utilized both the TS fuzzy neural network (TS-FNN) and the particle swarm algorithm (PSO) to predict the GUR. The particle swarm algorithm (PSO) is applied to optimize the parameters of the TS-FNN in order to decrease the error caused by the inaccurate initial parameter. This paper also applied the box graph (Box-plot) method to eliminate the abnormal value of the raw data during the data preprocessing. This method can deal with the data which does not obey the normal distribution which is caused by the complex industrial environments. The prediction results demonstrate that the optimization model based on PSO and the TS-FNN approach achieves higher prediction accuracy compared with the TS-FNN model and SVM model and the proposed approach can accurately predict the GUR of the blast furnace, providing an effective way for the on-line blast furnace distribution control. PMID:29461469
Zhang, Sen; Jiang, Haihe; Yin, Yixin; Xiao, Wendong; Zhao, Baoyong
2018-02-20
Gas utilization ratio (GUR) is an important indicator that is used to evaluate the energy consumption of blast furnaces (BFs). Currently, the existing methods cannot predict the GUR accurately. In this paper, we present a novel data-driven model for predicting the GUR. The proposed approach utilized both the TS fuzzy neural network (TS-FNN) and the particle swarm algorithm (PSO) to predict the GUR. The particle swarm algorithm (PSO) is applied to optimize the parameters of the TS-FNN in order to decrease the error caused by the inaccurate initial parameter. This paper also applied the box graph (Box-plot) method to eliminate the abnormal value of the raw data during the data preprocessing. This method can deal with the data which does not obey the normal distribution which is caused by the complex industrial environments. The prediction results demonstrate that the optimization model based on PSO and the TS-FNN approach achieves higher prediction accuracy compared with the TS-FNN model and SVM model and the proposed approach can accurately predict the GUR of the blast furnace, providing an effective way for the on-line blast furnace distribution control.
Halloran, Jason P; Ackermann, Marko; Erdemir, Ahmet; van den Bogert, Antonie J
2010-10-19
Current computational methods for simulating locomotion have primarily used muscle-driven multibody dynamics, in which neuromuscular control is optimized. Such simulations generally represent joints and soft tissue as simple kinematic or elastic elements for computational efficiency. These assumptions limit application in studies such as ligament injury or osteoarthritis, where local tissue loading must be predicted. Conversely, tissue can be simulated using the finite element method with assumed or measured boundary conditions, but this does not represent the effects of whole body dynamics and neuromuscular control. Coupling the two domains would overcome these limitations and allow prediction of movement strategies guided by tissue stresses. Here we demonstrate this concept in a gait simulation where a musculoskeletal model is coupled to a finite element representation of the foot. Predictive simulations incorporated peak plantar tissue deformation into the objective of the movement optimization, as well as terms to track normative gait data and minimize fatigue. Two optimizations were performed, first without the strain minimization term and second with the term. Convergence to realistic gait patterns was achieved with the second optimization realizing a 44% reduction in peak tissue strain energy density. The study demonstrated that it is possible to alter computationally predicted neuromuscular control to minimize tissue strain while including desired kinematic and muscular behavior. Future work should include experimental validation before application of the methodology to patient care. Copyright © 2010 Elsevier Ltd. All rights reserved.
Adaptive model predictive process control using neural networks
Buescher, K.L.; Baum, C.C.; Jones, R.D.
1997-08-19
A control system for controlling the output of at least one plant process output parameter is implemented by adaptive model predictive control using a neural network. An improved method and apparatus provides for sampling plant output and control input at a first sampling rate to provide control inputs at the fast rate. The MPC system is, however, provided with a network state vector that is constructed at a second, slower rate so that the input control values used by the MPC system are averaged over a gapped time period. Another improvement is a provision for on-line training that may include difference training, curvature training, and basis center adjustment to maintain the weights and basis centers of the neural in an updated state that can follow changes in the plant operation apart from initial off-line training data. 46 figs.
Adaptive model predictive process control using neural networks
Buescher, Kevin L.; Baum, Christopher C.; Jones, Roger D.
1997-01-01
A control system for controlling the output of at least one plant process output parameter is implemented by adaptive model predictive control using a neural network. An improved method and apparatus provides for sampling plant output and control input at a first sampling rate to provide control inputs at the fast rate. The MPC system is, however, provided with a network state vector that is constructed at a second, slower rate so that the input control values used by the MPC system are averaged over a gapped time period. Another improvement is a provision for on-line training that may include difference training, curvature training, and basis center adjustment to maintain the weights and basis centers of the neural in an updated state that can follow changes in the plant operation apart from initial off-line training data.
Prediction of Patient-Controlled Analgesic Consumption: A Multimodel Regression Tree Approach.
Hu, Yuh-Jyh; Ku, Tien-Hsiung; Yang, Yu-Hung; Shen, Jia-Ying
2018-01-01
Several factors contribute to individual variability in postoperative pain, therefore, individuals consume postoperative analgesics at different rates. Although many statistical studies have analyzed postoperative pain and analgesic consumption, most have identified only the correlation and have not subjected the statistical model to further tests in order to evaluate its predictive accuracy. In this study involving 3052 patients, a multistrategy computational approach was developed for analgesic consumption prediction. This approach uses data on patient-controlled analgesia demand behavior over time and combines clustering, classification, and regression to mitigate the limitations of current statistical models. Cross-validation results indicated that the proposed approach significantly outperforms various existing regression methods. Moreover, a comparison between the predictions by anesthesiologists and medical specialists and those of the computational approach for an independent test data set of 60 patients further evidenced the superiority of the computational approach in predicting analgesic consumption because it produced markedly lower root mean squared errors.
The kinetics and location of intra-host HIV evolution to evade cellular immunity are predictable
NASA Astrophysics Data System (ADS)
Barton, John; Goonetilleke, Nilu; Butler, Thomas; Walker, Bruce; McMichael, Andrew; Chakraborty, Arup
Human immunodeficiency virus (HIV) evolves within infected persons to escape targeting and clearance by the host immune system, thereby preventing effective immune control of infection. Knowledge of the timing and pathways of escape that result in loss of control of the virus could aid in the design of effective strategies to overcome the challenge of viral diversification and immune escape. We combined methods from statistical physics and evolutionary dynamics to predict the course of in vivo viral sequence evolution in response to T cell-mediated immune pressure in a cohort of 17 persons with acute HIV infection. Our predictions agree well with both the location of documented escape mutations and the clinically observed time to escape. We also find that that the mutational pathways to escape depend on the viral sequence background due to epistatic interactions. The ability to predict escape pathways, and the duration over which control is maintained by specific immune responses prior to escape, could be exploited for the rational design of immunotherapeutic strategies that may enable long-term control of HIV infection.
Stability and Control CFD Investigations of a Generic 53 Degree Swept UCAV Configuration
NASA Technical Reports Server (NTRS)
Frink, Neal T.
2014-01-01
NATO STO Task Group AVT-201 on "Extended Assessment of Reliable Stability & Control Prediction Methods for NATO Air Vehicles" is studying various computational approaches to predict stability and control parameters for aircraft undergoing non-linear flight conditions. This paper contributes an assessment through correlations with wind tunnel data for the state of aerodynamic predictive capability of time-accurate RANS methodology on the group's focus configuration, a 53deg swept and twisted lambda wing UCAV, undergoing a variety of roll, pitch, and yaw motions. The vehicle aerodynamics is dominated by the complex non-linear physics of round leading-edge vortex flow separation. Correlations with experimental data are made for static longitudinal/lateral sweeps, and at varying frequencies of prescribed roll/pitch/yaw sinusoidal motion for the vehicle operating with and without control surfaces. The data and the derived understanding should prove useful to the AVT-201 team and other researchers who are developing techniques for augmenting flight simulation models from low-speed CFD predictions of aircraft traversing non-linear regions of a flight envelope.
The Impact of Inattention and Emotional Problems on Cognitive Control in Primary School Children
ERIC Educational Resources Information Center
Sorensen, Lin; Plessen, Kerstin J.; Lundervold, Astri J.
2012-01-01
Objective: The present study investigated the predictive value of parent/teacher reports of inattention and emotional problems on cognitive control function in 241 children in primary school. Method: Cognitive control was measured by functions of set-shifting and working memory as assessed by the Behavior Rating Inventory of Executive Function…
Control of complex networks requires both structure and dynamics
NASA Astrophysics Data System (ADS)
Gates, Alexander J.; Rocha, Luis M.
2016-04-01
The study of network structure has uncovered signatures of the organization of complex systems. However, there is also a need to understand how to control them; for example, identifying strategies to revert a diseased cell to a healthy state, or a mature cell to a pluripotent state. Two recent methodologies suggest that the controllability of complex systems can be predicted solely from the graph of interactions between variables, without considering their dynamics: structural controllability and minimum dominating sets. We demonstrate that such structure-only methods fail to characterize controllability when dynamics are introduced. We study Boolean network ensembles of network motifs as well as three models of biochemical regulation: the segment polarity network in Drosophila melanogaster, the cell cycle of budding yeast Saccharomyces cerevisiae, and the floral organ arrangement in Arabidopsis thaliana. We demonstrate that structure-only methods both undershoot and overshoot the number and which sets of critical variables best control the dynamics of these models, highlighting the importance of the actual system dynamics in determining control. Our analysis further shows that the logic of automata transition functions, namely how canalizing they are, plays an important role in the extent to which structure predicts dynamics.
Hansen, Karen E; Blank, Robert D; Palermo, Lisa; Fink, Howard A; Orwoll, Eric S
2014-01-01
Summary In this study, the area under the curve was highest when using the lowest vertebral body T-score to diagnose osteoporosis. In men for whom hip imaging is not possible, the lowest vertebral body T-score improves ability to diagnose osteoporosis in men who are likely to have an incident fragility fracture. Purpose Spine T-scores have limited ability to predict fragility fracture. We hypothesized that using lowest vertebral body T-score to diagnose osteoporosis would better predict fracture. Methods Among men enrolled in the Osteoporotic Fractures in Men Study, we identified cases with incident clinical fracture (n=484) and controls without fracture (n=1,516). We analyzed the lumbar spine BMD in cases and controls (n=2,000) to record the L1-L4 (referent), the lowest vertebral body and ISCD-determined T-scores using a male normative database, and the L1-L4 T-score using a female normative database. We compared the ability of method to diagnose osteoporosis and therefore predict incident clinical fragility fracture, using area under the receiver operator curves (AUC) and the net reclassification index (NCI) as measures of diagnostic accuracy. ISCD-determined T-scores were determined in only 60% of participants (n=1205). Results Among 1,205 men, the AUC to predict incident clinical fracture was 0.546 for L1-L4 male, 0.542 for the L1-L4 female, 0.585 for lowest vertebral body and 0.559 for ISCD-determined T-score. The lowest vertebral body AUC was the only method significantly different from the referent method (p=0.002). Likewise, a diagnosis of osteoporosis based on the lowest vertebral body T-score demonstrated a significantly better NRI than the referent method (net NRI +0.077, p=0.005). By contrast, the net NRI for other methods of analysis did not differ from the referent method. Conclusion Our study suggests that in men, the lowest vertebral body T-score is an acceptable method by which to estimate fracture risk. PMID:24850381
Near-Optimal Tracking Control of Mobile Robots Via Receding-Horizon Dual Heuristic Programming.
Lian, Chuanqiang; Xu, Xin; Chen, Hong; He, Haibo
2016-11-01
Trajectory tracking control of wheeled mobile robots (WMRs) has been an important research topic in control theory and robotics. Although various tracking control methods with stability have been developed for WMRs, it is still difficult to design optimal or near-optimal tracking controller under uncertainties and disturbances. In this paper, a near-optimal tracking control method is presented for WMRs based on receding-horizon dual heuristic programming (RHDHP). In the proposed method, a backstepping kinematic controller is designed to generate desired velocity profiles and the receding horizon strategy is used to decompose the infinite-horizon optimal control problem into a series of finite-horizon optimal control problems. In each horizon, a closed-loop tracking control policy is successively updated using a class of approximate dynamic programming algorithms called finite-horizon dual heuristic programming (DHP). The convergence property of the proposed method is analyzed and it is shown that the tracking control system based on RHDHP is asymptotically stable by using the Lyapunov approach. Simulation results on three tracking control problems demonstrate that the proposed method has improved control performance when compared with conventional model predictive control (MPC) and DHP. It is also illustrated that the proposed method has lower computational burden than conventional MPC, which is very beneficial for real-time tracking control.
NASA Astrophysics Data System (ADS)
Zhao, Yan; Yang, Zijiang; Gao, Song; Liu, Jinbiao
2018-02-01
Automatic generation control(AGC) is a key technology to maintain real time power generation and load balance, and to ensure the quality of power supply. Power grids require each power generation unit to have a satisfactory AGC performance, being specified in two detailed rules. The two rules provide a set of indices to measure the AGC performance of power generation unit. However, the commonly-used method to calculate these indices is based on particular data samples from AGC responses and will lead to incorrect results in practice. This paper proposes a new method to estimate the AGC performance indices via system identification techniques. In addition, a nonlinear regression model between performance indices and load command is built in order to predict the AGC performance indices. The effectiveness of the proposed method is validated through industrial case studies.
A digital prediction algorithm for a single-phase boost PFC
NASA Astrophysics Data System (ADS)
Qing, Wang; Ning, Chen; Weifeng, Sun; Shengli, Lu; Longxing, Shi
2012-12-01
A novel digital control algorithm for digital control power factor correction is presented, which is called the prediction algorithm and has a feature of a higher PF (power factor) with lower total harmonic distortion, and a faster dynamic response with the change of the input voltage or load current. For a certain system, based on the current system state parameters, the prediction algorithm can estimate the track of the output voltage and the inductor current at the next switching cycle and get a set of optimized control sequences to perfectly track the trajectory of input voltage. The proposed prediction algorithm is verified at different conditions, and computer simulation and experimental results under multi-situations confirm the effectiveness of the prediction algorithm. Under the circumstances that the input voltage is in the range of 90-265 V and the load current in the range of 20%-100%, the PF value is larger than 0.998. The startup and the recovery times respectively are about 0.1 s and 0.02 s without overshoot. The experimental results also verify the validity of the proposed method.
NASA Technical Reports Server (NTRS)
Jones, R. T.
1976-01-01
A method is presented for predicting the amplitude and frequency, under certain simplifying conditions, of the hunting oscillations of an automatically controlled aircraft with lag in the control system or in the response of the aircraft to the controls. If the steering device is actuated by a simple right-left type of signal, the series of alternating fixed amplitude signals occuring during the hunting may ordinarily be represented by a square wave. Formulas are given expressing the response to such a variation of signal in terms of the response to a unit signal.
Development of a prototype automatic controller for liquid cooling garment inlet temperature
NASA Technical Reports Server (NTRS)
Weaver, C. S.; Webbon, B. W.; Montgomery, L. D.
1982-01-01
The development of a computer control of a liquid cooled garment (LCG) inlet temperature is descirbed. An adaptive model of the LCG is used to predict the heat-removal rates for various inlet temperatures. An experimental system that contains a microcomputer was constructed. The LCG inlet and outlet temperatures and the heat exchanger outlet temperature form the inputs to the computer. The adaptive model prediction method of control is successful during tests where the inlet temperature is automatically chosen by the computer. It is concluded that the program can be implemented in a microprocessor of a size that is practical for a life support back-pack.
Introduction to Computational Methods for Stability and Control (COMSAC)
NASA Technical Reports Server (NTRS)
Hall, Robert M.; Fremaux, C. Michael; Chambers, Joseph R.
2004-01-01
This Symposium is intended to bring together the often distinct cultures of the Stability and Control (S&C) community and the Computational Fluid Dynamics (CFD) community. The COMSAC program is itself a new effort by NASA Langley to accelerate the application of high end CFD methodologies to the demanding job of predicting stability and control characteristics of aircraft. This talk is intended to set the stage for needing a program like COMSAC. It is not intended to give details of the program itself. The topics include: 1) S&C Challenges; 2) Aero prediction methodology; 3) CFD applications; 4) NASA COMSAC planning; 5) Objectives of symposium; and 6) Closing remarks.
Obstacle avoidance handling and mixed integer predictive control for space robots
NASA Astrophysics Data System (ADS)
Zong, Lijun; Luo, Jianjun; Wang, Mingming; Yuan, Jianping
2018-04-01
This paper presents a novel obstacle avoidance constraint and a mixed integer predictive control (MIPC) method for space robots avoiding obstacles and satisfying physical limits during performing tasks. Firstly, a novel kind of obstacle avoidance constraint of space robots, which needs the assumption that the manipulator links and the obstacles can be represented by convex bodies, is proposed by limiting the relative velocity between two closest points which are on the manipulator and the obstacle, respectively. Furthermore, the logical variables are introduced into the obstacle avoidance constraint, which have realized the constraint form is automatically changed to satisfy different obstacle avoidance requirements in different distance intervals between the space robot and the obstacle. Afterwards, the obstacle avoidance constraint and other system physical limits, such as joint angle ranges, the amplitude boundaries of joint velocities and joint torques, are described as inequality constraints of a quadratic programming (QP) problem by using the model predictive control (MPC) method. To guarantee the feasibility of the obtained multi-constraint QP problem, the constraints are treated as soft constraints and assigned levels of priority based on the propositional logic theory, which can realize that the constraints with lower priorities are always firstly violated to recover the feasibility of the QP problem. Since the logical variables have been introduced, the optimization problem including obstacle avoidance and system physical limits as prioritized inequality constraints is termed as MIPC method of space robots, and its computational complexity as well as possible strategies for reducing calculation amount are analyzed. Simulations of the space robot unfolding its manipulator and tracking the end-effector's desired trajectories with the existence of obstacles and physical limits are presented to demonstrate the effectiveness of the proposed obstacle avoidance strategy and MIPC control method of space robots.
An extrapolation method for compressive strength prediction of hydraulic cement products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siqueira Tango, C.E. de
1998-07-01
The basis for the AMEBA Method is presented. A strength-time function is used to extrapolate the predicted cementitious material strength for a late (ALTA) age, based on two earlier age strengths--medium (MEDIA) and low (BAIXA) ages. The experimental basis for the method is data from the IPT-Brazil laboratory and the field, including a long-term study on concrete, research on limestone, slag, and fly-ash additions, and quality control data from a cement factory, a shotcrete tunnel lining, and a grout for structural repair. The method applicability was also verified for high-performance concrete with silica fume. The formula for predicting late agemore » (e.g., 28 days) strength, for a given set of involved ages (e.g., 28,7, and 2 days) is normally a function only of the two earlier ages` (e.g., 7 and 2 days) strengths. This equation has been shown to be independent on materials variations, including cement brand, and is easy to use also graphically. Using the AMEBA method, and only needing to know the type of cement used, it has been possible to predict strengths satisfactorily, even without the preliminary tests which are required in other methods.« less
Szekér, Szabolcs; Vathy-Fogarassy, Ágnes
2018-01-01
Logistic regression based propensity score matching is a widely used method in case-control studies to select the individuals of the control group. This method creates a suitable control group if all factors affecting the output variable are known. However, if relevant latent variables exist as well, which are not taken into account during the calculations, the quality of the control group is uncertain. In this paper, we present a statistics-based research in which we try to determine the relationship between the accuracy of the logistic regression model and the uncertainty of the dependent variable of the control group defined by propensity score matching. Our analyses show that there is a linear correlation between the fit of the logistic regression model and the uncertainty of the output variable. In certain cases, a latent binary explanatory variable can result in a relative error of up to 70% in the prediction of the outcome variable. The observed phenomenon calls the attention of analysts to an important point, which must be taken into account when deducting conclusions.
Su, Fei; Wang, Jiang; Niu, Shuangxia; Li, Huiyan; Deng, Bin; Liu, Chen; Wei, Xile
2018-02-01
The efficacy of deep brain stimulation (DBS) for Parkinson's disease (PD) depends in part on the post-operative programming of stimulation parameters. Closed-loop stimulation is one method to realize the frequent adjustment of stimulation parameters. This paper introduced the nonlinear predictive control method into the online adjustment of DBS amplitude and frequency. This approach was tested in a computational model of basal ganglia-thalamic network. The autoregressive Volterra model was used to identify the process model based on physiological data. Simulation results illustrated the efficiency of closed-loop stimulation methods (amplitude adjustment and frequency adjustment) in improving the relay reliability of thalamic neurons compared with the PD state. Besides, compared with the 130Hz constant DBS the closed-loop stimulation methods can significantly reduce the energy consumption. Through the analysis of inter-spike-intervals (ISIs) distribution of basal ganglia neurons, the evoked network activity by the closed-loop frequency adjustment stimulation was closer to the normal state. Copyright © 2017 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Estimating the age distribution of mosquito populations is crucial for assessing their capacity to transmit disease and for evaluating the efficacy of available vector control programs. This study reports on the capacity of near-infrared spectroscopy (NIRS) technique to rapidly predict the ages of t...
ERIC Educational Resources Information Center
Patrianakos-Hoobler, Athena I.; Msall, Michael E.; Huo, Dezheng; Marks, Jeremy D.; Plesha-Troyke, Susan; Schreiber, Michael D.
2010-01-01
Aim: To determine whether neurodevelopmental outcomes at the age of 2 years accurately predict school readiness in children who survived respiratory distress syndrome after preterm birth. Method: Our cohort included 121 preterm infants who received surfactant and ventilation and were enrolled in a randomized controlled study of inhaled nitric…
Kim, Dong Wook; Kim, Hwiyoung; Nam, Woong; Kim, Hyung Jun; Cha, In-Ho
2018-04-23
The aim of this study was to build and validate five types of machine learning models that can predict the occurrence of BRONJ associated with dental extraction in patients taking bisphosphonates for the management of osteoporosis. A retrospective review of the medical records was conducted to obtain cases and controls for the study. Total 125 patients consisting of 41 cases and 84 controls were selected for the study. Five machine learning prediction algorithms including multivariable logistic regression model, decision tree, support vector machine, artificial neural network, and random forest were implemented. The outputs of these models were compared with each other and also with conventional methods, such as serum CTX level. Area under the receiver operating characteristic (ROC) curve (AUC) was used to compare the results. The performance of machine learning models was significantly superior to conventional statistical methods and single predictors. The random forest model yielded the best performance (AUC = 0.973), followed by artificial neural network (AUC = 0.915), support vector machine (AUC = 0.882), logistic regression (AUC = 0.844), decision tree (AUC = 0.821), drug holiday alone (AUC = 0.810), and CTX level alone (AUC = 0.630). Machine learning methods showed superior performance in predicting BRONJ associated with dental extraction compared to conventional statistical methods using drug holiday and serum CTX level. Machine learning can thus be applied in a wide range of clinical studies. Copyright © 2017. Published by Elsevier Inc.
How reliable are ligand-centric methods for Target Fishing?
NASA Astrophysics Data System (ADS)
Peon, Antonio; Dang, Cuong; Ballester, Pedro
2016-04-01
Computational methods for Target Fishing (TF), also known as Target Prediction or Polypharmacology Prediction, can be used to discover new targets for small-molecule drugs. This may result in repositioning the drug in a new indication or improving our current understanding of its efficacy and side effects. While there is a substantial body of research on TF methods, there is still a need to improve their validation, which is often limited to a small part of the available targets and not easily interpretable by the user. Here we discuss how target-centric TF methods are inherently limited by the number of targets that can possibly predict (this number is by construction much larger in ligand-centric techniques). We also propose a new benchmark to validate TF methods, which is particularly suited to analyse how predictive performance varies with the query molecule. On average over approved drugs, we estimate that only five predicted targets will have to be tested to find two true targets with submicromolar potency (a strong variability in performance is however observed). In addition, we find that an approved drug has currently an average of eight known targets, which reinforces the notion that polypharmacology is a common and strong event. Furthermore, with the assistance of a control group of randomly-selected molecules, we show that the targets of approved drugs are generally harder to predict.
Flight Dynamics and Control of a Morphing UAV: Bio inspired by Natural Fliers
2017-02-17
Approved for public release: distribution unlimited. IV Modelling and Sizing Tornado Vortex Lattice Method (VLM) was used for aerodynamic prediction... Tornado is a Vortex Lattice Method software programmed in MATLAB; it was selected due to its fast solving time and ability to be controlled through...custom MATLAB scripts. Tornado VLM models the wing as thin sheet of discrete vortices and computes the pressure and force distributions around the
Efficient network disintegration under incomplete information: the comic effect of link prediction
NASA Astrophysics Data System (ADS)
Tan, Suo-Yi; Wu, Jun; Lü, Linyuan; Li, Meng-Jun; Lu, Xin
2016-03-01
The study of network disintegration has attracted much attention due to its wide applications, including suppressing the epidemic spreading, destabilizing terrorist network, preventing financial contagion, controlling the rumor diffusion and perturbing cancer networks. The crux of this matter is to find the critical nodes whose removal will lead to network collapse. This paper studies the disintegration of networks with incomplete link information. An effective method is proposed to find the critical nodes by the assistance of link prediction techniques. Extensive experiments in both synthetic and real networks suggest that, by using link prediction method to recover partial missing links in advance, the method can largely improve the network disintegration performance. Besides, to our surprise, we find that when the size of missing information is relatively small, our method even outperforms than the results based on complete information. We refer to this phenomenon as the “comic effect” of link prediction, which means that the network is reshaped through the addition of some links that identified by link prediction algorithms, and the reshaped network is like an exaggerated but characteristic comic of the original one, where the important parts are emphasized.
Efficient network disintegration under incomplete information: the comic effect of link prediction.
Tan, Suo-Yi; Wu, Jun; Lü, Linyuan; Li, Meng-Jun; Lu, Xin
2016-03-10
The study of network disintegration has attracted much attention due to its wide applications, including suppressing the epidemic spreading, destabilizing terrorist network, preventing financial contagion, controlling the rumor diffusion and perturbing cancer networks. The crux of this matter is to find the critical nodes whose removal will lead to network collapse. This paper studies the disintegration of networks with incomplete link information. An effective method is proposed to find the critical nodes by the assistance of link prediction techniques. Extensive experiments in both synthetic and real networks suggest that, by using link prediction method to recover partial missing links in advance, the method can largely improve the network disintegration performance. Besides, to our surprise, we find that when the size of missing information is relatively small, our method even outperforms than the results based on complete information. We refer to this phenomenon as the "comic effect" of link prediction, which means that the network is reshaped through the addition of some links that identified by link prediction algorithms, and the reshaped network is like an exaggerated but characteristic comic of the original one, where the important parts are emphasized.
Efficient network disintegration under incomplete information: the comic effect of link prediction
Tan, Suo-Yi; Wu, Jun; Lü, Linyuan; Li, Meng-Jun; Lu, Xin
2016-01-01
The study of network disintegration has attracted much attention due to its wide applications, including suppressing the epidemic spreading, destabilizing terrorist network, preventing financial contagion, controlling the rumor diffusion and perturbing cancer networks. The crux of this matter is to find the critical nodes whose removal will lead to network collapse. This paper studies the disintegration of networks with incomplete link information. An effective method is proposed to find the critical nodes by the assistance of link prediction techniques. Extensive experiments in both synthetic and real networks suggest that, by using link prediction method to recover partial missing links in advance, the method can largely improve the network disintegration performance. Besides, to our surprise, we find that when the size of missing information is relatively small, our method even outperforms than the results based on complete information. We refer to this phenomenon as the “comic effect” of link prediction, which means that the network is reshaped through the addition of some links that identified by link prediction algorithms, and the reshaped network is like an exaggerated but characteristic comic of the original one, where the important parts are emphasized. PMID:26960247
Abolghasemi, Abbas; Rajabi, Saeed
2013-01-01
Background Due to its progressive nature in all aspects of life, addiction endangers the health of individuals, families and the society. Objectives The purpose of this study was to determine the role of self-regulation and affective control in predicting interpersonal reactivity of drug addicts. Materials and Methods This research is a correlation study. The statistical population of this study includes all drug addicts who were referred to addiction treatment centers of Ardabil in 2011 of whom 160 addicts were selected through convenience sampling. A self-regulation questionnaire, interpersonal reactivity questionnaire and affective control scale were used for data collection. Results Research results showed that self-regulation (r = -0.40) and affective control (r = -0.29) have a significant relationship with interpersonal reactivity of addicts (P < 0.001). The results of the multiple regression analysis indicated that 19 percent of interpersonal reactivity can be predicted by self-regulation and affective control. Conclusion These results suggest that self-regulation and affective control play an important role in exacerbating as well as reducing interpersonal reactivity of addicts. PMID:24971268
Model Predictive Control of the Current Profile and the Internal Energy of DIII-D Plasmas
NASA Astrophysics Data System (ADS)
Lauret, M.; Wehner, W.; Schuster, E.
2015-11-01
For efficient and stable operation of tokamak plasmas it is important that the current density profile and the internal energy are jointly controlled by using the available heating and current-drive (H&CD) sources. The proposed approach is a version of nonlinear model predictive control in which the input set is restricted in size by the possible combinations of the H&CD on/off states. The controller uses real-time predictions over a receding-time horizon of both the current density profile (nonlinear partial differential equation) and the internal energy (nonlinear ordinary differential equation) evolutions. At every time instant the effect of every possible combination of H&CD sources on the current profile and internal energy is evaluated over the chosen time horizon. The combination that leads to the best result, which is assessed by a user-defined cost function, is then applied up until the next time instant. Simulations results based on a control-oriented transport code illustrate the effectiveness of the proposed control method. Supported by the US DOE under DE-FC02-04ER54698 & DE-SC0010661.
NASA Technical Reports Server (NTRS)
Morey, Susan; Prevot, Thomas; Mercer, Joey; Martin, Lynne; Bienert, Nancy; Cabrall, Christopher; Hunt, Sarah; Homola, Jeffrey; Kraut, Joshua
2013-01-01
A human-in-the-loop simulation was conducted to examine the effects of varying levels of trajectory prediction uncertainty on air traffic controller workload and performance, as well as how strategies and the use of decision support tools change in response. This paper focuses on the strategies employed by two controllers from separate teams who worked in parallel but independently under identical conditions (airspace, arrival traffic, tools) with the goal of ensuring schedule conformance and safe separation for a dense arrival flow in en route airspace. Despite differences in strategy and methods, both controllers achieved high levels of schedule conformance and safe separation. Overall, results show that trajectory uncertainties introduced by wind and aircraft performance prediction errors do not affect the controllers' ability to manage traffic. Controller strategies were fairly robust to changes in error, though strategies were affected by the amount of delay to absorb (scheduled time of arrival minus estimated time of arrival). Using the results and observations, this paper proposes an ability to dynamically customize the display of information including delay time based on observed error to better accommodate different strategies and objectives.
Richardson, Miles
2017-04-01
In ergonomics there is often a need to identify and predict the separate effects of multiple factors on performance. A cost-effective fractional factorial approach to understanding the relationship between task characteristics and task performance is presented. The method has been shown to provide sufficient independent variability to reveal and predict the effects of task characteristics on performance in two domains. The five steps outlined are: selection of performance measure, task characteristic identification, task design for user trials, data collection, regression model development and task characteristic analysis. The approach can be used for furthering knowledge of task performance, theoretical understanding, experimental control and prediction of task performance. Practitioner Summary: A cost-effective method to identify and predict the separate effects of multiple factors on performance is presented. The five steps allow a better understanding of task factors during the design process.
NASA Astrophysics Data System (ADS)
Léchappé, V.; Moulay, E.; Plestan, F.
2018-06-01
The stability of a prediction-based controller for linear time-invariant (LTI) systems is studied in the presence of time-varying input and output delays. The uncertain delay case is treated as well as the partial state knowledge case. The reduction method is used in order to prove the convergence of the closed-loop system including the state observer, the predictor and the plant. Explicit conditions that guarantee the closed-loop stability are given, thanks to a Lyapunov-Razumikhin analysis. Simulations illustrate the theoretical results.
Evaluation of the impacts of climate change on disease vectors through ecological niche modelling.
Carvalho, B M; Rangel, E F; Vale, M M
2017-08-01
Vector-borne diseases are exceptionally sensitive to climate change. Predicting vector occurrence in specific regions is a challenge that disease control programs must meet in order to plan and execute control interventions and climate change adaptation measures. Recently, an increasing number of scientific articles have applied ecological niche modelling (ENM) to study medically important insects and ticks. With a myriad of available methods, it is challenging to interpret their results. Here we review the future projections of disease vectors produced by ENM, and assess their trends and limitations. Tropical regions are currently occupied by many vector species; but future projections indicate poleward expansions of suitable climates for their occurrence and, therefore, entomological surveillance must be continuously done in areas projected to become suitable. The most commonly applied methods were the maximum entropy algorithm, generalized linear models, the genetic algorithm for rule set prediction, and discriminant analysis. Lack of consideration of the full-known current distribution of the target species on models with future projections has led to questionable predictions. We conclude that there is no ideal 'gold standard' method to model vector distributions; researchers are encouraged to test different methods for the same data. Such practice is becoming common in the field of ENM, but still lags behind in studies of disease vectors.
Data driven CAN node reliability assessment for manufacturing system
NASA Astrophysics Data System (ADS)
Zhang, Leiming; Yuan, Yong; Lei, Yong
2017-01-01
The reliability of the Controller Area Network(CAN) is critical to the performance and safety of the system. However, direct bus-off time assessment tools are lacking in practice due to inaccessibility of the node information and the complexity of the node interactions upon errors. In order to measure the mean time to bus-off(MTTB) of all the nodes, a novel data driven node bus-off time assessment method for CAN network is proposed by directly using network error information. First, the corresponding network error event sequence for each node is constructed using multiple-layer network error information. Then, the generalized zero inflated Poisson process(GZIP) model is established for each node based on the error event sequence. Finally, the stochastic model is constructed to predict the MTTB of the node. The accelerated case studies with different error injection rates are conducted on a laboratory network to demonstrate the proposed method, where the network errors are generated by a computer controlled error injection system. Experiment results show that the MTTB of nodes predicted by the proposed method agree well with observations in the case studies. The proposed data driven node time to bus-off assessment method for CAN networks can successfully predict the MTTB of nodes by directly using network error event data.
NASA Astrophysics Data System (ADS)
Wu, Jie; Yan, Quan-sheng; Li, Jian; Hu, Min-yi
2016-04-01
In bridge construction, geometry control is critical to ensure that the final constructed bridge has the consistent shape as design. A common method is by predicting the deflections of the bridge during each construction phase through the associated finite element models. Therefore, the cambers of the bridge during different construction phases can be determined beforehand. These finite element models are mostly based on the design drawings and nominal material properties. However, the accuracy of these bridge models can be large due to significant uncertainties of the actual properties of the materials used in construction. Therefore, the predicted cambers may not be accurate to ensure agreement of bridge geometry with design, especially for long-span bridges. In this paper, an improved geometry control method is described, which incorporates finite element (FE) model updating during the construction process based on measured bridge deflections. A method based on the Kriging model and Latin hypercube sampling is proposed to perform the FE model updating due to its simplicity and efficiency. The proposed method has been applied to a long-span continuous girder concrete bridge during its construction. Results show that the method is effective in reducing construction error and ensuring the accuracy of the geometry of the final constructed bridge.
Sreenivasa, Manish; Millard, Matthew; Felis, Martin; Mombaur, Katja; Wolf, Sebastian I.
2017-01-01
Predicting the movements, ground reaction forces and neuromuscular activity during gait can be a valuable asset to the clinical rehabilitation community, both to understand pathology, as well as to plan effective intervention. In this work we use an optimal control method to generate predictive simulations of pathological gait in the sagittal plane. We construct a patient-specific model corresponding to a 7-year old child with gait abnormalities and identify the optimal spring characteristics of an ankle-foot orthosis that minimizes muscle effort. Our simulations include the computation of foot-ground reaction forces, as well as the neuromuscular dynamics using computationally efficient muscle torque generators and excitation-activation equations. The optimal control problem (OCP) is solved with a direct multiple shooting method. The solution of this problem is physically consistent synthetic neural excitation commands, muscle activations and whole body motion. Our simulations produced similar changes to the gait characteristics as those recorded on the patient. The orthosis-equipped model was able to walk faster with more extended knees. Notably, our approach can be easily tuned to simulate weakened muscles, produces physiologically realistic ground reaction forces and smooth muscle activations and torques, and can be implemented on a standard workstation to produce results within a few hours. These results are an important contribution toward bridging the gap between research methods in computational neuromechanics and day-to-day clinical rehabilitation. PMID:28450833
Methods for predicting properties and tailoring salt solutions for industrial processes
NASA Technical Reports Server (NTRS)
Ally, Moonis R.
1993-01-01
An algorithm developed at Oak Ridge National Laboratory accurately and quickly predicts thermodynamic properties of concentrated aqueous salt solutions. This algorithm is much simpler and much faster than other modeling schemes and is unique because it can predict solution behavior at very high concentrations and under varying conditions. Typical industrial applications of this algorithm would be in manufacture of inorganic chemicals by crystallization, thermal storage, refrigeration and cooling, extraction of metals, emissions controls, etc.
Novel hyperspectral prediction method and apparatus
NASA Astrophysics Data System (ADS)
Kemeny, Gabor J.; Crothers, Natalie A.; Groth, Gard A.; Speck, Kathy A.; Marbach, Ralf
2009-05-01
Both the power and the challenge of hyperspectral technologies is the very large amount of data produced by spectral cameras. While off-line methodologies allow the collection of gigabytes of data, extended data analysis sessions are required to convert the data into useful information. In contrast, real-time monitoring, such as on-line process control, requires that compression of spectral data and analysis occur at a sustained full camera data rate. Efficient, high-speed practical methods for calibration and prediction are therefore sought to optimize the value of hyperspectral imaging. A novel method of matched filtering known as science based multivariate calibration (SBC) was developed for hyperspectral calibration. Classical (MLR) and inverse (PLS, PCR) methods are combined by spectroscopically measuring the spectral "signal" and by statistically estimating the spectral "noise." The accuracy of the inverse model is thus combined with the easy interpretability of the classical model. The SBC method is optimized for hyperspectral data in the Hyper-CalTM software used for the present work. The prediction algorithms can then be downloaded into a dedicated FPGA based High-Speed Prediction EngineTM module. Spectral pretreatments and calibration coefficients are stored on interchangeable SD memory cards, and predicted compositions are produced on a USB interface at real-time camera output rates. Applications include minerals, pharmaceuticals, food processing and remote sensing.
A reinforcement learning-based architecture for fuzzy logic control
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.
1992-01-01
This paper introduces a new method for learning to refine a rule-based fuzzy logic controller. A reinforcement learning technique is used in conjunction with a multilayer neural network model of a fuzzy controller. The approximate reasoning based intelligent control (ARIC) architecture proposed here learns by updating its prediction of the physical system's behavior and fine tunes a control knowledge base. Its theory is related to Sutton's temporal difference (TD) method. Because ARIC has the advantage of using the control knowledge of an experienced operator and fine tuning it through the process of learning, it learns faster than systems that train networks from scratch. The approach is applied to a cart-pole balancing system.
Coupled Riccati equations for complex plane constraint
NASA Technical Reports Server (NTRS)
Strong, Kristin M.; Sesak, John R.
1991-01-01
A new Linear Quadratic Gaussian design method is presented which provides prescribed imaginary axis pole placement for optimal control and estimation systems. This procedure contributes another degree of design freedom to flexible spacecraft control. Current design methods which interject modal damping into the system tend to have little affect on modal frequencies, i.e., they predictably shift open plant poles horizontally in the complex plane to form the closed loop controller or estimator pole constellation, but make little provision for vertical (imaginary axis) pole shifts. Imaginary axis shifts which reduce the closed loop model frequencies (the bandwidths) are desirable since they reduce the sensitivity of the system to noise disturbances. The new method drives the closed loop modal frequencies to predictable (specified) levels, frequencies as low as zero rad/sec (real axis pole placement) can be achieved. The design procedure works through rotational and translational destabilizations of the plant, and a coupling of two independently solved algebraic Riccati equations through a structured state weighting matrix. Two new concepts, gain transference and Q equivalency, are introduced and their use shown.
Seaton, Sarah E; Manktelow, Bradley N
2012-07-16
Emphasis is increasingly being placed on the monitoring of clinical outcomes for health care providers. Funnel plots have become an increasingly popular graphical methodology used to identify potential outliers. It is assumed that a provider only displaying expected random variation (i.e. 'in-control') will fall outside a control limit with a known probability. In reality, the discrete count nature of these data, and the differing methods, can lead to true probabilities quite different from the nominal value. This paper investigates the true probability of an 'in control' provider falling outside control limits for the Standardised Mortality Ratio (SMR). The true probabilities of an 'in control' provider falling outside control limits for the SMR were calculated and compared for three commonly used limits: Wald confidence interval; 'exact' confidence interval; probability-based prediction interval. The probability of falling above the upper limit, or below the lower limit, often varied greatly from the nominal value. This was particularly apparent when there were a small number of expected events: for expected events ≤ 50 the median probability of an 'in-control' provider falling above the upper 95% limit was 0.0301 (Wald), 0.0121 ('exact'), 0.0201 (prediction). It is important to understand the properties and probability of being identified as an outlier by each of these different methods to aid the correct identification of poorly performing health care providers. The limits obtained using probability-based prediction limits have the most intuitive interpretation and their properties can be defined a priori. Funnel plot control limits for the SMR should not be based on confidence intervals.
Multi-mode evaluation of power-maximizing cross-flow turbine controllers
Forbush, Dominic; Cavagnaro, Robert J.; Donegan, James; ...
2017-09-21
A general method for predicting and evaluating the performance of three candidate cross-flow turbine power-maximizing controllers is presented in this paper using low-order dynamic simulation, scaled laboratory experiments, and full-scale field testing. For each testing mode and candidate controller, performance metrics quantifying energy capture (ability of a controller to maximize power), variation in torque and rotation rate (related to drive train fatigue), and variation in thrust loads (related to structural fatigue) are quantified for two purposes. First, for metrics that could be evaluated across all testing modes, we considered the accuracy with which simulation or laboratory experiments could predict performancemore » at full scale. Second, we explored the utility of these metrics to contrast candidate controller performance. For these turbines and set of candidate controllers, energy capture was found to only differentiate controller performance in simulation, while the other explored metrics were able to predict performance of the full-scale turbine in the field with various degrees of success. Finally, effects of scale between laboratory and full-scale testing are considered, along with recommendations for future improvements to dynamic simulations and controller evaluation.« less
Multi-mode evaluation of power-maximizing cross-flow turbine controllers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forbush, Dominic; Cavagnaro, Robert J.; Donegan, James
A general method for predicting and evaluating the performance of three candidate cross-flow turbine power-maximizing controllers is presented in this paper using low-order dynamic simulation, scaled laboratory experiments, and full-scale field testing. For each testing mode and candidate controller, performance metrics quantifying energy capture (ability of a controller to maximize power), variation in torque and rotation rate (related to drive train fatigue), and variation in thrust loads (related to structural fatigue) are quantified for two purposes. First, for metrics that could be evaluated across all testing modes, we considered the accuracy with which simulation or laboratory experiments could predict performancemore » at full scale. Second, we explored the utility of these metrics to contrast candidate controller performance. For these turbines and set of candidate controllers, energy capture was found to only differentiate controller performance in simulation, while the other explored metrics were able to predict performance of the full-scale turbine in the field with various degrees of success. Finally, effects of scale between laboratory and full-scale testing are considered, along with recommendations for future improvements to dynamic simulations and controller evaluation.« less
Cuenca-Navalon, Elena; Laumen, Marco; Finocchiaro, Thomas; Steinseifer, Ulrich
2016-07-01
A physiological control algorithm is being developed to ensure an optimal physiological interaction between the ReinHeart total artificial heart (TAH) and the circulatory system. A key factor for that is the long-term, accurate determination of the hemodynamic state of the cardiovascular system. This study presents a method to determine estimation models for predicting hemodynamic parameters (pump chamber filling and afterload) from both left and right cardiovascular circulations. The estimation models are based on linear regression models that correlate filling and afterload values with pump intrinsic parameters derived from measured values of motor current and piston position. Predictions for filling lie in average within 5% from actual values, predictions for systemic afterload (AoPmean , AoPsys ) and mean pulmonary afterload (PAPmean ) lie in average within 9% from actual values. Predictions for systolic pulmonary afterload (PAPsys ) present an average deviation of 14%. The estimation models show satisfactory prediction and confidence intervals and are thus suitable to estimate hemodynamic parameters. This method and derived estimation models are a valuable alternative to implanted sensors and are an essential step for the development of a physiological control algorithm for a fully implantable TAH. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
N-type droping of nanocrystalline diamond films with nitrogen and electrodes made therefrom
Gruen, Dieter M [Downers Grove, IL; Krauss, Alan R [late of Naperville, IL; Auciello, Orlando H [Bolingbrook, IL; Carlisle, John A [Plainfield, IL
2004-09-21
An electrically conducting n-type ultrananocrystalline diamond (UNCD) having no less than 10.sup.19 atoms/cm.sup.3 of nitrogen is disclosed. A method of making the n-doped UNCD. A method for predictably controlling the conductivity is also disclosed.
Directly induced swing for closed loop control of electroslag remelting furnace
Damkroger, Brian
1998-01-01
An apparatus and method for controlling an electroslag remelting furnace, imposing a periodic fluctuation on electrode drive speed and thereby generating a predictable voltage swing signal. The fluctuation is preferably done by imposition of a sine, square, or sawtooth wave on the drive dc offset signal.
Machine learning derived risk prediction of anorexia nervosa.
Guo, Yiran; Wei, Zhi; Keating, Brendan J; Hakonarson, Hakon
2016-01-20
Anorexia nervosa (AN) is a complex psychiatric disease with a moderate to strong genetic contribution. In addition to conventional genome wide association (GWA) studies, researchers have been using machine learning methods in conjunction with genomic data to predict risk of diseases in which genetics play an important role. In this study, we collected whole genome genotyping data on 3940 AN cases and 9266 controls from the Genetic Consortium for Anorexia Nervosa (GCAN), the Wellcome Trust Case Control Consortium 3 (WTCCC3), Price Foundation Collaborative Group and the Children's Hospital of Philadelphia (CHOP), and applied machine learning methods for predicting AN disease risk. The prediction performance is measured by area under the receiver operating characteristic curve (AUC), indicating how well the model distinguishes cases from unaffected control subjects. Logistic regression model with the lasso penalty technique generated an AUC of 0.693, while Support Vector Machines and Gradient Boosted Trees reached AUC's of 0.691 and 0.623, respectively. Using different sample sizes, our results suggest that larger datasets are required to optimize the machine learning models and achieve higher AUC values. To our knowledge, this is the first attempt to assess AN risk based on genome wide genotype level data. Future integration of genomic, environmental and family-based information is likely to improve the AN risk evaluation process, eventually benefitting AN patients and families in the clinical setting.
Developing Control System of Electrical Devices with Operational Expense Prediction
NASA Astrophysics Data System (ADS)
Sendari, Siti; Wahyu Herwanto, Heru; Rahmawati, Yuni; Mukti Putranto, Dendi; Fitri, Shofiana
2017-04-01
The purpose of this research is to develop a system that can monitor and record home electrical device’s electricity usage. This system has an ability to control electrical devices in distance and predict the operational expense. The system was developed using micro-controllers and WiFi modules connected to PC server. The communication between modules is arranged by server via WiFi. Beside of reading home electrical devices electricity usage, the unique point of the proposed-system is the ability of micro-controllers to send electricity data to server for recording the usage of electrical devices. The testing of this research was done by Black-box method to test the functionality of system. Testing system run well with 0% error.
KILLEEN, GERRY F.; McKENZIE, F. ELLIS; FOY, BRIAN D.; SCHIEFFELIN, CATHERINE; BILLINGSLEY, PETER F.; BEIER, JOHN C.
2008-01-01
We have used a relatively simple but accurate model for predicting the impact of integrated transmission control on the malaria entomologic inoculation rate (EIR) at four endemic sites from across sub-Saharan Africa and the southwest Pacific. The simulated campaign incorporated modestly effective vaccine coverage, bed net use, and larval control. The results indicate that such campaigns would reduce EIRs at all four sites by 30- to 50-fold. Even without the vaccine, 15- to 25-fold reductions of EIR were predicted, implying that integrated control with a few modestly effective tools can meaningfully reduce malaria transmission in a range of endemic settings. The model accurately predicts the effects of bed nets and indoor spraying and demonstrates that they are the most effective tools available for reducing EIR. However, the impact of domestic adult vector control is amplified by measures for reducing the rate of emergence of vectors or the level of infectiousness of the human reservoir. We conclude that available tools, including currently neglected methods for larval control, can reduce malaria transmission intensity enough to alleviate mortality. Integrated control programs should be implemented to the fullest extent possible, even in areas of intense transmission, using simple models as decision-making tools. However, we also conclude that to eliminate malaria in many areas of intense transmission is beyond the scope of methods which developing nations can currently afford. New, cost-effective, practical tools are needed if malaria is ever to be eliminated from highly endemic areas. PMID:11289662
Mokhtarzadeh, Hossein; Perraton, Luke; Fok, Laurence; Muñoz, Mario A; Clark, Ross; Pivonka, Peter; Bryant, Adam L
2014-09-22
The aim of this paper was to compare the effect of different optimisation methods and different knee joint degrees of freedom (DOF) on muscle force predictions during a single legged hop. Nineteen subjects performed single-legged hopping manoeuvres and subject-specific musculoskeletal models were developed to predict muscle forces during the movement. Muscle forces were predicted using static optimisation (SO) and computed muscle control (CMC) methods using either 1 or 3 DOF knee joint models. All sagittal and transverse plane joint angles calculated using inverse kinematics or CMC in a 1 DOF or 3 DOF knee were well-matched (RMS error<3°). Biarticular muscles (hamstrings, rectus femoris and gastrocnemius) showed more differences in muscle force profiles when comparing between the different muscle prediction approaches where these muscles showed larger time delays for many of the comparisons. The muscle force magnitudes of vasti, gluteus maximus and gluteus medius were not greatly influenced by the choice of muscle force prediction method with low normalised root mean squared errors (<48%) observed in most comparisons. We conclude that SO and CMC can be used to predict lower-limb muscle co-contraction during hopping movements. However, care must be taken in interpreting the magnitude of force predicted in the biarticular muscles and the soleus, especially when using a 1 DOF knee. Despite this limitation, given that SO is a more robust and computationally efficient method for predicting muscle forces than CMC, we suggest that SO can be used in conjunction with musculoskeletal models that have a 1 or 3 DOF knee joint to study the relative differences and the role of muscles during hopping activities in future studies. Copyright © 2014 Elsevier Ltd. All rights reserved.
Implementation of a polling protocol for predicting celiac disease in videocapsule analysis
Ciaccio, Edward J; Tennyson, Christina A; Bhagat, Govind; Lewis, Suzanne K; Green, Peter H
2013-01-01
AIM: To investigate the presence of small intestinal villous atrophy in celiac disease patients from quantitative analysis of videocapsule image sequences. METHODS: Nine celiac patient data with biopsy-proven villous atrophy and seven control patient data lacking villous atrophy were used for analysis. Celiacs had biopsy-proven disease with scores of Marsh II-IIIC except in the case of one hemophiliac patient. At four small intestinal levels (duodenal bulb, distal duodenum, jejunum, and ileum), video clips of length 200 frames (100 s) were analyzed. Twenty-four measurements were used for image characterization. These measurements were determined by quantitatively processing the videocapsule images via techniques for texture analysis, motility estimation, volumetric reconstruction using shape-from-shading principles, and image transformation. Each automated measurement method, or automaton, was polled as to whether or not villous atrophy was present in the small intestine, indicating celiac disease. Each automaton’s vote was determined based upon an optimized parameter threshold level, with the threshold levels being determined from prior data. A prediction of villous atrophy was made if it received the majority of votes (≥ 13), while no prediction was made for tie votes (12-12). Thus each set of images was classified as being from either a celiac disease patient or from a control patient. RESULTS: Separated by intestinal level, the overall sensitivity of automata polling for predicting villous atrophy and hence celiac disease was 83.9%, while the specificity was 92.9%, and the overall accuracy of automata-based polling was 88.1%. The method of image transformation yielded the highest sensitivity at 93.8%, while the method of texture analysis using subbands had the highest specificity at 76.0%. Similar results of prediction were observed at all four small intestinal locations, but there were more tie votes at location 4 (ileum). Incorrect prediction which reduced sensitivity occurred for two celiac patients with Marsh type II pattern, which is characterized by crypt hyperplasia, but normal villous architecture. Pooled from all levels, there was a mean of 14.31 ± 3.28 automaton votes for celiac vs 9.67 ± 3.31 automaton votes for control when celiac patient data was analyzed (P < 0.001). Pooled from all levels, there was a mean of 9.71 ± 2.8128 automaton votes for celiac vs 14.32 ± 2.7931 automaton votes for control when control patient data was analyzed (P < 0.001). CONCLUSION: Automata-based polling may be useful to indicate presence of mucosal atrophy, indicative of celiac disease, across the entire small bowel, though this must be confirmed in a larger patient set. Since the method is quantitative and automated, it can potentially eliminate observer bias and enable the detection of subtle abnormality in patients lacking a clear diagnosis. Our paradigm was found to be more efficacious at proximal small intestinal locations, which may suggest a greater presence and severity of villous atrophy at proximal as compared with distal locations. PMID:23858375
Prediction Study on Anti-Slide Control of Railway Vehicle Based on RBF Neural Networks
NASA Astrophysics Data System (ADS)
Yang, Lijun; Zhang, Jimin
While railway vehicle braking, Anti-slide control system will detect operating status of each wheel-sets e.g. speed difference and deceleration etc. Once the detected value on some wheel-set is over pre-defined threshold, brake effort on such wheel-set will be adjusted automatically to avoid blocking. Such method takes effect on guarantee safety operation of vehicle and avoid wheel-set flatness, however it cannot adapt itself to the rail adhesion variation. While wheel-sets slide, the operating status is chaotic time series with certain law, and can be predicted with the law and experiment data in certain time. The predicted values can be used as the input reference signals of vehicle anti-slide control system, to judge and control the slide status of wheel-sets. In this article, the RBF neural networks is taken to predict wheel-set slide status in multi-step with weight vector adjusted based on online self-adaptive algorithm, and the center & normalizing parameters of active function of the hidden unit of RBF neural networks' hidden layer computed with K-means clustering algorithm. With multi-step prediction simulation, the predicted signal with appropriate precision can be used by anti-slide system to trace actively and adjust wheel-set slide tendency, so as to adapt to wheel-rail adhesion variation and reduce the risk of wheel-set blocking.
Jeong, Jina; Park, Eungyu; Han, Weon Shik; Kim, Kue-Young; Jun, Seong-Chun; Choung, Sungwook; Yun, Seong-Taek; Oh, Junho; Kim, Hyun-Jun
2017-11-01
In this study, a data-driven method for predicting CO 2 leaks and associated concentrations from geological CO 2 sequestration is developed. Several candidate models are compared based on their reproducibility and predictive capability for CO 2 concentration measurements from the Environment Impact Evaluation Test (EIT) site in Korea. Based on the data mining results, a one-dimensional solution of the advective-dispersive equation for steady flow (i.e., Ogata-Banks solution) is found to be most representative for the test data, and this model is adopted as the data model for the developed method. In the validation step, the method is applied to estimate future CO 2 concentrations with the reference estimation by the Ogata-Banks solution, where a part of earlier data is used as the training dataset. From the analysis, it is found that the ensemble mean of multiple estimations based on the developed method shows high prediction accuracy relative to the reference estimation. In addition, the majority of the data to be predicted are included in the proposed quantile interval, which suggests adequate representation of the uncertainty by the developed method. Therefore, the incorporation of a reasonable physically-based data model enhances the prediction capability of the data-driven model. The proposed method is not confined to estimations of CO 2 concentration and may be applied to various real-time monitoring data from subsurface sites to develop automated control, management or decision-making systems. Copyright © 2017 Elsevier B.V. All rights reserved.
TankSIM: A Cryogenic Tank Performance Prediction Program
NASA Technical Reports Server (NTRS)
Bolshinskiy, L. G.; Hedayat, A.; Hastings, L. J.; Moder, J. P.; Schnell, A. R.; Sutherlin, S. G.
2015-01-01
Accurate prediction of the thermodynamic state of the cryogenic propellants in launch vehicle tanks is necessary for mission planning and successful execution. Cryogenic propellant storage and transfer in space environments requires that tank pressure be controlled. The pressure rise rate is determined by the complex interaction of external heat leak, fluid temperature stratification, and interfacial heat and mass transfer. If the required storage duration of a space mission is longer than the period in which the tank pressure reaches its allowable maximum, an appropriate pressure control method must be applied. Therefore, predictions of the pressurization rate and performance of pressure control techniques in cryogenic tanks are required for development of cryogenic fluid long-duration storage technology and planning of future space exploration missions. This paper describes an analytical tool, Tank System Integrated Model (TankSIM), which can be used for modeling pressure control and predicting the behavior of cryogenic propellant for long-term storage for future space missions. It is written in the FORTRAN 90 language and can be compiled with any Visual FORTRAN compiler. A thermodynamic vent system (TVS) is used to achieve tank pressure control. Utilizing TankSIM, the following processes can be modeled: tank self-pressurization, boiloff, ullage venting, and mixing. Details of the TankSIM program and comparisons of its predictions with test data for liquid hydrogen and liquid methane will be presented in the final paper.
NASA Astrophysics Data System (ADS)
Park, Jinhyuk; Yoon, Gun-Ha; Kang, Je-Won; Choi, Seung-Bok
2016-08-01
This paper proposes a new prosthesis operated in two different modes; the semi-active and active modes. The semi-active mode is achieved from a flow mode magneto-rheological (MR) damper, while the active mode is obtained from an electronically commutated (EC) motor. The knee joint part of the above knee prosthesis is equipped with the MR damper and EC motor. The MR damper generates reaction force by controlling the field-dependent yield stress of the MR fluid, while the EC motor actively controls the knee joint angle during gait cycle. In this work, the MR damper is designed as a two-end type flow mode mechanism without air chamber for compact size. On other hand, in order to predict desired knee joint angle to be controlled by EC motor, a polynomial prediction function using a statistical method is used. A nonlinear proportional-derivative controller integrated with the computed torque method is then designed and applied to both MR damper and EC motor to control the knee joint angle. It is demonstrated that the desired knee joint angle is well achieved in different walking velocities on the ground ground.
Bordbar, Aarash; Yurkovich, James T.; Paglia, Giuseppe; ...
2017-04-07
In this study, the increasing availability of metabolomics data necessitates novel methods for deeper data analysis and interpretation. We present a flux balance analysis method that allows for the computation of dynamic intracellular metabolic changes at the cellular scale through integration of time-course absolute quantitative metabolomics. This approach, termed “unsteady-state flux balance analysis” (uFBA), is applied to four cellular systems: three dynamic and one steady-state as a negative control. uFBA and FBA predictions are contrasted, and uFBA is found to be more accurate in predicting dynamic metabolic flux states for red blood cells, platelets, and Saccharomyces cerevisiae. Notably, only uFBAmore » predicts that stored red blood cells metabolize TCA intermediates to regenerate important cofactors, such as ATP, NADH, and NADPH. These pathway usage predictions were subsequently validated through 13C isotopic labeling and metabolic flux analysis in stored red blood cells. Utilizing time-course metabolomics data, uFBA provides an accurate method to predict metabolic physiology at the cellular scale for dynamic systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bordbar, Aarash; Yurkovich, James T.; Paglia, Giuseppe
In this study, the increasing availability of metabolomics data necessitates novel methods for deeper data analysis and interpretation. We present a flux balance analysis method that allows for the computation of dynamic intracellular metabolic changes at the cellular scale through integration of time-course absolute quantitative metabolomics. This approach, termed “unsteady-state flux balance analysis” (uFBA), is applied to four cellular systems: three dynamic and one steady-state as a negative control. uFBA and FBA predictions are contrasted, and uFBA is found to be more accurate in predicting dynamic metabolic flux states for red blood cells, platelets, and Saccharomyces cerevisiae. Notably, only uFBAmore » predicts that stored red blood cells metabolize TCA intermediates to regenerate important cofactors, such as ATP, NADH, and NADPH. These pathway usage predictions were subsequently validated through 13C isotopic labeling and metabolic flux analysis in stored red blood cells. Utilizing time-course metabolomics data, uFBA provides an accurate method to predict metabolic physiology at the cellular scale for dynamic systems.« less
Guilt and Effortful Control: Two Mechanisms that Prevent Disruptive Developmental Trajectories
Kochanska, Grazyna; Barry, Robin A.; Jimenez, Natasha B.; Hollatz, Amanda L.; Woodard, Jarilyn
2009-01-01
Children's guilt associated with transgressions and their capacity for effortful control are both powerful forces that inhibit disruptive conduct. We examined how guilt and effortful control, repeatedly observed from toddler to preschool age, jointly predict children's disruptive outcomes in two multi-method multi-trait longitudinal studies (N's 57 and 99). Disruptive outcomes were rated by mothers at 73 months (Study 1) and mothers, fathers, and teachers at 52 and 67 months (Study 2). In both studies, guilt moderated effects of effortful control: For highly guilt-prone children, variations in effortful control were unrelated to future disruptive outcomes, but for children who were less guilt prone, effortful control predicted such outcomes. Guilt may inhibit transgressions through an automatic response due to negative arousal triggered by memories of past wrongdoing, regardless of child capacity for deliberate inhibition. Effortful control that engages a deliberate restraint may offset risk for disruptive conduct conferred by low guilt. PMID:19634978
Model Predictive Optimal Control of a Time-Delay Distributed-Parameter Systems
NASA Technical Reports Server (NTRS)
Nguyen, Nhan
2006-01-01
This paper presents an optimal control method for a class of distributed-parameter systems governed by first order, quasilinear hyperbolic partial differential equations that arise in many physical systems. Such systems are characterized by time delays since information is transported from one state to another by wave propagation. A general closed-loop hyperbolic transport model is controlled by a boundary control embedded in a periodic boundary condition. The boundary control is subject to a nonlinear differential equation constraint that models actuator dynamics of the system. The hyperbolic equation is thus coupled with the ordinary differential equation via the boundary condition. Optimality of this coupled system is investigated using variational principles to seek an adjoint formulation of the optimal control problem. The results are then applied to implement a model predictive control design for a wind tunnel to eliminate a transport delay effect that causes a poor Mach number regulation.
Nho, Kwangsik; Shen, Li; Kim, Sungeun; Risacher, Shannon L.; West, John D.; Foroud, Tatiana; Jack, Clifford R.; Weiner, Michael W.; Saykin, Andrew J.
2010-01-01
Mild Cognitive Impairment (MCI) is thought to be a precursor to the development of early Alzheimer’s disease (AD). For early diagnosis of AD, the development of a model that is able to predict the conversion of amnestic MCI to AD is challenging. Using automatic whole-brain MRI analysis techniques and pattern classification methods, we developed a model to differentiate AD from healthy controls (HC), and then applied it to the prediction of MCI conversion to AD. Classification was performed using support vector machines (SVMs) together with a SVM-based feature selection method, which selected a set of most discriminating predictors for optimizing prediction accuracy. We obtained 90.5% cross-validation accuracy for classifying AD and HC, and 72.3% accuracy for predicting MCI conversion to AD. These analyses suggest that a classifier trained to separate HC vs. AD has substantial potential for predicting MCI conversion to AD. PMID:21347037
NASA Technical Reports Server (NTRS)
Gardner, J. E.; Dixon, S. C.
1984-01-01
Research was done in the following areas: development and validation of solution algorithms, modeling techniques, integrated finite elements for flow-thermal-structural analysis and design, optimization of aircraft and spacecraft for the best performance, reduction of loads and increase in the dynamic structural stability of flexible airframes by the use of active control, methods for predicting steady and unsteady aerodynamic loads and aeroelastic characteristics of flight vehicles with emphasis on the transonic range, and methods for predicting and reducing helicoper vibrations.
Subsidence from underground mining; environmental analysis and planning considerations
Lee, Fitzhugh T.; Abel, John F.
1983-01-01
Subsidence, a universal process that occurs in response to the voids created by extracting solids or liquids from beneath the Earth's surface, is controlled by many factors including mining methods, depth of extraction, thickness of deposit, and topography, as well as the in situ properties of the rock mass above the deposit. The impacts of subsidence are potentially severe in terms of damage to surface utility lines and structures, changes in surface-water and ground-water conditions, and effects on vegetation and animals. Although subsidence cannot be eliminated, it can be reduced or controlled in areas where deformation of the ground surface would produce dangerous or costly effects. Subsidence prediction is highly developed in Europe where there are comparatively uniform mining conditions and a long history of field measurements. Much of this mining has been carried out beneath crowded urban and industrial areas where accurate predictions have facilitated use of the surface and reduced undesirable impacts. Concerted efforts to understand subsidence processes in the United States are recent. Empirical methods of subsidence analysis and prediction based on local conditions seem better suited to the current state of knowledge of the varied geologic and topographic conditions in domestic coal mining regions than do theoretical/mathematical approaches. In order to develop broadly applicable subsidence prediction methods and models for the United States, more information is needed on magnitude and timing of ground movements and geologic properties.
Looking beyond patients: Can parents' quality of life predict asthma control in children?
Cano-Garcinuño, Alfredo; Mora-Gandarillas, Isabel; Bercedo-Sanz, Alberto; Callén-Blecua, María Teresa; Castillo-Laita, José Antonio; Casares-Alonso, Irene; Forns-Serrallonga, Dolors; Tauler-Toro, Eulàlia; Alonso-Bernardo, Luz María; García-Merino, Águeda; Moneo-Hernández, Isabel; Cortés-Rico, Olga; Carvajal-Urueña, Ignacio; Morell-Bernabé, Juan José; Martín-Ibáñez, Itziar; Rodríguez-Fernández-Oliva, Carmen Rosa; Asensi-Monzó, María Teresa; Fernández-Carazo, Carmen; Murcia-García, José; Durán-Iglesias, Catalina; Montón-Álvarez, José Luis; Domínguez-Aurrecoechea, Begoña; Praena-Crespo, Manuel
2016-07-01
Social and family factors may influence the probability of achieving asthma control in children. Parents' quality of life has been insufficiently explored as a predictive factor linked to the probability of achieving disease control in asthmatic children. Determine whether the parents' quality of life predicts medium-term asthma control in children. Longitudinal study of children between 4 and 14 years of age, with active asthma. The parents' quality of life was evaluated using the specific IFABI-R instrument, in which scores were higher for poorer quality of life. Its association with asthma control measures in the child 16 weeks later was analyzed using multivariate methods, adjusting the effect for disease, child and family factors. The data from 452 children were analyzed (median age 9.6 years, 63.3% males). The parents' quality of life was predictive for asthma control; each point increase on the initial IFABI-R score was associated with an adjusted odds ratio (95% confidence interval) of 0.56 (0.37-0.86) for good control of asthma on the second visit, 2.58 (1.62-4.12) for asthma exacerbation, 2.12 (1.33-3.38) for an unscheduled visit to the doctor, and 2.46 (1.18-5.13) for going to the emergency room. The highest quartile for the IFABI-R score had a sensitivity of 34.5% and a specificity of 82.2% to predict poorly controlled asthma. Parents' poorer quality of life is related to poor, medium-term asthma control in children. Assessing the parents' quality of life could aid disease management decisions. Pediatr Pulmonol. 2016;51:670-677. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Loeffert, Sabine; Ommen, Oliver; Kuch, Christine; Scheibler, Fueloep; Woehrmann, Andrej; Baldamus, Conrad; Pfaff, Holger
2010-09-11
Numerous studies examined factors in promoting a patient preference for active participation in treatment decision making with only modest success. The purpose of this study was to identify types of patients wishing to participate in treatment decisions as well as those wishing to play a completely active or passive role based on a Germany-wide survey of dialysis patients; using a prediction typal analysis method that defines types as configurations of categories belonging to different attributes and takes particularly higher order interactions between variables into account. After randomly splitting the original patient sample into two halves, an exploratory prediction configural frequency analysis (CFA) was performed on one-half of the sample (n = 1969) and the identified types were considered as hypotheses for an inferential prediction CFA for the second half (n = 1914). 144 possible prediction types were tested by using five predictor variables and control preferences as criterion. An α-adjustment (0.05) for multiple testing was performed by the Holm procedure. 21 possible prediction types were identified as hypotheses in the exploratory prediction CFA; four patient types were confirmed in the confirmatory prediction CFA: patients preferring a passive role show low information seeking preference, above average trust in their physician, perceive their physician's participatory decision-making (PDM)-style positive, have a lower educational level, and are 56-75 years old (Type 1; p < 0.001) or > 76 years old (Type 2; p < 0.001). Patients preferring an active role show high information seeking preference, a higher educational level, and are < 55 years old. They have either below average trust, perceive the PDM-style negative (Type 3; p < 0.001) or above average trust and perceive the PDM-style positive (Type 4; p < 0.001). The method prediction configural frequency analysis was newly introduced to the research field of patient participation and could demonstrate how a particular control preference role is determined by an association of five variables.
Method and system for fault accommodation of machines
NASA Technical Reports Server (NTRS)
Goebel, Kai Frank (Inventor); Subbu, Rajesh Venkat (Inventor); Rausch, Randal Thomas (Inventor); Frederick, Dean Kimball (Inventor)
2011-01-01
A method for multi-objective fault accommodation using predictive modeling is disclosed. The method includes using a simulated machine that simulates a faulted actual machine, and using a simulated controller that simulates an actual controller. A multi-objective optimization process is performed, based on specified control settings for the simulated controller and specified operational scenarios for the simulated machine controlled by the simulated controller, to generate a Pareto frontier-based solution space relating performance of the simulated machine to settings of the simulated controller, including adjustment to the operational scenarios to represent a fault condition of the simulated machine. Control settings of the actual controller are adjusted, represented by the simulated controller, for controlling the actual machine, represented by the simulated machine, in response to a fault condition of the actual machine, based on the Pareto frontier-based solution space, to maximize desirable operational conditions and minimize undesirable operational conditions while operating the actual machine in a region of the solution space defined by the Pareto frontier.
Determination of the state-of-charge in leadacid batteries by means of a reference cell
NASA Astrophysics Data System (ADS)
Armenta, C.
A knowledge of the state-of-charge of any battery is an essential requirement for system energy management and for battery life extension. In photovoltaic power plants and stand-alone photovoltaic installations, a knowledge of the state-of-charge helps one to predict remaining energy, to determine time remaining before battery turndown, and to avoid failures during operation. A reliable method of predicting the state-of-charge will allow reduced installation costs because less reserve capacity is needed to guarantee a reliable energy supply. We propose an on-line method based on simple electrical measurements combined with a new electrolyte agitation technique which avoids systematic control of the battery state-of-charge. The method is very accurate and reduces the standard error in the state-of-charge prediction.
Predicting energy savings attributed to daylighting
NASA Astrophysics Data System (ADS)
Robbins, C. L.
1982-08-01
A method is described for estimating a building's energy savings attributed to daylighting by predicting the percentage of the year that the electric lighting system is not in use. This depends on the particular control strategy chosen, a standard work year, and the amount of light (as a daylight factor) reaching on daylight and sunlight availability for selected cities in the United States.
The Wildland/Urban Interface in 2025
Gary O. Tokle
1987-01-01
In the year 2025, wildland fire fighting practices have improved significantly over the method employed during the late1900's. Improved methods for predicting severe fire weather conditions, the establishment of the North American Fire Coordination Center, and the utilization of foam products for both wildfire and structural fire control have significantly changed...
Tang, Fengna; Wang, Youqing
2017-11-01
Blood glucose (BG) regulation is a long-term task for people with diabetes. In recent years, more and more researchers have attempted to achieve automated regulation of BG using automatic control algorithms, called the artificial pancreas (AP) system. In clinical practice, it is equally important to guarantee the treatment effect and reduce the treatment costs. The main motivation of this study is to reduce the cure burden. The dynamic R-parameter economic model predictive control (R-EMPC) is chosen to regulate the delivery rates of exogenous hormones (insulin and glucagon). It uses particle swarm optimization (PSO) to optimize the economic cost function and the switching logic between insulin delivery and glucagon delivery is designed based on switching control theory. The proposed method is first tested on the standard subject; the result is compared with the switching PID and the switching MPC. The effect of the dynamic R-parameter on improving the control performance is illustrated by comparing the results of the EMPC and the R-EMPC. Finally, the robustness tests on meal change (size and timing), hormone sensitivity (insulin and glucagon), and subject variability are performed. All results show that the proposed method can improve the control performance and reduce the economic costs. The simulation results verify the effectiveness of the proposed algorithm on improving the tracking performance, enhancing robustness, and reducing economic costs. The method proposed in this study owns great worth in practical application.
Theoretical prediction of welding distortion in large and complex structures
NASA Astrophysics Data System (ADS)
Deng, De-An
2010-06-01
Welding technology is widely used to assemble large thin plate structures such as ships, automobiles, and passenger trains because of its high productivity. However, it is impossible to avoid welding-induced distortion during the assembly process. Welding distortion not only reduces the fabrication accuracy of a weldment, but also decreases the productivity due to correction work. If welding distortion can be predicted using a practical method beforehand, the prediction will be useful for taking appropriate measures to control the dimensional accuracy to an acceptable limit. In this study, a two-step computational approach, which is a combination of a thermoelastic-plastic finite element method (FEM) and an elastic finite element with consideration for large deformation, is developed to estimate welding distortion for large and complex welded structures. Welding distortions in several representative large complex structures, which are often used in shipbuilding, are simulated using the proposed method. By comparing the predictions and the measurements, the effectiveness of the two-step computational approach is verified.
Vande Velde, F; Claerebout, E; Cauberghe, V; Hudders, L; Van Loo, H; Vercruysse, J; Charlier, J
2015-09-15
Anthelmintic resistance is emerging in dairy cattle and this can result in a lack of effective control and production losses. Therefore, sustainable control strategies, such as targeted treatments (TT) and targeted selected treatments (TST), should be adopted by the industry. TT and TST approaches require the use of diagnostic methods to take informed treatment decisions. To understand the factors affecting the farmers' intention to adopt diagnostic methods before implementing anthelmintic drugs ('adoption intention'), a cross-sectional survey was carried out in dairy farms in Belgium (Flanders). A framework was constructed to predict adoption intentions based on two fundamental theories in the field of behavioural psychology and health psychology: the Theory of Planned Behaviour and the Health Belief Model. In the tested model, adoption intentions were predicted based on attitudes towards anthelminthics, attitudes towards diagnostic methods, subjective norms, behavioural control and perceived risk. Structural equation modelling was used for analyses. The model fitted the data well and explained 46% of the variance in adoption intention of diagnostics. The factors 'attitude towards diagnostic methods' and 'subjective norm'; i.e. the influence of significant others, had the strongest, positive influence on adoption intention of diagnostic methods. 'Perceived behavioural control' had a weak, positive effect on intention. Further, 'attitude towards the use of anthelmintic drugs' had a negative effect on adoption intention of the diagnostic methods. This implicates an effect of current behaviour on future adoption, which should be considered in future research. Factors measuring risk perception of anthelmintic resistance; perceived severity and perceived susceptibility, had no effect on the adoption intention of diagnostic methods. The threat of anthelmintic resistance is perceived to be low for dairy herds. The study further did not find any differences in the effects of the predictors for young stock and adult dairy cows. The results of this study can be used to develop communication strategies to advertise sustainable nematode control on dairy farms. Copyright © 2015 Elsevier B.V. All rights reserved.
Li, Mingjie; Zhou, Ping; Wang, Hong; ...
2017-09-19
As one of the most important unit in the papermaking industry, the high consistency (HC) refining system is confronted with challenges such as improving pulp quality, energy saving, and emissions reduction in its operation processes. Here in this correspondence, an optimal operation of HC refining system is presented using nonlinear multiobjective model predictive control strategies that aim at set-point tracking objective of pulp quality, economic objective, and specific energy (SE) consumption objective, respectively. First, a set of input and output data at different times are employed to construct the subprocess model of the state process model for the HC refiningmore » system, and then the Wiener-type model can be obtained through combining the mechanism model of Canadian Standard Freeness and the state process model that determines their structures based on Akaike information criterion. Second, the multiobjective optimization strategy that optimizes both the set-point tracking objective of pulp quality and SE consumption is proposed simultaneously, which uses NSGA-II approach to obtain the Pareto optimal set. Furthermore, targeting at the set-point tracking objective of pulp quality, economic objective, and SE consumption objective, the sequential quadratic programming method is utilized to produce the optimal predictive controllers. In conclusion, the simulation results demonstrate that the proposed methods can make the HC refining system provide a better performance of set-point tracking of pulp quality when these predictive controllers are employed. In addition, while the optimal predictive controllers orienting with comprehensive economic objective and SE consumption objective, it has been shown that they have significantly reduced the energy consumption.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Mingjie; Zhou, Ping; Wang, Hong
As one of the most important unit in the papermaking industry, the high consistency (HC) refining system is confronted with challenges such as improving pulp quality, energy saving, and emissions reduction in its operation processes. Here in this correspondence, an optimal operation of HC refining system is presented using nonlinear multiobjective model predictive control strategies that aim at set-point tracking objective of pulp quality, economic objective, and specific energy (SE) consumption objective, respectively. First, a set of input and output data at different times are employed to construct the subprocess model of the state process model for the HC refiningmore » system, and then the Wiener-type model can be obtained through combining the mechanism model of Canadian Standard Freeness and the state process model that determines their structures based on Akaike information criterion. Second, the multiobjective optimization strategy that optimizes both the set-point tracking objective of pulp quality and SE consumption is proposed simultaneously, which uses NSGA-II approach to obtain the Pareto optimal set. Furthermore, targeting at the set-point tracking objective of pulp quality, economic objective, and SE consumption objective, the sequential quadratic programming method is utilized to produce the optimal predictive controllers. In conclusion, the simulation results demonstrate that the proposed methods can make the HC refining system provide a better performance of set-point tracking of pulp quality when these predictive controllers are employed. In addition, while the optimal predictive controllers orienting with comprehensive economic objective and SE consumption objective, it has been shown that they have significantly reduced the energy consumption.« less
Sensitivity, Specificity, PPV, and NPV for Predictive Biomarkers.
Simon, Richard
2015-08-01
Molecularly targeted cancer drugs are often developed with companion diagnostics that attempt to identify which patients will have better outcome on the new drug than the control regimen. Such predictive biomarkers are playing an increasingly important role in precision oncology. For diagnostic tests, sensitivity, specificity, positive predictive value, and negative predictive are usually used as performance measures. This paper discusses these indices for predictive biomarkers, provides methods for their calculation with survival or response endpoints, and describes assumptions involved in their use. Published by Oxford University Press 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Resource Management in Constrained Dynamic Situations
NASA Astrophysics Data System (ADS)
Seok, Jinwoo
Resource management is considered in this dissertation for systems with limited resources, possibly combined with other system constraints, in unpredictably dynamic environments. Resources may represent fuel, power, capabilities, energy, and so on. Resource management is important for many practical systems; usually, resources are limited, and their use must be optimized. Furthermore, systems are often constrained, and constraints must be satisfied for safe operation. Simplistic resource management can result in poor use of resources and failure of the system. Furthermore, many real-world situations involve dynamic environments. Many traditional problems are formulated based on the assumptions of given probabilities or perfect knowledge of future events. However, in many cases, the future is completely unknown, and information on or probabilities about future events are not available. In other words, we operate in unpredictably dynamic situations. Thus, a method is needed to handle dynamic situations without knowledge of the future, but few formal methods have been developed to address them. Thus, the goal is to design resource management methods for constrained systems, with limited resources, in unpredictably dynamic environments. To this end, resource management is organized hierarchically into two levels: 1) planning, and 2) control. In the planning level, the set of tasks to be performed is scheduled based on limited resources to maximize resource usage in unpredictably dynamic environments. In the control level, the system controller is designed to follow the schedule by considering all the system constraints for safe and efficient operation. Consequently, this dissertation is mainly divided into two parts: 1) planning level design, based on finite state machines, and 2) control level methods, based on model predictive control. We define a recomposable restricted finite state machine to handle limited resource situations and unpredictably dynamic environments for the planning level. To obtain a policy, dynamic programing is applied, and to obtain a solution, limited breadth-first search is applied to the recomposable restricted finite state machine. A multi-function phased array radar resource management problem and an unmanned aerial vehicle patrolling problem are treated using recomposable restricted finite state machines. Then, we use model predictive control for the control level, because it allows constraint handling and setpoint tracking for the schedule. An aircraft power system management problem is treated that aims to develop an integrated control system for an aircraft gas turbine engine and electrical power system using rate-based model predictive control. Our results indicate that at the planning level, limited breadth-first search for recomposable restricted finite state machines generates good scheduling solutions in limited resource situations and unpredictably dynamic environments. The importance of cooperation in the planning level is also verified. At the control level, a rate-based model predictive controller allows good schedule tracking and safe operations. The importance of considering the system constraints and interactions between the subsystems is indicated. For the best resource management in constrained dynamic situations, the planning level and the control level need to be considered together.
NASA Astrophysics Data System (ADS)
Sun, Xiaoqiang; Yuan, Chaochun; Cai, Yingfeng; Wang, Shaohua; Chen, Long
2017-09-01
This paper presents the hybrid modeling and the model predictive control of an air suspension system with damping multi-mode switching damper. Unlike traditional damper with continuously adjustable damping, in this study, a new damper with four discrete damping modes is applied to vehicle semi-active air suspension. The new damper can achieve different damping modes by just controlling the on-off statuses of two solenoid valves, which makes its damping adjustment more efficient and more reliable. However, since the damping mode switching induces different modes of operation, the air suspension system with the new damper poses challenging hybrid control problem. To model both the continuous/discrete dynamics and the switching between different damping modes, the framework of mixed logical dynamical (MLD) systems is used to establish the system hybrid model. Based on the resulting hybrid dynamical model, the system control problem is recast as a model predictive control (MPC) problem, which allows us to optimize the switching sequences of the damping modes by taking into account the suspension performance requirements. Numerical simulations results demonstrate the efficacy of the proposed control method finally.
B220 analysis with the local lymph node assay: proposal for a more flexible prediction model.
Betts, Catherine J; Dearman, Rebecca J; Kimber, Ian; Ryan, Cindy A; Gerberick, G Frank; Lalko, Jon; Api, Anne Marie
2007-01-01
The mouse local lymph node assay (LLNA) has been developed and validated for the identification of chemicals that have the potential to induce skin sensitisation. In common with other predictive test methods the accuracy of the LLNA is not absolute and experience has revealed that a few chemicals, including for instance a minority of skin irritants, may elicit false-positive reactions in the assay. To improve further the performance of the LLNA, and to eliminate or reduce false-positives, there has been interest in an adjunct method in which the ability of chemicals to cause increases in the frequency of B220(+) lymphocytes in skin-draining lymph nodes is measured. Previous studies suggest that the use of B220 analyses aligned with the standard LLNA may serve to distinguish further between contact allergens and skin irritants. In the original predictive model, chemicals were regarded as being skin sensitisers if they were able to induce a 1.25-fold or greater increase in the percentage of B220(+) cells within lymph nodes compared with concurrent vehicle controls. Although this first prediction model has proven useful, in the light of more recent experience, and specifically as a consequence of some variability observed in the frequency of B220(+) lymphocytes in nodes taken from vehicle control-treated animals, it is timely now to reconsider and refine the model. As a result a new prediction model is proposed in which reliance on the use of absolute thresholds is reduced, and in which small changes in control values can be better accommodated. (c) 2007 John Wiley & Sons, Ltd.
Flight research on natural laminar flow nacelles - A progress report
NASA Technical Reports Server (NTRS)
Hastings, E. C., Jr.; Schoenster, J. A.; Obara, C. J.; Dodbele, S. S.
1986-01-01
This paper presents a progress report on an ongoing flight experiment for natural laminar flow nacelles. The results given herein were obtained during the first phase of the experiment, in which an instrumented natural laminar flow nacelle fairing was flight tested in the presence of turbofan engine noise and a controlled noise source. The results indicate that with the controlled noise source off, natural laminar flow was measured as far aft as 37 percent of the fairing length. The transition front was irregular in contour, and the extent of natural laminar flow was significantly affected by the relative flow angle for the fairing. In addition to these test results, the paper discusses the results of some recent computational analyses to predict pressure distributions and transition location, and to explain some of the data trends. Comparisons between measured and predicted data indicate that the analytical methods successfully predicted trends for the baseline (no controlled noise source) studies.
Assessing Strategies Against Gambiense Sleeping Sickness Through Mathematical Modeling
Rock, Kat S; Ndeffo-Mbah, Martial L; Castaño, Soledad; Palmer, Cody; Pandey, Abhishek; Atkins, Katherine E; Ndung’u, Joseph M; Hollingsworth, T Déirdre; Galvani, Alison; Bever, Caitlin; Chitnis, Nakul; Keeling, Matt J
2018-01-01
Abstract Background Control of gambiense sleeping sickness relies predominantly on passive and active screening of people, followed by treatment. Methods Mathematical modeling explores the potential of 3 complementary interventions in high- and low-transmission settings. Results Intervention strategies that included vector control are predicted to halt transmission most quickly. Targeted active screening, with better and more focused coverage, and enhanced passive surveillance, with improved access to diagnosis and treatment, are both estimated to avert many new infections but, when used alone, are unlikely to halt transmission before 2030 in high-risk settings. Conclusions There was general model consensus in the ranking of the 3 complementary interventions studied, although with discrepancies between the quantitative predictions due to differing epidemiological assumptions within the models. While these predictions provide generic insights into improving control, the most effective strategy in any situation depends on the specific epidemiology in the region and the associated costs. PMID:29860287
Spiegelhalter, D J; Freedman, L S
1986-01-01
The 'textbook' approach to determining sample size in a clinical trial has some fundamental weaknesses which we discuss. We describe a new predictive method which takes account of prior clinical opinion about the treatment difference. The method adopts the point of clinical equivalence (determined by interviewing the clinical participants) as the null hypothesis. Decision rules at the end of the study are based on whether the interval estimate of the treatment difference (classical or Bayesian) includes the null hypothesis. The prior distribution is used to predict the probabilities of making the decisions to use one or other treatment or to reserve final judgement. It is recommended that sample size be chosen to control the predicted probability of the last of these decisions. An example is given from a multi-centre trial of superficial bladder cancer.
Intermittent control: a computational theory of human control.
Gawthrop, Peter; Loram, Ian; Lakie, Martin; Gollee, Henrik
2011-02-01
The paradigm of continuous control using internal models has advanced understanding of human motor control. However, this paradigm ignores some aspects of human control, including intermittent feedback, serial ballistic control, triggered responses and refractory periods. It is shown that event-driven intermittent control provides a framework to explain the behaviour of the human operator under a wider range of conditions than continuous control. Continuous control is included as a special case, but sampling, system matched hold, an intermittent predictor and an event trigger allow serial open-loop trajectories using intermittent feedback. The implementation here may be described as "continuous observation, intermittent action". Beyond explaining unimodal regulation distributions in common with continuous control, these features naturally explain refractoriness and bimodal stabilisation distributions observed in double stimulus tracking experiments and quiet standing, respectively. Moreover, given that human control systems contain significant time delays, a biological-cybernetic rationale favours intermittent over continuous control: intermittent predictive control is computationally less demanding than continuous predictive control. A standard continuous-time predictive control model of the human operator is used as the underlying design method for an event-driven intermittent controller. It is shown that when event thresholds are small and sampling is regular, the intermittent controller can masquerade as the underlying continuous-time controller and thus, under these conditions, the continuous-time and intermittent controller cannot be distinguished. This explains why the intermittent control hypothesis is consistent with the continuous control hypothesis for certain experimental conditions.
NASA Technical Reports Server (NTRS)
Wingrove, Rodney C.; Coate, Robert E.
1961-01-01
The guidance system for maneuvering vehicles within a planetary atmosphere which was studied uses the concept of fast continuous prediction of the maximum maneuver capability from existing conditions rather than a stored-trajectory technique. used, desired touchdown points are compared with the maximum range capability and heating or acceleration limits, so that a proper decision and choice of control inputs can be made by the pilot. In the method of display and control a piloted fixed simulator was used t o demonstrate the feasibility od the concept and to study its application to control of lunar mission reentries and recoveries from aborts.
SU-D-BRA-01: Feasibility Study for Swallowing Prediction Using Pressure Sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, M; Kim, T; Kim, D
2016-06-15
Purpose: To develop a swallowing prediction system (SPS) using force sensing sensors and evaluate its feasibility. Methods: The SPS developed consists of force sensing sensor units, a thermoplastic mask, a signal transport device and a control PC installed with an in-house software. The SPS is designed to predict the pharyngeal stage of swallowing because it is known that internal organ movement occurs in pharyngeal stage. To detect prediction signal in the SPS, the force sensing sensor units were attached on both the submental muscle region and thyroid cartilage region of the thermoplastic mask. While the signal from the thyroid cartilagemore » region informs the action of swallowing, the signal from the submental muscle region is utilized as a precursor for swallowing. Since the duration of swallowing is relatively short, using such precursor (or warning) signals for machine control is considered more beneficial. A volunteer study was conducted to evaluate the feasibility of the system. In this volunteer study, we intended to verify that the system could predict the pharyngeal stage of the swallowing. We measured time gaps between obtaining the warning signals in the SPS and starting points of the pharyngeal stage of swallowing. Results: The measured data was examined whether the time gaps were in reasonable order to be easily utilized. The mean and standard deviation values of these time gaps were 0.550 s ± 0.183 s. in 8 volunteers. Conclusion: The proposed method was able to predict the on-set of swallowing of human subjects inside the thermoplastic mask, which has never been possible with other monitoring systems such as camera-based monitoring system. With the prediction ability of swallowing incorporated into the machine control mechanism (in the future), beam delivery can be controlled to skip swallowing periods and significant dosimetric gain is expected in head & neck cancer treatments. This work was supported by the Radiation Technology R&D program (No. 2015M2A2A7038291) and by the Mid-career Researcher Program (2014R1A2A1A10050270) through the National Research Foundation of Korea funded by the Ministry of Science, ICT&Future Planning.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mammoli, Andrea A.; Lavrova, Olga; Arellano, Brian
The present invention is an apparatus and method for delivering energy using a renewable resource. The method includes providing a photovoltaic energy source and applying energy storage to the photovoltaic energy source via a battery storage unit. The energy output from the photovoltaic energy source and the battery system is controlled using a battery control system. The battery control system predicts peak load, develops a schedule that includes when to begin discharging power and when to stop discharging power, shifts power to the battery storage unit when excess power is available, and prioritizes the functionality of the battery storage unitmore » and the photovoltaic energy source.« less
Proposal for a recovery prediction method for patients affected by acute mediastinitis
2012-01-01
Background An attempt to find a prediction method of death risk in patients affected by acute mediastinitis. There is not such a tool described in available literature for that serious disease. Methods The study comprised 44 consecutive cases of acute mediastinitis. General anamnesis and biochemical data were included. Factor analysis was used to extract the risk characteristic for the patients. The most valuable results were obtained for 8 parameters which were selected for further statistical analysis (all collected during few hours after admission). Three factors reached Eigenvalue >1. Clinical explanations of these combined statistical factors are: Factor1 - proteinic status (serum total protein, albumin, and hemoglobin level), Factor2 - inflammatory status (white blood cells, CRP, procalcitonin), and Factor3 - general risk (age, number of coexisting diseases). Threshold values of prediction factors were estimated by means of statistical analysis (factor analysis, Statgraphics Centurion XVI). Results The final prediction result for the patients is constructed as simultaneous evaluation of all factor scores. High probability of death should be predicted if factor 1 value decreases with simultaneous increase of factors 2 and 3. The diagnostic power of the proposed method was revealed to be high [sensitivity =90%, specificity =64%], for Factor1 [SNC = 87%, SPC = 79%]; for Factor2 [SNC = 87%, SPC = 50%] and for Factor3 [SNC = 73%, SPC = 71%]. Conclusion The proposed prediction method seems a useful emergency signal during acute mediastinitis control in affected patients. PMID:22574625
Directly induced swing for closed loop control of electroslag remelting furnace
Damkroger, B.
1998-04-07
An apparatus and method are disclosed for controlling an electroslag remelting furnace, imposing a periodic fluctuation on electrode drive speed and thereby generating a predictable voltage swing signal. The fluctuation is preferably done by imposition of a sine, square, or sawtooth wave on the drive dc offset signal. 8 figs.
Uneven-aged management of northern hardwoods in New England
William B. Leak; Stanley M. Filip
1975-01-01
Three main aspects of uneven-aged management in northern hardwoods are discussed: (1) choice of cutting method, including selection, group selection, and patch selection; (2) control of yields, which involves the establishment of structural goals, the control of marking operations, and the prediction of allowable harvest; and (3) the transportation or removal of...
ERIC Educational Resources Information Center
Griggs, Marissa Swaim; Mikami, Amori Yee
2011-01-01
Objective: This study investigated the impact of parental attention-deficit/hyperactivity disorder (ADHD) symptoms on the peer relationships and parent-child interaction outcomes of children with ADHD among families completing a randomized controlled trial of parental friendship coaching (PFC) relative to control families. Method: Participants…
NASA Iced Aerodynamics and Controls Current Research
NASA Technical Reports Server (NTRS)
Addy, Gene
2009-01-01
This slide presentation reviews the state of current research in the area of aerodynamics and aircraft control with ice conditions by the Aviation Safety Program, part of the Integrated Resilient Aircraft Controls Project (IRAC). Included in the presentation is a overview of the modeling efforts. The objective of the modeling is to develop experimental and computational methods to model and predict aircraft response during adverse flight conditions, including icing. The Aircraft icing modeling efforts includes the Ice-Contaminated Aerodynamics Modeling, which examines the effects of ice contamination on aircraft aerodynamics, and CFD modeling of ice-contaminated aircraft aerodynamics, and Advanced Ice Accretion Process Modeling which examines the physics of ice accretion, and works on computational modeling of ice accretions. The IRAC testbed, a Generic Transport Model (GTM) and its use in the investigation of the effects of icing on its aerodynamics is also reviewed. This has led to a more thorough understanding and models, both theoretical and empirical of icing physics and ice accretion for airframes, advanced 3D ice accretion prediction codes, CFD methods for iced aerodynamics and better understanding of aircraft iced aerodynamics and its effects on control surface effectiveness.
Khazaee, Mostafa; Markazi, Amir H D; Omidi, Ehsan
2015-11-01
In this paper, a new Adaptive Fuzzy Predictive Sliding Mode Control (AFP-SMC) is presented for nonlinear systems with uncertain dynamics and unknown input delay. The control unit consists of a fuzzy inference system to approximate the ideal linearization control, together with a switching strategy to compensate for the estimation errors. Also, an adaptive fuzzy predictor is used to estimate the future values of the system states to compensate for the time delay. The adaptation laws are used to tune the controller and predictor parameters, which guarantee the stability based on a Lyapunov-Krasovskii functional. To evaluate the method effectiveness, the simulation and experiment on an overhead crane system are presented. According to the obtained results, AFP-SMC can effectively control the uncertain nonlinear systems, subject to input delays of known bound. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Prediction of Frequency for Simulation of Asphalt Mix Fatigue Tests Using MARS and ANN
Fakhri, Mansour
2014-01-01
Fatigue life of asphalt mixes in laboratory tests is commonly determined by applying a sinusoidal or haversine waveform with specific frequency. The pavement structure and loading conditions affect the shape and the frequency of tensile response pulses at the bottom of asphalt layer. This paper introduces two methods for predicting the loading frequency in laboratory asphalt fatigue tests for better simulation of field conditions. Five thousand (5000) four-layered pavement sections were analyzed and stress and strain response pulses in both longitudinal and transverse directions was determined. After fitting the haversine function to the response pulses by the concept of equal-energy pulse, the effective length of the response pulses were determined. Two methods including Multivariate Adaptive Regression Splines (MARS) and Artificial Neural Network (ANN) methods were then employed to predict the effective length (i.e., frequency) of tensile stress and strain pulses in longitudinal and transverse directions based on haversine waveform. It is indicated that, under controlled stress and strain modes, both methods (MARS and ANN) are capable of predicting the frequency of loading in HMA fatigue tests with very good accuracy. The accuracy of ANN method is, however, more than MARS method. It is furthermore shown that the results of the present study can be generalized to sinusoidal waveform by a simple equation. PMID:24688400
Prediction of frequency for simulation of asphalt mix fatigue tests using MARS and ANN.
Ghanizadeh, Ali Reza; Fakhri, Mansour
2014-01-01
Fatigue life of asphalt mixes in laboratory tests is commonly determined by applying a sinusoidal or haversine waveform with specific frequency. The pavement structure and loading conditions affect the shape and the frequency of tensile response pulses at the bottom of asphalt layer. This paper introduces two methods for predicting the loading frequency in laboratory asphalt fatigue tests for better simulation of field conditions. Five thousand (5000) four-layered pavement sections were analyzed and stress and strain response pulses in both longitudinal and transverse directions was determined. After fitting the haversine function to the response pulses by the concept of equal-energy pulse, the effective length of the response pulses were determined. Two methods including Multivariate Adaptive Regression Splines (MARS) and Artificial Neural Network (ANN) methods were then employed to predict the effective length (i.e., frequency) of tensile stress and strain pulses in longitudinal and transverse directions based on haversine waveform. It is indicated that, under controlled stress and strain modes, both methods (MARS and ANN) are capable of predicting the frequency of loading in HMA fatigue tests with very good accuracy. The accuracy of ANN method is, however, more than MARS method. It is furthermore shown that the results of the present study can be generalized to sinusoidal waveform by a simple equation.
Wang, Yuan-Jay
2010-10-01
This paper develops a systematic and straightforward methodology to characterize and quench the friction-induced limit cycle conditions in electro-hydraulic servovalve control systems with transport delay in the transmission line. The nonlinear friction characteristic is linearized by using its corresponding describing function. The delay time in the transmission line, which could accelerate the generation of limit cycles is particularly considered. The stability equation method together with parameter plane method provides a useful tool for the establishment of necessary conditions to sustain a limit cycle directly in the constructed controller coefficient plane. Also, the stable region, the unstable region, and the limit cycle region are identified in the parameter plane. The parameter plane characterizes a clear relationship between limit cycle amplitude, frequency, transport delay, and the controller coefficients to be designed. The stability of the predicted limit cycle is checked by plotting stability curves. The stability of the system is examined when the viscous gain changes with respect to the temperature of the working fluid. A feasible stable region is characterized in the parameter plane to allow a flexible choice of controller gains. The robust prevention of limit cycle is achieved by selecting controller gains from the asymptotic stability region. The predicted results are verified by simulations. It is seen that the friction-induced limit cycles can be effectively predicted, removed, and quenched via the design of the compensator even in the case of viscous gain and delay time variations unconditionally. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.
Koopmeiners, Joseph S.; Feng, Ziding
2015-01-01
Group sequential testing procedures have been proposed as an approach to conserving resources in biomarker validation studies. Previously, Koopmeiners and Feng (2011) derived the asymptotic properties of the sequential empirical positive predictive value (PPV) and negative predictive value curves, which summarize the predictive accuracy of a continuous marker, under case-control sampling. A limitation of their approach is that the prevalence can not be estimated from a case-control study and must be assumed known. In this manuscript, we consider group sequential testing of the predictive accuracy of a continuous biomarker with unknown prevalence. First, we develop asymptotic theory for the sequential empirical PPV and NPV curves when the prevalence must be estimated, rather than assumed known in a case-control study. We then discuss how our results can be combined with standard group sequential methods to develop group sequential testing procedures and bias-adjusted estimators for the PPV and NPV curve. The small sample properties of the proposed group sequential testing procedures and estimators are evaluated by simulation and we illustrate our approach in the context of a study to validate a novel biomarker for prostate cancer. PMID:26537180
NASA Technical Reports Server (NTRS)
Marsell, Brandon; Griffin, David; Schallhorn, Dr. Paul; Roth, Jacob
2012-01-01
Coupling computational fluid dynamics (CFD) with a controls analysis tool elegantly allows for high accuracy predictions of the interaction between sloshing liquid propellants and th e control system of a launch vehicle. Instead of relying on mechanical analogs which are not valid during aU stages of flight, this method allows for a direct link between the vehicle dynamic environments calculated by the solver in the controls analysis tool to the fluid flow equations solved by the CFD code. This paper describes such a coupling methodology, presents the results of a series of test cases, and compares said results against equivalent results from extensively validated tools. The coupling methodology, described herein, has proven to be highly accurate in a variety of different cases.
Integrated CFD and Controls Analysis Interface for High Accuracy Liquid Propellant Slosh Predictions
NASA Technical Reports Server (NTRS)
Marsell, Brandon; Griffin, David; Schallhorn, Paul; Roth, Jacob
2012-01-01
Coupling computational fluid dynamics (CFD) with a controls analysis tool elegantly allows for high accuracy predictions of the interaction between sloshing liquid propellants and the control system of a launch vehicle. Instead of relying on mechanical analogs which are n0t va lid during all stages of flight, this method allows for a direct link between the vehicle dynamic environments calculated by the solver in the controls analysis tool to the fluid now equations solved by the CFD code. This paper describes such a coupling methodology, presents the results of a series of test cases, and compares said results against equivalent results from extensively validated tools. The coupling methodology, described herein, has proven to be highly accurate in a variety of different cases.
Hare, Amanda L.; Szwedo, David E.; Schad, Megan M.; Allen, Joseph P.
2014-01-01
This study used a longitudinal, multi-method design to examine whether teens’ perceptions of maternal psychological control predicted lower levels of adolescent autonomy displayed with their mothers and peers over time. Significant predictions from teens’ perceptions of maternal psychological control to teens’ displays of autonomy in maternal and peer relationships were found at age 16 after accounting for adolescent displays of autonomy with mothers and peers at age 13, indicating relative changes in teens’ autonomy displayed with their mother and a close peer over time. Results suggest that the ability to assert one’s autonomy in mid-adolescence may be influenced by maternal behavior early in adolescence, highlighting the importance of parents minimizing psychological control to facilitate autonomy development for teens. PMID:26788023
Phase Transition between Black and Blue Phosphorenes: A Quantum Monte Carlo Study
NASA Astrophysics Data System (ADS)
Li, Lesheng; Yao, Yi; Reeves, Kyle; Kanai, Yosuke
Phase transition of the more common black phosphorene to blue phosphorene is of great interest because they are predicted to exhibit unique electronic and optical properties. However, these two phases are predicted to be separated by a rather large energy barrier. In this work, we study the transition pathway between black and blue phosphorenes by using the variable cell nudge elastic band method combined with density functional theory calculation. We show how diffusion quantum Monte Carlo method can be used for determining the energetics of the phase transition and demonstrate the use of two approaches for removing finite-size errors. Finally, we predict how applied stress can be used to control the energetic balance between these two different phases of phosphorene.
Shimizu, Yu; Yoshimoto, Junichiro; Takamura, Masahiro; Okada, Go; Okamoto, Yasumasa; Yamawaki, Shigeto; Doya, Kenji
2017-01-01
In diagnostic applications of statistical machine learning methods to brain imaging data, common problems include data high-dimensionality and co-linearity, which often cause over-fitting and instability. To overcome these problems, we applied partial least squares (PLS) regression to resting-state functional magnetic resonance imaging (rs-fMRI) data, creating a low-dimensional representation that relates symptoms to brain activity and that predicts clinical measures. Our experimental results, based upon data from clinically depressed patients and healthy controls, demonstrated that PLS and its kernel variants provided significantly better prediction of clinical measures than ordinary linear regression. Subsequent classification using predicted clinical scores distinguished depressed patients from healthy controls with 80% accuracy. Moreover, loading vectors for latent variables enabled us to identify brain regions relevant to depression, including the default mode network, the right superior frontal gyrus, and the superior motor area. PMID:28700672
Prediction of jump phenomena in roll-coupled maneuvers of airplanes
NASA Technical Reports Server (NTRS)
Schy, A. A.; Hannah, M. E.
1976-01-01
An easily computerized analytical method is developed for identifying critical airplane maneuvers in which nonlinear rotational coupling effects may cause sudden jumps in the response to pilot's control inputs. Fifth and ninth degree polynomials for predicting multiple pseudo-steady states of roll-coupled maneuvers are derived. The program calculates the pseudo-steady solutions and their stability. The occurrence of jump-like responses for several airplanes and a variety of maneuvers is shown to correlate well with the appearance of multiple stable solutions for critical control combinations. The analysis is extended to include aerodynamics nonlinear in angle of attack.
Data quality assurance and control in cognitive research: Lessons learned from the PREDICT-HD study.
Westervelt, Holly James; Bernier, Rachel A; Faust, Melanie; Gover, Mary; Bockholt, H Jeremy; Zschiegner, Roland; Long, Jeffrey D; Paulsen, Jane S
2017-09-01
We discuss the strategies employed in data quality control and quality assurance for the cognitive core of Neurobiological Predictors of Huntington's Disease (PREDICT-HD), a long-term observational study of over 1,000 participants with prodromal Huntington disease. In particular, we provide details regarding the training and continual evaluation of cognitive examiners, methods for error corrections, and strategies to minimize errors in the data. We present five important lessons learned to help other researchers avoid certain assumptions that could potentially lead to inaccuracies in their cognitive data. Copyright © 2017 John Wiley & Sons, Ltd.
Open Platform for Limit Protection with Carefree Maneuver Applications
NASA Technical Reports Server (NTRS)
Jeram, Geoffrey J.
2004-01-01
This Open Platform for Limit Protection guides the open design of maneuver limit protection systems in general, and manned, rotorcraft, aerospace applications in particular. The platform uses three stages of limit protection modules: limit cue creation, limit cue arbitration, and control system interface. A common set of limit cue modules provides commands that can include constraints, alerts, transfer functions, and friction. An arbitration module selects the "best" limit protection cues and distributes them to the most appropriate control path interface. This platform adopts a holistic approach to limit protection whereby it considers all potential interface points, including the pilot's visual, aural, and tactile displays; and automatic command restraint shaping for autonomous limit protection. For each functional module, this thesis guides the control system designer through the design choices and information interfaces among the modules. Limit cue module design choices include type of prediction, prediction mechanism, method of critical control calculation, and type of limit cue. Special consideration is given to the nature of the limit, particularly the level of knowledge about it, and the ramifications for limit protection design, especially with respect to intelligent control methods such as fuzzy inference systems and neural networks.
Steinberg, David M.; Fine, Jason; Chappell, Rick
2009-01-01
Important properties of diagnostic methods are their sensitivity, specificity, and positive and negative predictive values (PPV and NPV). These methods are typically assessed via case–control samples, which include one cohort of cases known to have the disease and a second control cohort of disease-free subjects. Such studies give direct estimates of sensitivity and specificity but only indirect estimates of PPV and NPV, which also depend on the disease prevalence in the tested population. The motivating example arises in assay testing, where usage is contemplated in populations with known prevalences. Further instances include biomarker development, where subjects are selected from a population with known prevalence and assessment of PPV and NPV is crucial, and the assessment of diagnostic imaging procedures for rare diseases, where case–control studies may be the only feasible designs. We develop formulas for optimal allocation of the sample between the case and control cohorts and for computing sample size when the goal of the study is to prove that the test procedure exceeds pre-stated bounds for PPV and/or NPV. Surprisingly, the optimal sampling schemes for many purposes are highly unbalanced, even when information is desired on both PPV and NPV. PMID:18556677
GA-based fuzzy reinforcement learning for control of a magnetic bearing system.
Lin, C T; Jou, C P
2000-01-01
This paper proposes a TD (temporal difference) and GA (genetic algorithm)-based reinforcement (TDGAR) learning method and applies it to the control of a real magnetic bearing system. The TDGAR learning scheme is a new hybrid GA, which integrates the TD prediction method and the GA to perform the reinforcement learning task. The TDGAR learning system is composed of two integrated feedforward networks. One neural network acts as a critic network to guide the learning of the other network (the action network) which determines the outputs (actions) of the TDGAR learning system. The action network can be a normal neural network or a neural fuzzy network. Using the TD prediction method, the critic network can predict the external reinforcement signal and provide a more informative internal reinforcement signal to the action network. The action network uses the GA to adapt itself according to the internal reinforcement signal. The key concept of the TDGAR learning scheme is to formulate the internal reinforcement signal as the fitness function for the GA such that the GA can evaluate the candidate solutions (chromosomes) regularly, even during periods without external feedback from the environment. This enables the GA to proceed to new generations regularly without waiting for the arrival of the external reinforcement signal. This can usually accelerate the GA learning since a reinforcement signal may only be available at a time long after a sequence of actions has occurred in the reinforcement learning problem. The proposed TDGAR learning system has been used to control an active magnetic bearing (AMB) system in practice. A systematic design procedure is developed to achieve successful integration of all the subsystems including magnetic suspension, mechanical structure, and controller training. The results show that the TDGAR learning scheme can successfully find a neural controller or a neural fuzzy controller for a self-designed magnetic bearing system.
Aerodynamic Validation of Emerging Projectile Configurations
2011-12-01
was benchmarked against modern aerodynamic prediction programs like ANSYS CFX and Aero-Prediction 09 (AP09). Next, a comparison was made between two...types of angle of attack generation methods in ANSYS CFX . The research then focused on controlled tilting of the projectile’s nose to investigate the...resulting aerodynamic effects. ANSYS CFX was found to provide better agreement with the experimental data than AP09. 14. SUBJECT
Nguyen, Quan H; Tellam, Ross L; Naval-Sanchez, Marina; Porto-Neto, Laercio R; Barendse, William; Reverter, Antonio; Hayes, Benjamin; Kijas, James; Dalrymple, Brian P
2018-01-01
Abstract Genome sequences for hundreds of mammalian species are available, but an understanding of their genomic regulatory regions, which control gene expression, is only beginning. A comprehensive prediction of potential active regulatory regions is necessary to functionally study the roles of the majority of genomic variants in evolution, domestication, and animal production. We developed a computational method to predict regulatory DNA sequences (promoters, enhancers, and transcription factor binding sites) in production animals (cows and pigs) and extended its broad applicability to other mammals. The method utilizes human regulatory features identified from thousands of tissues, cell lines, and experimental assays to find homologous regions that are conserved in sequences and genome organization and are enriched for regulatory elements in the genome sequences of other mammalian species. Importantly, we developed a filtering strategy, including a machine learning classification method, to utilize a very small number of species-specific experimental datasets available to select for the likely active regulatory regions. The method finds the optimal combination of sensitivity and accuracy to unbiasedly predict regulatory regions in mammalian species. Furthermore, we demonstrated the utility of the predicted regulatory datasets in cattle for prioritizing variants associated with multiple production and climate change adaptation traits and identifying potential genome editing targets. PMID:29618048
Nguyen, Quan H; Tellam, Ross L; Naval-Sanchez, Marina; Porto-Neto, Laercio R; Barendse, William; Reverter, Antonio; Hayes, Benjamin; Kijas, James; Dalrymple, Brian P
2018-03-01
Genome sequences for hundreds of mammalian species are available, but an understanding of their genomic regulatory regions, which control gene expression, is only beginning. A comprehensive prediction of potential active regulatory regions is necessary to functionally study the roles of the majority of genomic variants in evolution, domestication, and animal production. We developed a computational method to predict regulatory DNA sequences (promoters, enhancers, and transcription factor binding sites) in production animals (cows and pigs) and extended its broad applicability to other mammals. The method utilizes human regulatory features identified from thousands of tissues, cell lines, and experimental assays to find homologous regions that are conserved in sequences and genome organization and are enriched for regulatory elements in the genome sequences of other mammalian species. Importantly, we developed a filtering strategy, including a machine learning classification method, to utilize a very small number of species-specific experimental datasets available to select for the likely active regulatory regions. The method finds the optimal combination of sensitivity and accuracy to unbiasedly predict regulatory regions in mammalian species. Furthermore, we demonstrated the utility of the predicted regulatory datasets in cattle for prioritizing variants associated with multiple production and climate change adaptation traits and identifying potential genome editing targets.
Advances in the understanding, management, and prevention of dengue.
Hermann, Laura L; Gupta, Swati B; Manoff, Susan B; Kalayanarooj, Siripen; Gibbons, Robert V; Coller, Beth-Ann G
2015-03-01
Dengue causes more human morbidity globally than any other vector-borne viral disease. Recent research has led to improved epidemiological methods that predict disease burden and factors involved in transmission, a better understanding of immune responses in infection, and enhanced animal models. In addition, a number of control measures, including preventative vaccines, are in clinical trials. However, significant gaps remain, including the need for better surveillance in large parts of the world, methods to predict which individuals will develop severe disease, and immunologic correlates of protection against dengue illness. During the next decade, dengue will likely expand its geographic reach and become an increasing burden on health resources in affected areas. Licensed vaccines and antiviral agents are needed in order to effectively control dengue and limit disease. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Ehret, R. M.
1974-01-01
The concepts explored in a state of the art review of those engineering fracture mechanics considered most applicable to the space shuttle vehicle include fracture toughness, precritical flaw growth, failure mechanisms, inspection methods (including proof test logic), and crack growth predictive analysis techniques.
Numerical Algorithms for Acoustic Integrals - The Devil is in the Details
NASA Technical Reports Server (NTRS)
Brentner, Kenneth S.
1996-01-01
The accurate prediction of the aeroacoustic field generated by aerospace vehicles or nonaerospace machinery is necessary for designers to control and reduce source noise. Powerful computational aeroacoustic methods, based on various acoustic analogies (primarily the Lighthill acoustic analogy) and Kirchhoff methods, have been developed for prediction of noise from complicated sources, such as rotating blades. Both methods ultimately predict the noise through a numerical evaluation of an integral formulation. In this paper, we consider three generic acoustic formulations and several numerical algorithms that have been used to compute the solutions to these formulations. Algorithms for retarded-time formulations are the most efficient and robust, but they are difficult to implement for supersonic-source motion. Collapsing-sphere and emission-surface formulations are good alternatives when supersonic-source motion is present, but the numerical implementations of these formulations are more computationally demanding. New algorithms - which utilize solution adaptation to provide a specified error level - are needed.
Testing by artificial intelligence: computational alternatives to the determination of mutagenicity.
Klopman, G; Rosenkranz, H S
1992-08-01
In order to develop methods for evaluating the predictive performance of computer-driven structure-activity methods (SAR) as well as to determine the limits of predictivity, we investigated the behavior of two Salmonella mutagenicity data bases: (a) a subset from the Genetox Program and (b) one from the U.S. National Toxicology Program (NTP). For molecules common to the two data bases, the experimental concordance was 76% when "marginals" were included and 81% when they were excluded. Three SAR methods were evaluated: CASE, MULTICASE and CASE/Graph Indices (CASE/GI). The programs "learned" the Genetox data base and used it to predict NTP molecules that were not present in the Genetox compilation. The concordances were 72, 80 and 47% respectively. Obviously, the MULTICASE version is superior and approaches the 85% interlaboratory variability observed for the Salmonella mutagenicity assays when the latter was carried out under carefully controlled conditions.
NASA Astrophysics Data System (ADS)
Cleves, Ann E.; Jain, Ajay N.
2008-03-01
Inductive bias is the set of assumptions that a person or procedure makes in making a prediction based on data. Different methods for ligand-based predictive modeling have different inductive biases, with a particularly sharp contrast between 2D and 3D similarity methods. A unique aspect of ligand design is that the data that exist to test methodology have been largely man-made, and that this process of design involves prediction. By analyzing the molecular similarities of known drugs, we show that the inductive bias of the historic drug discovery process has a very strong 2D bias. In studying the performance of ligand-based modeling methods, it is critical to account for this issue in dataset preparation, use of computational controls, and in the interpretation of results. We propose specific strategies to explicitly address the problems posed by inductive bias considerations.
Fluorescence Spectroscopy and Chemometric Modeling for Bioprocess Monitoring
Faassen, Saskia M.; Hitzmann, Bernd
2015-01-01
On-line sensors for the detection of crucial process parameters are desirable for the monitoring, control and automation of processes in the biotechnology, food and pharma industry. Fluorescence spectroscopy as a highly developed and non-invasive technique that enables the on-line measurements of substrate and product concentrations or the identification of characteristic process states. During a cultivation process significant changes occur in the fluorescence spectra. By means of chemometric modeling, prediction models can be calculated and applied for process supervision and control to provide increased quality and the productivity of bioprocesses. A range of applications for different microorganisms and analytes has been proposed during the last years. This contribution provides an overview of different analysis methods for the measured fluorescence spectra and the model-building chemometric methods used for various microbial cultivations. Most of these processes are observed using the BioView® Sensor, thanks to its robustness and insensitivity to adverse process conditions. Beyond that, the PLS-method is the most frequently used chemometric method for the calculation of process models and prediction of process variables. PMID:25942644
Adjoint-based sensitivity analysis of low-order thermoacoustic networks using a wave-based approach
NASA Astrophysics Data System (ADS)
Aguilar, José G.; Magri, Luca; Juniper, Matthew P.
2017-07-01
Strict pollutant emission regulations are pushing gas turbine manufacturers to develop devices that operate in lean conditions, with the downside that combustion instabilities are more likely to occur. Methods to predict and control unstable modes inside combustion chambers have been developed in the last decades but, in some cases, they are computationally expensive. Sensitivity analysis aided by adjoint methods provides valuable sensitivity information at a low computational cost. This paper introduces adjoint methods and their application in wave-based low order network models, which are used as industrial tools, to predict and control thermoacoustic oscillations. Two thermoacoustic models of interest are analyzed. First, in the zero Mach number limit, a nonlinear eigenvalue problem is derived, and continuous and discrete adjoint methods are used to obtain the sensitivities of the system to small modifications. Sensitivities to base-state modification and feedback devices are presented. Second, a more general case with non-zero Mach number, a moving flame front and choked outlet, is presented. The influence of the entropy waves on the computed sensitivities is shown.
Fault tolerant control of multivariable processes using auto-tuning PID controller.
Yu, Ding-Li; Chang, T K; Yu, Ding-Wen
2005-02-01
Fault tolerant control of dynamic processes is investigated in this paper using an auto-tuning PID controller. A fault tolerant control scheme is proposed composing an auto-tuning PID controller based on an adaptive neural network model. The model is trained online using the extended Kalman filter (EKF) algorithm to learn system post-fault dynamics. Based on this model, the PID controller adjusts its parameters to compensate the effects of the faults, so that the control performance is recovered from degradation. The auto-tuning algorithm for the PID controller is derived with the Lyapunov method and therefore, the model predicted tracking error is guaranteed to converge asymptotically. The method is applied to a simulated two-input two-output continuous stirred tank reactor (CSTR) with various faults, which demonstrate the applicability of the developed scheme to industrial processes.
A TCP model for external beam treatment of intermediate-risk prostate cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walsh, Sean; Putten, Wil van der
2013-03-15
Purpose: Biological models offer the ability to predict clinical outcomes. The authors describe a model to predict the clinical response of intermediate-risk prostate cancer to external beam radiotherapy for a variety of fractionation regimes. Methods: A fully heterogeneous population averaged tumor control probability model was fit to clinical outcome data for hyper, standard, and hypofractionated treatments. The tumor control probability model was then employed to predict the clinical outcome of extreme hypofractionation regimes, as utilized in stereotactic body radiotherapy. Results: The tumor control probability model achieves an excellent level of fit, R{sup 2} value of 0.93 and a root meanmore » squared error of 1.31%, to the clinical outcome data for hyper, standard, and hypofractionated treatments using realistic values for biological input parameters. Residuals Less-Than-Or-Slanted-Equal-To 1.0% are produced by the tumor control probability model when compared to clinical outcome data for stereotactic body radiotherapy. Conclusions: The authors conclude that this tumor control probability model, used with the optimized radiosensitivity values obtained from the fit, is an appropriate mechanistic model for the analysis and evaluation of external beam RT plans with regard to tumor control for these clinical conditions.« less
Huikang Wang; Luzheng Bi; Teng Teng
2017-07-01
This paper proposes a novel method of electroencephalography (EEG)-based driver emergency braking intention detection system for brain-controlled driving considering one electrode falling-off. First, whether one electrode falls off is discriminated based on EEG potentials. Then, the missing signals are estimated by using the signals collected from other channels based on multivariate linear regression. Finally, a linear decoder is applied to classify driver intentions. Experimental results show that the falling-off discrimination accuracy is 99.63% on average and the correlation coefficient and root mean squared error (RMSE) between the estimated and experimental data are 0.90 and 11.43 μV, respectively, on average. Given one electrode falls off, the system accuracy of the proposed intention prediction method is significantly higher than that of the original method (95.12% VS 79.11%) and is close to that (95.95%) of the original system under normal situations (i. e., no electrode falling-off).
Optimization control of LNG regasification plant using Model Predictive Control
NASA Astrophysics Data System (ADS)
Wahid, A.; Adicandra, F. F.
2018-03-01
Optimization of liquified natural gas (LNG) regasification plant is important to minimize costs, especially operational costs. Therefore, it is important to choose optimum LNG regasification plant design and maintaining the optimum operating conditions through the implementation of model predictive control (MPC). Optimal tuning parameter for MPC such as P (prediction horizon), M (control of the horizon) and T (sampling time) are achieved by using fine-tuning method. The optimal criterion for design is the minimum amount of energy used and for control is integral of square error (ISE). As a result, the optimum design is scheme 2 which is developed by Devold with an energy savings of 40%. To maintain the optimum conditions, required MPC with P, M and T as follows: tank storage pressure: 90, 2, 1; product pressure: 95, 2, 1; temperature vaporizer: 65, 2, 2; and temperature heater: 35, 6, 5, with ISE value at set point tracking respectively 0.99, 1792.78, 34.89 and 7.54, or improvement of control performance respectively 4.6%, 63.5%, 3.1% and 58.2% compared to PI controller performance. The energy savings that MPC controllers can make when there is a disturbance in temperature rise 1°C of sea water is 0.02 MW.
A standardized model for predicting flap failure using indocyanine green dye
NASA Astrophysics Data System (ADS)
Zimmermann, Terence M.; Moore, Lindsay S.; Warram, Jason M.; Greene, Benjamin J.; Nakhmani, Arie; Korb, Melissa L.; Rosenthal, Eben L.
2016-03-01
Techniques that provide a non-invasive method for evaluation of intraoperative skin flap perfusion are currently available but underutilized. We hypothesize that intraoperative vascular imaging can be used to reliably assess skin flap perfusion and elucidate areas of future necrosis by means of a standardized critical perfusion threshold. Five animal groups (negative controls, n=4; positive controls, n=5; chemotherapy group, n=5; radiation group, n=5; chemoradiation group, n=5) underwent pre-flap treatments two weeks prior to undergoing random pattern dorsal fasciocutaneous flaps with a length to width ratio of 2:1 (3 x 1.5 cm). Flap perfusion was assessed via laser-assisted indocyanine green dye angiography and compared to standard clinical assessment for predictive accuracy of flap necrosis. For estimating flap-failure, clinical prediction achieved a sensitivity of 79.3% and a specificity of 90.5%. When average flap perfusion was more than three standard deviations below the average flap perfusion for the negative control group at the time of the flap procedure (144.3+/-17.05 absolute perfusion units), laser-assisted indocyanine green dye angiography achieved a sensitivity of 81.1% and a specificity of 97.3%. When absolute perfusion units were seven standard deviations below the average flap perfusion for the negative control group, specificity of necrosis prediction was 100%. Quantitative absolute perfusion units can improve specificity for intraoperative prediction of viable tissue. Using this strategy, a positive predictive threshold of flap failure can be standardized for clinical use.
NASA Technical Reports Server (NTRS)
Leiden, Ken; Green, Steven
2000-01-01
The development of a decision support tool (DST) for the en-route domain with accurate conflict prediction time horizons of 20 minutes has introduced an interesting problem. A 20 minute time horizon for conflict prediction often results in the predicted conflict occurring one or more sectors downstream from the sector controller who "owns" (i-e., is responsible for the safe separation of aircraft) one or both of the aircraft in the conflict pair. Based on current roles and responsibilities of today's en route controllers, the upstream controller would not resolve this conflict. In most cases, the downstream controller would wait until the conflicting aircraft entered higher sector before resolving the conflict. This results in a delay of several minutes from the time when the conflict was initially predicted. This delay is inefficient from both a controller workload and user's cost of operations perspective. Trajectory orientation, a new concept for facilitating an efficient, conflict-free flight path across several sectors while conforming to metering or miles-in-trail spacing, is proposed as an alternative to today's sector-oriented method. This concept necessitates a fundamental shift in thinking about inter-sector coordination. Instead of operating independently, with the main focus on protecting their internal airspace, controllers would work cooperatively, depending on each other for well-planned, conflict-free flow of aircraft. To support the trajectory orientation concept, a long time horizon (15 to 20 minutes) for conflict prediction and resolution would most likely be a primary requirement. In addition, new tools, such as controller-pilot data link will be identified to determine their necessity and applicability for trajectory orientation. Finally, with significant controller participation from selected Air Route Traffic Control Centers, potential shifts in R-side/D-side roles and responsibilities as well as the creation of a new controller position for multi-sector planning will be examined to determine the most viable solutions.
DemQSAR: predicting human volume of distribution and clearance of drugs
NASA Astrophysics Data System (ADS)
Demir-Kavuk, Ozgur; Bentzien, Jörg; Muegge, Ingo; Knapp, Ernst-Walter
2011-12-01
In silico methods characterizing molecular compounds with respect to pharmacologically relevant properties can accelerate the identification of new drugs and reduce their development costs. Quantitative structure-activity/-property relationship (QSAR/QSPR) correlate structure and physico-chemical properties of molecular compounds with a specific functional activity/property under study. Typically a large number of molecular features are generated for the compounds. In many cases the number of generated features exceeds the number of molecular compounds with known property values that are available for learning. Machine learning methods tend to overfit the training data in such situations, i.e. the method adjusts to very specific features of the training data, which are not characteristic for the considered property. This problem can be alleviated by diminishing the influence of unimportant, redundant or even misleading features. A better strategy is to eliminate such features completely. Ideally, a molecular property can be described by a small number of features that are chemically interpretable. The purpose of the present contribution is to provide a predictive modeling approach, which combines feature generation, feature selection, model building and control of overtraining into a single application called DemQSAR. DemQSAR is used to predict human volume of distribution (VDss) and human clearance (CL). To control overtraining, quadratic and linear regularization terms were employed. A recursive feature selection approach is used to reduce the number of descriptors. The prediction performance is as good as the best predictions reported in the recent literature. The example presented here demonstrates that DemQSAR can generate a model that uses very few features while maintaining high predictive power. A standalone DemQSAR Java application for model building of any user defined property as well as a web interface for the prediction of human VDss and CL is available on the webpage of DemPRED: http://agknapp.chemie.fu-berlin.de/dempred/.
DemQSAR: predicting human volume of distribution and clearance of drugs.
Demir-Kavuk, Ozgur; Bentzien, Jörg; Muegge, Ingo; Knapp, Ernst-Walter
2011-12-01
In silico methods characterizing molecular compounds with respect to pharmacologically relevant properties can accelerate the identification of new drugs and reduce their development costs. Quantitative structure-activity/-property relationship (QSAR/QSPR) correlate structure and physico-chemical properties of molecular compounds with a specific functional activity/property under study. Typically a large number of molecular features are generated for the compounds. In many cases the number of generated features exceeds the number of molecular compounds with known property values that are available for learning. Machine learning methods tend to overfit the training data in such situations, i.e. the method adjusts to very specific features of the training data, which are not characteristic for the considered property. This problem can be alleviated by diminishing the influence of unimportant, redundant or even misleading features. A better strategy is to eliminate such features completely. Ideally, a molecular property can be described by a small number of features that are chemically interpretable. The purpose of the present contribution is to provide a predictive modeling approach, which combines feature generation, feature selection, model building and control of overtraining into a single application called DemQSAR. DemQSAR is used to predict human volume of distribution (VD(ss)) and human clearance (CL). To control overtraining, quadratic and linear regularization terms were employed. A recursive feature selection approach is used to reduce the number of descriptors. The prediction performance is as good as the best predictions reported in the recent literature. The example presented here demonstrates that DemQSAR can generate a model that uses very few features while maintaining high predictive power. A standalone DemQSAR Java application for model building of any user defined property as well as a web interface for the prediction of human VD(ss) and CL is available on the webpage of DemPRED: http://agknapp.chemie.fu-berlin.de/dempred/ .
Weidhaas, Joanne B.; Li, Shu-Xia; Winter, Kathryn; Ryu, Janice; Jhingran, Anuja; Miller, Bridgette; Dicker, Adam P.; Gaffney, David
2009-01-01
Purpose To evaluate the potential of gene expression signatures to predict response to treatment in locally advanced cervical cancer treated with definitive chemotherapy and radiation. Experimental Design Tissue biopsies were collected from patients participating in Radiation Therapy Oncology Group (RTOG) 0128, a phase II trial evaluating the benefit of celecoxib in addition to cisplatin chemotherapy and radiation for locally advanced cervical cancer. Gene expression profiling was done and signatures of pretreatment, mid-treatment (before the first implant), and “changed” gene expression patterns between pre- and mid-treatment samples were determined. The ability of the gene signatures to predict local control versus local failure was evaluated. Two-group t test was done to identify the initial gene set separating these end points. Supervised classification methods were used to enrich the gene sets. The results were further validated by leave-one-out and 2-fold cross-validation. Results Twenty-two patients had suitable material from pretreatment samples for analysis, and 13 paired pre- and mid-treatment samples were obtained. The changed gene expression signatures between the pre- and mid-treatment biopsies predicted response to treatment, separating patients with local failures from those who achieved local control with a seven-gene signature. The in-sample prediction rate, leave-one-out prediction rate, and 2-fold prediction rate are 100% for this seven-gene signature. This signature was enriched for cell cycle genes. Conclusions Changed gene expression signatures during therapy in cervical cancer can predict outcome as measured by local control. After further validation, such findings could be applied to direct additional therapy for cervical cancer patients treated with chemotherapy and radiation. PMID:19509178
Predictors of Poor Seizure Control in Children Managed at a Tertiary Care Hospital of Eastern Nepal
POUDEL, Prakash; CHITLANGIA, Mohit; POKHAREL, Rita
2016-01-01
Objective Various factors have been claimed to predict outcome of afebrile seizures in children. This study was aimed to find out the predictors of poor seizure control in children at a resource limited setting. Materials & Methods This prospective study was done from July 1st, 2009 to January 31st, 2012 at B.P. Koirala Institute of Health Sciences, Nepal. Children (1 month-20 yr of age) with afebrile seizures presenting to pediatric neurology clinic were studied. Significant predictors on bivariate analysis were further analyzed with binary logistic model to find out the true predictors. Positive predictive values (PPVs) and negative predictive values (NPVs) for the true predictors were calculated. Results Out of 256 patients (male: female ratio 3:2) with afebrile seizures followed up for median duration of 27 (IQR 12-50) months, seizure was poorly controlled in 20% patients. Three factors predicted poor seizure control. They were frequent (≥1 per month) seizures at onset (OR 12.76, 95% CI 1.44-112.73, PPV 25%, NPV 98%); remote symptomatic etiology (OR 3.56, 95% CI 1.04-12.17, PPV 36%, NPV 92%); and need of more than one anticonvulsant drug (polytherapy) (OR 12.83, 95% CI 5.50-29.9, PPV 56%, NPV 96%). The strongest predictor was need of polytherapy. When all three factors were present, PPV and NPV for prediction of poor seizure control were 70% and 90% respectively. Conclusion Frequent seizures at onset, remote symptomatic etiology of seizure and need of polytherapy were associated with poor seizure control in children with afebrile seizures. PMID:27375756
Flores-Alsina, Xavier; Rodriguez-Roda, Ignasi; Sin, Gürkan; Gernaey, Krist V
2009-01-01
The objective of this paper is to perform an uncertainty and sensitivity analysis of the predictions of the Benchmark Simulation Model (BSM) No. 1, when comparing four activated sludge control strategies. The Monte Carlo simulation technique is used to evaluate the uncertainty in the BSM1 predictions, considering the ASM1 bio-kinetic parameters and influent fractions as input uncertainties while the Effluent Quality Index (EQI) and the Operating Cost Index (OCI) are focused on as model outputs. The resulting Monte Carlo simulations are presented using descriptive statistics indicating the degree of uncertainty in the predicted EQI and OCI. Next, the Standard Regression Coefficients (SRC) method is used for sensitivity analysis to identify which input parameters influence the uncertainty in the EQI predictions the most. The results show that control strategies including an ammonium (S(NH)) controller reduce uncertainty in both overall pollution removal and effluent total Kjeldahl nitrogen. Also, control strategies with an external carbon source reduce the effluent nitrate (S(NO)) uncertainty increasing both their economical cost and variability as a trade-off. Finally, the maximum specific autotrophic growth rate (micro(A)) causes most of the variance in the effluent for all the evaluated control strategies. The influence of denitrification related parameters, e.g. eta(g) (anoxic growth rate correction factor) and eta(h) (anoxic hydrolysis rate correction factor), becomes less important when a S(NO) controller manipulating an external carbon source addition is implemented.
Characteristics of Perimenstrual Asthma and Its Relation to Asthma Severity and Control
Rao, Chitra K.; Moore, Charity G.; Bleecker, Eugene; Busse, William W.; Calhoun, William; Castro, Mario; Chung, Kian Fan; Erzurum, Serpil C.; Israel, Elliot; Curran-Everett, Douglas
2013-01-01
Background: Although perimenstrual asthma (PMA) has been associated with severe and difficult-to-control asthma, it remains poorly characterized and understood. The objectives of this study were to identify clinical, demographic, and inflammatory factors associated with PMA and to assess the association of PMA with asthma severity and control. Methods: Women with asthma recruited to the National Heart, Lung, and Blood Institute Severe Asthma Research Program who reported PMA symptoms on a screening questionnaire were analyzed in relation to basic demographics, clinical questionnaire data, immunoinflammatory markers, and physiologic parameters. Univariate comparisons between PMA and non-PMA groups were performed. A severity-adjusted model predicting PMA was created. Additional models addressed the role of PMA in asthma control. Results: Self-identified PMA was reported in 17% of the subjects (n = 92) and associated with higher BMI, lower FVC % predicted, and higher gastroesophageal reflux disease rates. Fifty-two percent of the PMA group met criteria for severe asthma compared with 30% of the non-PMA group. In multivariable analyses controlling for severity, aspirin sensitivity and lower FVC % predicted were associated with the presence of PMA. Furthermore, after controlling for severity and confounders, PMA remained associated with more asthma symptoms and urgent health-care utilization. Conclusions: PMA is common in women with severe asthma and associated with poorly controlled disease. Aspirin sensitivity and lower FVC % predicted are associated with PMA after adjusting for multiple factors, suggesting that alterations in prostaglandins may contribute to this phenotype. PMID:23632943
NASA Technical Reports Server (NTRS)
Malik, M. R.
1982-01-01
A fast computer code COSAL for transition prediction in three dimensional boundary layers using compressible stability analysis is described. The compressible stability eigenvalue problem is solved using a finite difference method, and the code is a black box in the sense that no guess of the eigenvalue is required from the user. Several optimization procedures were incorporated into COSAL to calculate integrated growth rates (N factor) for transition correlation for swept and tapered laminar flow control wings using the well known e to the Nth power method. A user's guide to the program is provided.
Control of the NASA Langley 16-Foot Transonic Tunnel with the Self-Organizing Feature Map
NASA Technical Reports Server (NTRS)
Motter, Mark A.
1998-01-01
A predictive, multiple model control strategy is developed based on an ensemble of local linear models of the nonlinear system dynamics for a transonic wind tunnel. The local linear models are estimated directly from the weights of a Self Organizing Feature Map (SOFM). Local linear modeling of nonlinear autonomous systems with the SOFM is extended to a control framework where the modeled system is nonautonomous, driven by an exogenous input. This extension to a control framework is based on the consideration of a finite number of subregions in the control space. Multiple self organizing feature maps collectively model the global response of the wind tunnel to a finite set of representative prototype controls. These prototype controls partition the control space and incorporate experimental knowledge gained from decades of operation. Each SOFM models the combination of the tunnel with one of the representative controls, over the entire range of operation. The SOFM based linear models are used to predict the tunnel response to a larger family of control sequences which are clustered on the representative prototypes. The control sequence which corresponds to the prediction that best satisfies the requirements on the system output is applied as the external driving signal. Each SOFM provides a codebook representation of the tunnel dynamics corresponding to a prototype control. Different dynamic regimes are organized into topological neighborhoods where the adjacent entries in the codebook represent the minimization of a similarity metric which is the essence of the self organizing feature of the map. Thus, the SOFM is additionally employed to identify the local dynamical regime, and consequently implements a switching scheme than selects the best available model for the applied control. Experimental results of controlling the wind tunnel, with the proposed method, during operational runs where strict research requirements on the control of the Mach number were met, are presented. Comparison to similar runs under the same conditions with the tunnel controlled by either the existing controller or an expert operator indicate the superiority of the method.
Raman spectroscopy detection of platelet for Alzheimer’s disease with predictive probabilities
NASA Astrophysics Data System (ADS)
Wang, L. J.; Du, X. Q.; Du, Z. W.; Yang, Y. Y.; Chen, P.; Tian, Q.; Shang, X. L.; Liu, Z. C.; Yao, X. Q.; Wang, J. Z.; Wang, X. H.; Cheng, Y.; Peng, J.; Shen, A. G.; Hu, J. M.
2014-08-01
Alzheimer’s disease (AD) is a common form of dementia. Early and differential diagnosis of AD has always been an arduous task for the medical expert due to the unapparent early symptoms and the currently imperfect imaging examination methods. Therefore, obtaining reliable markers with clinical diagnostic value in easily assembled samples is worthy and significant. Our previous work with laser Raman spectroscopy (LRS), in which we detected platelet samples of different ages of AD transgenic mice and non-transgenic controls, showed great effect in the diagnosis of AD. In addition, a multilayer perception network (MLP) classification method was adopted to discriminate the spectral data. However, there were disturbances, which were induced by noise from the machines and so on, in the data set; thus the MLP method had to be trained with large-scale data. In this paper, we aim to re-establish the classification models of early and advanced AD and the control group with fewer features, and apply some mechanism of noise reduction to improve the accuracy of models. An adaptive classification method based on the Gaussian process (GP) featured, with predictive probabilities, is proposed, which could tell when a data set is related to some kind of disease. Compared with MLP on the same feature set, GP showed much better performance in the experimental results. What is more, since the spectra of platelets are isolated from AD, GP has good expansibility and can be applied in diagnosis of many other similar diseases, such as Parkinson’s disease (PD). Spectral data of 4 month and 12 month AD platelets, as well as control data, were collected. With predictive probabilities, the proposed GP classification method improved the diagnostic sensitivity to nearly 100%. Samples were also collected from PD platelets as classification and comparison to the 12 month AD. The presented approach and our experiments indicate that utilization of GP with predictive probabilities in platelet LRS detection analysis turns out to be more accurate for early and differential diagnosis of AD and has a wide application prospect.
QUALITY CONTROL OF PHARMACEUTICALS.
LEVI, L; WALKER, G C; PUGSLEY, L I
1964-10-10
Quality control is an essential operation of the pharmaceutical industry. Drugs must be marketed as safe and therapeutically active formulations whose performance is consistent and predictable. New and better medicinal agents are being produced at an accelerated rate. At the same time more exacting and sophisticated analytical methods are being developed for their evaluation. Requirements governing the quality control of pharmaceuticals in accordance with the Canadian Food and Drugs Act are cited and discussed.
Periodic-Zone Model Predictive Control for Diurnal Closed-Loop Operation of an Artificial Pancreas
Gondhalekar, Ravi; Dassau, Eyal; Zisser, Howard C.; Doyle, Francis J.
2013-01-01
Background The objective of this research is an artificial pancreas (AP) that performs automatic regulation of blood glucose levels in people with type 1 diabetes mellitus. This article describes a control strategy that performs algorithmic insulin dosing for maintaining safe blood glucose levels over prolonged, overnight periods of time and furthermore was designed with outpatient, multiday deployment in mind. Of particular concern is the prevention of nocturnal hypoglycemia, because during sleep, subjects cannot monitor themselves and may not respond to alarms. An AP intended for prolonged and unsupervised outpatient deployment must strategically reduce the risk of hypoglycemia during times of sleep, without requiring user interaction. Methods A diurnal insulin delivery strategy based on predictive control methods is proposed. The so-called “periodic-zone model predictive control” (PZMPC) strategy employs periodically time-dependent blood glucose output target zones and furthermore enforces periodically time-dependent insulin input constraints to modulate its behavior based on the time of day. Results The proposed strategy was evaluated through an extensive simulation-based study and a preliminary clinical trial. Results indicate that the proposed method delivers insulin more conservatively during nighttime than during daytime while maintaining safe blood glucose levels at all times. In clinical trials, the proposed strategy delivered 77% of the amount of insulin delivered by a time-invariant control strategy; specifically, it delivered on average 1.23 U below, compared with 0.31 U above, the nominal basal rate overnight while maintaining comparable, and safe, blood glucose values. Conclusions The proposed PZMPC algorithm strategically prevents nocturnal hypoglycemia and is considered a significant step toward deploying APs into outpatient environments for extended periods of time in full closed-loop operation. PMID:24351171
Cruz, M A; Katz, D J; Suarez, J A
2001-01-01
OBJECTIVES: This study sought to determine the usefulness of restaurant inspections in predicting food-borne outbreaks in Miami-Dade County, Fla. METHODS: Inspection reports of restaurants with outbreaks in 1995 (cases; n = 51) were compared with those of randomly selected restaurants that had no reported outbreaks (controls; n = 76). RESULTS: Cases and controls did not differ by overall inspection outcome or mean number of critical violations. Only 1 critical violation--evidence of vermin--was associated with outbreaks (odds ratio = 3.3; 95% confidence interval = 1.1, 13.1). CONCLUSIONS: Results of restaurant inspections in Miami-Dade County did not predict outbreaks. If these findings are representative of the situation in other jurisdictions, inspection practices may need to be updated. PMID:11344897
A decentralized approach to reducing the social costs of cascading failures
NASA Astrophysics Data System (ADS)
Hines, Paul
Large cascading failures in electrical power networks come with enormous social costs. These can be direct financial costs, such as the loss of refrigerated foods in grocery stores, or more indirect social costs, such as the traffic congestion that results from the failure of traffic signals. While engineers and policy makers have made numerous technical and organizational changes to reduce the frequency and impact of large cascading failures, the existing data, as described in Chapter 2 of this work, indicate that the overall frequency and impact of large electrical blackouts in the United States are not decreasing. Motivated by the cascading failure problem, this thesis describes a new method for Distributed Model Predictive Control and a power systems application. The central goal of the method, when applied to power systems, is to reduce the social costs of cascading failures by making small, targeted reductions in load and generation and changes to generator voltage set points. Unlike some existing schemes that operate from centrally located control centers, the method is operated by software agents located at substations distributed throughout the power network. The resulting multi-agent control system is a new approach to decentralized control, combining Distributed Model Predictive Control and Reciprocal Altruism. Experimental results indicate that this scheme can in fact decrease the average size, and thus social costs, of cascading failures. Over 100 randomly generated disturbances to a model of the IEEE 300 bus test network, the method resulted in nearly an order of magnitude decrease in average event size (measured in cost) relative to cascading failure simulations without remedial control actions. Additionally, the communication requirements for the method are measured, and found to be within the bandwidth capabilities of current communications technology (on the order of 100kB/second). Experiments on several resistor networks with varying structures, including a random graph, a scale-free network and a power grid indicate that the effectiveness of decentralized control schemes, like the method proposed here, is a function of the structure of the network that is to be controlled.
Automation for Air Traffic Control: The Rise of a New Discipline
NASA Technical Reports Server (NTRS)
Erzberger, Heinz; Tobias, Leonard (Technical Monitor)
1997-01-01
The current debate over the concept of Free Flight has renewed interest in automated conflict detection and resolution in the enroute airspace. An essential requirement for effective conflict detection is accurate prediction of trajectories. Trajectory prediction is, however, an inexact process which accumulates errors that grow in proportion to the length of the prediction time interval. Using a model of prediction errors for the trajectory predictor incorporated in the Center-TRACON Automation System (CTAS), a computationally fast algorithm for computing conflict probability has been derived. Furthermore, a method of conflict resolution has been formulated that minimizes the average cost of resolution, when cost is defined as the increment in airline operating costs incurred in flying the resolution maneuver. The method optimizes the trade off between early resolution at lower maneuver costs but higher prediction error on the one hand and late resolution with higher maneuver costs but lower prediction errors on the other. The method determines both the time to initiate the resolution maneuver as well as the characteristics of the resolution trajectory so as to minimize the cost of the resolution. Several computational examples relevant to the design of a conflict probe that can support user-preferred trajectories in the enroute airspace will be presented.
Least-Squares Support Vector Machine Approach to Viral Replication Origin Prediction
Cruz-Cano, Raul; Chew, David S.H.; Kwok-Pui, Choi; Ming-Ying, Leung
2010-01-01
Replication of their DNA genomes is a central step in the reproduction of many viruses. Procedures to find replication origins, which are initiation sites of the DNA replication process, are therefore of great importance for controlling the growth and spread of such viruses. Existing computational methods for viral replication origin prediction have mostly been tested within the family of herpesviruses. This paper proposes a new approach by least-squares support vector machines (LS-SVMs) and tests its performance not only on the herpes family but also on a collection of caudoviruses coming from three viral families under the order of caudovirales. The LS-SVM approach provides sensitivities and positive predictive values superior or comparable to those given by the previous methods. When suitably combined with previous methods, the LS-SVM approach further improves the prediction accuracy for the herpesvirus replication origins. Furthermore, by recursive feature elimination, the LS-SVM has also helped find the most significant features of the data sets. The results suggest that the LS-SVMs will be a highly useful addition to the set of computational tools for viral replication origin prediction and illustrate the value of optimization-based computing techniques in biomedical applications. PMID:20729987
Least-Squares Support Vector Machine Approach to Viral Replication Origin Prediction.
Cruz-Cano, Raul; Chew, David S H; Kwok-Pui, Choi; Ming-Ying, Leung
2010-06-01
Replication of their DNA genomes is a central step in the reproduction of many viruses. Procedures to find replication origins, which are initiation sites of the DNA replication process, are therefore of great importance for controlling the growth and spread of such viruses. Existing computational methods for viral replication origin prediction have mostly been tested within the family of herpesviruses. This paper proposes a new approach by least-squares support vector machines (LS-SVMs) and tests its performance not only on the herpes family but also on a collection of caudoviruses coming from three viral families under the order of caudovirales. The LS-SVM approach provides sensitivities and positive predictive values superior or comparable to those given by the previous methods. When suitably combined with previous methods, the LS-SVM approach further improves the prediction accuracy for the herpesvirus replication origins. Furthermore, by recursive feature elimination, the LS-SVM has also helped find the most significant features of the data sets. The results suggest that the LS-SVMs will be a highly useful addition to the set of computational tools for viral replication origin prediction and illustrate the value of optimization-based computing techniques in biomedical applications.
Kumar, S.; Spaulding, S.A.; Stohlgren, T.J.; Hermann, K.A.; Schmidt, T.S.; Bahls, L.L.
2009-01-01
The diatom Didymosphenia geminata is a single-celled alga found in lakes, streams, and rivers. Nuisance blooms of D geminata affect the diversity, abundance, and productivity of other aquatic organisms. Because D geminata can be transported by humans on waders and other gear, accurate spatial prediction of habitat suitability is urgently needed for early detection and rapid response, as well as for evaluation of monitoring and control programs. We compared four modeling methods to predict D geminata's habitat distribution; two methods use presence-absence data (logistic regression and classification and regression tree [CART]), and two involve presence data (maximum entropy model [Maxent] and genetic algorithm for rule-set production [GARP]). Using these methods, we evaluated spatially explicit, bioclimatic and environmental variables as predictors of diatom distribution. The Maxent model provided the most accurate predictions, followed by logistic regression, CART, and GARP. The most suitable habitats were predicted to occur in the western US, in relatively cool sites, and at high elevations with a high base-flow index. The results provide insights into the factors that affect the distribution of D geminata and a spatial basis for the prediction of nuisance blooms. ?? The Ecological Society of America.
NASA Technical Reports Server (NTRS)
Sandford, M. C.; Abel, I.; Gray, D. L.
1975-01-01
The application of active control technology to suppress flutter was demonstrated successfully in the transonic dynamics tunnel with a delta-wing model. The model was a simplified version of a proposed supersonic transport wing design. An active flutter suppression method based on an aerodynamic energy criterion was verified by using three different control laws. The first two control laws utilized both leading-edge and trailing-edge active control surfaces, whereas the third control law required only a single trailing-edge active control surface. At a Mach number of 0.9 the experimental results demonstrated increases in the flutter dynamic pressure from 12.5 percent to 30 percent with active controls. Analytical methods were developed to predict both open-loop and closed-loop stability, and the results agreed reasonably well with the experimental results.
ERIC Educational Resources Information Center
Guterman, Neil B.; Lee, Shawna J.; Taylor, Catherine A.; Rathouz, Paul J.
2009-01-01
Objective: This study set out to examine whether mothers' individual perceptions of their neighborhood social processes predict their risk for physical child abuse and neglect directly and/or indirectly via pathways involving parents' reported stress and sense of personal control in the parenting role. Methods: In-home and phone interview data…
An Examination of the Relationship between Self-Control and Cyber Victimization in Adolescents
ERIC Educational Resources Information Center
Peker, Adem
2017-01-01
Purpose: Cyber bullying is a new phenomenon which adversely affects young people. Exposure to the cyber bullying can negatively affect the mental health. The aim of this study is to examine the predictive effect of self-control on cyber victimization in adolescents. Research Methods: The study group was composed of 353 Turkish secondary school…
Method of operating an oil shale kiln
Reeves, Adam A.
1978-05-23
Continuously determining the bulk density of raw and retorted oil shale, the specific gravity of the raw oil shale and the richness of the raw oil shale provides accurate means to control process variables of the retorting of oil shale, predicting oil production, determining mining strategy, and aids in controlling shale placement in the kiln for the retorting.
Waltrick, Renata; Possamai, Dimitri Sauter; de Aguiar, Fernanda Perito; Dadam, Micheli; de Souza Filho, Valmir João; Ramos, Lucas Rocker; Laurett, Renata da Silva; Fujiwara, Kênia; Caldeira Filho, Milton; Koenig, Álvaro; Westphal, Glauco Adrieno
2015-01-01
>To evaluate the agreement between a new epidemiological surveillance method of the Center for Disease Control and Prevention and the clinical pulmonary infection score for mechanical ventilator-associated pneumonia detection. This was a prospective cohort study that evaluated patients in the intensive care units of two hospitals who were intubated for more than 48 hours between August 2013 and June 2014. Patients were evaluated daily by physical therapist using the clinical pulmonary infection score. A nurse independently applied the new surveillance method proposed by the Center for Disease Control and Prevention. The diagnostic agreement between the methods was evaluated. A clinical pulmonary infection score of ≥ 7 indicated a clinical diagnosis of mechanical ventilator-associated pneumonia, and the association of a clinical pulmonary infection score ≥ 7 with an isolated semiquantitative culture consisting of ≥ 104 colony-forming units indicated a definitive diagnosis. Of the 801 patients admitted to the intensive care units, 198 required mechanical ventilation. Of these, 168 were intubated for more than 48 hours. A total of 18 (10.7%) cases of mechanical ventilation-associated infectious conditions were identified, 14 (8.3%) of which exhibited possible or probable mechanical ventilator-associated pneumonia, which represented 35% (14/38) of mechanical ventilator-associated pneumonia cases. The Center for Disease Control and Prevention method identified cases of mechanical ventilator-associated pneumonia with a sensitivity of 0.37, specificity of 1.0, positive predictive value of 1.0, and negative predictive value of 0.84. The differences resulted in discrepancies in the mechanical ventilator-associated pneumonia incidence density (CDC, 5.2/1000 days of mechanical ventilation; clinical pulmonary infection score ≥ 7, 13.1/1000 days of mechanical ventilation). The Center for Disease Control and Prevention method failed to detect mechanical ventilator-associated pneumonia cases and may not be satisfactory as a surveillance method.
Portal dosimetry for VMAT using integrated images obtained during treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bedford, James L., E-mail: James.Bedford@icr.ac.uk; Hanson, Ian M.; Hansen, Vibeke Nordmark
2014-02-15
Purpose: Portal dosimetry provides an accurate and convenient means of verifying dose delivered to the patient. A simple method for carrying out portal dosimetry for volumetric modulated arc therapy (VMAT) is described, together with phantom measurements demonstrating the validity of the approach. Methods: Portal images were predicted by projecting dose in the isocentric plane through to the portal image plane, with exponential attenuation and convolution with a double-Gaussian scatter function. Appropriate parameters for the projection were selected by fitting the calculation model to portal images measured on an iViewGT portal imager (Elekta AB, Stockholm, Sweden) for a variety of phantommore » thicknesses and field sizes. This model was then used to predict the portal image resulting from each control point of a VMAT arc. Finally, all these control point images were summed to predict the overall integrated portal image for the whole arc. The calculated and measured integrated portal images were compared for three lung and three esophagus plans delivered to a thorax phantom, and three prostate plans delivered to a homogeneous phantom, using a gamma index for 3% and 3 mm. A 0.6 cm{sup 3} ionization chamber was used to verify the planned isocentric dose. The sensitivity of this method to errors in monitor units, field shaping, gantry angle, and phantom position was also evaluated by means of computer simulations. Results: The calculation model for portal dose prediction was able to accurately compute the portal images due to simple square fields delivered to solid water phantoms. The integrated images of VMAT treatments delivered to phantoms were also correctly predicted by the method. The proportion of the images with a gamma index of less than unity was 93.7% ± 3.0% (1SD) and the difference between isocenter dose calculated by the planning system and measured by the ionization chamber was 0.8% ± 1.0%. The method was highly sensitive to errors in monitor units and field shape, but less sensitive to errors in gantry angle or phantom position. Conclusions: This method of predicting integrated portal images provides a convenient means of verifying dose delivered using VMAT, with minimal image acquisition and data processing requirements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindsay, WD; Oncora Medical, LLC, Philadelphia, PA; Berlind, CG
Purpose: While rates of local control have been well characterized after stereotactic body radiotherapy (SBRT) for stage I non-small cell lung cancer (NSCLC), less data are available characterizing survival and normal tissue toxicities, and no validated models exist assessing these parameters after SBRT. We evaluate the reliability of various machine learning techniques when applied to radiation oncology datasets to create predictive models of mortality, tumor control, and normal tissue complications. Methods: A dataset of 204 consecutive patients with stage I non-small cell lung cancer (NSCLC) treated with stereotactic body radiotherapy (SBRT) at the University of Pennsylvania between 2009 and 2013more » was used to create predictive models of tumor control, normal tissue complications, and mortality in this IRB-approved study. Nearly 200 data fields of detailed patient- and tumor-specific information, radiotherapy dosimetric measurements, and clinical outcomes data were collected. Predictive models were created for local tumor control, 1- and 3-year overall survival, and nodal failure using 60% of the data (leaving the remainder as a test set). After applying feature selection and dimensionality reduction, nonlinear support vector classification was applied to the resulting features. Models were evaluated for accuracy and area under ROC curve on the 81-patient test set. Results: Models for common events in the dataset (such as mortality at one year) had the highest predictive power (AUC = .67, p < 0.05). For rare occurrences such as radiation pneumonitis and local failure (each occurring in less than 10% of patients), too few events were present to create reliable models. Conclusion: Although this study demonstrates the validity of predictive analytics using information extracted from patient medical records and can most reliably predict for survival after SBRT, larger sample sizes are needed to develop predictive models for normal tissue toxicities and more advanced machine learning methodologies need be consider in the future.« less
Steele, Vaughn R; Rao, Vikram; Calhoun, Vince D; Kiehl, Kent A
2017-01-15
Classification models are becoming useful tools for finding patterns in neuroimaging data sets that are not observable to the naked eye. Many of these models are applied to discriminating clinical groups such as schizophrenic patients from healthy controls or from patients with bipolar disorder. A more nuanced model might be to discriminate between levels of personality traits. Here, as a proof of concept, we take an initial step toward developing prediction models to differentiate individuals based on a personality disorder: psychopathy. We included three groups of adolescent participants: incarcerated youth with elevated psychopathic traits (i.e., callous and unemotional traits and conduct disordered traits; n=71), incarcerated youth with low psychopathic traits (n=72), and non-incarcerated youth as healthy controls (n=21). Support vector machine (SVM) learning models were developed to separate these groups using an out-of-sample cross-validation method on voxel-based morphometry (VBM) data. Regions of interest from the paralimbic system, identified in an independent forensic sample, were successful in differentiating youth groups. Models seeking to classify incarcerated individuals to have high or low psychopathic traits achieved 69.23% overall accuracy. As expected, accuracy increased in models differentiating healthy controls from individuals with high psychopathic traits (82.61%) and low psychopathic traits (80.65%). Here we have laid the foundation for using neural correlates of personality traits to identify group membership within and beyond psychopathy. This is only the first step, of many, toward prediction models using neural measures as a proxy for personality traits. As these methods are improved, prediction models with neural measures of personality traits could have far-reaching impact on diagnosis, treatment, and prediction of future behavior. Copyright © 2015 Elsevier Inc. All rights reserved.
Steele, Vaughn R.; Rao, Vikram; Calhoun, Vince D.; Kiehl, Kent A.
2015-01-01
Classification models are becoming useful tools for finding patterns in neuroimaging data sets that are not observable to the naked eye. Many of these models are applied to discriminating clinical groups such as schizophrenic patients from healthy controls or from patients with bipolar disorder. A more nuanced model might be to discriminate between levels of personality traits. Here, as a proof-of-concept, we take an initial step toward developing prediction models to differentiate individuals based on a personality disorder: psychopathy. We included three groups of adolescent participants: incarcerated youth with elevated psychopathic traits (i.e., callous and unemotional traits and conduct disordered traits; n = 71), incarcerated youth with low psychopathic traits (n =72), and non-incarcerated youth as healthy controls (n = 21). Support vector machine (SVM) learning models were developed to separate these groups using an out-of-sample cross-validation method on voxel-based morphometry (VBM) data. Regions-of-interest from the paralimbic system, identified in an independent forensic sample, were successful in differentiating youth groups. Models seeking to classify incarcerated individuals to have high or low psychopathic traits achieved 69.23% overall accuracy. As expected, accuracy increased in models differentiating healthy controls from individuals with high psychopathic traits (82.61%) and low psychopathic traits (80.65%). Here we have laid the foundation for using neural correlates of personality traits to identify group membership within and beyond psychopathy. This is only the first step, of many, toward prediction models using neural measures as a proxy for personality traits. As these methods are improved, prediction models with neural measures of personality traits could have far-reaching impact on diagnosis, treatment, and prediction of future behavior. PMID:26690808
Implementation of a polling protocol for predicting celiac disease in videocapsule analysis.
Ciaccio, Edward J; Tennyson, Christina A; Bhagat, Govind; Lewis, Suzanne K; Green, Peter H
2013-07-16
To investigate the presence of small intestinal villous atrophy in celiac disease patients from quantitative analysis of videocapsule image sequences. Nine celiac patient data with biopsy-proven villous atrophy and seven control patient data lacking villous atrophy were used for analysis. Celiacs had biopsy-proven disease with scores of Marsh II-IIIC except in the case of one hemophiliac patient. At four small intestinal levels (duodenal bulb, distal duodenum, jejunum, and ileum), video clips of length 200 frames (100 s) were analyzed. Twenty-four measurements were used for image characterization. These measurements were determined by quantitatively processing the videocapsule images via techniques for texture analysis, motility estimation, volumetric reconstruction using shape-from-shading principles, and image transformation. Each automated measurement method, or automaton, was polled as to whether or not villous atrophy was present in the small intestine, indicating celiac disease. Each automaton's vote was determined based upon an optimized parameter threshold level, with the threshold levels being determined from prior data. A prediction of villous atrophy was made if it received the majority of votes (≥ 13), while no prediction was made for tie votes (12-12). Thus each set of images was classified as being from either a celiac disease patient or from a control patient. Separated by intestinal level, the overall sensitivity of automata polling for predicting villous atrophy and hence celiac disease was 83.9%, while the specificity was 92.9%, and the overall accuracy of automata-based polling was 88.1%. The method of image transformation yielded the highest sensitivity at 93.8%, while the method of texture analysis using subbands had the highest specificity at 76.0%. Similar results of prediction were observed at all four small intestinal locations, but there were more tie votes at location 4 (ileum). Incorrect prediction which reduced sensitivity occurred for two celiac patients with Marsh type II pattern, which is characterized by crypt hyperplasia, but normal villous architecture. Pooled from all levels, there was a mean of 14.31 ± 3.28 automaton votes for celiac vs 9.67 ± 3.31 automaton votes for control when celiac patient data was analyzed (P < 0.001). Pooled from all levels, there was a mean of 9.71 ± 2.8128 automaton votes for celiac vs 14.32 ± 2.7931 automaton votes for control when control patient data was analyzed (P < 0.001). Automata-based polling may be useful to indicate presence of mucosal atrophy, indicative of celiac disease, across the entire small bowel, though this must be confirmed in a larger patient set. Since the method is quantitative and automated, it can potentially eliminate observer bias and enable the detection of subtle abnormality in patients lacking a clear diagnosis. Our paradigm was found to be more efficacious at proximal small intestinal locations, which may suggest a greater presence and severity of villous atrophy at proximal as compared with distal locations.
Deployment Simulation Methods for Ultra-Lightweight Inflatable Structures
NASA Technical Reports Server (NTRS)
Wang, John T.; Johnson, Arthur R.
2003-01-01
Two dynamic inflation simulation methods are employed for modeling the deployment of folded thin-membrane tubes. The simulations are necessary because ground tests include gravity effects and may poorly represent deployment in space. The two simulation methods are referred to as the Control Volume (CV) method and the Arbitrary Lagrangian Eulerian (ALE) method. They are available in the LS-DYNA nonlinear dynamic finite element code. Both methods are suitable for modeling the interactions between the inflation gas and the thin-membrane tube structures. The CV method only considers the pressure induced by the inflation gas in the simulation, while the ALE method models the actual flow of the inflation gas. Thus, the transient fluid properties at any location within the tube can be predicted by the ALE method. Deployment simulations of three packaged tube models; namely coiled, Z-folded, and telescopically-folded configurations, are performed. Results predicted by both methods for the telescopically-folded configuration are correlated and computational efficiency issues are discussed.
Aircraft noise prediction program user's manual
NASA Technical Reports Server (NTRS)
Gillian, R. E.
1982-01-01
The Aircraft Noise Prediction Program (ANOPP) predicts aircraft noise with the best methods available. This manual is designed to give the user an understanding of the capabilities of ANOPP and to show how to formulate problems and obtain solutions by using these capabilities. Sections within the manual document basic ANOPP concepts, ANOPP usage, ANOPP functional modules, ANOPP control statement procedure library, and ANOPP permanent data base. appendixes to the manual include information on preparing job decks for the operating systems in use, error diagnostics and recovery techniques, and a glossary of ANOPP terms.
Proceedings of the Non-Linear Aero Prediction Requirements Workshop
NASA Technical Reports Server (NTRS)
Logan, Michael J. (Editor)
1994-01-01
The purpose of the Non-Linear Aero Prediction Requirements Workshop, held at NASA Langley Research Center on 8-9 Dec. 1993, was to identify and articulate requirements for non-linear aero prediction capabilities during conceptual/preliminary design. The attendees included engineers from industry, government, and academia in a variety of aerospace disciplines, such as advanced design, aerodynamic performance analysis, aero methods development, flight controls, and experimental and theoretical aerodynamics. Presentations by industry and government organizations were followed by panel discussions. This report contains copies of the presentations and the results of the panel discussions.
An Analysis of the Optimal Control Modification Method Applied to Flutter Suppression
NASA Technical Reports Server (NTRS)
Drew, Michael; Nguyen, Nhan T.; Hashemi, Kelley E.; Ting, Eric; Chaparro, Daniel
2017-01-01
Unlike basic Model Reference Adaptive Control (MRAC)l, Optimal Control Modification (OCM) has been shown to be a promising MRAC modification with robustness and analytical properties not present in other adaptive control methods. This paper presents an analysis of the OCM method, and how the asymptotic property of OCM is useful for analyzing and tuning the controller. We begin with a Lyapunov stability proof of an OCM controller having two adaptive gain terms, then the less conservative and easily analyzed OCM asymptotic property is presented. Two numerical examples are used to show how this property can accurately predict steady state stability and quantitative robustness in the presence of time delay, and relative to linear plant perturbations, and nominal Loop Transfer Recovery (LTR) tuning. The asymptotic property of the OCM controller is then used as an aid in tuning the controller applied to a large scale aeroservoelastic longitudinal aircraft model for flutter suppression. Control with OCM adaptive augmentation is shown to improve performance over that of the nominal non-adaptive controller when significant disparities exist between the controller/observer model and the true plant model.
Noaman, Amin Y.; Jamjoom, Arwa; Al-Abdullah, Nabeela; Nasir, Mahreen; Ali, Anser G.
2017-01-01
Prediction of nosocomial infections among patients is an important part of clinical surveillance programs to enable the related personnel to take preventive actions in advance. Designing a clinical surveillance program with capability of predicting nosocomial infections is a challenging task due to several reasons, including high dimensionality of medical data, heterogenous data representation, and special knowledge required to extract patterns for prediction. In this paper, we present details of six data mining methods implemented using cross industry standard process for data mining to predict central line-associated blood stream infections. For our study, we selected datasets of healthcare-associated infections from US National Healthcare Safety Network and consumer survey data from Hospital Consumer Assessment of Healthcare Providers and Systems. Our experiments show that central line-associated blood stream infections (CLABSIs) can be successfully predicted using AdaBoost method with an accuracy up to 89.7%. This will help in implementing effective clinical surveillance programs for infection control, as well as improving the accuracy detection of CLABSIs. Also, this reduces patients' hospital stay cost and maintains patients' safety. PMID:29085836
Fourth Aircraft Interior Noise Workshop
NASA Technical Reports Server (NTRS)
Stephens, David G. (Compiler)
1992-01-01
The fourth in a series of NASA/SAE Interior Noise Workshops was held on May 19 and 20, 1992. The theme of the workshop was new technology and applications for aircraft noise with emphasis on source noise prediction; cabin noise prediction; cabin noise control, including active and passive methods; and cabin interior noise procedures. This report is a compilation of the presentations made at the meeting which addressed the above issues.
Summary of the Sixth Persh Workshop: Corrosion Policy Guiding Science and Technology
2016-01-01
mitigating corrosion. Corrosion affects military readiness, so corrosion prevention and control (CPC) have a high priority for the DOD since CPC is a...resulting in high -cost repairs. Corrosion mitigation is thus a key cost-effective approach for system maintainability and reduced life cycle costs. The... treatments . • Develop corrosion databases and corrosion models for predictive evaluation. Testing methods for realistic prediction of performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delgoshaei, Parastoo; Austin, Mark A.; Pertzborn, Amanda J.
State-of-the-art building simulation control methods incorporate physical constraints into their mathematical models, but omit implicit constraints associated with policies of operation and dependency relationships among rules representing those constraints. To overcome these shortcomings, there is a recent trend in enabling the control strategies with inference-based rule checking capabilities. One solution is to exploit semantic web technologies in building simulation control. Such approaches provide the tools for semantic modeling of domains, and the ability to deduce new information based on the models through use of Description Logic (DL). In a step toward enabling this capability, this paper presents a cross-disciplinary data-drivenmore » control strategy for building energy management simulation that integrates semantic modeling and formal rule checking mechanisms into a Model Predictive Control (MPC) formulation. The results show that MPC provides superior levels of performance when initial conditions and inputs are derived from inference-based rules.« less
Measuring and modelling the structure of chocolate
NASA Astrophysics Data System (ADS)
Le Révérend, Benjamin J. D.; Fryer, Peter J.; Smart, Ian; Bakalis, Serafim
2015-01-01
The cocoa butter present in chocolate exists as six different polymorphs. To achieve the desired crystal form (βV), traditional chocolate manufacturers use relatively slow cooling (<2°C/min). A newer generation of rapid cooling systems has been suggested requiring further understanding of fat crystallisation. To allow better control and understanding of these processes and newer rapid cooling processes, it is necessary to understand both heat transfer and crystallization kinetics. The proposed model aims to predict the temperature in the chocolate products during processing as well as the crystal structure of cocoa butter throughout the process. A set of ordinary differential equations describes the kinetics of fat crystallisation. The parameters were obtained by fitting the model to a set of DSC curves. The heat transfer equations were coupled to the kinetic model and solved using commercially available CFD software. A method using single crystal XRD was developed using a novel subtraction method to quantify the cocoa butter structure in chocolate directly and results were compared to the ones predicted from the model. The model was proven to predict phase change temperature during processing accurately (±1°C). Furthermore, it was possible to correctly predict phase changes and polymorphous transitions. The good agreement between the model and experimental data on the model geometry allows a better design and control of industrial processes.
Measurement and interpretation of skin prick test results.
van der Valk, J P M; Gerth van Wijk, R; Hoorn, E; Groenendijk, L; Groenendijk, I M; de Jong, N W
2015-01-01
There are several methods to read skin prick test results in type-I allergy testing. A commonly used method is to characterize the wheal size by its 'average diameter'. A more accurate method is to scan the area of the wheal to calculate the actual size. In both methods, skin prick test (SPT) results can be corrected for histamine-sensitivity of the skin by dividing the results of the allergic reaction by the histamine control. The objectives of this study are to compare different techniques of quantifying SPT results, to determine a cut-off value for a positive SPT for histamine equivalent prick -index (HEP) area, and to study the accuracy of predicting cashew nut reactions in double-blind placebo-controlled food challenge (DBPCFC) tests with the different SPT methods. Data of 172 children with cashew nut sensitisation were used for the analysis. All patients underwent a DBPCFC with cashew nut. Per patient, the average diameter and scanned area of the wheal size were recorded. In addition, the same data for the histamine-induced wheal were collected for each patient. The accuracy in predicting the outcome of the DBPCFC using four different SPT readings (i.e. average diameter, area, HEP-index diameter, HEP-index area) were compared in a Receiver-Operating Characteristic (ROC) plot. Characterizing the wheal size by the average diameter method is inaccurate compared to scanning method. A wheal average diameter of 3 mm is generally considered as a positive SPT cut-off value and an equivalent HEP-index area cut-off value of 0.4 was calculated. The four SPT methods yielded a comparable area under the curve (AUC) of 0.84, 0.85, 0.83 and 0.83, respectively. The four methods showed comparable accuracy in predicting cashew nut reactions in a DBPCFC. The 'scanned area method' is theoretically more accurate in determining the wheal area than the 'average diameter method' and is recommended in academic research. A HEP-index area of 0.4 is determined as cut-off value for a positive SPT. However, in clinical practice, the 'average diameter method' is also useful, because this method provides similar accuracy in predicting cashew nut allergic reactions in the DBPCFC. Trial number NTR3572.
2012-12-01
evaluate predictive performance following methods described in Malinowski et al. (1997). Acceptance criteria and control limits will be based on...69: 69–78. Malinowski , H., P. Marroum, V.R. Uppoor, et al. 1997. Draft guidance for industry extended release solid oral dosage forms. In: Young D
Multi-linear model set design based on the nonlinearity measure and H-gap metric.
Shaghaghi, Davood; Fatehi, Alireza; Khaki-Sedigh, Ali
2017-05-01
This paper proposes a model bank selection method for a large class of nonlinear systems with wide operating ranges. In particular, nonlinearity measure and H-gap metric are used to provide an effective algorithm to design a model bank for the system. Then, the proposed model bank is accompanied with model predictive controllers to design a high performance advanced process controller. The advantage of this method is the reduction of excessive switch between models and also decrement of the computational complexity in the controller bank that can lead to performance improvement of the control system. The effectiveness of the method is verified by simulations as well as experimental studies on a pH neutralization laboratory apparatus which confirms the efficiency of the proposed algorithm. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Jones, Robert T
1944-01-01
A method is presented for predicting the amplitude and frequency, under certain simplifying conditions, of the hunting oscillations of an automatically controlled aircraft with lag in the control system or in the response of the aircraft to the controls. If the steering device is actuated by a simple right-left type of signal, the series of alternating fixed-amplified signals occurring during the hunting may ordinarily be represented by a "square wave." Formulas are given expressing the response to such a variations of signal in terms of the response to a unit signal. A more complex type of hunting, which may involve cyclic repetition of signals of varying duration, has not been treated and requires further analysis. Several examples of application of the method are included and the results discussed.
Artificial neural network EMG classifier for functional hand grasp movements prediction.
Gandolla, Marta; Ferrante, Simona; Ferrigno, Giancarlo; Baldassini, Davide; Molteni, Franco; Guanziroli, Eleonora; Cotti Cottini, Michele; Seneci, Carlo; Pedrocchi, Alessandra
2017-12-01
Objective To design and implement an electromyography (EMG)-based controller for a hand robotic assistive device, which is able to classify the user's motion intention before the effective kinematic movement execution. Methods Multiple degrees-of-freedom hand grasp movements (i.e. pinching, grasp an object, grasping) were predicted by means of surface EMG signals, recorded from 10 bipolar EMG electrodes arranged in a circular configuration around the forearm 2-3 cm from the elbow. Two cascaded artificial neural networks were then exploited to detect the patient's motion intention from the EMG signal window starting from the electrical activity onset to movement onset (i.e. electromechanical delay). Results The proposed approach was tested on eight healthy control subjects (4 females; age range 25-26 years) and it demonstrated a mean ± SD testing performance of 76% ± 14% for correctly predicting healthy users' motion intention. Two post-stroke patients tested the controller and obtained 79% and 100% of correctly classified movements under testing conditions. Conclusion A task-selection controller was developed to estimate the intended movement from the EMG measured during the electromechanical delay.
The advantages of the surface Laplacian in brain-computer interface research.
McFarland, Dennis J
2015-09-01
Brain-computer interface (BCI) systems frequently use signal processing methods, such as spatial filtering, to enhance performance. The surface Laplacian can reduce spatial noise and aid in identification of sources. In BCI research, these two functions of the surface Laplacian correspond to prediction accuracy and signal orthogonality. In the present study, an off-line analysis of data from a sensorimotor rhythm-based BCI task dissociated these functions of the surface Laplacian by comparing nearest-neighbor and next-nearest neighbor Laplacian algorithms. The nearest-neighbor Laplacian produced signals that were more orthogonal while the next-nearest Laplacian produced signals that resulted in better accuracy. Both prediction and signal identification are important for BCI research. Better prediction of user's intent produces increased speed and accuracy of communication and control. Signal identification is important for ruling out the possibility of control by artifacts. Identifying the nature of the control signal is relevant both to understanding exactly what is being studied and in terms of usability for individuals with limited motor control. Copyright © 2014 Elsevier B.V. All rights reserved.
Further studies using matched filter theory and stochastic simulation for gust loads prediction
NASA Technical Reports Server (NTRS)
Scott, Robert C.; Pototzky, Anthony S.; Perry, Boyd Iii
1993-01-01
This paper describes two analysis methods -- one deterministic, the other stochastic -- for computing maximized and time-correlated gust loads for aircraft with nonlinear control systems. The first method is based on matched filter theory; the second is based on stochastic simulation. The paper summarizes the methods, discusses the selection of gust intensity for each method and presents numerical results. A strong similarity between the results from the two methods is seen to exist for both linear and nonlinear configurations.
Ryan, Patrick B; Schuemie, Martijn J
2013-10-01
There has been only limited evaluation of statistical methods for identifying safety risks of drug exposure in observational healthcare data. Simulations can support empirical evaluation, but have not been shown to adequately model the real-world phenomena that challenge observational analyses. To design and evaluate a probabilistic framework (OSIM2) for generating simulated observational healthcare data, and to use this data for evaluating the performance of methods in identifying associations between drug exposure and health outcomes of interest. Seven observational designs, including case-control, cohort, self-controlled case series, and self-controlled cohort design were applied to 399 drug-outcome scenarios in 6 simulated datasets with no effect and injected relative risks of 1.25, 1.5, 2, 4, and 10, respectively. Longitudinal data for 10 million simulated patients were generated using a model derived from an administrative claims database, with associated demographics, periods of drug exposure derived from pharmacy dispensings, and medical conditions derived from diagnoses on medical claims. Simulation validation was performed through descriptive comparison with real source data. Method performance was evaluated using Area Under ROC Curve (AUC), bias, and mean squared error. OSIM2 replicates prevalence and types of confounding observed in real claims data. When simulated data are injected with relative risks (RR) ≥ 2, all designs have good predictive accuracy (AUC > 0.90), but when RR < 2, no methods achieve 100 % predictions. Each method exhibits a different bias profile, which changes with the effect size. OSIM2 can support methodological research. Results from simulation suggest method operating characteristics are far from nominal properties.
Systematic review of computational methods for identifying miRNA-mediated RNA-RNA crosstalk.
Li, Yongsheng; Jin, Xiyun; Wang, Zishan; Li, Lili; Chen, Hong; Lin, Xiaoyu; Yi, Song; Zhang, Yunpeng; Xu, Juan
2017-10-25
Posttranscriptional crosstalk and communication between RNAs yield large regulatory competing endogenous RNA (ceRNA) networks via shared microRNAs (miRNAs), as well as miRNA synergistic networks. The ceRNA crosstalk represents a novel layer of gene regulation that controls both physiological and pathological processes such as development and complex diseases. The rapidly expanding catalogue of ceRNA regulation has provided evidence for exploitation as a general model to predict the ceRNAs in silico. In this article, we first reviewed the current progress of RNA-RNA crosstalk in human complex diseases. Then, the widely used computational methods for modeling ceRNA-ceRNA interaction networks are further summarized into five types: two types of global ceRNA regulation prediction methods and three types of context-specific prediction methods, which are based on miRNA-messenger RNA regulation alone, or by integrating heterogeneous data, respectively. To provide guidance in the computational prediction of ceRNA-ceRNA interactions, we finally performed a comparative study of different combinations of miRNA-target methods as well as five types of ceRNA identification methods by using literature-curated ceRNA regulation and gene perturbation. The results revealed that integration of different miRNA-target prediction methods and context-specific miRNA/gene expression profiles increased the performance for identifying ceRNA regulation. Moreover, different computational methods were complementary in identifying ceRNA regulation and captured different functional parts of similar pathways. We believe that the application of these computational techniques provides valuable functional insights into ceRNA regulation and is a crucial step for informing subsequent functional validation studies. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Spatial pattern formation facilitates eradication of infectious diseases
Eisinger, Dirk; Thulke, Hans-Hermann
2008-01-01
Control of animal-born diseases is a major challenge faced by applied ecologists and public health managers. To improve cost-effectiveness, the effort required to control such pathogens needs to be predicted as accurately as possible. In this context, we reviewed the anti-rabies vaccination schemes applied around the world during the past 25 years. We contrasted predictions from classic approaches based on theoretical population ecology (which governs rabies control to date) with a newly developed individual-based model. Our spatially explicit approach allowed for the reproduction of pattern formation emerging from a pathogen's spread through its host population. We suggest that a much lower management effort could eliminate the disease than that currently in operation. This is supported by empirical evidence from historic field data. Adapting control measures to the new prediction would save one-third of resources in future control programmes. The reason for the lower prediction is the spatial structure formed by spreading infections in spatially arranged host populations. It is not the result of technical differences between models. Synthesis and applications. For diseases predominantly transmitted by neighbourhood interaction, our findings suggest that the emergence of spatial structures facilitates eradication. This may have substantial implications for the cost-effectiveness of existing disease management schemes, and suggests that when planning management strategies consideration must be given to methods that reflect the spatial nature of the pathogen–host system. PMID:18784795
NASA Astrophysics Data System (ADS)
Wahid, A.; Taqwallah, H. M. H.
2018-03-01
Compressors and a steam reformer are the important units in biohydrogen from biomass plant. The compressors are useful for achieving high-pressure operating conditions while the steam reformer is the main process to produce H2 gas. To control them, in this research used a model predictive control (MPC) expected to have better controller performance than conventional controllers. Because of the explicit model empowerment in MPC, obtaining a better model is the main objective before employing MPC. The common way to get the empirical model is through the identification system, so that obtained a first-order plus dead-time (FOPDT) model. This study has already improved that way since used the system re-identification (SRI) based on closed loop mode. Based on this method the results of the compressor pressure control and temperature control of steam reformer were that MPC based on system re-identification (MPC-SRI) has better performance than MPC without system re-identification (MPCWSRI) and the proportional-integral (PI) controller, by % improvement of 73% against MPCWSRI and 75% against the PI controller.
Models for short term malaria prediction in Sri Lanka
Briët, Olivier JT; Vounatsou, Penelope; Gunawardena, Dissanayake M; Galappaththy, Gawrie NL; Amerasinghe, Priyanie H
2008-01-01
Background Malaria in Sri Lanka is unstable and fluctuates in intensity both spatially and temporally. Although the case counts are dwindling at present, given the past history of resurgence of outbreaks despite effective control measures, the control programmes have to stay prepared. The availability of long time series of monitored/diagnosed malaria cases allows for the study of forecasting models, with an aim to developing a forecasting system which could assist in the efficient allocation of resources for malaria control. Methods Exponentially weighted moving average models, autoregressive integrated moving average (ARIMA) models with seasonal components, and seasonal multiplicative autoregressive integrated moving average (SARIMA) models were compared on monthly time series of district malaria cases for their ability to predict the number of malaria cases one to four months ahead. The addition of covariates such as the number of malaria cases in neighbouring districts or rainfall were assessed for their ability to improve prediction of selected (seasonal) ARIMA models. Results The best model for forecasting and the forecasting error varied strongly among the districts. The addition of rainfall as a covariate improved prediction of selected (seasonal) ARIMA models modestly in some districts but worsened prediction in other districts. Improvement by adding rainfall was more frequent at larger forecasting horizons. Conclusion Heterogeneity of patterns of malaria in Sri Lanka requires regionally specific prediction models. Prediction error was large at a minimum of 22% (for one of the districts) for one month ahead predictions. The modest improvement made in short term prediction by adding rainfall as a covariate to these prediction models may not be sufficient to merit investing in a forecasting system for which rainfall data are routinely processed. PMID:18460204
Systems and methods for energy cost optimization in a building system
Turney, Robert D.; Wenzel, Michael J.
2016-09-06
Methods and systems to minimize energy cost in response to time-varying energy prices are presented for a variety of different pricing scenarios. A cascaded model predictive control system is disclosed comprising an inner controller and an outer controller. The inner controller controls power use using a derivative of a temperature setpoint and the outer controller controls temperature via a power setpoint or power deferral. An optimization procedure is used to minimize a cost function within a time horizon subject to temperature constraints, equality constraints, and demand charge constraints. Equality constraints are formulated using system model information and system state information whereas demand charge constraints are formulated using system state information and pricing information. A masking procedure is used to invalidate demand charge constraints for inactive pricing periods including peak, partial-peak, off-peak, critical-peak, and real-time.
A New Approach for Identifying Patients with Undiagnosed Chronic Obstructive Pulmonary Disease
Mannino, David; Leidy, Nancy Kline; Malley, Karen G.; Bacci, Elizabeth D.; Barr, R. Graham; Bowler, Russ P.; Han, MeiLan K.; Houfek, Julia F.; Make, Barry; Meldrum, Catherine A.; Rennard, Stephen; Thomashow, Byron; Walsh, John; Yawn, Barbara P.
2017-01-01
Rationale: Chronic obstructive pulmonary disease (COPD) is often unrecognized and untreated. Objectives: To develop a method for identifying undiagnosed COPD requiring treatment with currently available therapies (FEV1 <60% predicted and/or exacerbation risk). Methods: We conducted a multisite, cross-sectional, case-control study in U.S. pulmonary and primary care clinics that recruited subjects from primary care settings. Cases were patients with COPD and at least one exacerbation in the past year or FEV1 less than 60% of predicted without exacerbation in the past year. Control subjects were persons with no COPD or with mild COPD (FEV1 ≥60% predicted, no exacerbation in the past year). In random forests analyses, we identified the smallest set of questions plus peak expiratory flow (PEF) with optimal sensitivity (SN) and specificity (SP). Measurements and Main Results: PEF and spirometry were recorded in 186 cases and 160 control subjects. The mean (SD) age of the sample population was 62.7 (10.1) years; 55% were female; 86% were white; and 16% had never smoked. The mean FEV1 percent predicted for cases was 42.5% (14.2%); for control subjects, it was 82.5% (15.7%). A five-item questionnaire, CAPTURE (COPD Assessment in Primary Care to Identify Undiagnosed Respiratory Disease and Exacerbation Risk), was used to assess exposure, breathing problems, tiring easily, and acute respiratory illnesses. CAPTURE exhibited an SN of 95.7% and an SP of 44.4% for differentiating cases from all control subjects, and an SN of 95.7% and an SP of 67.8% for differentiating cases from no-COPD control subjects. The PEF (males, <350 L/min; females, <250 L/min) SN and SP were 88.0% and 77.5%, respectively, for differentiating cases from all control subjects, and they were 88.0% and 90.8%, respectively, for distinguishing cases from no-COPD control subjects. The CAPTURE plus PEF exhibited improved SN and SP for all cases versus all control subjects (89.7% and 78.1%, respectively) and for all cases versus no-COPD control subjects (89.7% and 93.1%, respectively). Conclusions: CAPTURE with PEF can identify patients with COPD who would benefit from currently available therapy and require further diagnostic evaluation. Clinical trial registered with clinicaltrials.gov (NCT01880177). PMID:27783539
Quantifying prognosis with risk predictions.
Pace, Nathan L; Eberhart, Leopold H J; Kranke, Peter R
2012-01-01
Prognosis is a forecast, based on present observations in a patient, of their probable outcome from disease, surgery and so on. Research methods for the development of risk probabilities may not be familiar to some anaesthesiologists. We briefly describe methods for identifying risk factors and risk scores. A probability prediction rule assigns a risk probability to a patient for the occurrence of a specific event. Probability reflects the continuum between absolute certainty (Pi = 1) and certified impossibility (Pi = 0). Biomarkers and clinical covariates that modify risk are known as risk factors. The Pi as modified by risk factors can be estimated by identifying the risk factors and their weighting; these are usually obtained by stepwise logistic regression. The accuracy of probabilistic predictors can be separated into the concepts of 'overall performance', 'discrimination' and 'calibration'. Overall performance is the mathematical distance between predictions and outcomes. Discrimination is the ability of the predictor to rank order observations with different outcomes. Calibration is the correctness of prediction probabilities on an absolute scale. Statistical methods include the Brier score, coefficient of determination (Nagelkerke R2), C-statistic and regression calibration. External validation is the comparison of the actual outcomes to the predicted outcomes in a new and independent patient sample. External validation uses the statistical methods of overall performance, discrimination and calibration and is uniformly recommended before acceptance of the prediction model. Evidence from randomised controlled clinical trials should be obtained to show the effectiveness of risk scores for altering patient management and patient outcomes.
Poly-Omic Prediction of Complex Traits: OmicKriging
Wheeler, Heather E.; Aquino-Michaels, Keston; Gamazon, Eric R.; Trubetskoy, Vassily V.; Dolan, M. Eileen; Huang, R. Stephanie; Cox, Nancy J.; Im, Hae Kyung
2014-01-01
High-confidence prediction of complex traits such as disease risk or drug response is an ultimate goal of personalized medicine. Although genome-wide association studies have discovered thousands of well-replicated polymorphisms associated with a broad spectrum of complex traits, the combined predictive power of these associations for any given trait is generally too low to be of clinical relevance. We propose a novel systems approach to complex trait prediction, which leverages and integrates similarity in genetic, transcriptomic, or other omics-level data. We translate the omic similarity into phenotypic similarity using a method called Kriging, commonly used in geostatistics and machine learning. Our method called OmicKriging emphasizes the use of a wide variety of systems-level data, such as those increasingly made available by comprehensive surveys of the genome, transcriptome, and epigenome, for complex trait prediction. Furthermore, our OmicKriging framework allows easy integration of prior information on the function of subsets of omics-level data from heterogeneous sources without the sometimes heavy computational burden of Bayesian approaches. Using seven disease datasets from the Wellcome Trust Case Control Consortium (WTCCC), we show that OmicKriging allows simple integration of sparse and highly polygenic components yielding comparable performance at a fraction of the computing time of a recently published Bayesian sparse linear mixed model method. Using a cellular growth phenotype, we show that integrating mRNA and microRNA expression data substantially increases performance over either dataset alone. Using clinical statin response, we show improved prediction over existing methods. PMID:24799323
Control of embankment settlement field verification on PCPT prediction methods.
DOT National Transportation Integrated Search
2011-07-01
Piezocone penetration tests (PCPT) have been widely used by geotechnical engineers for subsurface investigation and evaluation of different soil properties such as strength and deformation characteristics of the soil. This report focuses on the verif...
Control of embankment settlement field verification on PCPT prediction methods.
DOT National Transportation Integrated Search
2011-07-01
Piezocone penetration tests (PCPT) have been widely used by geotechnical engineers for subsurface : investigation and evaluation of different soil properties such as strength and deformation characteristics of the : soil. This report focuses on the v...
Zhang, Haihong; Guan, Cuntai; Ang, Kai Keng; Wang, Chuanchu
2012-01-01
Detecting motor imagery activities versus non-control in brain signals is the basis of self-paced brain-computer interfaces (BCIs), but also poses a considerable challenge to signal processing due to the complex and non-stationary characteristics of motor imagery as well as non-control. This paper presents a self-paced BCI based on a robust learning mechanism that extracts and selects spatio-spectral features for differentiating multiple EEG classes. It also employs a non-linear regression and post-processing technique for predicting the time-series of class labels from the spatio-spectral features. The method was validated in the BCI Competition IV on Dataset I where it produced the lowest prediction error of class labels continuously. This report also presents and discusses analysis of the method using the competition data set. PMID:22347153
NASA Technical Reports Server (NTRS)
Tibbetts, J. G.
1979-01-01
Methods for predicting noise at any point on an aircraft while the aircraft is in a cruise flight regime are presented. Developed for use in laminar flow control (LFC) noise effects analyses, they can be used in any case where aircraft generated noise needs to be evaluated at a location on an aircraft while under high altitude, high speed conditions. For each noise source applicable to the LFC problem, a noise computational procedure is given in algorithm format, suitable for computerization. Three categories of noise sources are covered: (1) propulsion system, (2) airframe, and (3) LFC suction system. In addition, procedures are given for noise modifications due to source soundproofing and the shielding effects of the aircraft structure wherever needed. Sample cases, for each of the individual noise source procedures, are provided to familiarize the user with typical input and computed data.
M-MRAC Backstepping for Systems with Unknown Virtual Control Coefficients
NASA Technical Reports Server (NTRS)
Stepanyan, Vahram; Krishnakumar, Kalmanje
2015-01-01
The paper presents an over-parametrization free certainty equivalence state feedback backstepping adaptive control design method for systems of any relative degree with unmatched uncertainties and unknown virtual control coefficients. It uses a fast prediction model to estimate the unknown parameters, which is independent of the control design. It is shown that the system's input and output tracking errors can be systematically decreased by the proper choice of the design parameters. The benefits of the approach are demonstrated in numerical simulations.
Application of Output Predictive Algorithmic Control to a Terrain Following Aircraft System.
1982-03-01
non-linear regime the results from an optimal control solution may be questionable. 15 -**—• - •*- "•—"".’" CHAPTER 3 Output Prpdirl- ivf ...strongly influenced by two other factors as well - the sample time T and the least-squares cost function Q. unlike the deadbeat control law of Ref...design of aircraft control systems since these methods offer tremendous insight into the dynamic behavior of the system at relatively low cost . However
Taxi Time Prediction at Charlotte Airport Using Fast-Time Simulation and Machine Learning Techniques
NASA Technical Reports Server (NTRS)
Lee, Hanbong
2016-01-01
Accurate taxi time prediction is required for enabling efficient runway scheduling that can increase runway throughput and reduce taxi times and fuel consumptions on the airport surface. Currently NASA and American Airlines are jointly developing a decision-support tool called Spot and Runway Departure Advisor (SARDA) that assists airport ramp controllers to make gate pushback decisions and improve the overall efficiency of airport surface traffic. In this presentation, we propose to use Linear Optimized Sequencing (LINOS), a discrete-event fast-time simulation tool, to predict taxi times and provide the estimates to the runway scheduler in real-time airport operations. To assess its prediction accuracy, we also introduce a data-driven analytical method using machine learning techniques. These two taxi time prediction methods are evaluated with actual taxi time data obtained from the SARDA human-in-the-loop (HITL) simulation for Charlotte Douglas International Airport (CLT) using various performance measurement metrics. Based on the taxi time prediction results, we also discuss how the prediction accuracy can be affected by the operational complexity at this airport and how we can improve the fast time simulation model before implementing it with an airport scheduling algorithm in a real-time environment.
GVE-Based Dynamics and Control for Formation Flying Spacecraft
NASA Technical Reports Server (NTRS)
Breger, Louis; How, Jonathan P.
2004-01-01
Formation flying is an enabling technology for many future space missions. This paper presents extensions to the equations of relative motion expressed in Keplerian orbital elements, including new initialization techniques for general formation configurations. A new linear time-varying form of the equations of relative motion is developed from Gauss Variational Equations and used in a model predictive controller. The linearizing assumptions for these equations are shown to be consistent with typical formation flying scenarios. Several linear, convex initialization techniques are presented, as well as a general, decentralized method for coordinating a tetrahedral formation using differential orbital elements. Control methods are validated using a commercial numerical propagator.
Computational Methods for Stability and Control (COMSAC): The Time Has Come
NASA Technical Reports Server (NTRS)
Hall, Robert M.; Biedron, Robert T.; Ball, Douglas N.; Bogue, David R.; Chung, James; Green, Bradford E.; Grismer, Matthew J.; Brooks, Gregory P.; Chambers, Joseph R.
2005-01-01
Powerful computational fluid dynamics (CFD) tools have emerged that appear to offer significant benefits as an adjunct to the experimental methods used by the stability and control community to predict aerodynamic parameters. The decreasing costs for and increasing availability of computing hours are making these applications increasingly viable as time goes on and the cost of computing continues to drop. This paper summarizes the efforts of four organizations to utilize high-end computational fluid dynamics (CFD) tools to address the challenges of the stability and control arena. General motivation and the backdrop for these efforts will be summarized as well as examples of current applications.
Computerized atmospheric trace contaminant control simulation for manned spacecraft
NASA Technical Reports Server (NTRS)
Perry, J. L.
1993-01-01
Buildup of atmospheric trace contaminants in enclosed volumes such as a spacecraft may lead to potentially serious health problems for the crew members. For this reason, active control methods must be implemented to minimize the concentration of atmospheric contaminants to levels that are considered safe for prolonged, continuous exposure. Designing hardware to accomplish this has traditionally required extensive testing to characterize and select appropriate control technologies. Data collected since the Apollo project can now be used in a computerized performance simulation to predict the performance and life of contamination control hardware to allow for initial technology screening, performance prediction, and operations and contingency studies to determine the most suitable hardware approach before specific design and testing activities begin. The program, written in FORTRAN 77, provides contaminant removal rate, total mass removed, and per pass efficiency for each control device for discrete time intervals. In addition, projected cabin concentration is provided. Input and output data are manipulated using commercial spreadsheet and data graphing software. These results can then be used in analyzing hardware design parameters such as sizing and flow rate, overall process performance and program economics. Test performance may also be predicted to aid test design.
Prediction-based association control scheme in dense femtocell networks.
Sung, Nak Woon; Pham, Ngoc-Thai; Huynh, Thong; Hwang, Won-Joo; You, Ilsun; Choo, Kim-Kwang Raymond
2017-01-01
The deployment of large number of femtocell base stations allows us to extend the coverage and efficiently utilize resources in a low cost manner. However, the small cell size of femtocell networks can result in frequent handovers to the mobile user, and consequently throughput degradation. Thus, in this paper, we propose predictive association control schemes to improve the system's effective throughput. Our design focuses on reducing handover frequency without impacting on throughput. The proposed schemes determine handover decisions that contribute most to the network throughput and are proper for distributed implementations. The simulation results show significant gains compared with existing methods in terms of handover frequency and network throughput perspective.
Verification of an analytic modeler for capillary pump loop thermal control systems
NASA Technical Reports Server (NTRS)
Schweickart, R. B.; Neiswanger, L.; Ku, J.
1987-01-01
A number of computer programs have been written to model two-phase heat transfer systems for space use. These programs support the design of thermal control systems and provide a method of predicting their performance in the wide range of thermal environments of space. Predicting the performance of one such system known as the capillary pump loop (CPL) is the intent of the CPL Modeler. By modeling two developed CPL systems and comparing the results with actual test data, the CPL Modeler has proven useful in simulating CPL operation. Results of the modeling effort are discussed, together with plans for refinements to the modeler.
ERIC Educational Resources Information Center
Saavedra, Pedro; Kuchak, JoAnn
An error-prone model (EPM) to predict financial aid applicants who are likely to misreport on Basic Educational Opportunity Grant (BEOG) applications was developed, based on interviews conducted with a quality control sample of 1,791 students during 1978-1979. The model was designed to identify corrective methods appropriate for different types of…
Quality Control of Pharmaceuticals
Levi, Leo; Walker, George C.; Pugsley, L. I.
1964-01-01
Quality control is an essential operation of the pharmaceutical industry. Drugs must be marketed as safe and therapeutically active formulations whose performance is consistent and predictable. New and better medicinal agents are being produced at an accelerated rate. At the same time more exacting and sophisticated analytical methods are being developed for their evaluation. Requirements governing the quality control of pharmaceuticals in accordance with the Canadian Food and Drugs Act are cited and discussed. PMID:14199105
A Novel Topology Link-Controlling Approach for Active Defense of a Node in a Network.
Li, Jun; Hu, HanPing; Ke, Qiao; Xiong, Naixue
2017-03-09
With the rapid development of virtual machine technology and cloud computing, distributed denial of service (DDoS) attacks, or some peak traffic, poses a great threat to the security of the network. In this paper, a novel topology link control technique and mitigation attacks in real-time environments is proposed. Firstly, a non-invasive method of deploying virtual sensors in the nodes is built, which uses the resource manager of each monitored node as a sensor. Secondly, a general topology-controlling approach of resisting the tolerant invasion is proposed. In the proposed approach, a prediction model is constructed by using copula functions for predicting the peak of a resource through another resource. The result of prediction determines whether or not to initiate the active defense. Finally, a minority game with incomplete strategy is employed to suppress attack flows and improve the permeability of the normal flows. The simulation results show that the proposed approach is very effective in protecting nodes.
A Novel Topology Link-Controlling Approach for Active Defense of Nodes in Networks
Li, Jun; Hu, HanPing; Ke, Qiao; Xiong, Naixue
2017-01-01
With the rapid development of virtual machine technology and cloud computing, distributed denial of service (DDoS) attacks, or some peak traffic, poses a great threat to the security of the network. In this paper, a novel topology link control technique and mitigation attacks in real-time environments is proposed. Firstly, a non-invasive method of deploying virtual sensors in the nodes is built, which uses the resource manager of each monitored node as a sensor. Secondly, a general topology-controlling approach of resisting the tolerant invasion is proposed. In the proposed approach, a prediction model is constructed by using copula functions for predicting the peak of a resource through another resource. The result of prediction determines whether or not to initiate the active defense. Finally, a minority game with incomplete strategy is employed to suppress attack flows and improve the permeability of the normal flows. The simulation results show that the proposed approach is very effective in protecting nodes. PMID:28282962
Towards Assessing the Human Trajectory Planning Horizon
Nitsch, Verena; Meinzer, Dominik; Wollherr, Dirk
2016-01-01
Mobile robots are envisioned to cooperate closely with humans and to integrate seamlessly into a shared environment. For locomotion, these environments resemble traversable areas which are shared between multiple agents like humans and robots. The seamless integration of mobile robots into these environments requires accurate predictions of human locomotion. This work considers optimal control and model predictive control approaches for accurate trajectory prediction and proposes to integrate aspects of human behavior to improve their performance. Recently developed models are not able to reproduce accurately trajectories that result from sudden avoidance maneuvers. Particularly, the human locomotion behavior when handling disturbances from other agents poses a problem. The goal of this work is to investigate whether humans alter their trajectory planning horizon, in order to resolve abruptly emerging collision situations. By modeling humans as model predictive controllers, the influence of the planning horizon is investigated in simulations. Based on these results, an experiment is designed to identify, whether humans initiate a change in their locomotion planning behavior while moving in a complex environment. The results support the hypothesis, that humans employ a shorter planning horizon to avoid collisions that are triggered by unexpected disturbances. Observations presented in this work are expected to further improve the generalizability and accuracy of prediction methods based on dynamic models. PMID:27936015
Towards Assessing the Human Trajectory Planning Horizon.
Carton, Daniel; Nitsch, Verena; Meinzer, Dominik; Wollherr, Dirk
2016-01-01
Mobile robots are envisioned to cooperate closely with humans and to integrate seamlessly into a shared environment. For locomotion, these environments resemble traversable areas which are shared between multiple agents like humans and robots. The seamless integration of mobile robots into these environments requires accurate predictions of human locomotion. This work considers optimal control and model predictive control approaches for accurate trajectory prediction and proposes to integrate aspects of human behavior to improve their performance. Recently developed models are not able to reproduce accurately trajectories that result from sudden avoidance maneuvers. Particularly, the human locomotion behavior when handling disturbances from other agents poses a problem. The goal of this work is to investigate whether humans alter their trajectory planning horizon, in order to resolve abruptly emerging collision situations. By modeling humans as model predictive controllers, the influence of the planning horizon is investigated in simulations. Based on these results, an experiment is designed to identify, whether humans initiate a change in their locomotion planning behavior while moving in a complex environment. The results support the hypothesis, that humans employ a shorter planning horizon to avoid collisions that are triggered by unexpected disturbances. Observations presented in this work are expected to further improve the generalizability and accuracy of prediction methods based on dynamic models.
Towards Bridging the Gaps in Holistic Transition Prediction via Numerical Simulations
NASA Technical Reports Server (NTRS)
Choudhari, Meelan M.; Li, Fei; Duan, Lian; Chang, Chau-Lyan; Carpenter, Mark H.; Streett, Craig L.; Malik, Mujeeb R.
2013-01-01
The economic and environmental benefits of laminar flow technology via reduced fuel burn of subsonic and supersonic aircraft cannot be realized without minimizing the uncertainty in drag prediction in general and transition prediction in particular. Transition research under NASA's Aeronautical Sciences Project seeks to develop a validated set of variable fidelity prediction tools with known strengths and limitations, so as to enable "sufficiently" accurate transition prediction and practical transition control for future vehicle concepts. This paper provides a summary of selected research activities targeting the current gaps in high-fidelity transition prediction, specifically those related to the receptivity and laminar breakdown phases of crossflow induced transition in a subsonic swept-wing boundary layer. The results of direct numerical simulations are used to obtain an enhanced understanding of the laminar breakdown region as well as to validate reduced order prediction methods.
Efficient Strategies for Predictive Cell-Level Control of Lithium-Ion Batteries
NASA Astrophysics Data System (ADS)
Xavier, Marcelo A.
This dissertation introduces a set of state-space based model predictive control (MPC) algorithms tailored to a non-zero feedthrough term to account for the ohmic resistance that is inherent to the battery dynamics. MPC is herein applied to the problem of regulating cell-level measures of performance for lithium-ion batteries; the control methodologies are used first to compute a fast charging profile that respects input, output, and state constraints, i.e., input current, terminal voltage, and state of charge for an equivalent circuit model of the battery cell, and extended later to a linearized physics-based reduced-order model. The novelty of this work can summarized as follows: (1) the MPC variants are employed to a physics based reduce-order model in order to make use of the available set of internal electrochemical variables and mitigate internal mechanisms of cell degradation. (e.g., lithium plating); (2) we developed a dual-mode MPC closed-loop paradigm that suits the battery control problem with the objective of reducing computational effort by solving simpler optimization routines and guaranteeing stability; and finally (3) we developed a completely new approach of the use of a predictive control strategy where MPC is employed as a "smart sensor" for power estimation. Results are presented that show the comparative performance of the MPC algorithms for both EMC and PBROM These results highlight that dual-mode MPC can deliver optimal input current profiles by using a shorter horizon while still guaranteeing stability. Additionally, rigorous mathematical developments are presented for the development of the MPC algorithms. The use of MPC as a "smart sensor" presents it self as an appealing method for power estimation, since MPC permits a fully dynamic input profile that is able to achieve performance right at the proper constraint boundaries. Therefore, MPC is expected to produce accurate power limits for each computed sample time when compared to the Bisection method [1] which assumes constant input values over the prediction interval.
Intein-modified enzymes, their production and industrial applications
Apgar, James; Lessard, Philip; Raab, Michael R.; Shen, Binzhang; Lazar, Gabor; de la Vega, Humberto
2016-10-11
A method of predicting an intein insertion site in a protein that will lead to a switching phenotype is provided. The method includes identifying a plurality of C/T/S sites within the protein; selecting from the plurality of C/T/S/ sites those that are ranked 0.75 or higher by a support vector machine, within ten angstroms of the active site of the protein, and at or near a loop-.beta.-sheet junction or a loop-.alpha.-helix junction. A method of controlling protein activity and hosts including proteins with controlled activity are also provided. Also, intein modified proteins and plants containing intein modified proteins are provided.
Which Neuropsychological Tests Predict Progression to Alzheimer’s Disease in Hispanics?
Weissberger, Gali H.; Salmon, David P.; Bondi, Mark W.; Gollan, Tamar H.
2013-01-01
Objective To investigate which neuropsychological tests predict eventual progression to Alzheimer’s disease (AD) in both Hispanic and non-Hispanic individuals. Although our approach was exploratory, we predicted that tests that underestimate cognitive ability in healthy aging Hispanics might not be sensitive to future cognitive decline in this cultural group. Method We compared first-year data of 22 older adults (11 Hispanic) who were diagnosed as cognitively normal but eventually developed AD (decliners), to 60 age- and education-matched controls (27 Hispanic) who remained cognitively normal. To identify tests that may be culturally biased in our sample, we compared Hispanic with non-Hispanic controls on all tests and asked which tests were sensitive to future decline in each cultural group. Results Compared to age-, education-, and gender-matched non-Hispanic controls, Hispanic controls obtained lower scores on tests of language, executive function, and some measures of global cognition. Consistent with our predictions, some tests identified non-Hispanic, but not Hispanic, decliners (vocabulary, semantic fluency). Contrary to our predictions, a number of tests on which Hispanics obtained lower scores than non-Hispanics nevertheless predicted eventual progression to AD in both cultural groups (e.g., Boston Naming Test [BNT], Trails A and B). Conclusions Cross-cultural variation in test sensitivity to decline may reflect greater resistance of medium difficulty items to decline and bilingual advantages that initially protect Hispanics against some aspects of cognitive decline commonly observed in non-Hispanics with preclinical AD. These findings highlight a need for further consideration of cross-cultural differences in neuropsychological test performance and development of culturally unbiased measures. PMID:23688216
ERIC Educational Resources Information Center
Smith, Sherri L.; Saunders, Gabrielle H.; Chisolm, Theresa H.; Frederick, Melissa; Bailey, Beth A.
2016-01-01
Purpose: The purpose of this study was to determine if patient characteristics or clinical variables could predict who benefits from individual auditory training. Method: A retrospective series of analyses were performed using a data set from a large, multisite, randomized controlled clinical trial that compared the treatment effects of at-home…
Landscape control points: a procedure for predicting and monitoring visual impacts
R. Burton Litton
1973-01-01
The visual impacts of alterations to the landscape can be studied by setting up Landscape Control Pointsâa network of permanently established observation sites. Such observations enable the forest manager to anticipate visual impacts of management decision, select from a choice of alternative solutions, cover an area for comprehensive viewing, and establish a method to...
Comparison of Computational Approaches for Rapid Aerodynamic Assessment of Small UAVs
NASA Technical Reports Server (NTRS)
Shafer, Theresa C.; Lynch, C. Eric; Viken, Sally A.; Favaregh, Noah; Zeune, Cale; Williams, Nathan; Dansie, Jonathan
2014-01-01
Computational Fluid Dynamic (CFD) methods were used to determine the basic aerodynamic, performance, and stability and control characteristics of the unmanned air vehicle (UAV), Kahu. Accurate and timely prediction of the aerodynamic characteristics of small UAVs is an essential part of military system acquisition and air-worthiness evaluations. The forces and moments of the UAV were predicted using a variety of analytical methods for a range of configurations and conditions. The methods included Navier Stokes (N-S) flow solvers (USM3D, Kestrel and Cobalt) that take days to set up and hours to converge on a single solution; potential flow methods (PMARC, LSAERO, and XFLR5) that take hours to set up and minutes to compute; empirical methods (Datcom) that involve table lookups and produce a solution quickly; and handbook calculations. A preliminary aerodynamic database can be developed very efficiently by using a combination of computational tools. The database can be generated with low-order and empirical methods in linear regions, then replacing or adjusting the data as predictions from higher order methods are obtained. A comparison of results from all the data sources as well as experimental data obtained from a wind-tunnel test will be shown and the methods will be evaluated on their utility during each portion of the flight envelope.
Predicting plant biomass accumulation from image-derived parameters
Chen, Dijun; Shi, Rongli; Pape, Jean-Michel; Neumann, Kerstin; Graner, Andreas; Chen, Ming; Klukas, Christian
2018-01-01
Abstract Background Image-based high-throughput phenotyping technologies have been rapidly developed in plant science recently, and they provide a great potential to gain more valuable information than traditionally destructive methods. Predicting plant biomass is regarded as a key purpose for plant breeders and ecologists. However, it is a great challenge to find a predictive biomass model across experiments. Results In the present study, we constructed 4 predictive models to examine the quantitative relationship between image-based features and plant biomass accumulation. Our methodology has been applied to 3 consecutive barley (Hordeum vulgare) experiments with control and stress treatments. The results proved that plant biomass can be accurately predicted from image-based parameters using a random forest model. The high prediction accuracy based on this model will contribute to relieving the phenotyping bottleneck in biomass measurement in breeding applications. The prediction performance is still relatively high across experiments under similar conditions. The relative contribution of individual features for predicting biomass was further quantified, revealing new insights into the phenotypic determinants of the plant biomass outcome. Furthermore, methods could also be used to determine the most important image-based features related to plant biomass accumulation, which would be promising for subsequent genetic mapping to uncover the genetic basis of biomass. Conclusions We have developed quantitative models to accurately predict plant biomass accumulation from image data. We anticipate that the analysis results will be useful to advance our views of the phenotypic determinants of plant biomass outcome, and the statistical methods can be broadly used for other plant species. PMID:29346559
Inlet Flow Control and Prediction Technologies for Embedded Propulsion Systems
NASA Technical Reports Server (NTRS)
McMillan, Michelle L.; Mackie, Scott A.; Gissen, Abe; Vukasinovic, Bojan; Lakebrink, Matthew T.; Glezer, Ari; Mani, Mori; Mace, James L.
2011-01-01
Fail-safe, hybrid, flow control (HFC) is a promising technology for meeting high-speed cruise efficiency, low-noise signature, and reduced fuel-burn goals for future, Hybrid-Wing-Body (HWB) aircraft with embedded engines. This report details the development of HFC technology that enables improved inlet performance in HWB vehicles with highly integrated inlets and embedded engines without adversely affecting vehicle performance. In addition, new test techniques for evaluating Boundary-Layer-Ingesting (BLI)-inlet flow-control technologies developed and demonstrated through this program are documented, including the ability to generate a BLI-like inlet-entrance flow in a direct-connect, wind-tunnel facility, as well as, the use of D-optimal, statistically designed experiments to optimize test efficiency and enable interpretation of results. Validated improvements in numerical analysis tools and methods accomplished through this program are also documented, including Reynolds-Averaged Navier-Stokes CFD simulations of steady-state flow physics for baseline, BLI-inlet diffuser flow, as well as, that created by flow-control devices. Finally, numerical methods were employed in a ground-breaking attempt to directly simulate dynamic distortion. The advances in inlet technologies and prediction tools will help to meet and exceed "N+2" project goals for future HWB aircraft.
Drinking and Parenting Practices as Predictors of Impaired Driving Behaviors Among U.S. Adolescents
Li, Kaigang; Simons-Morton, Bruce G; Brooks-Russell, Ashley; Ehsani, Johnathon; Hingson, Ralph
2014-01-01
Objective: The purpose of this study was to identify the extent to which 10th-grade substance use and parenting practices predicted 11th-grade teenage driving while alcohol-/other drug–impaired (DWI) and riding with alcohol-/other drug–impaired drivers (RWI). Method: The data were from Waves 1 and 2 of the NEXT Generation study, with longitudinal assessment of a nationally representative sample of 10th graders starting in 2009–2010. Multivariate logistic regression analysis was used to examine the prospective associations between proposed predictors (heavy episodic drinking, illicit drug use, parental monitoring knowledge and control) in Wave 1 and DWI/RWI. Results: Heavy episodic drinking at Wave 1 predicted Wave 2 DWI (odds ratio [OR] = 3.73, p < .001) and RWI (OR = 3.92, p < .001) after controlling for parenting practices and selected covariates. Father’s monitoring knowledge predicted lower DWI prevalence at Wave 2 when controlling for covariates and teenage substance use (OR = 0.66, p < .001). In contrast, mother’s monitoring knowledge predicted lower RWI prevalence at Wave 2 when controlling for covariates only (OR = 0.67, p < .05), but the effect was reduced to nonsignificance when controlling for teen substance use. Conclusions: Heavy episodic drinking predicted DWI and RWI. In addition, parental monitoring knowledge, particularly by fathers, was protective against DWI, independent of the effect of substance use. This suggests that the enhancement of parenting practices could potentially discourage adolescent DWI. The findings suggest that the parenting practices of fathers and mothers may have differential effects on adolescent impaired-driving behaviors. PMID:24411792
Prediction of placebo responses: a systematic review of the literature
Horing, Bjoern; Weimer, Katja; Muth, Eric R.; Enck, Paul
2014-01-01
Objective: Predicting who responds to placebo treatment—and under which circumstances—has been a question of interest and investigation for generations. However, the literature is disparate and inconclusive. This review aims to identify publications that provide high quality data on the topic of placebo response (PR) prediction. Methods: To identify studies concerned with PR prediction, independent searches were performed in an expert database (for all symptom modalities) and in PubMed (for pain only). Articles were selected when (a) they assessed putative predictors prior to placebo treatment and (b) an adequate control group was included when the associations of predictors and PRs were analyzed. Results: Twenty studies were identified, most with pain as dependent variable. Most predictors of PRs were psychological constructs related to actions, expected outcomes and the emotional valence attached to these events (goal-seeking, self-efficacy/-esteem, locus of control, optimism). Other predictors involved behavioral control (desire for control, eating restraint), personality variables (fun seeking, sensation seeking, neuroticism), or biological markers (sex, a single nucleotide polymorphism related to dopamine metabolism). Finally, suggestibility and beliefs in expectation biases, body consciousness, and baseline symptom severity were found to be predictive. Conclusions: While results are heterogeneous, some congruence of predictors can be identified. PRs mainly appear to be moderated by expectations of how the symptom might change after treatment, or expectations of how symptom repetition can be coped with. It is suggested to include the listed constructs in future research. Furthermore, a closer look at variables moderating symptom change in control groups seems warranted. PMID:25324797
Path-integral method for the source apportionment of photochemical pollutants
NASA Astrophysics Data System (ADS)
Dunker, A. M.
2015-06-01
A new, path-integral method is presented for apportioning the concentrations of pollutants predicted by a photochemical model to emissions from different sources. A novel feature of the method is that it can apportion the difference in a species concentration between two simulations. For example, the anthropogenic ozone increment, which is the difference between a simulation with all emissions present and another simulation with only the background (e.g., biogenic) emissions included, can be allocated to the anthropogenic emission sources. The method is based on an existing, exact mathematical equation. This equation is applied to relate the concentration difference between simulations to line or path integrals of first-order sensitivity coefficients. The sensitivities describe the effects of changing the emissions and are accurately calculated by the decoupled direct method. The path represents a continuous variation of emissions between the two simulations, and each path can be viewed as a separate emission-control strategy. The method does not require auxiliary assumptions, e.g., whether ozone formation is limited by the availability of volatile organic compounds (VOCs) or nitrogen oxides (NOx), and can be used for all the species predicted by the model. A simplified configuration of the Comprehensive Air Quality Model with Extensions (CAMx) is used to evaluate the accuracy of different numerical integration procedures and the dependence of the source contributions on the path. A Gauss-Legendre formula using three or four points along the path gives good accuracy for apportioning the anthropogenic increments of ozone, nitrogen dioxide, formaldehyde, and nitric acid. Source contributions to these increments were obtained for paths representing proportional control of all anthropogenic emissions together, control of NOx emissions before VOC emissions, and control of VOC emissions before NOx emissions. There are similarities in the source contributions from the three paths but also differences due to the different chemical regimes resulting from the emission-control strategies.
Path-integral method for the source apportionment of photochemical pollutants
NASA Astrophysics Data System (ADS)
Dunker, A. M.
2014-12-01
A new, path-integral method is presented for apportioning the concentrations of pollutants predicted by a photochemical model to emissions from different sources. A novel feature of the method is that it can apportion the difference in a species concentration between two simulations. For example, the anthropogenic ozone increment, which is the difference between a simulation with all emissions present and another simulation with only the background (e.g., biogenic) emissions included, can be allocated to the anthropogenic emission sources. The method is based on an existing, exact mathematical equation. This equation is applied to relate the concentration difference between simulations to line or path integrals of first-order sensitivity coefficients. The sensitivities describe the effects of changing the emissions and are accurately calculated by the decoupled direct method. The path represents a continuous variation of emissions between the two simulations, and each path can be viewed as a separate emission-control strategy. The method does not require auxiliary assumptions, e.g., whether ozone formation is limited by the availability of volatile organic compounds (VOC's) or nitrogen oxides (NOx), and can be used for all the species predicted by the model. A simplified configuration of the Comprehensive Air Quality Model with Extensions is used to evaluate the accuracy of different numerical integration procedures and the dependence of the source contributions on the path. A Gauss-Legendre formula using 3 or 4 points along the path gives good accuracy for apportioning the anthropogenic increments of ozone, nitrogen dioxide, formaldehyde, and nitric acid. Source contributions to these increments were obtained for paths representing proportional control of all anthropogenic emissions together, control of NOx emissions before VOC emissions, and control of VOC emissions before NOx emissions. There are similarities in the source contributions from the three paths but also differences due to the different chemical regimes resulting from the emission-control strategies.
NASA Astrophysics Data System (ADS)
Barlow, Steven J.
1986-09-01
The Air Force needs a better method of designing new and retrofit heating, ventilating and air conditioning (HVAC) control systems. Air Force engineers currently use manual design/predict/verify procedures taught at the Air Force Institute of Technology, School of Civil Engineering, HVAC Control Systems course. These existing manual procedures are iterative and time-consuming. The objectives of this research were to: (1) Locate and, if necessary, modify an existing computer-based method for designing and analyzing HVAC control systems that is compatible with the HVAC Control Systems manual procedures, or (2) Develop a new computer-based method of designing and analyzing HVAC control systems that is compatible with the existing manual procedures. Five existing computer packages were investigated in accordance with the first objective: MODSIM (for modular simulation), HVACSIM (for HVAC simulation), TRNSYS (for transient system simulation), BLAST (for building load and system thermodynamics) and Elite Building Energy Analysis Program. None were found to be compatible or adaptable to the existing manual procedures, and consequently, a prototype of a new computer method was developed in accordance with the second research objective.
NASA Technical Reports Server (NTRS)
Johnson, Eric N.; Davidson, John B.; Murphy, Patrick C.
1994-01-01
When using eigenspace assignment to design an aircraft flight control system, one must first develop a model of the plant. Certain questions arise when creating this model as to which dynamics of the plant need to be included in the model and which dynamics can be left out or approximated. The answers to these questions are important because a poor choice can lead to closed-loop dynamics that are unpredicted by the design model. To alleviate this problem, a method has been developed for predicting the effect of not including certain dynamics in the design model on the final closed-loop eigenspace. This development provides insight as to which characteristics of unmodeled dynamics will ultimately affect the closed-loop rigid-body dynamics. What results from this insight is a guide for eigenstructure control law designers to aid them in determining which dynamics need or do not need to be included and a new way to include these dynamics in the flight control system design model to achieve a required accuracy in the closed-loop rigid-body dynamics. The method is illustrated for a lateral-directional flight control system design using eigenspace assignment for the NASA High Alpha Research Vehicle (HARV).
Model-Based Angular Scan Error Correction of an Electrothermally-Actuated MEMS Mirror
Zhang, Hao; Xu, Dacheng; Zhang, Xiaoyang; Chen, Qiao; Xie, Huikai; Li, Suiqiong
2015-01-01
In this paper, the actuation behavior of a two-axis electrothermal MEMS (Microelectromechanical Systems) mirror typically used in miniature optical scanning probes and optical switches is investigated. The MEMS mirror consists of four thermal bimorph actuators symmetrically located at the four sides of a central mirror plate. Experiments show that an actuation characteristics difference of as much as 4.0% exists among the four actuators due to process variations, which leads to an average angular scan error of 0.03°. A mathematical model between the actuator input voltage and the mirror-plate position has been developed to predict the actuation behavior of the mirror. It is a four-input, four-output model that takes into account the thermal-mechanical coupling and the differences among the four actuators; the vertical positions of the ends of the four actuators are also monitored. Based on this model, an open-loop control method is established to achieve accurate angular scanning. This model-based open loop control has been experimentally verified and is useful for the accurate control of the mirror. With this control method, the precise actuation of the mirror solely depends on the model prediction and does not need the real-time mirror position monitoring and feedback, greatly simplifying the MEMS control system. PMID:26690432
Gesquiere, Ina; Darwich, Adam S; Van der Schueren, Bart; de Hoon, Jan; Lannoo, Matthias; Matthys, Christophe; Rostami, Amin; Foulon, Veerle; Augustijns, Patrick
2015-01-01
Aims The aim of the present study was to evaluate the disposition of metoprolol after oral administration of an immediate and controlled-release formulation before and after Roux-en-Y gastric bypass (RYGB) surgery in the same individuals and to validate a physiologically based pharmacokinetic (PBPK) model for predicting oral bioavailability following RYGB. Methods A single-dose pharmacokinetic study of metoprolol tartrate 200 mg immediate release and controlled release was performed in 14 volunteers before and 6–8 months after RYGB. The observed data were compared with predicted results from the PBPK modelling and simulation of metoprolol tartrate immediate and controlled-release formulation before and after RYGB. Results After administration of metoprolol immediate and controlled release, no statistically significant difference in the observed area under the curve (AUC0–24 h) was shown, although a tendency towards an increased oral exposure could be observed as the AUC0–24 h was 32.4% [95% confidence interval (CI) 1.36, 63.5] and 55.9% (95% CI 5.73, 106) higher following RYGB for the immediate and controlled-release formulation, respectively. This could be explained by surgery-related weight loss and a reduced presystemic biotransformation in the proximal gastrointestinal tract. The PBPK values predicted by modelling and simulation were similar to the observed data, confirming its validity. Conclusions The disposition of metoprolol from an immediate-release and a controlled-release formulation was not significantly altered after RYGB; there was a tendency to an increase, which was also predicted by PBPK modelling and simulation. PMID:25917170
Predictive control of intersegmental tarsal movements in an insect.
Costalago-Meruelo, Alicia; Simpson, David M; Veres, Sandor M; Newland, Philip L
2017-08-01
In many animals intersegmental reflexes are important for postural and movement control but are still poorly undesrtood. Mathematical methods can be used to model the responses to stimulation, and thus go beyond a simple description of responses to specific inputs. Here we analyse an intersegmental reflex of the foot (tarsus) of the locust hind leg, which raises the tarsus when the tibia is flexed and depresses it when the tibia is extended. A novel method is described to measure and quantify the intersegmental responses of the tarsus to a stimulus to the femoro-tibial chordotonal organ. An Artificial Neural Network, the Time Delay Neural Network, was applied to understand the properties and dynamics of the reflex responses. The aim of this study was twofold: first to develop an accurate method to record and analyse the movement of an appendage and second, to apply methods to model the responses using Artificial Neural Networks. The results show that Artificial Neural Networks provide accurate predictions of tarsal movement when trained with an average reflex response to Gaussian White Noise stimulation compared to linear models. Furthermore, the Artificial Neural Network model can predict the individual responses of each animal and responses to others inputs such as a sinusoid. A detailed understanding of such a reflex response could be included in the design of orthoses or functional electrical stimulation treatments to improve walking in patients with neurological disorders as well as the bio/inspired design of robots.
2011-01-01
Introduction Due to the increasing prevalence and severity of invasive candidiasis, investigators have developed clinical prediction rules to identify patients who may benefit from antifungal prophylaxis or early empiric therapy. The aims of this study were to validate and compare the Paphitou and Ostrosky-Zeichner clinical prediction rules in ICU patients in a 689-bed academic medical center. Methods We conducted a retrospective matched case-control study from May 2003 to June 2008 to evaluate the sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of each rule. Cases included adults with ICU stays of at least four days and invasive candidiasis matched to three controls by age, gender and ICU admission date. The clinical prediction rules were applied to cases and controls via retrospective chart review to evaluate the success of the rules in predicting invasive candidiasis. Paphitou's rule included diabetes, total parenteral nutrition (TPN) and dialysis with or without antibiotics. Ostrosky-Zeichner's rule included antibiotics or central venous catheter plus at least two of the following: surgery, immunosuppression, TPN, dialysis, corticosteroids and pancreatitis. Conditional logistic regression was performed to evaluate the rules. Discriminative power was evaluated by area under the receiver operating characteristic curve (AUC ROC). Results A total of 352 patients were included (88 cases and 264 controls). The incidence of invasive candidiasis among adults with an ICU stay of at least four days was 2.3%. The prediction rules performed similarly, exhibiting low PPVs (0.041 to 0.054), high NPVs (0.983 to 0.990) and AUC ROCs (0.649 to 0.705). A new prediction rule (Nebraska Medical Center rule) was developed with PPVs, NPVs and AUC ROCs of 0.047, 0.994 and 0.770, respectively. Conclusions Based on low PPVs and high NPVs, the rules are most useful for identifying patients who are not likely to develop invasive candidiasis, potentially preventing unnecessary antifungal use, optimizing patient ICU care and facilitating the design of forthcoming antifungal clinical trials. PMID:21846332
Amal, Haitham; Ding, Lu; Liu, Bin-bin; Tisch, Ulrike; Xu, Zhen-qin; Shi, Da-you; Zhao, Yan; Chen, Jie; Sun, Rui-xia; Liu, Hu; Ye, Sheng-Long; Tang, Zhao-you; Haick, Hossam
2012-01-01
Background: Hepatocellular carcinoma (HCC) is a common and aggressive form of cancer. Due to a high rate of postoperative recurrence, the prognosis for HCC is poor. Subclinical metastasis is the major cause of tumor recurrence and patient mortality. Currently, there is no reliable prognostic method of invasion. Aim: To investigate the feasibility of fingerprints of volatile organic compounds (VOCs) for the in-vitro prediction of metastasis. Methods: Headspace gases were collected from 36 cell cultures (HCC with high and low metastatic potential and normal cells) and analyzed using nanomaterial-based sensors. Predictive models were built by employing discriminant factor analysis pattern recognition, and the classification success was determined using leave-one-out cross-validation. The chemical composition of each headspace sample was studied using gas chromatography coupled with mass spectrometry (GC-MS). Results: Excellent discrimination was achieved using the nanomaterial-based sensors between (i) all HCC and normal controls; (ii) low metastatic HCC and normal controls; (iii) high metastatic HCC and normal controls; and (iv) high and low HCC. Several HCC-related VOCs that could be associated with biochemical cellular processes were identified through GC-MS analysis. Conclusion: The presented results constitute a proof-of-concept for the in-vitro prediction of the metastatic potential of HCC from VOC fingerprints using nanotechnology. Further studies on a larger number of more diverse cell cultures are needed to evaluate the robustness of the VOC patterns. These findings could benefit the development of a fast and potentially inexpensive laboratory test for subclinical HCC metastasis. PMID:22888249
Han, Xu; Chiang, ChienWei; Leonard, Charles E.; Bilker, Warren B.; Brensinger, Colleen M.; Li, Lang; Hennessy, Sean
2017-01-01
Background Drug-drug interactions with insulin secretagogues are associated with increased risk of serious hypoglycemia in patients with type 2 diabetes. We aimed to systematically screen for drugs that interact with the five most commonly used secretagogues―glipizide, glyburide, glimepiride, repaglinide, and nateglinide―to cause serious hypoglycemia. Methods We screened 400 drugs frequently co-prescribed with the secretagogues as candidate interacting precipitants. We first predicted the drug–drug interaction potential based on the pharmacokinetics of each secretagogue–precipitant pair. We then performed pharmacoepidemiologic screening for each secretagogue of interest, and for metformin as a negative control, using an administrative claims database and the self-controlled case series design. The overall rate ratios (RRs) and those for four predefined risk periods were estimated using Poisson regression. The RRs were adjusted for multiple estimation using semi-Bayes method, and then adjusted for metformin results to distinguish native effects of the precipitant from a drug–drug interaction. Results We predicted 34 pharmacokinetic drug–drug interactions with the secretagogues, nine moderate and 25 weak. There were 140 and 61 secretagogue–precipitant pairs associated with increased rates of serious hypoglycemia before and after the metformin adjustment, respectively. The results from pharmacokinetic prediction correlated poorly with those from pharmacoepidemiologic screening. Conclusions The self-controlled case series design has the potential to be widely applicable to screening for drug–drug interactions that lead to adverse outcomes identifiable in healthcare databases. Coupling pharmacokinetic prediction with pharmacoepidemiologic screening did not notably improve the ability to identify drug–drug interactions in this case. PMID:28169935
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Vartio, Eric; Shimko, Anthony; Kvaternik, Raymond G.; Eure, Kenneth W.; Scott,Robert C.
2007-01-01
Aeroservoelastic (ASE) analytical models of a SensorCraft wind-tunnel model are generated using measured data. The data was acquired during the ASE wind-tunnel test of the HiLDA (High Lift-to-Drag Active) Wing model, tested in the NASA Langley Transonic Dynamics Tunnel (TDT) in late 2004. Two time-domain system identification techniques are applied to the development of the ASE analytical models: impulse response (IR) method and the Generalized Predictive Control (GPC) method. Using measured control surface inputs (frequency sweeps) and associated sensor responses, the IR method is used to extract corresponding input/output impulse response pairs. These impulse responses are then transformed into state-space models for use in ASE analyses. Similarly, the GPC method transforms measured random control surface inputs and associated sensor responses into an AutoRegressive with eXogenous input (ARX) model. The ARX model is then used to develop the gust load alleviation (GLA) control law. For the IR method, comparison of measured with simulated responses are presented to investigate the accuracy of the ASE analytical models developed. For the GPC method, comparison of simulated open-loop and closed-loop (GLA) time histories are presented.
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Shimko, Anthony; Kvaternik, Raymond G.; Eure, Kenneth W.; Scott, Robert C.
2006-01-01
Aeroservoelastic (ASE) analytical models of a SensorCraft wind-tunnel model are generated using measured data. The data was acquired during the ASE wind-tunnel test of the HiLDA (High Lift-to-Drag Active) Wing model, tested in the NASA Langley Transonic Dynamics Tunnel (TDT) in late 2004. Two time-domain system identification techniques are applied to the development of the ASE analytical models: impulse response (IR) method and the Generalized Predictive Control (GPC) method. Using measured control surface inputs (frequency sweeps) and associated sensor responses, the IR method is used to extract corresponding input/output impulse response pairs. These impulse responses are then transformed into state-space models for use in ASE analyses. Similarly, the GPC method transforms measured random control surface inputs and associated sensor responses into an AutoRegressive with eXogenous input (ARX) model. The ARX model is then used to develop the gust load alleviation (GLA) control law. For the IR method, comparison of measured with simulated responses are presented to investigate the accuracy of the ASE analytical models developed. For the GPC method, comparison of simulated open-loop and closed-loop (GLA) time histories are presented.
Incremental improvements to the trout S9 biotransformation assay
In vitro substrate depletion methods have been used in conjunction with computational models to predict biotransformation impacts on chemical accumulation by fish. There is a consistent trend, however, toward overestimation of measured chemical residues resulting from controlled...
Control of embankment settlement field verification on PCPT prediction methods : tech summary.
DOT National Transportation Integrated Search
2011-07-01
Depending on loading and embankment height, the magnitude and progression of settlement can signifi cantly impact the safety and : serviceability of the infrastructures that are constructed on saturated fi ne-grained soils. Therefore, the constructio...
NASA Technical Reports Server (NTRS)
Padfield, G. D.; Duval, R. K.
1982-01-01
A set of results on rotorcraft system identification is described. Flight measurements collected on an experimental Puma helicopter are reviewed and some notable characteristics highlighted. Following a brief review of previous work in rotorcraft system identification, the results of state estimation and model structure estimation processes applied to the Puma data are presented. The results, which were obtained using NASA developed software, are compared with theoretical predictions of roll, yaw and pitching moment derivatives for a 6 degree of freedom model structure. Anomalies are reported. The theoretical methods used are described. A framework for reduced order modelling is outlined.
Analysis on spectra of hydroacoustic field in sonar cavity of the sandwich elastic wall structure
NASA Astrophysics Data System (ADS)
Xuetao, W.; Rui, H.; Weike, W.
2017-09-01
In this paper, the characteristics of the mechanical self - noise in sonar array cavity are studied by using the elastic flatbed - filled rectangular cavity parameterization model. Firstly, the analytic derivation of the vibration differential equation of the single layer, sandwich elastic wall plate structure and internal fluid coupling is carried out, and the modal method is used to solve it. Finally, the spectral characteristics of the acoustic field of rectangular cavity of different elastic wallboard materials are simulated and analyzed, which provides a theoretical reference for the prediction and control of sonar mechanical self-noise. In this paper, the sandwich board as control inside the dome background noise of a potential means were discussed, the dome background noise of qualitative prediction analysis and control has important theoretical significance.
NAPR: a Cloud-Based Framework for Neuroanatomical Age Prediction.
Pardoe, Heath R; Kuzniecky, Ruben
2018-01-01
The availability of cloud computing services has enabled the widespread adoption of the "software as a service" (SaaS) approach for software distribution, which utilizes network-based access to applications running on centralized servers. In this paper we apply the SaaS approach to neuroimaging-based age prediction. Our system, named "NAPR" (Neuroanatomical Age Prediction using R), provides access to predictive modeling software running on a persistent cloud-based Amazon Web Services (AWS) compute instance. The NAPR framework allows external users to estimate the age of individual subjects using cortical thickness maps derived from their own locally processed T1-weighted whole brain MRI scans. As a demonstration of the NAPR approach, we have developed two age prediction models that were trained using healthy control data from the ABIDE, CoRR, DLBS and NKI Rockland neuroimaging datasets (total N = 2367, age range 6-89 years). The provided age prediction models were trained using (i) relevance vector machines and (ii) Gaussian processes machine learning methods applied to cortical thickness surfaces obtained using Freesurfer v5.3. We believe that this transparent approach to out-of-sample evaluation and comparison of neuroimaging age prediction models will facilitate the development of improved age prediction models and allow for robust evaluation of the clinical utility of these methods.
A New Method for Control of the Efficiency of Gear Reducers
NASA Astrophysics Data System (ADS)
E Kozlov, K.; Egorov, A. V.; Belogusev, V. N.
2017-04-01
This article proposes a new method to control the energy efficiency of gear reducers. The method allows evaluating the friction losses in a drive motor, drive motor bearing assemblies, and toothing both at the stage of control of the finished product and in the course of its operation, maintenance, and repair. The proposed method, unlike currently used methods for control of the efficiency of gear reducers, allows determining the friction losses without the use of strain measurement, which requires calibration of tensometric sensors and expensive equipment. The method is based on the idea of invariability of mechanical characteristics of the induction motor at constant voltage, resistance of windings, and mains frequency, regardless of the driven inertia mass. This paper presents experimental results which verify the theoretical predictions. The proposed method can be implemented in the procedure of acceptance test at the companies that manufacture gear reducers, thereby assess their effectiveness and the level of degradation processes that significantly affect the service life of the research object. The method can be implemented both with universal and with specialized hardware and software complexes. At that, both an increment of the inertia moment and acceleration time of a gear reducer may serve as a performance criterion.
NASA Technical Reports Server (NTRS)
Swift, G.; Mungur, P.
1979-01-01
General procedures for the prediction of component noise levels incident upon airframe surfaces during cruise are developed. Contributing noise sources are those associated with the propulsion system, the airframe and the laminar flow control (LFC) system. Transformation procedures from the best prediction base of each noise source to the transonic cruise condition are established. Two approaches to LFC/acoustic criteria are developed. The first is a semi-empirical extension of the X-21 LFC/acoustic criteria to include sensitivity to the spectrum and directionality of the sound field. In the second, the more fundamental problem of how sound excites boundary layer disturbances is analyzed by deriving and solving an inhomogeneous Orr-Sommerfeld equation in which the source terms are proportional to the production and dissipation of sound induced fluctuating vorticity. Numerical solutions are obtained and compared with corresponding measurements. Recommendations are made to improve and validate both the cruise noise prediction methods and the LFC/acoustic criteria.
Prediction of muscle activation for an eye movement with finite element modeling.
Karami, Abbas; Eghtesad, Mohammad; Haghpanah, Seyyed Arash
2017-10-01
In this paper, a 3D finite element (FE) modeling is employed in order to predict extraocular muscles' activation and investigate force coordination in various motions of the eye orbit. A continuum constitutive hyperelastic model is employed for material description in dynamic modeling of the extraocular muscles (EOMs). Two significant features of this model are accurate mass modeling with FE method and stimulating EOMs for motion through muscle activation parameter. In order to validate the eye model, a forward dynamics simulation of the eye motion is carried out by variation of the muscle activation. Furthermore, to realize muscle activation prediction in various eye motions, two different tracking-based inverse controllers are proposed. The performance of these two inverse controllers is investigated according to their resulted muscle force magnitude and muscle force coordination. The simulation results are compared with the available experimental data and the well-known existing neurological laws. The comparison authenticates both the validation and the prediction results. Copyright © 2017 Elsevier Ltd. All rights reserved.
An implicit-iterative solution of the heat conduction equation with a radiation boundary condition
NASA Technical Reports Server (NTRS)
Williams, S. D.; Curry, D. M.
1977-01-01
For the problem of predicting one-dimensional heat transfer between conducting and radiating mediums by an implicit finite difference method, four different formulations were used to approximate the surface radiation boundary condition while retaining an implicit formulation for the interior temperature nodes. These formulations are an explicit boundary condition, a linearized boundary condition, an iterative boundary condition, and a semi-iterative boundary method. The results of these methods in predicting surface temperature on the space shuttle orbiter thermal protection system model under a variety of heating rates were compared. The iterative technique caused the surface temperature to be bounded at each step. While the linearized and explicit methods were generally more efficient, the iterative and semi-iterative techniques provided a realistic surface temperature response without requiring step size control techniques.
NASA Astrophysics Data System (ADS)
Singh, Navneet K.; Singh, Asheesh K.; Tripathy, Manoj
2012-05-01
For power industries electricity load forecast plays an important role for real-time control, security, optimal unit commitment, economic scheduling, maintenance, energy management, and plant structure planning
NASA Technical Reports Server (NTRS)
Mccain, W. E.
1984-01-01
The unsteady aerodynamic lifting surface theory, the Doublet Lattice method, with experimental steady and unsteady pressure measurements of a high aspect ratio supercritical wing model at a Mach number of 0.78 were compared. The steady pressure data comparisons were made for incremental changes in angle of attack and control surface deflection. The unsteady pressure data comparisons were made at set angle of attack positions with oscillating control surface deflections. Significant viscous and transonic effects in the experimental aerodynamics which cannot be predicted by the Doublet Lattice method are shown. This study should assist development of empirical correction methods that may be applied to improve Doublet Lattice calculations of lifting surface aerodynamics.
Core Engine Noise Control Program. Volume III. Prediction Methods
1974-08-01
turbofan engines , and Method (C) is based on an analytical description of viscous wake interaction between adjoining blade rows. Turbine Tone/ Jet ...levels for turbojet , turboshaft and turbofan engines . The turbojet data correlate highest and the turbofan data correlate lowest. Turbine Noise Noise...different engines were examined for combustor, jet and fan noise. Tnree turbojet , two turboshaft and two turbofan
Method for preparing salt solutions having desired properties
Ally, Moonis R.; Braunstein, Jerry
1994-01-01
The specification discloses a method for preparing salt solutions which exhibit desired thermodynamic properties. The method enables prediction of the value of the thermodynamic properties for single and multiple salt solutions over a wide range of conditions from activity data and constants which are independent of concentration and temperature. A particular application of the invention is in the control of salt solutions in a process to provide a salt solution which exhibits the desired properties.
Extension of local front reconstruction method with controlled coalescence model
NASA Astrophysics Data System (ADS)
Rajkotwala, A. H.; Mirsandi, H.; Peters, E. A. J. F.; Baltussen, M. W.; van der Geld, C. W. M.; Kuerten, J. G. M.; Kuipers, J. A. M.
2018-02-01
The physics of droplet collisions involves a wide range of length scales. This poses a challenge to accurately simulate such flows with standard fixed grid methods due to their inability to resolve all relevant scales with an affordable number of computational grid cells. A solution is to couple a fixed grid method with subgrid models that account for microscale effects. In this paper, we improved and extended the Local Front Reconstruction Method (LFRM) with a film drainage model of Zang and Law [Phys. Fluids 23, 042102 (2011)]. The new framework is first validated by (near) head-on collision of two equal tetradecane droplets using experimental film drainage times. When the experimental film drainage times are used, the LFRM method is better in predicting the droplet collisions, especially at high velocity in comparison with other fixed grid methods (i.e., the front tracking method and the coupled level set and volume of fluid method). When the film drainage model is invoked, the method shows a good qualitative match with experiments, but a quantitative correspondence of the predicted film drainage time with the experimental drainage time is not obtained indicating that further development of film drainage model is required. However, it can be safely concluded that the LFRM coupled with film drainage models is much better in predicting the collision dynamics than the traditional methods.