A method to predict circulation control noise
NASA Astrophysics Data System (ADS)
Reger, Robert W.
Underwater vehicles suffer from reduced maneuverability with conventional lifting append-\\ ages due to the low velocity of operation. Circulation control offers a method to increase maneuverability independent of vehicle speed. However, with circulation control comes additional noise sources, which are not well understood. To better understand these noise sources, a modal-based prediction method is developed, potentially offering a quantitative connection between flow structures and far-field noise. This method involves estimation of the velocity field, surface pressure field, and far-field noise, using only non-time-resolved velocity fields and time-resolved probe measurements. Proper orthogonal decomposition, linear stochastic estimation and Kalman smoothing are employed to estimate time-resolved velocity fields. Poisson's equation is used to calculate time-resolved pressure fields from velocity. Curle's analogy is then used to propagate the surface pressure forces to the far field. This method is developed on a direct numerical simulation of a two-dimensional cylinder at a low Reynolds number (150). Since each of the fields to be estimated are also known from the simulation, a means of obtaining the error from using the methodology is provided. The velocity estimation and the simulated velocity match well when the simulated additive measurement noise is low. The pressure field suffers due to a small domain size; however, the surface pressures estimates fare much better. The far-field estimation contains similar frequency content with reduced magnitudes, attributed to the exclusion of the viscous forces in Curle's analogy. In the absence of added noise, the estimation procedure performs quite nicely for this model problem. The method is tested experimentally on a 650,000 chord-Reynolds-number flow over a 2-D, 20% thick, elliptic circulation control airfoil. Slot jet momentum coefficients of 0 and 0.10 are investigated. Particle image velocimetry, unsteady
Application of linear gauss pseudospectral method in model predictive control
NASA Astrophysics Data System (ADS)
Yang, Liang; Zhou, Hao; Chen, Wanchun
2014-03-01
This paper presents a model predictive control(MPC) method aimed at solving the nonlinear optimal control problem with hard terminal constraints and quadratic performance index. The method combines the philosophies of the nonlinear approximation model predictive control, linear quadrature optimal control and Gauss Pseudospectral method. The current control is obtained by successively solving linear algebraic equations transferred from the original problem via linearization and the Gauss Pseudospectral method. It is not only of high computational efficiency since it does not need to solve nonlinear programming problem, but also of high accuracy though there are a few discrete points. Therefore, this method is suitable for on-board applications. A design of terminal impact with a specified direction is carried out to evaluate the performance of this method. Augmented PN guidance law in the three-dimensional coordinate system is applied to produce the initial guess. And various cases for target with straight-line movements are employed to demonstrate the applicability in different impact angles. Moreover, performance of the proposed method is also assessed by comparison with other guidance laws. Simulation results indicate that this method is not only of high computational efficiency and accuracy, but also applicable in the framework of guidance design.
Comparison of predictive control methods for high consumption industrial furnace.
Stojanovski, Goran; Stankovski, Mile
2013-01-01
We describe several predictive control approaches for high consumption industrial furnace control. These furnaces are major consumers in production industries, and reducing their fuel consumption and optimizing the quality of the products is one of the most important engineer tasks. In order to demonstrate the benefits from implementation of the advanced predictive control algorithms, we have compared several major criteria for furnace control. On the basis of the analysis, some important conclusions have been drawn.
Two-Step Design Method of Engine Control System Based on Generalized Predictive Control
NASA Astrophysics Data System (ADS)
Hashimoto, Seiji; Okuda, Hiroyuki; Okada, Yasushi; Adachi, Shuichi; Niwa, Shinji; Kajitani, Mitsunobu
Conservation of the environment has become critical to the automotive industry. Recently, requirements for on-board diagnostic and engine control systems have been strictly enforced. In the present paper, in order to meet the requirements for a low-emissions vehicle, a novel construction method of the air-fuel ratio (A/F) control system is proposed. The construction method of the system is divided into two steps. The first step is to design the A/F control system for the engine based on an open loop design. The second step is to design the A/F control system for the catalyst system. The design method is based on the generalized predictive control in order to satisfy the robustness to open loop control as well as model uncertainty. The effectiveness of the proposed A/F control system is verified through experiments using full-scale products.
A Novel Method to Predict Circulation Control Noise
2016-03-17
OASPL computed from 1 to 16 kHz. . . . . . . . 162 5 LIST OF FIGURES 1.1 A sample circulation control airfoil...Doppler effect included and (c),(d) Doppler effect removed. . .......... . . 82 3.32 (a) Spectral and (b) time series data comparison between Curle ’s...analogy employing the DNS full forces and DNS pressure at r = 75, () = 80°. 83 3.33 (a) Spectral and (b) time series data comparison between Curle’s
NASA Astrophysics Data System (ADS)
Jin, N.; Yang, F.; Shang, S. Y.; Tao, T.; Liu, J. S.
2016-08-01
According to the limitations of the LVRT technology of traditional photovoltaic inverter existed, this paper proposes a low voltage ride through (LVRT) control method based on model current predictive control (MCPC). This method can effectively improve the photovoltaic inverter output characteristics and response speed. The MCPC method of photovoltaic grid-connected inverter designed, the sum of the absolute value of the predictive current and the given current error is adopted as the cost function with the model predictive control method. According to the MCPC, the optimal space voltage vector is selected. Photovoltaic inverter has achieved automatically switches of priority active or reactive power control of two control modes according to the different operating states, which effectively improve the inverter capability of LVRT. The simulation and experimental results proves that the proposed method is correct and effective.
Kumar, Aditya; Shi, Ruijie; Kumar, Rajeeva; Dokucu, Mustafa
2013-04-09
Control system and method for controlling an integrated gasification combined cycle (IGCC) plant are provided. The system may include a controller coupled to a dynamic model of the plant to process a prediction of plant performance and determine a control strategy for the IGCC plant over a time horizon subject to plant constraints. The control strategy may include control functionality to meet a tracking objective and control functionality to meet an optimization objective. The control strategy may be configured to prioritize the tracking objective over the optimization objective based on a coordinate transformation, such as an orthogonal or quasi-orthogonal projection. A plurality of plant control knobs may be set in accordance with the control strategy to generate a sequence of coordinated multivariable control inputs to meet the tracking objective and the optimization objective subject to the prioritization resulting from the coordinate transformation.
Validation of engineering methods for predicting hypersonic vehicle controls forces and moments
NASA Technical Reports Server (NTRS)
Maughmer, M.; Straussfogel, D.; Long, L.; Ozoroski, L.
1991-01-01
This work examines the ability of the aerodynamic analysis methods contained in an industry standard conceptual design code, the Aerodynamic Preliminary Analysis System (APAS II), to estimate the forces and moments generated through control surface deflections from low subsonic to high hypersonic speeds. Predicted control forces and moments generated by various control effectors are compared with previously published wind-tunnel and flight-test data for three vehicles: the North American X-15, a hypersonic research airplane concept, and the Space Shuttle Orbiter. Qualitative summaries of the results are given for each force and moment coefficient and each control derivative in the various speed ranges. Results show that all predictions of longitudinal stability and control derivatives are acceptable for use at the conceptual design stage.
A web-based noise control prediction model for rooms using the method of images
NASA Astrophysics Data System (ADS)
Dance, Stephen
2002-11-01
Previous simple models could only predict sound levels in untreated rooms. Now, using the method of images, it has become possible to accurately predict the sound level in fitted industrial rooms from any computer on the Internet. Thus, a powerful tool in an acoustician's armory is available to all, while requiring only the minimal amount of input data to construct the model. This is only achievable if the scope of the model is reduced to one or two acoustic parameters. Now, two common noise control techniques have been implemented into the image source model: acoustic barriers and absorptive patches. Predictions using the model with and without noise control techniques will be demonstrated, so the advantages can be clearly seen in typical industrial rooms. The models are now available on the web, running directly inside Netscape or Internet Explorer.
A Numerical Process Control Method for Circular-Tube Hydroforming Prediction
Johnson, Kenneth I.; Nguyen, Ba Nghiep; Davies, Richard W.; Grant, Glenn J.; Khaleel, Mohammad A.
2004-03-01
This paper describes the development of a solution control method that tracks the stresses, strains and mechanical behavior of a tube during hydroforming to estimate the proper axial feed (end-feed) and internal pressure loads through time. The analysis uses the deformation theory of plasticity and Hill?s criterion to describe the plastic flow. Before yielding, the pressure and end-feed increments are estimated based on the initial tube geometry, elastic properties and yield stress. After yielding, the pressure increment is calculated based on the tube geometry at the previous solution increment and the current hoop stress increment. The end-feed increment is computed from the increment of the axial plastic strain. Limiting conditions such as column buckling (of long tubes), local axi-symmetric wrinkling of shorter tubes, and bursting due to localized wall thinning are considered. The process control method has been implemented in the Marc finite element code. Hydroforming simulations using this process control method were conducted to predict the load histories for controlled expansion of 6061-T4 aluminum tubes within a conical die shape and under free hydroforming conditions. The predicted loading paths were transferred to the hydroforming equipment to form the conical and free-formed tube shapes. The model predictions and experimental results are compared for deformed shape, strains and the extent of forming at rupture.
NASA Technical Reports Server (NTRS)
Maughmer, Mark D.; Ozoroski, L.; Ozoroski, T.; Straussfogel, D.
1990-01-01
Many types of hypersonic aircraft configurations are currently being studied for feasibility of future development. Since the control of the hypersonic configurations throughout the speed range has a major impact on acceptable designs, it must be considered in the conceptual design stage. The ability of the aerodynamic analysis methods contained in an industry standard conceptual design system, APAS II, to estimate the forces and moments generated through control surface deflections from low subsonic to high hypersonic speeds is considered. Predicted control forces and moments generated by various control effectors are compared with previously published wind tunnel and flight test data for three configurations: the North American X-15, the Space Shuttle Orbiter, and a hypersonic research airplane concept. Qualitative summaries of the results are given for each longitudinal force and moment and each control derivative in the various speed ranges. Results show that all predictions of longitudinal stability and control derivatives are acceptable for use at the conceptual design stage. Results for most lateral/directional control derivatives are acceptable for conceptual design purposes; however, predictions at supersonic Mach numbers for the change in yawing moment due to aileron deflection and the change in rolling moment due to rudder deflection are found to be unacceptable. Including shielding effects in the analysis is shown to have little effect on lift and pitching moment predictions while improving drag predictions.
A Prediction Method of TV Camera Image for Space Manual-control Rendezvous and Docking
NASA Astrophysics Data System (ADS)
Zhen, Huang; Qing, Yang; Wenrui, Wu
Space manual-control rendezvous and docking (RVD) is a key technology for accomplishing the RVD mission in manned space engineering, especially when automatic control system is out of work. The pilot on chase spacecraft manipulates the hand-stick by the image of target spacecraft captured by TV camera. From the TV image, the relative position and attitude of chase and target spacecrafts can be shown. Therefore, the size, the position, the brightness and the shadow of the target on TV camera are key to guarantee the success of manual-control RVD. A method of predicting the on-orbit TV camera image at different relative positions and light conditions during the process of RVD is discussed. Firstly, the basic principle of capturing the image of cross drone on target spacecraft by TV camera is analyzed theoretically, based which the strategy of manual-control RVD is discussed in detail. Secondly, the relationship between the displayed size or position and the real relative distance of chase and target spacecrafts is presented, the brightness and reflection by the target spacecraft at different light conditions are decribed, the shadow on cross drone caused by the chase or target spacecraft is analyzed. Thirdly, a prediction method of on-orbit TV camera images at certain orbit and light condition is provided, and the characteristics of TV camera image during the RVD is analyzed. Finally, the size, the position, the brightness and the shadow of target spacecraft on TV camera image at typical orbit is simulated. The result, by comparing the simulated images with the real images captured by the TV camera on Shenzhou manned spaceship , shows that the prediction method is reasonable
To predict sufentanil requirement for postoperative pain control using a real-time method
Zhang, Yuhao; Duan, Guangyou; Guo, Shanna; Ying, Ying; Huang, Penghao; Zhang, Mi; Li, Ningbo; Zhang, Xianwei
2016-01-01
Abstract Preoperative identification of individual sensitivity to opioid analgesics could improve the quality of postoperative analgesia. We explored the feasibility and utility of a real-time assessment of sufentanil sensitivity in predicting postoperative analgesic requirement. Our primary study included 111 patients who underwent measurements of pressure and quantitative pricking pain thresholds before and 5 minutes after sufentanil infusion. Pain intensity was assessed during the first 24-hour postsurgery, and patients who reported inadequate levels of analgesia were excluded from the study. The sufentanil requirement for patient-controlled analgesia was recorded, and a subsequent exploratory study of 20 patients facilitated the interpretation of the primary study results. In the primary study, experimental pain thresholds increased (P < 0.001) 5 minutes after sufentanil infusion, and the percent change in pricking pain threshold was positively associated with sufentanil requirement at 12 and 24 hours after surgery (β = 0.318, P = 0.001; and β = 0.335, P = 0.001). A receiver-operating characteristic curve analysis showed that patients with a change in pricking pain threshold >188% were >50% likely to require more sufentanil for postoperative pain control. In the exploratory study, experimental pain thresholds significantly decreased after the operation (P < 0.001), and we observed a positive correlation (P < 0.001) between the percent change in pricking pain threshold before and after surgery. Preoperative detection of individual sensitivity to sufentanil via the above described real-time method was effective in predicting postoperative sufentanil requirement. Thus, percent change in pricking pain threshold might be a feasible predictive marker of postoperative analgesia requirement. PMID:27336880
On identified predictive control
NASA Technical Reports Server (NTRS)
Bialasiewicz, Jan T.
1993-01-01
Self-tuning control algorithms are potential successors to manually tuned PID controllers traditionally used in process control applications. A very attractive design method for self-tuning controllers, which has been developed over recent years, is the long-range predictive control (LRPC). The success of LRPC is due to its effectiveness with plants of unknown order and dead-time which may be simultaneously nonminimum phase and unstable or have multiple lightly damped poles (as in the case of flexible structures or flexible robot arms). LRPC is a receding horizon strategy and can be, in general terms, summarized as follows. Using assumed long-range (or multi-step) cost function the optimal control law is found in terms of unknown parameters of the predictor model of the process, current input-output sequence, and future reference signal sequence. The common approach is to assume that the input-output process model is known or separately identified and then to find the parameters of the predictor model. Once these are known, the optimal control law determines control signal at the current time t which is applied at the process input and the whole procedure is repeated at the next time instant. Most of the recent research in this field is apparently centered around the LRPC formulation developed by Clarke et al., known as generalized predictive control (GPC). GPC uses ARIMAX/CARIMA model of the process in its input-output formulation. In this paper, the GPC formulation is used but the process predictor model is derived from the state space formulation of the ARIMAX model and is directly identified over the receding horizon, i.e., using current input-output sequence. The underlying technique in the design of identified predictive control (IPC) algorithm is the identification algorithm of observer/Kalman filter Markov parameters developed by Juang et al. at NASA Langley Research Center and successfully applied to identification of flexible structures.
Buceta, David; Tojo, Concha; Vukmirovic, Miomir B; Deepak, Francis Leonard; López-Quintela, M Arturo
2015-07-14
We present a theoretical model to predict the atomic structure of Au/Pt nanoparticles synthesized in microemulsions. Excellent concordance with the experimental results shows that the structure of the nanoparticles can be controlled at subnanometer resolution simply by changing the reactant concentration. The results of this study not only offer a better understanding of the complex mechanisms governing reactions in microemulsions, but open up a simple new way to synthesize bimetallic nanoparticles with ad hoc controlled nanostructures.
Steam turbine start up method based on predictive monitoring and control of thermal stresses
Matsumura, J.; Matsumoto, H.; Niyawara, S.; Urushidani, H.
1985-04-01
A turbine start up program decision and control method based on rotor thermal stresses has been developed. This method featured scheduling punctuality for the start up program, in addition to the start up optimization, and was especially suited to daily start up and shut down (DSS) units. The method was applied to a 375MW DSS unit which verified its effectiveness.
Buceta, David; Tojo, Concha; Vukmirovic, Miomir B.; Deepak, F. Leonard; Lopez-Quintela, M. Arturo
2015-06-02
In this study, we present a theoretical model to predict the atomic structure of Au/Pt nanoparticles synthesized in microemulsions. Excellent concordance with the experimental results shows that the structure of the nanoparticles can be controlled at sub-nanometer resolution simply by changing the reactants concentration. The results of this study not only offer a better understanding of the complex mechanisms governing reactions in microemulsions, but open up a simple new way to synthesize bimetallic nanoparticles with ad-hoc controlled nanostructures.
Improved nonlinear prediction method
NASA Astrophysics Data System (ADS)
Adenan, Nur Hamiza; Md Noorani, Mohd Salmi
2014-06-01
The analysis and prediction of time series data have been addressed by researchers. Many techniques have been developed to be applied in various areas, such as weather forecasting, financial markets and hydrological phenomena involving data that are contaminated by noise. Therefore, various techniques to improve the method have been introduced to analyze and predict time series data. In respect of the importance of analysis and the accuracy of the prediction result, a study was undertaken to test the effectiveness of the improved nonlinear prediction method for data that contain noise. The improved nonlinear prediction method involves the formation of composite serial data based on the successive differences of the time series. Then, the phase space reconstruction was performed on the composite data (one-dimensional) to reconstruct a number of space dimensions. Finally the local linear approximation method was employed to make a prediction based on the phase space. This improved method was tested with data series Logistics that contain 0%, 5%, 10%, 20% and 30% of noise. The results show that by using the improved method, the predictions were found to be in close agreement with the observed ones. The correlation coefficient was close to one when the improved method was applied on data with up to 10% noise. Thus, an improvement to analyze data with noise without involving any noise reduction method was introduced to predict the time series data.
Adjoint Method and Predictive Control for 1-D Flow in NASA Ames 11-Foot Transonic Wind Tunnel
NASA Technical Reports Server (NTRS)
Nguyen, Nhan; Ardema, Mark
2006-01-01
This paper describes a modeling method and a new optimal control approach to investigate a Mach number control problem for the NASA Ames 11-Foot Transonic Wind Tunnel. The flow in the wind tunnel is modeled by the 1-D unsteady Euler equations whose boundary conditions prescribe a controlling action by a compressor. The boundary control inputs to the compressor are in turn controlled by a drive motor system and an inlet guide vane system whose dynamics are modeled by ordinary differential equations. The resulting Euler equations are thus coupled to the ordinary differential equations via the boundary conditions. Optimality conditions are established by an adjoint method and are used to develop a model predictive linear-quadratic optimal control for regulating the Mach number due to a test model disturbance during a continuous pitch
NASA Astrophysics Data System (ADS)
Majdabadi-Farahani, V.; Hanif, M.; Gholaminezhad, I.; Jamali, A.; Nariman-Zadeh, N.
2014-10-01
In this paper, model predictive control (MPC) is used for optimal selection of proportional-integral-derivative (PID) controller gains. In conventional tuning methods a history of response error of the system under control in the passed time is measured and used to adjust PID parameters in order to improve the performance of the system in proceeding time. But MPC obviates this characteristic of classic PID. In fact MPC tries to tune the controller by predicting the system's behaviour some time steps ahead. In this way, PID parameters are adjusted before any real error occurs in the system's response. For this purpose, polynomial meta-models based on the evolved group method of data handling neural networks are obtained to simply simulate the time response of the dynamic system. Moreover, a non-dominated sorting genetic algorithm has been used in a multi-objective Pareto optimisation to select the parameters of the MPC which are prediction horizon, control horizon and relation of weight of Δ u and error, to minimise simultaneously two objective functions that are control effort and integral time absolute error of the system response. The results mentioned at the end obviously declare that the proposed method surpasses conventional tuning methods for PID controllers, and Pareto optimal selection of predictive parameters also improves the performance of the introduced method.
Huang, Y.; Pepe, M. S.
2010-01-01
Summary To assess the value of a continuous marker in predicting the risk of a disease, a graphical tool called the predictiveness curve has been proposed. It characterizes the marker’s predictiveness, or capacity to risk stratify the population by displaying the distribution of risk endowed by the marker. Methods for making inference about the curve and for comparing curves in a general population have been developed. However, knowledge about a marker’s performance in the general population only is not enough. Since a marker’s effect on the risk model and its distribution can both differ across subpopulations, its predictiveness may vary when applied to different subpopulations. Moreover, information about the predictiveness of a marker conditional on baseline covariates is valuable for individual decision making about having the marker measured or not. Therefore, to fully realize the usefulness of a risk prediction marker, it is important to study its performance conditional on covariates. In this article, we propose semiparametric methods for estimating covariate-specific predictiveness curves for a continuous marker. Unmatched and matched case-control study designs are accommodated. We illustrate application of the methodology by evaluating serum creatinine as a predictor of risk of renal artery stenosis. PMID:21562626
Deadbeat Predictive Controllers
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Phan, Minh
1997-01-01
Several new computational algorithms are presented to compute the deadbeat predictive control law. The first algorithm makes use of a multi-step-ahead output prediction to compute the control law without explicitly calculating the controllability matrix. The system identification must be performed first and then the predictive control law is designed. The second algorithm uses the input and output data directly to compute the feedback law. It combines the system identification and the predictive control law into one formulation. The third algorithm uses an observable-canonical form realization to design the predictive controller. The relationship between all three algorithms is established through the use of the state-space representation. All algorithms are applicable to multi-input, multi-output systems with disturbance inputs. In addition to the feedback terms, feed forward terms may also be added for disturbance inputs if they are measurable. Although the feedforward terms do not influence the stability of the closed-loop feedback law, they enhance the performance of the controlled system.
Wu, Xiao; Shen, Jiong; Li, Yiguo; Lee, Kwang Y
2014-05-01
This paper develops a novel data-driven fuzzy modeling strategy and predictive controller for boiler-turbine unit using fuzzy clustering and subspace identification (SID) methods. To deal with the nonlinear behavior of boiler-turbine unit, fuzzy clustering is used to provide an appropriate division of the operation region and develop the structure of the fuzzy model. Then by combining the input data with the corresponding fuzzy membership functions, the SID method is extended to extract the local state-space model parameters. Owing to the advantages of the both methods, the resulting fuzzy model can represent the boiler-turbine unit very closely, and a fuzzy model predictive controller is designed based on this model. As an alternative approach, a direct data-driven fuzzy predictive control is also developed following the same clustering and subspace methods, where intermediate subspace matrices developed during the identification procedure are utilized directly as the predictor. Simulation results show the advantages and effectiveness of the proposed approach.
Kerr, Clayton R
2002-04-01
A method for predicting the performance of packed columns that control gaseous air pollutants has been developed that exploits the advances in both computer software and hardware commonly used by practicing engineers. The solution of the simultaneous partial differential equations that describe the absorption process in packed columns that occurs in the presence of chemical reaction is obtained by converting the partial differential equations to systems of ordinary differential equations. These systems of ordinary differential equations are then solved using the method of lines along with a variable step, variable order numerical method. The method is applicable to systems in which there are multiple reactions within the liquid phase. The reactions can be of any order and can be reversible. The programming is simple and the machine running time is minimal. The method is illustrated here with an example.
NASA Astrophysics Data System (ADS)
Na, Xiaoxiang; Cole, David J.
2013-02-01
This paper is concerned with the modelling of strategic interactions between the human driver and the vehicle active front steering (AFS) controller in a path-following task where the two controllers hold different target paths. The work is aimed at extending the use of mathematical models in representing driver steering behaviour in complicated driving situations. Two game theoretic approaches, namely linear quadratic game and non-cooperative model predictive control (non-cooperative MPC), are used for developing the driver-AFS interactive steering control model. For each approach, the open-loop Nash steering control solution is derived; the influences of the path-following weights, preview and control horizons, driver time delay and arm neuromuscular system (NMS) dynamics are investigated, and the CPU time consumed is recorded. It is found that the two approaches give identical time histories as well as control gains, while the non-cooperative MPC method uses much less CPU time. Specifically, it is observed that the introduction of weight on the integral of vehicle lateral displacement error helps to eliminate the steady-state path-following error; the increase in preview horizon and NMS natural frequency and the decline in time delay and NMS damping ratio improve the path-following accuracy.
Motor degradation prediction methods
Arnold, J.R.; Kelly, J.F.; Delzingaro, M.J.
1996-12-01
Motor Operated Valve (MOV) squirrel cage AC motor rotors are susceptible to degradation under certain conditions. Premature failure can result due to high humidity/temperature environments, high running load conditions, extended periods at locked rotor conditions (i.e. > 15 seconds) or exceeding the motor`s duty cycle by frequent starts or multiple valve stroking. Exposure to high heat and moisture due to packing leaks, pressure seal ring leakage or other causes can significantly accelerate the degradation. ComEd and Liberty Technologies have worked together to provide and validate a non-intrusive method using motor power diagnostics to evaluate MOV rotor condition and predict failure. These techniques have provided a quick, low radiation dose method to evaluate inaccessible motors, identify degradation and allow scheduled replacement of motors prior to catastrophic failures.
Porsa, Sina; Lin, Yi-Chung; Pandy, Marcus G
2016-08-01
The aim of this study was to compare the computational performances of two direct methods for solving large-scale, nonlinear, optimal control problems in human movement. Direct shooting and direct collocation were implemented on an 8-segment, 48-muscle model of the body (24 muscles on each side) to compute the optimal control solution for maximum-height jumping. Both algorithms were executed on a freely-available musculoskeletal modeling platform called OpenSim. Direct collocation converged to essentially the same optimal solution up to 249 times faster than direct shooting when the same initial guess was assumed (3.4 h of CPU time for direct collocation vs. 35.3 days for direct shooting). The model predictions were in good agreement with the time histories of joint angles, ground reaction forces and muscle activation patterns measured for subjects jumping to their maximum achievable heights. Both methods converged to essentially the same solution when started from the same initial guess, but computation time was sensitive to the initial guess assumed. Direct collocation demonstrates exceptional computational performance and is well suited to performing predictive simulations of movement using large-scale musculoskeletal models.
NASA Astrophysics Data System (ADS)
Niewiadomska-Szynkiewicz, Ewa; Malinowski, Krzysztof; Karbowski, Andrzej
1996-04-01
Predictive methods for real-time flood operation of water systems consisting of reservoirs located in parallel on tributaries to the main river are presented and discussed. The aspect of conflicting individual goals of the local decision units and other objectives important from an overall point of view is taken into account. The particular attention is focused on hierarchical control structure which provides framework for organization of an on-line reservoir management problem. The important factor involved in flood control the uncertainty with respect to future inflows is taken into consideration. A case study of the upper Vistula river basin system in the southern part of Poland is presented. Simulation results based on 11 historical floods are briefly described and discussed.
NASA Astrophysics Data System (ADS)
Bauerheim, M.; Nicoud, F.; Poinsot, T.
2016-02-01
Longitudinal low-frequency thermoacoustic unstable modes in combustion chambers have been intensively studied experimentally, numerically, and theoretically, leading to significant progress in both understanding and controlling these acoustic modes. However, modern annular gas turbines may also exhibit azimuthal modes, which are much less studied and feature specific mode structures and dynamic behaviors, leading to more complex situations. Moreover, dealing with 10-20 burners mounted in the same chamber limits the use of high fidelity simulations or annular experiments to investigate these modes because of their complexity and costs. Consequently, for such circumferential acoustic modes, theoretical tools have been developed to uncover underlying phenomena controlling their stability, nature, and dynamics. This review presents recent progress in this field. First, Galerkin and network models are described with their pros and cons in both the temporal and frequency framework. Then, key features of such acoustic modes are unveiled, focusing on their specificities such as symmetry breaking, non-linear modal coupling, forcing by turbulence. Finally, recent works on uncertainty quantifications, guided by theoretical studies and applied to annular combustors, are presented. The objective is to provide a global view of theoretical research on azimuthal modes to highlight their complexities and potential.
1994-12-31
This conference was held December 4--8, 1994 in Asilomar, California. The purpose of this meeting was to provide a forum for exchange of state-of-the-art information concerning the prediction of protein structure. Attention if focused on the following: comparative modeling; sequence to fold assignment; and ab initio folding.
... Z Health Topics Birth control methods Birth control methods > A-Z Health Topics Birth control methods fact ... Publications email updates Enter email Submit Birth control methods Birth control (contraception) is any method, medicine, or ...
Adaptive, predictive controller for optimal process control
Brown, S.K.; Baum, C.C.; Bowling, P.S.; Buescher, K.L.; Hanagandi, V.M.; Hinde, R.F. Jr.; Jones, R.D.; Parkinson, W.J.
1995-12-01
One can derive a model for use in a Model Predictive Controller (MPC) from first principles or from experimental data. Until recently, both methods failed for all but the simplest processes. First principles are almost always incomplete and fitting to experimental data fails for dimensions greater than one as well as for non-linear cases. Several authors have suggested the use of a neural network to fit the experimental data to a multi-dimensional and/or non-linear model. Most networks, however, use simple sigmoid functions and backpropagation for fitting. Training of these networks generally requires large amounts of data and, consequently, very long training times. In 1993 we reported on the tuning and optimization of a negative ion source using a special neural network[2]. One of the properties of this network (CNLSnet), a modified radial basis function network, is that it is able to fit data with few basis functions. Another is that its training is linear resulting in guaranteed convergence and rapid training. We found the training to be rapid enough to support real-time control. This work has been extended to incorporate this network into an MPC using the model built by the network for predictive control. This controller has shown some remarkable capabilities in such non-linear applications as continuous stirred exothermic tank reactors and high-purity fractional distillation columns[3]. The controller is able not only to build an appropriate model from operating data but also to thin the network continuously so that the model adapts to changing plant conditions. The controller is discussed as well as its possible use in various of the difficult control problems that face this community.
Carney, Paul R.; Myers, Stephen; Geyer, James D.
2011-01-01
Epilepsy, one of the most common neurological diseases, affects over 50 million people worldwide. Epilepsy can have a broad spectrum of debilitating medical and social consequences. Although antiepileptic drugs have helped treat millions of patients, roughly a third of all patients have seizures that are refractory to pharmacological intervention. The evolution of our understanding of this dynamic disease leads to new treatment possibilities. There is great interest in the development of devices that incorporate algorithms capable of detecting early onset of seizures or even predicting them hours before they occur. The lead time provided by these new technologies will allow for new types of interventional treatment. In the near future, seizures may be detected and aborted before physical manifestations begin. In this chapter we discuss the algorithms that make these devices possible and how they have been implemented to date. We also compare and contrast these measures, and review their individual strengths and weaknesses. Finally, we illustrate how these techniques can be combined in a closed-loop seizure prevention system. PMID:22078526
Generalized Predictive and Neural Generalized Predictive Control of Aerospace Systems
NASA Technical Reports Server (NTRS)
Kelkar, Atul G.
2000-01-01
The research work presented in this thesis addresses the problem of robust control of uncertain linear and nonlinear systems using Neural network-based Generalized Predictive Control (NGPC) methodology. A brief overview of predictive control and its comparison with Linear Quadratic (LQ) control is given to emphasize advantages and drawbacks of predictive control methods. It is shown that the Generalized Predictive Control (GPC) methodology overcomes the drawbacks associated with traditional LQ control as well as conventional predictive control methods. It is shown that in spite of the model-based nature of GPC it has good robustness properties being special case of receding horizon control. The conditions for choosing tuning parameters for GPC to ensure closed-loop stability are derived. A neural network-based GPC architecture is proposed for the control of linear and nonlinear uncertain systems. A methodology to account for parametric uncertainty in the system is proposed using on-line training capability of multi-layer neural network. Several simulation examples and results from real-time experiments are given to demonstrate the effectiveness of the proposed methodology.
Model predictive control: A new approach
NASA Astrophysics Data System (ADS)
Nagy, Endre
2017-01-01
New methods are proposed in this paper for solution of the model predictive control problem. Nonlinear state space design techniques are also treated. For nonlinear state prediction (state evolution computation) a new predictor given with an operator is introduced and tested. Settling the model predictive control problem may be obtained through application of the principle "direct stochastic optimum tracking" with a simple algorithm, which can be derived from a previously developed optimization procedure. The final result is obtained through iterations. Two examples show the applicability and advantages of the method.
Predicting and Controlling School Violence.
ERIC Educational Resources Information Center
Rich, John Martin
1992-01-01
Discusses the extent to which violence can be accurately predicted, suggesting interventions, control, and remediation. The educator's role in reducing violence includes dealing with the school, parents, media, and community. Educators need conflict resolution skills for defusing aggression and establishing better relations. (SM)
Inhibitory Control Predicts Grammatical Ability
Ibbotson, Paul; Kearvell-White, Jennifer
2015-01-01
We present evidence that individual variation in grammatical ability can be predicted by individual variation in inhibitory control. We tested 81 5-year-olds using two classic tests from linguistics and psychology (Past Tense and the Stroop). Inhibitory control was a better predicator of grammatical ability than either vocabulary or age. Our explanation is that giving the correct response in both tests requires using a common cognitive capacity to inhibit unwanted competition. The implications are that understanding the developmental trajectory of language acquisition can benefit from integrating the developmental trajectory of non-linguistic faculties, such as executive control. PMID:26659926
Fast predictive control of networked energy systems
NASA Astrophysics Data System (ADS)
Chuang, Frank Fu-Han
forecasts. We show that the exact control policies can be found efficiently for certain types of robust predictive control problems. The second half of the thesis deals with improving computation speed and memory usage through model reduction and exploitation of symmetries in the predictive control problem. We present a model reduction technique tailored for networked systems which preserves sparsity and thus greatly improves computation speed. We also show how to apply symmetry methods for efficient computation of explicit model predictive controllers to systems which are not perfectly symmetric.
Predictive Control of Large Complex Networks
NASA Astrophysics Data System (ADS)
Haber, Aleksandar; Motter, Adilson E.
Networks of coupled dynamical subsystems are increasingly used to represent complex natural and engineered systems. While recent technological developments give us improved means to actively control the dynamics of individual subsystems in various domains, network control remains a challenging problem due to difficulties imposed by intrinsic nonlinearities, control constraints, and the large-scale nature of the systems. In this talk, we will present a model predictive control approach that is effective while accounting for these realistic properties of complex networks. Our method can systematically identify control interventions that steer the trajectory to a desired state, even in the presence of strong nonlinearities and constraints. Numerical tests show that the method is applicable to a variety of networks, ranging from power grids to chemical reaction systems.
Model Predictive Control of Sewer Networks
NASA Astrophysics Data System (ADS)
Pedersen, Einar B.; Herbertsson, Hannes R.; Niemann, Henrik; Poulsen, Niels K.; Falk, Anne K. V.
2017-01-01
The developments in solutions for management of urban drainage are of vital importance, as the amount of sewer water from urban areas continues to increase due to the increase of the world’s population and the change in the climate conditions. How a sewer network is structured, monitored and controlled have thus become essential factors for effcient performance of waste water treatment plants. This paper examines methods for simplified modelling and controlling a sewer network. A practical approach to the problem is used by analysing simplified design model, which is based on the Barcelona benchmark model. Due to the inherent constraints the applied approach is based on Model Predictive Control.
Novel hyperspectral prediction method and apparatus
NASA Astrophysics Data System (ADS)
Kemeny, Gabor J.; Crothers, Natalie A.; Groth, Gard A.; Speck, Kathy A.; Marbach, Ralf
2009-05-01
Both the power and the challenge of hyperspectral technologies is the very large amount of data produced by spectral cameras. While off-line methodologies allow the collection of gigabytes of data, extended data analysis sessions are required to convert the data into useful information. In contrast, real-time monitoring, such as on-line process control, requires that compression of spectral data and analysis occur at a sustained full camera data rate. Efficient, high-speed practical methods for calibration and prediction are therefore sought to optimize the value of hyperspectral imaging. A novel method of matched filtering known as science based multivariate calibration (SBC) was developed for hyperspectral calibration. Classical (MLR) and inverse (PLS, PCR) methods are combined by spectroscopically measuring the spectral "signal" and by statistically estimating the spectral "noise." The accuracy of the inverse model is thus combined with the easy interpretability of the classical model. The SBC method is optimized for hyperspectral data in the Hyper-CalTM software used for the present work. The prediction algorithms can then be downloaded into a dedicated FPGA based High-Speed Prediction EngineTM module. Spectral pretreatments and calibration coefficients are stored on interchangeable SD memory cards, and predicted compositions are produced on a USB interface at real-time camera output rates. Applications include minerals, pharmaceuticals, food processing and remote sensing.
Broadband Noise Control Using Predictive Techniques
NASA Technical Reports Server (NTRS)
Eure, Kenneth W.; Juang, Jer-Nan
1997-01-01
Predictive controllers have found applications in a wide range of industrial processes. Two types of such controllers are generalized predictive control and deadbeat control. Recently, deadbeat control has been augmented to include an extended horizon. This modification, named deadbeat predictive control, retains the advantage of guaranteed stability and offers a novel way of control weighting. This paper presents an application of both predictive control techniques to vibration suppression of plate modes. Several system identification routines are presented. Both algorithms are outlined and shown to be useful in the suppression of plate vibrations. Experimental results are given and the algorithms are shown to be applicable to non- minimal phase systems.
Wilson, David G [Tijeras, NM; Robinett, III, Rush D.
2012-02-21
A control system design method and concomitant control system comprising representing a physical apparatus to be controlled as a Hamiltonian system, determining elements of the Hamiltonian system representation which are power generators, power dissipators, and power storage devices, analyzing stability and performance of the Hamiltonian system based on the results of the determining step and determining necessary and sufficient conditions for stability of the Hamiltonian system, creating a stable control system based on the results of the analyzing step, and employing the resulting control system to control the physical apparatus.
Predicting Loss-of-Control Boundaries Toward a Piloting Aid
NASA Technical Reports Server (NTRS)
Barlow, Jonathan; Stepanyan, Vahram; Krishnakumar, Kalmanje
2012-01-01
This work presents an approach to predicting loss-of-control with the goal of providing the pilot a decision aid focused on maintaining the pilot's control action within predicted loss-of-control boundaries. The predictive architecture combines quantitative loss-of-control boundaries, a data-based predictive control boundary estimation algorithm and an adaptive prediction method to estimate Markov model parameters in real-time. The data-based loss-of-control boundary estimation algorithm estimates the boundary of a safe set of control inputs that will keep the aircraft within the loss-of-control boundaries for a specified time horizon. The adaptive prediction model generates estimates of the system Markov Parameters, which are used by the data-based loss-of-control boundary estimation algorithm. The combined algorithm is applied to a nonlinear generic transport aircraft to illustrate the features of the architecture.
Yuan, Jing; Gao, Yanan; Liu, Tiaotiao; Wang, Xinyu; Liu, Hongzhuo; Li, Sanming
2015-01-01
Ion-exchange fiber undergoes a stoichiometric exchange reaction and has large exchange capability, which makes it a promising candidate as a multiple drug carrier. Because combinatorial effects can act synergistically, additively or antagonistically depending on the ratio of the agents being combined, the objective of this study was to learn the dual drug loading of ion-exchange fiber and develop a mathematical method for precisely control of the loading amount. Atenolol and Gatifloxacin, with different loading behaviors into strong cationic ion-exchange fiber ZB-1, were used to build a representative of dual loading. Not suitable pH value of drug solutions could make simultaneous loading fail, while the change of drug solution volume hardly affected the equilibrium. Ion-exchange groups occupied by the drug which owned lower affinity to fiber could be grabbed by the higher affinity drug, indicating the existence of competition between drugs. Thermodynamic model was introduced to guide the loading prediction and a favorable relevance had been shown between determined and predicted data. The release behaviors of each drug from dual drug-fiber complex were similar to those from single drug-fiber complexes.
NASA Astrophysics Data System (ADS)
Matetic, Rudy J.
Over-exposure to noise remains a widespread and serious health hazard in the U.S. mining industries despite 25 years of regulation. Every day, 80% of the nation's miners go to work in an environment where the time weighted average (TWA) noise level exceeds 85 dBA and more than 25% of the miners are exposed to a TWA noise level that exceeds 90 dBA, the permissible exposure limit (PEL). Additionally, MSHA coal noise sample data collected from 2000 to 2002 show that 65% of the equipment whose operators exceeded 100% noise dosage comprise only seven different types of machines; auger miners, bulldozers, continuous miners, front end loaders, roof bolters, shuttle cars (electric), and trucks. In addition, the MSHA data indicate that the roof bolter is third among all the equipment and second among equipment in underground coal whose operators exceed 100% dosage. A research program was implemented to: (1) determine, characterize and to measure sound power levels radiated by a roof bolting machine during differing drilling configurations (thrust, rotational speed, penetration rate, etc.) and utilizing differing types of drilling methods in high compressive strength rock media (>20,000 psi). The research approach characterized the sound power level results from laboratory testing and provided the mining industry with empirical data relative to utilizing differing noise control technologies (drilling configurations and types of drilling methods) in reducing sound power level emissions on a roof bolting machine; (2) distinguish and correlate the empirical data into one, statistically valid, equation, in which, provided the mining industry with a tool to predict overall sound power levels of a roof bolting machine given any type of drilling configuration and drilling method utilized in industry; (3) provided the mining industry with several approaches to predict or determine sound pressure levels in an underground coal mine utilizing laboratory test results from a roof bolting
Prediction of ozone concentrations using nonlinear prediction method
NASA Astrophysics Data System (ADS)
Abd Hamid, Nor Zila; Md Noorani, Mohd Salmi; Juneng, Liew; Latif, Mohd Talib
2013-04-01
Prediction of ozone (O3) is very important because O3 gives effects on human health, human activities and more. Nonlinear prediction method, a method which was developed based on the idea comes from chaos theory is used to predict the concentrations of O3. There are two steps in the nonlinear prediction method. First is the reconstruction of the observed data from the form of a one-dimensional to multi-dimensional phase space. Second is the prediction of the reconstructed phase space through local linear approximation method. Hourly O3 concentrations observed in Shah Alam city located in the state of Selangor, Malaysia were studied. Predictions found in a close agreement with those observed ones. The value of the correlation coefficient obtained in this study is 0.9097. This demonstrates the suitability of the nonlinear prediction method to predict the hourly concentrations of O3. At the end of this paper, suggestions were made for better prediction in the future.
Predictive sensor method and apparatus
NASA Technical Reports Server (NTRS)
Nail, William L. (Inventor); Koger, Thomas L. (Inventor); Cambridge, Vivien (Inventor)
1990-01-01
A predictive algorithm is used to determine, in near real time, the steady state response of a slow responding sensor such as hydrogen gas sensor of the type which produces an output current proportional to the partial pressure of the hydrogen present. A microprocessor connected to the sensor samples the sensor output at small regular time intervals and predicts the steady state response of the sensor in response to a perturbation in the parameter being sensed, based on the beginning and end samples of the sensor output for the current sample time interval.
Model Predictive Control for Nonlinear Parabolic Partial Differential Equations
NASA Astrophysics Data System (ADS)
Hashimoto, Tomoaki; Yoshioka, Yusuke; Ohtsuka, Toshiyuki
In this study, the optimal control problem of nonlinear parabolic partial differential equations (PDEs) is investigated. Optimal control of nonlinear PDEs is an open problem with applications that include fluid, thermal, biological, and chemically-reacting systems. Model predictive control with a fast numerical solution method has been well established to solve the optimal control problem of nonlinear systems described by ordinary differential equations. In this study, we develop a design method of the model predictive control for nonlinear systems described by parabolic PDEs. Our approach is a direct infinite dimensional extension of the model predictive control method for finite-dimensional systems. The objective of this paper is to develop an efficient algorithm for numerically solving the model predictive control problem of nonlinear parabolic PDEs. The effectiveness of the proposed method is verified by numerical simulations.
Interim prediction method for jet noise
NASA Technical Reports Server (NTRS)
Stone, J. R.
1974-01-01
A method is provided for predicting jet noise for a wide range of nozzle geometries and operating conditions of interest for aircraft engines. Jet noise theory, data and existing prediction methods was reviewed, and based on this information a interim method of jet noise prediction is proposed. Problem areas are idenified where further research is needed to improve the prediction method. This method predicts only the noise generated by the exhaust jets mixing with the surrounding air and does not include other noises emanating from the engine exhaust, such as combustion and machinery noise generated inside the engine (i.e., core noise). It does, however, include thrust reverser noise. Prediction relations are provided for conical nozzles, plug nozzles, coaxial nozzles and slot nozzles.
NASA Technical Reports Server (NTRS)
Ho, K. K.; Moody, G. B.; Peng, C. K.; Mietus, J. E.; Larson, M. G.; Levy, D.; Goldberger, A. L.
1997-01-01
BACKGROUND: Despite much recent interest in quantification of heart rate variability (HRV), the prognostic value of conventional measures of HRV and of newer indices based on nonlinear dynamics is not universally accepted. METHODS AND RESULTS: We have designed algorithms for analyzing ambulatory ECG recordings and measuring HRV without human intervention, using robust methods for obtaining time-domain measures (mean and SD of heart rate), frequency-domain measures (power in the bands of 0.001 to 0.01 Hz [VLF], 0.01 to 0.15 Hz [LF], and 0.15 to 0.5 Hz [HF] and total spectral power [TP] over all three of these bands), and measures based on nonlinear dynamics (approximate entropy [ApEn], a measure of complexity, and detrended fluctuation analysis [DFA], a measure of long-term correlations). The study population consisted of chronic congestive heart failure (CHF) case patients and sex- and age-matched control subjects in the Framingham Heart Study. After exclusion of technically inadequate studies and those with atrial fibrillation, we used these algorithms to study HRV in 2-hour ambulatory ECG recordings of 69 participants (mean age, 71.7+/-8.1 years). By use of separate Cox proportional-hazards models, the conventional measures SD (P<.01), LF (P<.01), VLF (P<.05), and TP (P<.01) and the nonlinear measure DFA (P<.05) were predictors of survival over a mean follow-up period of 1.9 years; other measures, including ApEn (P>.3), were not. In multivariable models, DFA was of borderline predictive significance (P=.06) after adjustment for the diagnosis of CHF and SD. CONCLUSIONS: These results demonstrate that HRV analysis of ambulatory ECG recordings based on fully automated methods can have prognostic value in a population-based study and that nonlinear HRV indices may contribute prognostic value to complement traditional HRV measures.
Drawability Prediction Method using Continuous Texture Evolution Model
NASA Astrophysics Data System (ADS)
Morimoto, Toshiharu; Yanagimoto, Jun
2011-08-01
Drawability is one of steel strip properties which control press forming. Many predicted method for the Lankford value have been proposed. First, we predict recystallization texture based on the idea that total amount of microscopic crystal slips is proportional to accumulated dislocation density in grain boundaries. Next, we can predict Lankford value of ultra low carbon strips and ferritic stainless steel strips using Sachs model. Our method is very practical to use in hot and cold steel rolling industry.
Networked Robust Predictive Control Systems Design with Packet Loss
NASA Astrophysics Data System (ADS)
Nguyen, Quang T.; Veselý, Vojtech; Kozáková, Alena; Pakshin, Pavel
2014-01-01
The paper addresses problem of designing a robust output feedback model predictive control for uncertain linear systems over networks with packet-loss. The packet-loss process is arbitrary and bounded by the control horizon of model predictive control. Networked predictive control systems with packet loss are modeled as switched linear systems. This enables us to apply the theory of switched systems to establish the stability condition. The stabilizing controller design is based on sufficient robust stability conditions formulated as a solution of bilinear matrix inequality. Finally, a benchmark numerical example-double integrator is given to illustrate the effectiveness of the proposed method.
H ∞ predictive control of networked control systems
NASA Astrophysics Data System (ADS)
Xia, Yuanqing; Li, Li; Liu, Guo-Ping; Shi, Peng
2011-06-01
This article is concerned with the problem of H ∞ predictive control of networked control system with random network delay. A new control scheme termed networked predictive control is proposed. This scheme mainly consists of the control prediction generator and network delay compensator. While designing the predictor, the control input to the actuator may be different due to networked induced time-delay and data dropout, and two cases are considered depending on the way that the observer obtains the plant control input u t . The necessary and sufficient conditions are given for the closed-loop networked predictive control system to be stochastically stable for different u t and random network delays in controller to actuator channel (CAC) and sensor to controller channel (SCC). A simulation study shows the effectiveness of the proposed scheme.
Predicting and Controlling Complex Networks
2015-06-22
networks and control . . . . . . . . . . . . . . . . . . . 7 3.4 Pattern formation, synchronization and outbreak of biodiversity in cyclically...Ni, Y.-C. Lai, and C. Grebogi, “Pattern formation, synchronization and outbreak of biodiversity in cyclically competing games,” Physical Review E 83...of Physics B 76, 179-183 (2010). 3.4 Pattern formation, synchronization and outbreak of biodiversity in cyclically competing games Biodiversity is
A Robustly Stabilizing Model Predictive Control Algorithm
NASA Technical Reports Server (NTRS)
Ackmece, A. Behcet; Carson, John M., III
2007-01-01
A model predictive control (MPC) algorithm that differs from prior MPC algorithms has been developed for controlling an uncertain nonlinear system. This algorithm guarantees the resolvability of an associated finite-horizon optimal-control problem in a receding-horizon implementation.
Plasma Stabilization Based on Model Predictive Control
NASA Astrophysics Data System (ADS)
Sotnikova, Margarita
The nonlinear model predictive control algorithms for plasma current and shape stabilization are proposed. Such algorithms are quite suitable for the situations when the plant to be controlled has essentially nonlinear dynamics. Besides that, predictive model based control algorithms allow to take into account a lot of requirements and constraints involved both on the controlled and manipulated variables. The significant drawback of the algorithms is that they require a lot of time to compute control input at each sampling instant. In this paper the model predictive control algorithms are demonstrated by the example of plasma vertical stabilization for ITER-FEAT tokamak. The tuning of parameters of algorithms is performed in order to decrease computational load.
Linear predictive control with state variable constraints
NASA Astrophysics Data System (ADS)
Bdirina, K.; Djoudi, D.; Lagoun, M.
2012-11-01
While linear model predictive control is popular since the 70s of the past century, the 90s have witnessed a steadily increasing attention from control theoretists as well as control practitioners in the area of model predictive control (MPC). The practical interest is driven by the fact that today's processes need to be operated under tighter performance specifications. At the same time more and more constraints, stemming for example from environmental and safety considerations, need to besatisfied. Often these demands can only be met when process constraints are explicitly considered in the controller. Predictive control with constraints appears to be a well suited approach for this kind of problems. In this paper the basic principle of MPC with constraints is reviewed and some of the theoretical, computational, and implementation aspects of MPC are discussed. Furthermore the MPC with constraints was applied to linear example.
Automatic transmission control method
Hasegawa, H.; Ishiguro, T.
1989-07-04
This patent describes a method of controlling an automatic transmission of an automotive vehicle. The transmission has a gear train which includes a brake for establishing a first lowest speed of the transmission, the brake acting directly on a ring gear which meshes with a pinion, the pinion meshing with a sun gear in a planetary gear train, the ring gear connected with an output member, the sun gear being engageable and disengageable with an input member of the transmission by means of a clutch. The method comprises the steps of: detecting that a shift position of the automatic transmission has been shifted to a neutral range; thereafter introducing hydraulic pressure to the brake if present vehicle velocity is below a predetermined value, whereby the brake is engaged to establish the first lowest speed; and exhausting hydraulic pressure from the brake if present vehicle velocity is higher than a predetermined value, whereby the brake is disengaged.
Hierarchical Ensemble Methods for Protein Function Prediction
2014-01-01
Protein function prediction is a complex multiclass multilabel classification problem, characterized by multiple issues such as the incompleteness of the available annotations, the integration of multiple sources of high dimensional biomolecular data, the unbalance of several functional classes, and the difficulty of univocally determining negative examples. Moreover, the hierarchical relationships between functional classes that characterize both the Gene Ontology and FunCat taxonomies motivate the development of hierarchy-aware prediction methods that showed significantly better performances than hierarchical-unaware “flat” prediction methods. In this paper, we provide a comprehensive review of hierarchical methods for protein function prediction based on ensembles of learning machines. According to this general approach, a separate learning machine is trained to learn a specific functional term and then the resulting predictions are assembled in a “consensus” ensemble decision, taking into account the hierarchical relationships between classes. The main hierarchical ensemble methods proposed in the literature are discussed in the context of existing computational methods for protein function prediction, highlighting their characteristics, advantages, and limitations. Open problems of this exciting research area of computational biology are finally considered, outlining novel perspectives for future research. PMID:25937954
Nonconvex model predictive control for commercial refrigeration
NASA Astrophysics Data System (ADS)
Gybel Hovgaard, Tobias; Boyd, Stephen; Larsen, Lars F. S.; Bagterp Jørgensen, John
2013-08-01
We consider the control of a commercial multi-zone refrigeration system, consisting of several cooling units that share a common compressor, and is used to cool multiple areas or rooms. In each time period we choose cooling capacity to each unit and a common evaporation temperature. The goal is to minimise the total energy cost, using real-time electricity prices, while obeying temperature constraints on the zones. We propose a variation on model predictive control to achieve this goal. When the right variables are used, the dynamics of the system are linear, and the constraints are convex. The cost function, however, is nonconvex due to the temperature dependence of thermodynamic efficiency. To handle this nonconvexity we propose a sequential convex optimisation method, which typically converges in fewer than 5 or so iterations. We employ a fast convex quadratic programming solver to carry out the iterations, which is more than fast enough to run in real time. We demonstrate our method on a realistic model, with a full year simulation and 15-minute time periods, using historical electricity prices and weather data, as well as random variations in thermal load. These simulations show substantial cost savings, on the order of 30%, compared to a standard thermostat-based control system. Perhaps more important, we see that the method exhibits sophisticated response to real-time variations in electricity prices. This demand response is critical to help balance real-time uncertainties in generation capacity associated with large penetration of intermittent renewable energy sources in a future smart grid.
Methods for Predicting Submersible Hydrodynamic Characteristics
1978-07-01
TO PREDICT COMPLETE CONFIGURATION CHARACTERISTICS In this section the previously developed methods are combined to determine... characteristics of individual vehicle components (bodies, tails ), and with their mutual interactions when combined into complete configurations . Each method is...approach used successfully in mis- sile aerodynamics , a set of models was built and tested to obtain systematic data over relevant ranges of geometry
Random vibration ESS adequacy prediction method
NASA Astrophysics Data System (ADS)
Lambert, Ronald G.
Closed form analytical expressions have been derived and are used as part of the proposed method to quantitatively predict the adequacy of the random vibration portion of an Environmental Stress Screen (ESS) to meet its main objective for screening typical avionics electronic assemblies for workmanship defects without consuming excessive useful life. This method is limited to fatigue related defects (including initial damage/Fracture Mechanics effects) and requires defect fatigue and service environment parameter values. Examples are given to illustrate the method.
Robust predictive cruise control for commercial vehicles
NASA Astrophysics Data System (ADS)
Junell, Jaime; Tumer, Kagan
2013-10-01
In this paper we explore learning-based predictive cruise control and the impact of this technology on increasing fuel efficiency for commercial trucks. Traditional cruise control is wasteful when maintaining a constant velocity over rolling hills. Predictive cruise control (PCC) is able to look ahead at future road conditions and solve for a cost-effective course of action. Model- based controllers have been implemented in this field but cannot accommodate many complexities of a dynamic environment which includes changing road and vehicle conditions. In this work, we focus on incorporating a learner into an already successful model- based predictive cruise controller in order to improve its performance. We explore back propagating neural networks to predict future errors then take actions to prevent said errors from occurring. The results show that this approach improves the model based PCC by up to 60% under certain conditions. In addition, we explore the benefits of classifier ensembles to further improve the gains due to intelligent cruise control.
Optimal Tuning for Disturbance Suppression Mechanism for Model Predictive Control
NASA Astrophysics Data System (ADS)
Tange, Yoshio; Nakazawa, Chikashi
Disturbance suppression is one of most required performances in process control. We recently proposed a new disturbance suppression mechanism applicable for model predictive control in order to enhance disturbance suppression performance for ramp-like disturbances. The proposed method utilized the prediction error of controlled values and generates a disturbance compensation signal by a constant gain feedback. In this paper, we propose an improved version of the disturbance suppression mechanism by applying a low-pass filter and parameter tuning methods by which we can make the mechanism more tolerant to various disturbances such as ramp, step, and other supposable ones. We also show numerical simulation results with an oil distillation tower plant.
Soft Computing Methods for Disulfide Connectivity Prediction
Márquez-Chamorro, Alfonso E.; Aguilar-Ruiz, Jesús S.
2015-01-01
The problem of protein structure prediction (PSP) is one of the main challenges in structural bioinformatics. To tackle this problem, PSP can be divided into several subproblems. One of these subproblems is the prediction of disulfide bonds. The disulfide connectivity prediction problem consists in identifying which nonadjacent cysteines would be cross-linked from all possible candidates. Determining the disulfide bond connectivity between the cysteines of a protein is desirable as a previous step of the 3D PSP, as the protein conformational search space is highly reduced. The most representative soft computing approaches for the disulfide bonds connectivity prediction problem of the last decade are summarized in this paper. Certain aspects, such as the different methodologies based on soft computing approaches (artificial neural network or support vector machine) or features of the algorithms, are used for the classification of these methods. PMID:26523116
NASA Astrophysics Data System (ADS)
Mehrmann, Volker; Xu, Hongguo
2000-11-01
We study classical control problems like pole assignment, stabilization, linear quadratic control and H[infinity] control from a numerical analysis point of view. We present several examples that show the difficulties with classical approaches and suggest reformulations of the problems in a more general framework. We also discuss some new algorithmic approaches.
Launch ascent guidance by discrete multi-model predictive control
NASA Astrophysics Data System (ADS)
Vachon, Alexandre; Desbiens, André; Gagnon, Eric; Bérard, Caroline
2014-02-01
This paper studies the application of discrete multi-model predictive control as a trajectory tracking guidance law for a space launcher. Two different algorithms are developed, each one based on a different representation of launcher translation dynamics. These representations are based on an interpolation of the linear approximation of nonlinear pseudo-five degrees of freedom equations of translation around an elliptical Earth. The interpolation gives a linear-time-varying representation and a linear-fractional representation. They are used as the predictive model of multi-model predictive controllers. The controlled variables are the orbital parameters, and constraints on a terminal region for the minimal accepted precision are also included. Use of orbital parameters as the controlled variables allows for a partial definition of the trajectory. Constraints can also be included in multi-model predictive control to reduce the number of unknowns of the problem by defining input shaping constraints. The guidance algorithms are tested in nominal conditions and off-nominal conditions with uncertainties on the thrust. The results are compared to those of a similar formulation with a nonlinear model predictive controller and to a guidance method based on the resolution of a simplified version of the two-point boundary value problem. In nominal conditions, the model predictive controllers are more precise and produce a more optimal trajectory but are longer to compute than the two-point boundary solution. Moreover, in presence of uncertainties, developed algorithms exhibit poor robustness properties. The multi-model predictive control algorithms do not reach the desired orbit while the nonlinear model predictive control algorithm still converges but produces larger maneuvers than the other method.
Switched linear model predictive controllers for periodic exogenous signals
NASA Astrophysics Data System (ADS)
Wang, Liuping; Gawthrop, Peter; Owens, David. H.; Rogers, Eric
2010-04-01
This article develops switched linear controllers for periodic exogenous signals using the framework of a continuous-time model predictive control. In this framework, the control signal is generated by an algorithm that uses receding horizon control principle with an on-line optimisation scheme that permits inclusion of operational constraints. Unlike traditional repetitive controllers, applying this method in the form of switched linear controllers ensures bumpless transfer from one controller to another. Simulation studies are included to demonstrate the efficacy of the design with or without hard constraints.
Hybrid robust predictive optimization method of power system dispatch
Chandra, Ramu Sharat; Liu, Yan; Bose, Sumit; de Bedout, Juan Manuel
2011-08-02
A method of power system dispatch control solves power system dispatch problems by integrating a larger variety of generation, load and storage assets, including without limitation, combined heat and power (CHP) units, renewable generation with forecasting, controllable loads, electric, thermal and water energy storage. The method employs a predictive algorithm to dynamically schedule different assets in order to achieve global optimization and maintain the system normal operation.
Fuzzy Predictive Control Strategy in the Application of the Industrial Furnace Temperature Control
NASA Astrophysics Data System (ADS)
Dai, Luping; Chen, Xingliang; Chen, Liu; Liu, Xia
Ceramic kiln with large heat capacity, big lag and nonlinear characteristic, this paper proposes a combining fuzzy control and predictive control of the control algorithm, to enhance the tracking and anti-interference ability of the algorithm. The simulation results show, this method compared with the control of PID has the high steady precision and dynamic characteristic.
Model predictive formation control of helicopter systems
NASA Astrophysics Data System (ADS)
Saffarian, Mehdi
In this thesis, a robust formation control framework for formation control of a group of helicopters is proposed and designed. The dynamic model of the helicopter has been developed and verified through simulations. The control framework is constructed using two main control schemes for navigation of a helicopter group in three-dimensional (3D) environments. Two schemes are designed to maintain the position of one helicopter with respect to one or two other neighboring members, respectively. The developed parameters can uniquely define the position of the helicopters with respect to each other and can be used for any other aerial and under water vehicles such as airplanes, spacecrafts and submarines. Also, since this approach is modular, it is possible to use it for desired number and form of the group helicopters. Using the defined control parameters, two decentralized controllers are designed based on Nonlinear Model Predictive Control (NMPC) algorithm technique. The framework performance has been tested through simulation of different formation scenarios.
Mass spectrometry methods for predicting antibiotic resistance.
Charretier, Yannick; Schrenzel, Jacques
2016-10-01
Developing elaborate techniques for clinical applications can be a complicated process. Whole-cell MALDI-TOF MS revolutionized reliable microorganism identification in clinical microbiology laboratories and is now replacing phenotypic microbial identification. This technique is a generic, accurate, rapid, and cost-effective growth-based method. Antibiotic resistance keeps emerging in environmental and clinical microorganisms, leading to clinical therapeutic challenges, especially for Gram-negative bacteria. Antimicrobial susceptibility testing is used to reliably predict antimicrobial success in treating infection, but it is inherently limited by the need to isolate and grow cultures, delaying the application of appropriate therapies. Antibiotic resistance prediction by growth-independent methods is expected to reduce the turnaround time. Recently, the potential of next-generation sequencing and microarrays in predicting microbial resistance has been demonstrated, and this review evaluates the potential of MS in this field. First, technological advances are described, and the possibility of predicting antibiotic resistance by MS is then illustrated for three prototypical human pathogens: Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. Clearly, MS methods can identify antimicrobial resistance mediated by horizontal gene transfers or by mutations that affect the quantity of a gene product, whereas antimicrobial resistance mediated by target mutations remains difficult to detect.
Model predictive control for cooperative control of space robots
NASA Astrophysics Data System (ADS)
Kannan, Somasundar; Alamdari, Seyed Amin Sajadi; Dentler, Jan; Olivares-Mendez, Miguel A.; Voos, Holger
2017-01-01
The problem of Orbital Manipulation of Passive body is discussed here. Two scenarios including passive object rigidly attached to robotic servicers and passive body attached to servicers through manipulators are discussed. The Model Predictive Control (MPC) technique is briefly presented and successfully tested through simulations on two cases of position control of passive body in the orbit.
Predicting abrasive wear with coupled Lagrangian methods
NASA Astrophysics Data System (ADS)
Beck, Florian; Eberhard, Peter
2015-05-01
In this paper, a mesh-less approach for the simulation of a fluid with particle loading and the prediction of abrasive wear is presented. We are using the smoothed particle hydrodynamics (SPH) method for modeling the fluid and the discrete element method (DEM) for the solid particles, which represent the loading of the fluid. These Lagrangian methods are used to describe heavily sloshing fluids with their free surfaces as well as the interface between the fluid and the solid particles accurately. A Reynolds-averaged Navier-Stokes equations model is applied for handling turbulences. We are predicting abrasive wear on the boundary geometry with two different wear models taking cutting and deformation mechanisms into account. The boundary geometry is discretized with special DEM particles. In doing so, it is possible to use the same particle type for both the calculation of the boundary conditions for the SPH method as well as the DEM and for predicting the abrasive wear. After a brief introduction to the SPH method and the DEM, the handling of the boundary and the coupling of the fluid and the solid particles are discussed. Then, the applied wear models are presented and the simulation scenarios are described. The first numerical experiment is the simulation of a fluid with loading which is sloshing inside a tank. The second numerical experiment is the simulation of the impact of a free jet with loading to a simplified pelton bucket. We are especially investigating the wear patterns inside the tank and the bucket.
Adaptive method for electron bunch profile prediction
Scheinker, Alexander; Gessner, Spencer
2015-10-01
We report on an experiment performed at the Facility for Advanced Accelerator Experimental Tests (FACET) at SLAC National Accelerator Laboratory, in which a new adaptive control algorithm, one with known, bounded update rates, despite operating on analytically unknown cost functions, was utilized in order to provide quasi-real-time bunch property estimates of the electron beam. Multiple parameters, such as arbitrary rf phase settings and other time-varying accelerator properties, were simultaneously tuned in order to match a simulated bunch energy spectrum with a measured energy spectrum. The simple adaptive scheme was digitally implemented using matlab and the experimental physics and industrial control system. The main result is a nonintrusive, nondestructive, real-time diagnostic scheme for prediction of bunch profiles, as well as other beam parameters, the precise control of which are important for the plasma wakefield acceleration experiments being explored at FACET. © 2015 authors. Published by the American Physical Society.
Adaptive method for electron bunch profile prediction
NASA Astrophysics Data System (ADS)
Scheinker, Alexander; Gessner, Spencer
2015-10-01
We report on an experiment performed at the Facility for Advanced Accelerator Experimental Tests (FACET) at SLAC National Accelerator Laboratory, in which a new adaptive control algorithm, one with known, bounded update rates, despite operating on analytically unknown cost functions, was utilized in order to provide quasi-real-time bunch property estimates of the electron beam. Multiple parameters, such as arbitrary rf phase settings and other time-varying accelerator properties, were simultaneously tuned in order to match a simulated bunch energy spectrum with a measured energy spectrum. The simple adaptive scheme was digitally implemented using matlab and the experimental physics and industrial control system. The main result is a nonintrusive, nondestructive, real-time diagnostic scheme for prediction of bunch profiles, as well as other beam parameters, the precise control of which are important for the plasma wakefield acceleration experiments being explored at FACET.
Modern Prediction Methods for Turbomachine Performance
1976-01-01
the Consultan’. and Exechange Programme. Propulsion system development costs may be significantly reduced by improvement of methods tor prediction of...of Science and Technology Ames, Iowa 50011 United States of America Aircraft propulsion system development time and cost could be significantly reduced...information is required about things like %tart up performance, wind - milling and altitude light up capability, rapid thrust changes etc. The
Composite predictive flight control for airbreathing hypersonic vehicles
NASA Astrophysics Data System (ADS)
Yang, Jun; Zhao, Zhenhua; Li, Shihua; Zheng, Wei Xing
2014-09-01
The robust optimised tracking control problem for a generic airbreathing hypersonic vehicle (AHV) subject to nonvanishing mismatched disturbances/uncertainties is investigated in this paper. A baseline nonlinear model predictive control (MPC) method is firstly introduced for optimised tracking control of the nominal dynamics. A nonlinear-disturbance-observer-based control law is then developed for robustness enhancement in the presence of both external disturbances and uncertainties. Compared with the existing robust tracking control methods for AHVs, the proposed composite nonlinear MPC method obtains not only promising robustness and disturbance rejection performance but also optimised nominal tracking control performance. The merits of the proposed method are validated by implementing simulation studies on the AHV system.
Semiconductor CMP Process Control Predicting Degradation Effect of Consumed Materials
NASA Astrophysics Data System (ADS)
Tamaki, Kenji; Kaneko, Shun'ichi
This paper describes a methodology to build a virtual metrology (VM) model for semiconductor chemical mechanical polishing (CMP) process control. The VM model predicts the polishing rate based on equipment-derived data as soon as allowed, and immediately applies the results to advanced process control (APC). The proposed methodology uses Markov chain Monte Carlo (MCMC) methods to build an analytical model with many parameters for individual consumed materials from historical data in small quantities. The mutual interference of two kinds of consumed materials: dresser and pad are modeled in a form of multilevel predictive model. The methodology uses MCMC methods again to identify the multilevel predictive model taking into account the assumed operation of an actual manufacturing line, for instance, using preliminary test result, learning a model parameter online, and being affected by metrology lag as disturbance. The simulation results show the APC with the proposed VM model is low sensitivity to metrology lag and high precision on polishing amount control.
Model predictive control of MSMPR crystallizers
NASA Astrophysics Data System (ADS)
Moldoványi, Nóra; Lakatos, Béla G.; Szeifert, Ferenc
2005-02-01
A multi-input-multi-output (MIMO) control problem of isothermal continuous crystallizers is addressed in order to create an adequate model-based control system. The moment equation model of mixed suspension, mixed product removal (MSMPR) crystallizers that forms a dynamical system is used, the state of which is represented by the vector of six variables: the first four leading moments of the crystal size, solute concentration and solvent concentration. Hence, the time evolution of the system occurs in a bounded region of the six-dimensional phase space. The controlled variables are the mean size of the grain; the crystal size-distribution and the manipulated variables are the input concentration of the solute and the flow rate. The controllability and observability as well as the coupling between the inputs and the outputs was analyzed by simulation using the linearized model. It is shown that the crystallizer is a nonlinear MIMO system with strong coupling between the state variables. Considering the possibilities of the model reduction, a third-order model was found quite adequate for the model estimation in model predictive control (MPC). The mean crystal size and the variance of the size distribution can be nearly separately controlled by the residence time and the inlet solute concentration, respectively. By seeding, the controllability of the crystallizer increases significantly, and the overshoots and the oscillations become smaller. The results of the controlling study have shown that the linear MPC is an adaptable and feasible controller of continuous crystallizers.
A numerical method for predicting hypersonic flowfields
NASA Technical Reports Server (NTRS)
Maccormack, Robert W.; Candler, Graham V.
1989-01-01
The flow about a body traveling at hypersonic speed is energetic enough to cause the atmospheric gases to chemically react and reach states in thermal nonequilibrium. The prediction of hypersonic flowfields requires a numerical method capable of solving the conservation equations of fluid flow, the chemical rate equations for specie formation and dissociation, and the transfer of energy relations between translational and vibrational temperature states. Because the number of equations to be solved is large, the numerical method should also be as efficient as possible. The proposed paper presents a fully implicit method that fully couples the solution of the fluid flow equations with the gas physics and chemistry relations. The method flux splits the inviscid flow terms, central differences of the viscous terms, preserves element conservation in the strong chemistry source terms, and solves the resulting block matrix equation by Gauss Seidel line relaxation.
Robust model predictive control of Wiener systems
NASA Astrophysics Data System (ADS)
Biagiola, S. I.; Figueroa, J. L.
2011-03-01
Block-oriented models (BOMs) have shown to be appealing and efficient as nonlinear representations for many applications. They are at the same time valid and simple models in a more extensive region than time-invariant linear models. In this work, Wiener models are considered. They are one of the most diffused BOMs, and their structure consists in a linear dynamics in cascade with a nonlinear static block. Particularly, the problem of control of these systems in the presence of uncertainty is treated. The proposed methodology makes use of a robust identification procedure in order to obtain a robust model to represent the uncertain system. This model is then employed to design a model predictive controller. The mathematical problem involved in the controller design is formulated in the context of the existing linear matrix inequalities (LMI) theory. The main feature of this approach is that it takes advantage of the static nature of the nonlinearity, which allows to solve the control problem by focusing only in the linear dynamics. This formulation results in a simplified design procedure, because the original nonlinear model predictive control (MPC) problem turns into a linear one.
Advances in Adaptive Control Methods
NASA Technical Reports Server (NTRS)
Nguyen, Nhan
2009-01-01
This poster presentation describes recent advances in adaptive control technology developed by NASA. Optimal Control Modification is a novel adaptive law that can improve performance and robustness of adaptive control systems. A new technique has been developed to provide an analytical method for computing time delay stability margin for adaptive control systems.
Respiratory Pattern Variability Analysis Based on Nonlinear Prediction Methods
2007-11-02
Brobely. All-night sleep EEG and artificial stochastic control signals have similar correlation dimensions . Electroencephalogr. Clin. Neurophisiol...methods. These methods use the volume signals generated by the respiratory system in order to construct a model of its dynamics, and then to estimate the...definition have been considered. The incidence of different prediction depths and embedding dimensions have been analyzed. A group of 12 patients on
Method for controlling brazing
Hosking, F. Michael; Hall, Aaron C.; Givler, Richard C.; Walker, Charles A.
2006-08-01
A method for making a braze joint across a discontinuity in a work piece using alternating current. A filler metal is pre-placed at a location sufficiently close to the discontinuity such that, when an alternating current is applied across a work piece to heat the work piece and melt the filler metal, the filler metal is drawn into the discontinuity. The alternating current is maintained for a set residence time, generally less than 10 seconds and more particularly less than 3 seconds. The alternating current is then altered, generally by reducing the current and/or voltage such that the filler metal can solidify to form a braze joint of desired quality and thickness.
A Disturbance Rejection for Model Predictive Control Using a Multivariable Disturbance Observer
NASA Astrophysics Data System (ADS)
Tange, Yoshio; Matsui, Tetsuro; Matsumoto, Koji; Nishida, Hideyuki
Model predictive control has been widely used in industrial applications. And more efficient and more precise control is being required to meet growing demands such as energy savings and fewer emissions in industrial plants. In this paper, we focus on step response model based predictive control, which is one of most applied predictive control methods, and propose a new disturbance rejection method to overcome control performance degradation caused by unmeasured ramp-like disturbances.
Wind farms production: Control and prediction
NASA Astrophysics Data System (ADS)
El-Fouly, Tarek Hussein Mostafa
Wind energy resources, unlike dispatchable central station generation, produce power dependable on external irregular source and that is the incident wind speed which does not always blow when electricity is needed. This results in the variability, unpredictability, and uncertainty of wind resources. Therefore, the integration of wind facilities to utility electrical grid presents a major challenge to power system operator. Such integration has significant impact on the optimum power flow, transmission congestion, power quality issues, system stability, load dispatch, and economic analysis. Due to the irregular nature of wind power production, accurate prediction represents the major challenge to power system operators. Therefore, in this thesis two novel models are proposed for wind speed and wind power prediction. One proposed model is dedicated to short-term prediction (one-hour ahead) and the other involves medium term prediction (one-day ahead). The accuracy of the proposed models is revealed by comparing their results with the corresponding values of a reference prediction model referred to as the persistent model. Utility grid operation is not only impacted by the uncertainty of the future production of wind farms, but also by the variability of their current production and how the active and reactive power exchange with the grid is controlled. To address this particular task, a control technique for wind turbines, driven by doubly-fed induction generators (DFIGs), is developed to regulate the terminal voltage by equally sharing the generated/absorbed reactive power between the rotor-side and the gridside converters. To highlight the impact of the new developed technique in reducing the power loss in the generator set, an economic analysis is carried out. Moreover, a new aggregated model for wind farms is proposed that accounts for the irregularity of the incident wind distribution throughout the farm layout. Specifically, this model includes the wake effect
Airframe Noise Prediction Using the Sngr Method
NASA Astrophysics Data System (ADS)
Chen, Rongqian; Wu, Yizhao; Xia, Jian
In this paper, the Stochastic Noise Generation and Radiation method (SNGR) is used to predict airframe noise. The SNGR method combines a stochastic model with Computational Fluid Dynamics (CFD), and it can give acceptable noise results while the computation cost is relatively low. In the method, the time-averaged mean flow field is firstly obtained by solving Reynolds Averaged Navier-Stokes equations (RANS), and a stochastic velocity is generated based on the obtained information. Then the turbulent field is used to generate the source for the Acoustic Perturbation Equations (APEs) that simulate the noise propagation. For numerical methods, timeaveraged RANS equations are solved by finite volume method, and the turbulent model is K - ɛ model; APEs are solved by finite difference method, and the numerical scheme is the Dispersion-Relation-Preserving (DRP) scheme, with explicit optimized 5-stage Rung-Kutta scheme time step. In order to test the APE solver, propagation of a Gaussian pulse in a uniform mean flow is firstly simulated and compared with the analytical solution. Then, using the method, the trailing edge noise of NACA0012 airfoil is calculated. The results are compared with reference data, and good agreements are demonstrated.
Computational predictive methods for fracture and fatigue
NASA Technical Reports Server (NTRS)
Cordes, J.; Chang, A. T.; Nelson, N.; Kim, Y.
1994-01-01
The damage-tolerant design philosophy as used by aircraft industries enables aircraft components and aircraft structures to operate safely with minor damage, small cracks, and flaws. Maintenance and inspection procedures insure that damages developed during service remain below design values. When damage is found, repairs or design modifications are implemented and flight is resumed. Design and redesign guidelines, such as military specifications MIL-A-83444, have successfully reduced the incidence of damage and cracks. However, fatigue cracks continue to appear in aircraft well before the design life has expired. The F16 airplane, for instance, developed small cracks in the engine mount, wing support, bulk heads, the fuselage upper skin, the fuel shelf joints, and along the upper wings. Some cracks were found after 600 hours of the 8000 hour design service life and design modifications were required. Tests on the F16 plane showed that the design loading conditions were close to the predicted loading conditions. Improvements to analytic methods for predicting fatigue crack growth adjacent to holes, when multiple damage sites are present, and in corrosive environments would result in more cost-effective designs, fewer repairs, and fewer redesigns. The overall objective of the research described in this paper is to develop, verify, and extend the computational efficiency of analysis procedures necessary for damage tolerant design. This paper describes an elastic/plastic fracture method and an associated fatigue analysis method for damage tolerant design. Both methods are unique in that material parameters such as fracture toughness, R-curve data, and fatigue constants are not required. The methods are implemented with a general-purpose finite element package. Several proof-of-concept examples are given. With further development, the methods could be extended for analysis of multi-site damage, creep-fatigue, and corrosion fatigue problems.
Computational predictive methods for fracture and fatigue
NASA Astrophysics Data System (ADS)
Cordes, J.; Chang, A. T.; Nelson, N.; Kim, Y.
1994-09-01
The damage-tolerant design philosophy as used by aircraft industries enables aircraft components and aircraft structures to operate safely with minor damage, small cracks, and flaws. Maintenance and inspection procedures insure that damages developed during service remain below design values. When damage is found, repairs or design modifications are implemented and flight is resumed. Design and redesign guidelines, such as military specifications MIL-A-83444, have successfully reduced the incidence of damage and cracks. However, fatigue cracks continue to appear in aircraft well before the design life has expired. The F16 airplane, for instance, developed small cracks in the engine mount, wing support, bulk heads, the fuselage upper skin, the fuel shelf joints, and along the upper wings. Some cracks were found after 600 hours of the 8000 hour design service life and design modifications were required. Tests on the F16 plane showed that the design loading conditions were close to the predicted loading conditions. Improvements to analytic methods for predicting fatigue crack growth adjacent to holes, when multiple damage sites are present, and in corrosive environments would result in more cost-effective designs, fewer repairs, and fewer redesigns. The overall objective of the research described in this paper is to develop, verify, and extend the computational efficiency of analysis procedures necessary for damage tolerant design. This paper describes an elastic/plastic fracture method and an associated fatigue analysis method for damage tolerant design. Both methods are unique in that material parameters such as fracture toughness, R-curve data, and fatigue constants are not required. The methods are implemented with a general-purpose finite element package. Several proof-of-concept examples are given. With further development, the methods could be extended for analysis of multi-site damage, creep-fatigue, and corrosion fatigue problems.
Real-time Adaptive Control Using Neural Generalized Predictive Control
NASA Technical Reports Server (NTRS)
Haley, Pam; Soloway, Don; Gold, Brian
1999-01-01
The objective of this paper is to demonstrate the feasibility of a Nonlinear Generalized Predictive Control algorithm by showing real-time adaptive control on a plant with relatively fast time-constants. Generalized Predictive Control has classically been used in process control where linear control laws were formulated for plants with relatively slow time-constants. The plant of interest for this paper is a magnetic levitation device that is nonlinear and open-loop unstable. In this application, the reference model of the plant is a neural network that has an embedded nominal linear model in the network weights. The control based on the linear model provides initial stability at the beginning of network training. In using a neural network the control laws are nonlinear and online adaptation of the model is possible to capture unmodeled or time-varying dynamics. Newton-Raphson is the minimization algorithm. Newton-Raphson requires the calculation of the Hessian, but even with this computational expense the low iteration rate make this a viable algorithm for real-time control.
Voltage control in pulsed system by predict-ahead control
Payne, A.N.; Watson, J.A.; Sampayan, S.E.
1994-09-13
A method and apparatus for predict-ahead pulse-to-pulse voltage control in a pulsed power supply system is disclosed. A DC power supply network is coupled to a resonant charging network via a first switch. The resonant charging network is coupled at a node to a storage capacitor. An output load is coupled to the storage capacitor via a second switch. A de-Q-ing network is coupled to the resonant charging network via a third switch. The trigger for the third switch is a derived function of the initial voltage of the power supply network, the initial voltage of the storage capacitor, and the present voltage of the storage capacitor. A first trigger closes the first switch and charges the capacitor. The third trigger is asserted according to the derived function to close the third switch. When the third switch is closed, the first switch opens and voltage on the node is regulated. The second trigger may be thereafter asserted to discharge the capacitor into the output load. 4 figs.
Voltage control in pulsed system by predict-ahead control
Payne, Anthony N.; Watson, James A.; Sampayan, Stephen E.
1994-01-01
A method and apparatus for predict-ahead pulse-to-pulse voltage control in a pulsed power supply system is disclosed. A DC power supply network is coupled to a resonant charging network via a first switch. The resonant charging network is coupled at a node to a storage capacitor. An output load is coupled to the storage capacitor via a second switch. A de-Q-ing network is coupled to the resonant charging network via a third switch. The trigger for the third switch is a derived function of the initial voltage of the power supply network, the initial voltage of the storage capacitor, and the present voltage of the storage capacitor. A first trigger closes the first switch and charges the capacitor. The third trigger is asserted according to the derived function to close the third switch. When the third switch is closed, the first switch opens and voltage on the node is regulated. The second trigger may be thereafter asserted to discharge the capacitor into the output load.
NASA Technical Reports Server (NTRS)
Phillips, William H; Brown, B Porter; Matthews, James T , Jr
1953-01-01
A number of examples are presented of control difficulties not completely covered by existing handling-qualities requirements. 520/3:*:These control difficulties appear to result from a tendency for dynamic instability of the combination of pilot, control system, and airplane. The unsatisfactory characteristics involved have been encountered most frequently with hydraulic-power control systems. The nature of the difficulties may range from a slight interference with the ability of the pilot to hold precisely straight and level flight to a dangerous tendency toward divergent short-period oscillations which require constant attention of the pilot to control. Tests of a bomber and a fighter airplane with experimental power control systems have been made to study this problem further. The results of the investigation show that control difficulties of the type considered have always been associated with a marked phase difference between the pilot's control force and the associated control-surface deflection. The presence of static friction in the control valves of hydraulic-power control systems was found to be the explanation for unsatisfactory characteristics in several airplanes equipped with such systems. The valve friction may cause a phase lag between the pilot's control force and the associated control-surface deflection approaching 180 degrees at small control deflections. Definite limits or simple rules for the tolerable amount of valve friction appear to be difficult to establish because of the large number of variables which may influence the problem.The control characteristics of the airplanes tested were strongly influenced by minor design details of the power control systems.
Drug permeability prediction using PMF method.
Meng, Fancui; Xu, Weiren
2013-03-01
Drug permeability determines the oral availability of drugs via cellular membranes. Poor permeability makes a drug unsuitable for further development. The permeability may be estimated as the free energy change that the drug should overcome through crossing membrane. In this paper the drug permeability was simulated using molecular dynamics method and the potential energy profile was calculated with potential of mean force (PMF) method. The membrane was simulated using DPPC bilayer and three drugs with different permeability were tested. PMF studies on these three drugs show that doxorubicin (low permeability) should pass higher free energy barrier from water to DPPC bilayer center while ibuprofen (high permeability) has a lower energy barrier. Our calculation indicates that the simulation model we built is suitable to predict drug permeability.
Method of controlling gene expression
Peters, Norman K.; Frost, John W.; Long, Sharon R.
1991-12-03
A method of controlling expression of a DNA segment under the control of a nod gene promoter which comprises administering to a host containing a nod gene promoter an amount sufficient to control expression of the DNA segment of a compound of the formula: ##STR1## in which each R is independently H or OH, is described.
Phase analysis method for burst onset prediction
NASA Astrophysics Data System (ADS)
Stellino, Flavio; Mazzoni, Alberto; Storace, Marco
2017-02-01
The response of bursting neurons to fluctuating inputs is usually hard to predict, due to their strong nonlinearity. For the same reason, decoding the injected stimulus from the activity of a bursting neuron is generally difficult. In this paper we propose a method describing (for neuron models) a mechanism of phase coding relating the burst onsets with the phase profile of the input current. This relation suggests that burst onset may provide a way for postsynaptic neurons to track the input phase. Moreover, we define a method of phase decoding to solve the inverse problem and estimate the likelihood of burst onset given the input state. Both methods are presented here in a unified framework, describing a complete coding-decoding procedure. This procedure is tested by using different neuron models, stimulated with different inputs (stochastic, sinusoidal, up, and down states). The results obtained show the efficacy and broad range of application of the proposed methods. Possible applications range from the study of sensory information processing, in which phase-of-firing codes are known to play a crucial role, to clinical applications such as deep brain stimulation, helping to design stimuli in order to trigger or prevent neural bursting.
Optimal Control of Distributed Energy Resources using Model Predictive Control
Mayhorn, Ebony T.; Kalsi, Karanjit; Elizondo, Marcelo A.; Zhang, Wei; Lu, Shuai; Samaan, Nader A.; Butler-Purry, Karen
2012-07-22
In an isolated power system (rural microgrid), Distributed Energy Resources (DERs) such as renewable energy resources (wind, solar), energy storage and demand response can be used to complement fossil fueled generators. The uncertainty and variability due to high penetration of wind makes reliable system operations and controls challenging. In this paper, an optimal control strategy is proposed to coordinate energy storage and diesel generators to maximize wind penetration while maintaining system economics and normal operation. The problem is formulated as a multi-objective optimization problem with the goals of minimizing fuel costs and changes in power output of diesel generators, minimizing costs associated with low battery life of energy storage and maintaining system frequency at the nominal operating value. Two control modes are considered for controlling the energy storage to compensate either net load variability or wind variability. Model predictive control (MPC) is used to solve the aforementioned problem and the performance is compared to an open-loop look-ahead dispatch problem. Simulation studies using high and low wind profiles, as well as, different MPC prediction horizons demonstrate the efficacy of the closed-loop MPC in compensating for uncertainties in wind and demand.
Systems and methods for predicting materials properties
Ceder, Gerbrand; Fischer, Chris; Tibbetts, Kevin; Morgan, Dane; Curtarolo, Stefano
2007-11-06
Systems and methods for predicting features of materials of interest. Reference data are analyzed to deduce relationships between the input data sets and output data sets. Reference data includes measured values and/or computed values. The deduced relationships can be specified as equations, correspondences, and/or algorithmic processes that produce appropriate output data when suitable input data is used. In some instances, the output data set is a subset of the input data set, and computational results may be refined by optionally iterating the computational procedure. To deduce features of a new material of interest, a computed or measured input property of the material is provided to an equation, correspondence, or algorithmic procedure previously deduced, and an output is obtained. In some instances, the output is iteratively refined. In some instances, new features deduced for the material of interest are added to a database of input and output data for known materials.
Aircraft digital control design methods
NASA Technical Reports Server (NTRS)
Powell, J. D.; Parsons, E.; Tashker, M. G.
1976-01-01
Variations in design methods for aircraft digital flight control are evaluated and compared. The methods fall into two categories; those where the design is done in the continuous domain (or s plane) and those where the design is done in the discrete domain (or z plane). Design method fidelity is evaluated by examining closed loop root movement and the frequency response of the discretely controlled continuous aircraft. It was found that all methods provided acceptable performance for sample rates greater than 10 cps except the uncompensated s plane design method which was acceptable above 20 cps. A design procedure based on optimal control methods was proposed that provided the best fidelity at very slow sample rates and required no design iterations for changing sample rates.
Comparison of Predictive Modeling Methods of Aircraft Landing Speed
NASA Technical Reports Server (NTRS)
Diallo, Ousmane H.
2012-01-01
Expected increases in air traffic demand have stimulated the development of air traffic control tools intended to assist the air traffic controller in accurately and precisely spacing aircraft landing at congested airports. Such tools will require an accurate landing-speed prediction to increase throughput while decreasing necessary controller interventions for avoiding separation violations. There are many practical challenges to developing an accurate landing-speed model that has acceptable prediction errors. This paper discusses the development of a near-term implementation, using readily available information, to estimate/model final approach speed from the top of the descent phase of flight to the landing runway. As a first approach, all variables found to contribute directly to the landing-speed prediction model are used to build a multi-regression technique of the response surface equation (RSE). Data obtained from operations of a major airlines for a passenger transport aircraft type to the Dallas/Fort Worth International Airport are used to predict the landing speed. The approach was promising because it decreased the standard deviation of the landing-speed error prediction by at least 18% from the standard deviation of the baseline error, depending on the gust condition at the airport. However, when the number of variables is reduced to the most likely obtainable at other major airports, the RSE model shows little improvement over the existing methods. Consequently, a neural network that relies on a nonlinear regression technique is utilized as an alternative modeling approach. For the reduced number of variables cases, the standard deviation of the neural network models errors represent over 5% reduction compared to the RSE model errors, and at least 10% reduction over the baseline predicted landing-speed error standard deviation. Overall, the constructed models predict the landing-speed more accurately and precisely than the current state-of-the-art.
The predictive protective control of the heat exchanger
NASA Astrophysics Data System (ADS)
Nevriva, Pavel; Filipova, Blanka; Vilimec, Ladislav
2016-06-01
The paper deals with the predictive control applied to flexible cogeneration energy system FES. FES was designed and developed by the VITKOVICE POWER ENGINEERING joint-stock company and represents a new solution of decentralized cogeneration energy sources. In FES, the heating medium is flue gas generated by combustion of a solid fuel. The heated medium is power gas, which is a gas mixture of air and water steam. Power gas is superheated in the main heat exchanger and led to gas turbines. To protect the main heat exchanger against damage by overheating, the novel predictive protective control based on the mathematical model of exchanger was developed. The paper describes the principle, the design and the simulation of the predictive protective method applied to main heat exchanger of FES.
NASA Technical Reports Server (NTRS)
Mollo, Christopher G.; Bernhard, Robert J.
1987-01-01
An optimal active noise controller is formulated and analyzed for three different active noise control problems. The first problem formulated is the active control of enclosed or partially enclosed harmonic sound fields where the noise source strengths and enclosure boundary description are known. The enclosure boundary is described by either pressure, velocity, or impedance boundary conditions. The second problem formulated is the active control of the free field power radiated from a distributed noise source with a known time harmonic surface velocity. The third problem formulated is the active control of enclosed or partially enclosed harmonic sound field where the noise source strengths of enclosure boundary description may not be known. All three formulations are derived using an indirect boundary element technique. Formulation and verification of an indirect boundary element method is presented. The active noise controller formulations for enclosures are capable of analyzing systems with generalized enclosure shapes, point noise sources, and/or locally reacting impedance boundary conditions. For each formulation, representative results of optimal active noise controller case studies are presented, and some general conclusions are drawn.
Birth control - slow release methods
Contraception - slow-release hormonal methods; Progestin implants; Progestin injections; Skin patch; Vaginal ring ... implants while breastfeeding. Progestin implants work better than birth control pills to prevent pregnancy. Very few women who ...
Predictive onboard flow control for packet switching satellites
NASA Technical Reports Server (NTRS)
Bobinsky, Eric A.
1992-01-01
We outline two alternate approaches to predicting the onset of congestion in a packet switching satellite, and argue that predictive, rather than reactive, flow control is necessary for the efficient operation of such a system. The first method discussed is based on standard, statistical techniques which are used to periodically calculate a probability of near-term congestion based on arrival rate statistics. If this probability exceeds a present threshold, the satellite would transmit a rate-reduction signal to all active ground stations. The second method discussed would utilize a neural network to periodically predict the occurrence of buffer overflow based on input data which would include, in addition to arrival rates, the distributions of packet lengths, source addresses, and destination addresses.
Adaptive model predictive process control using neural networks
Buescher, Kevin L.; Baum, Christopher C.; Jones, Roger D.
1997-01-01
A control system for controlling the output of at least one plant process output parameter is implemented by adaptive model predictive control using a neural network. An improved method and apparatus provides for sampling plant output and control input at a first sampling rate to provide control inputs at the fast rate. The MPC system is, however, provided with a network state vector that is constructed at a second, slower rate so that the input control values used by the MPC system are averaged over a gapped time period. Another improvement is a provision for on-line training that may include difference training, curvature training, and basis center adjustment to maintain the weights and basis centers of the neural in an updated state that can follow changes in the plant operation apart from initial off-line training data.
Adaptive model predictive process control using neural networks
Buescher, K.L.; Baum, C.C.; Jones, R.D.
1997-08-19
A control system for controlling the output of at least one plant process output parameter is implemented by adaptive model predictive control using a neural network. An improved method and apparatus provides for sampling plant output and control input at a first sampling rate to provide control inputs at the fast rate. The MPC system is, however, provided with a network state vector that is constructed at a second, slower rate so that the input control values used by the MPC system are averaged over a gapped time period. Another improvement is a provision for on-line training that may include difference training, curvature training, and basis center adjustment to maintain the weights and basis centers of the neural in an updated state that can follow changes in the plant operation apart from initial off-line training data. 46 figs.
Cascade generalized predictive control strategy for boiler drum level.
Xu, Min; Li, Shaoyuan; Cai, Wenjian
2005-07-01
This paper proposes a cascade model predictive control scheme for boiler drum level control. By employing generalized predictive control structures for both inner and outer loops, measured and unmeasured disturbances can be effectively rejected, and drum level at constant load is maintained. In addition, nonminimum phase characteristic and system constraints in both loops can be handled effectively by generalized predictive control algorithms. Simulation results are provided to show that cascade generalized predictive control results in better performance than that of well tuned cascade proportional integral differential controllers. The algorithm has also been implemented to control a 75-MW boiler plant, and the results show an improvement over conventional control schemes.
Zygarlicke, C.J.; Mann, M.D.; Laudal, D.L.; Miller, S.J.
1994-01-01
The Energy & Environmental Research Center (EERC) has been developing advanced indices that rank coals according to their fouling and slagging propensity in utility boilers. The indices are based on sophisticated analytical techniques for identifying and quantifying coal inorganics and are useful in predicting the effects of proposed operational changes on ash deposition in coal-fired boilers. These indices are intended to provide an economical way to reduce the amount of full-scale testing needed to determine the best means of minimizing ash-related problems. The successful design and operation of the fluidized-bed combustor requires the ability to control and mitigate ash-related problems. The major ash-related problems in FBC are agglomeration of bed material, ash deposition on heat-transfer surfaces, ash deposition on refractory and uncooled surfaces, corrosion, and erosion. The focus of the Development of Methods to Predict Agglomeration and Deposition in FBCs is on the agglomeration and deposition problems in atmospheric bubbling and circulating beds. The 1990 Clean Air Act Amendments require study of air toxic emissions from coal combustion systems. Since most of the toxic metals present in coal will be in particulate form, a high level of fine-particle control appears to be the best approach to achieving a high level of air toxics control. However, over 50% of mercury and a portion of selenium emissions are in vapor form and are not typically collected in particulate control devices. Therefore, the goal of this project is to develop methods that capture the vapor-phase metals while simultaneously achieving ultrahigh collection efficiency of particulate air toxics.
Security control methods for CEDR
Rotem, D.
1990-09-01
The purpose of this document is to summarize the findings of recent studies on the security problem in statistical databases and examine their applicability to the specific needs of CEDR. The document is organized as follows: In Section 2 we describe some general control methods which are available on most commercial database software. In Section 3 we provide a classification of statistical security methods. In Section 4 we analyze the type of users of CEDR and the security control methods which may be applied to each type. In Section 5 we summarize the findings of this study and recommend possible solutions.
Flutter prediction for a wing with active aileron control
NASA Technical Reports Server (NTRS)
Penning, K.; Sandlin, D. R.
1983-01-01
A method for predicting the vibrational stability of an aircraft with an analog active aileron flutter suppression system (FSS) is expained. Active aileron refers to the use of an active control system connected to the aileron to damp vibrations. Wing vibrations are sensed by accelerometers and the information is used to deflect the aileron. Aerodynamic force caused by the aileron deflection oppose wing vibrations and effectively add additional damping to the system.
Prediction Methods in Solar Sunspots Cycles
Ng, Kim Kwee
2016-01-01
An understanding of the Ohl’s Precursor Method, which is used to predict the upcoming sunspots activity, is presented by employing a simplified movable divided-blocks diagram. Using a new approach, the total number of sunspots in a solar cycle and the maximum averaged monthly sunspots number Rz(max) are both shown to be statistically related to the geomagnetic activity index in the prior solar cycle. The correlation factors are significant and they are respectively found to be 0.91 ± 0.13 and 0.85 ± 0.17. The projected result is consistent with the current observation of solar cycle 24 which appears to have attained at least Rz(max) at 78.7 ± 11.7 in March 2014. Moreover, in a statistical study of the time-delayed solar events, the average time between the peak in the monthly geomagnetic index and the peak in the monthly sunspots numbers in the succeeding ascending phase of the sunspot activity is found to be 57.6 ± 3.1 months. The statistically determined time-delayed interval confirms earlier observational results by others that the Sun’s electromagnetic dipole is moving toward the Sun’s Equator during a solar cycle. PMID:26868269
Predictive Control of Networked Multiagent Systems via Cloud Computing.
Liu, Guo-Ping
2017-01-18
This paper studies the design and analysis of networked multiagent predictive control systems via cloud computing. A cloud predictive control scheme for networked multiagent systems (NMASs) is proposed to achieve consensus and stability simultaneously and to compensate for network delays actively. The design of the cloud predictive controller for NMASs is detailed. The analysis of the cloud predictive control scheme gives the necessary and sufficient conditions of stability and consensus of closed-loop networked multiagent control systems. The proposed scheme is verified to characterize the dynamical behavior and control performance of NMASs through simulations. The outcome provides a foundation for the development of cooperative and coordinative control of NMASs and its applications.
Transformation method and wave control
NASA Astrophysics Data System (ADS)
Chang, Zheng; Hu, Jin; Hu, Geng-Kai
2010-12-01
Transformation method provides an efficient way to control wave propagation by materials. The transformed relations for field and material during a transformation are essential to fulfill this method. We propose a systematic method to derive the transformed relations for a general physic process, the constraint conditions are obtained by considering geometrical and physical constraint during a mapping. The proposed method is applied to Navier's equation for elastodynamics, Helmholtz's equation for acoustic wave and Maxwell's equation for electromagnetic wave, the corresponding transformed relations are derived, which can be used in the framework of transformation method for wave control. We show that contrary to electromagnetic wave, the transformed relations are not uniquely determined for elastic wave and acoustic wave, so we have a freedom to choose them differently. Using the obtained transformed relations, we also provide some examples for device design, a concentrator for elastic wave, devices for illusion acoustic and illusion optics are conceived and validated by numerical simulations.
Experimental results of a predictive neural network HVAC controller
Jeannette, E.; Assawamartbunlue, K.; Kreider, J.F.; Curtiss, P.S.
1998-12-31
Proportional, integral, and derivative (PID) control is widely used in many HVAC control processes and requires constant attention for optimal control. Artificial neural networks offer the potential for improved control of processes through predictive techniques. This paper introduces and shows experimental results of a predictive neural network (PNN) controller applied to an unstable hot water system in an air-handling unit. Actual laboratory testing of the PNN and PID controllers show favorable results for the PNN controller.
Nonlinear Methods Applied to Atmospheric Prediction
2007-11-02
states being a minimum and the spatial correlation being a maximum to determine the best analogs. They also started exploring the value of finding...the best analog of each of the trajectories in the ensemble of numerical predictions from the start of the prediction to the verification time. These...Benard convection, with the fluid layer heated below and cooled above, cellular convection occurs with cells of width very nearly equal to their
Predictive and Neural Predictive Control of Uncertain Systems
NASA Technical Reports Server (NTRS)
Kelkar, Atul G.
2000-01-01
Accomplishments and future work are:(1) Stability analysis: the work completed includes characterization of stability of receding horizon-based MPC in the setting of LQ paradigm. The current work-in-progress includes analyzing local as well as global stability of the closed-loop system under various nonlinearities; for example, actuator nonlinearities; sensor nonlinearities, and other plant nonlinearities. Actuator nonlinearities include three major types of nonlineaxities: saturation, dead-zone, and (0, 00) sector. (2) Robustness analysis: It is shown that receding horizon parameters such as input and output horizon lengths have direct effect on the robustness of the system. (3) Code development: A matlab code has been developed which can simulate various MPC formulations. The current effort is to generalize the code to include ability to handle all plant types and all MPC types. (4) Improved predictor: It is shown that MPC design using better predictors that can minimize prediction errors. It is shown analytically and numerically that Smith predictor can provide closed-loop stability under GPC operation for plants with dead times where standard optimal predictor fails. (5) Neural network predictors: When neural network is used as predictor it can be shown that neural network predicts the plant output within some finite error bound under certain conditions. Our preliminary study shows that with proper choice of update laws and network architectures such bound can be obtained. However, much work needs to be done to obtain a similar result in general case.
Earthquake prediction: Simple methods for complex phenomena
NASA Astrophysics Data System (ADS)
Luen, Bradley
2010-09-01
Earthquake predictions are often either based on stochastic models, or tested using stochastic models. Tests of predictions often tacitly assume predictions do not depend on past seismicity, which is false. We construct a naive predictor that, following each large earthquake, predicts another large earthquake will occur nearby soon. Because this "automatic alarm" strategy exploits clustering, it succeeds beyond "chance" according to a test that holds the predictions _xed. Some researchers try to remove clustering from earthquake catalogs and model the remaining events. There have been claims that the declustered catalogs are Poisson on the basis of statistical tests we show to be weak. Better tests show that declustered catalogs are not Poisson. In fact, there is evidence that events in declustered catalogs do not have exchangeable times given the locations, a necessary condition for the Poisson. If seismicity followed a stochastic process, an optimal predictor would turn on an alarm when the conditional intensity is high. The Epidemic-Type Aftershock (ETAS) model is a popular point process model that includes clustering. It has many parameters, but is still a simpli_cation of seismicity. Estimating the model is di_cult, and estimated parameters often give a non-stationary model. Even if the model is ETAS, temporal predictions based on the ETAS conditional intensity are not much better than those of magnitude-dependent automatic (MDA) alarms, a much simpler strategy with only one parameter instead of _ve. For a catalog of Southern Californian seismicity, ETAS predictions again o_er only slight improvement over MDA alarms
Potential Method of Predicting Coronal Mass Ejection
NASA Astrophysics Data System (ADS)
Imholt, Timothy
2001-10-01
Coronal Mass Ejections (CME) may be described as a blast of gas and highly charged solar mass fragments ejected into space. These ejections, when directed toward Earth, have many different effects on terrestrial systems ranging from the Aurora Borealis to changes in wireless communication. The early prediction of these solar events cannot be overlooked. There are several models currently accepted and utilized to predict these events, however, with earlier prediction of both the event and the location on the sun where the event occurs allows us to have earlier warnings as to when they will affect man-made systems. A better prediction could perhaps be achieved by utilizing low angular resolution radio telescope arrays to catalog data from the sun at different radio frequencies on a regular basis. Once this data is cataloged a better predictor for these CME’s could be found. We propose a model that allows a prediction to be made that appears to be longer than 24 hours.
Potential Method of Predicting Coronal Mass Ejection
NASA Astrophysics Data System (ADS)
Imholt, Timothy; Roberts, J. A.; Scott, J. B.; University Of North Texas Team
2000-10-01
Coronal Mass Ejections (CME) may be described as a blast of gas and highly charged solar mass fragments ejected into space. These ejections, when directed toward Earth, have many different effects on terrestrial systems ranging from the Aurora Borealis to changes in wireless communications. The importance of an early prediction of these solar events cannot be overlooked. There are several models currently accepted and utilized to predict these events, however, with earlier prediction of both the event and the location on the sun where the event occur allows us to have earlier warnings as to when they will effect man-made systems. A better prediction could perhaps be achieved by utilizing low angular resolution radio telescope arrays to catalog data from the sun at different radio frequencies on a regular basis. Once this data is cataloged a better predictor for these CME's could be found. We propose a model that allows a prediction to be made that appears to be longer than 24 hours.
Applying new optimization algorithms to more predictive control
Wright, S.J.
1996-03-01
The connections between optimization and control theory have been explored by many researchers and optimization algorithms have been applied with success to optimal control. The rapid pace of developments in model predictive control has given rise to a host of new problems to which optimization has yet to be applied. Concurrently, developments in optimization, and especially in interior-point methods, have produced a new set of algorithms that may be especially helpful in this context. In this paper, we reexamine the relatively simple problem of control of linear processes subject to quadratic objectives and general linear constraints. We show how new algorithms for quadratic programming can be applied efficiently to this problem. The approach extends to several more general problems in straightforward ways.
Sequential Prediction for Information Fusion and Control
2013-10-14
paradigms , and external feedback mechanisms. Online prediction and targeted collection of information is an emerging paradigm at the intersection of...unknown, environmental dynamics, potentially stemming from an adversary who reacts to sensing actions, active sensing paradigms , and external feedback mech...anisms. Online prediction and targeted collection of information is an emerging paradigm at the inter- section of optimization, machine learning and
Integrated method for combustion stability prediction
NASA Astrophysics Data System (ADS)
Yu, Y. C.; O'Hara, L.; Smith, R. J.; Anderson, W. E.; Merkle, C. L.
2011-10-01
Major obstacles in overcoming combustion instability include the absence of a mechanistic and a priori prediction capability, and the difficulty in studying instability in the laboratory due to the perceived need for testing at the full-scale pressure and geometry to ensure that important processes are maintained. A hierarchal approach toward combustion instability is described that comprises experiment, analysis, and highfidelity computation to develop combustion response submodels that can be used in engineering-level design analysis. The paper provides an illustrative example of how these elements are used to develop a prediction for growth rates in model rocket combustors that generate spontaneous longitudinal combustion instabilities.
Predictions for rapid methods and automation in food microbiology.
Fung, Daniel Y C
2002-01-01
A discussion is presented on the present status of rapid methods and automation in microbiology. Predictions are also presented for development in the following areas: viable cell counts; real-time monitoring of hygiene; polymerase chain reaction, ribotyping, and genetic tests in food laboratories; automated enzyme-linked immunosorbent assay and immunotests; rapid dipstick technology; biosensors for Hazard Analysis Critical Control Point programs; instant detection of target pathogens by computer-generated matrix; effective separation and concentration for rapid identification of target cells; microbiological alert systems in food packages; and rapid alert kits for detecting pathogens at home.
A Novel Method for Satellite Maneuver Prediction
NASA Astrophysics Data System (ADS)
Shabarekh, C.; Kent-Bryant, J.; Keselman, G.; Mitidis, A.
2016-09-01
A space operations tradecraft consisting of detect-track-characterize-catalog is insufficient for maintaining Space Situational Awareness (SSA) as space becomes increasingly congested and contested. In this paper, we apply analytical methodology from the Geospatial-Intelligence (GEOINT) community to a key challenge in SSA: predicting where and when a satellite may maneuver in the future. We developed a machine learning approach to probabilistically characterize Patterns of Life (PoL) for geosynchronous (GEO) satellites. PoL are repeatable, predictable behaviors that an object exhibits within a context and is driven by spatio-temporal, relational, environmental and physical constraints. An example of PoL are station-keeping maneuvers in GEO which become generally predictable as the satellite re-positions itself to account for orbital perturbations. In an earlier publication, we demonstrated the ability to probabilistically predict maneuvers of the Galaxy 15 (NORAD ID: 28884) satellite with high confidence eight days in advance of the actual maneuver. Additionally, we were able to detect deviations from expected PoL within hours of the predicted maneuver [6]. This was done with a custom unsupervised machine learning algorithm, the Interval Similarity Model (ISM), which learns repeating intervals of maneuver patterns from unlabeled historical observations and then predicts future maneuvers. In this paper, we introduce a supervised machine learning algorithm that works in conjunction with the ISM to produce a probabilistic distribution of when future maneuvers will occur. The supervised approach uses a Support Vector Machine (SVM) to process the orbit state whereas the ISM processes the temporal intervals between maneuvers and the physics-based characteristics of the maneuvers. This multiple model approach capitalizes on the mathematical strengths of each respective algorithm while incorporating multiple features and inputs. Initial findings indicate that the combined
Method for controlling powertrain pumps
Sime, Karl Andrew; Spohn, Brian L; Demirovic, Besim; Martini, Ryan D; Miller, Jean Marie
2013-10-22
A method of controlling a pump supplying a fluid to a transmission includes sensing a requested power and an excess power for a powertrain. The requested power substantially meets the needs of the powertrain, while the excess power is not part of the requested power. The method includes sensing a triggering condition in response to the ability to convert the excess power into heat in the transmission, and determining that an operating temperature of the transmission is below a maximum. The method also includes determining a calibrated baseline and a dissipation command for the pump. The calibrated baseline command is configured to supply the fluid based upon the requested power, and the dissipation command is configured to supply additional fluid and consume the excess power with the pump. The method operates the pump at a combined command, which is equal to the calibrated baseline command plus the dissipation command.
NASA Astrophysics Data System (ADS)
Ali, Zeeshan; Popov, Atanas A.; Charles, Guy
2013-06-01
A vehicle following control law, based on the model predictive control method, to perform transition manoeuvres (TMs) for a nonlinear adaptive cruise control (ACC) vehicle is presented in this paper. The TM controller ultimately establishes a steady-state following distance behind a preceding vehicle to avoid collision, keeping account of acceleration limits, safe distance, and state constraints. The vehicle dynamics model is for continuous-time domain and captures the real dynamics of the sub-vehicle models for steady-state and transient operations. The ACC vehicle can execute the TM successfully and achieves a steady-state in the presence of complex dynamics within the constraint boundaries.
Gene structure prediction by linguistic methods
Dong, S.; Searls, D.B.
1994-10-01
The higher-order structure of genes and other features of biological sequences can be described by means of formal grammars. These grammars can then be used by general-purpose parsers to detect and to assemble such structures by means of syntactic pattern recognition. We describe a grammar and parser for eukaryotic protein-encoding genes, which by some measures is as effective as current connectionist and combinatorial algorithms in predicting gene structures for sequence database entries. Parameters of the grammar rules are optimized for several different species, and mixing experiments are performed to determine the degree of species specificity and the relative importance of compositional, signal-based, and syntactic components in gene prediction. 24 refs., 5 figs., 3 tabs.
Control method for prosthetic devices
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr. (Inventor)
1995-01-01
A control system and method for prosthetic devices is provided. The control system comprises a transducer for receiving movement from a body part for generating a sensing signal associated with that movement. The sensing signal is processed by a linearizer for linearizing the sensing signal to be a linear function of the magnitude of the distance moved by the body part. The linearized sensing signal is normalized to be a function of the entire range of body part movement from the no-shrug position of the moveable body part. The normalized signal is divided into a plurality of discrete command signals. The discrete command signals are used by typical converter devices which are in operational association with the prosthetic device. The converter device uses the discrete command signals for driving the moveable portions of the prosthetic device and its sub-prosthesis. The method for controlling a prosthetic device associated with the present invention comprises the steps of receiving the movement from the body part, generating a sensing signal in association with the movement of the body part, linearizing the sensing signal to be a linear function of the magnitude of the distance moved by the body part, normalizing the linear signal to be a function of the entire range of the body part movement, dividing the normalized signal into a plurality of discrete command signals, and implementing the plurality of discrete command signals for driving the respective moveable prosthesis device and its sub-prosthesis.
Predictive powertrain control using powertrain history and GPS data
Weslati, Feisel; Krupadanam, Ashish A
2015-03-03
A method and powertrain apparatus that predicts a route of travel for a vehicle and uses historical powertrain loads and speeds for the predicted route of travel to optimize at least one powertrain operation for the vehicle.
Gaussian mixture models as flux prediction method for central receivers
NASA Astrophysics Data System (ADS)
Grobler, Annemarie; Gauché, Paul; Smit, Willie
2016-05-01
Flux prediction methods are crucial to the design and operation of central receiver systems. Current methods such as the circular and elliptical (bivariate) Gaussian prediction methods are often used in field layout design and aiming strategies. For experimental or small central receiver systems, the flux profile of a single heliostat often deviates significantly from the circular and elliptical Gaussian models. Therefore a novel method of flux prediction was developed by incorporating the fitting of Gaussian mixture models onto flux profiles produced by flux measurement or ray tracing. A method was also developed to predict the Gaussian mixture model parameters of a single heliostat for a given time using image processing. Recording the predicted parameters in a database ensures that more accurate predictions are made in a shorter time frame.
Consensus and Stability Analysis of Networked Multiagent Predictive Control Systems.
Liu, Guo-Ping
2016-03-17
This paper is concerned with the consensus and stability problem of multiagent control systems via networks with communication delays and data loss. A networked multiagent predictive control scheme is proposed to achieve output consensus and also compensate for the communication delays and data loss actively. The necessary and sufficient conditions of achieving both consensus and stability of the closed-loop networked multiagent control systems are derived. An important result that is obtained is that the consensus and stability of closed-loop networked multiagent predictive control systems are not related to the communication delays and data loss. An example illustrates the performance of the networked multiagent predictive control scheme.
A survey of the broadband shock associated noise prediction methods
NASA Technical Reports Server (NTRS)
Kim, Chan M.; Krejsa, Eugene A.; Khavaran, Abbas
1992-01-01
Several different prediction methods to estimate the broadband shock associated noise of a supersonic jet are introduced and compared with experimental data at various test conditions. The nozzle geometries considered for comparison include a convergent and a convergent-divergent nozzle, both axisymmetric. Capabilities and limitations of prediction methods in incorporating the two nozzle geometries, flight effect, and temperature effect are discussed. Predicted noise field shows the best agreement for a convergent nozzle geometry under static conditions. Predicted results for nozzles in flight show larger discrepancies from data and more dependable flight data are required for further comparison. Qualitative effects of jet temperature, as observed in experiment, are reproduced in predicted results.
Model predictive control power management strategies for HEVs: A review
NASA Astrophysics Data System (ADS)
Huang, Yanjun; Wang, Hong; Khajepour, Amir; He, Hongwen; Ji, Jie
2017-02-01
This paper presents a comprehensive review of power management strategy (PMS) utilized in hybrid electric vehicles (HEVs) with an emphasis on model predictive control (MPC) based strategies for the first time. Research on MPC-based power management systems for HEVs has intensified recently due to its many inherent merits. The categories of the existing PMSs are identified from the latest literature, and a brief study of each type is conducted. Then, the MPC approach is introduced and its advantages are discussed. Based on the acquisition method of driver behavior used for state prediction and the dynamic model used, the MPC is classified and elaborated. Factors that affect the performance of the MPC are put forward, including prediction accuracy, design parameters, and solvers. Finally, several important issues in the application of MPC-based power management strategies and latest developing trends are discussed. This paper not only provides a comprehensive analysis of MPC-based power management strategies for HEVs but also puts forward the future and emphasis of future study, which will promote the development of energy management controller with high performance and low cost for HEVs.
Study on Noise Prediction Model and Control Schemes for Substation
Gao, Yang; Liu, Songtao
2014-01-01
With the government's emphasis on environmental issues of power transmission and transformation project, noise pollution has become a prominent problem now. The noise from the working transformer, reactor, and other electrical equipment in the substation will bring negative effect to the ambient environment. This paper focuses on using acoustic software for the simulation and calculation method to control substation noise. According to the characteristics of the substation noise and the techniques of noise reduction, a substation's acoustic field model was established with the SoundPLAN software to predict the scope of substation noise. On this basis, 4 reasonable noise control schemes were advanced to provide some helpful references for noise control during the new substation's design and construction process. And the feasibility and application effect of these control schemes can be verified by using the method of simulation modeling. The simulation results show that the substation always has the problem of excessive noise at boundary under the conventional measures. The excess noise can be efficiently reduced by taking the corresponding noise reduction methods. PMID:24672356
Methanol tailgas combustor control method
Hart-Predmore, David J.; Pettit, William H.
2002-01-01
A method for controlling the power and temperature and fuel source of a combustor in a fuel cell apparatus to supply heat to a fuel processor where the combustor has dual fuel inlet streams including a first fuel stream, and a second fuel stream of anode effluent from the fuel cell and reformate from the fuel processor. In all operating modes, an enthalpy balance is determined by regulating the amount of the first and/or second fuel streams and the quantity of the first air flow stream to support fuel processor power requirements.
Improved method for predicting protein fold patterns with ensemble classifiers.
Chen, W; Liu, X; Huang, Y; Jiang, Y; Zou, Q; Lin, C
2012-01-27
Protein folding is recognized as a critical problem in the field of biophysics in the 21st century. Predicting protein-folding patterns is challenging due to the complex structure of proteins. In an attempt to solve this problem, we employed ensemble classifiers to improve prediction accuracy. In our experiments, 188-dimensional features were extracted based on the composition and physical-chemical property of proteins and 20-dimensional features were selected using a coupled position-specific scoring matrix. Compared with traditional prediction methods, these methods were superior in terms of prediction accuracy. The 188-dimensional feature-based method achieved 71.2% accuracy in five cross-validations. The accuracy rose to 77% when we used a 20-dimensional feature vector. These methods were used on recent data, with 54.2% accuracy. Source codes and dataset, together with web server and software tools for prediction, are available at: http://datamining.xmu.edu.cn/main/~cwc/ProteinPredict.html.
Method for Predicting Which Customers' Time Deposit Balances Will Increase
NASA Astrophysics Data System (ADS)
Ono, Toshiyuki; Yoshikawa, Hiroshi; Morita, Masahiro; Komoda, Norihisa
This paper proposes a method of predicting which customers' account balances will increase by using data mining to effectively and efficiently promote sales. Prediction by mining all the data in a business is difficult because of much time required to collect, process, and calculate it. The selection of which features are used for prediction is a critical issue. We propose a method of selecting features to improve the accuracy of prediction within practical time limits. It consists of three parts: (1) converting collected features into financial behavior features that reflect customer actions, (2) extracting features affecting increases in account balances from these collected and financial behavior features, and (3) predicting customers whose account balances will increase based on the extracted features. We found the accuracy of prediction in an experiment with our method to be higher than with other conventional methods.
Multiplexed Predictive Control of a Large Commercial Turbofan Engine
NASA Technical Reports Server (NTRS)
Richter, hanz; Singaraju, Anil; Litt, Jonathan S.
2008-01-01
Model predictive control is a strategy well-suited to handle the highly complex, nonlinear, uncertain, and constrained dynamics involved in aircraft engine control problems. However, it has thus far been infeasible to implement model predictive control in engine control applications, because of the combination of model complexity and the time allotted for the control update calculation. In this paper, a multiplexed implementation is proposed that dramatically reduces the computational burden of the quadratic programming optimization that must be solved online as part of the model-predictive-control algorithm. Actuator updates are calculated sequentially and cyclically in a multiplexed implementation, as opposed to the simultaneous optimization taking place in conventional model predictive control. Theoretical aspects are discussed based on a nominal model, and actual computational savings are demonstrated using a realistic commercial engine model.
Method for controlling protein crystallization
NASA Technical Reports Server (NTRS)
Noever, David A. (Inventor)
1993-01-01
A method and apparatus for controlling the crystallization of protein by solvent evaporation including placing a drop of protein solution between and in contact with a pair of parallel plates and driving one of the plates toward and away from the other plate in a controlled manner to adjust the spacing between the plates is presented. The drop of solution forms a liquid cylinder having a height dependent upon the plate spacing thereby effecting the surface area available for solvent evaporation. When the spacing is close, evaporation is slow. Evaporation is increased by increasing the spacing between the plates until the breaking point of the liquid cylinder. One plate is mounted upon a fixed post while the other plate is carried by a receptacle movable relative to the post and driven by a belt driven screw drive. The temperature and humidity of the drop of protein solution are controlled by sealing the drop within the receptacle and mounting a heater and dessicant within the receptacle.
Efficient Methods to Compute Genomic Predictions
Technology Transfer Automated Retrieval System (TEKTRAN)
Efficient methods for processing genomic data were developed to increase reliability of estimated breeding values and simultaneously estimate thousands of marker effects. Algorithms were derived and computer programs tested on simulated data for 50,000 markers and 2,967 bulls. Accurate estimates of ...
Constrained model predictive control, state estimation and coordination
NASA Astrophysics Data System (ADS)
Yan, Jun
In this dissertation, we study the interaction between the control performance and the quality of the state estimation in a constrained Model Predictive Control (MPC) framework for systems with stochastic disturbances. This consists of three parts: (i) the development of a constrained MPC formulation that adapts to the quality of the state estimation via constraints; (ii) the application of such a control law in a multi-vehicle formation coordinated control problem in which each vehicle operates subject to a no-collision constraint posed by others' imperfect prediction computed from finite bit-rate, communicated data; (iii) the design of the predictors and the communication resource assignment problem that satisfy the performance requirement from Part (ii). Model Predictive Control (MPC) is of interest because it is one of the few control design methods which preserves standard design variables and yet handles constraints. MPC is normally posed as a full-state feedback control and is implemented in a certainty-equivalence fashion with best estimates of the states being used in place of the exact state. However, if the state constraints were handled in the same certainty-equivalence fashion, the resulting control law could drive the real state to violate the constraints frequently. Part (i) focuses on exploring the inclusion of state estimates into the constraints. It does this by applying constrained MPC to a system with stochastic disturbances. The stochastic nature of the problem requires re-posing the constraints in a probabilistic form. In Part (ii), we consider applying constrained MPC as a local control law in a coordinated control problem of a group of distributed autonomous systems. Interactions between the systems are captured via constraints. First, we inspect the application of constrained MPC to a completely deterministic case. Formation stability theorems are derived for the subsystems and conditions on the local constraint set are derived in order to
Statistical energy analysis response prediction methods for structural systems
NASA Technical Reports Server (NTRS)
Davis, R. F.
1979-01-01
The results of an effort to document methods for accomplishing response predictions for commonly encountered aerospace structural configurations is presented. Application of these methods to specified aerospace structure to provide sample analyses is included. An applications manual, with the structural analyses appended as example problems is given. Comparisons of the response predictions with measured data are provided for three of the example problems.
A Versatile Nonlinear Method for Predictive Modeling
NASA Technical Reports Server (NTRS)
Liou, Meng-Sing; Yao, Weigang
2015-01-01
As computational fluid dynamics techniques and tools become widely accepted for realworld practice today, it is intriguing to ask: what areas can it be utilized to its potential in the future. Some promising areas include design optimization and exploration of fluid dynamics phenomena (the concept of numerical wind tunnel), in which both have the common feature where some parameters are varied repeatedly and the computation can be costly. We are especially interested in the need for an accurate and efficient approach for handling these applications: (1) capturing complex nonlinear dynamics inherent in a system under consideration and (2) versatility (robustness) to encompass a range of parametric variations. In our previous paper, we proposed to use first-order Taylor expansion collected at numerous sampling points along a trajectory and assembled together via nonlinear weighting functions. The validity and performance of this approach was demonstrated for a number of problems with a vastly different input functions. In this study, we are especially interested in enhancing the method's accuracy; we extend it to include the second-orer Taylor expansion, which however requires a complicated evaluation of Hessian matrices for a system of equations, like in fluid dynamics. We propose a method to avoid these Hessian matrices, while maintaining the accuracy. Results based on the method are presented to confirm its validity.
New Methods for Estimating Seasonal Potential Climate Predictability
NASA Astrophysics Data System (ADS)
Feng, Xia
This study develops two new statistical approaches to assess the seasonal potential predictability of the observed climate variables. One is the univariate analysis of covariance (ANOCOVA) model, a combination of autoregressive (AR) model and analysis of variance (ANOVA). It has the advantage of taking into account the uncertainty of the estimated parameter due to sampling errors in statistical test, which is often neglected in AR based methods, and accounting for daily autocorrelation that is not considered in traditional ANOVA. In the ANOCOVA model, the seasonal signals arising from external forcing are determined to be identical or not to assess any interannual variability that may exist is potentially predictable. The bootstrap is an attractive alternative method that requires no hypothesis model and is available no matter how mathematically complicated the parameter estimator. This method builds up the empirical distribution of the interannual variance from the resamplings drawn with replacement from the given sample, in which the only predictability in seasonal means arises from the weather noise. These two methods are applied to temperature and water cycle components including precipitation and evaporation, to measure the extent to which the interannual variance of seasonal means exceeds the unpredictable weather noise compared with the previous methods, including Leith-Shukla-Gutzler (LSG), Madden, and Katz. The potential predictability of temperature from ANOCOVA model, bootstrap, LSG and Madden exhibits a pronounced tropical-extratropical contrast with much larger predictability in the tropics dominated by El Nino/Southern Oscillation (ENSO) than in higher latitudes where strong internal variability lowers predictability. Bootstrap tends to display highest predictability of the four methods, ANOCOVA lies in the middle, while LSG and Madden appear to generate lower predictability. Seasonal precipitation from ANOCOVA, bootstrap, and Katz, resembling that
A numerical method for predicting hypersonic flowfields
NASA Technical Reports Server (NTRS)
Maccormack, Robert W.; Candler, Graham V.
1988-01-01
The flow about a body traveling at hypersonic speed is energetic enough to cause the atmospheric gases to react chemically and reach states in thermal nonequilibrium. In this paper, a new procedure based on Gauss-Seidel line relaxation is shown to solve the equations of hypersonic flow fields containing finite reaction rate chemistry and thermal nonequilibrium. The method requires a few hundred time steps and small computer times for axisymmetric flows about simple body shapes. The extension to more complex two-dimensional body geometries appears straightforward.
Model-Based Predictive Control of Turbulent Channel Flow
NASA Astrophysics Data System (ADS)
Kellogg, Steven M.; Collis, S. Scott
1999-11-01
In recent simulations of optimal turbulence control, the time horizon over which the control is determined matches the time horizon over which the flow is advanced. A popular workhorse of the controls community, Model-Based Predictive Control (MBPC), suggests using longer predictive horizons than advancement windows. Including additional time information in the optimization may generate improved controls. When the advancement horizon is smaller than the predictive horizon, part of the optimization and resulting control are discarded. Although this inherent inefficiency may be justified by improved control predictions, it has hampered prior investigations of MBPC for turbulent flow due to the expense associated with optimal control based on Direct Numerical Simulation. The current approach overcomes this by using our optimal control formulation based on Large Eddy Simulation. This presentation summarizes the results of optimal control simulations for turbulent channel flow using various ratios of advancement and predictive horizons. These results provide clues as to the roles of foresight, control history, cost functional, and turbulence structures for optimal control of wall-bounded turbulence.
Prospects for earthquake prediction and control
Healy, J.H.; Lee, W.H.K.; Pakiser, L.C.; Raleigh, C.B.; Wood, M.D.
1972-01-01
The San Andreas fault is viewed, according to the concepts of seafloor spreading and plate tectonics, as a transform fault that separates the Pacific and North American plates and along which relative movements of 2 to 6 cm/year have been taking place. The resulting strain can be released by creep, by earthquakes of moderate size, or (as near San Francisco and Los Angeles) by great earthquakes. Microearthquakes, as mapped by a dense seismograph network in central California, generally coincide with zones of the San Andreas fault system that are creeping. Microearthquakes are few and scattered in zones where elastic energy is being stored. Changes in the rate of strain, as recorded by tiltmeter arrays, have been observed before several earthquakes of about magnitude 4. Changes in fluid pressure may control timing of seismic activity and make it possible to control natural earthquakes by controlling variations in fluid pressure in fault zones. An experiment in earthquake control is underway at the Rangely oil field in Colorado, where the rates of fluid injection and withdrawal in experimental wells are being controlled. ?? 1972.
Scaling--which methods best predict performance?
Comfort, Paul; Pearson, Stephen J
2014-06-01
Athletes with a higher body mass (BM) tend to be stronger, with ratio scaling possibly eliminating this effect. The aim of this study was to compare relationships between sprint performances with scaled measures of strength and power. Fifteen professional rugby league players (age, 26.27 6 3.87 years; height, 183.33 6 6.37 cm; BM, 96.86 6 11.49 kg) performed 1 repetition maximum back squats, power cleans, squat jumps, and sprints (5, 10, and 20 m). Heavier athletes (forward) generated significantly greater absolute levels of power during the squat jump (5,659.11 6 710.35 vs.4,740.16 6 558.61 W; p , 0.001); however, when power data were scaled no differences were observed. Squat performance indicated no differences in absolute ability between the subgroups (190.6 6 14.25 vs. 205.7 6 18.35 kg), although the lighter group was significantly (p # 0.05) stronger than the heavier group when using ratio and allometric methods (2.1 vs. 1.9 kg · kg(-1) and 10.42 vs. 9.87 kg · kg(0.28)), respectively. Significant relationships with 5-m sprints were only observed for ratio and allometrically scaled power cleans (r = 20.625, p , 0.02; r = 20.675, p , 0.02), with similar correlations between allometrically scaled 10-m sprint and both back squat and power clean performances. Scaled power clean performances were also inversely correlated with 20-m sprints (r = 20.620, r = 20.638, p , 0.02). Where differences in absolute strength are apparent between individuals of different BM, then the use of scaling is required. Because of the similarity between ratio and allometric methods, simple ratio scaling is recommended.
Tuning the Model Predictive Control of a Crude Distillation Unit.
Yamashita, André Shigueo; Zanin, Antonio Carlos; Odloak, Darci
2016-01-01
Tuning the parameters of the Model Predictive Control (MPC) of an industrial Crude Distillation Unit (CDU) is considered here. A realistic scenario is depicted where the inputs of the CDU system have optimizing targets, which are provided by the Real Time Optimization layer of the control structure. It is considered the nominal case, in which both the CDU model and the MPC model are the same. The process outputs are controlled inside zones instead of at fixed set points. Then, the tuning procedure has to define the weights that penalize the output error with respect to the control zone, the weights that penalize the deviation of the inputs from their targets, as well as the weights that penalize the input moves. A tuning approach based on multi-objective optimization is proposed and applied to the MPC of the CDU system. The performance of the controller tuned with the proposed approach is compared through simulation with the results of an existing approach also based on multi-objective optimization. The simulation results are similar, but the proposed approach has a computational load significantly lower than the existing method. The tuning effort is also much lower than in the conventional practical approaches that are usually based on ad-hoc procedures.
NASA Astrophysics Data System (ADS)
Maiwald, Thomas; Winterhalder, Matthias; Aschenbrenner-Scheibe, Richard; Voss, Henning U.; Schulze-Bonhage, Andreas; Timmer, Jens
2004-07-01
Epilepsy is characterized by the spontaneous and unforeseeable occurrence of seizures, during which the perception or behavior of patients is disturbed. The predictability of these seizures would render novel therapeutic approaches possible. Several prediction methods have claimed to be able to predict seizures based on EEG recordings minutes in advance. However, the term seizure prediction is not unequivocally defined, different criteria to assess prediction methods exist, and only little attention has been paid to issues of sensitivity and false prediction rate. We introduce an assessment criterion called the seizure prediction characteristic that incorporates the assessment of sensitivity and false prediction rate. Within this framework, three nonlinear seizure prediction methods were evaluated on a large EEG data pool of 21 patients. Altogether, 582 h intracranial EEG data and 88 seizures were examined. With a rate of 1-3.6 false predictions per day, the “dynamical similarity index” achieves a sensitivity between 21 and 42%, which was the best result of the three methods. Sensitivity was between 18 and 31% for the extended, prospective version of the “accumulated energy” and between 13 and 30% for the “effective correlation dimension”. These results still are not sufficient for clinical applications.
Adaptive Current Control Method for Hybrid Active Power Filter
NASA Astrophysics Data System (ADS)
Chau, Minh Thuyen
2016-09-01
This paper proposes an adaptive current control method for Hybrid Active Power Filter (HAPF). It consists of a fuzzy-neural controller, identification and prediction model and cost function. The fuzzy-neural controller parameters are adjusted according to the cost function minimum criteria. For this reason, the proposed control method has a capability on-line control clings to variation of the load harmonic currents. Compared to the single fuzzy logic control method, the proposed control method shows the advantages of better dynamic response, compensation error in steady-state is smaller, able to online control is better and harmonics cancelling is more effective. Simulation and experimental results have demonstrated the effectiveness of the proposed control method.
Predictive control of SOFC based on a GA-RBF neural network model
NASA Astrophysics Data System (ADS)
Wu, Xiao-Juan; Zhu, Xin-Jian; Cao, Guang-Yi; Tu, Heng-Yong
Transients in a load have a significant impact on the performance and durability of a solid oxide fuel cell (SOFC) system. One of the main reasons is that the fuel utilization changes drastically due to the load change. Therefore, in order to guarantee the fuel utilization to operate within a safe range, a nonlinear model predictive control (MPC) method is proposed to control the stack terminal voltage as a proper constant in this paper. The nonlinear predictive controller is based on an improved radial basis function (RBF) neural network identification model. During the process of modeling, the genetic algorithm (GA) is used to optimize the parameters of RBF neural networks. And then a nonlinear predictive control algorithm is applied to track the voltage of the SOFC. Compared with the constant fuel utilization control method, the simulation results show that the nonlinear predictive control algorithm based on the GA-RBF model performs much better.
Experimental validation of boundary element methods for noise prediction
NASA Technical Reports Server (NTRS)
Seybert, A. F.; Oswald, Fred B.
1992-01-01
Experimental validation of methods to predict radiated noise is presented. A combined finite element and boundary element model was used to predict the vibration and noise of a rectangular box excited by a mechanical shaker. The predicted noise was compared to sound power measured by the acoustic intensity method. Inaccuracies in the finite element model shifted the resonance frequencies by about 5 percent. The predicted and measured sound power levels agree within about 2.5 dB. In a second experiment, measured vibration data was used with a boundary element model to predict noise radiation from the top of an operating gearbox. The predicted and measured sound power for the gearbox agree within about 3 dB.
Inlet Flow Control and Prediction Technologies for Embedded Propulsion Systems
NASA Technical Reports Server (NTRS)
McMillan, Michelle L.; Mackie, Scott A.; Gissen, Abe; Vukasinovic, Bojan; Lakebrink, Matthew T.; Glezer, Ari; Mani, Mori; Mace, James L.
2011-01-01
Fail-safe, hybrid, flow control (HFC) is a promising technology for meeting high-speed cruise efficiency, low-noise signature, and reduced fuel-burn goals for future, Hybrid-Wing-Body (HWB) aircraft with embedded engines. This report details the development of HFC technology that enables improved inlet performance in HWB vehicles with highly integrated inlets and embedded engines without adversely affecting vehicle performance. In addition, new test techniques for evaluating Boundary-Layer-Ingesting (BLI)-inlet flow-control technologies developed and demonstrated through this program are documented, including the ability to generate a BLI-like inlet-entrance flow in a direct-connect, wind-tunnel facility, as well as, the use of D-optimal, statistically designed experiments to optimize test efficiency and enable interpretation of results. Validated improvements in numerical analysis tools and methods accomplished through this program are also documented, including Reynolds-Averaged Navier-Stokes CFD simulations of steady-state flow physics for baseline, BLI-inlet diffuser flow, as well as, that created by flow-control devices. Finally, numerical methods were employed in a ground-breaking attempt to directly simulate dynamic distortion. The advances in inlet technologies and prediction tools will help to meet and exceed "N+2" project goals for future HWB aircraft.
Preview Scheduled Model Predictive Control For Horizontal Axis Wind Turbines
NASA Astrophysics Data System (ADS)
Laks, Jason H.
This research investigates the use of model predictive control (MPC) in application to wind turbine operation from start-up to cut-out. The studies conducted are focused on the design of an MPC controller for a 650˜KW, three-bladed horizontal axis turbine that is in operation at the National Renewable Energy Laboratory's National Wind Technology Center outside of Golden, Colorado. This turbine is at the small end of utility scale turbines, but it provides advanced instrumentation and control capabilities, and there is a good probability that the approach developed in simulation for this thesis, will be field tested on the actual turbine. A contribution of this thesis is a method to combine the use of preview measurements with MPC while also providing regulation of turbine speed and cyclic blade loading. A common MPC technique provides integral-like control to achieve offset-free operation. At the same time in wind turbine applications, multiple studies have developed "feed-forward" controls based on applying a gain to an estimate of the wind speed changes obtained from an observer incorporating a disturbance model. These approaches are based on a technique that can be referred to as disturbance accommodating control (DAC). In this thesis, it is shown that offset-free tracking MPC is equivalent to a DAC approach when the disturbance gain is computed to satisfy a regulator equation. Although the MPC literature has recognized that this approach provides "structurally stable" disturbance rejection and tracking, this step is not typically divorced from the MPC computations repeated each sample hit. The DAC formulation is conceptually simpler, and essentially uncouples regulation considerations from MPC related issues. This thesis provides a self contained proof that the DAC formulation (an observer-controller and appropriate disturbance gain) provides structurally stable regulation.
Design and Performance Analysis of Incremental Networked Predictive Control Systems.
Pang, Zhong-Hua; Liu, Guo-Ping; Zhou, Donghua
2016-06-01
This paper is concerned with the design and performance analysis of networked control systems with network-induced delay, packet disorder, and packet dropout. Based on the incremental form of the plant input-output model and an incremental error feedback control strategy, an incremental networked predictive control (INPC) scheme is proposed to actively compensate for the round-trip time delay resulting from the above communication constraints. The output tracking performance and closed-loop stability of the resulting INPC system are considered for two cases: 1) plant-model match case and 2) plant-model mismatch case. For the former case, the INPC system can achieve the same output tracking performance and closed-loop stability as those of the corresponding local control system. For the latter case, a sufficient condition for the stability of the closed-loop INPC system is derived using the switched system theory. Furthermore, for both cases, the INPC system can achieve a zero steady-state output tracking error for step commands. Finally, both numerical simulations and practical experiments on an Internet-based servo motor system illustrate the effectiveness of the proposed method.
Model predictive control of P-time event graphs
NASA Astrophysics Data System (ADS)
Hamri, H.; Kara, R.; Amari, S.
2016-12-01
This paper deals with model predictive control of discrete event systems modelled by P-time event graphs. First, the model is obtained by using the dater evolution model written in the standard algebra. Then, for the control law, we used the finite-horizon model predictive control. For the closed-loop control, we used the infinite-horizon model predictive control (IH-MPC). The latter is an approach that calculates static feedback gains which allows the stability of the closed-loop system while respecting the constraints on the control vector. The problem of IH-MPC is formulated as a linear convex programming subject to a linear matrix inequality problem. Finally, the proposed methodology is applied to a transportation system.
Rate-Based Model Predictive Control of Turbofan Engine Clearance
NASA Technical Reports Server (NTRS)
DeCastro, Jonathan A.
2006-01-01
An innovative model predictive control strategy is developed for control of nonlinear aircraft propulsion systems and sub-systems. At the heart of the controller is a rate-based linear parameter-varying model that propagates the state derivatives across the prediction horizon, extending prediction fidelity to transient regimes where conventional models begin to lose validity. The new control law is applied to a demanding active clearance control application, where the objectives are to tightly regulate blade tip clearances and also anticipate and avoid detrimental blade-shroud rub occurrences by optimally maintaining a predefined minimum clearance. Simulation results verify that the rate-based controller is capable of satisfying the objectives during realistic flight scenarios where both a conventional Jacobian-based model predictive control law and an unconstrained linear-quadratic optimal controller are incapable of doing so. The controller is evaluated using a variety of different actuators, illustrating the efficacy and versatility of the control approach. It is concluded that the new strategy has promise for this and other nonlinear aerospace applications that place high importance on the attainment of control objectives during transient regimes.
Pilots Rate Augmented Generalized Predictive Control for Reconfiguration
NASA Technical Reports Server (NTRS)
Soloway, Don; Haley, Pam
2004-01-01
The objective of this paper is to report the results from the research being conducted in reconfigurable fight controls at NASA Ames. A study was conducted with three NASA Dryden test pilots to evaluate two approaches of reconfiguring an aircraft's control system when failures occur in the control surfaces and engine. NASA Ames is investigating both a Neural Generalized Predictive Control scheme and a Neural Network based Dynamic Inverse controller. This paper highlights the Predictive Control scheme where a simple augmentation to reduce zero steady-state error led to the neural network predictor model becoming redundant for the task. Instead of using a neural network predictor model, a nominal single point linear model was used and then augmented with an error corrector. This paper shows that the Generalized Predictive Controller and the Dynamic Inverse Neural Network controller perform equally well at reconfiguration, but with less rate requirements from the actuators. Also presented are the pilot ratings for each controller for various failure scenarios and two samples of the required control actuation during reconfiguration. Finally, the paper concludes by stepping through the Generalized Predictive Control's reconfiguration process for an elevator failure.
A K-nearest neighbors survival probability prediction method.
Lowsky, D J; Ding, Y; Lee, D K K; McCulloch, C E; Ross, L F; Thistlethwaite, J R; Zenios, S A
2013-05-30
We introduce a nonparametric survival prediction method for right-censored data. The method generates a survival curve prediction by constructing a (weighted) Kaplan-Meier estimator using the outcomes of the K most similar training observations. Each observation has an associated set of covariates, and a metric on the covariate space is used to measure similarity between observations. We apply our method to a kidney transplantation data set to generate patient-specific distributions of graft survival and to a simulated data set in which the proportional hazards assumption is explicitly violated. We compare the performance of our method with the standard Cox model and the random survival forests method.
Adaptive Data-based Predictive Control for Short Take-off and Landing (STOL) Aircraft
NASA Technical Reports Server (NTRS)
Barlow, Jonathan Spencer; Acosta, Diana Michelle; Phan, Minh Q.
2010-01-01
Data-based Predictive Control is an emerging control method that stems from Model Predictive Control (MPC). MPC computes current control action based on a prediction of the system output a number of time steps into the future and is generally derived from a known model of the system. Data-based predictive control has the advantage of deriving predictive models and controller gains from input-output data. Thus, a controller can be designed from the outputs of complex simulation code or a physical system where no explicit model exists. If the output data happens to be corrupted by periodic disturbances, the designed controller will also have the built-in ability to reject these disturbances without the need to know them. When data-based predictive control is implemented online, it becomes a version of adaptive control. The characteristics of adaptive data-based predictive control are particularly appropriate for the control of nonlinear and time-varying systems, such as Short Take-off and Landing (STOL) aircraft. STOL is a capability of interest to NASA because conceptual Cruise Efficient Short Take-off and Landing (CESTOL) transport aircraft offer the ability to reduce congestion in the terminal area by utilizing existing shorter runways at airports, as well as to lower community noise by flying steep approach and climb-out patterns that reduce the noise footprint of the aircraft. In this study, adaptive data-based predictive control is implemented as an integrated flight-propulsion controller for the outer-loop control of a CESTOL-type aircraft. Results show that the controller successfully tracks velocity while attempting to maintain a constant flight path angle, using longitudinal command, thrust and flap setting as the control inputs.
What Predicts Use of Learning-Centered, Interactive Engagement Methods?
ERIC Educational Resources Information Center
Madson, Laura; Trafimow, David; Gray, Tara; Gutowitz, Michael
2014-01-01
What makes some faculty members more likely to use interactive engagement methods than others? We use the theory of reasoned action to predict faculty members' use of interactive engagement methods. Results indicate that faculty members' beliefs about the personal positive consequences of using these methods (e.g., "Using interactive…
Interim prediction method for low frequency core engine noise
NASA Technical Reports Server (NTRS)
Huff, R. G.; Clark, B. J.; Dorsch, R. G.
1974-01-01
A literature survey on low-frequency core engine noise is presented. Possible sources of low frequency internally generated noise in core engines are discussed with emphasis on combustion and component scrubbing noise. An interim method is recommended for predicting low frequency core engine noise that is dominant when jet velocities are low. Suggestions are made for future research on low frequency core engine noise that will aid in improving the prediction method and help define possible additional internal noise sources.
Prediction-based association control scheme in dense femtocell networks
Pham, Ngoc-Thai; Huynh, Thong; Hwang, Won-Joo; You, Ilsun; Choo, Kim-Kwang Raymond
2017-01-01
The deployment of large number of femtocell base stations allows us to extend the coverage and efficiently utilize resources in a low cost manner. However, the small cell size of femtocell networks can result in frequent handovers to the mobile user, and consequently throughput degradation. Thus, in this paper, we propose predictive association control schemes to improve the system’s effective throughput. Our design focuses on reducing handover frequency without impacting on throughput. The proposed schemes determine handover decisions that contribute most to the network throughput and are proper for distributed implementations. The simulation results show significant gains compared with existing methods in terms of handover frequency and network throughput perspective. PMID:28328992
Integrated control system and method
Wang, Paul Sai Keat; Baldwin, Darryl; Kim, Myoungjin
2013-10-29
An integrated control system for use with an engine connected to a generator providing electrical power to a switchgear is disclosed. The engine receives gas produced by a gasifier. The control system includes an electronic controller associated with the gasifier, engine, generator, and switchgear. A gas flow sensor monitors a gas flow from the gasifier to the engine through an engine gas control valve and provides a gas flow signal to the electronic controller. A gas oversupply sensor monitors a gas oversupply from the gasifier and provides an oversupply signal indicative of gas not provided to the engine. A power output sensor monitors a power output of the switchgear and provide a power output signal. The electronic controller changes gas production of the gasifier and the power output rating of the switchgear based on the gas flow signal, the oversupply signal, and the power output signal.
Comparison of prediction performance using statistical postprocessing methods
NASA Astrophysics Data System (ADS)
Han, Keunhee; Choi, JunTae; Kim, Chansoo
2016-11-01
As the 2018 Winter Olympics are to be held in Pyeongchang, both general weather information on Pyeongchang and specific weather information on this region, which can affect game operation and athletic performance, are required. An ensemble prediction system has been applied to provide more accurate weather information, but it has bias and dispersion due to the limitations and uncertainty of its model. In this study, homogeneous and nonhomogeneous regression models as well as Bayesian model averaging (BMA) were used to reduce the bias and dispersion existing in ensemble prediction and to provide probabilistic forecast. Prior to applying the prediction methods, reliability of the ensemble forecasts was tested by using a rank histogram and a residualquantile-quantile plot to identify the ensemble forecasts and the corresponding verifications. The ensemble forecasts had a consistent positive bias, indicating over-forecasting, and were under-dispersed. To correct such biases, statistical post-processing methods were applied using fixed and sliding windows. The prediction skills of methods were compared by using the mean absolute error, root mean square error, continuous ranked probability score, and continuous ranked probability skill score. Under the fixed window, BMA exhibited better prediction skill than the other methods in most observation station. Under the sliding window, on the other hand, homogeneous and non-homogeneous regression models with positive regression coefficients exhibited better prediction skill than BMA. In particular, the homogeneous regression model with positive regression coefficients exhibited the best prediction skill.
Predictive active disturbance rejection control for processes with time delay.
Zheng, Qinling; Gao, Zhiqiang
2014-07-01
Active disturbance rejection control (ADRC) has been shown to be an effective tool in dealing with real world problems of dynamic uncertainties, disturbances, nonlinearities, etc. This paper addresses its existing limitations with plants that have a large transport delay. In particular, to overcome the delay, the extended state observer (ESO) in ADRC is modified to form a predictive ADRC, leading to significant improvements in the transient response and stability characteristics, as shown in extensive simulation studies and hardware-in-the-loop tests, as well as in the frequency response analysis. In this research, it is assumed that the amount of delay is approximately known, as is the approximated model of the plant. Even with such uncharacteristic assumptions for ADRC, the proposed method still exhibits significant improvements in both performance and robustness over the existing methods such as the dead-time compensator based on disturbance observer and the Filtered Smith Predictor, in the context of some well-known problems of chemical reactor and boiler control problems.
A method to objectively optimize coral bleaching prediction techniques
NASA Astrophysics Data System (ADS)
van Hooidonk, R. J.; Huber, M.
2007-12-01
Thermally induced coral bleaching is a global threat to coral reef health. Methodologies, e.g. the Degree Heating Week technique, have been developed to predict bleaching induced by thermal stress by utilizing remotely sensed sea surface temperature (SST) observations. These techniques can be used as a management tool for Marine Protected Areas (MPA). Predictions are valuable to decision makers and stakeholders on weekly to monthly time scales and can be employed to build public awareness and support for mitigation. The bleaching problem is only expected to worsen because global warming poses a major threat to coral reef health. Indeed, predictive bleaching methods combined with climate model output have been used to forecast the global demise of coral reef ecosystems within coming decades due to climate change. Accuracy of these predictive techniques has not been quantitatively characterized despite the critical role they play. Assessments have typically been limited, qualitative or anecdotal, or more frequently they are simply unpublished. Quantitative accuracy assessment, using well established methods and skill scores often used in meteorology and medical sciences, will enable objective optimization of existing predictive techniques. To accomplish this, we will use existing remotely sensed data sets of sea surface temperature (AVHRR and TMI), and predictive values from techniques such as the Degree Heating Week method. We will compare these predictive values with observations of coral reef health and calculate applicable skill scores (Peirce Skill Score, Hit Rate and False Alarm Rate). We will (a) quantitatively evaluate the accuracy of existing coral reef bleaching predictive methods against state-of- the-art reef health databases, and (b) present a technique that will objectively optimize the predictive method for any given location. We will illustrate this optimization technique for reefs located in Puerto Rico and the US Virgin Islands.
Machine Learning Methods for Predicting HLA–Peptide Binding Activity
Luo, Heng; Ye, Hao; Ng, Hui Wen; Shi, Leming; Tong, Weida; Mendrick, Donna L.; Hong, Huixiao
2015-01-01
As major histocompatibility complexes in humans, the human leukocyte antigens (HLAs) have important functions to present antigen peptides onto T-cell receptors for immunological recognition and responses. Interpreting and predicting HLA–peptide binding are important to study T-cell epitopes, immune reactions, and the mechanisms of adverse drug reactions. We review different types of machine learning methods and tools that have been used for HLA–peptide binding prediction. We also summarize the descriptors based on which the HLA–peptide binding prediction models have been constructed and discuss the limitation and challenges of the current methods. Lastly, we give a future perspective on the HLA–peptide binding prediction method based on network analysis. PMID:26512199
Integration simulation method concerning speed control of ultrasonic motor
NASA Astrophysics Data System (ADS)
Miyauchi, R.; Yue, B.; Matsunaga, N.; Ishizuka, S.
2016-09-01
In this paper, the configuration of control system of the ultrasonic motor (USM) from finite element method (FEM) model by applying the nonlinear model order reduction (MOR) is proposed. First, the USM and the FEM model is introduced. Second, FEM model order reduction method is described. Third, the result of comparing the computing time and accuracy of the FEM model and reduced order model is shown. Finaly, nominal model for control is derived by system identification from reduced order model. Nonlinear model predictive control (NMPC) is applied to the nominal model, and speed is controlled. the controller effect is comfirmed by applying the proposed reduced order model.
Modified-Fibonacci-Dual-Lucas method for earthquake prediction
NASA Astrophysics Data System (ADS)
Boucouvalas, A. C.; Gkasios, M.; Tselikas, N. T.; Drakatos, G.
2015-06-01
The FDL method makes use of Fibonacci, Dual and Lucas numbers and has shown considerable success in predicting earthquake events locally as well as globally. Predicting the location of the epicenter of an earthquake is one difficult challenge the other being the timing and magnitude. One technique for predicting the onset of earthquakes is the use of cycles, and the discovery of periodicity. Part of this category is the reported FDL method. The basis of the reported FDL method is the creation of FDL future dates based on the onset date of significant earthquakes. The assumption being that each occurred earthquake discontinuity can be thought of as a generating source of FDL time series The connection between past earthquakes and future earthquakes based on FDL numbers has also been reported with sample earthquakes since 1900. Using clustering methods it has been shown that significant earthquakes (<6.5R) can be predicted with very good accuracy window (+-1 day). In this contribution we present an improvement modification to the FDL method, the MFDL method, which performs better than the FDL. We use the FDL numbers to develop possible earthquakes dates but with the important difference that the starting seed date is a trigger planetary aspect prior to the earthquake. Typical planetary aspects are Moon conjunct Sun, Moon opposite Sun, Moon conjunct or opposite North or South Modes. In order to test improvement of the method we used all +8R earthquakes recorded since 1900, (86 earthquakes from USGS data). We have developed the FDL numbers for each of those seeds, and examined the earthquake hit rates (for a window of 3, i.e. +-1 day of target date) and for <6.5R. The successes are counted for each one of the 86 earthquake seeds and we compare the MFDL method with the FDL method. In every case we find improvement when the starting seed date is on the planetary trigger date prior to the earthquake. We observe no improvement only when a planetary trigger coincided with
Model and Predictive Control for a Wind Turbine
NASA Astrophysics Data System (ADS)
Gilev, B.; Slavchev, J.; Penev, D.; Yonchev, A.
2011-12-01
A mathematical model of the system consisting of wind turbine, gear box and asynchronous generator is presented in this work. The model is linearized. Then a controller, which provides a desire mode of frequency stabilization, is developed using the predictive control theory.
Towards feasible and effective predictive wavefront control for adaptive optics
Poyneer, L A; Veran, J
2008-06-04
We have recently proposed Predictive Fourier Control, a computationally efficient and adaptive algorithm for predictive wavefront control that assumes frozen flow turbulence. We summarize refinements to the state-space model that allow operation with arbitrary computational delays and reduce the computational cost of solving for new control. We present initial atmospheric characterization using observations with Gemini North's Altair AO system. These observations, taken over 1 year, indicate that frozen flow is exists, contains substantial power, and is strongly detected 94% of the time.
Prediction methods of spudcan penetration for jack-up units
NASA Astrophysics Data System (ADS)
Zhang, Ai-xia; Duan, Meng-lan; Li, Hai-ming; Zhao, Jun; Wang, Jian-jun
2012-12-01
Jack-up units are extensively playing a successful role in drilling engineering around the world, and their safety and efficiency take more and more attraction in both research and engineering practice. An accurate prediction of the spudcan penetration depth is quite instrumental in deciding on whether a jack-up unit is feasible to operate at the site. The prediction of a too large penetration depth may lead to the hesitation or even rejection of a site due to potential difficulties in the subsequent extraction process; the same is true of a too small depth prediction due to the problem of possible instability during operation. However, a deviation between predictive results and final field data usually exists, especially when a strong-over-soft soil is included in the strata. The ultimate decision sometimes to a great extent depends on the practical experience, not the predictive results given by the guideline. It is somewhat risky, but no choice. Therefore, a feasible predictive method for the spudcan penetration depth, especially in strata with strong-over-soft soil profile, is urgently needed by the jack-up industry. In view of this, a comprehensive investigation on methods of predicting spudcan penetration is executed. For types of different soil profiles, predictive methods for spudcan penetration depth are proposed, and the corresponding experiment is also conducted to validate these methods. In addition, to further verify the feasibility of the proposed methods, a practical engineering case encountered in the South China Sea is also presented, and the corresponding numerical and experimental results are also presented and discussed.
Connecting clinical and actuarial prediction with rule-based methods.
Fokkema, Marjolein; Smits, Niels; Kelderman, Henk; Penninx, Brenda W J H
2015-06-01
Meta-analyses comparing the accuracy of clinical versus actuarial prediction have shown actuarial methods to outperform clinical methods, on average. However, actuarial methods are still not widely used in clinical practice, and there has been a call for the development of actuarial prediction methods for clinical practice. We argue that rule-based methods may be more useful than the linear main effect models usually employed in prediction studies, from a data and decision analytic as well as a practical perspective. In addition, decision rules derived with rule-based methods can be represented as fast and frugal trees, which, unlike main effects models, can be used in a sequential fashion, reducing the number of cues that have to be evaluated before making a prediction. We illustrate the usability of rule-based methods by applying RuleFit, an algorithm for deriving decision rules for classification and regression problems, to a dataset on prediction of the course of depressive and anxiety disorders from Penninx et al. (2011). The RuleFit algorithm provided a model consisting of 2 simple decision rules, requiring evaluation of only 2 to 4 cues. Predictive accuracy of the 2-rule model was very similar to that of a logistic regression model incorporating 20 predictor variables, originally applied to the dataset. In addition, the 2-rule model required, on average, evaluation of only 3 cues. Therefore, the RuleFit algorithm appears to be a promising method for creating decision tools that are less time consuming and easier to apply in psychological practice, and with accuracy comparable to traditional actuarial methods.
The trajectory prediction of spacecraft by grey method
NASA Astrophysics Data System (ADS)
Wang, Qiyue; Zhang, Zili; Wang, Zhongyu; Wang, Yanqing; Zhou, Weihu
2016-08-01
The real-time and high-precision trajectory prediction of a moving object is a core technology in the field of aerospace engineering. The real-time monitoring and tracking technology are also significant guarantees of aerospace equipment. A dynamic trajectory prediction method called grey dynamic filter (GDF) which combines the dynamic measurement theory and grey system theory is proposed. GDF can use coordinates of the current period to extrapolate coordinates of the following period. At meantime, GDF can also keep the instantaneity of measured coordinates by the metabolism model. In this paper the optimal model length of GDF is firstly selected to improve the prediction accuracy. Then the simulation for uniformly accelerated motion and variably accelerated motion is conducted. The simulation results indicate that the mean composite position error of GDF prediction is one-fifth to that of Kalman filter (KF). By using a spacecraft landing experiment, the prediction accuracy of GDF is compared with the KF method and the primitive grey method (GM). The results show that the motion trajectory of spacecraft predicted by GDF is much closer to actual trajectory than the other two methods. The mean composite position error calculated by GDF is one-eighth to KF and one-fifth to GM respectively.
HOPE: a homotopy optimization method for protein structure prediction.
Dunlavy, Daniel M; O'Leary, Dianne P; Klimov, Dmitri; Thirumalai, D
2005-12-01
We use a homotopy optimization method, HOPE, to minimize the potential energy associated with a protein model. The method uses the minimum energy conformation of one protein as a template to predict the lowest energy structure of a query sequence. This objective is achieved by following a path of conformations determined by a homotopy between the potential energy functions for the two proteins. Ensembles of solutions are produced by perturbing conformations along the path, increasing the likelihood of predicting correct structures. Successful results are presented for pairs of homologous proteins, where HOPE is compared to a variant of Newton's method and to simulated annealing.
Predictive Simulation of Reaching Moving Targets Using Nonlinear Model Predictive Control
Mehrabi, Naser; Sharif Razavian, Reza; Ghannadi, Borna; McPhee, John
2017-01-01
This article investigates the application of optimal feedback control to trajectory planning in voluntary human arm movements. A nonlinear model predictive controller (NMPC) with a finite prediction horizon was used as the optimal feedback controller to predict the hand trajectory planning and execution of planar reaching tasks. The NMPC is completely predictive, and motion tracking or electromyography data are not required to obtain the limb trajectories. To present this concept, a two degree of freedom musculoskeletal planar arm model actuated by three pairs of antagonist muscles was used to simulate the human arm dynamics. This study is based on the assumption that the nervous system minimizes the muscular effort during goal-directed movements. The effects of prediction horizon length on the trajectory, velocity profile, and muscle activities of a reaching task are presented. The NMPC predictions of the hand trajectory to reach fixed and moving targets are in good agreement with the trajectories found by dynamic optimization and those from experiments. However, the hand velocity and muscle activations predicted by NMPC did not agree as well with experiments or with those found from dynamic optimization. PMID:28133449
Predictive neuro-fuzzy controller for multilink robot manipulator
NASA Astrophysics Data System (ADS)
Kaymaz, Emre; Mitra, Sunanda
1995-10-01
A generalized controller based on fuzzy clustering and fuzzy generalized predictive control has been developed for nonlinear systems including multilink robot manipulators. The proposed controller is particularly useful when the dynamics of the nonlinear system to be controlled are difficult to yield exact solutions and the system specification can be obtained in terms of crisp input-output pairs. It inherits the advantages of both fuzzy logic and predictive control. The identification of the nonlinear mapping of the system to be controlled is realized by a three- layer feed-forward neural network model employing the input-output data obtained from the system. The speed of convergence of the neural network is improved by the introduction of a fuzzy logic controlled backpropagation learning algorithm. The neural network model is then used as a simulation tool to generate the input-output data for developing the predictive fuzzy logic controller for the chosen nonlinear system. The use of fuzzy clustering facilitates automatic generation of membership relations of the input-output data. Unlike the linguistic fuzzy logic controller which requires approximate knowledge of the shape and the numbers of the membership functions in the input and output universes of the discourse, this integrated neuro-fuzzy approach allows one to find the fuzzy relations and the membership functions more accurately. Furthermore, it is not necessary to tune the controller. For a two-link robot manipulator, the performance of this predictive fuzzy controller is shown to be superior to that of a conventional controller employing an ARMA model of the system in terms of accuracy and consumption of energy.
COMSAC: Computational Methods for Stability and Control. Part 1
NASA Technical Reports Server (NTRS)
Fremaux, C. Michael (Compiler); Hall, Robert M. (Compiler)
2004-01-01
Work on stability and control included the following reports:Introductory Remarks; Introduction to Computational Methods for Stability and Control (COMSAC); Stability & Control Challenges for COMSAC: a NASA Langley Perspective; Emerging CFD Capabilities and Outlook A NASA Langley Perspective; The Role for Computational Fluid Dynamics for Stability and Control:Is it Time?; Northrop Grumman Perspective on COMSAC; Boeing Integrated Defense Systems Perspective on COMSAC; Computational Methods in Stability and Control:WPAFB Perspective; Perspective: Raytheon Aircraft Company; A Greybeard's View of the State of Aerodynamic Prediction; Computational Methods for Stability and Control: A Perspective; Boeing TacAir Stability and Control Issues for Computational Fluid Dynamics; NAVAIR S&C Issues for CFD; An S&C Perspective on CFD; Issues, Challenges & Payoffs: A Boeing User s Perspective on CFD for S&C; and Stability and Control in Computational Simulations for Conceptual and Preliminary Design: the Past, Today, and Future?
Methods, apparatus and system for notification of predictable memory failure
Cher, Chen-Yong; Andrade Costa, Carlos H.; Park, Yoonho; Rosenburg, Bryan S.; Ryu, Kyung D.
2017-01-03
A method for providing notification of a predictable memory failure includes the steps of: obtaining information regarding at least one condition associated with a memory; calculating a memory failure probability as a function of the obtained information; calculating a failure probability threshold; and generating a signal when the memory failure probability exceeds the failure probability threshold, the signal being indicative of a predicted future memory failure.
Computational Methods for Failure Analysis and Life Prediction
NASA Technical Reports Server (NTRS)
Noor, Ahmed K. (Compiler); Harris, Charles E. (Compiler); Housner, Jerrold M. (Compiler); Hopkins, Dale A. (Compiler)
1993-01-01
This conference publication contains the presentations and discussions from the joint UVA/NASA Workshop on Computational Methods for Failure Analysis and Life Prediction held at NASA Langley Research Center 14-15 Oct. 1992. The presentations focused on damage failure and life predictions of polymer-matrix composite structures. They covered some of the research activities at NASA Langley, NASA Lewis, Southwest Research Institute, industry, and universities. Both airframes and propulsion systems were considered.
Improving active space telescope wavefront control using predictive thermal modeling
NASA Astrophysics Data System (ADS)
Gersh-Range, Jessica; Perrin, Marshall D.
2015-01-01
Active control algorithms for space telescopes are less mature than those for large ground telescopes due to differences in the wavefront control problems. Active wavefront control for space telescopes at L2, such as the James Webb Space Telescope (JWST), requires weighing control costs against the benefits of correcting wavefront perturbations that are a predictable byproduct of the observing schedule, which is known and determined in advance. To improve the control algorithms for these telescopes, we have developed a model that calculates the temperature and wavefront evolution during a hypothetical mission, assuming the dominant wavefront perturbations are due to changes in the spacecraft attitude with respect to the sun. Using this model, we show that the wavefront can be controlled passively by introducing scheduling constraints that limit the allowable attitudes for an observation based on the observation duration and the mean telescope temperature. We also describe the implementation of a predictive controller designed to prevent the wavefront error (WFE) from exceeding a desired threshold. This controller outperforms simpler algorithms even with substantial model error, achieving a lower WFE without requiring significantly more corrections. Consequently, predictive wavefront control based on known spacecraft attitude plans is a promising approach for JWST and other future active space observatories.
A simple method of predicting S-wave velocity
Lee, M.W.
2006-01-01
Prediction of shear-wave velocity plays an important role in seismic modeling, amplitude analysis with offset, and other exploration applications. This paper presents a method for predicting S-wave velocity from the P-wave velocity on the basis of the moduli of dry rock. Elastic velocities of water-saturated sediments at low frequencies can be predicted from the moduli of dry rock by using Gassmann's equation; hence, if the moduli of dry rock can be estimated from P-wave velocities, then S-wave velocities easily can be predicted from the moduli. Dry rock bulk modulus can be related to the shear modulus through a compaction constant. The numerical results indicate that the predicted S-wave velocities for consolidated and unconsolidated sediments agree well with measured velocities if differential pressure is greater than approximately 5 MPa. An advantage of this method is that there are no adjustable parameters to be chosen, such as the pore-aspect ratios required in some other methods. The predicted S-wave velocity depends only on the measured P-wave velocity and porosity. ?? 2006 Society of Exploration Geophysicists.
Three-dimensional protein structure prediction: Methods and computational strategies.
Dorn, Márcio; E Silva, Mariel Barbachan; Buriol, Luciana S; Lamb, Luis C
2014-10-12
A long standing problem in structural bioinformatics is to determine the three-dimensional (3-D) structure of a protein when only a sequence of amino acid residues is given. Many computational methodologies and algorithms have been proposed as a solution to the 3-D Protein Structure Prediction (3-D-PSP) problem. These methods can be divided in four main classes: (a) first principle methods without database information; (b) first principle methods with database information; (c) fold recognition and threading methods; and (d) comparative modeling methods and sequence alignment strategies. Deterministic computational techniques, optimization techniques, data mining and machine learning approaches are typically used in the construction of computational solutions for the PSP problem. Our main goal with this work is to review the methods and computational strategies that are currently used in 3-D protein prediction.
Prediction and control of limit cycling motions in boosting rockets
NASA Astrophysics Data System (ADS)
Newman, Brett
An investigation concerning the prediction and control of observed limit cycling behavior in a boosting rocket is considered. The suspected source of the nonlinear behavior is the presence of Coulomb friction in the nozzle pivot mechanism. A classical sinusoidal describing function analysis is used to accurately recreate and predict the observed oscillatory characteristic. In so doing, insight is offered into the limit cycling mechanism and confidence is gained in the closed-loop system design. Nonlinear simulation results are further used to support and verify the results obtained from describing function theory. Insight into the limit cycling behavior is, in turn, used to adjust control system parameters in order to passively control the oscillatory tendencies. Tradeoffs with the guidance and control system stability/performance are also noted. Finally, active control of the limit cycling behavior, using a novel feedback algorithm to adjust the inherent nozzle sticking-unsticking characteristics, is considered.
Optimized continuous pharmaceutical manufacturing via model-predictive control.
Rehrl, Jakob; Kruisz, Julia; Sacher, Stephan; Khinast, Johannes; Horn, Martin
2016-08-20
This paper demonstrates the application of model-predictive control to a feeding blending unit used in continuous pharmaceutical manufacturing. The goal of this contribution is, on the one hand, to highlight the advantages of the proposed concept compared to conventional PI-controllers, and, on the other hand, to present a step-by-step guide for controller synthesis. The derivation of the required mathematical plant model is given in detail and all the steps required to develop a model-predictive controller are shown. Compared to conventional concepts, the proposed approach allows to conveniently consider constraints (e.g. mass hold-up in the blender) and offers a straightforward, easy to tune controller setup. The concept is implemented in a simulation environment. In order to realize it on a real system, additional aspects (e.g., state estimation, measurement equipment) will have to be investigated.
Method for crystal growth control
Yates, Douglas A.; Hatch, Arthur E.; Goldsmith, Jeff M.
1981-01-01
The growth of a crystalline body of a selected material is controlled so that the body has a selected cross-sectional shape. The apparatus is of the type which includes the structure normally employed in known capillary die devices as well as means for observing at least the portion of the surfaces of the growing crystalline body and the meniscus (of melt material from which the body is being pulled) including the solid/liquid/vapor junction in a direction substantially perpendicular to the meniscus surface formed at the junction when the growth of the crystalline body is under steady state conditions. The cross-sectional size of the growing crystalline body can be controlled by determining which points exhibit a sharp change in the amount of reflected radiation of a preselected wavelength and controlling the speed at which the body is being pulled or the temperature of the growth pool of melt so as to maintain those points exhibiting a sharp change at a preselected spatial position relative to a predetermined reference position. The improvement comprises reference object means positioned near the solid/liquid/vapor junction and capable of being observed by the means for observing so as to define said reference position so that the problems associated with convection current jitter are overcome.
Prediction of Protein–Protein Interactions by Evidence Combining Methods
Chang, Ji-Wei; Zhou, Yan-Qing; Ul Qamar, Muhammad Tahir; Chen, Ling-Ling; Ding, Yu-Duan
2016-01-01
Most cellular functions involve proteins’ features based on their physical interactions with other partner proteins. Sketching a map of protein–protein interactions (PPIs) is therefore an important inception step towards understanding the basics of cell functions. Several experimental techniques operating in vivo or in vitro have made significant contributions to screening a large number of protein interaction partners, especially high-throughput experimental methods. However, computational approaches for PPI predication supported by rapid accumulation of data generated from experimental techniques, 3D structure definitions, and genome sequencing have boosted the map sketching of PPIs. In this review, we shed light on in silico PPI prediction methods that integrate evidence from multiple sources, including evolutionary relationship, function annotation, sequence/structure features, network topology and text mining. These methods are developed for integration of multi-dimensional evidence, for designing the strategies to predict novel interactions, and for making the results consistent with the increase of prediction coverage and accuracy. PMID:27879651
Evaluation of Methods to Predict Reactivity of Gold Nanoparticles
Allison, Thomas C.; Tong, Yu ye J.
2011-06-20
Several methods have appeared in the literature for predicting reactivity on metallic surfaces and on the surface of metallic nanoparticles. All of these methods have some relationship to the concept of frontier molecular orbital theory. The d-band theory of Hammer and Nørskov is perhaps the most widely used predictor of reactivity on metallic surfaces, and it has been successfully applied in many cases. Use of the Fukui function and the condensed Fukui function is well established in organic chemistry, but has not been so widely applied in predicting the reactivity of metallic nanoclusters. In this article, we will evaluate the usefulness of the condensed Fukui function in predicting the reactivity of a family of cubo-octahedral gold nanoparticles and make comparison with the d-band method.
Assessing Computational Methods of Cis-Regulatory Module Prediction
Su, Jing; Teichmann, Sarah A.; Down, Thomas A.
2010-01-01
Computational methods attempting to identify instances of cis-regulatory modules (CRMs) in the genome face a challenging problem of searching for potentially interacting transcription factor binding sites while knowledge of the specific interactions involved remains limited. Without a comprehensive comparison of their performance, the reliability and accuracy of these tools remains unclear. Faced with a large number of different tools that address this problem, we summarized and categorized them based on search strategy and input data requirements. Twelve representative methods were chosen and applied to predict CRMs from the Drosophila CRM database REDfly, and across the human ENCODE regions. Our results show that the optimal choice of method varies depending on species and composition of the sequences in question. When discriminating CRMs from non-coding regions, those methods considering evolutionary conservation have a stronger predictive power than methods designed to be run on a single genome. Different CRM representations and search strategies rely on different CRM properties, and different methods can complement one another. For example, some favour homotypical clusters of binding sites, while others perform best on short CRMs. Furthermore, most methods appear to be sensitive to the composition and structure of the genome to which they are applied. We analyze the principal features that distinguish the methods that performed well, identify weaknesses leading to poor performance, and provide a guide for users. We also propose key considerations for the development and evaluation of future CRM-prediction methods. PMID:21152003
Predicting Spacecraft Trajectories by the WeavEncke Method
NASA Technical Reports Server (NTRS)
Weaver, Jonathan K.; Adamo, Daniel R.
2011-01-01
A combination of methods is proposed of predicting spacecraft trajectories that possibly include multiple maneuvers and/or perturbing accelerations, with greater speed, accuracy, and repeatability than were heretofore achievable. The combination is denoted the WeavEncke method because it is based on unpublished studies by Jonathan Weaver of the orbit-prediction formulation of the noted astronomer Johann Franz Encke. Weaver evaluated a number of alternatives that arise within that formulation, arriving at an orbit-predicting algorithm optimized for complex trajectory operations. In the WeavEncke method, Encke's method of prediction of perturbed orbits is enhanced by application of modern numerical methods. Among these methods are efficient Kepler s-equation time-of-flight solutions and self-starting numerical integration with time as the independent variable. Self-starting numerical integration satisfies the requirements for accuracy, reproducibility, and efficiency (and, hence, speed). Self-starting numerical integration also supports fully analytic regulation of integration step sizes, thereby further increasing speed while maintaining accuracy.
New tuning method for PID controller.
Shen, Jing-Chung
2002-10-01
In this paper, a tuning method for proportional-integral-derivative (PID) controller and the performance assessment formulas for this method are proposed. This tuning method is based on a genetic algorithm based PID controller design method. For deriving the tuning formula, the genetic algorithm based design method is applied to design PID controllers for a variety of processes. The relationship between the controller parameters and the parameters that characterize the process dynamics are determined and the tuning formula is then derived. Using simulation studies, the rules for assessing the performance of a PID controller tuned by the proposed method are also given. This makes it possible to incorporate the capability to determine if the PID controller is well tuned or not into an autotuner. An autotuner based on this new tuning method and the corresponding performance assessment rules is also established. Simulations and real-time experimental results are given to demonstrate the effectiveness and usefulness of these formulas.
An analytical method to predict efficiency of aircraft gearboxes
NASA Technical Reports Server (NTRS)
Anderson, N. E.; Loewenthal, S. H.; Black, J. D.
1984-01-01
A spur gear efficiency prediction method previously developed by the authors was extended to include power loss of planetary gearsets. A friction coefficient model was developed for MIL-L-7808 oil based on disc machine data. This combined with the recent capability of predicting losses in spur gears of nonstandard proportions allows the calculation of power loss for complete aircraft gearboxes that utilize spur gears. The method was applied to the T56/501 turboprop gearbox and compared with measured test data. Bearing losses were calculated with large scale computer programs. Breakdowns of the gearbox losses point out areas for possible improvement.
Preface to the Focus Issue: Chaos Detection Methods and Predictability
Gottwald, Georg A.; Skokos, Charalampos
2014-06-01
This Focus Issue presents a collection of papers originating from the workshop Methods of Chaos Detection and Predictability: Theory and Applications held at the Max Planck Institute for the Physics of Complex Systems in Dresden, June 17–21, 2013. The main aim of this interdisciplinary workshop was to review comprehensively the theory and numerical implementation of the existing methods of chaos detection and predictability, as well as to report recent applications of these techniques to different scientific fields. The collection of twelve papers in this Focus Issue represents the wide range of applications, spanning mathematics, physics, astronomy, particle accelerator physics, meteorology and medical research. This Preface surveys the papers of this Issue.
Preface to the Focus Issue: chaos detection methods and predictability.
Gottwald, Georg A; Skokos, Charalampos
2014-06-01
This Focus Issue presents a collection of papers originating from the workshop Methods of Chaos Detection and Predictability: Theory and Applications held at the Max Planck Institute for the Physics of Complex Systems in Dresden, June 17-21, 2013. The main aim of this interdisciplinary workshop was to review comprehensively the theory and numerical implementation of the existing methods of chaos detection and predictability, as well as to report recent applications of these techniques to different scientific fields. The collection of twelve papers in this Focus Issue represents the wide range of applications, spanning mathematics, physics, astronomy, particle accelerator physics, meteorology and medical research. This Preface surveys the papers of this Issue.
Prediction Models are Basis for Rational Air Quality Control
ERIC Educational Resources Information Center
Daniels, Anders; Bach, Wilfrid
1973-01-01
An air quality control scheme employing meteorological diffusion, time averaging and frequency, and cost-benefit models is discussed. The methods outlined provide a constant feedback system for air quality control. Flow charts and maps are included. (BL)
Development of aerodynamic prediction methods for irregular planform wings
NASA Technical Reports Server (NTRS)
Benepe, D. B., Sr.
1983-01-01
A set of empirical methods was developed to predict low-speed lift, drag and pitching-moment variations with angle of attack for a class of low aspect ratio irregular planform wings suitable for application to advanced aerospace vehicles. The data base, an extensive series of wind-tunnel tests accomplished by the Langley Research Center of the National Aeronautics and Space Administration, is summarized. The approaches used to analyze the wind tunnel data, the evaluation of previously existing methods, data correlation efforts, and the development of the selected methods are presented and discussed. A summary of the methods is also presented to document the equations, computational charts and design guides which have been programmed for digital computer solution. Comparisons of predictions and test data are presented which show that the new methods provide a significant improvement in capability for evaluating the landing characteristics of advanced aerospace vehicles during the preliminary design phase of the configuration development cycle.
Toxicologic methods: controlled human exposures.
Utell, M J; Frampton, M W
2000-08-01
The assessment of risk from exposure to environmental air pollutants is complex, and involves the disciplines of epidemiology, animal toxicology, and human inhalation studies. Controlled, quantitative studies of exposed humans help determine health-related effects that result from breathing the atmosphere. The major unique feature of the clinical study is the ability to select, control, and quantify pollutant exposures of subjects of known clinical status, and determine their effects under ideal experimental conditions. The choice of outcomes to be assessed in human clinical studies can be guided by both scientific and practical considerations, but the diversity of human responses and responsiveness must be considered. Subjects considered to be among the most susceptible include those with asthma, chronic obstructive lung disease, and cardiovascular disease. New experimental approaches include exposures to concentrated ambient air particles, diesel engine exhaust, combustion products from smoking machines, and experimental model particles. Future investigations of the health effects of air pollution will benefit from collaborative efforts among the disciplines of epidemiology, animal toxicology, and human clinical studies.
Toxicologic methods: controlled human exposures.
Utell, M J; Frampton, M W
2000-01-01
The assessment of risk from exposure to environmental air pollutants is complex, and involves the disciplines of epidemiology, animal toxicology, and human inhalation studies. Controlled, quantitative studies of exposed humans help determine health-related effects that result from breathing the atmosphere. The major unique feature of the clinical study is the ability to select, control, and quantify pollutant exposures of subjects of known clinical status, and determine their effects under ideal experimental conditions. The choice of outcomes to be assessed in human clinical studies can be guided by both scientific and practical considerations, but the diversity of human responses and responsiveness must be considered. Subjects considered to be among the most susceptible include those with asthma, chronic obstructive lung disease, and cardiovascular disease. New experimental approaches include exposures to concentrated ambient air particles, diesel engine exhaust, combustion products from smoking machines, and experimental model particles. Future investigations of the health effects of air pollution will benefit from collaborative efforts among the disciplines of epidemiology, animal toxicology, and human clinical studies. PMID:10931779
Predictive Feedback and Feedforward Control for Systems with Unknown Disturbances
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Eure, Kenneth W.
1998-01-01
Predictive feedback control has been successfully used in the regulation of plate vibrations when no reference signal is available for feedforward control. However, if a reference signal is available it may be used to enhance regulation by incorporating a feedforward path in the feedback controller. Such a controller is known as a hybrid controller. This paper presents the theory and implementation of the hybrid controller for general linear systems, in particular for structural vibration induced by acoustic noise. The generalized predictive control is extended to include a feedforward path in the multi-input multi-output case and implemented on a single-input single-output test plant to achieve plate vibration regulation. There are cases in acoustic-induce vibration where the disturbance signal is not available to be used by the hybrid controller, but a disturbance model is available. In this case the disturbance model may be used in the feedback controller to enhance performance. In practice, however, neither the disturbance signal nor the disturbance model is available. This paper presents the theory of identifying and incorporating the noise model into the feedback controller. Implementations are performed on a test plant and regulation improvements over the case where no noise model is used are demonstrated.
Development of Improved Surface Integral Methods for Jet Aeroacoustic Predictions
NASA Technical Reports Server (NTRS)
Pilon, Anthony R.; Lyrintzis, Anastasios S.
1997-01-01
The accurate prediction of aerodynamically generated noise has become an important goal over the past decade. Aeroacoustics must now be an integral part of the aircraft design process. The direct calculation of aerodynamically generated noise with CFD-like algorithms is plausible. However, large computer time and memory requirements often make these predictions impractical. It is therefore necessary to separate the aeroacoustics problem into two parts, one in which aerodynamic sound sources are determined, and another in which the propagating sound is calculated. This idea is applied in acoustic analogy methods. However, in the acoustic analogy, the determination of far-field sound requires the solution of a volume integral. This volume integration again leads to impractical computer requirements. An alternative to the volume integrations can be found in the Kirchhoff method. In this method, Green's theorem for the linear wave equation is used to determine sound propagation based on quantities on a surface surrounding the source region. The change from volume to surface integrals represents a tremendous savings in the computer resources required for an accurate prediction. This work is concerned with the development of enhancements of the Kirchhoff method for use in a wide variety of aeroacoustics problems. This enhanced method, the modified Kirchhoff method, is shown to be a Green's function solution of Lighthill's equation. It is also shown rigorously to be identical to the methods of Ffowcs Williams and Hawkings. This allows for development of versatile computer codes which can easily alternate between the different Kirchhoff and Ffowcs Williams-Hawkings formulations, using the most appropriate method for the problem at hand. The modified Kirchhoff method is developed primarily for use in jet aeroacoustics predictions. Applications of the method are shown for two dimensional and three dimensional jet flows. Additionally, the enhancements are generalized so that
The Energetic Cost of Walking: A Comparison of Predictive Methods
Kramer, Patricia Ann; Sylvester, Adam D.
2011-01-01
Background The energy that animals devote to locomotion has been of intense interest to biologists for decades and two basic methodologies have emerged to predict locomotor energy expenditure: those based on metabolic and those based on mechanical energy. Metabolic energy approaches share the perspective that prediction of locomotor energy expenditure should be based on statistically significant proxies of metabolic function, while mechanical energy approaches, which derive from many different perspectives, focus on quantifying the energy of movement. Some controversy exists as to which mechanical perspective is “best”, but from first principles all mechanical methods should be equivalent if the inputs to the simulation are of similar quality. Our goals in this paper are 1) to establish the degree to which the various methods of calculating mechanical energy are correlated, and 2) to investigate to what degree the prediction methods explain the variation in energy expenditure. Methodology/Principal Findings We use modern humans as the model organism in this experiment because their data are readily attainable, but the methodology is appropriate for use in other species. Volumetric oxygen consumption and kinematic and kinetic data were collected on 8 adults while walking at their self-selected slow, normal and fast velocities. Using hierarchical statistical modeling via ordinary least squares and maximum likelihood techniques, the predictive ability of several metabolic and mechanical approaches were assessed. We found that all approaches are correlated and that the mechanical approaches explain similar amounts of the variation in metabolic energy expenditure. Most methods predict the variation within an individual well, but are poor at accounting for variation between individuals. Conclusion Our results indicate that the choice of predictive method is dependent on the question(s) of interest and the data available for use as inputs. Although we used modern
Neural network based automatic limit prediction and avoidance system and method
NASA Technical Reports Server (NTRS)
Calise, Anthony J. (Inventor); Prasad, Jonnalagadda V. R. (Inventor); Horn, Joseph F. (Inventor)
2001-01-01
A method for performance envelope boundary cueing for a vehicle control system comprises the steps of formulating a prediction system for a neural network and training the neural network to predict values of limited parameters as a function of current control positions and current vehicle operating conditions. The method further comprises the steps of applying the neural network to the control system of the vehicle, where the vehicle has capability for measuring current control positions and current vehicle operating conditions. The neural network generates a map of current control positions and vehicle operating conditions versus the limited parameters in a pre-determined vehicle operating condition. The method estimates critical control deflections from the current control positions required to drive the vehicle to a performance envelope boundary. Finally, the method comprises the steps of communicating the critical control deflection to the vehicle control system; and driving the vehicle control system to provide a tactile cue to an operator of the vehicle as the control positions approach the critical control deflections.
A new method to predict unsteady aeroelastic behavior
NASA Technical Reports Server (NTRS)
Strganac, Thomas W.; Mook, Dean T.
1987-01-01
A new method for predicting subsonic flutter and static deflections, including divergence, has been developed. The present method accounts for aspect ratio and, in the case of flutter, static deflections. The angle of attack is limited only by the occurrence of stall or vortex bursting near the wing. The innovation in the present method is to integrate simultaneously and interactively the equations of motion of the structure and the flowfield. The present approach employs an iterative scheme based on the predictor-corrector method. The general unsteady vortex-lattice method (UVLM) is used to predict the aerodynamic loads. Because the UVLM predicts the wakes as part of the solution, the history of the motion is taken into account; hysteresis is predicted. The deflection (for both bending and torsion) is expressed as an expansion in terms of the free-vibration modes. The time-dependent coefficients in these expansions serve as the generalized coordinates. Numerical examples illustrating the calculation of static deflections and transient dynamic responses above and below the flutter boundary are included.
Increased Fidelity in Prediction Methods For Landing Gear Noise
NASA Technical Reports Server (NTRS)
Lopes, Leonard V.; Brentner, Kenneth S.; Morris, Philip J.; Lockhard, David P.
2006-01-01
An aeroacoustic prediction scheme has been developed for landing gear noise. The method is designed to handle the complex landing gear geometry of current and future aircraft. The gear is represented by a collection of subassemblies and simple components that are modeled using acoustic elements. These acoustic elements are generic, but generate noise representative of the physical components on a landing gear. The method sums the noise radiation from each component of the undercarriage in isolation accounting for interference with adjacent components through an estimate of the local upstream and downstream flows and turbulence intensities. The acoustic calculations are made in the code LGMAP, which computes the sound pressure levels at various observer locations. The method can calculate the noise from the undercarriage in isolation or installed on an aircraft for both main and nose landing gear. Comparisons with wind tunnel and flight data are used to initially calibrate the method, then it may be used to predict the noise of any landing gear. In this paper, noise predictions are compared with wind tunnel data for model landing gears of various scales and levels of fidelity, as well as with flight data on fullscale undercarriages. The present agreement between the calculations and measurements suggests the method has promise for future application in the prediction of airframe noise.
Factors Predicting Atypical Development of Nighttime Bladder Control
Sullivan, Sarah; Heron, Jon
2015-01-01
ABSTRACT: Objective: To derive latent classes (longitudinal “phenotypes”) of frequency of bedwetting from 4 to 9 years and to examine their association with developmental delay, parental history of bedwetting, length of gestation and birth weight. Method: The authors used data from 8,769 children from the UK Avon Longitudinal Study of Parents and Children cohort. Mothers provided repeated reports on their child's frequency of bedwetting from 4 to 9 years. The authors used longitudinal latent class analysis to derive latent classes of bedwetting and examined their association with sex, developmental level at 18 months, parental history of wetting, birth weight, and gestational length. Results: The authors identified 5 latent classes: (1) “normative”—low probability of bedwetting; (2) “infrequent delayed”—delayed attainment of nighttime bladder control with bedwetting
Nonlinear Model Predictive Control with Constraint Satisfactions for a Quadcopter
NASA Astrophysics Data System (ADS)
Wang, Ye; Ramirez-Jaime, Andres; Xu, Feng; Puig, Vicenç
2017-01-01
This paper presents a nonlinear model predictive control (NMPC) strategy combined with constraint satisfactions for a quadcopter. The full dynamics of the quadcopter describing the attitude and position are nonlinear, which are quite sensitive to changes of inputs and disturbances. By means of constraint satisfactions, partial nonlinearities and modeling errors of the control-oriented model of full dynamics can be transformed into the inequality constraints. Subsequently, the quadcopter can be controlled by an NMPC controller with the updated constraints generated by constraint satisfactions. Finally, the simulation results applied to a quadcopter simulator are provided to show the effectiveness of the proposed strategy.
Predicted torque equilibrium attitude utilization for Space Station attitude control
NASA Technical Reports Server (NTRS)
Kumar, Renjith R.; Heck, Michael L.; Robertson, Brent P.
1990-01-01
An approximate knowledge of the torque equilibrium attitude (TEA) is shown to improve the performance of a control moment gyroscope (CMG) momentum management/attitude control law for Space Station Freedom. The linearized equations of motion are used in conjunction with a state transformation to obtain a control law which uses full state feedback and the predicted TEA to minimize both attitude excursions and CMG peak and secular momentum. The TEA can be computationally determined either by observing the steady state attitude of a 'controlled' spacecraft using arbitrary initial attitude, or by simulating a fixed attitude spacecraft flying in desired orbit subject to realistic environmental disturbance models.
Accuracy of Wind Prediction Methods in the California Sea Breeze
NASA Astrophysics Data System (ADS)
Sumers, B. D.; Dvorak, M. J.; Ten Hoeve, J. E.; Jacobson, M. Z.
2010-12-01
In this study, we investigate the accuracy of measure-correlate-predict (MCP) algorithms and log law/power law scaling using data from two tall towers in coastal environments. We find that MCP algorithms accurately predict sea breeze winds and that log law/power law scaling methods struggle to predict 50-meter wind speeds. MCP methods have received significant attention as the wind industry has grown and the ability to accurately characterize the wind resource has become valuable. These methods are used to produce longer-term wind speed records from short-term measurement campaigns. A correlation is developed between the “target site,” where the developer is interested in building wind turbines, and a “reference site,” where long-term wind data is available. Up to twenty years of prior wind speeds are then are predicted. In this study, two existing MCP methods - linear regression and Mortimer’s method - are applied to predict 50-meter wind speeds at sites in the Salinas Valley and Redwood City, CA. The predictions are then verified with tall tower data. It is found that linear regression is poorly suited to MCP applications as the process produces inaccurate estimates of the cube of the wind speed at 50 meters. Meanwhile, Mortimer’s method, which bins data by direction and speed, is found to accurately predict the cube of the wind speed in both sea breeze and non-sea breeze conditions. We also find that log and power law are unstable predictors of wind speeds. While these methods produced accurate estimates of the average 50-meter wind speed at both sites, they predicted an average cube of the wind speed that was between 1.3 and 1.18 times the observed value. Inspection of time-series error reveals increased error in the mid-afternoon of the summer. This suggests that the cold sea breeze may disrupt the vertical temperature profile, create a stable atmosphere and violate the assumptions that allow log law scaling to work.
Plasma disruption prediction using machine learning methods: DIII-D
NASA Astrophysics Data System (ADS)
Lupin-Jimenez, L.; Kolemen, E.; Eldon, D.; Eidietis, N.
2016-10-01
Plasma disruption prediction is becoming more important with the development of larger tokamaks, due to the larger amount of thermal and magnetic energy that can be stored. By accurately predicting an impending disruption, the disruption's impact can be mitigated or, better, prevented. Recent approaches to disruption prediction have been through implementation of machine learning methods, which characterize raw and processed diagnostic data to develop accurate prediction models. Using disruption trials from the DIII-D database, the effectiveness of different machine learning methods are characterized. Developed real time disruption prediction approaches are focused on tearing and locking modes. Machine learning methods used include random forests, multilayer perceptrons, and traditional regression analysis. The algorithms are trained with data within short time frames, and whether or not a disruption occurs within the time window after the end of the frame. Initial results from the machine learning algorithms will be presented. Work supported by US DOE under the Science Undergraduate Laboratory Internship (SULI) program, DE-FC02-04ER54698, and DE-AC02-09CH11466.
Nonlinear model identification and adaptive model predictive control using neural networks.
Akpan, Vincent A; Hassapis, George D
2011-04-01
This paper presents two new adaptive model predictive control algorithms, both consisting of an on-line process identification part and a predictive control part. Both parts are executed at each sampling instant. The predictive control part of the first algorithm is the Nonlinear Model Predictive Control strategy and the control part of the second algorithm is the Generalized Predictive Control strategy. In the identification parts of both algorithms the process model is approximated by a series-parallel neural network structure which is trained by a recursive least squares (ARLS) method. The two control algorithms have been applied to: 1) the temperature control of a fluidized bed furnace reactor (FBFR) of a pilot plant and 2) the auto-pilot control of an F-16 aircraft. The training and validation data of the neural network are obtained from the open-loop simulation of the FBFR and the nonlinear F-16 aircraft models. The identification and control simulation results show that the first algorithm outperforms the second one at the expense of extra computation time.
High accuracy operon prediction method based on STRING database scores.
Taboada, Blanca; Verde, Cristina; Merino, Enrique
2010-07-01
We present a simple and highly accurate computational method for operon prediction, based on intergenic distances and functional relationships between the protein products of contiguous genes, as defined by STRING database (Jensen,L.J., Kuhn,M., Stark,M., Chaffron,S., Creevey,C., Muller,J., Doerks,T., Julien,P., Roth,A., Simonovic,M. et al. (2009) STRING 8-a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res., 37, D412-D416). These two parameters were used to train a neural network on a subset of experimentally characterized Escherichia coli and Bacillus subtilis operons. Our predictive model was successfully tested on the set of experimentally defined operons in E. coli and B. subtilis, with accuracies of 94.6 and 93.3%, respectively. As far as we know, these are the highest accuracies ever obtained for predicting bacterial operons. Furthermore, in order to evaluate the predictable accuracy of our model when using an organism's data set for the training procedure, and a different organism's data set for testing, we repeated the E. coli operon prediction analysis using a neural network trained with B. subtilis data, and a B. subtilis analysis using a neural network trained with E. coli data. Even for these cases, the accuracies reached with our method were outstandingly high, 91.5 and 93%, respectively. These results show the potential use of our method for accurately predicting the operons of any other organism. Our operon predictions for fully-sequenced genomes are available at http://operons.ibt.unam.mx/OperonPredictor/.
Power control system and method
Steigerwald, Robert Louis [Burnt Hills, NY; Anderson, Todd Alan [Niskayuna, NY
2008-02-19
A power system includes an energy harvesting device, a battery coupled to the energy harvesting device, and a circuit coupled to the energy harvesting device and the battery. The circuit is adapted to deliver power to a load by providing power generated by the energy harvesting device to the load without delivering excess power to the battery and to supplement the power generated by the energy harvesting device with power from the battery if the power generated by the energy harvesting device is insufficient to fully power the load. A method of operating the power system is also provided.
Power control system and method
Steigerwald, Robert Louis; Anderson, Todd Alan
2006-11-07
A power system includes an energy harvesting device, a battery coupled to the energy harvesting device, and a circuit coupled to the energy harvesting device and the battery. The circuit is adapted to deliver power to a load by providing power generated by the energy harvesting device to the load without delivering excess power to the battery and to supplement the power generated by the energy harvesting device with power from the battery if the power generated by the energy harvesting device is insufficient to fully power the load. A method of operating the power system is also provided.
Neural Generalized Predictive Control: A Newton-Raphson Implementation
NASA Technical Reports Server (NTRS)
Soloway, Donald; Haley, Pamela J.
1997-01-01
An efficient implementation of Generalized Predictive Control using a multi-layer feedforward neural network as the plant's nonlinear model is presented. In using Newton-Raphson as the optimization algorithm, the number of iterations needed for convergence is significantly reduced from other techniques. The main cost of the Newton-Raphson algorithm is in the calculation of the Hessian, but even with this overhead the low iteration numbers make Newton-Raphson faster than other techniques and a viable algorithm for real-time control. This paper presents a detailed derivation of the Neural Generalized Predictive Control algorithm with Newton-Raphson as the minimization algorithm. Simulation results show convergence to a good solution within two iterations and timing data show that real-time control is possible. Comments about the algorithm's implementation are also included.
Pang, Herbert; Jung, Sin-Ho
2013-04-01
A variety of prediction methods are used to relate high-dimensional genome data with a clinical outcome using a prediction model. Once a prediction model is developed from a data set, it should be validated using a resampling method or an independent data set. Although the existing prediction methods have been intensively evaluated by many investigators, there has not been a comprehensive study investigating the performance of the validation methods, especially with a survival clinical outcome. Understanding the properties of the various validation methods can allow researchers to perform more powerful validations while controlling for type I error. In addition, sample size calculation strategy based on these validation methods is lacking. We conduct extensive simulations to examine the statistical properties of these validation strategies. In both simulations and a real data example, we have found that 10-fold cross-validation with permutation gave the best power while controlling type I error close to the nominal level. Based on this, we have also developed a sample size calculation method that will be used to design a validation study with a user-chosen combination of prediction. Microarray and genome-wide association studies data are used as illustrations. The power calculation method in this presentation can be used for the design of any biomedical studies involving high-dimensional data and survival outcomes.
A Method of Recording and Predicting the Pollen Count.
ERIC Educational Resources Information Center
Buck, M.
1985-01-01
A hair dryer, plastic funnel, and microscope slide can be used for predicting pollen counts on a day-to-day basis. Materials, methods for assembly, collection technique, meteorological influences, and daily patterns are discussed. Data collected using the apparatus suggest that airborne grass products other than pollen also affect hay fever…
Prediction of active control of subsonic centrifugal compressor rotating stall
NASA Technical Reports Server (NTRS)
Lawless, Patrick B.; Fleeter, Sanford
1993-01-01
A mathematical model is developed to predict the suppression of rotating stall in a centrifugal compressor with a vaned diffuser. This model is based on the employment of a control vortical waveform generated upstream of the impeller inlet to damp weak potential disturbances that are the early stages of rotating stall. The control system is analyzed by matching the perturbation pressure in the compressor inlet and exit flow fields with a model for the unsteady behavior of the compressor. The model was effective at predicting the stalling behavior of the Purdue Low Speed Centrifugal Compressor for two distinctly different stall patterns. Predictions made for the effect of a controlled inlet vorticity wave on the stability of the compressor show that for minimum control wave magnitudes, on the order of the total inlet disturbance magnitude, significant damping of the instability can be achieved. For control waves of sufficient amplitude, the control phase angle appears to be the most important factor in maintaining a stable condition in the compressor.
Risk prediction with machine learning and regression methods.
Steyerberg, Ewout W; van der Ploeg, Tjeerd; Van Calster, Ben
2014-07-01
This is a discussion of issues in risk prediction based on the following papers: "Probability estimation with machine learning methods for dichotomous and multicategory outcome: Theory" by Jochen Kruppa, Yufeng Liu, Gérard Biau, Michael Kohler, Inke R. König, James D. Malley, and Andreas Ziegler; and "Probability estimation with machine learning methods for dichotomous and multicategory outcome: Applications" by Jochen Kruppa, Yufeng Liu, Hans-Christian Diener, Theresa Holste, Christian Weimar, Inke R. König, and Andreas Ziegler.
Computational Methods for Predictive Simulation of Stochastic Turbulence Systems
2015-11-05
Enter title and subtitle with volume number and part number, if applicable . On classified documents, enter the title classification in parentheses. 5a...accuracy, and range of applicability of non-intrusive methods, such as stochastic collocation methods, and intrusive techniques, such as stochastic...engineering flows) over a long time interval is not possible within time and resource constraints. Many applications central to predictive CFD today
Shannon, Ronald; Nelson, Andrea
2016-11-20
To compare data on time to healing from two separate cohorts: one treated with a new acellular synthetic matrix plus standard care (SC) and one matched from four large UK pragmatic, randomised controlled trials [venous leg ulcer (VLU) evidence network]. We introduce a new proof-of-concept strategy to a VLU clinical evidence network, propensity score matching and sensitivity analysis to predict the feasibility of the new acellular synthetic matrix plus SC for success in future randomised, controlled clinical trials. Prospective data on chronic VLUs from a safety and effectiveness study on an acellular synthetic matrix conducted in one wound centre in the UK (17 patients) and three wound centres in Australia (36 patients) were compared retrospectively to propensity score-matched data from patients with comparable leg ulcer disease aetiology, age, baseline ulcer area, ulcer duration, multi-layer compression bandaging and majority of care completed in specialist wound centres (average of 1 visit per week), with the outcome measures at comparable follow-up periods from patients enrolled in four prospective, multicentre, pragmatic, randomised studies of venous ulcers in the UK (the comparison group; VLU evidence network). Analysis using Kaplan-Meier survival curves showed a mean healing time of 73·1 days for ASM plus SC (ASM) treated ulcers in comparison with 83·5 days for comparison group ulcers treated with SC alone (Log rank test, χ(2) 5·779, P = 0·016) within 12 weeks. Sensitivity analysis indicates that an unobserved covariate would have to change the odds of healing for SC by a factor of 1·1 to impact the baseline results. Results from this study predict a significant effect on healing time when using a new ASM as an adjunct to SC in the treatment of non-healing venous ulcers in the UK, but results are sensitive to unobserved covariates that may be important in healing time comparison.
A Novel Method for Functional Annotation Prediction Based on Combination of Classification Methods
Jung, Jaehee; Lee, Heung Ki
2014-01-01
Automated protein function prediction defines the designation of functions of unknown protein functions by using computational methods. This technique is useful to automatically assign gene functional annotations for undefined sequences in next generation genome analysis (NGS). NGS is a popular research method since high-throughput technologies such as DNA sequencing and microarrays have created large sets of genes. These huge sequences have greatly increased the need for analysis. Previous research has been based on the similarities of sequences as this is strongly related to the functional homology. However, this study aimed to designate protein functions by automatically predicting the function of the genome by utilizing InterPro (IPR), which can represent the properties of the protein family and groups of the protein function. Moreover, we used gene ontology (GO), which is the controlled vocabulary used to comprehensively describe the protein function. To define the relationship between IPR and GO terms, three pattern recognition techniques have been employed under different conditions, such as feature selection and weighted value, instead of a binary one. PMID:25133242
Statistical Methods for Predicting Malaria Incidences Using Data from Sudan
Awadalla, Khidir E.
2017-01-01
Malaria is the leading cause of illness and death in Sudan. The entire population is at risk of malaria epidemics with a very high burden on government and population. The usefulness of forecasting methods in predicting the number of future incidences is needed to motivate the development of a system that can predict future incidences. The objective of this paper is to develop applicable and understood time series models and to find out what method can provide better performance to predict future incidences level. We used monthly incidence data collected from five states in Sudan with unstable malaria transmission. We test four methods of the forecast: (1) autoregressive integrated moving average (ARIMA); (2) exponential smoothing; (3) transformation model; and (4) moving average. The result showed that transformation method performed significantly better than the other methods for Gadaref, Gazira, North Kordofan, and Northern, while the moving average model performed significantly better for Khartoum. Future research should combine a number of different and dissimilar methods of time series to improve forecast accuracy with the ultimate aim of developing a simple and useful model for producing reasonably reliable forecasts of the malaria incidence in the study area. PMID:28367352
Quality Control Guidelines for SAM Radiochemical Methods
Learn more about quality control guidelines and recommendations for the analysis of samples using the radiochemistry methods listed in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).
Quality Control Guidelines for SAM Biotoxin Methods
Learn more about quality control guidelines and recommendations for the analysis of samples using the pathogen methods listed in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).
Quality Control Guidelines for SAM Pathogen Methods
Learn more about quality control guidelines and recommendations for the analysis of samples using the biotoxin methods listed in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).
Quality Control Guidelines for SAM Chemical Methods
Learn more about quality control guidelines and recommendations for the analysis of samples using the chemistry methods listed in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).
Auxiliary particle filter-model predictive control of the vacuum arc remelting process
NASA Astrophysics Data System (ADS)
Lopez, F.; Beaman, J.; Williamson, R.
2016-07-01
Solidification control is required for the suppression of segregation defects in vacuum arc remelting of superalloys. In recent years, process controllers for the VAR process have been proposed based on linear models, which are known to be inaccurate in highly-dynamic conditions, e.g. start-up, hot-top and melt rate perturbations. A novel controller is proposed using auxiliary particle filter-model predictive control based on a nonlinear stochastic model. The auxiliary particle filter approximates the probability of the state, which is fed to a model predictive controller that returns an optimal control signal. For simplicity, the estimation and control problems are solved using Sequential Monte Carlo (SMC) methods. The validity of this approach is verified for a 430 mm (17 in) diameter Alloy 718 electrode melted into a 510 mm (20 in) diameter ingot. Simulation shows a more accurate and smoother performance than the one obtained with an earlier version of the controller.
On Application of Model Predictive Control to Power Converter with Switching
NASA Astrophysics Data System (ADS)
Zanma, Tadanao; Fukuta, Junichi; Doki, Shinji; Ishida, Muneaki; Okuma, Shigeru; Matsumoto, Takashi; Nishimori, Eiji
This paper concerns a DC-DC converter control. In DC-DC converters, there exist both continuous components such as inductance, conductance and resistance and discrete ones, IGBT and MOSFET as semiconductor switching elements. Such a system can be regarded as a hybrid dynamical system. Thus, this paper presents a dc-dc control technique based on the model predictive control. Specifically, a case in which the load of the dc-dc converter changes from active to sleep is considered. In the case, a control method which makes the output voltage follow to the reference quickly in transition, and the switching frequency be constant in steady state. In addition, in applying the model predictive control to power electronics circuits, the switching characteristic of the device and the restriction condition for protection are also considered. The effectiveness of the proposed method is illustrated by comparing a conventional method through some simulation results.
Sediment rating curve & Co. - a contest of prediction methods
NASA Astrophysics Data System (ADS)
Francke, T.; Zimmermann, A.
2012-04-01
In spite of the recent technological progress in sediment monitoring, often the calculation of sediment yield (SSY) still relies on intermittent measurements because of the use of historic records, instrument-failure in continuous recording or financial constraints. Therefore, available measurements are usually inter- and even extrapolated using the sediment rating curve approach, which uses continuously available discharge data to predict sediment concentrations. Extending this idea by further aspects like the inclusion of other predictors (e.g. rainfall, discharge-characteristics, etc.), or the consideration of prediction uncertainty led to a variety of new methods. Now, with approaches such as Fuzzy Logic, Artificial Neural Networks, Tree-based regression, GLMs, etc., the user is left to decide which method to apply. Trying multiple approaches is usually not an option, as considerable effort and expertise may be needed for their application. To establish a helpful guideline in selecting the most appropriate method for SSY-computation, we initiated a study to compare and rank available methods. Depending on problem attributes like hydrological and sediment regime, number of samples, sampling scheme, and availability of ancillary predictors, the performance of different methods is compared. Our expertise allowed us to "register" Random Forests, Quantile Regression Forests and GLMs for the contest. To include many different methods and ensure their sophisticated use we invite scientists that are willing to benchmark their favourite method(s) with us. The more diverse the participating methods are, the more exciting the contest will be.
ESG: extended similarity group method for automated protein function prediction
Chitale, Meghana; Hawkins, Troy; Park, Changsoon; Kihara, Daisuke
2009-01-01
Motivation: Importance of accurate automatic protein function prediction is ever increasing in the face of a large number of newly sequenced genomes and proteomics data that are awaiting biological interpretation. Conventional methods have focused on high sequence similarity-based annotation transfer which relies on the concept of homology. However, many cases have been reported that simple transfer of function from top hits of a homology search causes erroneous annotation. New methods are required to handle the sequence similarity in a more robust way to combine together signals from strongly and weakly similar proteins for effectively predicting function for unknown proteins with high reliability. Results: We present the extended similarity group (ESG) method, which performs iterative sequence database searches and annotates a query sequence with Gene Ontology terms. Each annotation is assigned with probability based on its relative similarity score with the multiple-level neighbors in the protein similarity graph. We will depict how the statistical framework of ESG improves the prediction accuracy by iteratively taking into account the neighborhood of query protein in the sequence similarity space. ESG outperforms conventional PSI-BLAST and the protein function prediction (PFP) algorithm. It is found that the iterative search is effective in capturing multiple-domains in a query protein, enabling accurately predicting several functions which originate from different domains. Availability: ESG web server is available for automated protein function prediction at http://dragon.bio.purdue.edu/ESG/ Contact: cspark@cau.ac.kr; dkihara@purdue.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:19435743
Dynamical Epidemic Suppression Using Stochastic Prediction and Control
2004-10-28
reduce the rate of input of susceptibles. By using the PDF flux, we are able to distinguish regions used in other chaos control schemes that are...use this information in a control algo- stochastic chaos control methods that account specifically for rithm to prevent bursting dynamics (that is, to
A Review of Computational Methods for Predicting Drug Targets.
Huang, Guohua; Yan, Fengxia; Tan, Duoduo
2016-11-14
Drug discovery and development is not only a time-consuming and labor-intensive process but also full of risk. Identifying targets of small molecules helps evaluate safety of drugs and find new therapeutic applications. The biotechnology measures a wide variety of properties related to drug and targets from different perspectives, thus generating a large body of data. This undoubtedly provides a solid foundation to explore relationships between drugs and targets. A large number of computational techniques have recently been developed for drug target prediction. In this paper, we summarize these computational methods and classify them into structure-based, molecular activity-based, side-effect-based and multi-omics-based predictions according to the used data for inference. The multi-omics-based methods are further grouped into two types: classifier-based and network-based predictions. Furthermore，the advantages and limitations of each type of methods are discussed. Finally, we point out the future directions of computational predictions for drug targets.
Model predictive control based on reduced order models applied to belt conveyor system.
Chen, Wei; Li, Xin
2016-11-01
In the paper, a model predictive controller based on reduced order model is proposed to control belt conveyor system, which is an electro-mechanics complex system with long visco-elastic body. Firstly, in order to design low-degree controller, the balanced truncation method is used for belt conveyor model reduction. Secondly, MPC algorithm based on reduced order model for belt conveyor system is presented. Because of the error bound between the full-order model and reduced order model, two Kalman state estimators are applied in the control scheme to achieve better system performance. Finally, the simulation experiments are shown that balanced truncation method can significantly reduce the model order with high-accuracy and model predictive control based on reduced-model performs well in controlling the belt conveyor system.
Implementation of model predictive control on a hydrothermal oxidation reactor
Muske, K.R.; Dell`Orco, P.C.; Le, L.A.; Flesner, R.L.
1998-12-31
This paper describes the model-based control algorithm developed for a hydrothermal oxidation reactor at the Pantex Department of Energy facility in Amarillo, Texas. The combination of base hydrolysis and hydrothermal oxidation is used for the disposal of PBX 9404 high explosive at Pantex. The reactor oxidizes the organic compounds in the hydrolysate solutions obtained from the base hydrolysis process. The objective of the model predictive controller is to minimize the total aqueous nitrogen compounds in the effluent of the reactor. The controller also maintains a desired excess oxygen concentration in the reactor effluent to ensure the complete destruction of the organic carbon compounds in the hydrolysate.
Structure-based Methods for Computational Protein Functional Site Prediction
Dukka, B KC
2013-01-01
Due to the advent of high throughput sequencing techniques and structural genomic projects, the number of gene and protein sequences has been ever increasing. Computational methods to annotate these genes and proteins are even more indispensable. Proteins are important macromolecules and study of the function of proteins is an important problem in structural bioinformatics. This paper discusses a number of methods to predict protein functional site especially focusing on protein ligand binding site prediction. Initially, a short overview is presented on recent advances in methods for selection of homologous sequences. Furthermore, a few recent structural based approaches and sequence-and-structure based approaches for protein functional sites are discussed in details. PMID:24688745
Better Methods for Predicting Lifetimes of Seal Materials
Celina, M.; Gillen, K.T.; Keenan, M.R.
1999-03-16
We have been working for many years to develop better methods for predicting the lifetimes of polymer materials. Because of the recent interest in extending the lifetimes of nuclear weapons and the importance of environmental seals (o-rings, gaskets) for protecting weapon interiors against oxygen and water vapor, we have recently turned our attention to seal materials. Perhaps the most important environmental o-ring material is butyl rubber, used in various military applications. Although it is the optimum choice from a water permeability perspective, butyl can be marginal from an aging point-of-view. The purpose of the present work was to derive better methods for predicting seal lifetimes and applying these methods to an important butyl material, Parker compound B6 12-70.
Predictions of Thrombus Formation Using Lattice Boltzmann Method
NASA Astrophysics Data System (ADS)
Tamagawa, Masaaki; Matsuo, Sumiaki
This paper describes the prediction of index of thrombus formation in shear blood flow by computational fluid dynamics (CFD) with Lattice Boltzmann Method (LBM), applying to orifice-pipe blood flow and flow around a cylinder, which is simple model of turbulent shear stress in the high speed rotary blood pumps and complicated geometry of medical fluid machines. The results of the flow field in the orifice-pipe flow using LBM are compared with experimental data and those using finite difference method, and it is found that the reattachment length of the backward facing step flow is predicted as precise as that the experiment and the finite difference method. As for thrombus formation, from the computational data of flow around the cylinder in the channel, the thrombus formation (thickness) is estimated using (1) shear rate and adhesion force (effective distance) to the wall independently, and (2) shear rate function with adhesion force (effective distance), and it is found that the prediction method using shear rate function with adhesion force is more accurate than the method using the former one.
Evaluation of ride quality prediction methods for operational military helicopters
NASA Technical Reports Server (NTRS)
Leatherwood, J. D.; Clevenson, S. A.; Hollenbaugh, D. D.
1984-01-01
The results of a simulator study conducted to compare and validate various ride quality prediction methods for use in assessing passenger/crew ride comfort within helicopters are presented. Included are results quantifying 35 helicopter pilots' discomfort responses to helicopter interior noise and vibration typical of routine flights, assessment of various ride quality metrics including the NASA ride comfort model, and examination of possible criteria approaches. Results of the study indicated that crew discomfort results from a complex interaction between vibration and interior noise. Overall measures such as weighted or unweighted root-mean-square acceleration level and A-weighted noise level were not good predictors of discomfort. Accurate prediction required a metric incorporating the interactive effects of both noise and vibration. The best metric for predicting crew comfort to the combined noise and vibration environment was the NASA discomfort index.
Monadi, Mahmoud; Firouzjahi, Alireza; Hosseini, Amin; Javadian, Yahya; Sharbatdaran, Majid; Heidari, Behzad
2016-01-01
Background: Increased serum high sensitive C-reactive protein (hs-CRP) in asthma and its association with disease severity has been investigated in many studies. This study aimed to determine serum hs-CRP status in asthma versus healthy controls and to examine its ability in predicting asthma control. Methods: Serum CRP was measured by ELISA method using a high sensitive CRP kit. Severity of asthma was determined using Asthma Control Test. Spearman and chi square tests were used for association and correlation respectively. The predictive ability was determined by receiver operating characteristics (ROC) analysis. Accuracy was determined by determination of area under the ROC curve (AUC). Results: A total of 120 patients and 115 controls were studied. Median serum hs-CRP in asthma was higher than control (P=0.001. In well controlled asthma the hs-CRP decreased significantly compared with poorly controlled (P=0.024) but still was higher than control (P=0.017). Serum hs-CRP at cutoff level of 1.45 mg/L differentiated the patients and controls with accuracy of 63.5 % (AUC= 0.635±0.037, P=0.001). Serum hs-CRP ≤ 2.15 mg/L predicted well controlled asthma with accuracy of 62.5% (AUC= 0.625±0.056, p=0.025). After adjusting for age, sex, weight and smoking, there was an independent association between serum hs-CRP >1.45 mg/L and asthma by adjusted OR=2.49, p=0.018). Conclusion: These findings indicate that serum hs-CRP in asthma is higher than healthy control and increases with severity of asthma and decreases with. Thus, serum hs-CRP measurement can be helpful in predicting asthma control and treatment response. PMID:26958331
Health-aware Model Predictive Control of Pasteurization Plant
NASA Astrophysics Data System (ADS)
Karimi Pour, Fatemeh; Puig, Vicenç; Ocampo-Martinez, Carlos
2017-01-01
In order to optimize the trade-off between components life and energy consumption, the integration of a system health management and control modules is required. This paper proposes the integration of model predictive control (MPC) with a fatigue estimation approach that minimizes the damage of the components of a pasteurization plant. The fatigue estimation is assessed with the rainflow counting algorithm. Using data from this algorithm, a simplified model that characterizes the health of the system is developed and integrated with MPC. The MPC controller objective is modified by adding an extra criterion that takes into account the accumulated damage. But, a steady-state offset is created by adding this extra criterion. Finally, by including an integral action in the MPC controller, the steady-state error for regulation purpose is eliminated. The proposed control scheme is validated in simulation using a simulator of a utility-scale pasteurization plant.
Nonlinear Dynamic Inversion Baseline Control Law: Architecture and Performance Predictions
NASA Technical Reports Server (NTRS)
Miller, Christopher J.
2011-01-01
A model reference dynamic inversion control law has been developed to provide a baseline control law for research into adaptive elements and other advanced flight control law components. This controller has been implemented and tested in a hardware-in-the-loop simulation; the simulation results show excellent handling qualities throughout the limited flight envelope. A simple angular momentum formulation was chosen because it can be included in the stability proofs for many basic adaptive theories, such as model reference adaptive control. Many design choices and implementation details reflect the requirements placed on the system by the nonlinear flight environment and the desire to keep the system as basic as possible to simplify the addition of the adaptive elements. Those design choices are explained, along with their predicted impact on the handling qualities.
Epidemiology and statistical methods in prediction of patient outcome.
Bostwick, David G; Adolfsson, Jan; Burke, Harry B; Damber, Jan-Erik; Huland, Hartwig; Pavone-Macaluso, Michele; Waters, David J
2005-05-01
Substantial gaps exist in the data of the assessment of risk and prognosis that limit our understanding of the complex mechanisms that contribute to the greatest cancer epidemic, prostate cancer, of our time. This report was prepared by an international multidisciplinary committee of the World Health Organization to address contemporary issues of epidemiology and statistical methods in prostate cancer, including a summary of current risk assessment methods and prognostic factors. Emphasis was placed on the relative merits of each of the statistical methods available. We concluded that: 1. An international committee should be created to guide the assessment and validation of molecular biomarkers. The goal is to achieve more precise identification of those who would benefit from treatment. 2. Prostate cancer is a predictable disease despite its biologic heterogeneity. However, the accuracy of predicting it must be improved. We expect that more precise statistical methods will supplant the current staging system. The simplicity and intuitive ease of using the current staging system must be balanced against the serious compromise in accuracy for the individual patient. 3. The most useful new statistical approaches will integrate molecular biomarkers with existing prognostic factors to predict conditional life expectancy (i.e. the expected remaining years of a patient's life) and take into account all-cause mortality.
Researches on High Accuracy Prediction Methods of Earth Orientation Parameters
NASA Astrophysics Data System (ADS)
Xu, X. Q.
2015-09-01
The Earth rotation reflects the coupling process among the solid Earth, atmosphere, oceans, mantle, and core of the Earth on multiple spatial and temporal scales. The Earth rotation can be described by the Earth's orientation parameters, which are abbreviated as EOP (mainly including two polar motion components PM_X and PM_Y, and variation in the length of day ΔLOD). The EOP is crucial in the transformation between the terrestrial and celestial reference systems, and has important applications in many areas such as the deep space exploration, satellite precise orbit determination, and astrogeodynamics. However, the EOP products obtained by the space geodetic technologies generally delay by several days to two weeks. The growing demands for modern space navigation make high-accuracy EOP prediction be a worthy topic. This thesis is composed of the following three aspects, for the purpose of improving the EOP forecast accuracy. (1) We analyze the relation between the length of the basic data series and the EOP forecast accuracy, and compare the EOP prediction accuracy for the linear autoregressive (AR) model and the nonlinear artificial neural network (ANN) method by performing the least squares (LS) extrapolations. The results show that the high precision forecast of EOP can be realized by appropriate selection of the basic data series length according to the required time span of EOP prediction: for short-term prediction, the basic data series should be shorter, while for the long-term prediction, the series should be longer. The analysis also showed that the LS+AR model is more suitable for the short-term forecasts, while the LS+ANN model shows the advantages in the medium- and long-term forecasts. (2) We develop for the first time a new method which combines the autoregressive model and Kalman filter (AR+Kalman) in short-term EOP prediction. The equations of observation and state are established using the EOP series and the autoregressive coefficients
Decentralized robust nonlinear model predictive controller for unmanned aerial systems
NASA Astrophysics Data System (ADS)
Garcia Garreton, Gonzalo A.
The nonlinear and unsteady nature of aircraft aerodynamics together with limited practical range of controls and state variables make the use of the linear control theory inadequate especially in the presence of external disturbances, such as wind. In the classical approach, aircraft are controlled by multiple inner and outer loops, designed separately and sequentially. For unmanned aerial systems in particular, control technology must evolve to a point where autonomy is extended to the entire mission flight envelope. This requires advanced controllers that have sufficient robustness, track complex trajectories, and use all the vehicles control capabilities at higher levels of accuracy. In this work, a robust nonlinear model predictive controller is designed to command and control an unmanned aerial system to track complex tight trajectories in the presence of internal and external perturbance. The Flight System developed in this work achieves the above performance by using: 1. A nonlinear guidance algorithm that enables the vehicle to follow an arbitrary trajectory shaped by moving points; 2. A formulation that embeds the guidance logic and trajectory information in the aircraft model, avoiding cross coupling and control degradation; 3. An artificial neural network, designed to adaptively estimate and provide aerodynamic and propulsive forces in real-time; and 4. A mixed sensitivity approach that enhances the robustness for a nonlinear model predictive controller overcoming the effect of un-modeled dynamics, external disturbances such as wind, and measurement additive perturbations, such as noise and biases. These elements have been integrated and tested in simulation and with previously stored flight test data and shown to be feasible.
Stabilization precision control methods of photoelectric aim-stabilized system
NASA Astrophysics Data System (ADS)
Song, Xiaoru; Chen, Hua; Xue, Yonggang
2015-09-01
To solve the question that photoelectric aim-stabilized system can be controlled with high precision and stability, this paper researches a new photoelectric aim-stabilized control algorithm, analyzes the photoelectric aim-stabilized system architecture, sets up stability control system mathematical model, designs the stability of the photoelectric aim-stabilized LSSVM identification and control system, discusses uncertain factors and calculates the LSSVM parameters by the Chaos theory, gives the predictive controller model by the LSSVM and designs new photoelectric aim-stabilized system. Through the simulation calculation and experimental analysis, new photoelectric aim-stabilized control algorithm was verified; the results show the new photoelectric aim-stabilized control method can meet the demand of high precision control in photoelectric aim-stabilized system.
Tuning Proportional-Integral controllers to approximate simplified predictive control performance.
Mansour, S E
2009-10-01
An exact equivalence between PI (Proportional-Integral) and two-parameter SPC (Simplified Predictive Control) is developed to provide identical control of first order linear plants. A relationship between the PI control parameters and the SPC control parameters is described. This relationship that allows the same control in the case of first order linear plants is also found to provide tuning formulas that yield PI control which approximates SPC performance in the case of second order linear plants with widely separated Eigenvalues. Finally, an extension of the PI control algorithm to include future errors provides another exact PI-SPC equivalence for networked control of first order plants.
A nonlinear regression model-based predictive control algorithm.
Dubay, R; Abu-Ayyad, M; Hernandez, J M
2009-04-01
This paper presents a unique approach for designing a nonlinear regression model-based predictive controller (NRPC) for single-input-single-output (SISO) and multi-input-multi-output (MIMO) processes that are common in industrial applications. The innovation of this strategy is that the controller structure allows nonlinear open-loop modeling to be conducted while closed-loop control is executed every sampling instant. Consequently, the system matrix is regenerated every sampling instant using a continuous function providing a more accurate prediction of the plant. Computer simulations are carried out on nonlinear plants, demonstrating that the new approach is easily implemented and provides tight control. Also, the proposed algorithm is implemented on two real time SISO applications; a DC motor, a plastic injection molding machine and a nonlinear MIMO thermal system comprising three temperature zones to be controlled with interacting effects. The experimental closed-loop responses of the proposed algorithm were compared to a multi-model dynamic matrix controller (MPC) with improved results for various set point trajectories. Good disturbance rejection was attained, resulting in improved tracking of multi-set point profiles in comparison to multi-model MPC.
Model Predictive Control of Integrated Gasification Combined Cycle Power Plants
B. Wayne Bequette; Priyadarshi Mahapatra
2010-08-31
The primary project objectives were to understand how the process design of an integrated gasification combined cycle (IGCC) power plant affects the dynamic operability and controllability of the process. Steady-state and dynamic simulation models were developed to predict the process behavior during typical transients that occur in plant operation. Advanced control strategies were developed to improve the ability of the process to follow changes in the power load demand, and to improve performance during transitions between power levels. Another objective of the proposed work was to educate graduate and undergraduate students in the application of process systems and control to coal technology. Educational materials were developed for use in engineering courses to further broaden this exposure to many students. ASPENTECH software was used to perform steady-state and dynamic simulations of an IGCC power plant. Linear systems analysis techniques were used to assess the steady-state and dynamic operability of the power plant under various plant operating conditions. Model predictive control (MPC) strategies were developed to improve the dynamic operation of the power plants. MATLAB and SIMULINK software were used for systems analysis and control system design, and the SIMULINK functionality in ASPEN DYNAMICS was used to test the control strategies on the simulated process. Project funds were used to support a Ph.D. student to receive education and training in coal technology and the application of modeling and simulation techniques.
Linear reduction method for predictive and informative tag SNP selection.
He, Jingwu; Westbrooks, Kelly; Zelikovsky, Alexander
2005-01-01
Constructing a complete human haplotype map is helpful when associating complex diseases with their related SNPs. Unfortunately, the number of SNPs is very large and it is costly to sequence many individuals. Therefore, it is desirable to reduce the number of SNPs that should be sequenced to a small number of informative representatives called tag SNPs. In this paper, we propose a new linear algebra-based method for selecting and using tag SNPs. We measure the quality of our tag SNP selection algorithm by comparing actual SNPs with SNPs predicted from selected linearly independent tag SNPs. Our experiments show that for sufficiently long haplotypes, knowing only 0.4% of all SNPs the proposed linear reduction method predicts an unknown haplotype with the error rate below 2% based on 10% of the population.
Method to predict external store carriage characteristics at transonic speeds
NASA Technical Reports Server (NTRS)
Rosen, Bruce S.
1988-01-01
Development of a computational method for prediction of external store carriage characteristics at transonic speeds is described. The geometric flexibility required for treatment of pylon-mounted stores is achieved by computing finite difference solutions on a five-level embedded grid arrangement. A completely automated grid generation procedure facilitates applications. Store modeling capability consists of bodies of revolution with multiple fore and aft fins. A body-conforming grid improves the accuracy of the computed store body flow field. A nonlinear relaxation scheme developed specifically for modified transonic small disturbance flow equations enhances the method's numerical stability and accuracy. As a result, treatment of lower aspect ratio, more highly swept and tapered wings is possible. A limited supersonic freestream capability is also provided. Pressure, load distribution, and force/moment correlations show good agreement with experimental data for several test cases. A detailed computer program description for the Transonic Store Carriage Loads Prediction (TSCLP) Code is included.
Model predictive control of a wind turbine modelled in Simpack
NASA Astrophysics Data System (ADS)
Jassmann, U.; Berroth, J.; Matzke, D.; Schelenz, R.; Reiter, M.; Jacobs, G.; Abel, D.
2014-06-01
Wind turbines (WT) are steadily growing in size to increase their power production, which also causes increasing loads acting on the turbine's components. At the same time large structures, such as the blades and the tower get more flexible. To minimize this impact, the classical control loops for keeping the power production in an optimum state are more and more extended by load alleviation strategies. These additional control loops can be unified by a multiple-input multiple-output (MIMO) controller to achieve better balancing of tuning parameters. An example for MIMO control, which has been paid more attention to recently by wind industry, is Model Predictive Control (MPC). In a MPC framework a simplified model of the WT is used to predict its controlled outputs. Based on a user-defined cost function an online optimization calculates the optimal control sequence. Thereby MPC can intrinsically incorporate constraints e.g. of actuators. Turbine models used for calculation within the MPC are typically simplified. For testing and verification usually multi body simulations, such as FAST, BLADED or FLEX5 are used to model system dynamics, but they are still limited in the number of degrees of freedom (DOF). Detailed information about load distribution (e.g. inside the gearbox) cannot be provided by such models. In this paper a Model Predictive Controller is presented and tested in a co-simulation with SlMPACK, a multi body system (MBS) simulation framework used for detailed load analysis. The analysis are performed on the basis of the IME6.0 MBS WT model, described in this paper. It is based on the rotor of the NREL 5MW WT and consists of a detailed representation of the drive train. This takes into account a flexible main shaft and its main bearings with a planetary gearbox, where all components are modelled flexible, as well as a supporting flexible main frame. The wind loads are simulated using the NREL AERODYN v13 code which has been implemented as a routine to
A review of statistical methods for prediction of proteolytic cleavage.
duVerle, David A; Mamitsuka, Hiroshi
2012-05-01
A fundamental component of systems biology, proteolytic cleavage is involved in nearly all aspects of cellular activities: from gene regulation to cell lifecycle regulation. Current sequencing technologies have made it possible to compile large amount of cleavage data and brought greater understanding of the underlying protein interactions. However, the practical impossibility to exhaustively retrieve substrate sequences through experimentation alone has long highlighted the need for efficient computational prediction methods. Such methods must be able to quickly mark substrate candidates and putative cleavage sites for further analysis. Available methods and expected reliability depend heavily on the type and complexity of proteolytic action, as well as the availability of well-labelled experimental data sets: factors varying greatly across enzyme families. For this review, we chose to give a quick overview of the general issues and challenges in cleavage prediction methods followed by a more in-depth presentation of major techniques and implementations, with a focus on two particular families of cysteine proteases: caspases and calpains. Through their respective differences in proteolytic specificity (high for caspases, broader for calpains) and data availability (much lower for calpains), we aimed to illustrate the strengths and limitations of techniques ranging from position-based matrices and decision trees to more flexible machine-learning methods such as hidden Markov models and Support Vector Machines. In addition to a technical overview for each family of algorithms, we tried to provide elements of evaluation and performance comparison across methods.
Epileptic seizure prediction by non-linear methods
Hively, L.M.; Clapp, N.E.; Day, C.S.; Lawkins, W.F.
1999-01-12
This research discloses methods and apparatus for automatically predicting epileptic seizures monitor and analyze brain wave (EEG or MEG) signals. Steps include: acquiring the brain wave data from the patient; digitizing the data; obtaining nonlinear measures of the data via chaotic time series analysis tools; obtaining time serial trends in the nonlinear measures; comparison of the trend to known seizure predictors; and providing notification that a seizure is forthcoming. 76 figs.
Epileptic seizure prediction by non-linear methods
Hively, Lee M.; Clapp, Ned E.; Daw, C. Stuart; Lawkins, William F.
1999-01-01
Methods and apparatus for automatically predicting epileptic seizures monitor and analyze brain wave (EEG or MEG) signals. Steps include: acquiring the brain wave data from the patient; digitizing the data; obtaining nonlinear measures of the data via chaotic time series analysis tools; obtaining time serial trends in the nonlinear measures; comparison of the trend to known seizure predictors; and providing notification that a seizure is forthcoming.
Sixth blind test of organic crystal-structure prediction methods.
Groom, Colin R; Reilly, Anthony M
2014-08-01
Over the past 15 years progress in predicting crystal structures of small organic molecules has been charted by a series of blind tests hosted by the Cambridge Crystallographic Data Centre. This letter announces a sixth blind test to take place between September 2014 and August 2015, giving details of the target systems and the revised procedure. We hope that as many methods as possible will be assessed and benchmarked in this new blind test.
Application of infinite model predictive control methodology to other advanced controllers.
Abu-Ayyad, M; Dubay, R; Hernandez, J M
2009-01-01
This paper presents an application of most recent developed predictive control algorithm an infinite model predictive control (IMPC) to other advanced control schemes. The IMPC strategy was derived for systems with different degrees of nonlinearity on the process gain and time constant. Also, it was shown that IMPC structure uses nonlinear open-loop modeling which is conducted while closed-loop control is executed every sampling instant. The main objective of this work is to demonstrate that the methodology of IMPC can be applied to other advanced control strategies making the methodology generic. The IMPC strategy was implemented on several advanced controllers such as PI controller using Smith-Predictor, Dahlin controller, simplified predictive control (SPC), dynamic matrix control (DMC), and shifted dynamic matrix (m-DMC). Experimental work using these approaches combined with IMPC was conducted on both single-input-single-output (SISO) and multi-input-multi-output (MIMO) systems and compared with the original forms of these advanced controllers. Computer simulations were performed on nonlinear plants demonstrating that the IMPC strategy can be readily implemented on other advanced control schemes providing improved control performance. Practical work included real-time control applications on a DC motor, plastic injection molding machine and a MIMO three zone thermal system.
Model reduction methods for control design
NASA Technical Reports Server (NTRS)
Dunipace, K. R.
1988-01-01
Several different model reduction methods are developed and detailed implementation information is provided for those methods. Command files to implement the model reduction methods in a proprietary control law analysis and design package are presented. A comparison and discussion of the various reduction techniques is included.
Model predictive control for tracking randomly varying references
NASA Astrophysics Data System (ADS)
Falugi, Paola
2015-04-01
This paper proposes a model predictive control scheme for tracking a-priori unknown references varying in a wide range and analyses its performance. It is usual to assume that the reference eventually converges to a constant in which case convergence to zero of the tracking error can be established. In this note we remove this simplifying assumption and characterise the set to which the tracking error converges and the associated region of convergence.
Prediction and control of chaotic processes using nonlinear adaptive networks
Jones, R.D.; Barnes, C.W.; Flake, G.W.; Lee, K.; Lewis, P.S.; O'Rouke, M.K.; Qian, S.
1990-01-01
We present the theory of nonlinear adaptive networks and discuss a few applications. In particular, we review the theory of feedforward backpropagation networks. We then present the theory of the Connectionist Normalized Linear Spline network in both its feedforward and iterated modes. Also, we briefly discuss the theory of stochastic cellular automata. We then discuss applications to chaotic time series, tidal prediction in Venice lagoon, finite differencing, sonar transient detection, control of nonlinear processes, control of a negative ion source, balancing a double inverted pendulum and design advice for free electron lasers and laser fusion targets.
Punishment sensitivity predicts the impact of punishment on cognitive control.
Braem, Senne; Duthoo, Wout; Notebaert, Wim
2013-01-01
Cognitive control theories predict enhanced conflict adaptation after punishment. However, no such effect was found in previous work. In the present study, we demonstrate in a flanker task how behavioural adjustments following punishment signals are highly dependent on punishment sensitivity (as measured by the Behavioural Inhibition System (BIS) scale): Whereas low punishment-sensitive participants do show increased conflict adaptation after punishment, high punishment-sensitive participants show no such modulation. Interestingly, participants with a high punishment-sensitivity showed an overall reaction time increase after punishments. Our results stress the role of individual differences in explaining motivational modulations of cognitive control.
Experimental Investigations of Generalized Predictive Control for Tiltrotor Stability Augmentation
NASA Technical Reports Server (NTRS)
Nixon, Mark W.; Langston, Chester W.; Singleton, Jeffrey D.; Piatak, David J.; Kvaternik, Raymond G.; Bennett, Richard L.; Brown, Ross K.
2001-01-01
A team of researchers from the Army Research Laboratory, NASA Langley Research Center (LaRC), and Bell Helicopter-Textron, Inc. have completed hover-cell and wind-tunnel testing of a 1/5-size aeroelastically-scaled tiltrotor model using a new active control system for stability augmentation. The active system is based on a generalized predictive control (GPC) algorithm originally developed at NASA LaRC in 1997 for un-known disturbance rejection. Results of these investigations show that GPC combined with an active swashplate can significantly augment the damping and stability of tiltrotors in both hover and high-speed flight.
CREME96 and Related Error Rate Prediction Methods
NASA Technical Reports Server (NTRS)
Adams, James H., Jr.
2012-01-01
Predicting the rate of occurrence of single event effects (SEEs) in space requires knowledge of the radiation environment and the response of electronic devices to that environment. Several analytical models have been developed over the past 36 years to predict SEE rates. The first error rate calculations were performed by Binder, Smith and Holman. Bradford and Pickel and Blandford, in their CRIER (Cosmic-Ray-Induced-Error-Rate) analysis code introduced the basic Rectangular ParallelePiped (RPP) method for error rate calculations. For the radiation environment at the part, both made use of the Cosmic Ray LET (Linear Energy Transfer) spectra calculated by Heinrich for various absorber Depths. A more detailed model for the space radiation environment within spacecraft was developed by Adams and co-workers. This model, together with a reformulation of the RPP method published by Pickel and Blandford, was used to create the CR ME (Cosmic Ray Effects on Micro-Electronics) code. About the same time Shapiro wrote the CRUP (Cosmic Ray Upset Program) based on the RPP method published by Bradford. It was the first code to specifically take into account charge collection from outside the depletion region due to deformation of the electric field caused by the incident cosmic ray. Other early rate prediction methods and codes include the Single Event Figure of Merit, NOVICE, the Space Radiation code and the effective flux method of Binder which is the basis of the SEFA (Scott Effective Flux Approximation) model. By the early 1990s it was becoming clear that CREME and the other early models needed Revision. This revision, CREME96, was completed and released as a WWW-based tool, one of the first of its kind. The revisions in CREME96 included improved environmental models and improved models for calculating single event effects. The need for a revision of CREME also stimulated the development of the CHIME (CRRES/SPACERAD Heavy Ion Model of the Environment) and MACREE (Modeling and
[Statistical prediction methods in violence risk assessment and its application].
Liu, Yuan-Yuan; Hu, Jun-Mei; Yang, Min; Li, Xiao-Song
2013-06-01
It is an urgent global problem how to improve the violence risk assessment. As a necessary part of risk assessment, statistical methods have remarkable impacts and effects. In this study, the predicted methods in violence risk assessment from the point of statistics are reviewed. The application of Logistic regression as the sample of multivariate statistical model, decision tree model as the sample of data mining technique, and neural networks model as the sample of artificial intelligence technology are all reviewed. This study provides data in order to contribute the further research of violence risk assessment.
NASA Astrophysics Data System (ADS)
Lai, Ying-Cheng; Harrison, Mary Ann F.; Frei, Mark G.; Osorio, Ivan
2004-09-01
Lyapunov exponents are a set of fundamental dynamical invariants characterizing a system's sensitive dependence on initial conditions. For more than a decade, it has been claimed that the exponents computed from electroencephalogram (EEG) or electrocorticogram (ECoG) signals can be used for prediction of epileptic seizures minutes or even tens of minutes in advance. The purpose of this paper is to examine the predictive power of Lyapunov exponents. Three approaches are employed. (1) We present qualitative arguments suggesting that the Lyapunov exponents generally are not useful for seizure prediction. (2) We construct a two-dimensional, nonstationary chaotic map with a parameter slowly varying in a range containing a crisis, and test whether this critical event can be predicted by monitoring the evolution of finite-time Lyapunov exponents. This can thus be regarded as a "control test" for the claimed predictive power of the exponents for seizure. We find that two major obstacles arise in this application: statistical fluctuations of the Lyapunov exponents due to finite time computation and noise from the time series. We show that increasing the amount of data in a moving window will not improve the exponents' detective power for characteristic system changes, and that the presence of small noise can ruin completely the predictive power of the exponents. (3) We report negative results obtained from ECoG signals recorded from patients with epilepsy. All these indicate firmly that, the use of Lyapunov exponents for seizure prediction is practically impossible as the brain dynamical system generating the ECoG signals is more complicated than low-dimensional chaotic systems, and is noisy.
Control of nonlinear processes by using linear model predictive control algorithms.
Gu, Bingfeng; Gupta, Yash P
2008-04-01
Most chemical processes are inherently nonlinear. However, because of their simplicity, linear control algorithms have been used for the control of nonlinear processes. In this study, the use of the dynamic matrix control algorithm and a simplified model predictive control algorithm for control of a bench-scale pH neutralization process is investigated. The nonlinearity is handled by dividing the operating region into sub-regions and by switching the controller model as the process moves from one sub-region to another. A simple modification for model predictive control algorithms is presented to handle the switching. The simulation and experimental results show that the modification can provide a significant improvement in the control of nonlinear processes.
Jiang, Jiefeng; Beck, Jeffrey; Heller, Katherine; Egner, Tobias
2015-01-01
The anterior cingulate and lateral prefrontal cortices have been implicated in implementing context-appropriate attentional control, but the learning mechanisms underlying our ability to flexibly adapt the control settings to changing environments remain poorly understood. Here we show that human adjustments to varying control demands are captured by a reinforcement learner with a flexible, volatility-driven learning rate. Using model-based functional magnetic resonance imaging, we demonstrate that volatility of control demand is estimated by the anterior insula, which in turn optimizes the prediction of forthcoming demand in the caudate nucleus. The caudate's prediction of control demand subsequently guides the implementation of proactive and reactive attentional control in dorsal anterior cingulate and dorsolateral prefrontal cortices. These data enhance our understanding of the neuro-computational mechanisms of adaptive behaviour by connecting the classic cingulate-prefrontal cognitive control network to a subcortical control-learning mechanism that infers future demands by flexibly integrating remote and recent past experiences. PMID:26391305
Discontinuous Galerkin method for predicting heat transfer in hypersonic environments
NASA Astrophysics Data System (ADS)
Ching, Eric; Lv, Yu; Ihme, Matthias
2016-11-01
This study is concerned with predicting surface heat transfer in hypersonic flows using high-order discontinuous Galerkin methods. A robust and accurate shock capturing method designed for steady calculations that uses smooth artificial viscosity for shock stabilization is developed. To eliminate parametric dependence, an optimization method is formulated that results in the least amount of artificial viscosity necessary to sufficiently suppress nonlinear instabilities and achieve steady-state convergence. Performance is evaluated in two canonical hypersonic tests, namely a flow over a circular half-cylinder and flow over a double cone. Results show this methodology to be significantly less sensitive than conventional finite-volume techniques to mesh topology and inviscid flux function. The method is benchmarked against state-of-the-art finite-volume solvers to quantify computational cost and accuracy. Financial support from a Stanford Graduate Fellowship and the NASA Early Career Faculty program are gratefully acknowledged.
Method of predicting mechanical properties of decayed wood
Kelley, Stephen S.
2003-07-15
A method for determining the mechanical properties of decayed wood that has been exposed to wood decay microorganisms, comprising: a) illuminating a surface of decayed wood that has been exposed to wood decay microorganisms with wavelengths from visible and near infrared (VIS-NIR) spectra; b) analyzing the surface of the decayed wood using a spectrometric method, the method generating a first spectral data of wavelengths in VIS-NIR spectra region; and c) using a multivariate analysis to predict mechanical properties of decayed wood by comparing the first spectral data with a calibration model, the calibration model comprising a second spectrometric method of spectral data of wavelengths in VIS-NIR spectra obtained from a reference decay wood, the second spectral data being correlated with a known mechanical property analytical result obtained from the reference decayed wood.
NASA Astrophysics Data System (ADS)
Kamel, Ouari; Mohand, Ouhrouche; Toufik, Rekioua; Taib, Nabil
2015-01-01
In order to improvement of the performances for wind energy conversions systems (WECS), an advanced control techniques must be used. In this paper, as an alternative to conventional PI-type control methods, a nonlinear predictive control (NPC) approach is developed for DFIG-based wind turbine. To enhance the robustness of the controller, a disturbance observer is designed to estimate the aerodynamic torque which is considered as an unknown perturbation. An explicitly analytical form of the optimal predictive controller is given consequently on-line optimization is not necessary The DFIG is fed through the rotor windings by a back-to-back converter controlled by Pulse Width Modulation (PWM), where the stator winding is directly connected to the grid. The presented simulation results show a good performance in trajectory tracking of the proposed strategy and rejection of disturbances is successfully achieved.
Method for controlled hydrogen charging of metals
Cheng, Bo-Ching; Adamson, Ronald B.
1984-05-29
A method for controlling hydrogen charging of hydride forming metals through a window of a superimposed layer of a non-hydriding metal overlying the portion of the hydride forming metals to be charged.
Efficient Unstructured Grid Adaptation Methods for Sonic Boom Prediction
NASA Technical Reports Server (NTRS)
Campbell, Richard L.; Carter, Melissa B.; Deere, Karen A.; Waithe, Kenrick A.
2008-01-01
This paper examines the use of two grid adaptation methods to improve the accuracy of the near-to-mid field pressure signature prediction of supersonic aircraft computed using the USM3D unstructured grid flow solver. The first method (ADV) is an interactive adaptation process that uses grid movement rather than enrichment to more accurately resolve the expansion and compression waves. The second method (SSGRID) uses an a priori adaptation approach to stretch and shear the original unstructured grid to align the grid with the pressure waves and reduce the cell count required to achieve an accurate signature prediction at a given distance from the vehicle. Both methods initially create negative volume cells that are repaired in a module in the ADV code. While both approaches provide significant improvements in the near field signature (< 3 body lengths) relative to a baseline grid without increasing the number of grid points, only the SSGRID approach allows the details of the signature to be accurately computed at mid-field distances (3-10 body lengths) for direct use with mid-field-to-ground boom propagation codes.
COMSAC: Computational Methods for Stability and Control. Part 2
NASA Technical Reports Server (NTRS)
Fremaux, C. Michael (Compiler); Hall, Robert M. (Compiler)
2004-01-01
The unprecedented advances being made in computational fluid dynamic (CFD) technology have demonstrated the powerful capabilities of codes in applications to civil and military aircraft. Used in conjunction with wind-tunnel and flight investigations, many codes are now routinely used by designers in diverse applications such as aerodynamic performance predictions and propulsion integration. Typically, these codes are most reliable for attached, steady, and predominantly turbulent flows. As a result of increasing reliability and confidence in CFD, wind-tunnel testing for some new configurations has been substantially reduced in key areas, such as wing trade studies for mission performance guarantees. Interest is now growing in the application of computational methods to other critical design challenges. One of the most important disciplinary elements for civil and military aircraft is prediction of stability and control characteristics. CFD offers the potential for significantly increasing the basic understanding, prediction, and control of flow phenomena associated with requirements for satisfactory aircraft handling characteristics.
A model predictive control approach for the Italian LBE XADS
NASA Astrophysics Data System (ADS)
Cammi, Antonio; Casella, Francesco; Luzzi, Lelio; Milano, Alessandro; Ricotti, Marco E.
2008-06-01
In this paper, model predictive control (MPC) is applied to the Italian 80 MW th experimental accelerator driven system (XADS), referring to a simple, non-linear model for the dynamic simulation of the plant, which has been developed and described in a previous work [A. Cammi, L. Luzzi, A.A. Porta, M.E. Ricotti, Prog. Nucl. Energ. 48 (2006) 578], in order to describe the interactions among the different subsystems: i.e., the accelerator-core coupling, the lead bismuth eutectic (LBE) primary system, the secondary system with diathermic oil and air coolers batteries, which reject the thermal power to the environment. Hereinafter, a model predictive controller is proposed, with the objective to minimize the difference between the average temperature of the diathermic oil and its reference value, while also minimizing the variations of the control input, which is the air coolers mass flow rate. The dynamic response of the LBE-XADS has been evaluated with reference to a reduction of 20% in the reactor power from nominal load conditions: this transient is very demanding for the overall plant, nevertheless the obtained results indicate the effectiveness of the proposed controller.
Methods for exploring uncertainty in groundwater management predictions
Guillaume, Joseph H. A.; Hunt, Randall J.; Comunian, Alessandro; Fu, Baihua; Blakers, Rachel S; Jakeman, Anthony J; Barreteau, Olivier; Hunt, Randall J.; Rinaudo, Jean-Daniel; Ross, Andrew
2016-01-01
Models of groundwater systems help to integrate knowledge about the natural and human system covering different spatial and temporal scales, often from multiple disciplines, in order to address a range of issues of concern to various stakeholders. A model is simply a tool to express what we think we know. Uncertainty, due to lack of knowledge or natural variability, means that there are always alternative models that may need to be considered. This chapter provides an overview of uncertainty in models and in the definition of a problem to model, highlights approaches to communicating and using predictions of uncertain outcomes and summarises commonly used methods to explore uncertainty in groundwater management predictions. It is intended to raise awareness of how alternative models and hence uncertainty can be explored in order to facilitate the integration of these techniques with groundwater management.
Method of controlling fusion reaction rates
Kulsrud, Russell M.; Furth, Harold P.; Valeo, Ernest J.; Goldhaber, Maurice
1988-01-01
A method of controlling the reaction rates of the fuel atoms in a fusion reactor comprises the step of polarizing the nuclei of the fuel atoms in a particular direction relative to the plasma confining magnetic field. Fusion reaction rates can be increased or decreased, and the direction of emission of the reaction products can be controlled, depending on the choice of polarization direction.
Method of controlling fusion reaction rates
Kulsrud, Russell M.; Furth, Harold P.; Valeo, Ernest J.; Goldhaber, Maurice
1988-03-01
A method of controlling the reaction rates of the fuel atoms in a fusion reactor comprises the step of polarizing the nuclei of the fuel atoms in a particular direction relative to the plasma confining magnetic field. Fusion reaction rates can be increased or decreased, and the direction of emission of the reaction products can be controlled, depending on the choice of polarization direction.
Practical Methods for Robust Multivariable Control
1991-12-31
objectives in the face of both structured and unstructured uncertainty. Advances in the past two years have included relative-error methods for system ... identification , model reduction and control, better algorithms for H- and H2 control computations and new results on the analysis of stability
Barrier methods of birth control - slideshow
... gov/ency/presentations/100107.htm Barrier methods of birth control - series—Female normal anatomy To use the sharing ... A.M. Editorial team. Related MedlinePlus Health Topics Birth Control A.D.A.M., Inc. is accredited by ...
Method and apparatus for controlling electroslag remelting
Maguire, Michael C.; Zanner, Frank J.; Damkroger, Brian K.; Miszkiel, Mark E.; Aronson, Eugene A.
1994-01-01
Method and apparatus for controlling electrode immersion depth in an electroslag remelting furnace. The phase difference of the alternating current circuit established in the furnace is calculated in real time and employed to more accurately control immersion depth than possible with voltage-swing systems.
Satellite attitude prediction by multiple time scales method
NASA Technical Reports Server (NTRS)
Tao, Y. C.; Ramnath, R.
1975-01-01
An investigation is made of the problem of predicting the attitude of satellites under the influence of external disturbing torques. The attitude dynamics are first expressed in a perturbation formulation which is then solved by the multiple scales approach. The independent variable, time, is extended into new scales, fast, slow, etc., and the integration is carried out separately in the new variables. The theory is applied to two different satellite configurations, rigid body and dual spin, each of which may have an asymmetric mass distribution. The disturbing torques considered are gravity gradient and geomagnetic. Finally, as multiple time scales approach separates slow and fast behaviors of satellite attitude motion, this property is used for the design of an attitude control device. A nutation damping control loop, using the geomagnetic torque for an earth pointing dual spin satellite, is designed in terms of the slow equation.
Unity power factor converter based on a fuzzy controller and predictive input current.
Bouafassa, Amar; Rahmani, Lazhar; Kessal, Abdelhalim; Babes, Badreddine
2014-11-01
This paper proposes analysis and control of a single-phase power factor corrector (PFC). The proposed control is capable of achieving a unity power factor for each DC link voltage or load fluctuation. The method under study is composed of two intelligent approaches, a fuzzy logic controller to ensure an output voltage at a suitable value and predictive current control. The fuzzy controller is used with minimum rules to attain a low cost. The method is verified and discussed through simulation on the MATLAB/Simulink platform. It presents high dynamic performance under various parameter changes. Moreover, in order to examine and evaluate the method in real-time, a test bench is built using dSPACE 1104. The implantation of the proposed method is very easy and flexible and allows for operation under parameter variations. Additionally, the obtained results are very significant.
A Novel Calibration-Minimum Method for Prediction of Mole Fraction in Non-Ideal Mixture.
Shibayama, Shojiro; Kaneko, Hiromasa; Funatsu, Kimito
2017-04-01
This article proposes a novel concentration prediction model that requires little training data and is useful for rapid process understanding. Process analytical technology is currently popular, especially in the pharmaceutical industry, for enhancement of process understanding and process control. A calibration-free method, iterative optimization technology (IOT), was proposed to predict pure component concentrations, because calibration methods such as partial least squares, require a large number of training samples, leading to high costs. However, IOT cannot be applied to concentration prediction in non-ideal mixtures because its basic equation is derived from the Beer-Lambert law, which cannot be applied to non-ideal mixtures. We proposed a novel method that realizes prediction of pure component concentrations in mixtures from a small number of training samples, assuming that spectral changes arising from molecular interactions can be expressed as a function of concentration. The proposed method is named IOT with virtual molecular interaction spectra (IOT-VIS) because the method takes spectral change as a virtual spectrum x nonlin,i into account. It was confirmed through the two case studies that the predictive accuracy of IOT-VIS was the highest among existing IOT methods.
Prediction and control of neural responses to pulsatile electrical stimulation.
Campbell, Luke J; Sly, David James; O'Leary, Stephen John
2012-04-01
This paper aims to predict and control the probability of firing of a neuron in response to pulsatile electrical stimulation of the type delivered by neural prostheses such as the cochlear implant, bionic eye or in deep brain stimulation. Using the cochlear implant as a model, we developed an efficient computational model that predicts the responses of auditory nerve fibers to electrical stimulation and evaluated the model's accuracy by comparing the model output with pooled responses from a group of guinea pig auditory nerve fibers. It was found that the model accurately predicted the changes in neural firing probability over time to constant and variable amplitude electrical pulse trains, including speech-derived signals, delivered at rates up to 889 pulses s(-1). A simplified version of the model that did not incorporate adaptation was used to adaptively predict, within its limitations, the pulsatile electrical stimulus required to cause a desired response from neurons up to 250 pulses s(-1). Future stimulation strategies for cochlear implants and other neural prostheses may be enhanced using similar models that account for the way that neural responses are altered by previous stimulation.
Prediction and control of neural responses to pulsatile electrical stimulation
NASA Astrophysics Data System (ADS)
Campbell, Luke J.; Sly, David James; O'Leary, Stephen John
2012-04-01
This paper aims to predict and control the probability of firing of a neuron in response to pulsatile electrical stimulation of the type delivered by neural prostheses such as the cochlear implant, bionic eye or in deep brain stimulation. Using the cochlear implant as a model, we developed an efficient computational model that predicts the responses of auditory nerve fibers to electrical stimulation and evaluated the model's accuracy by comparing the model output with pooled responses from a group of guinea pig auditory nerve fibers. It was found that the model accurately predicted the changes in neural firing probability over time to constant and variable amplitude electrical pulse trains, including speech-derived signals, delivered at rates up to 889 pulses s-1. A simplified version of the model that did not incorporate adaptation was used to adaptively predict, within its limitations, the pulsatile electrical stimulus required to cause a desired response from neurons up to 250 pulses s-1. Future stimulation strategies for cochlear implants and other neural prostheses may be enhanced using similar models that account for the way that neural responses are altered by previous stimulation.
NASA Astrophysics Data System (ADS)
Itahashi, S.; Yumimoto, K.; Uno, I.; Kim, S.
2012-12-01
Air quality studies based on the chemical transport model have been provided many important results for promoting our knowledge of air pollution phenomena, however, discrepancies between modeling results and observation data are still important issue to overcome. One of the concerning issue would be an over-prediction of summertime tropospheric ozone in remote area of Japan. This problem has been pointed out in the model comparison study of both regional scale (e.g., MICS-Asia) and global scale model (e.g., TH-FTAP). Several reasons for this issue can be listed as, (i) the modeled reproducibility on the penetration of clean oceanic air mass, (ii) correct estimation of the anthropogenic NOx / VOC emissions over East Asia, (iii) the chemical reaction scheme used in model simulation. In this study, we attempt to inverse estimation of some important chemical reactions based on the combining system of DDM (decoupled direct method) sensitivity analysis and modeled Green's function approach. The decoupled direct method (DDM) is an efficient and accurate way of performing sensitivity analysis to model inputs, calculates sensitivity coefficients representing the responsiveness of atmospheric chemical concentrations to perturbations in a model input or parameter. The inverse solutions with the Green's functions are given by a linear, least-squares method but are still robust against nonlinearities, To construct the response matrix (i.e., Green's functions), we can directly use the results of DDM sensitivity analysis. The solution of chemical reaction constants which have relatively large uncertainties are determined with constraints of observed ozone concentration data over the remote area in Japan. Our inversed estimation demonstrated that the underestimation of reaction constant to produce HNO3 (NO2 + OH + M → HNO3 + M) in SAPRC99 chemical scheme, and the inversed results indicated the +29.0 % increment to this reaction. This estimation has good agreement when compared
Error correction, sensory prediction, and adaptation in motor control.
Shadmehr, Reza; Smith, Maurice A; Krakauer, John W
2010-01-01
Motor control is the study of how organisms make accurate goal-directed movements. Here we consider two problems that the motor system must solve in order to achieve such control. The first problem is that sensory feedback is noisy and delayed, which can make movements inaccurate and unstable. The second problem is that the relationship between a motor command and the movement it produces is variable, as the body and the environment can both change. A solution is to build adaptive internal models of the body and the world. The predictions of these internal models, called forward models because they transform motor commands into sensory consequences, can be used to both produce a lifetime of calibrated movements, and to improve the ability of the sensory system to estimate the state of the body and the world around it. Forward models are only useful if they produce unbiased predictions. Evidence shows that forward models remain calibrated through motor adaptation: learning driven by sensory prediction errors.
Structural Acoustic Prediction and Interior Noise Control Technology
NASA Technical Reports Server (NTRS)
Mathur, G. P.; Chin, C. L.; Simpson, M. A.; Lee, J. T.; Palumbo, Daniel L. (Technical Monitor)
2001-01-01
This report documents the results of Task 14, "Structural Acoustic Prediction and Interior Noise Control Technology". The task was to evaluate the performance of tuned foam elements (termed Smart Foam) both analytically and experimentally. Results taken from a three-dimensional finite element model of an active, tuned foam element are presented. Measurements of sound absorption and sound transmission loss were taken using the model. These results agree well with published data. Experimental performance data were taken in Boeing's Interior Noise Test Facility where 12 smart foam elements were applied to a 757 sidewall. Several configurations were tested. Noise reductions of 5-10 dB were achieved over the 200-800 Hz bandwidth of the controller. Accelerometers mounted on the panel provided a good reference for the controller. Configurations with far-field error microphones outperformed near-field cases.
Energy-efficient container handling using hybrid model predictive control
NASA Astrophysics Data System (ADS)
Xin, Jianbin; Negenborn, Rudy R.; Lodewijks, Gabriel
2015-11-01
The performance of container terminals needs to be improved to adapt the growth of containers while maintaining sustainability. This paper provides a methodology for determining the trajectory of three key interacting machines for carrying out the so-called bay handling task, involving transporting containers between a vessel and the stacking area in an automated container terminal. The behaviours of the interacting machines are modelled as a collection of interconnected hybrid systems. Hybrid model predictive control (MPC) is proposed to achieve optimal performance, balancing the handling capacity and energy consumption. The underlying control problem is hereby formulated as a mixed-integer linear programming problem. Simulation studies illustrate that a higher penalty on energy consumption indeed leads to improved sustainability using less energy. Moreover, simulations illustrate how the proposed energy-efficient hybrid MPC controller performs under different types of uncertainties.
Self-Tuning of Design Variables for Generalized Predictive Control
NASA Technical Reports Server (NTRS)
Lin, Chaung; Juang, Jer-Nan
2000-01-01
Three techniques are introduced to determine the order and control weighting for the design of a generalized predictive controller. These techniques are based on the application of fuzzy logic, genetic algorithms, and simulated annealing to conduct an optimal search on specific performance indexes or objective functions. Fuzzy logic is found to be feasible for real-time and on-line implementation due to its smooth and quick convergence. On the other hand, genetic algorithms and simulated annealing are applicable for initial estimation of the model order and control weighting, and final fine-tuning within a small region of the solution space, Several numerical simulations for a multiple-input and multiple-output system are given to illustrate the techniques developed in this paper.
Predicting recreational water quality advisories: A comparison of statistical methods
Brooks, Wesley R.; Corsi, Steven R.; Fienen, Michael N.; Carvin, Rebecca B.
2016-01-01
Epidemiological studies indicate that fecal indicator bacteria (FIB) in beach water are associated with illnesses among people having contact with the water. In order to mitigate public health impacts, many beaches are posted with an advisory when the concentration of FIB exceeds a beach action value. The most commonly used method of measuring FIB concentration takes 18–24 h before returning a result. In order to avoid the 24 h lag, it has become common to ”nowcast” the FIB concentration using statistical regressions on environmental surrogate variables. Most commonly, nowcast models are estimated using ordinary least squares regression, but other regression methods from the statistical and machine learning literature are sometimes used. This study compares 14 regression methods across 7 Wisconsin beaches to identify which consistently produces the most accurate predictions. A random forest model is identified as the most accurate, followed by multiple regression fit using the adaptive LASSO.
Flow resistance and its prediction methods in compound channels
NASA Astrophysics Data System (ADS)
Yang, Kejun; Cao, Shuyou; Liu, Xingnian
2007-02-01
A series of experiments was carried out in a large symmetric compound channel composed of a rough main channel and rough floodplains to investigate the resistance characteristics of inbank and overbank flows. The effective Manning, Darcy-Weisbach, Chezy coefficients and the relative Nikuradse roughness height were analyzed. Many different representative methods for predicting the composite roughness were systematically summarized. Besides the measured data, a vast number of laboratory data and field data for compound channels were collected and used to check the validity of these methods for different subsection divisions including the vertical, horizontal, diagonal and bisectional divisions. The computation showed that these methods resulted in big errors in assessing the composite roughness in compound channels, and the reasons were analyzed in detail. The error magnitude is related to the subsection divisions.
Daylight control system device and method
Paton, John Douglas
2009-12-01
A system and device for and a method of programming and controlling light fixtures is disclosed. A system in accordance with the present invention includes a stationary controller unit that is electrically coupled to the light fixtures. The stationary controller unit is configured to be remotely programmed with a portable commissioning device to automatically control the lights fixtures. The stationary controller unit and the portable commissioning device include light sensors, micro-computers and transceivers for measuring light levels, running programs, storing data and transmitting data between the stationary controller unit and the portable commissioning device. In operation, target light levels selected with the portable commissioning device and the controller unit is remotely programmed to automatically maintain the target level.
Daylight control system, device and method
Paton, John Douglas
2012-08-28
A system and device for and a method of programming and controlling light fixtures is disclosed. A system in accordance with the present invention includes a stationary controller unit that is electrically coupled to the light fixtures. The stationary controller unit is configured to be remotely programmed with a portable commissioning device to automatically control the lights fixtures. The stationary controller unit and the portable commissioning device include light sensors, micro-computers and transceivers for measuring light levels, running programs, storing data and transmitting data between the stationary controller unit and the portable commissioning device. In operation, target light levels selected with the portable commissioning device and the controller unit is remotely programmed to automatically maintain the target level.
Daylight control system device and method
Paton, John Douglas
2007-03-13
A system and device for and a method of programming and controlling light fixtures is disclosed. A system in accordance with the present invention includes a stationary controller unit that is electrically coupled to the light fixtures. The stationary controller unit is configured to be remotely programmed with a portable commissioning device to automatically control the lights fixtures. The stationary controller unit and the portable commissioning device include light sensors, micro-computers and transceivers for measuring light levels, running programs, storing data and transmitting data between the stationary controller unit and the portable commissioning device. In operation, target light levels selected with the portable commissioning device and the controller unit is remotely programmed to automatically maintain the target level.
LED lamp color control system and method
Gaines, James; Clauberg, Bernd; Van Erp, Josephus A.M.
2013-02-05
An LED lamp color control system and method including an LED lamp having an LED controller 58; and a plurality of LED channels 60 operably connected to the LED controller 58, each of the plurality of LED channels 60 having a channel switch 62 in series with at least one shunted LED circuit 83, the shunted LED circuit 83 having a shunt switch 68 in parallel with an LED source 80. The LED controller 58 determines whether the LED source 80 is in a feedback controllable range, stores measured optical flux for the LED source 80 when the LED source 80 is in the feedback controllable range, and bypasses storing the measured optical flux when the LED source 80 is not in the feedback controllable range.
Prakash, J; Srinivasan, K
2009-07-01
In this paper, the authors have represented the nonlinear system as a family of local linear state space models, local PID controllers have been designed on the basis of linear models, and the weighted sum of the output from the local PID controllers (Nonlinear PID controller) has been used to control the nonlinear process. Further, Nonlinear Model Predictive Controller using the family of local linear state space models (F-NMPC) has been developed. The effectiveness of the proposed control schemes has been demonstrated on a CSTR process, which exhibits dynamic nonlinearity.
NASA Astrophysics Data System (ADS)
Itoh, Masato; Hagimori, Yuki; Nonaka, Kenichiro; Sekiguchi, Kazuma
2016-09-01
In this study, we apply a hierarchical model predictive control to omni-directional mobile vehicle, and improve the tracking performance. We deal with an independent four-wheel driving/steering vehicle (IFWDS) equipped with four coaxial steering mechanisms (CSM). The coaxial steering mechanism is a special one composed of two steering joints on the same axis. In our previous study with respect to IFWDS with ideal steering, we proposed a model predictive tracking control. However, this method did not consider constraints of the coaxial steering mechanism which causes delay of steering. We also proposed a model predictive steering control considering constraints of this mechanism. In this study, we propose a hierarchical system combining above two control methods for IFWDS. An upper controller, which deals with vehicle kinematics, runs a model predictive tracking control, and a lower controller, which considers constraints of coaxial steering mechanism, runs a model predictive steering control which tracks the predicted steering angle optimized an upper controller. We verify the superiority of this method by comparing this method with the previous method.
OVERVIEW ON ALTERNATIVE ASBESTOS CONTROL METHOD RESEARCH
The alternative asbestos control method (AACM) is an experimental approach to building demolition. Unlike the NESHAP method, the AACM allows some regulated asbestos-containing material to remain in the building and a surfactant-water solution is used to suppress asbestos fibers ...
Method to control artifacts of microstructural fabrication
Shul, Randy J.; Willison, Christi G.; Schubert, W. Kent; Manginell, Ronald P.; Mitchell, Mary-Anne; Galambos, Paul C.
2006-09-12
New methods for fabrication of silicon microstructures have been developed. In these methods, an etching delay layer is deposited and patterned so as to provide differential control on the depth of features being etched into a substrate material. Compensation for etching-related structural artifacts can be accomplished by proper use of such an etching delay layer.
Biomarkers: Non-destructive Method for Predicting Meat Tenderization.
Singh, Arashdeep; Ahluwalia, Preeti; Rafiq, Aasima; Sharma, Savita
2015-07-06
Meat tenderness is the primary and most important quality attribute for the consumers worldwide. Tenderness is the process of breakdown of collagen tissue in meat to make it palatable. The earlier methods of tenderness evaluation like taste panels and shear force methods are destructive, time consuming and ill suited as they requires removing a piece of steak from the carcass for performing the test. Therefore, a non-destructive method for predicting the tenderness would be more desirable. The development of a meat quality grading and guarantee system through muscle profiling research can help to meet this demand. Biomarkers have the ability to identify if an exposure has occurred. Biomarkers of the meat quality are of prime importance for meat industry, which has ability to satisfy consumers' expectations. The biomarkers so far identified have been then sorted and grouped according to their common biological functions. All of them refer to a series of biological pathways including glycolytic and oxidative energy production, cell detoxification, protease inhibition and production of Heat Shock Proteins. On this basis, a detailed analysis of these metabolic pathways helps in identifying tenderization of meat having some domains of interest. It was, therefore, stressed forward that biomarkers can be used to determine meat tenderness. This review article summarizes the uses of several biomarkers for predicting the meat tenderness.
Unstructured CFD and Noise Prediction Methods for Propulsion Airframe Aeroacoustics
NASA Technical Reports Server (NTRS)
Pao, S. Paul; Abdol-Hamid, Khaled S.; Campbell, Richard L.; Hunter, Craig A.; Massey, Steven J.; Elmiligui, Alaa A.
2006-01-01
Using unstructured mesh CFD methods for Propulsion Airframe Aeroacoustics (PAA) analysis has the distinct advantage of precise and fast computational mesh generation for complex propulsion and airframe integration arrangements that include engine inlet, exhaust nozzles, pylon, wing, flaps, and flap deployment mechanical parts. However, accurate solution values of shear layer velocity, temperature and turbulence are extremely important for evaluating the usually small noise differentials of potential applications to commercial transport aircraft propulsion integration. This paper describes a set of calibration computations for an isolated separate flow bypass ratio five engine nozzle model and the same nozzle system with a pylon. These configurations have measured data along with prior CFD solutions and noise predictions using a proven structured mesh method, which can be used for comparison to the unstructured mesh solutions obtained in this investigation. This numerical investigation utilized the TetrUSS system that includes a Navier-Stokes solver, the associated unstructured mesh generation tools, post-processing utilities, plus some recently added enhancements to the system. New features necessary for this study include the addition of two equation turbulence models to the USM3D code, an h-refinement utility to enhance mesh density in the shear mixing region, and a flow adaptive mesh redistribution method. In addition, a computational procedure was developed to optimize both solution accuracy and mesh economy. Noise predictions were completed using an unstructured mesh version of the JeT3D code.
Non-animal test methods for predicting skin sensitization potentials.
Mehling, Annette; Eriksson, Tove; Eltze, Tobias; Kolle, Susanne; Ramirez, Tzutzuy; Teubner, Wera; van Ravenzwaay, Bennard; Landsiedel, Robert
2012-08-01
Contact allergies are complex diseases, and it is estimated that 15-20 % of the general population suffers from contact allergy, with increasing prevalence. Evaluation of the sensitization potential of a substance is usually carried out in animal models. Nowadays, there is much interest in reducing and ultimately replacing current animal tests. Furthermore, as of 2013, the EU has posed a ban on animal testing of cosmetic ingredients that includes skin sensitization. Therefore, predictive and robust in vitro tests are urgently needed. In order to establish alternatives to animal testing, the in vitro tests must mimic the very complex interactions between the sensitizing chemical and the different parts of the immune system. This review article summarizes recent efforts to develop in vitro tests for predicting skin sensitizers. Cell-based assays, in chemico methods and, to a lesser extent, in silico methods are presented together with a discussion of their current status. With considerable progress having been achieved during the last years, the rationale today is that data from different non-animal test methods will have to be combined in order to obtain reliable hazard and potency information on potential skin sensitizers.
Kwon, Kideok; Yang, Jihoon; Yoo, Younghwan
2015-04-24
A number of research works has studied packet scheduling policies in energy scavenging wireless sensor networks, based on the predicted amount of harvested energy. Most of them aim to achieve energy neutrality, which means that an embedded system can operate perpetually while meeting application requirements. Unlike other renewable energy sources, solar energy has the feature of distinct periodicity in the amount of harvested energy over a day. Using this feature, this paper proposes a packet transmission control policy that can enhance the network performance while keeping sensor nodes alive. Furthermore, this paper suggests a novel solar energy prediction method that exploits the relation between cloudiness and solar radiation. The experimental results and analyses show that the proposed packet transmission policy outperforms others in terms of the deadline miss rate and data throughput. Furthermore, the proposed solar energy prediction method can predict more accurately than others by 6.92%.
Predicting mooring system fatigue life by probabilistic methods
Saders, D.R.; Dominguez, R.F.; Ho, K.C.; Lai, N.W.
1983-05-01
Failure of moored structures from accumulated fatigue damage in shackles, connecting links, chain and wire rope components is common. When systems will be deployed for long periods, it is especially important to determine at the design, inspection and maintenance stages the fatigue damage. Since slack moored structures behave in a highly nonlinear manner, commonly used fatigue analysis procedures are normally inadequate. This paper reviews present probablistic fatigue analysis methods, and provides a means for incorporating nonlinear mooring behavior into analysis and design to predict accumulated damage and remaining service life. The procedures presented are general, and they are also applicable to ship and buoy moorings, offshore terminals, and guyed and tension leg platforms.
An experiment in hurricane track prediction using parallel computing methods
NASA Technical Reports Server (NTRS)
Song, Chang G.; Jwo, Jung-Sing; Lakshmivarahan, S.; Dhall, S. K.; Lewis, John M.; Velden, Christopher S.
1994-01-01
The barotropic model is used to explore the advantages of parallel processing in deterministic forecasting. We apply this model to the track forecasting of hurricane Elena (1985). In this particular application, solutions to systems of elliptic equations are the essence of the computational mechanics. One set of equations is associated with the decomposition of the wind into irrotational and nondivergent components - this determines the initial nondivergent state. Another set is associated with recovery of the streamfunction from the forecasted vorticity. We demonstrate that direct parallel methods based on accelerated block cyclic reduction (BCR) significantly reduce the computational time required to solve the elliptic equations germane to this decomposition and forecast problem. A 72-h track prediction was made using incremental time steps of 16 min on a network of 3000 grid points nominally separated by 100 km. The prediction took 30 sec on the 8-processor Alliant FX/8 computer. This was a speed-up of 3.7 when compared to the one-processor version. The 72-h prediction of Elena's track was made as the storm moved toward Florida's west coast. Approximately 200 km west of Tampa Bay, Elena executed a dramatic recurvature that ultimately changed its course toward the northwest. Although the barotropic track forecast was unable to capture the hurricane's tight cycloidal looping maneuver, the subsequent northwesterly movement was accurately forecasted as was the location and timing of landfall near Mobile Bay.
A Primer In Advanced Fatigue Life Prediction Methods
NASA Technical Reports Server (NTRS)
Halford, Gary R.
2000-01-01
Metal fatigue has plagued structural components for centuries, and it remains a critical durability issue in today's aerospace hardware. This is true despite vastly improved and advanced materials, increased mechanistic understanding, and development of accurate structural analysis and advanced fatigue life prediction tools. Each advance is quickly taken advantage of to produce safer, more reliable more cost effective, and better performing products. In other words, as the envelop is expanded, components are then designed to operate just as close to the newly expanded envelop as they were to the initial one. The problem is perennial. The economic importance of addressing structural durability issues early in the design process is emphasized. Tradeoffs with performance, cost, and legislated restrictions are pointed out. Several aspects of structural durability of advanced systems, advanced materials and advanced fatigue life prediction methods are presented. Specific items include the basic elements of durability analysis, conventional designs, barriers to be overcome for advanced systems, high-temperature life prediction for both creep-fatigue and thermomechanical fatigue, mean stress effects, multiaxial stress-strain states, and cumulative fatigue damage accumulation assessment.
NASA Technical Reports Server (NTRS)
He, Yuning
2015-01-01
Safety of unmanned aerial systems (UAS) is paramount, but the large number of dynamically changing controller parameters makes it hard to determine if the system is currently stable, and the time before loss of control if not. We propose a hierarchical statistical model using Treed Gaussian Processes to predict (i) whether a flight will be stable (success) or become unstable (failure), (ii) the time-to-failure if unstable, and (iii) time series outputs for flight variables. We first classify the current flight input into success or failure types, and then use separate models for each class to predict the time-to-failure and time series outputs. As different inputs may cause failures at different times, we have to model variable length output curves. We use a basis representation for curves and learn the mappings from input to basis coefficients. We demonstrate the effectiveness of our prediction methods on a NASA neuro-adaptive flight control system.
A predictive control framework for optimal energy extraction of wind farms
NASA Astrophysics Data System (ADS)
Vali, M.; van Wingerden, J. W.; Boersma, S.; Petrović, V.; Kühn, M.
2016-09-01
This paper proposes an adjoint-based model predictive control for optimal energy extraction of wind farms. It employs the axial induction factor of wind turbines to influence their aerodynamic interactions through the wake. The performance index is defined here as the total power production of the wind farm over a finite prediction horizon. A medium-fidelity wind farm model is utilized to predict the inflow propagation in advance. The adjoint method is employed to solve the formulated optimization problem in a cost effective way and the first part of the optimal solution is implemented over the control horizon. This procedure is repeated at the next controller sample time providing the feedback into the optimization. The effectiveness and some key features of the proposed approach are studied for a two turbine test case through simulations.
Model predictive control of non-linear systems over networks with data quantization and packet loss.
Yu, Jimin; Nan, Liangsheng; Tang, Xiaoming; Wang, Ping
2015-11-01
This paper studies the approach of model predictive control (MPC) for the non-linear systems under networked environment where both data quantization and packet loss may occur. The non-linear controlled plant in the networked control system (NCS) is represented by a Tagaki-Sugeno (T-S) model. The sensed data and control signal are quantized in both links and described as sector bound uncertainties by applying sector bound approach. Then, the quantized data are transmitted in the communication networks and may suffer from the effect of packet losses, which are modeled as Bernoulli process. A fuzzy predictive controller which guarantees the stability of the closed-loop system is obtained by solving a set of linear matrix inequalities (LMIs). A numerical example is given to illustrate the effectiveness of the proposed method.
Method for predicting peptide detection in mass spectrometry
Kangas, Lars [West Richland, WA; Smith, Richard D [Richland, WA; Petritis, Konstantinos [Richland, WA
2010-07-13
A method of predicting whether a peptide present in a biological sample will be detected by analysis with a mass spectrometer. The method uses at least one mass spectrometer to perform repeated analysis of a sample containing peptides from proteins with known amino acids. The method then generates a data set of peptides identified as contained within the sample by the repeated analysis. The method then calculates the probability that a specific peptide in the data set was detected in the repeated analysis. The method then creates a plurality of vectors, where each vector has a plurality of dimensions, and each dimension represents a property of one or more of the amino acids present in each peptide and adjacent peptides in the data set. Using these vectors, the method then generates an algorithm from the plurality of vectors and the calculated probabilities that specific peptides in the data set were detected in the repeated analysis. The algorithm is thus capable of calculating the probability that a hypothetical peptide represented as a vector will be detected by a mass spectrometry based proteomic platform, given that the peptide is present in a sample introduced into a mass spectrometer.
Predictive control and estimation algorithms for the NASA/JPL 70-meter antennas
NASA Technical Reports Server (NTRS)
Gawronski, W.
1991-01-01
A modified output prediction procedure and a new controller design is presented based on the predictive control law. Also, a new predictive estimator is developed to complement the controller and to enhance system performance. The predictive controller is designed and applied to the tracking control of the Deep Space Network 70 m antennas. Simulation results show significant improvement in tracking performance over the linear quadratic controller and estimator presently in use.
Valencia-Palomo, G; Rossiter, J A
2011-01-01
This paper makes two key contributions. First, it tackles the issue of the availability of constrained predictive control for low-level control loops. Hence, it describes how the constrained control algorithm is embedded in an industrial programmable logic controller (PLC) using the IEC 61131-3 programming standard. Second, there is a definition and implementation of a novel auto-tuned predictive controller; the key novelty is that the modelling is based on relatively crude but pragmatic plant information. Laboratory experiment tests were carried out in two bench-scale laboratory systems to prove the effectiveness of the combined algorithm and hardware solution. For completeness, the results are compared with a commercial proportional-integral-derivative (PID) controller (also embedded in the PLC) using the most up to date auto-tuning rules.
Nouretdinov, Ilia; Gammerman, Alex; Qi, Yanjun; Klein-Seetharaman, Judith
2012-01-01
Identifying protein-protein interactions (PPI's) is critical for understanding virtually all cellular molecular mechanisms. Previously, predicting PPI's was treated as a binary classification task and has commonly been solved in a supervised setting which requires a positive labeled set of known PPI's and a negative labeled set of non-interacting protein pairs. In those methods, the learner provides the likelihood of the predicted interaction, but without a confidence level associated with each prediction. Here, we apply a conformal prediction framework to make predictions and estimate confidence of the predictions. The conformal predictor uses a function measuring relative 'strangeness' interacting pairs to check whether prediction of a new example added to the sequence of already known PPI's would conform to the 'exchangeability' assumption: distribution of interacting pairs is invariant with any permutations of the pairs. In fact, this is the only assumption we make about the data. Another advantage is that the user can control a number of errors by providing a desirable confidence level. This feature of CP is very useful for a ranking list of possible interactive pairs. In this paper, the conformal method has been developed to deal with just one class - class interactive proteins - while there is not clearly defined of 'non-interactive'pairs. The confidence level helps the biologist in the interpretation of the results, and better assists the choices of pairs for experimental validation. We apply the proposed conformal framework to improve the identification of interacting pairs between HIV-1 and human proteins.
Jet Noise Diagnostics Supporting Statistical Noise Prediction Methods
NASA Technical Reports Server (NTRS)
Bridges, James E.
2006-01-01
compared against measurements of mean and rms velocity statistics over a range of jet speeds and temperatures. Models for flow parameters used in the acoustic analogy, most notably the space-time correlations of velocity, have been compared against direct measurements, and modified to better fit the observed data. These measurements have been extremely challenging for hot, high speed jets, and represent a sizeable investment in instrumentation development. As an intermediate check that the analysis is predicting the physics intended, phased arrays have been employed to measure source distributions for a wide range of jet cases. And finally, careful far-field spectral directivity measurements have been taken for final validation of the prediction code. Examples of each of these experimental efforts will be presented. The main result of these efforts is a noise prediction code, named JeNo, which is in middevelopment. JeNo is able to consistently predict spectral directivity, including aft angle directivity, for subsonic cold jets of most geometries. Current development on JeNo is focused on extending its capability to hot jets, requiring inclusion of a previously neglected second source associated with thermal fluctuations. A secondary result of the intensive experimentation is the archiving of various flow statistics applicable to other acoustic analogies and to development of time-resolved prediction methods. These will be of lasting value as we look ahead at future challenges to the aeroacoustic experimentalist.
Model Predictive Control for the Operation of Building Cooling Systems
Ma, Yudong; Borrelli, Francesco; Hencey, Brandon; Coffey, Brian; Bengea, Sorin; Haves, Philip
2010-06-29
A model-based predictive control (MPC) is designed for optimal thermal energy storage in building cooling systems. We focus on buildings equipped with a water tank used for actively storing cold water produced by a series of chillers. Typically the chillers are operated at night to recharge the storage tank in order to meet the building demands on the following day. In this paper, we build on our previous work, improve the building load model, and present experimental results. The experiments show that MPC can achieve reduction in the central plant electricity cost and improvement of its efficiency.
Control method for physical systems and devices
Guckenheimer, John
1997-01-01
A control method for stabilizing systems or devices that are outside the control domain of a linear controller is provided. When applied to nonlinear systems, the effectiveness of this method depends upon the size of the domain of stability that is produced for the stabilized equilibrium. If this domain is small compared to the accuracy of measurements or the size of disturbances within the system, then the linear controller is likely to fail within a short period. Failure of the system or device can be catastrophic: the system or device can wander far from the desired equilibrium. The method of the invention presents a general procedure to recapture the stability of a linear controller, when the trajectory of a system or device leaves its region of stability. By using a hybrid strategy based upon discrete switching events within the state space of the system or device, the system or device will return from a much larger domain to the region of stability utilized by the linear controller. The control procedure is robust and remains effective under large classes of perturbations of a given underlying system or device.
Decision tree methods: applications for classification and prediction
SONG, Yan-yan; LU, Ying
2015-01-01
Summary Decision tree methodology is a commonly used data mining method for establishing classification systems based on multiple covariates or for developing prediction algorithms for a target variable. This method classifies a population into branch-like segments that construct an inverted tree with a root node, internal nodes, and leaf nodes. The algorithm is non-parametric and can efficiently deal with large, complicated datasets without imposing a complicated parametric structure. When the sample size is large enough, study data can be divided into training and validation datasets. Using the training dataset to build a decision tree model and a validation dataset to decide on the appropriate tree size needed to achieve the optimal final model. This paper introduces frequently used algorithms used to develop decision trees (including CART, C4.5, CHAID, and QUEST) and describes the SPSS and SAS programs that can be used to visualize tree structure. PMID:26120265
Mathematical analysis method for predicting temperature rise in BIPV
NASA Astrophysics Data System (ADS)
Ibarahim, Zahari; Ruslan, Mohd Hafidz; Ibrahim, Zamry
2013-05-01
In order to estimate the airflow rate and temperature in the channel of building an integrated photovoltaic (BIPV) system, a simplified mathematical method has been derived in which the buoyancy force balances the friction along the channel. The channel is represented as a closed duct and the pressure losses are calculated in a similar fashion to those in a pipe circuit. Pressure losses at ventilation inlets and outlets are calculated using pressure loss factors, Kf. The effect of wind pressure on mass flow rate and temperature in the channel can be estimated with the inclusion of the wind speed pressure into the formulation. The benefit of wind pressure applied normal to the inlet and tangential to the outlet of the channel can be seen. The procedure yields the mass flow rate and temperature directly by solution of a simple cubic equation. This method allows the engineers and scientist to predict optimum configuration of their PV cladding design.
Osteoporosis risk prediction using machine learning and conventional methods.
Kim, Sung Kean; Yoo, Tae Keun; Oh, Ein; Kim, Deok Won
2013-01-01
A number of clinical decision tools for osteoporosis risk assessment have been developed to select postmenopausal women for the measurement of bone mineral density. We developed and validated machine learning models with the aim of more accurately identifying the risk of osteoporosis in postmenopausal women, and compared with the ability of a conventional clinical decision tool, osteoporosis self-assessment tool (OST). We collected medical records from Korean postmenopausal women based on the Korea National Health and Nutrition Surveys (KNHANES V-1). The training data set was used to construct models based on popular machine learning algorithms such as support vector machines (SVM), random forests (RF), artificial neural networks (ANN), and logistic regression (LR) based on various predictors associated with low bone density. The learning models were compared with OST. SVM had significantly better area under the curve (AUC) of the receiver operating characteristic (ROC) than ANN, LR, and OST. Validation on the test set showed that SVM predicted osteoporosis risk with an AUC of 0.827, accuracy of 76.7%, sensitivity of 77.8%, and specificity of 76.0%. We were the first to perform comparisons of the performance of osteoporosis prediction between the machine learning and conventional methods using population-based epidemiological data. The machine learning methods may be effective tools for identifying postmenopausal women at high risk for osteoporosis.
Conditional Weather Resampling Method for Seasonal Ensemble Streamflow Prediction
NASA Astrophysics Data System (ADS)
Beckers, Joost; Weerts, Albrecht; Welles, Edwin
2014-05-01
Ensemble Streamflow Prediction (ESP) is a commonly used method for water resources planning on the seasonal time scale. The starting point for the ESP is the current state of the hydrological system, which is generated form a short historical simulation up to the time of forecast. Starting from this initial state, a hydrologic model is run to produce an ensemble of possible realizations of future streamflows, taking meteorological time series from historical years as input. It is assumed that these historical weather time series represent climatology. One disadvantage of the original ESP method is that an expected deviation from average climatology is not accounted for. Here, we propose a variation to the ESP, in which shorter periods from historical time years are resampled and assembled to generate additional possible realizations of future weather. The resampling is done in such a way as to incorporate statistical deviations from the average climate that are linked to climate modes, such as El Niño Southern Oscillation (ENSO) or Pacific Decadal Oscillation (PDO). These climate modes are known to affect the local weather in many regions around the world. The resampling of historical weather periods is conditioned on the climate mode indices, starting with the current climate index value and searching for historical years with similar climate indices. The resampled weather time series are used as input for the hydrological model, similar to the original ESP procedure. The method was implemented in the operational forecasting environment of Bonneville Power Administration (BPA), which based on Delft-FEWS. The method was run for 55 non-operational years of hindcasts (forecasts in retrospect) for the Columbia River in the North-West of the U.S. An increase in forecast skill up to 5% was found relative to the standard ESP for streamflow predictions at three test-locations.
Temperature Effects and Compensation-Control Methods
Xia, Dunzhu; Chen, Shuling; Wang, Shourong; Li, Hongsheng
2009-01-01
In the analysis of the effects of temperature on the performance of microgyroscopes, it is found that the resonant frequency of the microgyroscope decreases linearly as the temperature increases, and the quality factor changes drastically at low temperatures. Moreover, the zero bias changes greatly with temperature variations. To reduce the temperature effects on the microgyroscope, temperature compensation-control methods are proposed. In the first place, a BP (Back Propagation) neural network and polynomial fitting are utilized for building the temperature model of the microgyroscope. Considering the simplicity and real-time requirements, piecewise polynomial fitting is applied in the temperature compensation system. Then, an integral-separated PID (Proportion Integration Differentiation) control algorithm is adopted in the temperature control system, which can stabilize the temperature inside the microgyrocope in pursuing its optimal performance. Experimental results reveal that the combination of microgyroscope temperature compensation and control methods is both realizable and effective in a miniaturized microgyroscope prototype. PMID:22408509
A Survey of Quantum Lyapunov Control Methods
2013-01-01
The condition of a quantum Lyapunov-based control which can be well used in a closed quantum system is that the method can make the system convergent but not just stable. In the convergence study of the quantum Lyapunov control, two situations are classified: nondegenerate cases and degenerate cases. For these two situations, respectively, in this paper the target state is divided into four categories: the eigenstate, the mixed state which commutes with the internal Hamiltonian, the superposition state, and the mixed state which does not commute with the internal Hamiltonian. For these four categories, the quantum Lyapunov control methods for the closed quantum systems are summarized and analyzed. Particularly, the convergence of the control system to the different target states is reviewed, and how to make the convergence conditions be satisfied is summarized and analyzed. PMID:23766732
Predictive-model-based dynamic coordination control strategy for power-split hybrid electric bus
NASA Astrophysics Data System (ADS)
Zeng, Xiaohua; Yang, Nannan; Wang, Junnian; Song, Dafeng; Zhang, Nong; Shang, Mingli; Liu, Jianxin
2015-08-01
Parameter-matching methods and optimal control strategies of the top-selling hybrid electric vehicle (HEV), namely, power-split HEV, are widely studied. In particular, extant research on control strategy focuses on the steady-state energy management strategy to obtain better fuel economy. However, given that multi-power sources are highly coupled in power-split HEVs and influence one another during mode shifting, conducting research on dynamic coordination control strategy (DCCS) to achieve riding comfort is also important. This paper proposes a predictive-model-based DCCS. First, the dynamic model of the objective power-split HEV is built and the mode shifting process is analyzed based on the developed model to determine the reason for the system shock generated. Engine torque estimation algorithm is then designed according to the principle of the nonlinear observer, and the prediction model of the degree of shock is established based on the theory of model predictive control. Finally, the DCCS with adaptation for a complex driving cycle is realized by combining the feedback control and the predictive model. The presented DCCS is validated on the co-simulation platform of AMESim and Simulink. Results show that the shock during mode shifting is well controlled, thereby improving riding comfort.
Control system health test system and method
Hoff, Brian D.; Johnson, Kris W.; Akasam, Sivaprasad; Baker, Thomas M.
2006-08-15
A method is provided for testing multiple elements of a work machine, including a control system, a component, a sub-component that is influenced by operations of the component, and a sensor that monitors a characteristic of the sub-component. In one embodiment, the method is performed by the control system and includes sending a command to the component to adjust a first parameter associated with an operation of the component. Also, the method includes detecting a sensor signal from the sensor reflecting a second parameter associated with a characteristic of the sub-component and determining whether the second parameter is acceptable based on the command. The control system may diagnose at least one of the elements of the work machine when the second parameter of the sub-component is not acceptable.
Improved model predictive control of resistive wall modes by error field estimator in EXTRAP T2R
NASA Astrophysics Data System (ADS)
Setiadi, A. C.; Brunsell, P. R.; Frassinetti, L.
2016-12-01
Many implementations of a model-based approach for toroidal plasma have shown better control performance compared to the conventional type of feedback controller. One prerequisite of model-based control is the availability of a control oriented model. This model can be obtained empirically through a systematic procedure called system identification. Such a model is used in this work to design a model predictive controller to stabilize multiple resistive wall modes in EXTRAP T2R reversed-field pinch. Model predictive control is an advanced control method that can optimize the future behaviour of a system. Furthermore, this paper will discuss an additional use of the empirical model which is to estimate the error field in EXTRAP T2R. Two potential methods are discussed that can estimate the error field. The error field estimator is then combined with the model predictive control and yields better radial magnetic field suppression.
Method of Controlling Lasing Wavelength(s)
NASA Technical Reports Server (NTRS)
Barnes, Norman P. (Inventor); Murray, Keith E. (Inventor); Hutcheson, Ralph L. (Inventor)
2000-01-01
A method is provided to control the lasing wavelength of a laser material without changing or adjusting the mechanical components of a laser device, The rate at which the laser material is pumped with the pumping energy is controlled so that lasing occurs at one or more lasing wavelengths based on the rate. The lasing wavelengths are determined by transition lifetimes and/or energy transfer rates.
A GIS modeling method applied to predicting forest songbird habitat
Dettmers, Randy; Bart, Jonathan
1999-01-01
We have developed an approach for using a??presencea?? data to construct habitat models. Presence data are those that indicate locations where the target organism is observed to occur, but that cannot be used to define locations where the organism does not occur. Surveys of highly mobile vertebrates often yield these kinds of data. Models developed through our approach yield predictions of the amount and the spatial distribution of good-quality habitat for the target species. This approach was developed primarily for use in a GIS context; thus, the models are spatially explicit and have the potential to be applied over large areas. Our method consists of two primary steps. In the first step, we identify an optimal range of values for each habitat variable to be used as a predictor in the model. To find these ranges, we employ the concept of maximizing the difference between cumulative distribution functions of (1) the values of a habitat variable at the observed presence locations of the target organism, and (2) the values of that habitat variable for all locations across a study area. In the second step, multivariate models of good habitat are constructed by combining these ranges of values, using the Boolean operators a??anda?? and a??or.a?? We use an approach similar to forward stepwise regression to select the best overall model. We demonstrate the use of this method by developing species-specific habitat models for nine forest-breeding songbirds (e.g., Cerulean Warbler, Scarlet Tanager, Wood Thrush) studied in southern Ohio. These models are based on speciesa?? microhabitat preferences for moisture and vegetation characteristics that can be predicted primarily through the use of abiotic variables. We use slope, land surface morphology, land surface curvature, water flow accumulation downhill, and an integrated moisture index, in conjunction with a land-cover classification that identifies forest/nonforest, to develop these models. The performance of these
Predictive models of procedural human supervisory control behavior
NASA Astrophysics Data System (ADS)
Boussemart, Yves
Human supervisory control systems are characterized by the computer-mediated nature of the interactions between one or more operators and a given task. Nuclear power plants, air traffic management and unmanned vehicles operations are examples of such systems. In this context, the role of the operators is typically highly proceduralized due to the time and mission-critical nature of the tasks. Therefore, the ability to continuously monitor operator behavior so as to detect and predict anomalous situations is a critical safeguard for proper system operation. In particular, such models can help support the decision J]l8king process of a supervisor of a team of operators by providing alerts when likely anomalous behaviors are detected By exploiting the operator behavioral patterns which are typically reinforced through standard operating procedures, this thesis proposes a methodology that uses statistical learning techniques in order to detect and predict anomalous operator conditions. More specifically, the proposed methodology relies on hidden Markov models (HMMs) and hidden semi-Markov models (HSMMs) to generate predictive models of unmanned vehicle systems operators. Through the exploration of the resulting HMMs in two distinct single operator scenarios, the methodology presented in this thesis is validated and shown to provide models capable of reliably predicting operator behavior. In addition, the use of HSMMs on the same data scenarios provides the temporal component of the predictions missing from the HMMs. The final step of this work is to examine how the proposed methodology scales to more complex scenarios involving teams of operators. Adopting a holistic team modeling approach, both HMMs and HSMMs are learned based on two team-based data sets. The results show that the HSMMs can provide valuable timing information in the single operator case, whereas HMMs tend to be more robust to increased team complexity. In addition, this thesis discusses the
Striatal prediction errors support dynamic control of declarative memory decisions
Scimeca, Jason M.; Katzman, Perri L.; Badre, David
2016-01-01
Adaptive memory requires context-dependent control over how information is retrieved, evaluated and used to guide action, yet the signals that drive adjustments to memory decisions remain unknown. Here we show that prediction errors (PEs) coded by the striatum support control over memory decisions. Human participants completed a recognition memory test that incorporated biased feedback to influence participants' recognition criterion. Using model-based fMRI, we find that PEs—the deviation between the outcome and expected value of a memory decision—correlate with striatal activity and predict individuals' final criterion. Importantly, the striatal PEs are scaled relative to memory strength rather than the expected trial outcome. Follow-up experiments show that the learned recognition criterion transfers to free recall, and targeting biased feedback to experimentally manipulate the magnitude of PEs influences criterion consistent with PEs scaled relative to memory strength. This provides convergent evidence that declarative memory decisions can be regulated via striatally mediated reinforcement learning signals. PMID:27713407
NASA Astrophysics Data System (ADS)
Li, Kunpeng
2017-01-01
The compatibility problem between rapidity and overshooting in the traditional predictive current control structure is inevitable and difficult to solve by reason of using PI controller. A novel predictive current control (PCC) algorithm for permanent magnet synchronous motor (PMSM) based on linear active disturbance rejection control (LADRC) is presented in this paper. In order to displace PI controller, the LADRC strategy which consisted of linear state error feedback (LSEF) control algorithm and linear extended state observer (LESO), is designed based on the mathematic model of PMSM. The purpose of LSEF is to make sure fast response to load mutation and system uncertainties, and LESO is designed to estimate the uncertain disturbances. The principal structures of the proposed system are speed outer loop based on LADRC and current inner loop based on predictive current control. Especially, the instruction value of qaxis current in inner loop is derived from the control quantity which is designed in speed outer loop. The simulation is carried out in Matlab/Simulink software, and the results illustrate that the dynamic and static performances of proposed system are satisfied. Moreover the robust against model parameters mismatch is enhanced obviously.
Sham Electroacupuncture Methods in Randomized Controlled Trials
Chen, Zi-xian; Li, Yan; Zhang, Xiao-guang; Chen, Shuang; Yang, Wen-ting; Zheng, Xia-wei; Zheng, Guo-qing
2017-01-01
Sham electroacupuncture (EA) control is commonly used to evaluate the specific effects of EA in randomized-controlled trials (RCTs). However, establishing an inert and concealable sham EA control remains methodologically challenging. Here, we aimed to systematically investigate the sham EA methods. Eight electronic databases were searched from their inception to April 2015. Ten out of the 17 sham EA methods were identified from 94 RCTs involving 6134 participants according to three aspects: needle location, depth of needle insertion and electrical stimulation. The top three most frequently used types were sham EA type A, type L and type O ordinally. Only 24 out of the 94 trials reported credibility tests in six types of sham EA methods and the results were mainly as follows: sham EA type A (10/24), type B (5/24) and type Q (5/24). Compared with sham EA controls, EA therapy in 56.2% trials reported the specific effects, of which the highest positive rate was observed in type N (3/4), type F (5/7), type D (4/6) and type M (2/3). In conclusion, several sham EA types were identified as a promising candidate for further application in RCTs. Nonetheless, more evidence for inert and concealable sham EA control methods is needed. PMID:28106094
Extremely Randomized Machine Learning Methods for Compound Activity Prediction.
Czarnecki, Wojciech M; Podlewska, Sabina; Bojarski, Andrzej J
2015-11-09
Speed, a relatively low requirement for computational resources and high effectiveness of the evaluation of the bioactivity of compounds have caused a rapid growth of interest in the application of machine learning methods to virtual screening tasks. However, due to the growth of the amount of data also in cheminformatics and related fields, the aim of research has shifted not only towards the development of algorithms of high predictive power but also towards the simplification of previously existing methods to obtain results more quickly. In the study, we tested two approaches belonging to the group of so-called 'extremely randomized methods'-Extreme Entropy Machine and Extremely Randomized Trees-for their ability to properly identify compounds that have activity towards particular protein targets. These methods were compared with their 'non-extreme' competitors, i.e., Support Vector Machine and Random Forest. The extreme approaches were not only found out to improve the efficiency of the classification of bioactive compounds, but they were also proved to be less computationally complex, requiring fewer steps to perform an optimization procedure.
Predicting human height by Victorian and genomic methods
Aulchenko, Yurii S; Struchalin, Maksim V; Belonogova, Nadezhda M; Axenovich, Tatiana I; Weedon, Michael N; Hofman, Albert; Uitterlinden, Andre G; Kayser, Manfred; Oostra, Ben A; van Duijn, Cornelia M; Janssens, A Cecile J W; Borodin, Pavel M
2009-01-01
In the Victorian era, Sir Francis Galton showed that ‘when dealing with the transmission of stature from parents to children, the average height of the two parents, … is all we need care to know about them' (1886). One hundred and twenty-two years after Galton's work was published, 54 loci showing strong statistical evidence for association to human height were described, providing us with potential genomic means of human height prediction. In a population-based study of 5748 people, we find that a 54-loci genomic profile explained 4–6% of the sex- and age-adjusted height variance, and had limited ability to discriminate tall/short people, as characterized by the area under the receiver-operating characteristic curve (AUC). In a family-based study of 550 people, with both parents having height measurements, we find that the Galtonian mid-parental prediction method explained 40% of the sex- and age-adjusted height variance, and showed high discriminative accuracy. We have also explored how much variance a genomic profile should explain to reach certain AUC values. For highly heritable traits such as height, we conclude that in applications in which parental phenotypic information is available (eg, medicine), the Victorian Galton's method will long stay unsurpassed, in terms of both discriminative accuracy and costs. For less heritable traits, and in situations in which parental information is not available (eg, forensics), genomic methods may provide an alternative, given that the variants determining an essential proportion of the trait's variation can be identified. PMID:19223933
Predicting methods of construction land demand and application in county's general land use planning
NASA Astrophysics Data System (ADS)
Gao, Xiaoyong; Liu, Yaolin; Su, Lilan; Zhang, Yang
2009-10-01
China faces a serious problem is that dramatic expansion of construction land cause largely reduction of cultivated land. To control the scale of construction land is the focus of land use and planning management work, whose core is land use control, and how to forecast the quantity of construction land scientifically, reasonably and correctly is an important content in general land use planning. In this paper, based on the field survey and statistic data of land changes in Changjiang Hainan province during 1996-2005, the gross construction land in this region was simulated and predicted using trend analysis method, exponent smoothing method, remnant GM(1,1) method, Markov model and multifactor optimal combination method, respectively. From the compare of the average relative error, GM(1,1) Method is better to predict, but its parameters c and p indicate this model can't be used to forecast long term data. From the result of Markov model, the average relative error is small, but its maxerror is 4.15%. By comparison of these models, Multifactor optimal combination method is more reliable and effective for policymakers of land management, and which is preferable for predicting construction land demand of county's general land-use planning.
Humans are sensitive to attention control when predicting others’ actions
Pesquita, Ana; Chapman, Craig S.; Enns, James T.
2016-01-01
Studies of social perception report acute human sensitivity to where another’s attention is aimed. Here we ask whether humans are also sensitive to how the other’s attention is deployed. Observers viewed videos of actors reaching to targets without knowing that those actors were sometimes choosing to reach to one of the targets (endogenous control) and sometimes being directed to reach to one of the targets (exogenous control). Experiments 1 and 2 showed that observers could respond more rapidly when actors chose where to reach, yet were at chance when guessing whether the reach was chosen or directed. This implicit sensitivity to attention control held when either actor’s faces or limbs were masked (experiment 3) and when only the earliest actor’s movements were visible (experiment 4). Individual differences in sensitivity to choice correlated with an independent measure of social aptitude. We conclude that humans are sensitive to attention control through an implicit kinematic process linked to empathy. The findings support the hypothesis that social cognition involves the predictive modeling of others’ attentional states. PMID:27436897
Method for Controlled Mitochondrial Perturbation during Phosphorus MRS in Children
Cree-Green, Melanie; Newcomer, Bradley R.; Brown, Mark; Hull, Amber; West, Amy D.; Singel, Debra; Reusch, Jane E.B.; McFann, Kim; Regensteiner, Judith G.; Nadeau, Kristen J.
2014-01-01
Introduction Insulin resistance (IR) is increasingly prevalent in children, and may be related to muscle mitochondrial dysfunction, necessitating development of mitochondrial assessment techniques. Recent studies used 31Phosphorus magnetic resonance spectroscopy (31P-MRS), a non-invasive technique appealing for clinical research. 31P-MRS requires exercise at a precise percentage of maximum volitional contraction (MVC). MVC measurement in children, particularly with disease, is problematic due to variability in perception of effort and motivation. We therefore developed a method to predict MVC, using maximal calf muscle cross-sectional area (MCSA) to assure controlled and reproducible muscle metabolic perturbations. Methods Data were collected from 66 sedentary 12–20 year-olds. Plantar flexion-volitional MVC was assessed using a MRI-compatible exercise treadle device. MCSA of the calf muscles were measured from MRI images. Data from the first 26 participants were utilized to model the relationship between MVC and MCSA (predicted MVC = 24.763+0.0047*MCSA). This model was then applied to the subsequent 40 participants. Results Volitional vs. model-predicted mean MVC was 43.9±0.8 kg vs. 44.2±1.81 (P=0.90). 31P-MRS results when predicted and volitional MVC were similar showed expected changes during volitional MVC-based exercise. In contrast, volitional MVC was markedly lower than predicted in 4 participants, and produced minimal metabolic perturbation. Upon repeat testing, these individuals could perform their predicted MVC with coaching, which produced expected metabolic perturbations. Conclusions Compared to using MVC testing alone, utilizing MRI to predict muscle strength allows for a more accurate and standardized 31P-MRS protocol during exercise in children. This method overcomes a major obstacle in assessing mitochondrial function in youth. These studies have importance as we seek to determine the role of mitochondrial function in youth with IR and diabetes
Scattering waves using exact controllability methods
NASA Astrophysics Data System (ADS)
Bristeau, M. O.; Glowinski, R.; Periaux, J.
1993-01-01
The main goal of this paper is to introduce a novel method for solving the Helmholtz equations from acoustics and two-dimensional electromagnetics. The key idea of the method is to go back to the original wave equation and look for time periodic solutions. In order to find these solutions, we essentially use a least squares/shooting method which is closely related to exact controllability and to the Hilbert uniqueness method of Lions (1988). From this formulation and by analogy with other controllability problems, we derive a conjugate gradient algorithm (in an appropriate Hilbert space) which has quite good convergence properties. Numerical experiments concerning the scattering of planar waves by convex or nonconvex obstacles show the efficiency of the new algorithm, particularly for air intakelike reflectors and two-dimensional aircraft related bodies.
Comparing Three Data Mining Methods to Predict Kidney Transplant Survival
Shahmoradi, Leila; Langarizadeh, Mostafa; Pourmand, Gholamreza; fard, Ziba Aghsaei; Borhani, Alireza
2016-01-01
Introduction: One of the most important complications of post-transplant is rejection. Analyzing survival is one of the areas of medical prognosis and data mining, as an effective approach, has the capacity of analyzing and estimating outcomes in advance through discovering appropriate models among data. The present study aims at comparing the effectiveness of C5.0 algorithms, neural network and C&RTree to predict kidney transplant survival before transplant. Method: To detect factors effective in predicting transplant survival, information needs analysis was performed via a researcher-made questionnaire. A checklist was prepared and data of 513 kidney disease patient files were extracted from Sina Urology Research Center. Following CRISP methodology for data mining, IBM SPSS Modeler 14.2, C5.0, C&RTree algorithms and neural network were used. Results: Body Mass Index (BMI), cause of renal dysfunction and duration of dialysis were evaluated in all three models as the most effective factors in transplant survival. C5.0 algorithm with the highest validity (96.77%) was the first in estimating kidney transplant survival in patients followed by C&RTree (83.7%) and neural network (79.5%) models. Conclusion: Among the three models, C5.0 algorithm was the top model with high validity that confirms its strength in predicting survival. The most effective kidney transplant survival factors were detected in this study; therefore, duration of transplant survival (year) can be determined considering the regulations set for a new sample with specific characteristics. PMID:28163356
Design of a robust model predictive controller with reduced computational complexity.
Razi, M; Haeri, M
2014-11-01
The practicality of robust model predictive control of systems with model uncertainties depends on the time consumed for solving a defined optimization problem. This paper presents a method for the computational complexity reduction in a robust model predictive control. First a scaled state vector is defined such that the objective function contours in the defined optimization problem become vertical or horizontal ellipses or circles, and then the control input is determined at each sampling time as a state feedback that minimizes the infinite horizon objective function by solving some linear matrix inequalities. The simulation results show that the number of iterations to solve the problem at each sampling interval is reduced while the control performance does not alter noticeably.
Augmented Lagrangian method for optimal laser control
NASA Astrophysics Data System (ADS)
Shen, Hai; Dussault, Jean-Pierre; Bandrauk, Andre D.
1994-06-01
We use penalty methods derived from Augmented Lagrangians coupled with unitary exponential operator methods to solve the optimal control problem for molecular time-dependent Schodinger equations involving laser pulse excitations. A stable numerical algorithm is presented which propagates directly from initial states to given final states. Results are reported for an analytically solvable model for the complete inversion of a three-state system.
Fast prediction of transient stability margin in systems with SVC control and HVDC link
Tso, S.K.; Cheung, S.P.
1995-12-31
Recent developments in transient stability margin (TSM) prediction using the energy-based direct method have included excitation controllers, power system stabilizers (PSSs) and/or static VAr compensators (SVCs). These devices can be represented in their detailed dynamic models to desired degrees of complexity while the proposed extended equal-area criterion can still be effectively applied. This paper describes further development of this technique to incorporate an HVDC transmission into the test network for TSM prediction. The method is examined with a practical 17-machine power network representing the South China/Hong Kong system. An SVC control scheme is also installed in a weak bus of the test network for transient stability improvement. The results obtained show that there is no sacrifice in accuracy, speed or reliability of the TSM method with SVC and HVDC realistically incorporated into the study.
Critical evaluation of in silico methods for prediction of coiled-coil domains in proteins.
Li, Chen; Ching Han Chang, Catherine; Nagel, Jeremy; Porebski, Benjamin T; Hayashida, Morihiro; Akutsu, Tatsuya; Song, Jiangning; Buckle, Ashley M
2016-03-01
Coiled-coils refer to a bundle of helices coiled together like strands of a rope. It has been estimated that nearly 3% of protein-encoding regions of genes harbour coiled-coil domains (CCDs). Experimental studies have confirmed that CCDs play a fundamental role in subcellular infrastructure and controlling trafficking of eukaryotic cells. Given the importance of coiled-coils, multiple bioinformatics tools have been developed to facilitate the systematic and high-throughput prediction of CCDs in proteins. In this article, we review and compare 12 sequence-based bioinformatics approaches and tools for coiled-coil prediction. These approaches can be categorized into two classes: coiled-coil detection and coiled-coil oligomeric state prediction. We evaluated and compared these methods in terms of their input/output, algorithm, prediction performance, validation methods and software utility. All the independent testing data sets are available at http://lightning.med.monash.edu/coiledcoil/. In addition, we conducted a case study of nine human polyglutamine (PolyQ) disease-related proteins and predicted CCDs and oligomeric states using various predictors. Prediction results for CCDs were highly variable among different predictors. Only two peptides from two proteins were confirmed to be CCDs by majority voting. Both domains were predicted to form dimeric coiled-coils using oligomeric state prediction. We anticipate that this comprehensive analysis will be an insightful resource for structural biologists with limited prior experience in bioinformatics tools, and for bioinformaticians who are interested in designing novel approaches for coiled-coil and its oligomeric state prediction.
NASA Astrophysics Data System (ADS)
Fei, H. Z.; Zheng, G. T.; Liu, Z. G.
2006-09-01
We report the results of a recent study for the active vibration isolation with whole-spacecraft vibration isolation as an application background into which three parts are divided: (i) energy source control, (ii) nonlinearity and time delay, (iii) implementation and experiment. This paper is the first in this three-part series report, which presents theoretical and experimental investigations into pressure tracking system for energy source control of the isolator. Considering the special environment of the rocket and expected characteristics of actuators, where the isolator will be arranged between the rocket and the spacecraft, pneumatic actuator is proposed to realize the active isolation control. In order to improve the dynamic characteristics of the pneumatic isolator, a cascade control algorithm with double loop structure and predictive control algorithm for pressure tracking control of the inner loop are proposed. In the current paper, a pressure tracking control system using model predictive control (MPC) is studied first. A pneumatic model around pressure work point is built firstly by simplifying the flow equation of valve's orifices and pressure differential equation of the chambers. With this model, an MPC algorithm in the state space is developed, and problems including control parameter choice and command horizon generator are discussed in detail. In addition, by adding model error correction loop and velocity compensation feedback, effects of model uncertainty and volume variation of chambers are reduced greatly. Thus with this design, the real-time pressure tracking can be guaranteed, and so that the active control system can work at higher frequency range.
Predicting lattice thermal conductivity with help from ab initio methods
NASA Astrophysics Data System (ADS)
Broido, David
2015-03-01
The lattice thermal conductivity is a fundamental transport parameter that determines the utility a material for specific thermal management applications. Materials with low thermal conductivity find applicability in thermoelectric cooling and energy harvesting. High thermal conductivity materials are urgently needed to help address the ever-growing heat dissipation problem in microelectronic devices. Predictive computational approaches can provide critical guidance in the search and development of new materials for such applications. Ab initio methods for calculating lattice thermal conductivity have demonstrated predictive capability, but while they are becoming increasingly efficient, they are still computationally expensive particularly for complex crystals with large unit cells . In this talk, I will review our work on first principles phonon transport for which the intrinsic lattice thermal conductivity is limited only by phonon-phonon scattering arising from anharmonicity. I will examine use of the phase space for anharmonic phonon scattering and the Grüneisen parameters as measures of the thermal conductivities for a range of materials and compare these to the widely used guidelines stemming from the theory of Liebfried and Schölmann. This research was supported primarily by the NSF under Grant CBET-1402949, and by the S3TEC, an Energy Frontier Research Center funded by the US DOE, office of Basic Energy Sciences under Award No. DE-SC0001299.
Methods and Techniques for Risk Prediction of Space Shuttle Upgrades
NASA Technical Reports Server (NTRS)
Hoffman, Chad R.; Pugh, Rich; Safie, Fayssal
1998-01-01
Since the Space Shuttle Accident in 1986, NASA has been trying to incorporate probabilistic risk assessment (PRA) in decisions concerning the Space Shuttle and other NASA projects. One major study NASA is currently conducting is in the PRA area in establishing an overall risk model for the Space Shuttle System. The model is intended to provide a tool to predict the Shuttle risk and to perform sensitivity analyses and trade studies including evaluation of upgrades. Marshall Space Flight Center (MSFC) and its prime contractors including Pratt and Whitney (P&W) are part of the NASA team conducting the PRA study. MSFC responsibility involves modeling the External Tank (ET), the Solid Rocket Booster (SRB), the Reusable Solid Rocket Motor (RSRM), and the Space Shuttle Main Engine (SSME). A major challenge that faced the PRA team is modeling the shuttle upgrades. This mainly includes the P&W High Pressure Fuel Turbopump (HPFTP) and the High Pressure Oxidizer Turbopump (HPOTP). The purpose of this paper is to discuss the various methods and techniques used for predicting the risk of the P&W redesigned HPFTP and HPOTP.
Prediction of forces and moments for hypersonic flight vehicle control effectors
NASA Technical Reports Server (NTRS)
Maughmer, Mark D.; Long, Lyle N.; Pagano, Peter J.
1991-01-01
Developing methods of predicting flight control forces and moments for hypersonic vehicles, included a preliminary assessment of subsonic/supersonic panel methods and hypersonic local flow inclination methods for such predictions. While these findings clearly indicate the usefulness of such methods for conceptual design activities, deficiencies exist in some areas. Thus, a second phase of research was proposed in which a better understanding is sought for the reasons of the successes and failures of the methods considered, particularly for the cases at hypersonic Mach numbers. To obtain this additional understanding, a more careful study of the results obtained relative to the methods used was undertaken. In addition, where appropriate and necessary, a more complete modeling of the flow was performed using well proven methods of computational fluid dynamics. As a result, assessments will be made which are more quantitative than those of phase 1 regarding the uncertainty involved in the prediction of the aerodynamic derivatives. In addition, with improved understanding, it is anticipated that improvements resulting in better accuracy will be made to the simple force and moment prediction.
New method for prediction of shale gas content in continental shale formation using well logs
NASA Astrophysics Data System (ADS)
Li, Sheng-Jie; Cui, Zhe; Jiang, Zhen-Xue; Shao, Yu; Liao, Wei; Li, Li
2016-06-01
Shale needs to contain a sufficient amount of gas to make it viable for exploitation. The continental heterogeneous shale formation in the Yan-chang (YC) area is investigated by firstly measuring the shale gas content in a laboratory and then investigating use of a theoretical prediction model. Key factors controlling the shale gas content are determined, and a prediction model for free gas content is established according to the equation of gas state and a new petrophysical volume model. Application of the Langmuir volume constant and pressure constant obtained from results of adsorption isotherms is found to be limited because these constants are greatly affected by experimental temperature and pressures. Therefore, using measurements of adsorption isotherms and thermodynamic theory, the influence of temperature, total organic carbon (TOC), and mineralogy on Langmuir volume constants and pressure constants are investigated in detail. A prediction model for the Langmuir pressure constant with a correction of temperatures is then established, and a prediction model for the Langmuir volume constant with correction of temperature, TOC, and quartz contents is also proposed. Using these corrected Langmuir constants, application of the Langmuir model determined using experimental adsorption isotherms is extrapolated to reservoir temperature, pressure, and lithological conditions, and a method for the prediction of shale gas content using well logs is established. Finally, this method is successfully applied to predict the shale gas content of the continental shale formation in the YC area, and practical application is shown to deliver good results with high precision.
Methods for evaluating the predictive accuracy of structural dynamic models
NASA Technical Reports Server (NTRS)
Hasselman, T. K.; Chrostowski, Jon D.
1990-01-01
Uncertainty of frequency response using the fuzzy set method and on-orbit response prediction using laboratory test data to refine an analytical model are emphasized with respect to large space structures. Two aspects of the fuzzy set approach were investigated relative to its application to large structural dynamics problems: (1) minimizing the number of parameters involved in computing possible intervals; and (2) the treatment of extrema which may occur in the parameter space enclosed by all possible combinations of the important parameters of the model. Extensive printer graphics were added to the SSID code to help facilitate model verification, and an application of this code to the LaRC Ten Bay Truss is included in the appendix to illustrate this graphics capability.
Development of methods to predict agglomeration and disposition in FBCs
Mann, M.D.; Henderson, A.K.; Swanson, M.K.; Erickson, T.A.
1995-11-01
This 3-year, multiclient program is providing the information needed to determine the behavior of inorganic components in FBC units using advanced methods of analysis coupled with bench-scale combustion experiments. The major objectives of the program are as follows: (1) To develop further our advanced ash and deposit characterization techniques to quantify the effects of the liquid-phase components in terms of agglomerate formation and ash deposits, (2) To determine the mechanisms of inorganic transformations that lead to bed agglomeration and ash deposition in FBC systems, and (3) To develop a better means to predict the behavior of inorganic components as a function of coal composition, bed material characteristics, and combustion conditions.
Alternative Asbestos Control Method (AACM) Research
This presentation describes the status to date of the Alternative Asbestos Control Method research, which is intended as a possible alternative technology for use in the demolition of buildings that contain asbestos and are covered under the regulatory requirements of the Asbesto...
Adaptive Accommodation Control Method for Complex Assembly
NASA Astrophysics Data System (ADS)
Kang, Sungchul; Kim, Munsang; Park, Shinsuk
Robotic systems have been used to automate assembly tasks in manufacturing and in teleoperation. Conventional robotic systems, however, have been ineffective in controlling contact force in multiple contact states of complex assemblythat involves interactions between complex-shaped parts. Unlike robots, humans excel at complex assembly tasks by utilizing their intrinsic impedance, forces and torque sensation, and tactile contact clues. By examining the human behavior in assembling complex parts, this study proposes a novel geometry-independent control method for robotic assembly using adaptive accommodation (or damping) algorithm. Two important conditions for complex assembly, target approachability and bounded contact force, can be met by the proposed control scheme. It generates target approachable motion that leads the object to move closer to a desired target position, while contact force is kept under a predetermined value. Experimental results from complex assembly tests have confirmed the feasibility and applicability of the proposed method.
Survey on large scale system control methods
NASA Technical Reports Server (NTRS)
Mercadal, Mathieu
1987-01-01
The problem inherent to large scale systems such as power network, communication network and economic or ecological systems were studied. The increase in size and flexibility of future spacecraft has put those dynamical systems into the category of large scale systems, and tools specific to the class of large systems are being sought to design control systems that can guarantee more stability and better performance. Among several survey papers, reference was found to a thorough investigation on decentralized control methods. Especially helpful was the classification made of the different existing approaches to deal with large scale systems. A very similar classification is used, even though the papers surveyed are somehow different from the ones reviewed in other papers. Special attention is brought to the applicability of the existing methods to controlling large mechanical systems like large space structures. Some recent developments are added to this survey.
New technologies in predicting, preventing and controlling emerging infectious diseases.
Christaki, Eirini
2015-01-01
Surveillance of emerging infectious diseases is vital for the early identification of public health threats. Emergence of novel infections is linked to human factors such as population density, travel and trade and ecological factors like climate change and agricultural practices. A wealth of new technologies is becoming increasingly available for the rapid molecular identification of pathogens but also for the more accurate monitoring of infectious disease activity. Web-based surveillance tools and epidemic intelligence methods, used by all major public health institutions, are intended to facilitate risk assessment and timely outbreak detection. In this review, we present new methods for regional and global infectious disease surveillance and advances in epidemic modeling aimed to predict and prevent future infectious diseases threats.
New technologies in predicting, preventing and controlling emerging infectious diseases
Christaki, Eirini
2015-01-01
Surveillance of emerging infectious diseases is vital for the early identification of public health threats. Emergence of novel infections is linked to human factors such as population density, travel and trade and ecological factors like climate change and agricultural practices. A wealth of new technologies is becoming increasingly available for the rapid molecular identification of pathogens but also for the more accurate monitoring of infectious disease activity. Web-based surveillance tools and epidemic intelligence methods, used by all major public health institutions, are intended to facilitate risk assessment and timely outbreak detection. In this review, we present new methods for regional and global infectious disease surveillance and advances in epidemic modeling aimed to predict and prevent future infectious diseases threats. PMID:26068569
NASA Astrophysics Data System (ADS)
Li, Huiping; Shi, Yang
2013-04-01
This article investigates a class of constrained nonlinear networked control systems (NCSs) subject to external disturbances, input and state constraints and network-induced constraints. From a practical perspective, the network-induced constraints considered include the time delays and packet dropouts on both the sensor-to-controller (S-C) channel and the controller-to-actuator (C-A) channel simultaneously. The min-max model predictive control method is proposed to design the control packets by incorporating the external disturbances into the optimisation problem. Moreover, the input-to-state practical stability of the resulting nonlinear NCS is established by constructing a novel Lyapunov function. Finally, the simulation results and the comparison studies are presented to demonstrate the effectiveness and improvement of the proposed method.
Birth control method should suit your lifestyle.
1986-01-01
In choosing a method of birth control, effectiveness and safety are the key considerations. Yet, one's decisions about contraception also must be balanced against important considerations regarding children and family. Many other factors play a role in the choice. Women who live in rural areas where medical services are not easily available may not want to use oral contraceptives (OCs) or IUDs because both carry the risk of serious complications. Costs of the contraceptive method and of related medical examinations are a consideration for women in some financial circumstances. A partner's attitude also is crucial to selecting a birth control method. Methods such as condoms, withdrawal, spermicides, and diaphragm require his cooperation if they are to be effective. Health problems which might be worsened by a particular type of contraception require the advice of a physician. The physician should take a woman's health history and sexual pattern into account when prescribing a birth control technique. The contraceptive decision should be based on whether a woman plans to have children eventually. A woman who has several partners may find condoms, foams, and diaphragms inconvenient, even though they help prevention infection, but she should not use in IUD, which is convenient but carries a high risk of infection for women who have more than 1 sexual partner. OCs might be the best choice under these circumstances. A chart identifies the relative advantages and disadvantages of contraceptive methods.
Actively controlled vibration welding system and method
Cai, Wayne W.; Kang, Bongsu; Tan, Chin-An
2013-04-02
A vibration welding system includes a controller, welding horn, an active material element, and anvil assembly. The assembly may include an anvil body connected to a back plate and support member. The element, e.g., a piezoelectric stack or shape memory alloy, is positioned with respect to the assembly. The horn vibrates in a desirable first direction to form a weld on a work piece. The element controls any vibrations in a second direction by applying calibrated response to the anvil body in the second direction. A method for controlling undesirable vibrations in the system includes positioning the element with respect to the anvil assembly, connecting the anvil body to the support member through the back plate, vibrating the horn in a desirable first direction, and transmitting an input signal to the element to control vibration in an undesirable second direction.
Inlet Flow Control and Prediction Technologies for Embedded Propulsion Systems
NASA Technical Reports Server (NTRS)
McMillan, Michelle L.; Gissen, Abe; Vukasinovic, Bojan; Lakebrink, Matthew T.; Glezer, Ari; Mani, Mori; Mace, James
2010-01-01
Fail-safe inlet flow control may enable high-speed cruise efficiency, low noise signature, and reduced fuel-burn goals for hybrid wing-body aircraft. The objectives of this program are to develop flow control and prediction methodologies for boundary-layer ingesting (BLI) inlets used in these aircraft. This report covers the second of a three year program. The approach integrates experiments and numerical simulations. Both passive and active flow-control devices were tested in a small-scale wind tunnel. Hybrid actuation approaches, combining a passive microvane and active synthetic jet, were tested in various geometric arrangements. Detailed flow measurements were taken to provide insight into the flow physics. Results of the numerical simulations were correlated against experimental data. The sensitivity of results to grid resolution and turbulence models was examined. Aerodynamic benefits from microvanes and microramps were assessed when installed in an offset BLI inlet. Benefits were quantified in terms of recovery and distortion changes. Microvanes were more effective than microramps at improving recovery and distortion.
Prediction of forces and moments for hypersonic flight vehicle control effectors
NASA Technical Reports Server (NTRS)
Maughmer, Mark D.; Long, Lyle N.; Guilmette, Neal; Pagano, Peter
1993-01-01
This research project includes three distinct phases. For completeness, all three phases of the work are briefly described in this report. The goal was to develop methods of predicting flight control forces and moments for hypersonic vehicles which could be used in a preliminary design environment. The first phase included a preliminary assessment of subsonic/supersonic panel methods and hypersonic local flow inclination methods for such predictions. While these findings clearly indicated the usefulness of such methods for conceptual design activities, deficiencies exist in some areas. Thus, a second phase of research was conducted in which a better understanding was sought for the reasons behind the successes and failures of the methods considered, particularly for the cases at hypersonic Mach numbers. This second phase involved using computational fluid dynamics methods to examine the flow fields in detail. Through these detailed predictions, the deficiencies in the simple surface inclination methods were determined. In the third phase of this work, an improvement to the surface inclination methods was developed. This used a novel method for including viscous effects by modifying the geometry to include the viscous/shock layer.
NASA Astrophysics Data System (ADS)
Barlow, Jonathan S.
A direct method to design data-based model predictive controllers is presented. The design method uses system identification techniques to identify model predictive controller gains directly from a set of excitation input and disturbance corrupted output. The design is direct in that the controller gains can be designed directly from input and disturbance corrupted output data without an intermediate identification step. The direct design is simpler than previous two-step designs and reduces computation time for the design of the controller. The direct design also enables an adaptive implementation capable of identifying controller gains online. The direct data-based controllers can be used for vibration suppression, disturbance rejection, tracking and is applied to structures, robot swarms and aircraft. For the cases of vibration suppression and disturbance rejection, the data-based controller has the advantage that any disturbances present in the design data are automatically rejected without needing to know the details of the disturbances. For the case of robot swarms, extensions are made for formation control and obstacle avoidance, and the controller can be implemented as a decentralized controller in real time and in parallel on individual vehicles with communication limited to past input and past output data. A formulation for improving the robustness of the controller to parametric variations is also developed. Finally, the adaptive implementation is shown to be useful for the control of linear time-varying systems and has been successfully implemented to control a linear time-varying model of a Cruise Efficient Short Take-Off and Landing (CESTOL) type aircraft.
A new methane control and prediction software suite for longwall mines
NASA Astrophysics Data System (ADS)
Dougherty, Heather N.; Özgen Karacan, C.
2011-09-01
This paper presents technical and application aspects of a new software suite, MCP (Methane Control and Prediction), developed for addressing some of the methane and methane control issues in longwall coal mines. The software suite consists of dynamic link library (DLL) extensions to MS-Access TM, written in C++. In order to create the DLLs, various statistical, mathematical approaches, prediction and classification artificial neural network (ANN) methods were used. The current version of MCP suite (version 1.3) discussed in this paper has four separate modules that (a) predict the dynamic elastic properties of coal-measure rocks, (b) predict ventilation emissions from longwall mines, (c) determine the type of degasification system that needs to be utilized for given situations and (d) assess the production performance of gob gas ventholes that are used to extract methane from longwall gobs. These modules can be used with the data from basic logs, mining, longwall panel, productivity, and coal bed characteristics. The applications of these modules separately or in combination for methane capture and control related problems will help improve the safety of mines. The software suite's version 1.3 is discussed in this paper. Currently, it's new version 2.0 is available and can be downloaded from http://www.cdc.gov/niosh/mining/products/product180.htm free of charge. The models discussed in this paper can be found under "ancillary models" and under "methane prediction models" for specific U.S. conditions in the new version.
System and method for controlling remote devices
Carrender, Curtis Lee; Gilbert, Ronald W.; Scott, Jeff W.; Clark, David A.
2006-02-07
A system and method for controlling remote devices utilizing a radio frequency identification (RFID) tag device having a control circuit adapted to render the tag device, and associated objects, permanently inoperable in response to radio-frequency control signals. The control circuit is configured to receive the control signals that can include an enable signal, and in response thereto enable an associated object, such as a weapon; and in response to a disable signal, to disable the tag itself, or, if desired, to disable the associated weapon or both the device and the weapon. Permanent disabling of the tag can be accomplished by several methods, including, but not limited to, fusing a fusable link, breaking an electrically conductive path, permanently altering the modulation or backscattering characteristics of the antenna circuit, and permanently erasing an associated memory. In this manner, tags in the possession of unauthorized employees can be remotely disabled, and weapons lost on a battlefield can be easily tracked and enabled or disabled automatically or at will.
Control rod housing alignment and repair method
Dixon, R.C.; Deaver, G.A.; Punches, J.R.; Singleton, G.E.; Erbes, J.G.; Offer, H.P.
1992-04-07
This patent describes a method for underwater welding of a control rod drive housing inserted through a stub tube to maintain requisite alignment and elevation of the top of the control rod drive housing to an overlying and corresponding aperture in a core plate as measured by an alignment device which determines the relative elevation and angularity with respect to the aperture. It comprises providing a welding cylinder dependent from the alignment device such that the elevation of the top of the welding cylinder is in a fixed relationship to the alignment device and is gas-proof; pressurizing the welding cylinder with inert welding gas sufficient to maintain the interior of the welding cylinder dry; lowering the welding cylinder through the aperture in the core plate by depending the cylinder with respect to the alignment device, the lowering including lowering through and adjusting the elevation relationship of the welding cylinder to the alignment device such that when the alignment device is in position to measure the elevation and angularity of the new control rod drive housing, the lower distal end of the welding cylinder extends below the upper periphery of the stub where welding is to occur; inserting a new control rod drive housing through the stub tube and positioning the control rod drive housing to a predetermined relationship to the anticipated final position of the control rod drive housing; providing welding implements transversely rotatably mounted interior of the welding cylinder relative to the alignment device such that the welding implements may be accurately positioned for dispensing weldment around the periphery of the top of the stub tube and at the side of the control rod drive housing; measuring the elevation and angularity of the control rod drive housing; and dispensing weldment along the top of the stub tube and at the side of the control rod drive housing.
An analytical method for predicting postwildfire peak discharges
Moody, John A.
2012-01-01
An analytical method presented here that predicts postwildfire peak discharge was developed from analysis of paired rainfall and runoff measurements collected from selected burned basins. Data were collected from 19 mountainous basins burned by eight wildfires in different hydroclimatic regimes in the western United States (California, Colorado, Nevada, New Mexico, and South Dakota). Most of the data were collected for the year of the wildfire and for 3 to 4 years after the wildfire. These data provide some estimate of the changes with time of postwildfire peak discharges, which are known to be transient but have received little documentation. The only required inputs for the analytical method are the burned area and a quantitative measure of soil burn severity (change in the normalized burn ratio), which is derived from Landsat reflectance data and is available from either the U.S. Department of Agriculture Forest Service or the U.S. Geological Survey. The method predicts the postwildfire peak discharge per unit burned area for the year of a wildfire, the first year after a wildfire, and the second year after a wildfire. It can be used at three levels of information depending on the data available to the user; each subsequent level requires either more data or more processing of the data. Level 1 requires only the burned area. Level 2 requires the burned area and the basin average value of the change in the normalized burn ratio. Level 3 requires the burned area and the calculation of the hydraulic functional connectivity, which is a variable that incorporates the sequence of soil burn severity along hillslope flow paths within the burned basin. Measurements indicate that the unit peak discharge response increases abruptly when the 30-minute maximum rainfall intensity is greater than about 5 millimeters per hour (0.2 inches per hour). This threshold may relate to a change in runoff generation from saturated-excess to infiltration-excess overland flow. The
Numerical modelling methods for predicting antenna performance on aircraft
NASA Astrophysics Data System (ADS)
Kubina, S. J.
1983-09-01
Typical case studies that involve the application of Moment Methods to the prediction of the radiation characteristics of antennas in the HF frequency band are examined. The examples consist of the analysis of a shorted transmission line HF antenna on a CHSS-2/Sea King helicopter, wire antennas on the CP-140/Aurora patrol aircraft and a long dipole antenna on the Space Shuttle Orbiter spacecraft. In each of these cases the guidelines for antenna modeling by the use of the program called the Numerical Electromagnetic Code are progressively applied and results are compared to measurements made by the use of scale-model techniques. In complex examples of this type comparisons based on individual radiation patterns are insufficient for the validation of computer models. A volumetric method of radiation pattern comparison is used based on criteria that result from pattern integration and that are related to communication system performance. This is supplemented by hidden-surface displays of an entire set of conical radiation patterns resulting from measurements and computations. Antenna coupling considerations are discussed for the case of the dual HF installation on the CP-140/Aurora aircraft.
Study of improved methods for predicting chemical equilibria
Lenz, T.G.; Vaughan, J.D.
1992-06-01
The objective of our research has been to develop computational methods that have the capability of accurately predicting equilibrium constants of typical organic reactions in gas and liquid solution phases. We have chosen Diels-Alder reactions as prototypic systems for the investigation, chiefly because there are an adequate number of reported equilibrium constants for the candidate reactions in both gas and solution phases, which data provides a suitable basis for tests of the developed computational methods. Our approach has been to calculate the standard enthalpies of formation ({Delta}H{sub f}{sup 0}) at 298.15K and the standard thermodynamic functions (S{sup 0}, Cp{sup 0}, and (H{sup 0}-H{sub 0}{sup 0})/T) for a range of temperatures for reactants and products, and from these properties to calculate standard enthalpies, entropies, Gibbs free energies, and equilibrium constants ({Delta}H{sub T}{sup 0}, {Delta}S{sub T}{sup 0}, and K{sub a}) at various temperatures for the chosen reaction.
StructBoost: Boosting Methods for Predicting Structured Output Variables.
Chunhua Shen; Guosheng Lin; van den Hengel, Anton
2014-10-01
Boosting is a method for learning a single accurate predictor by linearly combining a set of less accurate weak learners. Recently, structured learning has found many applications in computer vision. Inspired by structured support vector machines (SSVM), here we propose a new boosting algorithm for structured output prediction, which we refer to as StructBoost. StructBoost supports nonlinear structured learning by combining a set of weak structured learners. As SSVM generalizes SVM, our StructBoost generalizes standard boosting approaches such as AdaBoost, or LPBoost to structured learning. The resulting optimization problem of StructBoost is more challenging than SSVM in the sense that it may involve exponentially many variables and constraints. In contrast, for SSVM one usually has an exponential number of constraints and a cutting-plane method is used. In order to efficiently solve StructBoost, we formulate an equivalent 1-slack formulation and solve it using a combination of cutting planes and column generation. We show the versatility and usefulness of StructBoost on a range of problems such as optimizing the tree loss for hierarchical multi-class classification, optimizing the Pascal overlap criterion for robust visual tracking and learning conditional random field parameters for image segmentation.
Model Predictive Optimal Control of a Time-Delay Distributed-Parameter Systems
NASA Technical Reports Server (NTRS)
Nguyen, Nhan
2006-01-01
This paper presents an optimal control method for a class of distributed-parameter systems governed by first order, quasilinear hyperbolic partial differential equations that arise in many physical systems. Such systems are characterized by time delays since information is transported from one state to another by wave propagation. A general closed-loop hyperbolic transport model is controlled by a boundary control embedded in a periodic boundary condition. The boundary control is subject to a nonlinear differential equation constraint that models actuator dynamics of the system. The hyperbolic equation is thus coupled with the ordinary differential equation via the boundary condition. Optimality of this coupled system is investigated using variational principles to seek an adjoint formulation of the optimal control problem. The results are then applied to implement a model predictive control design for a wind tunnel to eliminate a transport delay effect that causes a poor Mach number regulation.
Control methods for localization of nonlinear waves.
Porubov, Alexey; Andrievsky, Boris
2017-03-06
A general form of a distributed feedback control algorithm based on the speed-gradient method is developed. The goal of the control is to achieve nonlinear wave localization. It is shown by example of the sine-Gordon equation that the generation and further stable propagation of a localized wave solution of a single nonlinear partial differential equation may be obtained independently of the initial conditions. The developed algorithm is extended to coupled nonlinear partial differential equations to obtain consistent localized wave solutions at rather arbitrary initial conditions.This article is part of the themed issue 'Horizons of cybernetical physics'.
Control methods for localization of nonlinear waves
NASA Astrophysics Data System (ADS)
Porubov, Alexey; Andrievsky, Boris
2017-03-01
A general form of a distributed feedback control algorithm based on the speed-gradient method is developed. The goal of the control is to achieve nonlinear wave localization. It is shown by example of the sine-Gordon equation that the generation and further stable propagation of a localized wave solution of a single nonlinear partial differential equation may be obtained independently of the initial conditions. The developed algorithm is extended to coupled nonlinear partial differential equations to obtain consistent localized wave solutions at rather arbitrary initial conditions. This article is part of the themed issue 'Horizons of cybernetical physics'.
Investigation of the Multiple Method Adaptive Control (MMAC) method for flight control systems
NASA Technical Reports Server (NTRS)
Athans, M.; Baram, Y.; Castanon, D.; Dunn, K. P.; Green, C. S.; Lee, W. H.; Sandell, N. R., Jr.; Willsky, A. S.
1979-01-01
The stochastic adaptive control of the NASA F-8C digital-fly-by-wire aircraft using the multiple model adaptive control (MMAC) method is presented. The selection of the performance criteria for the lateral and the longitudinal dynamics, the design of the Kalman filters for different operating conditions, the identification algorithm associated with the MMAC method, the control system design, and simulation results obtained using the real time simulator of the F-8 aircraft at the NASA Langley Research Center are discussed.
Synthesis Methods for Robust Passification and Control
NASA Technical Reports Server (NTRS)
Kelkar, Atul G.; Joshi, Suresh M. (Technical Monitor)
2000-01-01
The research effort under this cooperative agreement has been essentially the continuation of the work from previous grants. The ongoing work has primarily focused on developing passivity-based control techniques for Linear Time-Invariant (LTI) systems. During this period, there has been a significant progress made in the area of passivity-based control of LTI systems and some preliminary results have also been obtained for nonlinear systems, as well. The prior work has addressed optimal control design for inherently passive as well as non- passive linear systems. For exploiting the robustness characteristics of passivity-based controllers the passification methodology was developed for LTI systems that are not inherently passive. Various methods of passification were first proposed in and further developed. The robustness of passification was addressed for multi-input multi-output (MIMO) systems for certain classes of uncertainties using frequency-domain methods. For MIMO systems, a state-space approach using Linear Matrix Inequality (LMI)-based formulation was presented, for passification of non-passive LTI systems. An LMI-based robust passification technique was presented for systems with redundant actuators and sensors. The redundancy in actuators and sensors was used effectively for robust passification using the LMI formulation. The passification was designed to be robust to an interval-type uncertainties in system parameters. The passification techniques were used to design a robust controller for Benchmark Active Control Technology wing under parametric uncertainties. The results on passive nonlinear systems, however, are very limited to date. Our recent work in this area was presented, wherein some stability results were obtained for passive nonlinear systems that are affine in control.
A predictive controller based on transient simulations for controlling a power plant
NASA Astrophysics Data System (ADS)
Svingen, B.
2016-11-01
A predictive governor based on an embedded, online transient simulation was commissioned at Tonstad power plant in Norway in December 2014. This governor controls each individual turbine governor by feeding them modified setpoints. Tonstad power plant consists of 4 × 160 MW + 1 × 320 MW high head Francis turbines. With a yearly production of 3888 GWh, it is the largest in Norway. The plant is a typical high head Norwegian plant with very long tunnels and correspondingly active dynamic behaviour. This new governor system continuously simulates the entire plant, and appropriate actions are taken automatically by special algorithms. The simulations are based on the method of characteristics (MOC). The governing system has been in full operational mode since December 19 2014. The testing period also included special acceptance tests to be able to deliver FRR, both on the Nordic grid and on DC cable to Denmark. Although in full operational mode, this system is still a prototype under constant development. It shows a new way of using transient analysis that may become increasingly important in the future with added power from un-regulated sources such as wind, solar and bio.
MacLean, R C
2010-03-01
Epistatic interactions between mutations are thought to play a crucial role in a number of evolutionary processes, including adaptation and sex. Evidence for epistasis is abundant, but tests of general theoretical models that can predict epistasis are lacking. In this study, I test the ability of metabolic control theory to predict epistasis using a novel experimental approach that combines phenotypic and genetic perturbations of enzymes involved in gene expression and protein synthesis in the bacterium Pseudomonas aeruginosa. These experiments provide experimental support for two key predictions of metabolic control theory: (i) epistasis between genes involved in the same pathway is antagonistic; (ii) epistasis becomes increasingly antagonistic as mutational severity increases. Metabolic control theory is a general theory that applies to any set of genes that are involved in the same linear processing chain, not just metabolic pathways, and I argue that this theory is likely to have important implications for predicting epistasis between functionally coupled genes, such as those involved in antibiotic resistance. Finally, this study highlights the fact that phenotypic manipulations of gene activity provide a powerful method for studying epistasis that complements existing genetic methods.
Redesigned Predictive Event-Triggered Controller for Networked Control System With Delays.
Wu, Di; Sun, Xi-Ming; Wen, Changyun; Wang, Wei
2016-10-01
Event-triggered control (ETC) is a control strategy which can effectively reduce communication traffic in control networks. In the case where communication resources are scarce, ETC plays an important role in updating and communicating data. When network-induced delays are involved, two unsynchronized phenomena will appear if the existing ETC strategy, designed for networked control systems (NCSs) free of delays, is adopted. This paper deals with the ETC problem for NCS with delays existing in both sensor-to-controller and controller-to-actuator channels. A new predictive ETC strategy is proposed to solve both unsynchronized problems. It is shown that the stability of the resulting closed-loop system can be guaranteed under such an ETC strategy. Finally, both simulation studies and experimental tests are carried out to illustrate the proposed technique and verify its effectiveness.
Prediction of plantar shear stress distribution by artificial intelligence methods.
Yavuz, Metin; Ocak, Hasan; Hetherington, Vincent J; Davis, Brian L
2009-09-01
Shear forces under the human foot are thought to be responsible for various foot pathologies such as diabetic plantar ulcers and athletic blisters. Frictional shear forces might also play a role in the metatarsalgia observed among hallux valgus (HaV) and rheumatoid arthritis (RA) patients. Due to the absence of commercial devices capable of measuring shear stress distribution, a number of linear models were developed. All of these have met with limited success. This study used nonlinear methods, specifically neural network and fuzzy logic schemes, to predict the distribution of plantar shear forces based on vertical loading parameters. In total, 73 subjects were recruited; 17 had diabetic neuropathy, 14 had HaV, 9 had RA, 11 had frequent foot blisters, and 22 were healthy. A feed-forward neural network (NN) and adaptive neurofuzzy inference system (NFIS) were built. These systems were then applied to a custom-built platform, which collected plantar pressure and shear stress data as subjects walked over the device. The inputs to both models were peak pressure, peak pressure-time integral, and time to peak pressure, and the output was peak resultant shear. Root-mean-square error (RMSE) values were calculated to test the models' accuracy. RMSE/actual shear ratio varied between 0.27 and 0.40 for NN predictions. Similarly, NFIS estimations resulted in a 0.28-0.37 ratio for local peak values in all subject groups. On the other hand, error percentages for global peak shear values were found to be in the range 11.4-44.1. These results indicate that there is no direct relationship between pressure and shear magnitudes. Future research should aim to decrease error levels by introducing shear stress dependent variables into the models.
Wu, Hsin-Yun; Gong, Cihun-Siyong Alex; Lin, Shih-Pin; Chang, Kuang-Yi; Tsou, Mei-Yung; Ting, Chien-Kun
2016-06-01
Patient-controlled epidural analgesia (PCEA) has been applied to reduce postoperative pain in orthopedic surgical patients. Unfortunately, PCEA is occasionally accompanied by nausea and vomiting. The logistic regression (LR) model is widely used to predict vomiting, and recently support vector machines (SVM), a supervised machine learning method, has been used for classification and prediction. Unlike our previous work which compared Artificial Neural Networks (ANNs) with LR, this study uses a SVM-based predictive model to identify patients with high risk of vomiting during PCEA and comparing results with those derived from the LR-based model. From January to March 2007, data from 195 patients undergoing PCEA following orthopedic surgery were applied to develop two predictive models. 75% of the data were randomly selected for training, while the remainder was used for testing to validate predictive performance. The area under curve (AUC) was measured using the Receiver Operating Characteristic curve (ROC). The area under ROC curves of LR and SVM models were 0.734 and 0.929, respectively. A computer-based predictive model can be used to identify those who are at high risk for vomiting after PCEA, allowing for patient-specific therapeutic intervention or the use of alternative analgesic methods.
Effective variable switching point predictive current control for ac low-voltage drives
NASA Astrophysics Data System (ADS)
Stolze, Peter; Karamanakos, Petros; Kennel, Ralph; Manias, Stefanos; Endisch, Christian
2015-07-01
This paper presents an effective model predictive current control scheme for induction machines driven by a three-level neutral point clamped inverter, called variable switching point predictive current control. Despite the fact that direct, enumeration-based model predictive control (MPC) strategies are very popular in the field of power electronics due to their numerous advantages such as design simplicity and straightforward implementation procedure, they carry two major drawbacks. These are the increased computational effort and the high ripples on the controlled variables, resulting in a limited applicability of such methods. The high ripples occur because in direct MPC algorithms the actuating variable can only be changed at the beginning of a sampling interval. A possible remedy for this would be to change the applied control input within the sampling interval, and thus to apply it for a shorter time than one sample. However, since such a solution would lead to an additional overhead which is crucial especially for multilevel inverters, a heuristic preselection of the optimal control action is adopted to keep the computational complexity at bay. Experimental results are provided to verify the potential advantages of the proposed strategy.
CELSS system control: issues, methods, and directions.
Blackwell, C C; Blackwell, A L
1992-01-01
In the general control perspective, the CELSS concept implies a very complex system and presents challenges at every level. These challenges are generated by: (1) the prospect that the system will be inherently unstable, (2) the prospective difficulty of establishing an adequate mathematical model of the system for the purpose of control law synthesis (dimensionality is high, and the dynamics and interactive processes of some of the subsystems are not understood well), (3) assuring control law robustness (assuring that the resulting control law(s) will be effective over the domain of the specified uncertainties), (4) hardware realization of the control law, (5) hardware system robustness ("fault tolerance") and (6) achieving the logistics of the automation (or "management") aspects of the problem. A suggested organization of the problem, a sketch of the issues related to perceived difficulties, a commentary/evaluation of the issues, a review of methods available to address the issues, and a suggested strategy to address the broad CELSS systems control problem are presented.
Predictive functional control for active queue management in congested TCP/IP networks.
Bigdeli, N; Haeri, M
2009-01-01
Predictive functional control (PFC) as a new active queue management (AQM) method in dynamic TCP networks supporting explicit congestion notification (ECN) is proposed. The ability of the controller in handling system delay along with its simplicity and low computational load makes PFC a privileged AQM method in the high speed networks. Besides, considering the disturbance term (which represents model/process mismatches, external disturbances, and existing noise) in the control formulation adds some level of robustness into the PFC-AQM controller. This is an important and desired property in the control of dynamically-varying computer networks. In this paper, the controller is designed based on a small signal linearized fluid-flow model of the TCP/AQM networks. Then, closed-loop transfer function representation of the system is derived to analyze the robustness with respect to the network and controller parameters. The analytical as well as the packet-level ns-2 simulation results show the out-performance of the developed controller for both queue regulation and resource utilization. Fast response, low queue fluctuations (and consequently low delay jitter), high link utilization, good disturbance rejection, scalability, and low packet marking probability are other features of the developed method with respect to other well-known AQM methods such as RED, PI, and REM which are also simulated for comparison.
Predictive wavefront control for Adaptive Optics with arbitrary control loop delays
Poyneer, L A; Veran, J
2007-10-30
We present a modification of the closed-loop state space model for AO control which allows delays that are a non-integer multiple of the system frame rate. We derive the new forms of the Predictive Fourier Control Kalman filters for arbitrary delays and show that they are linear combinations of the whole-frame delay terms. This structure of the controller is independent of the delay. System stability margins and residual error variance both transition gracefully between integer-frame delays.
Modeling a multivariable reactor and on-line model predictive control.
Yu, D W; Yu, D L
2005-10-01
A nonlinear first principle model is developed for a laboratory-scaled multivariable chemical reactor rig in this paper and the on-line model predictive control (MPC) is implemented to the rig. The reactor has three variables-temperature, pH, and dissolved oxygen with nonlinear dynamics-and is therefore used as a pilot system for the biochemical industry. A nonlinear discrete-time model is derived for each of the three output variables and their model parameters are estimated from the real data using an adaptive optimization method. The developed model is used in a nonlinear MPC scheme. An accurate multistep-ahead prediction is obtained for MPC, where the extended Kalman filter is used to estimate system unknown states. The on-line control is implemented and a satisfactory tracking performance is achieved. The MPC is compared with three decentralized PID controllers and the advantage of the nonlinear MPC over the PID is clearly shown.
Implementation of model predictive control for resistive wall mode stabilization on EXTRAP T2R
NASA Astrophysics Data System (ADS)
Setiadi, A. C.; Brunsell, P. R.; Frassinetti, L.
2015-10-01
A model predictive control (MPC) method for stabilization of the resistive wall mode (RWM) in the EXTRAP T2R reversed-field pinch is presented. The system identification technique is used to obtain a linearized empirical model of EXTRAP T2R. MPC employs the model for prediction and computes optimal control inputs that satisfy performance criterion. The use of a linearized form of the model allows for compact formulation of MPC, implemented on a millisecond timescale, that can be used for real-time control. The design allows the user to arbitrarily suppress any selected Fourier mode. The experimental results from EXTRAP T2R show that the designed and implemented MPC successfully stabilizes the RWM.
Numerical Weather Predictions Evaluation Using Spatial Verification Methods
NASA Astrophysics Data System (ADS)
Tegoulias, I.; Pytharoulis, I.; Kotsopoulos, S.; Kartsios, S.; Bampzelis, D.; Karacostas, T.
2014-12-01
During the last years high-resolution numerical weather prediction simulations have been used to examine meteorological events with increased convective activity. Traditional verification methods do not provide the desired level of information to evaluate those high-resolution simulations. To assess those limitations new spatial verification methods have been proposed. In the present study an attempt is made to estimate the ability of the WRF model (WRF -ARW ver3.5.1) to reproduce selected days with high convective activity during the year 2010 using those feature-based verification methods. Three model domains, covering Europe, the Mediterranean Sea and northern Africa (d01), the wider area of Greece (d02) and central Greece - Thessaly region (d03) are used at horizontal grid-spacings of 15km, 5km and 1km respectively. By alternating microphysics (Ferrier, WSM6, Goddard), boundary layer (YSU, MYJ) and cumulus convection (Kain--Fritsch, BMJ) schemes, a set of twelve model setups is obtained. The results of those simulations are evaluated against data obtained using a C-Band (5cm) radar located at the centre of the innermost domain. Spatial characteristics are well captured but with a variable time lag between simulation results and radar data. Acknowledgements: This research is cofinanced by the European Union (European Regional Development Fund) and Greek national funds, through the action "COOPERATION 2011: Partnerships of Production and Research Institutions in Focused Research and Technology Sectors" (contract number 11SYN_8_1088 - DAPHNE) in the framework of the operational programme "Competitiveness and Entrepreneurship" and Regions in Transition (OPC II, NSRF 2007--2013).
Correction factory techniques for improving aerodynamic prediction methods
NASA Technical Reports Server (NTRS)
Giesing, J. P.; Kalman, T. P.; Rodden, W. P.
1976-01-01
A method for correcting discrete element lifting surface theory to reflect given experimental data is presented. Theoretical pressures are modified such that imposed constraints are satisfied while minimizing the changes to the pressures. Several types of correction procedures are presented and correlated; (1) scaling of pressures; (2) scaling of downwash values; and (3) addition of an increment to the downwash that is proportioned to pressure. Some special features are included in these methods and they include: (1) consideration of experimental data from multiple deflection modes, (2) limitation of the amplitudes of the correction factors, and (3) the use of correction factor mode shapes. These methods are correlated for cases involving all three Mach Number ranges using a FORTRAN IV computer program. Subsonically, a wing with an oscillating partial span control surface and a wing with a leading edge droop are presented. Transonically a two-dimensional airfoil with an oscillating flap is considered. Supersonically an arrow wing with and without camber is analyzed. In addition to correction factor methods an investigation is presented dealing with a new simplified transonic modification of the two-dimensional subsonic lifting surface theory. Correlations are presented for an airfoil with an oscillating flap.
Method and apparatus for large motor control
Rose, Chris R.; Nelson, Ronald O.
2003-08-12
Apparatus and method for providing digital signal processing method for controlling the speed and phase of a motor involves inputting a reference signal having a frequency and relative phase indicative of a time based signal; modifying the reference signal to introduce a slew-rate limited portion of each cycle of the reference signal; inputting a feedback signal having a frequency and relative phase indicative of the operation of said motor; modifying the feedback signal to introduce a slew-rate limited portion of each cycle of the feedback signal; analyzing the modified reference signal and the modified feedback signal to determine the frequency of the modified reference signal and of the modified feedback signal and said relative phase between said modified reference signal and said modified feedback signal; and outputting control signals to the motor for adjusting said speed and phase of the motor based on the frequency determination and determination of the relative phase.
Method and apparatus for controlling fluid flow
Miller, J.R.
1980-06-27
A method and apparatus for precisely controlling the rate (and hence amount) of fluid flow are given. The controlled flow rate is finely adjustable, can be extremely small (on the order of microliter-atmospheres per second), can be adjusted to zero (flow stopped), and is stable to better than 1% with time. The dead volume of the valve can be made arbitrarily small, in fact essentially zero. The valve employs no wearing mechanical parts (including springs, stems, or seals). The valve is finely adjustable, has a flow rate dynamic range of many decades, can be made compatible with any fluid, and is suitable for incorporation into an open or closed loop servo-control system.
New method of control of tooth whitening
NASA Astrophysics Data System (ADS)
Angelov, I.; Mantareva, V.; Gisbrecht, A.; Valkanov, S.; Uzunov, Tz.
2010-10-01
New methods of control of tooth bleaching stages through simultaneous measurements of a reflected light and a fluorescence signal are proposed. It is shown that the bleaching process leads to significant changes in the intensity of a scattered signal and also in the shape and intensity of the fluorescence spectra. Experimental data illustrate that the bleaching process causes essential changes in the teeth discoloration in short time as 8-10 min from the beginning of the application procedure. The continuation of the treatment is not necessary moreover the probability of the enamel destroy increases considerably. The proposed optical back control of tooth surface is a base for development of a practical set up to control the duration of the bleaching procedure.
Prediction of forces and moments for flight vehicle control effectors: Workplan
NASA Technical Reports Server (NTRS)
Maughmer, Mark D.
1989-01-01
Two research activities directed at hypersonic vehicle configurations are currently underway. The first involves the validation of a number of classical local surface inclination methods commonly employed in preliminary design studies of hypersonic flight vehicles. Unlike studies aimed at validating such methods for predicting overall vehicle aerodynamics, this effort emphasizes validating the prediction of forces and moments for flight control studies. Specifically, several vehicle configurations for which experimental or flight-test data are available are being examined. By comparing the theoretical predictions with these data, the strengths and weaknesses of the local surface inclination methods can be ascertained and possible improvements suggested. The second research effort, of significance to control during take-off and landing of most proposed hypersonic vehicle configurations, is aimed at determining the change due to ground effect in control effectiveness of highly swept delta planforms. Central to this research is the development of a vortex-lattice computer program which incorporates an unforced trailing vortex sheet and an image ground plane. With this program, the change in pitching moment of the basic vehicle due to ground proximity, and whether or not there is sufficient control power available to trim, can be determined. In addition to the current work, two different research directions are suggested for future study. The first is aimed at developing an interactive computer program to assist the flight controls engineer in determining the forces and moments generated by different types of control effectors that might be used on hypersonic vehicles. The first phase of this work would deal in the subsonic portion of the flight envelope, while later efforts would explore the supersonic/hypersonic flight regimes. The second proposed research direction would explore methods for determining the aerodynamic trim drag of a generic hypersonic flight vehicle
Advanced Train and Traffic Control Based on Prediction of Train Movement
NASA Astrophysics Data System (ADS)
Hiraguri, Shigeto; Hirao, Yuji; Watanabe, Ikuo; Tomii, Norio; Hase, Shinichi
Trains are often forced to decelerate or stop between stations on commuter lines due to the delay of the preceding train. If a train stops between stations, both the travel time and the interval between trains will increase. This situation has an adverse effect on energy consumption. To solve this problem, we propose a new train control method based on the prediction of train movement and data communications between railway sub-systems. Computer simulations are carried out to verify the effect of the proposed method. As a result, it has been proved that the new method reduces the train stopping time between stations and the electric energy consumption at substations.
Methods and kits for predicting a response to an erythropoietic agent
Merchant, Michael L.; Klein, Jon B.; Brier, Michael E.; Gaweda, Adam E.
2015-06-16
Methods for predicting a response to an erythropoietic agent in a subject include providing a biological sample from the subject, and determining an amount in the sample of at least one peptide selected from the group consisting of SEQ ID NOS: 1-17. If there is a measurable difference in the amount of the at least one peptide in the sample, when compared to a control level of the same peptide, the subject is then predicted to have a good response or a poor response to the erythropoietic agent. Kits for predicting a response to an erythropoietic agent are further provided and include one or more antibodies, or fragments thereof, that specifically recognize a peptide of SEQ ID NOS: 1-17.
IRIS: Towards an Accurate and Fast Stage Weight Prediction Method
NASA Astrophysics Data System (ADS)
Taponier, V.; Balu, A.
2002-01-01
The knowledge of the structural mass fraction (or the mass ratio) of a given stage, which affects the performance of a rocket, is essential for the analysis of new or upgraded launchers or stages, whose need is increased by the quick evolution of the space programs and by the necessity of their adaptation to the market needs. The availability of this highly scattered variable, ranging between 0.05 and 0.15, is of primary importance at the early steps of the preliminary design studies. At the start of the staging and performance studies, the lack of frozen weight data (to be obtained later on from propulsion, trajectory and sizing studies) leads to rely on rough estimates, generally derived from printed sources and adapted. When needed, a consolidation can be acquired trough a specific analysis activity involving several techniques and implying additional effort and time. The present empirical approach allows thus to get approximated values (i.e. not necessarily accurate or consistent), inducing some result inaccuracy as well as, consequently, difficulties of performance ranking for a multiple option analysis, and an increase of the processing duration. This forms a classical harsh fact of the preliminary design system studies, insufficiently discussed to date. It appears therefore highly desirable to have, for all the evaluation activities, a reliable, fast and easy-to-use weight or mass fraction prediction method. Additionally, the latter should allow for a pre selection of the alternative preliminary configurations, making possible a global system approach. For that purpose, an attempt at modeling has been undertaken, whose objective was the determination of a parametric formulation of the mass fraction, to be expressed from a limited number of parameters available at the early steps of the project. It is based on the innovative use of a statistical method applicable to a variable as a function of several independent parameters. A specific polynomial generator
[Physical methods used to control body temperature].
Ezquerro Rodríguez, Esther; Montes García, Yolanda; Marín Fernández, Blanca
2012-10-01
The physical methods to control body temperature, either to induce hypothermia, or to increase body temperature, can be of two types: physical methods of external heating or cooling and invasive methods that require complex procedures and technology. There are many strategies for the induction of hypothermia, all based on three of the four basic mechanisms of heat transfer, evaporation, convection and conduction. In the hospital environment the external cooling methods or surface (blankets of cold air or water circulation, plates of hydrogel Artic Sun, methods of cooling helmet) are the most widely used for the induction of therapeutic hypothermia. The most non-invasive devices used are blades of hydrogel, which use water conduction high speed between the layers of pads. But there are quicker methods to induce hypothermia; i.e., invasive methods of internal cooling: infusion of intravenous crystalloid; endovascular catheters located in a central vein through which flows saline pumped by a closed circuit; By-pass cardio-pulmonary with extracorporeal circulation; and By-pass percutaneous venous system for continuous hemofiltration. The average physical external heating is based on the patient's ability to produce and retain heat or in the application of heat to the body surface of the patient (hot spring baths with hot water, air blankets, blankets of water). But when the answer to these methods are not sufficient or hypothermia is moderate or severe, other methods of internal heat are suggested: inhalation of oxygen or warm to 40-45 degrees C and wet by facial mask or endotracheal tube; intravenous (IV) infusion with hot solutions; Irrigation of body cavities with warm saline solution to 40-42 degrees C; peritoneal dialysis, haemodialysis and hemofiltration; Continuous reheating arterio-venous or venous-venous; extracorporeal circulation with cardiopulmonary bypass. In this article each of the methods listed above will be described for the induction of hypothermia
Digging Soil Experiments for Micro Hydraulic Excavators based on Model Predictive Tracking Control
NASA Astrophysics Data System (ADS)
Tomatsu, Takumi; Nonaka, Kenichiro; Sekiguchi, Kazuma; Suzuki, Katsumasa
2016-09-01
Recently, the increase of burden to operators and lack of skilled operators are the issue in the work of the hydraulic excavator. These problems are expected to be improved by autonomous control. In this paper, we present experimental results of hydraulic excavators using model predictive control (MPC) which incorporates servo mechanism. MPC optimizes digging operations by the optimal control input which is calculated by predicting the future states and satisfying the constraints. However, it is difficult for MPC to cope with the reaction force from soil when a hydraulic excavator performs excavation. Servo mechanism suppresses the influence of the constant disturbance using the error integration. However, the bucket tip deviates from a specified shape by the sudden change of the disturbance. We can expect that the tracking performance is improved by combining MPC and servo mechanism. Path-tracking controls of the bucket tip are performed using the optimal control input. We apply the proposed method to the Komatsu- made micro hydraulic excavator PC01 by experiments. We show the effectiveness of the proposed method through the experiment of digging soil by comparing servo mechanism and pure MPC with the proposed method.
Tavares, Gilberto; Zsigraiová, Zdena; Semiao, Viriato; Carvalho, Maria da Graca
2011-07-01
This work proposes the application of two multivariate statistical methods, principal component analysis (PCA) and partial least square (PLS), to a continuous process of a municipal solid waste (MSW) moving grate-type incinerator for process control--monitoring, fault detection and diagnosis--through the extraction of information from historical data. PCA model is built for process monitoring capable of detecting abnormal situations and the original 16-variable process dimension is reduced to eight, the first 4 being able to capture together 86% of the total process variation. PLS model is constructed to predict the generated superheated steam flow rate allowing for control of its set points. The model retained six of the original 13 variables, explaining together 90% of the input variation and almost 98% of the output variation. The proposed methodology is demonstrated by applying those multivariate statistical methods to process data continuously measured in an actual incinerator. Both models exhibited very good performance in fault detection and isolation. In predicting the generated superheated steam flow rate for its set point control the PLS model performed very well with low prediction errors (RMSE of 3.1 and 4.1).
Paquet, J Y; Vinals, C; Wouters, J; Letesson, J J; Depiereux, E
2000-02-01
In order to propose a reliable model for Brucella porin topology, several structure prediction methods were evaluated in their ability to predict porin topology. Four porins of known structure were selected as test-cases and their secondary structure delineated. The specificity and sensitivity of 11 methods were separately evaluated. Our critical assessment shows that some secondary structure prediction methods (PHD, Dsc, Sopma) originally designed to predict globular protein structure are useful on porin topology prediction. The overall best prediction is obtained by combining these three "generalist" methods with a transmembrane beta strand prediction technique. This "consensus" method was applied to Brucella porins Omp2b and Omp2a, sharing no sequence homology with any other porin. The predicted topology is a 16-stranded antiparallel beta barrel with Omp2a showing a higher number of negatively charged residue in the exposed loops than Omp2b. Experiments are in progress to validate the proposed topology and the functional hypotheses. The ability of the proposed consensus method to predict topology of complex outer membrane protein is briefly discussed.
Optimization methods in control of electromagnetic fields
NASA Astrophysics Data System (ADS)
Angell, Thomas S.; Kleinman, Ralph E.
1991-05-01
This program is developing constructive methods for certain constrained optimization problems arising in the design and control of electromagnetic fields and in the identification of scattering objects. The problems addressed fall into three categories: (1) the design of antennas with optimal radiation characteristics measured in terms of directivity; (2) the control of the electromagnetic scattering characteristics of an object, in particular the minimization of its radar cross section, by the choice of material properties; and (3) the determination of the shape of scattering objects with various electromagnetic properties from scattered field data. The main thrust of the program is toward the development of constructive methods based on the use of complete families of solutions of the time-harmonic Maxwell equations in the infinite domain exterior to the radiating or scattering body. During the course of the work an increasing amount of attention has been devoted to the use of iterative methods for the solution of various direct and inverse problems. The continued investigation and development of these methods and their application in parameter identification has become a significant part of the program.
Neural network-based nonlinear model predictive control vs. linear quadratic gaussian control
Cho, C.; Vance, R.; Mardi, N.; Qian, Z.; Prisbrey, K.
1997-01-01
One problem with the application of neural networks to the multivariable control of mineral and extractive processes is determining whether and how to use them. The objective of this investigation was to compare neural network control to more conventional strategies and to determine if there are any advantages in using neural network control in terms of set-point tracking, rise time, settling time, disturbance rejection and other criteria. The procedure involved developing neural network controllers using both historical plant data and simulation models. Various control patterns were tried, including both inverse and direct neural network plant models. These were compared to state space controllers that are, by nature, linear. For grinding and leaching circuits, a nonlinear neural network-based model predictive control strategy was superior to a state space-based linear quadratic gaussian controller. The investigation pointed out the importance of incorporating state space into neural networks by making them recurrent, i.e., feeding certain output state variables into input nodes in the neural network. It was concluded that neural network controllers can have better disturbance rejection, set-point tracking, rise time, settling time and lower set-point overshoot, and it was also concluded that neural network controllers can be more reliable and easy to implement in complex, multivariable plants.
Predicting juvenile offending: a comparison of data mining methods.
Ang, Rebecca P; Goh, Dion H
2013-02-01
In this study, the authors compared logistic regression and predictive data mining techniques such as decision trees (DTs), artificial neural networks (ANNs), and support vector machines (SVMs), and examined these methods on whether they could discriminate between adolescents who were charged or not charged for initial juvenile offending in a large Asian sample. Results were validated and tested in independent samples with logistic regression and DT, ANN, and SVM classifiers achieving accuracy rates of 95% and above. Findings from receiver operating characteristic analyses also supported these results. In addition, the authors examined distinct patterns of occurrences within and across classifiers. Proactive aggression and teacher-rated conflict consistently emerged as risk factors across validation and testing data sets of DT and ANN classifiers, and logistic regression. Reactive aggression, narcissistic exploitativeness, being male, and coming from a nonintact family were risk factors that emerged in one or more of these data sets across classifiers, while anxiety and poor peer relationships failed to emerge as predictors.
Model Predictive Control considering Reachable Range of Wheels for Leg / Wheel Mobile Robots
NASA Astrophysics Data System (ADS)
Suzuki, Naito; Nonaka, Kenichiro; Sekiguchi, Kazuma
2016-09-01
Obstacle avoidance is one of the important tasks for mobile robots. In this paper, we study obstacle avoidance control for mobile robots equipped with four legs comprised of three DoF SCARA leg/wheel mechanism, which enables the robot to change its shape adapting to environments. Our previous method achieves obstacle avoidance by model predictive control (MPC) considering obstacle size and lateral wheel positions. However, this method does not ensure existence of joint angles which achieves reference wheel positions calculated by MPC. In this study, we propose a model predictive control considering reachable mobile ranges of wheels positions by combining multiple linear constraints, where each reachable mobile range is approximated as a convex trapezoid. Thus, we achieve to formulate a MPC as a quadratic problem with linear constraints for nonlinear problem of longitudinal and lateral wheel position control. By optimization of MPC, the reference wheel positions are calculated, while each joint angle is determined by inverse kinematics. Considering reachable mobile ranges explicitly, the optimal joint angles are calculated, which enables wheels to reach the reference wheel positions. We verify its advantages by comparing the proposed method with the previous method through numerical simulations.
Wood, R.W.; Mulski, M.J.; Kuu, W.Y. )
1990-09-01
A radiotracer method is used to study the transport properties of water vapor in polyvinylchloride (PVC), a plastic commonly used in the packaging of parenteral solutions. Water vapor transport across a PVC film appears to be Fickian in nature. Using the steady-state solution of Fick's second law and the permeability coefficient of water vapor across the PVC film obtained using the described method, the predicted water vapor transport rate (WVTR) for a parenteral solution packaged in PVC is in reasonable agreement with actual WVTR as determined by weight loss under precisely controlled conditions.
Nouretdinov, Ilia; Gammerman, Alex; Qi, Yanjun; Klein-Seetharaman, Judith
2011-01-01
Identifying protein-protein interactions (PPI’s) is critical for understanding virtually all cellular molecular mechanisms. Previously, predicting PPI’s was treated as a binary classification task and has commonly been solved in a supervised setting which requires a positive labeled set of known PPI’s and a negative labeled set of non-interacting protein pairs. In those methods, the learner provides the likelihood of the predicted interaction, but without a confidence level associated with each prediction. Here, we apply a conformal prediction framework to make predictions and estimate confidence of the predictions. The conformal predictor uses a function measuring relative ’strangeness’ interacting pairs to check whether prediction of a new example added to the sequence of already known PPI’s would conform to the ’exchangeability’ assumption: distribution of interacting pairs is invariant with any permutations of the pairs. In fact, this is the only assumption we make about the data. Another advantage is that the user can control a number of errors by providing a desirable confidence level. This feature of CP is very useful for a ranking list of possible interactive pairs. In this paper, the conformal method has been developed to deal with just one class - class interactive proteins - while there is not clearly defined of ’non-interactive’ pairs. The confidence level helps the biologist in the interpretation of the results, and better assists the choices of pairs for experimental validation. We apply the proposed conformal framework to improve the identification of interacting pairs between HIV-1 and human proteins. PMID:22174286
NASA Technical Reports Server (NTRS)
Schweikhard, W. G.; Chen, Y. S.
1986-01-01
The Melick method of inlet flow dynamic distortion prediction by statistical means is outlined. A hypothetic vortex model is used as the basis for the mathematical formulations. The main variables are identified by matching the theoretical total pressure rms ratio with the measured total pressure rms ratio. Data comparisons, using the HiMAT inlet test data set, indicate satisfactory prediction of the dynamic peak distortion for cases with boundary layer control device vortex generators. A method for the dynamic probe selection was developed. Validity of the probe selection criteria is demonstrated by comparing the reduced-probe predictions with the 40-probe predictions. It is indicated that the the number of dynamic probes can be reduced to as few as two and still retain good accuracy.
An extrapolation method for compressive strength prediction of hydraulic cement products
Siqueira Tango, C.E. de
1998-07-01
The basis for the AMEBA Method is presented. A strength-time function is used to extrapolate the predicted cementitious material strength for a late (ALTA) age, based on two earlier age strengths--medium (MEDIA) and low (BAIXA) ages. The experimental basis for the method is data from the IPT-Brazil laboratory and the field, including a long-term study on concrete, research on limestone, slag, and fly-ash additions, and quality control data from a cement factory, a shotcrete tunnel lining, and a grout for structural repair. The method applicability was also verified for high-performance concrete with silica fume. The formula for predicting late age (e.g., 28 days) strength, for a given set of involved ages (e.g., 28,7, and 2 days) is normally a function only of the two earlier ages` (e.g., 7 and 2 days) strengths. This equation has been shown to be independent on materials variations, including cement brand, and is easy to use also graphically. Using the AMEBA method, and only needing to know the type of cement used, it has been possible to predict strengths satisfactorily, even without the preliminary tests which are required in other methods.
Prediction of imminent impactors: Manifold Of Variations methods
NASA Astrophysics Data System (ADS)
Tommei, G.; Milani Comparetti, A.; Spoto, F.; Bernardi, F.
2014-07-01
The asteroid impact risk has recently been demonstrated by the Celyabinsk and 2014AA events. In cases, like the two mentioned before, it is important to know, even with very few observations, whether or not there is the possibility of an immediate impact with the Earth. When such small asteroids are discovered, the confidence region resulting from preliminary orbit determination is not elongated in one direction, thus the Line Of Variations (LOV) is not representative of the entire region. If we use for a short arc of observations the attributable elements (A,ρ,dotρ), where A is the attributable, the confidence region is a thin shell surrounding a subset of the Admissible Region (AR). The Manifold Of Variations (MOV) is the set of the points S where the target function has a local minimum with respect to changes of A, for each fixed (ρ, dotρ), with minimum RMS of the residuals below some control Σ. When there is little information beyond A, S is parameterized by (A(ρ,dotρ), ρ,dotρ), defined on a subset B of the (ρ,dotρ) plane: B is an open set, not necessarily connected. Then the surface S can be computed point by point using a cobweb sampling (or a grid); then, each point could be used as Virtual Asteroid (VA) and propagated for some months in the future in order to have the trace of the cobweb (or grid) on the Target Plane (TP) of the immediate impact. In this presentation we are going to - define the MOV tool showing how it is used to predict imminent impactors; - discuss how to assign a Probability Density Function (PDF) to the MOV: this is not a simple problem because we want to take into account the PDF for observations, but also some constraints deriving from population and physical models. Moreover, we will address some examples using data from the NEOCP list of the Minor Planet Center (MPC).
Shakouri, Payman; Ordys, Andrzej; Askari, Mohamad R
2012-09-01
In the design of adaptive cruise control (ACC) system two separate control loops - an outer loop to maintain the safe distance from the vehicle traveling in front and an inner loop to control the brake pedal and throttle opening position - are commonly used. In this paper a different approach is proposed in which a single control loop is utilized. The objective of the distance tracking is incorporated into the single nonlinear model predictive control (NMPC) by extending the original linear time invariant (LTI) models obtained by linearizing the nonlinear dynamic model of the vehicle. This is achieved by introducing the additional states corresponding to the relative distance between leading and following vehicles, and also the velocity of the leading vehicle. Control of the brake and throttle position is implemented by taking the state-dependent approach. The model demonstrates to be more effective in tracking the speed and distance by eliminating the necessity of switching between the two controllers. It also offers smooth variation in brake and throttle controlling signal which subsequently results in a more uniform acceleration of the vehicle. The results of proposed method are compared with other ACC systems using two separate control loops. Furthermore, an ACC simulation results using a stop&go scenario are shown, demonstrating a better fulfillment of the design requirements.
Analytical Failure Prediction Method Developed for Woven and Braided Composites
NASA Technical Reports Server (NTRS)
Min, James B.
2003-01-01
Historically, advances in aerospace engine performance and durability have been linked to improvements in materials. Recent developments in ceramic matrix composites (CMCs) have led to increased interest in CMCs to achieve revolutionary gains in engine performance. The use of CMCs promises many advantages for advanced turbomachinery engine development and may be especially beneficial for aerospace engines. The most beneficial aspects of CMC material may be its ability to maintain its strength to over 2500 F, its internal material damping, and its relatively low density. Ceramic matrix composites reinforced with two-dimensional woven and braided fabric preforms are being considered for NASA s next-generation reusable rocket turbomachinery applications (for example, see the preceding figure). However, the architecture of a textile composite is complex, and therefore, the parameters controlling its strength properties are numerous. This necessitates the development of engineering approaches that combine analytical methods with limited testing to provide effective, validated design analyses for the textile composite structures development.
EPR oxygen images predict tumor control by a 50 percent tumor control radiation dose
Elas, Martyna; Magwood, Jessica M.; Butler, Brandi; Li, Chanel; Wardak, Rona; Barth, Eugene D.; Epel, Boris; Rubinstein, Samuel; Pelizzari, Charles A.; Weichselbaum, Ralph R.; Halpern, Howard J.
2013-01-01
Clinical trials to ameliorate hypoxia as a strategy to relieve the radiation resistance it causes have prompted a need to assay the precise extent and location of hypoxia in tumors. Electron Paramagnetic Resonance oxygen imaging (EPR O2 imaging) provides a non-invasive means to address this need. To obtain a preclinical proof of principle that EPR O2 images could predict radiation control, we treated mouse tumors at or near doses required to achieve 50 percent control (TCD50). Mice with FSa fibrosarcoma or MCa4 carcinoma were subjected to EPR O2 imaging and immediately radiated to a TCD50 or TCD50 ±10 Gy.. Statistical analysis was permitted by collection of ~ 1300 tumor pO2 image voxels, including the fraction of tumor voxels with pO2 less than 10 mm Hg (HF10). Tumors were followed for 90 days (FSa) or 120 days (MCa4) to determine local control or failure. HF10 obtained from EPR images showed statistically significant differences between tumors that were controlled by the TCD50 and those that were not controlled for both FSa and MCa4. Kaplan-Meier analysis of both types of tumors showed ~90% of mildly hypoxic tumors were controlled (HF10<10%), and only 37% (FSA) and 23% (MCa4) tumors controlled if hypoxic. EPR pO2 image voxel distributions in these ~0.5 ml tumors provide a prediction of radiation curability independent of radiation dose. These data confirm the significance of EPR pO2 hypoxic fractions. The ~90% control of low HF10 tumors argue that ½ ml subvolumes of tumors may be more sensitive to radiation and may need less radiation for high tumor control rates. PMID:23861469
NASA Astrophysics Data System (ADS)
Tofighi, Elham; Mahdizadeh, Amin
2016-09-01
This paper addresses the problem of automatic tuning of weighting coefficients for the nonlinear model predictive control (NMPC) of wind turbines. The choice of weighting coefficients in NMPC is critical due to their explicit impact on efficiency of the wind turbine control. Classically, these weights are selected based on intuitive understanding of the system dynamics and control objectives. The empirical methods, however, may not yield optimal solutions especially when the number of parameters to be tuned and the nonlinearity of the system increase. In this paper, the problem of determining weighting coefficients for the cost function of the NMPC controller is formulated as a two-level optimization process in which the upper- level PSO-based optimization computes the weighting coefficients for the lower-level NMPC controller which generates control signals for the wind turbine. The proposed method is implemented to tune the weighting coefficients of a NMPC controller which drives the NREL 5-MW wind turbine. The results are compared with similar simulations for a manually tuned NMPC controller. Comparison verify the improved performance of the controller for weights computed with the PSO-based technique.
One-level prediction-A numerical method for estimating undiscovered metal endowment
McCammon, R.B.; Kork, J.O.
1992-01-01
One-level prediction has been developed as a numerical method for estimating undiscovered metal endowment within large areas. The method is based on a presumed relationship between a numerical measure of geologic favorability and the spatial distribution of metal endowment. Metal endowment within an unexplored area for which the favorability measure is greater than a favorability threshold level is estimated to be proportional to the area of that unexplored portion. The constant of proportionality is the ratio of the discovered endowment found within a suitably chosen control region, which has been explored, to the area of that explored region. In addition to the estimate of undiscovered endowment, a measure of the error of the estimate is also calculated. One-level prediction has been used to estimate the undiscovered uranium endowment in the San Juan basin, New Mexico, U.S.A. A subroutine to perform the necessary calculations is included. ?? 1992 Oxford University Press.
Method and device for sand control
Best, D.A.; Grondin, K.C.
1992-03-17
This patent describes a single walled sand control device for use in a well. It comprises a single liner containing at least one slot that penetrates that liner and extends radially or axially therein which slot has a berm along each of its sides thereby causing a bridging of sand grains across the slot which results in substantially better sand control. This patent also describes a method for removing sand from hydrocarbonaceous fluids produced to the surface via a well. It comprises placing a single walled liner on the end of a tube used to produce hydrocarbonaceous fluids to the surface from a formation; cutting at least one slot through the liner which extends radially or axially therein; forming a berm along each side of the slot which causes a sand bridge to form across sail slot thereby removing substantially more sand from produced hydrocarbonaceous fluid.
Pressurized fluid torque driver control and method
NASA Astrophysics Data System (ADS)
Cook, Joseph S., Jr.
1994-08-01
Methods and apparatus are provided for a torque driver including a displaceable gear to limit torque transfer to a fastener at a precisely controlled torque limit. A biasing assembly biases a first gear into engagement with a second gear for torque transfer between the first and second gear. The biasing assembly includes a pressurized cylinder controlled at a constant pressure that corresponds to a torque limit. A calibrated gage and valve is used to set the desired torque limit. One or more coiled output linkages connect the first gear with the fastener adaptor which may be a socket for a nut. A gear tooth profile provides a separation force that overcomes the bias to limit torque at the desired torque limit. Multiple fasteners may be rotated simultaneously to a desired torque limit if additional output spur gears are provided. The torque limit is adjustable and may be different for fasteners within the same fastener configuration.
Pressurized fluid torque driver control and method
NASA Technical Reports Server (NTRS)
Cook, Joseph S., Jr. (Inventor)
1994-01-01
Methods and apparatus are provided for a torque driver including a displaceable gear to limit torque transfer to a fastener at a precisely controlled torque limit. A biasing assembly biases a first gear into engagement with a second gear for torque transfer between the first and second gear. The biasing assembly includes a pressurized cylinder controlled at a constant pressure that corresponds to a torque limit. A calibrated gage and valve is used to set the desired torque limit. One or more coiled output linkages connect the first gear with the fastener adaptor which may be a socket for a nut. A gear tooth profile provides a separation force that overcomes the bias to limit torque at the desired torque limit. Multiple fasteners may be rotated simultaneously to a desired torque limit if additional output spur gears are provided. The torque limit is adjustable and may be different for fasteners within the same fastener configuration.
2013-01-01
Background Identification of malaria vector breeding sites can enhance control activities. Although associations between malaria vector breeding sites and topography are well recognized, practical models that predict breeding sites from topographic information are lacking. We used topographic variables derived from remotely sensed Digital Elevation Models (DEMs) to model the breeding sites of malaria vectors. We further compared the predictive strength of two different DEMs and evaluated the predictability of various habitat types inhabited by Anopheles larvae. Methods Using GIS techniques, topographic variables were extracted from two DEMs: 1) Shuttle Radar Topography Mission 3 (SRTM3, 90-m resolution) and 2) the Advanced Spaceborne Thermal Emission Reflection Radiometer Global DEM (ASTER, 30-m resolution). We used data on breeding sites from an extensive field survey conducted on an island in western Kenya in 2006. Topographic variables were extracted for 826 breeding sites and for 4520 negative points that were randomly assigned. Logistic regression modelling was applied to characterize topographic features of the malaria vector breeding sites and predict their locations. Model accuracy was evaluated using the area under the receiver operating characteristics curve (AUC). Results All topographic variables derived from both DEMs were significantly correlated with breeding habitats except for the aspect of SRTM. The magnitude and direction of correlation for each variable were similar in the two DEMs. Multivariate models for SRTM and ASTER showed similar levels of fit indicated by Akaike information criterion (3959.3 and 3972.7, respectively), though the former was slightly better than the latter. The accuracy of prediction indicated by AUC was also similar in SRTM (0.758) and ASTER (0.755) in the training site. In the testing site, both SRTM and ASTER models showed higher AUC in the testing sites than in the training site (0.829 and 0.799, respectively). The
Predictable SCR co-benefits for mercury control
Pritchard, S.
2009-01-15
A test program, performed in cooperation with Dominion Power and the Babcock and Wilcox Co., was executed at Dominion Power's Mount Storm power plant in Grant County, W. Va. The program was focused on both the selective catalytic reduction (SCR) catalyst capability to oxide mercury as well as the scrubber's capability to capture and retain the oxidized mercury. This article focuses on the SCR catalyst performance aspects. The Mount Storm site consists of three units totaling approximately 1,660 MW. All units are equipped with SCR systems for NOx control. A full-scale test to evaluate the effect of the SCR was performed on Unit 2, a 550 MWT-fired boiler firing a medium sulfur bituminous coal. This test program demonstrated that the presence of an SCR catalyst can significantly affect the mercury speciation profile. Observation showed that in the absence of an SCR catalyst, the extent of oxidation of element a mercury at the inlet of the flue gas desulfurization system was about 64%. The presence of a Cornertech SCR catalyst improved this oxidation to levels greater than 95% almost all of which was captured by the downstream wet FGD system. Cornertech's proprietary SCR Hg oxidation model was used to accurately predict the field results. 1 ref., 2 figs., 1 tab.
NASA Technical Reports Server (NTRS)
Kvaternik, Raymond G.; Juang, Jer-Nan; Bennett, Richard L.
2000-01-01
The Aeroelasticity Branch at NASA Langley Research Center has a long and substantive history of tiltrotor aeroelastic research. That research has included a broad range of experimental investigations in the Langley Transonic Dynamics Tunnel (TDT) using a variety of scale models and the development of essential analyses. Since 1994, the tiltrotor research program has been using a 1/5-scale, semispan aeroelastic model of the V-22 designed and built by Bell Helicopter Textron Inc. (BHTI) in 1981. That model has been refurbished to form a tiltrotor research testbed called the Wing and Rotor Aeroelastic Test System (WRATS) for use in the TDT. In collaboration with BHTI, studies under the current tiltrotor research program are focused on aeroelastic technology areas having the potential for enhancing the commercial and military viability of tiltrotor aircraft. Among the areas being addressed, considerable emphasis is being directed to the evaluation of modern adaptive multi-input multi- output (MIMO) control techniques for active stability augmentation and vibration control of tiltrotor aircraft. As part of this investigation, a predictive control technique known as Generalized Predictive Control (GPC) is being studied to assess its potential for actively controlling the swashplate of tiltrotor aircraft to enhance aeroelastic stability in both helicopter and airplane modes of flight. This paper summarizes the exploratory numerical and experimental studies that were conducted as part of that investigation.
Does the Current Minimum Validate (or Invalidate) Cycle Prediction Methods?
NASA Technical Reports Server (NTRS)
Hathaway, David H.
2010-01-01
This deep, extended solar minimum and the slow start to Cycle 24 strongly suggest that Cycle 24 will be a small cycle. A wide array of solar cycle prediction techniques have been applied to predicting the amplitude of Cycle 24 with widely different results. Current conditions and new observations indicate that some highly regarded techniques now appear to have doubtful utility. Geomagnetic precursors have been reliable in the past and can be tested with 12 cycles of data. Of the three primary geomagnetic precursors only one (the minimum level of geomagnetic activity) suggests a small cycle. The Sun's polar field strength has also been used to successfully predict the last three cycles. The current weak polar fields are indicative of a small cycle. For the first time, dynamo models have been used to predict the size of a solar cycle but with opposite predictions depending on the model and the data assimilation. However, new measurements of the surface meridional flow indicate that the flow was substantially faster on the approach to Cycle 24 minimum than at Cycle 23 minimum. In both dynamo predictions a faster meridional flow should have given a shorter cycle 23 with stronger polar fields. This suggests that these dynamo models are not yet ready for solar cycle prediction.
A low computation cost method for seizure prediction.
Zhang, Yanli; Zhou, Weidong; Yuan, Qi; Wu, Qi
2014-10-01
The dynamic changes of electroencephalograph (EEG) signals in the period prior to epileptic seizures play a major role in the seizure prediction. This paper proposes a low computation seizure prediction algorithm that combines a fractal dimension with a machine learning algorithm. The presented seizure prediction algorithm extracts the Higuchi fractal dimension (HFD) of EEG signals as features to classify the patient's preictal or interictal state with Bayesian linear discriminant analysis (BLDA) as a classifier. The outputs of BLDA are smoothed by a Kalman filter for reducing possible sporadic and isolated false alarms and then the final prediction results are produced using a thresholding procedure. The algorithm was evaluated on the intracranial EEG recordings of 21 patients in the Freiburg EEG database. For seizure occurrence period of 30 min and 50 min, our algorithm obtained an average sensitivity of 86.95% and 89.33%, an average false prediction rate of 0.20/h, and an average prediction time of 24.47 min and 39.39 min, respectively. The results confirm that the changes of HFD can serve as a precursor of ictal activities and be used for distinguishing between interictal and preictal epochs. Both HFD and BLDA classifier have a low computational complexity. All of these make the proposed algorithm suitable for real-time seizure prediction.
An empirical method for prediction of cheese yield.
Melilli, C; Lynch, J M; Carpino, S; Barbano, D M; Licitra, G; Cappa, A
2002-10-01
Theoretical cheese yield can be estimated from the milk fat and casein or protein content of milk using classical formulae, such as the VanSlyke formula. These equations are reliable predictors of theoretical or actual yield based on accurately measured milk fat and casein content. Many cheese makers desire to base payment for milk to dairy farmers on the yield of cheese. In small factories, however, accurate measurement of fat and casein content of milk by either chemical methods or infrared milk analysis is too time consuming and expensive. Therefore, an empirical test to predict cheese yield was developed which uses simple equipment (i.e., clinical centrifuge, analytical balance, and forced air oven) to carry out a miniature cheese making, followed by a gravimetric measurement of dry weight yield. A linear regression of calculated theoretical versus dry weight yields for milks of known fat and casein content was calculated. A regression equation of y = 1.275x + 1.528, where y is theoretical yield and x is measured dry solids yield (r2 = 0.981), for Cheddar cheese was developed using milks with a range of theoretical yield from 7 to 11.8%. The standard deviation of the difference (SDD) between theoretical cheese yield and dry solids yield was 0.194 and the coefficient of variation (SDD/mean x 100) was 1.95% upon cross validation. For cheeses without a well-established theoretical cheese yield equation, the measured dry weight yields could be directly correlated to the observed yields in the factory; this would more accurately reflect the expected yield performance. Payments for milk based on these measurements would more accurately reflect quality and composition of the milk and the actual average recovery of fat and casein achieved under practical cheese making conditions.
Method for predicting cracking in waste glass canisters
Faletti, D.W.; Ethridge, L.J.
1986-08-01
A correlation has been developed that predicts the surface area created by cracking to within the accuracy of the existing data. The correlation is a simple linear equation; the surface area can be computed from a knowledge of the steady-state radial temperature difference and the radial temperature difference when the glass centerline temperature was at 500/sup 0/C. This correlation should be easy to use for waste glass canister applications since, in many cases, a two-dimensional heat transfer analysis can be used to determine the radial temperature differences. Although the correlation is useful for scoping purposes, there is a need to validate the correlation against additional canister cracking data, particularly in the case of stainless steel canisters. The use of Fiberfrax liners deserves serious consideration for use in stainless steel waste glass canisters. The amount of cracking is reduced because the liner eliminates the metal-glass interactions that produce significant stresses in the glass. Another less obvious, but very important, advantage of using Fiberfrax is that thermal shocking during decontamination and post-fill operations is reduced because of the liner's insulating capacity. More extensive studies to verify these results are recommended; canisters should be produced, under identical cooling conditions, that differ only in the use of liners. The data for any canister type are extremely sparse, and there is considerable uncertainty about the accuracy of the different methods that have been used to obtain surface area estimates. The comparative roles played by batch and continuous filling of the canisters also need to be clarified. There is a need for accurate thermal data to validate computer codes for determining the temperature histories of canisters. Suggestions for future cracking studies are given.
Method for controlling gas metal arc welding
Smartt, Herschel B.; Einerson, Carolyn J.; Watkins, Arthur D.
1989-01-01
The heat input and mass input in a Gas Metal Arc welding process are controlled by a method that comprises calculating appropriate values for weld speed, filler wire feed rate and an expected value for the welding current by algorithmic function means, applying such values for weld speed and filler wire feed rate to the welding process, measuring the welding current, comparing the measured current to the calculated current, using said comparison to calculate corrections for the weld speed and filler wire feed rate, and applying corrections.
Method for controlling gas metal arc welding
Smartt, H.B.; Einerson, C.J.; Watkins, A.D.
1987-08-10
The heat input and mass input in a Gas Metal Arc welding process are controlled by a method that comprises calculating appropriate values for weld speed, filler wire feed rate and an expected value for the welding current by algorithmic function means, applying such values for weld speed and filler wire feed rate to the welding process, measuring the welding current, comparing the measured current to the calculated current, using said comparison to calculate corrections for the weld speed and filler wire feed rate, and applying corrections. 3 figs., 1 tab.
Accelerating ab initio molecular dynamics simulations by linear prediction methods
NASA Astrophysics Data System (ADS)
Herr, Jonathan D.; Steele, Ryan P.
2016-09-01
Acceleration of ab initio molecular dynamics (AIMD) simulations can be reliably achieved by extrapolation of electronic data from previous timesteps. Existing techniques utilize polynomial least-squares regression to fit previous steps' Fock or density matrix elements. In this work, the recursive Burg 'linear prediction' technique is shown to be a viable alternative to polynomial regression, and the extrapolation-predicted Fock matrix elements were three orders of magnitude closer to converged elements. Accelerations of 1.8-3.4× were observed in test systems, and in all cases, linear prediction outperformed polynomial extrapolation. Importantly, these accelerations were achieved without reducing the MD integration timestep.
NASA Astrophysics Data System (ADS)
Wang, Liuping; Gan, Lu
2013-08-01
Linear controllers with gain scheduling have been successfully used in the control of nonlinear systems for the past several decades. This paper proposes the design of gain scheduled continuous-time model predictive controller with constraints. Using induction machine as an illustrative example, the paper will show the four steps involved in the design of a gain scheduled predictive controller: (i) linearisation of a nonlinear plant according to operating conditions; (ii) the design of linear predictive controllers for the family of linear models; (iii) gain scheduled predictive control law that will optimise a multiple model objective function with constraints, which will also ensure smooth transitions (i.e. bumpless transfer) between the predictive controllers; (iv) experimental validation of the gain scheduled predictive control system with constraints.
Xu, Weide; Zhang, Junfeng; Zhang, Ridong
2017-02-06
A method of multi-model switching based predictive functional control is proposed and applied to the temperature control system of an electric heating furnace. The control strategies provide the effective and independent control modes of the electric heating furnace temperature in order to obtain improved control performance. The method depends on conventional implementation of the multi-model switching state, which requires some endeavors to tune the switching model in the model predictive control and allows a reduction of the calculation compared with the weighted multiple model algorithms. In order to test the advantage of the proposed method, experimental equipment is set up and experiments are done on the temperature process of a heating furnace, which verify the validity and effectiveness of the proposed algorithm.
Nonlinear Model Predictive Control Based on a Self-Organizing Recurrent Neural Network.
Han, Hong-Gui; Zhang, Lu; Hou, Ying; Qiao, Jun-Fei
2016-02-01
A nonlinear model predictive control (NMPC) scheme is developed in this paper based on a self-organizing recurrent radial basis function (SR-RBF) neural network, whose structure and parameters are adjusted concurrently in the training process. The proposed SR-RBF neural network is represented in a general nonlinear form for predicting the future dynamic behaviors of nonlinear systems. To improve the modeling accuracy, a spiking-based growing and pruning algorithm and an adaptive learning algorithm are developed to tune the structure and parameters of the SR-RBF neural network, respectively. Meanwhile, for the control problem, an improved gradient method is utilized for the solution of the optimization problem in NMPC. The stability of the resulting control system is proved based on the Lyapunov stability theory. Finally, the proposed SR-RBF neural network-based NMPC (SR-RBF-NMPC) is used to control the dissolved oxygen (DO) concentration in a wastewater treatment process (WWTP). Comparisons with other existing methods demonstrate that the SR-RBF-NMPC can achieve a considerably better model fitting for WWTP and a better control performance for DO concentration.
Generalized Predictive Control of Dynamic Systems with Rigid-Body Modes
NASA Technical Reports Server (NTRS)
Kvaternik, Raymond G.
2013-01-01
Numerical simulations to assess the effectiveness of Generalized Predictive Control (GPC) for active control of dynamic systems having rigid-body modes are presented. GPC is a linear, time-invariant, multi-input/multi-output predictive control method that uses an ARX model to characterize the system and to design the controller. Although the method can accommodate both embedded (implicit) and explicit feedforward paths for incorporation of disturbance effects, only the case of embedded feedforward in which the disturbances are assumed to be unknown is considered here. Results from numerical simulations using mathematical models of both a free-free three-degree-of-freedom mass-spring-dashpot system and the XV-15 tiltrotor research aircraft are presented. In regulation mode operation, which calls for zero system response in the presence of disturbances, the simulations showed reductions of nearly 100%. In tracking mode operations, where the system is commanded to follow a specified path, the GPC controllers produced the desired responses, even in the presence of disturbances.
Battery control and fault detection method
Bishop, W.S.
1984-07-11
This is a method for control, fault detection, fault isolation, and state-of-health monitoring of batteries and battery arrays. The method consists of measuring all of the battery, well, or cell group voltages, using statistics to determine a mean voltage and a standard deviation voltage, then comparing all of the measured voltages to the mean voltage. If the measured voltage deviates from the mean voltage by an arbitrary amount (number of standard deviations) corrective action can be implemented or an alarm signal given. The measurements need to be made rapidly enough to eliminate battery or cell voltage changes due to state of charge or temperature changes and, in most cases, require a computerized data collection/reduction system. Absolute high and/or low voltage limits can be included to prevent catastrophic events. The concept can be expanded to include similar temperature, pressure and/or battery current measurements in an array.
Keen, Steven D; Cole, David J
2012-04-01
Recent developments in modeling driver steering control with preview are reviewed. While some validation with experimental data has been presented, the rigorous application of formal system identification methods has not yet been attempted. This paper describes a steering controller based on linear model-predictive control. An indirect identification method that minimizes steering angle prediction error is developed. Special attention is given to filtering the prediction error so as to avoid identification bias that arises from the closed-loop operation of the driver-vehicle system. The identification procedure is applied to data collected from 14 test drivers performing double lane change maneuvers in an instrumented vehicle. It is found that the identification procedure successfully finds parameter values for the model that give small prediction errors. The procedure is also able to distinguish between the different steering strategies adopted by the test drivers.
2016-01-01
Objective: Low self-control has been linked with smoking, yet it remains unclear whether childhood self-control underlies the emergence of lifetime smoking patterns. We examined the contribution of childhood self-control to early smoking initiation and smoking across adulthood. Methods: 21,132 participants were drawn from 2 nationally representative cohort studies; the 1970 British Cohort Study (BCS) and the 1958 National Child Development Study (NCDS). Child self-control was teacher-rated at age 10 in the BCS and at ages 7 and 11 in the NCDS. Participants reported their smoking status and number of cigarettes smoked per day at 5 time-points in the BCS (ages 26–42) and 6 time-points in the NCDS (ages 23–55). Both studies controlled for socioeconomic background, cognitive ability, psychological distress, gender, and parental smoking; the NCDS also controlled for an extended set of background characteristics. Results: Early self-control made a substantial graded contribution to (not) smoking throughout life. In adjusted regression models, a 1-SD increase in self-control predicted a 6.9 percentage point lower probability of smoking in the BCS, and this was replicated in the NCDS (5.2 point reduced risk). Adolescent smoking explained over half of the association between self-control and adult smoking. Childhood self-control was positively related to smoking cessation and negatively related to smoking initiation, relapse to smoking, and the number of cigarettes smoked in adulthood. Conclusions: This study provides strong evidence that low childhood self-control predicts an increased risk of smoking throughout adulthood and points to adolescent smoking as a key pathway through which this may occur. PMID:27607137
Predicting Critical Speeds in Rotordynamics: A New Method
NASA Astrophysics Data System (ADS)
Knight, J. D.; Virgin, L. N.; Plaut, R. H.
2016-09-01
In rotordynamics, it is often important to be able to predict critical speeds. The passage through resonance is generally difficult to model. Rotating shafts with a disk are analyzed in this study, and experiments are conducted with one and two disks on a shaft. The approach presented here involves the use of a relatively simple prediction technique, and since it is a black-box data-based approach, it is suitable for in-situ applications.
NASA Astrophysics Data System (ADS)
Kobayashi, Koichi; Hiraishi, Kunihiko
The model predictive/optimal control problem for hybrid systems is reduced to a mixed integer quadratic programming (MIQP) problem. However, the MIQP problem has one serious weakness, i.e., the computation time to solve the MIQP problem is too long for practical plants. For overcoming this technical issue, there are several approaches. In this paper, a modeling of mode transition constraints, which are expressed by a directed graph, is focused, and a new method to represent a directed graph is proposed. The effectiveness of the proposed method is shown by numerical examples on linear switched systems and piecewise linear systems.
Evidence for the flexible sensorimotor strategies predicted by optimal feedback control.
Liu, Dan; Todorov, Emanuel
2007-08-29
Everyday movements pursue diverse and often conflicting mixtures of task goals, requiring sensorimotor strategies customized for the task at hand. Such customization is mostly ignored by traditional theories emphasizing movement geometry and servo control. In contrast, the relationship between the task and the strategy most suitable for accomplishing it lies at the core of our optimal feedback control theory of coordination. Here, we show that the predicted sensitivity to task goals affords natural explanations to a number of novel psychophysical findings. Our point of departure is the little-known fact that corrections for target perturbations introduced late in a reaching movement are incomplete. We show that this is not simply attributable to lack of time, in contradiction with alternative models and, somewhat paradoxically, in agreement with our model. Analysis of optimal feedback gains reveals that the effect is partly attributable to a previously unknown trade-off between stability and accuracy. This yields a testable prediction: if stability requirements are decreased, then accuracy should increase. We confirm the prediction experimentally in three-dimensional obstacle avoidance and interception tasks in which subjects hit a robotic target with programmable impedance. In additional agreement with the theory, we find that subjects do not rely on rigid control strategies but instead exploit every opportunity for increased performance. The modeling methodology needed to capture this extra flexibility is more general than the linear-quadratic methods we used previously. The results suggest that the remarkable flexibility of motor behavior arises from sensorimotor control laws optimized for composite cost functions.
Wide-area Power System Oscillation Damping using Model Predictive Control Technique
NASA Astrophysics Data System (ADS)
Mohamed, Tarek Hassan; Abdel-Rahim, Abdel-Moamen Mohammed; Hassan, Ahmed Abd-Eltawwab; Hiyama, Takashi
This paper presents a new approach to deal with the problem of robust tuning of power system stabilizer (PSS) and automatic voltage regulator (AVR) in multi-machine power systems. The proposed method is based on a model predictive control (MPC) technique, for improvement stability of the wide-area power system with multiple generators and distribution systems including dispersed generations. The proposed method provides better damping of power system oscillations under small and large disturbances even with the inclusion of local PSSs. The effectiveness of the proposed approach is demonstrated through a two areas, four machines power system. A performance comparison between the proposed controller and some of other controllers is carried out confirming the superiority of the proposed technique. It has also been observed that the proposed algorithm can be successfully applied to larger multiarea power systems and do not suffer with computational difficulties. The proposed algorithm carried out using MATLAB/SIMULINK software package.
Method for enhanced control of welding processes
Sheaffer, Donald A.; Renzi, Ronald F.; Tung, David M.; Schroder, Kevin
2000-01-01
Method and system for producing high quality welds in welding processes, in general, and gas tungsten arc (GTA) welding, in particular by controlling weld penetration. Light emitted from a weld pool is collected from the backside of a workpiece by optical means during welding and transmitted to a digital video camera for further processing, after the emitted light is first passed through a short wavelength pass filter to remove infrared radiation. By filtering out the infrared component of the light emitted from the backside weld pool image, the present invention provides for the accurate determination of the weld pool boundary. Data from the digital camera is fed to an imaging board which focuses on a 100.times.100 pixel portion of the image. The board performs a thresholding operation and provides this information to a digital signal processor to compute the backside weld pool dimensions and area. This information is used by a control system, in a dynamic feedback mode, to automatically adjust appropriate parameters of a welding system, such as the welding current, to control weld penetration and thus, create a uniform weld bead and high quality weld.
Evaluation of two methods of predicting MLC leaf positions using EPID measurements
Parent, Laure; Seco, Joao; Evans, Phil M.; Dance, David R.; Fielding, Andrew
2006-09-15
In intensity modulated radiation treatments (IMRT), the position of the field edges and the modulation within the beam are often achieved with a multileaf collimator (MLC). During the MLC calibration process, due to the finite accuracy of leaf position measurements, a systematic error may be introduced to leaf positions. Thereafter leaf positions of the MLC depend on the systematic error introduced on each leaf during MLC calibration and on the accuracy of the leaf position control system (random errors). This study presents and evaluates two methods to predict the systematic errors on the leaf positions introduced during the MLC calibration. The two presented methods are based on a series of electronic portal imaging device (EPID) measurements. A comparison with film measurements showed that the EPID could be used to measure leaf positions without introducing any bias. The first method, referred to as the 'central leaf method', is based on the method currently used at this center for MLC leaf calibration. It mimics the manner in which leaf calibration parameters are specified in the MLC control system and consequently is also used by other centers. The second method, a new method proposed by the authors and referred to as the ''individual leaf method,'' involves the measurement of two positions for each leaf (-5 and +15 cm) and the interpolation and extrapolation from these two points to any other given position. The central leaf method and the individual leaf method predicted leaf positions at prescribed positions of -11, 0, 5, and 10 cm within 2.3 and 1.0 mm, respectively, with a standard deviation (SD) of 0.3 and 0.2 mm, respectively. The individual leaf method provided a better prediction of the leaf positions than the central leaf method. Reproducibility tests for leaf positions of -5 and +15 cm were performed. The reproducibility was within 0.4 mm on the same day and 0.4 mm six weeks later (1 SD). Measurements at gantry angles of 0 deg., 90 deg., and 270 deg
Control system and method for prosthetic devices
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr. (Inventor)
1992-01-01
A control system and method for prosthetic devices is provided. The control system comprises a transducer for receiving movement from a body part for generating a sensing signal associated with that movement. The sensing signal is processed by a linearizer for linearizing the sensing signal to be a linear function of the magnitude of the distance moved by the body part. The linearized sensing signal is normalized to be a function of the entire range of body part movement from the no-shrug position of the movable body part through the full-shrug position of the movable body part. The normalized signal is divided into a plurality of discrete command signals. The discrete command signals are used by typical converter devices which are in operational association with the prosthetic device. The converter device uses the discrete command signals for driving the movable portions of the prosthetic device and its sub-prosthesis. The method for controlling a prosthetic device associated with the present invention comprises the steps of receiving the movement from the body part, generating a sensing signal in association with the movement of the body part, linearizing the sensing signal to be a linear function of the magnitude of the distance moved by the body part, normalizing the linear signal to be a function of the entire range of the body part movement, dividing the normalized signal into a plurality of discrete command signals, and implementing the plurality of discrete command signals for driving the respective movable prosthesis device and its sub-prosthesis.
NASA Astrophysics Data System (ADS)
Johnson, Erik A.; Elhaddad, Wael M.; Wojtkiewicz, Steven F.
2016-04-01
A variety of strategies have been developed over the past few decades to determine controllable damping device forces to mitigate the response of structures and mechanical systems to natural hazards and other excitations. These "smart" damping devices produce forces through passive means but have properties that can be controlled in real time, based on sensor measurements of response across the structure, to dramatically reduce structural motion by exploiting more than the local "information" that is available to purely passive devices. A common strategy is to design optimal damping forces using active control approaches and then try to reproduce those forces with the smart damper. However, these design forces, for some structures and performance objectives, may achieve high performance by selectively adding energy, which cannot be replicated by a controllable damping device, causing the smart damper performance to fall far short of what an active system would provide. The authors have recently demonstrated that a model predictive control strategy using hybrid system models, which utilize both continuous and binary states (the latter to capture the switching behavior between dissipative and non-dissipative forces), can provide reductions in structural response on the order of 50% relative to the conventional clipped-optimal design strategy. This paper explores the robustness of this newly proposed control strategy through evaluating controllable damper performance when the structure model differs from the nominal one used to design the damping strategy. Results from the application to a two-degree-of-freedom structure model confirms the robustness of the proposed strategy.
NASA Astrophysics Data System (ADS)
Farhadi, Alireza; Khodabandehlou, Ali
2016-08-01
This paper is concerned with a distributed model predictive control (DMPC) method that is based on a distributed optimisation method with two-level architecture for communication. Feasibility (constraints satisfaction by the approximated solution), convergence and optimality of this distributed optimisation method are mathematically proved. For an automated irrigation channel, the satisfactory performance of the proposed DMPC method in attenuation of the undesired upstream transient error propagation and amplification phenomenon is illustrated and compared with the performance of another DMPC method that exploits a single-level architecture for communication. It is illustrated that the DMPC that exploits a two-level architecture for communication has a better performance by better managing communication overhead.
Predictive Poincaré control: A control theory for chaotic systems
NASA Astrophysics Data System (ADS)
Schweizer, Jörg; Kennedy, Michael Peter
1995-11-01
One of the most interesting features of chaotic systems is the large number of unstable orbits embedded in a chaotic attractor. In this work, we propose a global chaos-control technique called predictive Poincaré control (PPC) that permits stabilization of a predefined solution, using only small control pulses. We prove this result for a large class of n-dimensional chaotic systems. The predefined solution can be a periodic or nonperiodic oscillation, expressed by a periodic or nonperiodic symbolic sequence [S. Hayes, C. Grebogi, and E. Ott, Phys. Rev. Lett. 70, 3031 (1993)]. We apply the general PPC scheme to the well known Lorenz model and study its robustness with respect to parasitic effects.
Analysis, prediction and control of radio frequency interference with respect to DSN
NASA Technical Reports Server (NTRS)
Degroot, N. F.
1982-01-01
Susceptibility modeling, prediction of radio frequency interference from satellites, operational radio frequency interference control, and international regulations are considered. The existing satellite interference prediction program DSIP2 is emphasized. A summary status evaluation and recommendations for future work are given.
Implicit methods for efficient musculoskeletal simulation and optimal control
van den Bogert, Antonie J.; Blana, Dimitra; Heinrich, Dieter
2011-01-01
The ordinary differential equations for musculoskeletal dynamics are often numerically stiff and highly nonlinear. Consequently, simulations require small time steps, and optimal control problems are slow to solve and have poor convergence. In this paper, we present an implicit formulation of musculoskeletal dynamics, which leads to new numerical methods for simulation and optimal control, with the expectation that we can mitigate some of these problems. A first order Rosenbrock method was developed for solving forward dynamic problems using the implicit formulation. It was used to perform real-time dynamic simulation of a complex shoulder arm system with extreme dynamic stiffness. Simulations had an RMS error of only 0.11 degrees in joint angles when running at real-time speed. For optimal control of musculoskeletal systems, a direct collocation method was developed for implicitly formulated models. The method was applied to predict gait with a prosthetic foot and ankle. Solutions were obtained in well under one hour of computation time and demonstrated how patients may adapt their gait to compensate for limitations of a specific prosthetic limb design. The optimal control method was also applied to a state estimation problem in sports biomechanics, where forces during skiing were estimated from noisy and incomplete kinematic data. Using a full musculoskeletal dynamics model for state estimation had the additional advantage that forward dynamic simulations, could be done with the same implicitly formulated model to simulate injuries and perturbation responses. While these methods are powerful and allow solution of previously intractable problems, there are still considerable numerical challenges, especially related to the convergence of gradient-based solvers. PMID:22102983
Implicit methods for efficient musculoskeletal simulation and optimal control.
van den Bogert, Antonie J; Blana, Dimitra; Heinrich, Dieter
2011-01-01
The ordinary differential equations for musculoskeletal dynamics are often numerically stiff and highly nonlinear. Consequently, simulations require small time steps, and optimal control problems are slow to solve and have poor convergence. In this paper, we present an implicit formulation of musculoskeletal dynamics, which leads to new numerical methods for simulation and optimal control, with the expectation that we can mitigate some of these problems. A first order Rosenbrock method was developed for solving forward dynamic problems using the implicit formulation. It was used to perform real-time dynamic simulation of a complex shoulder arm system with extreme dynamic stiffness. Simulations had an RMS error of only 0.11 degrees in joint angles when running at real-time speed. For optimal control of musculoskeletal systems, a direct collocation method was developed for implicitly formulated models. The method was applied to predict gait with a prosthetic foot and ankle. Solutions were obtained in well under one hour of computation time and demonstrated how patients may adapt their gait to compensate for limitations of a specific prosthetic limb design. The optimal control method was also applied to a state estimation problem in sports biomechanics, where forces during skiing were estimated from noisy and incomplete kinematic data. Using a full musculoskeletal dynamics model for state estimation had the additional advantage that forward dynamic simulations, could be done with the same implicitly formulated model to simulate injuries and perturbation responses. While these methods are powerful and allow solution of previously intractable problems, there are still considerable numerical challenges, especially related to the convergence of gradient-based solvers.
Methods for evaluating the predictive accuracy of structural dynamic models
NASA Technical Reports Server (NTRS)
Hasselman, Timothy K.; Chrostowski, Jon D.
1991-01-01
Modeling uncertainty is defined in terms of the difference between predicted and measured eigenvalues and eigenvectors. Data compiled from 22 sets of analysis/test results was used to create statistical databases for large truss-type space structures and both pretest and posttest models of conventional satellite-type space structures. Modeling uncertainty is propagated through the model to produce intervals of uncertainty on frequency response functions, both amplitude and phase. This methodology was used successfully to evaluate the predictive accuracy of several structures, including the NASA CSI Evolutionary Structure tested at Langley Research Center. Test measurements for this structure were within + one-sigma intervals of predicted accuracy for the most part, demonstrating the validity of the methodology and computer code.
Modeling and Control Systems Design by Model Predictive Control for Air-path System of Diesel Engine
NASA Astrophysics Data System (ADS)
Iwadare, Mitsuhiro; Ueno, Masaki; Hattori, Yasuharu; Adachi, Shuichi
Research has been conducted on a variety of combustion technologies in order to reduce diesel engine emissions. These technologies should precisely control the state of in-cylinder gas (EGR mass flow, air mass flow, and so on). However, because the controlled object is a multi-input, multi-output (MIMO) system and a coupled system, the use of control systems based on the conventional methods that employ PID controllers represents a challenge. Model predictive control (MPC) is well known as an MIMO algorithm. An intake control system that could be applied to the intake system of a diesel engine was constructed by supplementing MPC with a feedback function using a disturbance observer and compensator for the nonlinear characteristic of the actuators. Performance tests using an actual vehicle verified that, when applied to a two-input (throttle valve and EGR valve), two-output (air mass flow and intake chamber pressure) system, the proposed MPC is able to rapidly control each output independently to the target value.
NASA Astrophysics Data System (ADS)
Sanandaji, Borhan M.; Vincent, Tyrone L.; Colclasure, Andrew M.; Kee, Robert J.
This paper describes a systematic method for developing model-based controllers for solid-oxide fuel cell (SOFC) systems. To enhance the system efficiency and to avoid possible damages, the system must be controlled within specific operating conditions, while satisfying a load requirement. Model predictive control (MPC) is a natural choice for control implementation. However, to implement MPC, a low-order model is needed that captures the dominant dynamic behavior over the operating range. A linear parameter varying (LPV) model structure is developed and applied to obtain a control-oriented dynamic model of the SOFC stack. This approach effectively reduces a detailed physical model to a form that is compatible with MPC. The LPV structure includes nonlinear scheduling functions that blend the dynamics of locally linear models to represent nonlinear dynamic behavior over large operating ranges. Alternative scheduling variables are evaluated, with cell current being shown to be an appropriate choice. Using the reduced-order model, an MPC controller is designed that can respond to the load requirement over a wide range of operation changes while maintaining input-output variables within specified constraints. To validate the approach, the LPV-based MPC controller is applied to the high-order physical model.
Time-Preference Tests Fail to Predict Behavior Related to Self-control
Arfer, Kodi B.; Luhmann, Christian C.
2017-01-01
According to theory, choices relating to patience and self-control in domains as varied as drug use and retirement saving are driven by generalized preferences about delayed rewards. Past research has shown that measurements of these time preferences are associated with these choices. Research has also attempted to examine how well such measurements can predict choices, but only with inappropriate analytical methods. Moreover, it is not clear which of the many kinds of time-preference tests that have been proposed are most useful for prediction, and a theoretically important aspect of time preferences, nonstationarity, has been neglected in measurement. In Study 1, we examined three approaches to measuring time preferences with 181 users of Mechanical Turk. Retest reliability, for both immediate and 1-month intervals, was decent, as was convergent validity between tests, and association was similar to previous results, but predictive accuracy for 10 criterion variables (e.g., tobacco use) was approximately nil. In Study 2, we examined one other approach to measuring time preferences, and 40 criterion variables, using 7,127 participants in the National Longitudinal Survey of Youth 1979. Time preferences were significantly related to criterion variables, but predictive accuracy was again poor. Our findings imply serious problems for using time-preference tests to predict real-world decisions. The results of Study 1 further suggest there is little value in measuring nonstationarity separately from patience. PMID:28232810
Dynamic Programming Method for Impulsive Control Problems
ERIC Educational Resources Information Center
Balkew, Teshome Mogessie
2015-01-01
In many control systems changes in the dynamics occur unexpectedly or are applied by a controller as needed. The time at which a controller implements changes is not necessarily known a priori. For example, many manufacturing systems and flight operations have complicated control systems, and changes in the control systems may be automatically…
Control method for a reclamation furnace
Kelly, S.B.
1981-06-02
A method is presented for preventing fires and explosions and thus controlling excess temperature within a burn-off or reclamation furnace including a water injection nozzle within the furnace, an automatic valve assembly connected to a source of water under pressure to turn the water on and off, an input burner to heat contaminate materials, an afterburner to burn volatile gases given off by the contaminate materials as they are heated, a temperature sensor located in the discharge from the afterburner to actuate the automatic valve assembly open and closed responsive to the temperature of the discharge. The temperature of the discharge depends on the rate of emission of volatile gases from the contaminate material so that if a high emission rate causes a predetermined temperature to be exceeded the valve assembly opens and the water injection nozzle sprays water on the contaminate materials to cool them and decrease the emission rate until the valve assembly closes.
Method and apparatus for controlling multiple motors
Jones, Rollin G.; Kortegaard, Bert L.; Jones, David F.
1987-01-01
A method and apparatus are provided for simultaneously controlling a plurality of stepper motors. Addressing circuitry generates address data for each motor in a periodic address sequence. Memory circuits respond to the address data for each motor by accessing a corresponding memory location containing a first operational data set functionally related to a direction for moving the motor, speed data, and rate of speed change. First logic circuits respond to the first data set to generate a motor step command. Second logic circuits respond to the command from the first logic circuits to generate a third data set for replacing the first data set in memory with a current operational motor status, which becomes the first data set when the motor is next addressed.
Modal methods in optimal control synthesis
NASA Technical Reports Server (NTRS)
Bryson, A. E., Jr.; Hall, W. E., Jr.
1980-01-01
Efficient algorithms for solving linear smoother-follower problems with quadratic criteria are presented. For time-invariant systems, the algorithm consists of one backward integration of a linear vector equation and one forward integration of another linear vector equation. Furthermore, the backward and forward Riccati matrices can be expressed in terms of the eigenvalues and eigenvectors of the Euler-Lagrange equations. Hence, the gains of the forward and backward Kalman-Bucy filters and of the optimal state-feedback regulator can be determined without integration of matrix Riccati equations. A computer program has been developed, based on this method of determining the gains, to synthesize the optimal time-invariant compensator in the presence of random disturbance inputs and random measurement errors. The program also computes the rms state and control variables of the optimal closed-loop system.
Methods for combined control-structure optimization
NASA Technical Reports Server (NTRS)
Milman, M.; Scheid, R. E.; Salama, M.; Bruno, R.
1989-01-01
This paper outlines the development of methods for the combined control-structure optimization of physical systems encountered in the technology of large space structures. The objective of the approach taken in this paper is not to produce the 'best' optimized design, but rather to efficiently produce a family of design options so as to asist in early trade studies, typically before hard design constraints are imposed. The philosophy is that these are candidate designs to be passed on for further consideration, and their function is more to guide the development of the system design rather than to represent the ultimate product. A homotopy approach involving multi-objective functions is developed for this purpose, and a numerical example is presented.
Application of Sampling Based Model Predictive Control to an Autonomous Underwater Vehicle
2010-07-01
55 Application of Sampling Based Model Predictive Control to an Autonomous Underwater Vehicle Unmanned Underwater Vehicles (UUVs) can be utilized...the vehicle can feasibly traverse. As a result, Sampling- Based Model Predictive Control (SBMPC) is proposed to simultaneously generate control...inputs and system trajectories for an autonomous underwater vehicle (AUV). The algorithm combines the benefits of sampling- based motion planning with
What Predicts Method Effects in Child Behavior Ratings
ERIC Educational Resources Information Center
Low, Justin A.; Keith, Timothy Z.; Jensen, Megan
2015-01-01
The purpose of this research was to determine whether child, parent, and teacher characteristics such as sex, socioeconomic status (SES), parental depressive symptoms, the number of years of teaching experience, number of children in the classroom, and teachers' disciplinary self-efficacy predict deviations from maternal ratings in a…
Zheng, Yang; Zhou, Jianzhong; Xu, Yanhe; Zhang, Yuncheng; Qian, Zhongdong
2017-03-23
This paper proposes a distributed model predictive control based load frequency control (MPC-LFC) scheme to improve control performances in the frequency regulation of power system. In order to reduce the computational burden in the rolling optimization with a sufficiently large prediction horizon, the orthonormal Laguerre functions are utilized to approximate the predicted control trajectory. The closed-loop stability of the proposed MPC scheme is achieved by adding a terminal equality constraint to the online quadratic optimization and taking the cost function as the Lyapunov function. Furthermore, the treatments of some typical constraints in load frequency control have been studied based on the specific Laguerre-based formulations. Simulations have been conducted in two different interconnected power systems to validate the effectiveness of the proposed distributed MPC-LFC as well as its superiority over the comparative methods.
Fertuck, Eric A.; Keilp, John; Song, Inkyung; Morris, Melissa C.; Wilson, Scott T.; Brodsky, Beth S.; Stanley, Barbara
2011-01-01
Background Non-completion of a prescribed course of treatment occurs in 20–60% of individuals diagnosed with borderline personality disorder (BPD). While symptom severity, personality traits and environmental factors have been implicated as predictors of treatment non-completion (TNC), there have been no studies of neuropsychological predictors in this population. Methods From a randomized controlled trial, a subsample of 31, unmedicated outpatients diagnosed with BPD with recent self-injurious behavior was assessed on 5 neuropsychological domains. Patients were also assessed for general IQ, demographic and other salient clinical variables. Patients were randomized to one of four treatment conditions, which lasted up to 1 year. Number of weeks in treatment (WIT) up to 1 year was utilized as the index of TNC. Results Thirty-three percent of the subsample (n = 12) did not complete 1 year of treatment. However, more WIT were predicted by better baseline executive control (Trails B; p < 0.01) and visual memory performance (Benton visual retention; p < 0.001); other neuropsychological domains did not predict WIT. Conclusion In the treatment of outpatients with BPD, better executive control and visual memory performance predict more WIT. Assessing and addressing these neurocognitive factors in treatment may reduce TNC in this high-risk population. PMID:22116411
NASA Technical Reports Server (NTRS)
Morey, Susan; Prevot, Thomas; Mercer, Joey; Martin, Lynne; Bienert, Nancy; Cabrall, Christopher; Hunt, Sarah; Homola, Jeffrey; Kraut, Joshua
2013-01-01
A human-in-the-loop simulation was conducted to examine the effects of varying levels of trajectory prediction uncertainty on air traffic controller workload and performance, as well as how strategies and the use of decision support tools change in response. This paper focuses on the strategies employed by two controllers from separate teams who worked in parallel but independently under identical conditions (airspace, arrival traffic, tools) with the goal of ensuring schedule conformance and safe separation for a dense arrival flow in en route airspace. Despite differences in strategy and methods, both controllers achieved high levels of schedule conformance and safe separation. Overall, results show that trajectory uncertainties introduced by wind and aircraft performance prediction errors do not affect the controllers' ability to manage traffic. Controller strategies were fairly robust to changes in error, though strategies were affected by the amount of delay to absorb (scheduled time of arrival minus estimated time of arrival). Using the results and observations, this paper proposes an ability to dynamically customize the display of information including delay time based on observed error to better accommodate different strategies and objectives.
Model Predictive Control of the Current Profile and the Internal Energy of DIII-D Plasmas
NASA Astrophysics Data System (ADS)
Lauret, M.; Wehner, W.; Schuster, E.
2015-11-01
For efficient and stable operation of tokamak plasmas it is important that the current density profile and the internal energy are jointly controlled by using the available heating and current-drive (H&CD) sources. The proposed approach is a version of nonlinear model predictive control in which the input set is restricted in size by the possible combinations of the H&CD on/off states. The controller uses real-time predictions over a receding-time horizon of both the current density profile (nonlinear partial differential equation) and the internal energy (nonlinear ordinary differential equation) evolutions. At every time instant the effect of every possible combination of H&CD sources on the current profile and internal energy is evaluated over the chosen time horizon. The combination that leads to the best result, which is assessed by a user-defined cost function, is then applied up until the next time instant. Simulations results based on a control-oriented transport code illustrate the effectiveness of the proposed control method. Supported by the US DOE under DE-FC02-04ER54698 & DE-SC0010661.
NASA Astrophysics Data System (ADS)
Woldekidan, Korbaga
This dissertation aims at developing a novel and systematic approach to apply Model Predictive Control (MPC) to improve energy efficiency and indoor environmental quality in office buildings. Model predictive control is one of the advanced optimal control approaches that use models to predict the behavior of the process beyond the current time to optimize the system operation at the present time. In building system, MPC helps to exploit buildings' thermal storage capacity and to use the information on future disturbances like weather and internal heat gains to estimate optimal control inputs ahead of time. In this research the major challenges of applying MPC to building systems are addressed. A systematic framework has been developed for ease of implementation. New methods are proposed to develop simple and yet reasonably accurate models that can minimize the MPC development effort as well as computational time. The developed MPC is used to control a detailed building model represented by whole building performance simulation tool, EnergyPlus. A co-simulation strategy is used to communicate the MPC control developed in Matlab platform with the case building model in EnergyPlus. The co-simulation tool used (MLE+) also has the ability to talk to actual building management systems that support the BACnet communication protocol which makes it easy to implement the developed MPC control in actual buildings. A building that features an integrated lighting and window control and HVAC system with a dedicated outdoor air system and ceiling radiant panels was used as a case building. Though this study is specifically focused on the case building, the framework developed can be applied to any building type. The performance of the developed MPC was compared against a baseline control strategy using Proportional Integral and Derivative (PID) control. Various conventional and advanced thermal comfort as well as ventilation strategies were considered for the comparison. These
Predictive motor control of sensory dynamics in auditory active sensing.
Morillon, Benjamin; Hackett, Troy A; Kajikawa, Yoshinao; Schroeder, Charles E
2015-04-01
Neuronal oscillations present potential physiological substrates for brain operations that require temporal prediction. We review this idea in the context of auditory perception. Using speech as an exemplar, we illustrate how hierarchically organized oscillations can be used to parse and encode complex input streams. We then consider the motor system as a major source of rhythms (temporal priors) in auditory processing, that act in concert with attention to sharpen sensory representations and link them across areas. We discuss the circuits that could mediate this audio-motor interaction, notably the potential role of the somatosensory system. Finally, we reposition temporal predictions in the context of internal models, discussing how they interact with feature-based or spatial predictions. We argue that complementary predictions interact synergistically according to the organizational principles of each sensory system, forming multidimensional filters crucial to perception.
Predictive Techniques for Spacecraft Cabin Air Quality Control
NASA Technical Reports Server (NTRS)
Perry, J. L.; Cromes, Scott D. (Technical Monitor)
2001-01-01
As assembly of the International Space Station (ISS) proceeds, predictive techniques are used to determine the best approach for handling a variety of cabin air quality challenges. These techniques use equipment offgassing data collected from each ISS module before flight to characterize the trace chemical contaminant load. Combined with crew metabolic loads, these data serve as input to a predictive model for assessing the capability of the onboard atmosphere revitalization systems to handle the overall trace contaminant load as station assembly progresses. The techniques for predicting in-flight air quality are summarized along with results from early ISS mission analyses. Results from groundbased analyses of in-flight air quality samples are compared to the predictions to demonstrate the technique's relative conservatism.
Robertson, Eric P; Christiansen, Richard L.
2007-05-29
A method of optically determining a change in magnitude of at least one dimensional characteristic of a sample in response to a selected chamber environment. A magnitude of at least one dimension of the at least one sample may be optically determined subsequent to altering the at least one environmental condition within the chamber. A maximum change in dimension of the at least one sample may be predicted. A dimensional measurement apparatus for indicating a change in at least one dimension of at least one sample. The dimensional measurement apparatus may include a housing with a chamber configured for accommodating pressure changes and an optical perception device for measuring a dimension of at least one sample disposed in the chamber. Methods of simulating injection of a gas into a subterranean formation, injecting gas into a subterranean formation, and producing methane from a coal bed are also disclosed.
Robertson, Eric P; Christiansen, Richard L.
2007-10-23
A method of optically determining a change in magnitude of at least one dimensional characteristic of a sample in response to a selected chamber environment. A magnitude of at least one dimension of the at least one sample may be optically determined subsequent to altering the at least one environmental condition within the chamber. A maximum change in dimension of the at least one sample may be predicted. A dimensional measurement apparatus for indicating a change in at least one dimension of at least one sample. The dimensional measurement apparatus may include a housing with a chamber configured for accommodating pressure changes and an optical perception device for measuring a dimension of at least one sample disposed in the chamber. Methods of simulating injection of a gas into a subterranean formation, injecting gas into a subterranean formation, and producing methane from a coal bed are also disclosed.
Dretsch, Michael N.; Wood, Kimberly H.; Daniel, Thomas A.; Katz, Jeffrey S.; Deshpande, Gopikrishna; Goodman, Adam M.; Wheelock, Muriah D.; Wood, Kayli B.; Denney Jr., Thomas S.; Traynham, Stephanie; Knight, David C.
2016-01-01
Background: Prior work examining emotional dysregulation observed in posttraumatic stress disorder (PTSD) has primarily been limited to fear-learning processes specific to anticipation, habituation, and extinction of threat. In contrast, the response to threat itself has not been systematically evaluated. Objective: To explore potential disruption in fear conditioning neurocircuitry in service members with PTSD, specifically in response to predictable versus unpredictable threats. Method: In the current study, active-duty U.S. Army soldiers with (PTSD group; n = 38) and without PTSD (deployment-exposed controls; DEC; n = 40), participated in a fear-conditioning study in which threat predictability was manipulated by presenting an aversive unconditioned stimulus (UCS) that was either preceded by a conditioned stimulus (i.e., predictable) or UCS alone (i.e., unpredictable). Threat expectation, skin conductance response (SCR), and functional magnetic resonance imaging (fMRI) signal to predictable and unpredictable threats (i.e., UCS) were assessed. Results: Both groups showed greater threat expectancy and diminished threat-elicited SCRs to predictable compared to unpredictable threat. Significant group differences were observed within the amygdala, hippocampus, insula, and superior and middle temporal gyri. Contrary to our predictions, the PTSD group showed a diminished threat-related response within each of these brain regions during predictable compared to unpredictable threat, whereas the DEC group showed increased activation. Conclusion: Although, the PTSD group showed greater threat-related diminution, hypersensitivity to unpredictable threat cannot be ruled out. Furthermore, pre-trauma, trait-like factors may have contributed to group differences in activation of the neurocircuitry underpinning fear conditioning. PMID:27867434
Stochastic Prediction and Feedback Control of Router Queue Size in a Virtual Network Environment
2014-09-18
STOCHASTIC PREDICTION AND FEEDBACK CONTROL OF ROUTER QUEUE SIZE IN A VIRTUAL NETWORK ENVIRONMENT THESIS Muflih Alqahtani, First...AFIT-ENG-T-14-S-10 STOCHASTIC PREDICTION AND FEEDBACK CONTROL OF ROUTER QUEUE SIZE IN A VIRTUAL NETWORK ENVIRONMENT THESIS Presented to the...UNLIMITED AFIT-ENG-T-14-S-10 STOCHASTIC PREDICTION AND FEEDBACK CONTROL OF ROUTER QUEUE SIZE IN A VIRTUAL NETWORK ENVIRONMENT Muflih Alqahtani
NASA Astrophysics Data System (ADS)
Saito, A.; Kuroishi, M.; Nakai, H.
2016-09-01
This paper concerns the noise and structural vibration caused by rotating electric machines. Special attention is given to the magnetic-force induced vibration response of interior-permanent magnet machines. In general, to accurately predict and control the vibration response caused by the electric machines, it is inevitable to model not only the magnetic force induced by the fluctuation of magnetic fields, but also the structural dynamic characteristics of the electric machines and surrounding structural components. However, due to complicated boundary conditions and material properties of the components, such as laminated magnetic cores and varnished windings, it has been a challenge to compute accurate vibration response caused by the electric machines even after their physical models are available. In this paper, we propose a highly-accurate vibration prediction method that couples experimentally-obtained discrete structural transfer functions and numerically-obtained distributed magnetic-forces. The proposed vibration synthesis methodology has been applied to predict vibration responses of an interior permanent magnet machine. The results show that the predicted vibration response of the electric machine agrees very well with the measured vibration response for several load conditions, for wide frequency ranges.
Kim, Kwang-Yon; Shin, Seong Eun; No, Kyoung Tai
2015-01-01
Objectives For successful adoption of legislation controlling registration and assessment of chemical substances, it is important to obtain sufficient toxicological experimental evidence and other related information. It is also essential to obtain a sufficient number of predicted risk and toxicity results. Particularly, methods used in predicting toxicities of chemical substances during acquisition of required data, ultimately become an economic method for future dealings with new substances. Although the need for such methods is gradually increasing, the-required information about reliability and applicability range has not been systematically provided. Methods There are various representative environmental and human toxicity models based on quantitative structure-activity relationships (QSAR). Here, we secured the 10 representative QSAR-based prediction models and its information that can make predictions about substances that are expected to be regulated. We used models that predict and confirm usability of the information expected to be collected and submitted according to the legislation. After collecting and evaluating each predictive model and relevant data, we prepared methods quantifying the scientific validity and reliability, which are essential conditions for using predictive models. Results We calculated predicted values for the models. Furthermore, we deduced and compared adequacies of the models using the Alternative non-testing method assessed for Registration, Evaluation, Authorization, and Restriction of Chemicals Substances scoring system, and deduced the applicability domains for each model. Additionally, we calculated and compared inclusion rates of substances expected to be regulated, to confirm the applicability. Conclusions We evaluated and compared the data, adequacy, and applicability of our selected QSAR-based toxicity prediction models, and included them in a database. Based on this data, we aimed to construct a system that can be used
NASA Astrophysics Data System (ADS)
Bonne, F.; Alamir, M.; Bonnay, P.
2017-02-01
This paper deals with multivariable constrained model predictive control for Warm Compression Stations (WCS). WCSs are subject to numerous constraints (limits on pressures, actuators) that need to be satisfied using appropriate algorithms. The strategy is to replace all the PID loops controlling the WCS with an optimally designed model-based multivariable loop. This new strategy leads to high stability and fast disturbance rejection such as those induced by a turbine or a compressor stop, a key-aspect in the case of large scale cryogenic refrigeration. The proposed control scheme can be used to achieve precise control of pressures in normal operation or to avoid reaching stopping criteria (such as excessive pressures) under high disturbances (such as a pulsed heat load expected to take place in future fusion reactors, expected in the cryogenic cooling systems of the International Thermonuclear Experimental Reactor ITER or the Japan Torus-60 Super Advanced fusion experiment JT-60SA). The paper details the simulator used to validate this new control scheme and the associated simulation results on the SBTs WCS. This work is partially supported through the French National Research Agency (ANR), task agreement ANR-13-SEED-0005.
Correlation of Puma airloads: Evaluation of CFD prediction methods
NASA Technical Reports Server (NTRS)
Strawn, Roger C.; Desopper, Andre; Miller, Judith; Jones, Alan
1989-01-01
A cooperative program was undertaken by research organizations in England, France, Australia and the U.S. to study the capabilities of computational fluid dynamics codes (CFD) to predict the aerodynamic loading on helicopter rotor blades. The program goal is to compare predictions with experimental data for flight tests of a research Puma helicopter with rectangular and swept tip blades. Two topics are studied. First, computed results from three CFD codes are compared for flight test cases where all three codes use the same partial inflow-angle boundary conditions. Second, one of the CFD codes (FPR) is iteratively coupled with the CAMRAD/JA helicopter performance code. These results are compared with experimental data and with an uncoupled CAMRAD/JA solution. The influence of flow field unsteadiness is found to play an important role in the blade aerodynamics. Alternate boundary conditions are suggested in order to properly model this unsteadiness in the CFD codes.
Correlation of Puma airfoils - Evaluation of CFD prediction methods
NASA Technical Reports Server (NTRS)
Strawn, Roger C.; Desopper, Andre; Miller, Judith; Jones, Alan
1989-01-01
A cooperative program was undertaken by research organizations in England, France, Australia and the U.S. to study the capabilities of computational fluid dynamics codes (CFD) to predict the aerodynamic loading on helicopter rotor blades. The program goal is to compare predictions with experimental data for flight tests of a research Puma helicopter with rectangular and swept tip blades. Two topics are studied. First, computed results from three CFD codes are compared for flight test cases where all three codes use the same partial inflow-angle boundary conditions. Second, one of the CFD codes (FPR) is iteratively coupled with the CAMRAD/JA heilcopter performance code. These results are compared with experimental data and with an uncoupled CAMRAD/JA solution. The influence of flow field unsteadiness is found to play an important role in the blade aerodynamics. Alternate boundary conditions are suggested in order to properly model this unsteadiness in the CFD codes.
Development of Statistical Methods Using Predictive Inference and Entropy.
1986-03-01
Inference and Entopy APPENDIX B: Achieab Accuracy in Parametric Estimation of B-I Multivariate spectra ii LWl OF MIUMU AND TABLES FIGURES PAGE Figre1...1986e). "Achievable Accuracy in Parametric Estimation of Multivariate Spec- tra’. Draft. Larimore, WE. (1983a). ’Predictive inference, sufficiency... PARAMETRIC ESTIMATION OF MULTIVARIATE SPECTRA By Wallace E. Larimore Scientific Systems Inc., Cambridge, Massachusetts, U.SA. Research Sponsored by the
DO TIE LABORATORY BASED ASSESSMENT METHODS REALLY PREDICT FIELD EFFECTS?
Sediment Toxicity Identification and Evaluation (TIE) methods have been developed for both porewaters and whole sediments. These relatively simple laboratory methods are designed to identify specific toxicants or classes of toxicants in sediments; however, the question of whethe...
Prediction of Solvent Physical Properties using the Hierarchical Clustering Method
Recently a QSAR (Quantitative Structure Activity Relationship) method, the hierarchical clustering method, was developed to estimate acute toxicity values for large, diverse datasets. This methodology has now been applied to the estimate solvent physical properties including sur...
Ceramic Matrix Composites (CMC) Life Prediction Method Development
NASA Technical Reports Server (NTRS)
Levine, Stanley R.; Calomino, Anthony M.; Ellis, John R.; Halbig, Michael C.; Mital, Subodh K.; Murthy, Pappu L.; Opila, Elizabeth J.; Thomas, David J.; Thomas-Ogbuji, Linus U.; Verrilli, Michael J.
2000-01-01
Advanced launch systems (e.g., Reusable Launch Vehicle and other Shuttle Class concepts, Rocket-Based Combine Cycle, etc.), and interplanetary vehicles will very likely incorporate fiber reinforced ceramic matrix composites (CMC) in critical propulsion components. The use of CMC is highly desirable to save weight, to improve reuse capability, and to increase performance. CMC candidate applications are mission and cycle dependent and may include turbopump rotors, housings, combustors, nozzle injectors, exit cones or ramps, and throats. For reusable and single mission uses, accurate prediction of life is critical to mission success. The tools to accomplish life prediction are very immature and not oriented toward the behavior of carbon fiber reinforced silicon carbide (C/SiC), the primary system of interest for a variety of space propulsion applications. This paper describes an approach to satisfy the need to develop an integrated life prediction system for CMC that addresses mechanical durability due to cyclic and steady thermomechanical loads, and takes into account the impact of environmental degradation.
Online prediction model based on the SVD-KPCA method.
Elaissi, Ilyes; Jaffel, Ines; Taouali, Okba; Messaoud, Hassani
2013-01-01
This paper proposes a new method for online identification of a nonlinear system modelled on Reproducing Kernel Hilbert Space (RKHS). The proposed SVD-KPCA method uses the Singular Value Decomposition (SVD) technique to update the principal components. Then we use the Reduced Kernel Principal Component Analysis (RKPCA) to approach the principal components which represent the observations selected by the KPCA method.
Integrated CFD and Controls Analysis Interface for High Accuracy Liquid Propellant Slosh Predictions
NASA Technical Reports Server (NTRS)
Marsell, Brandon; Griffin, David; Schallhorn, Paul; Roth, Jacob
2012-01-01
Coupling computational fluid dynamics (CFD) with a controls analysis tool elegantly allows for high accuracy predictions of the interaction between sloshing liquid propellants and the control system of a launch vehicle. Instead of relying on mechanical analogs which are n0t va lid during all stages of flight, this method allows for a direct link between the vehicle dynamic environments calculated by the solver in the controls analysis tool to the fluid now equations solved by the CFD code. This paper describes such a coupling methodology, presents the results of a series of test cases, and compares said results against equivalent results from extensively validated tools. The coupling methodology, described herein, has proven to be highly accurate in a variety of different cases.
NASA Technical Reports Server (NTRS)
Marsell, Brandon; Griffin, David; Schallhorn, Dr. Paul; Roth, Jacob
2012-01-01
Coupling computational fluid dynamics (CFD) with a controls analysis tool elegantly allows for high accuracy predictions of the interaction between sloshing liquid propellants and th e control system of a launch vehicle. Instead of relying on mechanical analogs which are not valid during aU stages of flight, this method allows for a direct link between the vehicle dynamic environments calculated by the solver in the controls analysis tool to the fluid flow equations solved by the CFD code. This paper describes such a coupling methodology, presents the results of a series of test cases, and compares said results against equivalent results from extensively validated tools. The coupling methodology, described herein, has proven to be highly accurate in a variety of different cases.
Jet Engine Noise Generation, Prediction and Control. Chapter 86
NASA Technical Reports Server (NTRS)
Huff, Dennis L.; Envia, Edmane
2004-01-01
. An example of this type of engine is shown in Figure IC, which is a schematic of the Honeywell T55 engine that powers the CH-47 Chinook helicopter. Since the noise from the propellers or helicopter rotors is usually dominant for turbo-shaft engines, less attention has been paid to these engines in so far as community noise considerations are concerned. This chapter will concentrate mostly on turbofan engine noise and will highlight common methods for their noise prediction and reduction.
Maternal Illusory Control Predicts Socialization Strategies and Toddler Compliance.
ERIC Educational Resources Information Center
Donovan, Wilberta L.; Leavitt, Lewis A.; Walsh, Reghan O.
2000-01-01
Examined the relation between mothers' perception of their capacity for controlling infant crying and a later measure of compliance with parent requests by toddlers. Found that toddlers of mothers in the low and high illusion of control (overestimating of maternal control) groups were more likely to be highly defiant than were toddlers of mothers…
Active control: an investigation method for combustion instabilities
NASA Astrophysics Data System (ADS)
Poinsot, T.; Yip, B.; Veynante, D.; Trouvé, A.; Samaniego, J. M.; Candel, S.
1992-07-01
Closed-loop active control methods and their application to combustion instabilities are discussed. In these methods the instability development is impeded with a feedback control loop: the signal provided by a sensor monitoring the flame or pressure oscillations is processed and sent back to actuators mounted on the combustor or on the feeding system. Different active control systems tested on a non-premixed multiple-flame turbulent combustor are described. These systems can suppress all unstable plane modes of oscillation (i.e. low frequency modes). The active instability control (AIC) also constitutes an original and powerful technique for studies of mechanisms leading to instability or resulting from the instability. Two basic applications of this kind are described. In the first case the flame is initially controlled with AIC, the feedback loop is then switched off and the growth of the instability is analysed through high speed Schlieren cinematography and simultaneous sound pressure and reaction rate measurements. Three phases are identified during th growth of the oscillations: (1) a linear phase where acoustic waves induce a flapping motion of the flame sheets without interaction between sheets, (2) a modulation phase, where flame sheets interact randomly and (3) a nonlinear phase where the flame sheets are broken and a limit cycle is reached. In the second case we investigate different types of flame extinctions associated with combustion instability. It is shown that pressure oscillations may lead to partial or total extinctions. Extinctions occur in various forms but usually follow a rapid growth of pressure oscillations. The flame is extinguished during the modulation phase observed in the initiation experiments. In these studies devoted to transient instability phenomena, the control system constitutes a unique investigation tool because it is difficult to obtain the same information by other means. Implications for modelling and prediction of
NASA Astrophysics Data System (ADS)
Cho, Jaepil; Shin, Chang-Min; Choi, Hwan-Kyu; Kim, Kyong-Hyeon; Choi, Ji-Yong
2016-10-01
The APEC Climate Center (APCC) produces climate prediction information utilizing a multi-climate model ensemble (MME) technique. In this study, four different downscaling methods, in accordance with the degree of utilizing the seasonal climate prediction information, were developed in order to improve predictability and to refine the spatial scale. These methods include: (1) the Simple Bias Correction (SBC) method, which directly uses APCC's dynamic prediction data with a 3 to 6 month lead time; (2) the Moving Window Regression (MWR) method, which indirectly utilizes dynamic prediction data; (3) the Climate Index Regression (CIR) method, which predominantly uses observation-based climate indices; and (4) the Integrated Time Regression (ITR) method, which uses predictors selected from both CIR and MWR. Then, a sampling-based temporal downscaling was conducted using the Mahalanobis distance method in order to create daily weather inputs to the Soil and Water Assessment Tool (SWAT) model. Long-term predictability of water quality within the Wecheon watershed of the Nakdong River Basin was evaluated. According to the Korean Ministry of Environment's Provisions of Water Quality Prediction and Response Measures, modeling-based predictability was evaluated by using 3-month lead prediction data issued in February, May, August, and November as model input of SWAT. Finally, an integrated approach, which takes into account various climate information and downscaling methods for water quality prediction, was presented. This integrated approach can be used to prevent potential problems caused by extreme climate in advance.
Data quality assurance and control in cognitive research: Lessons learned from the PREDICT-HD study.
Westervelt, Holly James; Bernier, Rachel A; Faust, Melanie; Gover, Mary; Bockholt, H Jeremy; Zschiegner, Roland; Long, Jeffrey D; Paulsen, Jane S
2017-02-17
We discuss the strategies employed in data quality control and quality assurance for the cognitive core of Neurobiological Predictors of Huntington's Disease (PREDICT-HD), a long-term observational study of over 1,000 participants with prodromal Huntington disease. In particular, we provide details regarding the training and continual evaluation of cognitive examiners, methods for error corrections, and strategies to minimize errors in the data. We present five important lessons learned to help other researchers avoid certain assumptions that could potentially lead to inaccuracies in their cognitive data.
Hurricane prediction and control: impact of large computers.
Hammond, A L
1973-08-17
This is the third is a continuing series of articles on natural disasters, their prediction and mnodification, and progress in understanding the physical bases of these phenomena. Two earlier articles (Science, 25 May, p. 851, and 1 June, p. 940) reported advances in earthquake prediction. Hurricanes are the subject here. Generally less devastating than major earthquakes-although a single hurricane in 1970 killed an estimated 200,000 persons in Bangladesh-these storms are still the most destructive of all atmospheric phenomena. A recent report of the National Academy of Sciences (see box) recommends that efforts to modify hurricanes and other severe storms become a national goal.
Synchronous Control Method and Realization of Automated Pharmacy Elevator
NASA Astrophysics Data System (ADS)
Liu, Xiang-Quan
Firstly, the control method of elevator's synchronous motion is provided, the synchronous control structure of double servo motor based on PMAC is accomplished. Secondly, synchronous control program of elevator is implemented by using PMAC linear interpolation motion model and position error compensation method. Finally, the PID parameters of servo motor were adjusted. The experiment proves the control method has high stability and reliability.
Methods of Si based ceramic components volatilization control in a gas turbine engine
Garcia-Crespo, Andres Jose; Delvaux, John; Dion Ouellet, Noemie
2016-09-06
A method of controlling volatilization of silicon based components in a gas turbine engine includes measuring, estimating and/or predicting a variable related to operation of the gas turbine engine; correlating the variable to determine an amount of silicon to control volatilization of the silicon based components in the gas turbine engine; and injecting silicon into the gas turbine engine to control volatilization of the silicon based components. A gas turbine with a compressor, combustion system, turbine section and silicon injection system may be controlled by a controller that implements the control method.
Underwater Sound Propagation Modeling Methods for Predicting Marine Animal Exposure.
Hamm, Craig A; McCammon, Diana F; Taillefer, Martin L
2016-01-01
The offshore exploration and production (E&P) industry requires comprehensive and accurate ocean acoustic models for determining the exposure of marine life to the high levels of sound used in seismic surveys and other E&P activities. This paper reviews the types of acoustic models most useful for predicting the propagation of undersea noise sources and describes current exposure models. The severe problems caused by model sensitivity to the uncertainty in the environment are highlighted to support the conclusion that it is vital that risk assessments include transmission loss estimates with statistical measures of confidence.
Method of predicting a change in an economy
Pryor, Richard J; Basu, Nipa
2006-01-10
An economy whose activity is to be predicted comprises a plurality of decision makers. Decision makers include, for example, households, government, industry, and banks. The decision makers are represented by agents, where an agent can represent one or more decision makers. Each agent has decision rules that determine the agent's actions. Each agent can affect the economy by affecting variable conditions characteristic of the economy or the internal state of other agents. Agents can communicate actions through messages. On a multiprocessor computer, the agents can be assigned to processing elements.
Method for controlling an internal combustion engine
Krebs, S.; Achleitner, E.
1993-07-13
In a method for controlling an internal combustion engine having cylinders operating in cycles and an intake tube for intake air, which includes determining a fuel mass to be injected into each cylinder for each cycle as a function of operating parameters of the internal combustion engine by reading a basic fuel value out of a basic family of characteristics and correcting the basic fuel value as a function of a temperature of the intake air, and multiplying the basic fuel value by a correction factor FK = A/B, wherein the denominator B is a temperature value, the improvement is described which comprises: selecting the variables of the basic family of characteristics as a pressure in the intake tube and an rpm, and reading a correction temperature contained in the temperature value out of a family of temperature characteristics in dependence on a variable dependent on an air flow and of a heating temperature being determinative for heating up the intake air in the intake tube.
Simple numerical method for predicting steady compressible flows
NASA Technical Reports Server (NTRS)
Vonlavante, Ernst; Nelson, N. Duane
1986-01-01
A numerical method for solving the isenthalpic form of the governing equations for compressible viscous and inviscid flows was developed. The method was based on the concept of flux vector splitting in its implicit form. The method was tested on several demanding inviscid and viscous configurations. Two different forms of the implicit operator were investigated. The time marching to steady state was accelerated by the implementation of the multigrid procedure. Its various forms very effectively increased the rate of convergence of the present scheme. High quality steady state results were obtained in most of the test cases; these required only short computational times due to the relative efficiency of the basic method.
Internal combustion engine and method for control
Brennan, Daniel G
2013-05-21
In one exemplary embodiment of the invention an internal combustion engine includes a piston disposed in a cylinder, a valve configured to control flow of air into the cylinder and an actuator coupled to the valve to control a position of the valve. The internal combustion engine also includes a controller coupled to the actuator, wherein the controller is configured to close the valve when an uncontrolled condition for the internal engine is determined.
Zhang, Jianming
2017-03-01
An improved proportional-integral-derivative (PID) controller based on predictive functional control (PFC) is proposed and tested on the chamber pressure in an industrial coke furnace. The proposed design is motivated by the fact that PID controllers for industrial processes with time delay may not achieve the desired control performance because of the unavoidable model/plant mismatches, while model predictive control (MPC) is suitable for such situations. In this paper, PID control and PFC algorithm are combined to form a new PID controller that has the basic characteristic of PFC algorithm and at the same time, the simple structure of traditional PID controller. The proposed controller was tested in terms of set-point tracking and disturbance rejection, where the obtained results showed that the proposed controller had the better ensemble performance compared with traditional PID controllers.
Predictive Display Design for a Two-Axis Control Task.
1982-08-01
elementary processes (Sheridan and Rouse 1971, Rouse 1973, Van Heusden 1977). The problem is particularly acute in flight systems and missile guidance...26. VAN HEUSDEN , A R (1977) Models for human prediction of process variables. In Proceedings of Symposium on Human Operators and Simulation
Specification and prediction of nickel mobilization using artificial intelligence methods
NASA Astrophysics Data System (ADS)
Gholami, Raoof; Ziaii, Mansour; Ardejani, Faramarz; Maleki, Shahoo
2011-12-01
Groundwater and soil pollution from pyrite oxidation, acid mine drainage generation, and release and transport of toxic metals are common environmental problems associated with the mining industry. Nickel is one toxic metal considered to be a key pollutant in some mining setting; to date, its formation mechanism has not yet been fully evaluated. The goals of this study are 1) to describe the process of nickel mobilization in waste dumps by introducing a novel conceptual model, and 2) to predict nickel concentration using two algorithms, namely the support vector machine (SVM) and the general regression neural network (GRNN). The results obtained from this study have shown that considerable amount of nickel concentration can be arrived into the water flow system during the oxidation of pyrite and subsequent Acid Drainage (AMD) generation. It was concluded that pyrite, water, and oxygen are the most important factors for nickel pollution generation while pH condition, SO4, HCO3, TDS, EC, Mg, Fe, Zn, and Cu are measured quantities playing significant role in nickel mobilization. SVM and GRNN have predicted nickel concentration with a high degree of accuracy. Hence, SVM and GRNN can be considered as appropriate tools for environmental risk assessment.
Verifying a computational method for predicting extreme ground motion
Harris, R.A.; Barall, M.; Andrews, D.J.; Duan, B.; Ma, S.; Dunham, E.M.; Gabriel, A.-A.; Kaneko, Y.; Kase, Y.; Aagaard, B.T.; Oglesby, D.D.; Ampuero, J.-P.; Hanks, T.C.; Abrahamson, N.
2011-01-01
In situations where seismological data is rare or nonexistent, computer simulations may be used to predict ground motions caused by future earthquakes. This is particularly practical in the case of extreme ground motions, where engineers of special buildings may need to design for an event that has not been historically observed but which may occur in the far-distant future. Once the simulations have been performed, however, they still need to be tested. The SCEC-USGS dynamic rupture code verification exercise provides a testing mechanism for simulations that involve spontaneous earthquake rupture. We have performed this examination for the specific computer code that was used to predict maximum possible ground motion near Yucca Mountain. Our SCEC-USGS group exercises have demonstrated that the specific computer code that was used for the Yucca Mountain simulations produces similar results to those produced by other computer codes when tackling the same science problem. We also found that the 3D ground motion simulations produced smaller ground motions than the 2D simulations.
Predicting Academic Library Circulations: A Forecasting Methods Competition.
ERIC Educational Resources Information Center
Brooks, Terrence A.; Forys, John W., Jr.
Based on sample data representing five years of monthly circulation totals from 50 academic libraries in Illinois, Iowa, Michigan, Minnesota, Missouri, and Ohio, a study was conducted to determine the most efficient smoothing forecasting methods for academic libraries. Smoothing forecasting methods were chosen because they have been characterized…
Model for predicting thermal conductivity using transient hot wire method
NASA Astrophysics Data System (ADS)
Kumar, Sublania Harish; Singh K., J.; Somani A., K.
2016-05-01
The use of the hot wire method for estimating the thermal conductivity measurement has recently known a significant increase. However, this method is theoretically not applicable to materials. Thermal conductivity values are necessary whenever a heat transfer problem is to be evaluated.