Sample records for predictive control system

  1. Predictive Control of Networked Multiagent Systems via Cloud Computing.

    PubMed

    Liu, Guo-Ping

    2017-01-18

    This paper studies the design and analysis of networked multiagent predictive control systems via cloud computing. A cloud predictive control scheme for networked multiagent systems (NMASs) is proposed to achieve consensus and stability simultaneously and to compensate for network delays actively. The design of the cloud predictive controller for NMASs is detailed. The analysis of the cloud predictive control scheme gives the necessary and sufficient conditions of stability and consensus of closed-loop networked multiagent control systems. The proposed scheme is verified to characterize the dynamical behavior and control performance of NMASs through simulations. The outcome provides a foundation for the development of cooperative and coordinative control of NMASs and its applications.

  2. Data-Based Predictive Control with Multirate Prediction Step

    NASA Technical Reports Server (NTRS)

    Barlow, Jonathan S.

    2010-01-01

    Data-based predictive control is an emerging control method that stems from Model Predictive Control (MPC). MPC computes current control action based on a prediction of the system output a number of time steps into the future and is generally derived from a known model of the system. Data-based predictive control has the advantage of deriving predictive models and controller gains from input-output data. Thus, a controller can be designed from the outputs of complex simulation code or a physical system where no explicit model exists. If the output data happens to be corrupted by periodic disturbances, the designed controller will also have the built-in ability to reject these disturbances without the need to know them. When data-based predictive control is implemented online, it becomes a version of adaptive control. One challenge of MPC is computational requirements increasing with prediction horizon length. This paper develops a closed-loop dynamic output feedback controller that minimizes a multi-step-ahead receding-horizon cost function with multirate prediction step. One result is a reduced influence of prediction horizon and the number of system outputs on the computational requirements of the controller. Another result is an emphasis on portions of the prediction window that are sampled more frequently. A third result is the ability to include more outputs in the feedback path than in the cost function.

  3. Modeling pilot interaction with automated digital avionics systems: Guidance and control algorithms for contour and nap-of-the-Earth flight

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.

    1990-01-01

    A collection of technical papers are presented that cover modeling pilot interaction with automated digital avionics systems and guidance and control algorithms for contour and nap-of-the-earth flight. The titles of the papers presented are as follows: (1) Automation effects in a multiloop manual control system; (2) A qualitative model of human interaction with complex dynamic systems; (3) Generalized predictive control of dynamic systems; (4) An application of generalized predictive control to rotorcraft terrain-following flight; (5) Self-tuning generalized predictive control applied to terrain-following flight; and (6) Precise flight path control using a predictive algorithm.

  4. Generalized Predictive and Neural Generalized Predictive Control of Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Kelkar, Atul G.

    2000-01-01

    The research work presented in this thesis addresses the problem of robust control of uncertain linear and nonlinear systems using Neural network-based Generalized Predictive Control (NGPC) methodology. A brief overview of predictive control and its comparison with Linear Quadratic (LQ) control is given to emphasize advantages and drawbacks of predictive control methods. It is shown that the Generalized Predictive Control (GPC) methodology overcomes the drawbacks associated with traditional LQ control as well as conventional predictive control methods. It is shown that in spite of the model-based nature of GPC it has good robustness properties being special case of receding horizon control. The conditions for choosing tuning parameters for GPC to ensure closed-loop stability are derived. A neural network-based GPC architecture is proposed for the control of linear and nonlinear uncertain systems. A methodology to account for parametric uncertainty in the system is proposed using on-line training capability of multi-layer neural network. Several simulation examples and results from real-time experiments are given to demonstrate the effectiveness of the proposed methodology.

  5. Simulation analysis of adaptive cruise prediction control

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Cui, Sheng Min

    2017-09-01

    Predictive control is suitable for multi-variable and multi-constraint system control.In order to discuss the effect of predictive control on the vehicle longitudinal motion, this paper establishes the expected spacing model by combining variable pitch spacing and the of safety distance strategy. The model predictive control theory and the optimization method based on secondary planning are designed to obtain and track the best expected acceleration trajectory quickly. Simulation models are established including predictive and adaptive fuzzy control. Simulation results show that predictive control can realize the basic function of the system while ensuring the safety. The application of predictive and fuzzy adaptive algorithm in cruise condition indicates that the predictive control effect is better.

  6. Inferential modeling and predictive feedback control in real-time motion compensation using the treatment couch during radiotherapy

    NASA Astrophysics Data System (ADS)

    Qiu, Peng; D'Souza, Warren D.; McAvoy, Thomas J.; Liu, K. J. Ray

    2007-09-01

    Tumor motion induced by respiration presents a challenge to the reliable delivery of conformal radiation treatments. Real-time motion compensation represents the technologically most challenging clinical solution but has the potential to overcome the limitations of existing methods. The performance of a real-time couch-based motion compensation system is mainly dependent on two aspects: the ability to infer the internal anatomical position and the performance of the feedback control system. In this paper, we propose two novel methods for the two aspects respectively, and then combine the proposed methods into one system. To accurately estimate the internal tumor position, we present partial-least squares (PLS) regression to predict the position of the diaphragm using skin-based motion surrogates. Four radio-opaque markers were placed on the abdomen of patients who underwent fluoroscopic imaging of the diaphragm. The coordinates of the markers served as input variables and the position of the diaphragm served as the output variable. PLS resulted in lower prediction errors compared with standard multiple linear regression (MLR). The performance of the feedback control system depends on the system dynamics and dead time (delay between the initiation and execution of the control action). While the dynamics of the system can be inverted in a feedback control system, the dead time cannot be inverted. To overcome the dead time of the system, we propose a predictive feedback control system by incorporating forward prediction using least-mean-square (LMS) and recursive least square (RLS) filtering into the couch-based control system. Motion data were obtained using a skin-based marker. The proposed predictive feedback control system was benchmarked against pure feedback control (no forward prediction) and resulted in a significant performance gain. Finally, we combined the PLS inference model and the predictive feedback control to evaluate the overall performance of the feedback control system. Our results show that, with the tumor motion unknown but inferred by skin-based markers through the PLS model, the predictive feedback control system was able to effectively compensate intra-fraction motion.

  7. An improved predictive functional control method with application to PMSM systems

    NASA Astrophysics Data System (ADS)

    Li, Shihua; Liu, Huixian; Fu, Wenshu

    2017-01-01

    In common design of prediction model-based control method, usually disturbances are not considered in the prediction model as well as the control design. For the control systems with large amplitude or strong disturbances, it is difficult to precisely predict the future outputs according to the conventional prediction model, and thus the desired optimal closed-loop performance will be degraded to some extent. To this end, an improved predictive functional control (PFC) method is developed in this paper by embedding disturbance information into the system model. Here, a composite prediction model is thus obtained by embedding the estimated value of disturbances, where disturbance observer (DOB) is employed to estimate the lumped disturbances. So the influence of disturbances on system is taken into account in optimisation procedure. Finally, considering the speed control problem for permanent magnet synchronous motor (PMSM) servo system, a control scheme based on the improved PFC method is designed to ensure an optimal closed-loop performance even in the presence of disturbances. Simulation and experimental results based on a hardware platform are provided to confirm the effectiveness of the proposed algorithm.

  8. Investigation of energy management strategies for photovoltaic systems - A predictive control algorithm

    NASA Technical Reports Server (NTRS)

    Cull, R. C.; Eltimsahy, A. H.

    1983-01-01

    The present investigation is concerned with the formulation of energy management strategies for stand-alone photovoltaic (PV) systems, taking into account a basic control algorithm for a possible predictive, (and adaptive) controller. The control system controls the flow of energy in the system according to the amount of energy available, and predicts the appropriate control set-points based on the energy (insolation) available by using an appropriate system model. Aspects of adaptation to the conditions of the system are also considered. Attention is given to a statistical analysis technique, the analysis inputs, the analysis procedure, and details regarding the basic control algorithm.

  9. Deadbeat Predictive Controllers

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Phan, Minh

    1997-01-01

    Several new computational algorithms are presented to compute the deadbeat predictive control law. The first algorithm makes use of a multi-step-ahead output prediction to compute the control law without explicitly calculating the controllability matrix. The system identification must be performed first and then the predictive control law is designed. The second algorithm uses the input and output data directly to compute the feedback law. It combines the system identification and the predictive control law into one formulation. The third algorithm uses an observable-canonical form realization to design the predictive controller. The relationship between all three algorithms is established through the use of the state-space representation. All algorithms are applicable to multi-input, multi-output systems with disturbance inputs. In addition to the feedback terms, feed forward terms may also be added for disturbance inputs if they are measurable. Although the feedforward terms do not influence the stability of the closed-loop feedback law, they enhance the performance of the controlled system.

  10. Robot trajectory tracking with self-tuning predicted control

    NASA Technical Reports Server (NTRS)

    Cui, Xianzhong; Shin, Kang G.

    1988-01-01

    A controller that combines self-tuning prediction and control is proposed for robot trajectory tracking. The controller has two feedback loops: one is used to minimize the prediction error, and the other is designed to make the system output track the set point input. Because the velocity and position along the desired trajectory are given and the future output of the system is predictable, a feedforward loop can be designed for robot trajectory tracking with self-tuning predicted control (STPC). Parameters are estimated online to account for the model uncertainty and the time-varying property of the system. The authors describe the principle of STPC, analyze the system performance, and discuss the simplification of the robot dynamic equations. To demonstrate its utility and power, the controller is simulated for a Stanford arm.

  11. Artificial neural network implementation of a near-ideal error prediction controller

    NASA Technical Reports Server (NTRS)

    Mcvey, Eugene S.; Taylor, Lynore Denise

    1992-01-01

    A theory has been developed at the University of Virginia which explains the effects of including an ideal predictor in the forward loop of a linear error-sampled system. It has been shown that the presence of this ideal predictor tends to stabilize the class of systems considered. A prediction controller is merely a system which anticipates a signal or part of a signal before it actually occurs. It is understood that an exact prediction controller is physically unrealizable. However, in systems where the input tends to be repetitive or limited, (i.e., not random) near ideal prediction is possible. In order for the controller to act as a stability compensator, the predictor must be designed in a way that allows it to learn the expected error response of the system. In this way, an unstable system will become stable by including the predicted error in the system transfer function. Previous and current prediction controller include pattern recognition developments and fast-time simulation which are applicable to the analysis of linear sampled data type systems. The use of pattern recognition techniques, along with a template matching scheme, has been proposed as one realizable type of near-ideal prediction. Since many, if not most, systems are repeatedly subjected to similar inputs, it was proposed that an adaptive mechanism be used to 'learn' the correct predicted error response. Once the system has learned the response of all the expected inputs, it is necessary only to recognize the type of input with a template matching mechanism and then to use the correct predicted error to drive the system. Suggested here is an alternate approach to the realization of a near-ideal error prediction controller, one designed using Neural Networks. Neural Networks are good at recognizing patterns such as system responses, and the back-propagation architecture makes use of a template matching scheme. In using this type of error prediction, it is assumed that the system error responses be known for a particular input and modeled plant. These responses are used in the error prediction controller. An analysis was done on the general dynamic behavior that results from including a digital error predictor in a control loop and these were compared to those including the near-ideal Neural Network error predictor. This analysis was done for a second and third order system.

  12. Control, Filtering and Prediction for Phased Arrays in Directed Energy Systems

    DTIC Science & Technology

    2016-04-30

    adaptive optics. 15. SUBJECT TERMS control, filtering, prediction, system identification, adaptive optics, laser beam pointing, target tracking, phase... laser beam control; furthermore, wavefront sensors are plagued by the difficulty of maintaining the required alignment and focusing in dynamic mission...developed new methods for filtering, prediction and system identification in adaptive optics for high energy laser systems including phased arrays. The

  13. Broadband Noise Control Using Predictive Techniques

    NASA Technical Reports Server (NTRS)

    Eure, Kenneth W.; Juang, Jer-Nan

    1997-01-01

    Predictive controllers have found applications in a wide range of industrial processes. Two types of such controllers are generalized predictive control and deadbeat control. Recently, deadbeat control has been augmented to include an extended horizon. This modification, named deadbeat predictive control, retains the advantage of guaranteed stability and offers a novel way of control weighting. This paper presents an application of both predictive control techniques to vibration suppression of plate modes. Several system identification routines are presented. Both algorithms are outlined and shown to be useful in the suppression of plate vibrations. Experimental results are given and the algorithms are shown to be applicable to non- minimal phase systems.

  14. Adaptive Data-based Predictive Control for Short Take-off and Landing (STOL) Aircraft

    NASA Technical Reports Server (NTRS)

    Barlow, Jonathan Spencer; Acosta, Diana Michelle; Phan, Minh Q.

    2010-01-01

    Data-based Predictive Control is an emerging control method that stems from Model Predictive Control (MPC). MPC computes current control action based on a prediction of the system output a number of time steps into the future and is generally derived from a known model of the system. Data-based predictive control has the advantage of deriving predictive models and controller gains from input-output data. Thus, a controller can be designed from the outputs of complex simulation code or a physical system where no explicit model exists. If the output data happens to be corrupted by periodic disturbances, the designed controller will also have the built-in ability to reject these disturbances without the need to know them. When data-based predictive control is implemented online, it becomes a version of adaptive control. The characteristics of adaptive data-based predictive control are particularly appropriate for the control of nonlinear and time-varying systems, such as Short Take-off and Landing (STOL) aircraft. STOL is a capability of interest to NASA because conceptual Cruise Efficient Short Take-off and Landing (CESTOL) transport aircraft offer the ability to reduce congestion in the terminal area by utilizing existing shorter runways at airports, as well as to lower community noise by flying steep approach and climb-out patterns that reduce the noise footprint of the aircraft. In this study, adaptive data-based predictive control is implemented as an integrated flight-propulsion controller for the outer-loop control of a CESTOL-type aircraft. Results show that the controller successfully tracks velocity while attempting to maintain a constant flight path angle, using longitudinal command, thrust and flap setting as the control inputs.

  15. Model predictive control of P-time event graphs

    NASA Astrophysics Data System (ADS)

    Hamri, H.; Kara, R.; Amari, S.

    2016-12-01

    This paper deals with model predictive control of discrete event systems modelled by P-time event graphs. First, the model is obtained by using the dater evolution model written in the standard algebra. Then, for the control law, we used the finite-horizon model predictive control. For the closed-loop control, we used the infinite-horizon model predictive control (IH-MPC). The latter is an approach that calculates static feedback gains which allows the stability of the closed-loop system while respecting the constraints on the control vector. The problem of IH-MPC is formulated as a linear convex programming subject to a linear matrix inequality problem. Finally, the proposed methodology is applied to a transportation system.

  16. Fuzzy Integration of Support Vector Regression Models for Anticipatory Control of Complex Energy Systems

    DOE PAGES

    Alamaniotis, Miltiadis; Agarwal, Vivek

    2014-04-01

    Anticipatory control systems are a class of systems whose decisions are based on predictions for the future state of the system under monitoring. Anticipation denotes intelligence and is an inherent property of humans that make decisions by projecting in future. Likewise, artificially intelligent systems equipped with predictive functions may be utilized for anticipating future states of complex systems, and therefore facilitate automated control decisions. Anticipatory control of complex energy systems is paramount to their normal and safe operation. In this paper a new intelligent methodology integrating fuzzy inference with support vector regression is introduced. Our proposed methodology implements an anticipatorymore » system aiming at controlling energy systems in a robust way. Initially a set of support vector regressors is adopted for making predictions over critical system parameters. Furthermore, the predicted values are fed into a two stage fuzzy inference system that makes decisions regarding the state of the energy system. The inference system integrates the individual predictions into a single one at its first stage, and outputs a decision together with a certainty factor computed at its second stage. The certainty factor is an index of the significance of the decision. The proposed anticipatory control system is tested on a real world set of data obtained from a complex energy system, describing the degradation of a turbine. Results exhibit the robustness of the proposed system in controlling complex energy systems.« less

  17. Predictive control strategies for wind turbine system based on permanent magnet synchronous generator.

    PubMed

    Maaoui-Ben Hassine, Ikram; Naouar, Mohamed Wissem; Mrabet-Bellaaj, Najiba

    2016-05-01

    In this paper, Model Predictive Control and Dead-beat predictive control strategies are proposed for the control of a PMSG based wind energy system. The proposed MPC considers the model of the converter-based system to forecast the possible future behavior of the controlled variables. It allows selecting the voltage vector to be applied that leads to a minimum error by minimizing a predefined cost function. The main features of the MPC are low current THD and robustness against parameters variations. The Dead-beat predictive control is based on the system model to compute the optimum voltage vector that ensures zero-steady state error. The optimum voltage vector is then applied through Space Vector Modulation (SVM) technique. The main advantages of the Dead-beat predictive control are low current THD and constant switching frequency. The proposed control techniques are presented and detailed for the control of back-to-back converter in a wind turbine system based on PMSG. Simulation results (under Matlab-Simulink software environment tool) and experimental results (under developed prototyping platform) are presented in order to show the performances of the considered control strategies. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Extended active disturbance rejection controller

    NASA Technical Reports Server (NTRS)

    Tian, Gang (Inventor); Gao, Zhiqiang (Inventor)

    2012-01-01

    Multiple designs, systems, methods and processes for controlling a system or plant using an extended active disturbance rejection control (ADRC) based controller are presented. The extended ADRC controller accepts sensor information from the plant. The sensor information is used in conjunction with an extended state observer in combination with a predictor that estimates and predicts the current state of the plant and a co-joined estimate of the system disturbances and system dynamics. The extended state observer estimates and predictions are used in conjunction with a control law that generates an input to the system based in part on the extended state observer estimates and predictions as well as a desired trajectory for the plant to follow.

  19. Extended Active Disturbance Rejection Controller

    NASA Technical Reports Server (NTRS)

    Gao, Zhiqiang (Inventor); Tian, Gang (Inventor)

    2016-01-01

    Multiple designs, systems, methods and processes for controlling a system or plant using an extended active disturbance rejection control (ADRC) based controller are presented. The extended ADRC controller accepts sensor information from the plant. The sensor information is used in conjunction with an extended state observer in combination with a predictor that estimates and predicts the current state of the plant and a co-joined estimate of the system disturbances and system dynamics. The extended state observer estimates and predictions are used in conjunction with a control law that generates an input to the system based in part on the extended state observer estimates and predictions as well as a desired trajectory for the plant to follow.

  20. Extended Active Disturbance Rejection Controller

    NASA Technical Reports Server (NTRS)

    Tian, Gang (Inventor); Gao, Zhiqiang (Inventor)

    2014-01-01

    Multiple designs, systems, methods and processes for controlling a system or plant using an extended active disturbance rejection control (ADRC) based controller are presented. The extended ADRC controller accepts sensor information from the plant. The sensor information is used in conjunction with an extended state observer in combination with a predictor that estimates and predicts the current state of the plant and a co-joined estimate of the system disturbances and system dynamics. The extended state observer estimates and predictions are used in conjunction with a control law that generates an input to the system based in part on the extended state observer estimates and predictions as well as a desired trajectory for the plant to follow.

  1. Recursive Deadbeat Controller Design

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Phan, Minh Q.

    1997-01-01

    This paper presents a recursive algorithm for a deadbeat predictive controller design. The method combines together the concepts of system identification and deadbeat controller designs. It starts with the multi-step output prediction equation and derives the control force in terms of past input and output time histories. The formulation thus derived satisfies simultaneously system identification and deadbeat controller design requirements. As soon as the coefficient matrices are identified satisfying the output prediction equation, no further work is required to compute the deadbeat control gain matrices. The method can be implemented recursively just as any typical recursive system identification techniques.

  2. Neural network based automatic limit prediction and avoidance system and method

    NASA Technical Reports Server (NTRS)

    Calise, Anthony J. (Inventor); Prasad, Jonnalagadda V. R. (Inventor); Horn, Joseph F. (Inventor)

    2001-01-01

    A method for performance envelope boundary cueing for a vehicle control system comprises the steps of formulating a prediction system for a neural network and training the neural network to predict values of limited parameters as a function of current control positions and current vehicle operating conditions. The method further comprises the steps of applying the neural network to the control system of the vehicle, where the vehicle has capability for measuring current control positions and current vehicle operating conditions. The neural network generates a map of current control positions and vehicle operating conditions versus the limited parameters in a pre-determined vehicle operating condition. The method estimates critical control deflections from the current control positions required to drive the vehicle to a performance envelope boundary. Finally, the method comprises the steps of communicating the critical control deflection to the vehicle control system; and driving the vehicle control system to provide a tactile cue to an operator of the vehicle as the control positions approach the critical control deflections.

  3. Anticipatory Monitoring and Control of Complex Systems using a Fuzzy based Fusion of Support Vector Regressors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miltiadis Alamaniotis; Vivek Agarwal

    This paper places itself in the realm of anticipatory systems and envisions monitoring and control methods being capable of making predictions over system critical parameters. Anticipatory systems allow intelligent control of complex systems by predicting their future state. In the current work, an intelligent model aimed at implementing anticipatory monitoring and control in energy industry is presented and tested. More particularly, a set of support vector regressors (SVRs) are trained using both historical and observed data. The trained SVRs are used to predict the future value of the system based on current operational system parameter. The predicted values are thenmore » inputted to a fuzzy logic based module where the values are fused to obtain a single value, i.e., final system output prediction. The methodology is tested on real turbine degradation datasets. The outcome of the approach presented in this paper highlights the superiority over single support vector regressors. In addition, it is shown that appropriate selection of fuzzy sets and fuzzy rules plays an important role in improving system performance.« less

  4. REVIEW: Widespread access to predictive models in the motor system: a short review

    NASA Astrophysics Data System (ADS)

    Davidson, Paul R.; Wolpert, Daniel M.

    2005-09-01

    Recent behavioural and computational studies suggest that access to internal predictive models of arm and object dynamics is widespread in the sensorimotor system. Several systems, including those responsible for oculomotor and skeletomotor control, perceptual processing, postural control and mental imagery, are able to access predictions of the motion of the arm. A capacity to make and use predictions of object dynamics is similarly widespread. Here, we review recent studies looking at the predictive capacity of the central nervous system which reveal pervasive access to forward models of the environment.

  5. A novel auto-tuning PID control mechanism for nonlinear systems.

    PubMed

    Cetin, Meric; Iplikci, Serdar

    2015-09-01

    In this paper, a novel Runge-Kutta (RK) discretization-based model-predictive auto-tuning proportional-integral-derivative controller (RK-PID) is introduced for the control of continuous-time nonlinear systems. The parameters of the PID controller are tuned using RK model of the system through prediction error-square minimization where the predicted information of tracking error provides an enhanced tuning of the parameters. Based on the model-predictive control (MPC) approach, the proposed mechanism provides necessary PID parameter adaptations while generating additive correction terms to assist the initially inadequate PID controller. Efficiency of the proposed mechanism has been tested on two experimental real-time systems: an unstable single-input single-output (SISO) nonlinear magnetic-levitation system and a nonlinear multi-input multi-output (MIMO) liquid-level system. RK-PID has been compared to standard PID, standard nonlinear MPC (NMPC), RK-MPC and conventional sliding-mode control (SMC) methods in terms of control performance, robustness, computational complexity and design issue. The proposed mechanism exhibits acceptable tuning and control performance with very small steady-state tracking errors, and provides very short settling time for parameter convergence. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Predictive control and estimation algorithms for the NASA/JPL 70-meter antennas

    NASA Technical Reports Server (NTRS)

    Gawronski, W.

    1991-01-01

    A modified output prediction procedure and a new controller design is presented based on the predictive control law. Also, a new predictive estimator is developed to complement the controller and to enhance system performance. The predictive controller is designed and applied to the tracking control of the Deep Space Network 70 m antennas. Simulation results show significant improvement in tracking performance over the linear quadratic controller and estimator presently in use.

  7. Model predictive control based on reduced order models applied to belt conveyor system.

    PubMed

    Chen, Wei; Li, Xin

    2016-11-01

    In the paper, a model predictive controller based on reduced order model is proposed to control belt conveyor system, which is an electro-mechanics complex system with long visco-elastic body. Firstly, in order to design low-degree controller, the balanced truncation method is used for belt conveyor model reduction. Secondly, MPC algorithm based on reduced order model for belt conveyor system is presented. Because of the error bound between the full-order model and reduced order model, two Kalman state estimators are applied in the control scheme to achieve better system performance. Finally, the simulation experiments are shown that balanced truncation method can significantly reduce the model order with high-accuracy and model predictive control based on reduced-model performs well in controlling the belt conveyor system. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Predictive Multiple Model Switching Control with the Self-Organizing Map

    NASA Technical Reports Server (NTRS)

    Motter, Mark A.

    2000-01-01

    A predictive, multiple model control strategy is developed by extension of self-organizing map (SOM) local dynamic modeling of nonlinear autonomous systems to a control framework. Multiple SOMs collectively model the global response of a nonautonomous system to a finite set of representative prototype controls. Each SOM provides a codebook representation of the dynamics corresponding to a prototype control. Different dynamic regimes are organized into topological neighborhoods where the adjacent entries in the codebook represent the global minimization of a similarity metric. The SOM is additionally employed to identify the local dynamical regime, and consequently implements a switching scheme that selects the best available model for the applied control. SOM based linear models are used to predict the response to a larger family of control sequences which are clustered on the representative prototypes. The control sequence which corresponds to the prediction that best satisfies the requirements on the system output is applied as the external driving signal.

  9. Prediction-based sampled-data H∞ controller design for attitude stabilisation of a rigid spacecraft with disturbances

    NASA Astrophysics Data System (ADS)

    Zhu, Baolong; Zhang, Zhiping; Zhou, Ding; Ma, Jie; Li, Shunli

    2017-08-01

    This paper investigates the H∞ control problem of the attitude stabilisation of a rigid spacecraft with external disturbances using prediction-based sampled-data control strategy. Aiming to achieve a 'virtual' closed-loop system, a type of parameterised sampled-data controller is designed by introducing a prediction mechanism. The resultant closed-loop system is equivalent to a hybrid system featured by a continuous-time and an impulsive differential system. By using a time-varying Lyapunov functional, a generalised bounded real lemma (GBRL) is first established for a kind of impulsive differential system. Based on this GBRL and Lyapunov functional approach, a sufficient condition is derived to guarantee the closed-loop system to be asymptotically stable and to achieve a prescribed H∞ performance. In addition, the controller parameter tuning is cast into a convex optimisation problem. Simulation and comparative results are provided to illustrate the effectiveness of the developed control scheme.

  10. Cooperative airframe/propulsion control for supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Schweikhard, W. G.; Berry, D. T.

    1974-01-01

    Interactions between propulsion systems and flight controls have emerged as a major control problem on supersonic cruise aircraft. This paper describes the nature and causes of these interactions and the approaches to predicting and solving the problem. Integration of propulsion and flight control systems appears to be the most promising solution if the interaction effects can be adequately predicted early in the vehicle design. Significant performance, stability, and control improvements may be realized from a cooperative control system.

  11. B-52 control configured vehicles: Flight test results

    NASA Technical Reports Server (NTRS)

    Arnold, J. I.; Murphy, F. B.

    1976-01-01

    Recently completed B-52 Control Configured Vehicles (CCV) flight testing is summarized, and results are compared to analytical predictions. Results are presented for five CCV system concepts: ride control, maneuver load control, flutter mode control, augmented stability, and fatigue reduction. Test results confirm analytical predictions and show that CCV system concepts achieve performance goals when operated individually or collectively.

  12. Model Predictive Control of LCL Three-level Photovoltaic Grid-connected Inverter

    NASA Astrophysics Data System (ADS)

    Liang, Cheng; Tian, Engang; Pang, Baobing; Li, Juan; Yang, Yang

    2018-05-01

    In this paper, neutral point clamped three-level inverter circuit is analyzed to establish a mathematical model of the three-level inverter in the αβ coordinate system. The causes and harms of the midpoint potential imbalance problem are described. The paper use the method of model predictive control to control the entire inverter circuit[1]. The simulation model of the inverter system is built in Matlab/Simulink software. It is convenient to control the grid-connected current, suppress the unbalance of the midpoint potential and reduce the switching frequency by changing the weight coefficient in the cost function. The superiority of the model predictive control in the control method of the inverter system is verified.

  13. Optimal strategy analysis based on robust predictive control for inventory system with random demand

    NASA Astrophysics Data System (ADS)

    Saputra, Aditya; Widowati, Sutrisno

    2017-12-01

    In this paper, the optimal strategy for a single product single supplier inventory system with random demand is analyzed by using robust predictive control with additive random parameter. We formulate the dynamical system of this system as a linear state space with additive random parameter. To determine and analyze the optimal strategy for the given inventory system, we use robust predictive control approach which gives the optimal strategy i.e. the optimal product volume that should be purchased from the supplier for each time period so that the expected cost is minimal. A numerical simulation is performed with some generated random inventory data. We simulate in MATLAB software where the inventory level must be controlled as close as possible to a set point decided by us. From the results, robust predictive control model provides the optimal strategy i.e. the optimal product volume that should be purchased and the inventory level was followed the given set point.

  14. Control of Uncertain Systems under Constraints: Switching Horizon Predictive Control of Persistently Disturbed Input-Saturated Plants

    DTIC Science & Technology

    2006-12-01

    on at any time from a family of candidate feedback-gains so as to control a discrete- time input-saturated LTI system possibly subject to persistent... times robustness Mosca, E. (2006) Control of Uncertain Systems under Constraints: Switching Horizon Predictive Control of Persistently Disturbed...feedback controls u = f(x̂) (3) so as to ensure, under suitable conditions, stability in the noiseless case as well as finite l∞-induced gain of the

  15. Robust current control-based generalized predictive control with sliding mode disturbance compensation for PMSM drives.

    PubMed

    Liu, Xudong; Zhang, Chenghui; Li, Ke; Zhang, Qi

    2017-11-01

    This paper addresses the current control of permanent magnet synchronous motor (PMSM) for electric drives with model uncertainties and disturbances. A generalized predictive current control method combined with sliding mode disturbance compensation is proposed to satisfy the requirement of fast response and strong robustness. Firstly, according to the generalized predictive control (GPC) theory based on the continuous time model, a predictive current control method is presented without considering the disturbance, which is convenient to be realized in the digital controller. In fact, it's difficult to derive the exact motor model and parameters in the practical system. Thus, a sliding mode disturbance compensation controller is studied to improve the adaptiveness and robustness of the control system. The designed controller attempts to combine the merits of both predictive control and sliding mode control, meanwhile, the controller parameters are easy to be adjusted. Lastly, the proposed controller is tested on an interior PMSM by simulation and experiment, and the results indicate that it has good performance in both current tracking and disturbance rejection. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  16. A Combined Adaptive Neural Network and Nonlinear Model Predictive Control for Multirate Networked Industrial Process Control.

    PubMed

    Wang, Tong; Gao, Huijun; Qiu, Jianbin

    2016-02-01

    This paper investigates the multirate networked industrial process control problem in double-layer architecture. First, the output tracking problem for sampled-data nonlinear plant at device layer with sampling period T(d) is investigated using adaptive neural network (NN) control, and it is shown that the outputs of subsystems at device layer can track the decomposed setpoints. Then, the outputs and inputs of the device layer subsystems are sampled with sampling period T(u) at operation layer to form the index prediction, which is used to predict the overall performance index at lower frequency. Radial basis function NN is utilized as the prediction function due to its approximation ability. Then, considering the dynamics of the overall closed-loop system, nonlinear model predictive control method is proposed to guarantee the system stability and compensate the network-induced delays and packet dropouts. Finally, a continuous stirred tank reactor system is given in the simulation part to demonstrate the effectiveness of the proposed method.

  17. Generalized Predictive Control of Dynamic Systems with Rigid-Body Modes

    NASA Technical Reports Server (NTRS)

    Kvaternik, Raymond G.

    2013-01-01

    Numerical simulations to assess the effectiveness of Generalized Predictive Control (GPC) for active control of dynamic systems having rigid-body modes are presented. GPC is a linear, time-invariant, multi-input/multi-output predictive control method that uses an ARX model to characterize the system and to design the controller. Although the method can accommodate both embedded (implicit) and explicit feedforward paths for incorporation of disturbance effects, only the case of embedded feedforward in which the disturbances are assumed to be unknown is considered here. Results from numerical simulations using mathematical models of both a free-free three-degree-of-freedom mass-spring-dashpot system and the XV-15 tiltrotor research aircraft are presented. In regulation mode operation, which calls for zero system response in the presence of disturbances, the simulations showed reductions of nearly 100%. In tracking mode operations, where the system is commanded to follow a specified path, the GPC controllers produced the desired responses, even in the presence of disturbances.

  18. Adaptive vibration control of structures under earthquakes

    NASA Astrophysics Data System (ADS)

    Lew, Jiann-Shiun; Juang, Jer-Nan; Loh, Chin-Hsiung

    2017-04-01

    techniques, for structural vibration suppression under earthquakes. Various control strategies have been developed to protect structures from natural hazards and improve the comfort of occupants in buildings. However, there has been little development of adaptive building control with the integration of real-time system identification and control design. Generalized predictive control, which combines the process of real-time system identification and the process of predictive control design, has received widespread acceptance and has been successfully applied to various test-beds. This paper presents a formulation of the predictive control scheme for adaptive vibration control of structures under earthquakes. Comprehensive simulations are performed to demonstrate and validate the proposed adaptive control technique for earthquake-induced vibration of a building.

  19. Control of Systems With Slow Actuators Using Time Scale Separation

    NASA Technical Reports Server (NTRS)

    Stepanyan, Vehram; Nguyen, Nhan

    2009-01-01

    This paper addresses the problem of controlling a nonlinear plant with a slow actuator using singular perturbation method. For the known plant-actuator cascaded system the proposed scheme achieves tracking of a given reference model with considerably less control demand than would otherwise result when using conventional design techniques. This is the consequence of excluding the small parameter from the actuator dynamics via time scale separation. The resulting tracking error is within the order of this small parameter. For the unknown system the adaptive counterpart is developed based on the prediction model, which is driven towards the reference model by the control design. It is proven that the prediction model tracks the reference model with an error proportional to the small parameter, while the prediction error converges to zero. The resulting closed-loop system with all prediction models and adaptive laws remains stable. The benefits of the approach are demonstrated in simulation studies and compared to conventional control approaches.

  20. Predictive optimal control of sewer networks using CORAL tool: application to Riera Blanca catchment in Barcelona.

    PubMed

    Puig, V; Cembrano, G; Romera, J; Quevedo, J; Aznar, B; Ramón, G; Cabot, J

    2009-01-01

    This paper deals with the global control of the Riera Blanca catchment in the Barcelona sewer network using a predictive optimal control approach. This catchment has been modelled using a conceptual modelling approach based on decomposing the catchments in subcatchments and representing them as virtual tanks. This conceptual modelling approach allows real-time model calibration and control of the sewer network. The global control problem of the Riera Blanca catchment is solved using a optimal/predictive control algorithm. To implement the predictive optimal control of the Riera Blanca catchment, a software tool named CORAL is used. The on-line control is simulated by interfacing CORAL with a high fidelity simulator of sewer networks (MOUSE). CORAL interchanges readings from the limnimeters and gate commands with MOUSE as if it was connected with the real SCADA system. Finally, the global control results obtained using the predictive optimal control are presented and compared against the results obtained using current local control system. The results obtained using the global control are very satisfactory compared to those obtained using the local control.

  1. Improved disturbance rejection for predictor-based control of MIMO linear systems with input delay

    NASA Astrophysics Data System (ADS)

    Shi, Shang; Liu, Wenhui; Lu, Junwei; Chu, Yuming

    2018-02-01

    In this paper, we are concerned with the predictor-based control of multi-input multi-output (MIMO) linear systems with input delay and disturbances. By taking the future values of disturbances into consideration, a new improved predictive scheme is proposed. Compared with the existing predictive schemes, our proposed predictive scheme can achieve a finite-time exact state prediction for some smooth disturbances including the constant disturbances, and a better disturbance attenuation can also be achieved for a large class of other time-varying disturbances. The attenuation of mismatched disturbances for second-order linear systems with input delay is also investigated by using our proposed predictor-based controller.

  2. Offset-Free Model Predictive Control of Open Water Channel Based on Moving Horizon Estimation

    NASA Astrophysics Data System (ADS)

    Ekin Aydin, Boran; Rutten, Martine

    2016-04-01

    Model predictive control (MPC) is a powerful control option which is increasingly used by operational water managers for managing water systems. The explicit consideration of constraints and multi-objective management are important features of MPC. However, due to the water loss in open water systems by seepage, leakage and evaporation a mismatch between the model and the real system will be created. These mismatch affects the performance of MPC and creates an offset from the reference set point of the water level. We present model predictive control based on moving horizon estimation (MHE-MPC) to achieve offset free control of water level for open water canals. MHE-MPC uses the past predictions of the model and the past measurements of the system to estimate unknown disturbances and the offset in the controlled water level is systematically removed. We numerically tested MHE-MPC on an accurate hydro-dynamic model of the laboratory canal UPC-PAC located in Barcelona. In addition, we also used well known disturbance modeling offset free control scheme for the same test case. Simulation experiments on a single canal reach show that MHE-MPC outperforms disturbance modeling offset free control scheme.

  3. Rate-Based Model Predictive Control of Turbofan Engine Clearance

    NASA Technical Reports Server (NTRS)

    DeCastro, Jonathan A.

    2006-01-01

    An innovative model predictive control strategy is developed for control of nonlinear aircraft propulsion systems and sub-systems. At the heart of the controller is a rate-based linear parameter-varying model that propagates the state derivatives across the prediction horizon, extending prediction fidelity to transient regimes where conventional models begin to lose validity. The new control law is applied to a demanding active clearance control application, where the objectives are to tightly regulate blade tip clearances and also anticipate and avoid detrimental blade-shroud rub occurrences by optimally maintaining a predefined minimum clearance. Simulation results verify that the rate-based controller is capable of satisfying the objectives during realistic flight scenarios where both a conventional Jacobian-based model predictive control law and an unconstrained linear-quadratic optimal controller are incapable of doing so. The controller is evaluated using a variety of different actuators, illustrating the efficacy and versatility of the control approach. It is concluded that the new strategy has promise for this and other nonlinear aerospace applications that place high importance on the attainment of control objectives during transient regimes.

  4. Cascade generalized predictive control strategy for boiler drum level.

    PubMed

    Xu, Min; Li, Shaoyuan; Cai, Wenjian

    2005-07-01

    This paper proposes a cascade model predictive control scheme for boiler drum level control. By employing generalized predictive control structures for both inner and outer loops, measured and unmeasured disturbances can be effectively rejected, and drum level at constant load is maintained. In addition, nonminimum phase characteristic and system constraints in both loops can be handled effectively by generalized predictive control algorithms. Simulation results are provided to show that cascade generalized predictive control results in better performance than that of well tuned cascade proportional integral differential controllers. The algorithm has also been implemented to control a 75-MW boiler plant, and the results show an improvement over conventional control schemes.

  5. Initial Evaluations of LoC Prediction Algorithms Using the NASA Vertical Motion Simulator

    NASA Technical Reports Server (NTRS)

    Krishnakumar, Kalmanje; Stepanyan, Vahram; Barlow, Jonathan; Hardy, Gordon; Dorais, Greg; Poolla, Chaitanya; Reardon, Scott; Soloway, Donald

    2014-01-01

    Flying near the edge of the safe operating envelope is an inherently unsafe proposition. Edge of the envelope here implies that small changes or disturbances in system state or system dynamics can take the system out of the safe envelope in a short time and could result in loss-of-control events. This study evaluated approaches to predicting loss-of-control safety margins as the aircraft gets closer to the edge of the safe operating envelope. The goal of the approach is to provide the pilot aural, visual, and tactile cues focused on maintaining the pilot's control action within predicted loss-of-control boundaries. Our predictive architecture combines quantitative loss-of-control boundaries, an adaptive prediction method to estimate in real-time Markov model parameters and associated stability margins, and a real-time data-based predictive control margins estimation algorithm. The combined architecture is applied to a nonlinear transport class aircraft. Evaluations of various feedback cues using both test and commercial pilots in the NASA Ames Vertical Motion-base Simulator (VMS) were conducted in the summer of 2013. The paper presents results of this evaluation focused on effectiveness of these approaches and the cues in preventing the pilots from entering a loss-of-control event.

  6. Model predictive control of non-linear systems over networks with data quantization and packet loss.

    PubMed

    Yu, Jimin; Nan, Liangsheng; Tang, Xiaoming; Wang, Ping

    2015-11-01

    This paper studies the approach of model predictive control (MPC) for the non-linear systems under networked environment where both data quantization and packet loss may occur. The non-linear controlled plant in the networked control system (NCS) is represented by a Tagaki-Sugeno (T-S) model. The sensed data and control signal are quantized in both links and described as sector bound uncertainties by applying sector bound approach. Then, the quantized data are transmitted in the communication networks and may suffer from the effect of packet losses, which are modeled as Bernoulli process. A fuzzy predictive controller which guarantees the stability of the closed-loop system is obtained by solving a set of linear matrix inequalities (LMIs). A numerical example is given to illustrate the effectiveness of the proposed method. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Forward and Inverse Predictive Model for the Trajectory Tracking Control of a Lower Limb Exoskeleton for Gait Rehabilitation: Simulation modelling analysis

    NASA Astrophysics Data System (ADS)

    Zakaria, M. A.; Majeed, A. P. P. A.; Taha, Z.; Alim, M. M.; Baarath, K.

    2018-03-01

    The movement of a lower limb exoskeleton requires a reasonably accurate control method to allow for an effective gait therapy session to transpire. Trajectory tracking is a nontrivial means of passive rehabilitation technique to correct the motion of the patients’ impaired limb. This paper proposes an inverse predictive model that is coupled together with the forward kinematics of the exoskeleton to estimate the behaviour of the system. A conventional PID control system is used to converge the required joint angles based on the desired input from the inverse predictive model. It was demonstrated through the present study, that the inverse predictive model is capable of meeting the trajectory demand with acceptable error tolerance. The findings further suggest the ability of the predictive model of the exoskeleton to predict a correct joint angle command to the system.

  8. Improved model predictive control of resistive wall modes by error field estimator in EXTRAP T2R

    NASA Astrophysics Data System (ADS)

    Setiadi, A. C.; Brunsell, P. R.; Frassinetti, L.

    2016-12-01

    Many implementations of a model-based approach for toroidal plasma have shown better control performance compared to the conventional type of feedback controller. One prerequisite of model-based control is the availability of a control oriented model. This model can be obtained empirically through a systematic procedure called system identification. Such a model is used in this work to design a model predictive controller to stabilize multiple resistive wall modes in EXTRAP T2R reversed-field pinch. Model predictive control is an advanced control method that can optimize the future behaviour of a system. Furthermore, this paper will discuss an additional use of the empirical model which is to estimate the error field in EXTRAP T2R. Two potential methods are discussed that can estimate the error field. The error field estimator is then combined with the model predictive control and yields better radial magnetic field suppression.

  9. Design and experiment of vehicular charger AC/DC system based on predictive control algorithm

    NASA Astrophysics Data System (ADS)

    He, Guangbi; Quan, Shuhai; Lu, Yuzhang

    2018-06-01

    For the car charging stage rectifier uncontrollable system, this paper proposes a predictive control algorithm of DC/DC converter based on the prediction model, established by the state space average method and its prediction model, obtained by the optimal mathematical description of mathematical calculation, to analysis prediction algorithm by Simulink simulation. The design of the structure of the car charging, at the request of the rated output power and output voltage adjustable control circuit, the first stage is the three-phase uncontrolled rectifier DC voltage Ud through the filter capacitor, after by using double-phase interleaved buck-boost circuit with wide range output voltage required value, analyzing its working principle and the the parameters for the design and selection of components. The analysis of current ripple shows that the double staggered parallel connection has the advantages of reducing the output current ripple and reducing the loss. The simulation experiment of the whole charging circuit is carried out by software, and the result is in line with the design requirements of the system. Finally combining the soft with hardware circuit to achieve charging of the system according to the requirements, experimental platform proved the feasibility and effectiveness of the proposed predictive control algorithm based on the car charging of the system, which is consistent with the simulation results.

  10. Predictive Eco-Cruise Control (ECC) system : model development, modeling and potential benefits.

    DOT National Transportation Integrated Search

    2013-02-01

    The research develops a reference model of a predictive eco-cruise control (ECC) system that intelligently modulates vehicle speed within a pre-set speed range to minimize vehicle fuel consumption levels using roadway topographic information. The stu...

  11. Fourier transform wavefront control with adaptive prediction of the atmosphere.

    PubMed

    Poyneer, Lisa A; Macintosh, Bruce A; Véran, Jean-Pierre

    2007-09-01

    Predictive Fourier control is a temporal power spectral density-based adaptive method for adaptive optics that predicts the atmosphere under the assumption of frozen flow. The predictive controller is based on Kalman filtering and a Fourier decomposition of atmospheric turbulence using the Fourier transform reconstructor. It provides a stable way to compensate for arbitrary numbers of atmospheric layers. For each Fourier mode, efficient and accurate algorithms estimate the necessary atmospheric parameters from closed-loop telemetry and determine the predictive filter, adjusting as conditions change. This prediction improves atmospheric rejection, leading to significant improvements in system performance. For a 48x48 actuator system operating at 2 kHz, five-layer prediction for all modes is achievable in under 2x10(9) floating-point operations/s.

  12. Reference governors for controlled belt restraint systems

    NASA Astrophysics Data System (ADS)

    van der Laan, E. P.; Heemels, W. P. M. H.; Luijten, H.; Veldpaus, F. E.; Steinbuch, M.

    2010-07-01

    Today's restraint systems typically include a number of airbags, and a three-point seat belt with load limiter and pretensioner. For the class of real-time controlled restraint systems, the restraint actuator settings are continuously manipulated during the crash. This paper presents a novel control strategy for these systems. The control strategy developed here is based on a combination of model predictive control and reference management, in which a non-linear device - a reference governor (RG) - is added to a primal closed-loop controlled system. This RG determines an optimal setpoint in terms of injury reduction and constraint satisfaction by solving a constrained optimisation problem. Prediction of the vehicle motion, required to predict future constraint violation, is included in the design and is based on past crash data, using linear regression techniques. Simulation results with MADYMO models show that, with ideal sensors and actuators, a significant reduction (45%) of the peak chest acceleration can be achieved, without prior knowledge of the crash. Furthermore, it is shown that the algorithms are sufficiently fast to be implemented online.

  13. Constrained off-line synthesis approach of model predictive control for networked control systems with network-induced delays.

    PubMed

    Tang, Xiaoming; Qu, Hongchun; Wang, Ping; Zhao, Meng

    2015-03-01

    This paper investigates the off-line synthesis approach of model predictive control (MPC) for a class of networked control systems (NCSs) with network-induced delays. A new augmented model which can be readily applied to time-varying control law, is proposed to describe the NCS where bounded deterministic network-induced delays may occur in both sensor to controller (S-A) and controller to actuator (C-A) links. Based on this augmented model, a sufficient condition of the closed-loop stability is derived by applying the Lyapunov method. The off-line synthesis approach of model predictive control is addressed using the stability results of the system, which explicitly considers the satisfaction of input and state constraints. Numerical example is given to illustrate the effectiveness of the proposed method. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Predicting Loss-of-Control Boundaries Toward a Piloting Aid

    NASA Technical Reports Server (NTRS)

    Barlow, Jonathan; Stepanyan, Vahram; Krishnakumar, Kalmanje

    2012-01-01

    This work presents an approach to predicting loss-of-control with the goal of providing the pilot a decision aid focused on maintaining the pilot's control action within predicted loss-of-control boundaries. The predictive architecture combines quantitative loss-of-control boundaries, a data-based predictive control boundary estimation algorithm and an adaptive prediction method to estimate Markov model parameters in real-time. The data-based loss-of-control boundary estimation algorithm estimates the boundary of a safe set of control inputs that will keep the aircraft within the loss-of-control boundaries for a specified time horizon. The adaptive prediction model generates estimates of the system Markov Parameters, which are used by the data-based loss-of-control boundary estimation algorithm. The combined algorithm is applied to a nonlinear generic transport aircraft to illustrate the features of the architecture.

  15. Reducing usage of the computational resources by event driven approach to model predictive control

    NASA Astrophysics Data System (ADS)

    Misik, Stefan; Bradac, Zdenek; Cela, Arben

    2017-08-01

    This paper deals with a real-time and optimal control of dynamic systems while also considers the constraints which these systems might be subject to. Main objective of this work is to propose a simple modification of the existing Model Predictive Control approach to better suit needs of computational resource-constrained real-time systems. An example using model of a mechanical system is presented and the performance of the proposed method is evaluated in a simulated environment.

  16. A Robustly Stabilizing Model Predictive Control Algorithm

    NASA Technical Reports Server (NTRS)

    Ackmece, A. Behcet; Carson, John M., III

    2007-01-01

    A model predictive control (MPC) algorithm that differs from prior MPC algorithms has been developed for controlling an uncertain nonlinear system. This algorithm guarantees the resolvability of an associated finite-horizon optimal-control problem in a receding-horizon implementation.

  17. A system identification approach for developing model predictive controllers of antibody quality attributes in cell culture processes

    PubMed Central

    Schmitt, John; Beller, Justin; Russell, Brian; Quach, Anthony; Hermann, Elizabeth; Lyon, David; Breit, Jeffrey

    2017-01-01

    As the biopharmaceutical industry evolves to include more diverse protein formats and processes, more robust control of Critical Quality Attributes (CQAs) is needed to maintain processing flexibility without compromising quality. Active control of CQAs has been demonstrated using model predictive control techniques, which allow development of processes which are robust against disturbances associated with raw material variability and other potentially flexible operating conditions. Wide adoption of model predictive control in biopharmaceutical cell culture processes has been hampered, however, in part due to the large amount of data and expertise required to make a predictive model of controlled CQAs, a requirement for model predictive control. Here we developed a highly automated, perfusion apparatus to systematically and efficiently generate predictive models using application of system identification approaches. We successfully created a predictive model of %galactosylation using data obtained by manipulating galactose concentration in the perfusion apparatus in serialized step change experiments. We then demonstrated the use of the model in a model predictive controller in a simulated control scenario to successfully achieve a %galactosylation set point in a simulated fed‐batch culture. The automated model identification approach demonstrated here can potentially be generalized to many CQAs, and could be a more efficient, faster, and highly automated alternative to batch experiments for developing predictive models in cell culture processes, and allow the wider adoption of model predictive control in biopharmaceutical processes. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 33:1647–1661, 2017 PMID:28786215

  18. A Two-Time Scale Decentralized Model Predictive Controller Based on Input and Output Model

    PubMed Central

    Niu, Jian; Zhao, Jun; Xu, Zuhua; Qian, Jixin

    2009-01-01

    A decentralized model predictive controller applicable for some systems which exhibit different dynamic characteristics in different channels was presented in this paper. These systems can be regarded as combinations of a fast model and a slow model, the response speeds of which are in two-time scale. Because most practical models used for control are obtained in the form of transfer function matrix by plant tests, a singular perturbation method was firstly used to separate the original transfer function matrix into two models in two-time scale. Then a decentralized model predictive controller was designed based on the two models derived from the original system. And the stability of the control method was proved. Simulations showed that the method was effective. PMID:19834542

  19. Multi-model predictive control based on LMI: from the adaptation of the state-space model to the analytic description of the control law

    NASA Astrophysics Data System (ADS)

    Falugi, P.; Olaru, S.; Dumur, D.

    2010-08-01

    This article proposes an explicit robust predictive control solution based on linear matrix inequalities (LMIs). The considered predictive control strategy uses different local descriptions of the system dynamics and uncertainties and thus allows the handling of less conservative input constraints. The computed control law guarantees constraint satisfaction and asymptotic stability. The technique is effective for a class of nonlinear systems embedded into polytopic models. A detailed discussion of the procedures which adapt the partition of the state space is presented. For the practical implementation the construction of suitable (explicit) descriptions of the control law are described upon concrete algorithms.

  20. Enhanced pid vs model predictive control applied to bldc motor

    NASA Astrophysics Data System (ADS)

    Gaya, M. S.; Muhammad, Auwal; Aliyu Abdulkadir, Rabiu; Salim, S. N. S.; Madugu, I. S.; Tijjani, Aminu; Aminu Yusuf, Lukman; Dauda Umar, Ibrahim; Khairi, M. T. M.

    2018-01-01

    BrushLess Direct Current (BLDC) motor is a multivariable and highly complex nonlinear system. Variation of internal parameter values with environment or reference signal increases the difficulty in controlling the BLDC effectively. Advanced control strategies (like model predictive control) often have to be integrated to satisfy the control desires. Enhancing or proper tuning of a conventional algorithm results in achieving the desired performance. This paper presents a performance comparison of Enhanced PID and Model Predictive Control (MPC) applied to brushless direct current motor. The simulation results demonstrated that the PSO-PID is slightly better than the PID and MPC in tracking the trajectory of the reference signal. The proposed scheme could be useful algorithms for the system.

  1. Model Predictive Control Based Motion Drive Algorithm for a Driving Simulator

    NASA Astrophysics Data System (ADS)

    Rehmatullah, Faizan

    In this research, we develop a model predictive control based motion drive algorithm for the driving simulator at Toronto Rehabilitation Institute. Motion drive algorithms exploit the limitations of the human vestibular system to formulate a perception of motion within the constrained workspace of a simulator. In the absence of visual cues, the human perception system is unable to distinguish between acceleration and the force of gravity. The motion drive algorithm determines control inputs to displace the simulator platform, and by using the resulting inertial forces and angular rates, creates the perception of motion. By using model predictive control, we can optimize the use of simulator workspace for every maneuver while simulating the vehicle perception. With the ability to handle nonlinear constraints, the model predictive control allows us to incorporate workspace limitations.

  2. Model-on-Demand Predictive Control for Nonlinear Hybrid Systems With Application to Adaptive Behavioral Interventions

    PubMed Central

    Nandola, Naresh N.; Rivera, Daniel E.

    2011-01-01

    This paper presents a data-centric modeling and predictive control approach for nonlinear hybrid systems. System identification of hybrid systems represents a challenging problem because model parameters depend on the mode or operating point of the system. The proposed algorithm applies Model-on-Demand (MoD) estimation to generate a local linear approximation of the nonlinear hybrid system at each time step, using a small subset of data selected by an adaptive bandwidth selector. The appeal of the MoD approach lies in the fact that model parameters are estimated based on a current operating point; hence estimation of locations or modes governed by autonomous discrete events is achieved automatically. The local MoD model is then converted into a mixed logical dynamical (MLD) system representation which can be used directly in a model predictive control (MPC) law for hybrid systems using multiple-degree-of-freedom tuning. The effectiveness of the proposed MoD predictive control algorithm for nonlinear hybrid systems is demonstrated on a hypothetical adaptive behavioral intervention problem inspired by Fast Track, a real-life preventive intervention for improving parental function and reducing conduct disorder in at-risk children. Simulation results demonstrate that the proposed algorithm can be useful for adaptive intervention problems exhibiting both nonlinear and hybrid character. PMID:21874087

  3. Model predictive control of an air suspension system with damping multi-mode switching damper based on hybrid model

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoqiang; Yuan, Chaochun; Cai, Yingfeng; Wang, Shaohua; Chen, Long

    2017-09-01

    This paper presents the hybrid modeling and the model predictive control of an air suspension system with damping multi-mode switching damper. Unlike traditional damper with continuously adjustable damping, in this study, a new damper with four discrete damping modes is applied to vehicle semi-active air suspension. The new damper can achieve different damping modes by just controlling the on-off statuses of two solenoid valves, which makes its damping adjustment more efficient and more reliable. However, since the damping mode switching induces different modes of operation, the air suspension system with the new damper poses challenging hybrid control problem. To model both the continuous/discrete dynamics and the switching between different damping modes, the framework of mixed logical dynamical (MLD) systems is used to establish the system hybrid model. Based on the resulting hybrid dynamical model, the system control problem is recast as a model predictive control (MPC) problem, which allows us to optimize the switching sequences of the damping modes by taking into account the suspension performance requirements. Numerical simulations results demonstrate the efficacy of the proposed control method finally.

  4. Analytical design and evaluation of an active control system for helicopter vibration reduction and gust response alleviation

    NASA Technical Reports Server (NTRS)

    Taylor, R. B.; Zwicke, P. E.; Gold, P.; Miao, W.

    1980-01-01

    An analytical study was conducted to define the basic configuration of an active control system for helicopter vibration and gust response alleviation. The study culminated in a control system design which has two separate systems: narrow band loop for vibration reduction and wider band loop for gust response alleviation. The narrow band vibration loop utilizes the standard swashplate control configuration to input controller for the vibration loop is based on adaptive optimal control theory and is designed to adapt to any flight condition including maneuvers and transients. The prime characteristics of the vibration control system is its real time capability. The gust alleviation control system studied consists of optimal sampled data feedback gains together with an optimal one-step-ahead prediction. The prediction permits the estimation of the gust disturbance which can then be used to minimize the gust effects on the helicopter.

  5. A robust model predictive control algorithm for uncertain nonlinear systems that guarantees resolvability

    NASA Technical Reports Server (NTRS)

    Acikmese, Ahmet Behcet; Carson, John M., III

    2006-01-01

    A robustly stabilizing MPC (model predictive control) algorithm for uncertain nonlinear systems is developed that guarantees resolvability. With resolvability, initial feasibility of the finite-horizon optimal control problem implies future feasibility in a receding-horizon framework. The control consists of two components; (i) feed-forward, and (ii) feedback part. Feed-forward control is obtained by online solution of a finite-horizon optimal control problem for the nominal system dynamics. The feedback control policy is designed off-line based on a bound on the uncertainty in the system model. The entire controller is shown to be robustly stabilizing with a region of attraction composed of initial states for which the finite-horizon optimal control problem is feasible. The controller design for this algorithm is demonstrated on a class of systems with uncertain nonlinear terms that have norm-bounded derivatives and derivatives in polytopes. An illustrative numerical example is also provided.

  6. Method and device for predicting wavelength dependent radiation influences in thermal systems

    DOEpatents

    Kee, Robert J.; Ting, Aili

    1996-01-01

    A method and apparatus for predicting the spectral (wavelength-dependent) radiation transport in thermal systems including interaction by the radiation with partially transmitting medium. The predicted model of the thermal system is used to design and control the thermal system. The predictions are well suited to be implemented in design and control of rapid thermal processing (RTP) reactors. The method involves generating a spectral thermal radiation transport model of an RTP reactor. The method also involves specifying a desired wafer time dependent temperature profile. The method further involves calculating an inverse of the generated model using the desired wafer time dependent temperature to determine heating element parameters required to produce the desired profile. The method also involves controlling the heating elements of the RTP reactor in accordance with the heating element parameters to heat the wafer in accordance with the desired profile.

  7. Nonparametric method for failures diagnosis in the actuating subsystem of aircraft control system

    NASA Astrophysics Data System (ADS)

    Terentev, M. N.; Karpenko, S. S.; Zybin, E. Yu; Kosyanchuk, V. V.

    2018-02-01

    In this paper we design a nonparametric method for failures diagnosis in the aircraft control system that uses the measurements of the control signals and the aircraft states only. It doesn’t require a priori information of the aircraft model parameters, training or statistical calculations, and is based on analytical nonparametric one-step-ahead state prediction approach. This makes it possible to predict the behavior of unidentified and failure dynamic systems, to weaken the requirements to control signals, and to reduce the diagnostic time and problem complexity.

  8. Computational Fluid Dynamics Uncertainty Analysis for Payload Fairing Spacecraft Environmental Control Systems

    NASA Technical Reports Server (NTRS)

    Groves, Curtis; Ilie, Marcel; Schallhorn, Paul

    2014-01-01

    Spacecraft components may be damaged due to airflow produced by Environmental Control Systems (ECS). There are uncertainties and errors associated with using Computational Fluid Dynamics (CFD) to predict the flow field around a spacecraft from the ECS System. This paper describes an approach to estimate the uncertainty in using CFD to predict the airflow speeds around an encapsulated spacecraft.

  9. Hybrid robust predictive optimization method of power system dispatch

    DOEpatents

    Chandra, Ramu Sharat [Niskayuna, NY; Liu, Yan [Ballston Lake, NY; Bose, Sumit [Niskayuna, NY; de Bedout, Juan Manuel [West Glenville, NY

    2011-08-02

    A method of power system dispatch control solves power system dispatch problems by integrating a larger variety of generation, load and storage assets, including without limitation, combined heat and power (CHP) units, renewable generation with forecasting, controllable loads, electric, thermal and water energy storage. The method employs a predictive algorithm to dynamically schedule different assets in order to achieve global optimization and maintain the system normal operation.

  10. Model Predictive Flight Control System with Full State Observer using H∞ Method

    NASA Astrophysics Data System (ADS)

    Sanwale, Jitu; Singh, Dhan Jeet

    2018-03-01

    This paper presents the application of the model predictive approach to design a flight control system (FCS) for longitudinal dynamics of a fixed wing aircraft. Longitudinal dynamics is derived for a conventional aircraft. Open loop aircraft response analysis is carried out. Simulation studies are illustrated to prove the efficacy of the proposed model predictive controller using H ∞ state observer. The estimation criterion used in the {H}_{∞} observer design is to minimize the worst possible effects of the modelling errors and additive noise on the parameter estimation.

  11. Developing Control System of Electrical Devices with Operational Expense Prediction

    NASA Astrophysics Data System (ADS)

    Sendari, Siti; Wahyu Herwanto, Heru; Rahmawati, Yuni; Mukti Putranto, Dendi; Fitri, Shofiana

    2017-04-01

    The purpose of this research is to develop a system that can monitor and record home electrical device’s electricity usage. This system has an ability to control electrical devices in distance and predict the operational expense. The system was developed using micro-controllers and WiFi modules connected to PC server. The communication between modules is arranged by server via WiFi. Beside of reading home electrical devices electricity usage, the unique point of the proposed-system is the ability of micro-controllers to send electricity data to server for recording the usage of electrical devices. The testing of this research was done by Black-box method to test the functionality of system. Testing system run well with 0% error.

  12. A system identification approach for developing model predictive controllers of antibody quality attributes in cell culture processes.

    PubMed

    Downey, Brandon; Schmitt, John; Beller, Justin; Russell, Brian; Quach, Anthony; Hermann, Elizabeth; Lyon, David; Breit, Jeffrey

    2017-11-01

    As the biopharmaceutical industry evolves to include more diverse protein formats and processes, more robust control of Critical Quality Attributes (CQAs) is needed to maintain processing flexibility without compromising quality. Active control of CQAs has been demonstrated using model predictive control techniques, which allow development of processes which are robust against disturbances associated with raw material variability and other potentially flexible operating conditions. Wide adoption of model predictive control in biopharmaceutical cell culture processes has been hampered, however, in part due to the large amount of data and expertise required to make a predictive model of controlled CQAs, a requirement for model predictive control. Here we developed a highly automated, perfusion apparatus to systematically and efficiently generate predictive models using application of system identification approaches. We successfully created a predictive model of %galactosylation using data obtained by manipulating galactose concentration in the perfusion apparatus in serialized step change experiments. We then demonstrated the use of the model in a model predictive controller in a simulated control scenario to successfully achieve a %galactosylation set point in a simulated fed-batch culture. The automated model identification approach demonstrated here can potentially be generalized to many CQAs, and could be a more efficient, faster, and highly automated alternative to batch experiments for developing predictive models in cell culture processes, and allow the wider adoption of model predictive control in biopharmaceutical processes. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 33:1647-1661, 2017. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers.

  13. Model Predictive Optimal Control of a Time-Delay Distributed-Parameter Systems

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan

    2006-01-01

    This paper presents an optimal control method for a class of distributed-parameter systems governed by first order, quasilinear hyperbolic partial differential equations that arise in many physical systems. Such systems are characterized by time delays since information is transported from one state to another by wave propagation. A general closed-loop hyperbolic transport model is controlled by a boundary control embedded in a periodic boundary condition. The boundary control is subject to a nonlinear differential equation constraint that models actuator dynamics of the system. The hyperbolic equation is thus coupled with the ordinary differential equation via the boundary condition. Optimality of this coupled system is investigated using variational principles to seek an adjoint formulation of the optimal control problem. The results are then applied to implement a model predictive control design for a wind tunnel to eliminate a transport delay effect that causes a poor Mach number regulation.

  14. Qualitative comparison of calculated turbulence responses with wind-tunnel measurements for a DC-10 derivative wing with an active control system

    NASA Technical Reports Server (NTRS)

    Perry, B., III

    1981-01-01

    Comparisons are presented analytically predicted and experimental turbulence responses of a wind tunnel model of a DC-10 derivative wing equipped with an active control system. The active control system was designed for the purpose of flutter suppression, but it had additional benefit of alleviating gust loads (wing bending moment) by about 25%. Comparisions of various wing responses are presented for variations in active control system parameters and tunnel speed. The analytical turbulence responses were obtained using DYLOFLEX, a computer program for dynamic loads analyses of flexible airplanes with active controls. In general, the analytical predictions agreed reasonably well with the experimental data.

  15. Model Predictive Control techniques with application to photovoltaic, DC Microgrid, and a multi-sourced hybrid energy system

    NASA Astrophysics Data System (ADS)

    Shadmand, Mohammad Bagher

    Renewable energy sources continue to gain popularity. However, two major limitations exist that prevent widespread adoption: availability and variability of the electricity generated and the cost of the equipment. The focus of this dissertation is Model Predictive Control (MPC) for optimal sized photovoltaic (PV), DC Microgrid, and multi-sourced hybrid energy systems. The main considered applications are: maximum power point tracking (MPPT) by MPC, droop predictive control of DC microgrid, MPC of grid-interaction inverter, MPC of a capacitor-less VAR compensator based on matrix converter (MC). This dissertation firstly investigates a multi-objective optimization technique for a hybrid distribution system. The variability of a high-penetration PV scenario is also studied when incorporated into the microgrid concept. Emerging (PV) technologies have enabled the creation of contoured and conformal PV surfaces; the effect of using non-planar PV modules on variability is also analyzed. The proposed predictive control to achieve maximum power point for isolated and grid-tied PV systems speeds up the control loop since it predicts error before the switching signal is applied to the converter. The low conversion efficiency of PV cells means we want to ensure always operating at maximum possible power point to make the system economical. Thus the proposed MPPT technique can capture more energy compared to the conventional MPPT techniques from same amount of installed solar panel. Because of the MPPT requirement, the output voltage of the converter may vary. Therefore a droop control is needed to feed multiple arrays of photovoltaic systems to a DC bus in microgrid community. Development of a droop control technique by means of predictive control is another application of this dissertation. Reactive power, denoted as Volt Ampere Reactive (VAR), has several undesirable consequences on AC power system network such as reduction in power transfer capability and increase in transmission loss if not controlled appropriately. Inductive loads which operate with lagging power factor consume VARs, thus load compensation techniques by capacitor bank employment locally supply VARs needed by the load. Capacitors are highly unreliable components due to their failure modes and aging inherent. Approximately 60% of power electronic devices failure such as voltage-source inverter based static synchronous compensator (STATCOM) is due to the use of aluminum electrolytic DC capacitors. Therefore, a capacitor-less VAR compensation is desired. This dissertation also investigates a STATCOM capacitor-less reactive power compensation that uses only inductors combined with predictive controlled matrix converter.

  16. Steering Angle Control of Car for Dubins Path-tracking Using Model Predictive Control

    NASA Astrophysics Data System (ADS)

    Kusuma Rahma Putri, Dian; Subchan; Asfihani, Tahiyatul

    2018-03-01

    Car as one of transportation is inseparable from technological developments. About ten years, there are a lot of research and development on lane keeping system(LKS) which is a system that automaticaly controls the steering to keep the vehicle especially car always on track. This system can be developed for unmanned cars. Unmanned system car requires navigation, guidance and control which is able to direct the vehicle to move toward the desired path. The guidance system is represented by using Dubins-Path that will be controlled by using Model Predictive Control. The control objective is to keep the car’s movement that represented by dinamic lateral motion model so car can move according to the path appropriately. The simulation control on the four types of trajectories that generate the value for steering angle and steering angle changes are at the specified interval.

  17. An intelligent system with EMG-based joint angle estimation for telemanipulation.

    PubMed

    Suryanarayanan, S; Reddy, N P; Gupta, V

    1996-01-01

    Bio-control of telemanipulators is being researched as an alternate control strategy. This study investigates the use of surface EMG from the biceps to predict joint angle during flexion of the arm that can be used to control an anthropomorphic telemanipulator. An intelligent system based on neural networks and fuzzy logic has been developed to use the processed surface EMG signal and predict the joint angle. The system has been tested on various angles of flexion-extension of the arm and at several speeds of flexion-extension. Preliminary results show the RMS error between the predicted angle and the actual angle to be less than 3% during training and less than 15% during testing. The technique of direct bio-control using EMG has the potential as an interface for telemanipulation applications.

  18. Efficient operation scheduling for adsorption chillers using predictive optimization-based control methods

    NASA Astrophysics Data System (ADS)

    Bürger, Adrian; Sawant, Parantapa; Bohlayer, Markus; Altmann-Dieses, Angelika; Braun, Marco; Diehl, Moritz

    2017-10-01

    Within this work, the benefits of using predictive control methods for the operation of Adsorption Cooling Machines (ACMs) are shown on a simulation study. Since the internal control decisions of series-manufactured ACMs often cannot be influenced, the work focuses on optimized scheduling of an ACM considering its internal functioning as well as forecasts for load and driving energy occurrence. For illustration, an assumed solar thermal climate system is introduced and a system model suitable for use within gradient-based optimization methods is developed. The results of a system simulation using a conventional scheme for ACM scheduling are compared to the results of a predictive, optimization-based scheduling approach for the same exemplary scenario of load and driving energy occurrence. The benefits of the latter approach are shown and future actions for application of these methods for system control are addressed.

  19. Image processing system performance prediction and product quality evaluation

    NASA Technical Reports Server (NTRS)

    Stein, E. K.; Hammill, H. B. (Principal Investigator)

    1976-01-01

    The author has identified the following significant results. A new technique for image processing system performance prediction and product quality evaluation was developed. It was entirely objective, quantitative, and general, and should prove useful in system design and quality control. The technique and its application to determination of quality control procedures for the Earth Resources Technology Satellite NASA Data Processing Facility are described.

  20. A Wavelet Neural Network Optimal Control Model for Traffic-Flow Prediction in Intelligent Transport Systems

    NASA Astrophysics Data System (ADS)

    Huang, Darong; Bai, Xing-Rong

    Based on wavelet transform and neural network theory, a traffic-flow prediction model, which was used in optimal control of Intelligent Traffic system, is constructed. First of all, we have extracted the scale coefficient and wavelet coefficient from the online measured raw data of traffic flow via wavelet transform; Secondly, an Artificial Neural Network model of Traffic-flow Prediction was constructed and trained using the coefficient sequences as inputs and raw data as outputs; Simultaneous, we have designed the running principium of the optimal control system of traffic-flow Forecasting model, the network topological structure and the data transmitted model; Finally, a simulated example has shown that the technique is effectively and exactly. The theoretical results indicated that the wavelet neural network prediction model and algorithms have a broad prospect for practical application.

  1. Weather-based prediction of Plasmodium falciparum malaria in epidemic-prone regions of Ethiopia II. Weather-based prediction systems perform comparably to early detection systems in identifying times for interventions.

    PubMed

    Teklehaimanot, Hailay D; Schwartz, Joel; Teklehaimanot, Awash; Lipsitch, Marc

    2004-11-19

    Timely and accurate information about the onset of malaria epidemics is essential for effective control activities in epidemic-prone regions. Early warning methods that provide earlier alerts (usually by the use of weather variables) may permit control measures to interrupt transmission earlier in the epidemic, perhaps at the expense of some level of accuracy. Expected case numbers were modeled using a Poisson regression with lagged weather factors in a 4th-degree polynomial distributed lag model. For each week, the numbers of malaria cases were predicted using coefficients obtained using all years except that for which the prediction was being made. The effectiveness of alerts generated by the prediction system was compared against that of alerts based on observed cases. The usefulness of the prediction system was evaluated in cold and hot districts. The system predicts the overall pattern of cases well, yet underestimates the height of the largest peaks. Relative to alerts triggered by observed cases, the alerts triggered by the predicted number of cases performed slightly worse, within 5% of the detection system. The prediction-based alerts were able to prevent 10-25% more cases at a given sensitivity in cold districts than in hot ones. The prediction of malaria cases using lagged weather performed well in identifying periods of increased malaria cases. Weather-derived predictions identified epidemics with reasonable accuracy and better timeliness than early detection systems; therefore, the prediction of malarial epidemics using weather is a plausible alternative to early detection systems.

  2. Real-time control of combined surface water quantity and quality: polder flushing.

    PubMed

    Xu, M; van Overloop, P J; van de Giesen, N C; Stelling, G S

    2010-01-01

    In open water systems, keeping both water depths and water quality at specified values is critical for maintaining a 'healthy' water system. Many systems still require manual operation, at least for water quality management. When applying real-time control, both quantity and quality standards need to be met. In this paper, an artificial polder flushing case is studied. Model Predictive Control (MPC) is developed to control the system. In addition to MPC, a 'forward estimation' procedure is used to acquire water quality predictions for the simplified model used in MPC optimization. In order to illustrate the advantages of MPC, classical control [Proportional-Integral control (PI)] has been developed for comparison in the test case. The results show that both algorithms are able to control the polder flushing process, but MPC is more efficient in functionality and control flexibility.

  3. Small Body GN&C Research Report: A Robust Model Predictive Control Algorithm with Guaranteed Resolvability

    NASA Technical Reports Server (NTRS)

    Acikmese, Behcet A.; Carson, John M., III

    2005-01-01

    A robustly stabilizing MPC (model predictive control) algorithm for uncertain nonlinear systems is developed that guarantees the resolvability of the associated finite-horizon optimal control problem in a receding-horizon implementation. The control consists of two components; (i) feedforward, and (ii) feedback part. Feed-forward control is obtained by online solution of a finite-horizon optimal control problem for the nominal system dynamics. The feedback control policy is designed off-line based on a bound on the uncertainty in the system model. The entire controller is shown to be robustly stabilizing with a region of attraction composed of initial states for which the finite-horizon optimal control problem is feasible. The controller design for this algorithm is demonstrated on a class of systems with uncertain nonlinear terms that have norm-bounded derivatives, and derivatives in polytopes. An illustrative numerical example is also provided.

  4. Metering Best Practices Applied in the National Renewable Energy Laboratory's Research Support Facility: A Primer to the 2011 Measured and Modeled Energy Consumption Datasets

    DOE Data Explorer

    Sheppy, Michael; Beach, A.; Pless, Shanti

    2016-08-09

    Modern buildings are complex energy systems that must be controlled for energy efficiency. The Research Support Facility (RSF) at the National Renewable Energy Laboratory (NREL) has hundreds of controllers -- computers that communicate with the building's various control systems -- to control the building based on tens of thousands of variables and sensor points. These control strategies were designed for the RSF's systems to efficiently support research activities. Many events that affect energy use cannot be reliably predicted, but certain decisions (such as control strategies) must be made ahead of time. NREL researchers modeled the RSF systems to predict how they might perform. They then monitor these systems to understand how they are actually performing and reacting to the dynamic conditions of weather, occupancy, and maintenance.

  5. Adaptive fuzzy predictive sliding control of uncertain nonlinear systems with bound-known input delay.

    PubMed

    Khazaee, Mostafa; Markazi, Amir H D; Omidi, Ehsan

    2015-11-01

    In this paper, a new Adaptive Fuzzy Predictive Sliding Mode Control (AFP-SMC) is presented for nonlinear systems with uncertain dynamics and unknown input delay. The control unit consists of a fuzzy inference system to approximate the ideal linearization control, together with a switching strategy to compensate for the estimation errors. Also, an adaptive fuzzy predictor is used to estimate the future values of the system states to compensate for the time delay. The adaptation laws are used to tune the controller and predictor parameters, which guarantee the stability based on a Lyapunov-Krasovskii functional. To evaluate the method effectiveness, the simulation and experiment on an overhead crane system are presented. According to the obtained results, AFP-SMC can effectively control the uncertain nonlinear systems, subject to input delays of known bound. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Logistics hardware and services control system

    NASA Technical Reports Server (NTRS)

    Koromilas, A.; Miller, K.; Lamb, T.

    1973-01-01

    Software system permits onsite direct control of logistics operations, which include spare parts, initial installation, tool control, and repairable parts status and control, through all facets of operations. System integrates logistics actions and controls receipts, issues, loans, repairs, fabrications, and modifications and assets in predicting and allocating logistics parts and services effectively.

  7. Predicting Time Series Outputs and Time-to-Failure for an Aircraft Controller Using Bayesian Modeling

    NASA Technical Reports Server (NTRS)

    He, Yuning

    2015-01-01

    Safety of unmanned aerial systems (UAS) is paramount, but the large number of dynamically changing controller parameters makes it hard to determine if the system is currently stable, and the time before loss of control if not. We propose a hierarchical statistical model using Treed Gaussian Processes to predict (i) whether a flight will be stable (success) or become unstable (failure), (ii) the time-to-failure if unstable, and (iii) time series outputs for flight variables. We first classify the current flight input into success or failure types, and then use separate models for each class to predict the time-to-failure and time series outputs. As different inputs may cause failures at different times, we have to model variable length output curves. We use a basis representation for curves and learn the mappings from input to basis coefficients. We demonstrate the effectiveness of our prediction methods on a NASA neuro-adaptive flight control system.

  8. Predicted performance benefits of an adaptive digital engine control system of an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Myers, L. P.; Ray, R. J.

    1985-01-01

    The highly integrated digital electronic control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrating engine-airframe control systems. Currently this is accomplished on the NASA Ames Research Center's F-15 airplane. The two control modes used to implement the systems are an integrated flightpath management mode and in integrated adaptive engine control system (ADECS) mode. The ADECS mode is a highly integrated mode in which the airplane flight conditions, the resulting inlet distortion, and the available engine stall margin are continually computed. The excess stall margin is traded for thrust. The predicted increase in engine performance due to the ADECS mode is presented in this report.

  9. Robust shrinking ellipsoid model predictive control for linear parameter varying system

    PubMed Central

    Yan, Yan

    2017-01-01

    In this paper, a new off-line model predictive control strategy is presented for a kind of linear parameter varying system with polytopic uncertainty. A nest of shrinking ellipsoids is constructed by solving linear matrix inequality. By splitting the objective function into two parts, the proposed strategy moves most computations off-line. The on-line computation is only calculating the current control to assure the system shrinking into the smaller ellipsoid. With the proposed formulation, the stability of the closed system is proved, followed with two numerical examples to demonstrate the proposed method’s effectiveness in the end. PMID:28575028

  10. Dynamic properties of the adaptive optics system depending on the temporary transformations of mirror control voltages

    NASA Astrophysics Data System (ADS)

    Lavrinov, V. V.; Lavrinova, L. N.

    2017-11-01

    The statistically optimal control algorithm for the correcting mirror is formed by constructing a prediction of distortions of the optical signal and improves the time resolution of the adaptive optics system. The prediction of distortions is based on an analysis of the dynamics of changes in the optical inhomogeneities of the turbulent atmosphere or the evolution of phase fluctuations at the input aperture of the adaptive system. Dynamic properties of the system are manifested during the temporary transformation of the stresses controlling the mirror and are determined by the dynamic characteristics of the flexible mirror.

  11. Adaptive two-degree-of-freedom PI for speed control of permanent magnet synchronous motor based on fractional order GPC.

    PubMed

    Qiao, Wenjun; Tang, Xiaoqi; Zheng, Shiqi; Xie, Yuanlong; Song, Bao

    2016-09-01

    In this paper, an adaptive two-degree-of-freedom (2Dof) proportional-integral (PI) controller is proposed for the speed control of permanent magnet synchronous motor (PMSM). Firstly, an enhanced just-in-time learning technique consisting of two novel searching engines is presented to identify the model of the speed control system in a real-time manner. Secondly, a general formula is given to predict the future speed reference which is unavailable at the interval of two bus-communication cycles. Thirdly, the fractional order generalized predictive control (FOGPC) is introduced to improve the control performance of the servo drive system. Based on the identified model parameters and predicted speed reference, the optimal control law of FOGPC is derived. Finally, the designed 2Dof PI controller is auto-tuned by matching with the optimal control law. Simulations and real-time experimental results on the servo drive system of PMSM are provided to illustrate the effectiveness of the proposed strategy. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Power maximization of a point absorber wave energy converter using improved model predictive control

    NASA Astrophysics Data System (ADS)

    Milani, Farideh; Moghaddam, Reihaneh Kardehi

    2017-08-01

    This paper considers controlling and maximizing the absorbed power of wave energy converters for irregular waves. With respect to physical constraints of the system, a model predictive control is applied. Irregular waves' behavior is predicted by Kalman filter method. Owing to the great influence of controller parameters on the absorbed power, these parameters are optimized by imperialist competitive algorithm. The results illustrate the method's efficiency in maximizing the extracted power in the presence of unknown excitation force which should be predicted by Kalman filter.

  13. Commercial applications

    NASA Technical Reports Server (NTRS)

    Togai, Masaki

    1990-01-01

    Viewgraphs on commercial applications of fuzzy logic in Japan are presented. Topics covered include: suitable application area of fuzzy theory; characteristics of fuzzy control; fuzzy closed-loop controller; Mitsubishi heavy air conditioner; predictive fuzzy control; the Sendai subway system; automatic transmission; fuzzy logic-based command system for antilock braking system; fuzzy feed-forward controller; and fuzzy auto-tuning system.

  14. Control and prediction components of movement planning in stuttering vs. nonstuttering adults

    PubMed Central

    Daliri, Ayoub; Prokopenko, Roman A.; Flanagan, J. Randall; Max, Ludo

    2014-01-01

    Purpose Stuttering individuals show speech and nonspeech sensorimotor deficiencies. To perform accurate movements, the sensorimotor system needs to generate appropriate control signals and correctly predict their sensory consequences. Using a reaching task, we examined the integrity of these control and prediction components, separately, for movements unrelated to the speech motor system. Method Nine stuttering and nine nonstuttering adults made fast reaching movements to visual targets while sliding an object under the index finger. To quantify control, we determined initial direction error and end-point error. To quantify prediction, we calculated the correlation between vertical and horizontal forces applied to the object—an index of how well vertical force (preventing slip) anticipated direction-dependent variations in horizontal force (moving the object). Results Directional and end-point error were significantly larger for the stuttering group. Both groups performed similarly in scaling vertical force with horizontal force. Conclusions The stuttering group's reduced reaching accuracy suggests limitations in generating control signals for voluntary movements, even for non-orofacial effectors. Typical scaling of vertical force with horizontal force suggests an intact ability to predict the consequences of planned control signals. Stuttering may be associated with generalized deficiencies in planning control signals rather than predicting the consequences of those signals. PMID:25203459

  15. Effect of accuracy of wind power prediction on power system operator

    NASA Technical Reports Server (NTRS)

    Schlueter, R. A.; Sigari, G.; Costi, T.

    1985-01-01

    This research project proposed a modified unit commitment that schedules connection and disconnection of generating units in response to load. A modified generation control is also proposed that controls steam units under automatic generation control, fast responding diesels, gas turbines and hydro units under a feedforward control, and wind turbine array output under a closed loop array control. This modified generation control and unit commitment require prediction of trend wind power variation one hour ahead and the prediction of error in this trend wind power prediction one half hour ahead. An improved meter for predicting trend wind speed variation is developed. Methods for accurately simulating the wind array power from a limited number of wind speed prediction records was developed. Finally, two methods for predicting the error in the trend wind power prediction were developed. This research provides a foundation for testing and evaluating the modified unit commitment and generation control that was developed to maintain operating reliability at a greatly reduced overall production cost for utilities with wind generation capacity.

  16. Predictive IP controller for robust position control of linear servo system.

    PubMed

    Lu, Shaowu; Zhou, Fengxing; Ma, Yajie; Tang, Xiaoqi

    2016-07-01

    Position control is a typical application of linear servo system. In this paper, to reduce the system overshoot, an integral plus proportional (IP) controller is used in the position control implementation. To further improve the control performance, a gain-tuning IP controller based on a generalized predictive control (GPC) law is proposed. Firstly, to represent the dynamics of the position loop, a second-order linear model is used and its model parameters are estimated on-line by using a recursive least squares method. Secondly, based on the GPC law, an optimal control sequence is obtained by using receding horizon, then directly supplies the IP controller with the corresponding control parameters in the real operations. Finally, simulation and experimental results are presented to show the efficiency of proposed scheme. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  17. The management submodel of the Wind Erosion Prediction System

    USDA-ARS?s Scientific Manuscript database

    The Wind Erosion Prediction System (WEPS) is a process-based, daily time-step, computer model that predicts soil erosion via simulation of the physical processes controlling wind erosion. WEPS is comprised of several individual modules (submodels) that reflect different sets of physical processes, ...

  18. Control of epileptic seizures in WAG/Rij rats by means of brain-computer interface

    NASA Astrophysics Data System (ADS)

    Makarov, Vladimir V.; Maksimenko, Vladimir A.; van Luijtelaar, Gilles; Lüttjohann, Annika; Hramov, Alexander E.

    2018-02-01

    The main issue of epileptology is the elimination of epileptic events. This can be achieved by a system that predicts the emergence of seizures in conjunction with a system that interferes with the process that leads to the onset of seizure. The prediction of seizures remains, for the present, unresolved in the absence epilepsy, due to the sudden onset of seizures. We developed an algorithm for predicting seizures in real time, evaluated it and implemented it into an online closed-loop brain stimulation system designed to prevent typical for the absence of epilepsy of spike waves (SWD) in the genetic rat model. The algorithm correctly predicts more than 85% of the seizures and the rest were successfully detected. Unlike the old beliefs that SWDs are unpredictable, current results show that they can be predicted and that the development of systems for predicting and preventing closed-loop capture is a feasible step on the way to intervention to achieve control and freedom from epileptic seizures.

  19. Aperiodic Robust Model Predictive Control for Constrained Continuous-Time Nonlinear Systems: An Event-Triggered Approach.

    PubMed

    Liu, Changxin; Gao, Jian; Li, Huiping; Xu, Demin

    2018-05-01

    The event-triggered control is a promising solution to cyber-physical systems, such as networked control systems, multiagent systems, and large-scale intelligent systems. In this paper, we propose an event-triggered model predictive control (MPC) scheme for constrained continuous-time nonlinear systems with bounded disturbances. First, a time-varying tightened state constraint is computed to achieve robust constraint satisfaction, and an event-triggered scheduling strategy is designed in the framework of dual-mode MPC. Second, the sufficient conditions for ensuring feasibility and closed-loop robust stability are developed, respectively. We show that robust stability can be ensured and communication load can be reduced with the proposed MPC algorithm. Finally, numerical simulations and comparison studies are performed to verify the theoretical results.

  20. Model Predictive Control application for real time operation of controlled structures for the Water Authority Noorderzijlvest, The Netherlands

    NASA Astrophysics Data System (ADS)

    van Heeringen, Klaas-Jan; Gooijer, Jan; Knot, Floris; Talsma, Jan

    2015-04-01

    In the Netherlands, flood protection has always been a key issue to protect settlements against storm surges and riverine floods. Whereas flood protection traditionally focused on structural measures, nowadays the availability of meteorological and hydrological forecasts enable the application of more advanced real-time control techniques for operating the existing hydraulic infrastructure in an anticipatory and more efficient way. Model Predictive Control (MPC) is a powerful technique to derive optimal control variables with the help of model based predictions evaluated against a control objective. In a project for the regional water authority Noorderzijlvest in the north of the Netherlands, it has been shown that MPC can increase the safety level of the system during flood events by an anticipatory pre-release of water. Furthermore, energy costs of pumps can be reduced by making tactical use of the water storage and shifting pump activities during normal operating conditions to off-peak hours. In this way cheap energy is used in combination of gravity flow through gates during low tide periods. MPC has now been implemented for daily operational use of the whole water system of the water authority Noorderzijlvest. The system developed to a real time decision support system which not only supports the daily operation but is able to directly implement the optimal control settings at the structures. We explain how we set-up and calibrated a prediction model (RTC-Tools) that is accurate and fast enough for optimization purposes, and how we integrated it in the operational flood early warning system (Delft-FEWS). Beside the prediction model, the weights and the factors of the objective function are an important element of MPC, since they shape the control objective. We developed special features in Delft-FEWS to allow the operators to adjust the objective function in order to meet changing requirements and to evaluate different control strategies.

  1. Predicting Minimum Control Speed on the Ground (VMCG) and Minimum Control Airspeed (VMCA) of Engine Inoperative Flight Using Aerodynamic Database and Propulsion Database Generators

    NASA Astrophysics Data System (ADS)

    Hadder, Eric Michael

    There are many computer aided engineering tools and software used by aerospace engineers to design and predict specific parameters of an airplane. These tools help a design engineer predict and calculate such parameters such as lift, drag, pitching moment, takeoff range, maximum takeoff weight, maximum flight range and much more. However, there are very limited ways to predict and calculate the minimum control speeds of an airplane in engine inoperative flight. There are simple solutions, as well as complicated solutions, yet there is neither standard technique nor consistency throughout the aerospace industry. To further complicate this subject, airplane designers have the option of using an Automatic Thrust Control System (ATCS), which directly alters the minimum control speeds of an airplane. This work addresses this issue with a tool used to predict and calculate the Minimum Control Speed on the Ground (VMCG) as well as the Minimum Control Airspeed (VMCA) of any existing or design-stage airplane. With simple line art of an airplane, a program called VORLAX is used to generate an aerodynamic database used to calculate the stability derivatives of an airplane. Using another program called Numerical Propulsion System Simulation (NPSS), a propulsion database is generated to use with the aerodynamic database to calculate both VMCG and VMCA. This tool was tested using two airplanes, the Airbus A320 and the Lockheed Martin C130J-30 Super Hercules. The A320 does not use an Automatic Thrust Control System (ATCS), whereas the C130J-30 does use an ATCS. The tool was able to properly calculate and match known values of VMCG and VMCA for both of the airplanes. The fact that this tool was able to calculate the known values of VMCG and VMCA for both airplanes means that this tool would be able to predict the VMCG and VMCA of an airplane in the preliminary stages of design. This would allow design engineers the ability to use an Automatic Thrust Control System (ATCS) as part of the design of an airplane and still have the ability to predict the VMCG and VMCA of the airplane.

  2. Applied Distributed Model Predictive Control for Energy Efficient Buildings and Ramp Metering

    NASA Astrophysics Data System (ADS)

    Koehler, Sarah Muraoka

    Industrial large-scale control problems present an interesting algorithmic design challenge. A number of controllers must cooperate in real-time on a network of embedded hardware with limited computing power in order to maximize system efficiency while respecting constraints and despite communication delays. Model predictive control (MPC) can automatically synthesize a centralized controller which optimizes an objective function subject to a system model, constraints, and predictions of disturbance. Unfortunately, the computations required by model predictive controllers for large-scale systems often limit its industrial implementation only to medium-scale slow processes. Distributed model predictive control (DMPC) enters the picture as a way to decentralize a large-scale model predictive control problem. The main idea of DMPC is to split the computations required by the MPC problem amongst distributed processors that can compute in parallel and communicate iteratively to find a solution. Some popularly proposed solutions are distributed optimization algorithms such as dual decomposition and the alternating direction method of multipliers (ADMM). However, these algorithms ignore two practical challenges: substantial communication delays present in control systems and also problem non-convexity. This thesis presents two novel and practically effective DMPC algorithms. The first DMPC algorithm is based on a primal-dual active-set method which achieves fast convergence, making it suitable for large-scale control applications which have a large communication delay across its communication network. In particular, this algorithm is suited for MPC problems with a quadratic cost, linear dynamics, forecasted demand, and box constraints. We measure the performance of this algorithm and show that it significantly outperforms both dual decomposition and ADMM in the presence of communication delay. The second DMPC algorithm is based on an inexact interior point method which is suited for nonlinear optimization problems. The parallel computation of the algorithm exploits iterative linear algebra methods for the main linear algebra computations in the algorithm. We show that the splitting of the algorithm is flexible and can thus be applied to various distributed platform configurations. The two proposed algorithms are applied to two main energy and transportation control problems. The first application is energy efficient building control. Buildings represent 40% of energy consumption in the United States. Thus, it is significant to improve the energy efficiency of buildings. The goal is to minimize energy consumption subject to the physics of the building (e.g. heat transfer laws), the constraints of the actuators as well as the desired operating constraints (thermal comfort of the occupants), and heat load on the system. In this thesis, we describe the control systems of forced air building systems in practice. We discuss the "Trim and Respond" algorithm which is a distributed control algorithm that is used in practice, and show that it performs similarly to a one-step explicit DMPC algorithm. Then, we apply the novel distributed primal-dual active-set method and provide extensive numerical results for the building MPC problem. The second main application is the control of ramp metering signals to optimize traffic flow through a freeway system. This application is particularly important since urban congestion has more than doubled in the past few decades. The ramp metering problem is to maximize freeway throughput subject to freeway dynamics (derived from mass conservation), actuation constraints, freeway capacity constraints, and predicted traffic demand. In this thesis, we develop a hybrid model predictive controller for ramp metering that is guaranteed to be persistently feasible and stable. This contrasts to previous work on MPC for ramp metering where such guarantees are absent. We apply a smoothing method to the hybrid model predictive controller and apply the inexact interior point method to this nonlinear non-convex ramp metering problem.

  3. Life Extending Control. [mechanical fatigue in reusable rocket engines

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.; Merrill, Walter C.

    1991-01-01

    The concept of Life Extending Control is defined. Life is defined in terms of mechanical fatigue life. A brief description is given of the current approach to life prediction using a local, cyclic, stress-strain approach for a critical system component. An alternative approach to life prediction based on a continuous functional relationship to component performance is proposed. Based on cyclic life prediction, an approach to life extending control, called the Life Management Approach, is proposed. A second approach, also based on cyclic life prediction, called the implicit approach, is presented. Assuming the existence of the alternative functional life prediction approach, two additional concepts for Life Extending Control are presented.

  4. Life extending control: A concept paper

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.; Merrill, Walter C.

    1991-01-01

    The concept of Life Extending Control is defined. Life is defined in terms of mechanical fatigue life. A brief description is given of the current approach to life prediction using a local, cyclic, stress-strain approach for a critical system component. An alternative approach to life prediction based on a continuous functional relationship to component performance is proposed.Base on cyclic life prediction an approach to Life Extending Control, called the Life Management Approach is proposed. A second approach, also based on cyclic life prediction, called the Implicit Approach, is presented. Assuming the existence of the alternative functional life prediction approach, two additional concepts for Life Extending Control are presented.

  5. Implementation and Test of the Automatic Flight Dynamics Operations for Geostationary Satellite Mission

    NASA Astrophysics Data System (ADS)

    Park, Sangwook; Lee, Young-Ran; Hwang, Yoola; Javier Santiago Noguero Galilea

    2009-12-01

    This paper describes the Flight Dynamics Automation (FDA) system for COMS Flight Dynamics System (FDS) and its test result in terms of the performance of the automation jobs. FDA controls the flight dynamics functions such as orbit determination, orbit prediction, event prediction, and fuel accounting. The designed FDA is independent from the specific characteristics which are defined by spacecraft manufacturer or specific satellite missions. Therefore, FDA could easily links its autonomous job control functions to any satellite mission control system with some interface modification. By adding autonomous system along with flight dynamics system, it decreases the operator’s tedious and repeated jobs but increase the usability and reliability of the system. Therefore, FDA is used to improve the completeness of whole mission control system’s quality. The FDA is applied to the real flight dynamics system of a geostationary satellite, COMS and the experimental test is performed. The experimental result shows the stability and reliability of the mission control operations through the automatic job control.

  6. Optimal Control of Distributed Energy Resources using Model Predictive Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayhorn, Ebony T.; Kalsi, Karanjit; Elizondo, Marcelo A.

    2012-07-22

    In an isolated power system (rural microgrid), Distributed Energy Resources (DERs) such as renewable energy resources (wind, solar), energy storage and demand response can be used to complement fossil fueled generators. The uncertainty and variability due to high penetration of wind makes reliable system operations and controls challenging. In this paper, an optimal control strategy is proposed to coordinate energy storage and diesel generators to maximize wind penetration while maintaining system economics and normal operation. The problem is formulated as a multi-objective optimization problem with the goals of minimizing fuel costs and changes in power output of diesel generators, minimizingmore » costs associated with low battery life of energy storage and maintaining system frequency at the nominal operating value. Two control modes are considered for controlling the energy storage to compensate either net load variability or wind variability. Model predictive control (MPC) is used to solve the aforementioned problem and the performance is compared to an open-loop look-ahead dispatch problem. Simulation studies using high and low wind profiles, as well as, different MPC prediction horizons demonstrate the efficacy of the closed-loop MPC in compensating for uncertainties in wind and demand.« less

  7. Homeostatic Regulation of Memory Systems and Adaptive Decisions

    PubMed Central

    Mizumori, Sheri JY; Jo, Yong Sang

    2013-01-01

    While it is clear that many brain areas process mnemonic information, understanding how their interactions result in continuously adaptive behaviors has been a challenge. A homeostatic-regulated prediction model of memory is presented that considers the existence of a single memory system that is based on a multilevel coordinated and integrated network (from cells to neural systems) that determines the extent to which events and outcomes occur as predicted. The “multiple memory systems of the brain” have in common output that signals errors in the prediction of events and/or their outcomes, although these signals differ in terms of what the error signal represents (e.g., hippocampus: context prediction errors vs. midbrain/striatum: reward prediction errors). The prefrontal cortex likely plays a pivotal role in the coordination of prediction analysis within and across prediction brain areas. By virtue of its widespread control and influence, and intrinsic working memory mechanisms. Thus, the prefrontal cortex supports the flexible processing needed to generate adaptive behaviors and predict future outcomes. It is proposed that prefrontal cortex continually and automatically produces adaptive responses according to homeostatic regulatory principles: prefrontal cortex may serve as a controller that is intrinsically driven to maintain in prediction areas an experience-dependent firing rate set point that ensures adaptive temporally and spatially resolved neural responses to future prediction errors. This same drive by prefrontal cortex may also restore set point firing rates after deviations (i.e. prediction errors) are detected. In this way, prefrontal cortex contributes to reducing uncertainty in prediction systems. An emergent outcome of this homeostatic view may be the flexible and adaptive control that prefrontal cortex is known to implement (i.e. working memory) in the most challenging of situations. Compromise to any of the prediction circuits should result in rigid and suboptimal decision making and memory as seen in addiction and neurological disease. © 2013 The Authors. Hippocampus Published by Wiley Periodicals, Inc. PMID:23929788

  8. Homeostatic regulation of memory systems and adaptive decisions.

    PubMed

    Mizumori, Sheri J Y; Jo, Yong Sang

    2013-11-01

    While it is clear that many brain areas process mnemonic information, understanding how their interactions result in continuously adaptive behaviors has been a challenge. A homeostatic-regulated prediction model of memory is presented that considers the existence of a single memory system that is based on a multilevel coordinated and integrated network (from cells to neural systems) that determines the extent to which events and outcomes occur as predicted. The "multiple memory systems of the brain" have in common output that signals errors in the prediction of events and/or their outcomes, although these signals differ in terms of what the error signal represents (e.g., hippocampus: context prediction errors vs. midbrain/striatum: reward prediction errors). The prefrontal cortex likely plays a pivotal role in the coordination of prediction analysis within and across prediction brain areas. By virtue of its widespread control and influence, and intrinsic working memory mechanisms. Thus, the prefrontal cortex supports the flexible processing needed to generate adaptive behaviors and predict future outcomes. It is proposed that prefrontal cortex continually and automatically produces adaptive responses according to homeostatic regulatory principles: prefrontal cortex may serve as a controller that is intrinsically driven to maintain in prediction areas an experience-dependent firing rate set point that ensures adaptive temporally and spatially resolved neural responses to future prediction errors. This same drive by prefrontal cortex may also restore set point firing rates after deviations (i.e. prediction errors) are detected. In this way, prefrontal cortex contributes to reducing uncertainty in prediction systems. An emergent outcome of this homeostatic view may be the flexible and adaptive control that prefrontal cortex is known to implement (i.e. working memory) in the most challenging of situations. Compromise to any of the prediction circuits should result in rigid and suboptimal decision making and memory as seen in addiction and neurological disease. Copyright © 2013 Wiley Periodicals, Inc.

  9. Flutter prediction for a wing with active aileron control

    NASA Technical Reports Server (NTRS)

    Penning, K.; Sandlin, D. R.

    1983-01-01

    A method for predicting the vibrational stability of an aircraft with an analog active aileron flutter suppression system (FSS) is expained. Active aileron refers to the use of an active control system connected to the aileron to damp vibrations. Wing vibrations are sensed by accelerometers and the information is used to deflect the aileron. Aerodynamic force caused by the aileron deflection oppose wing vibrations and effectively add additional damping to the system.

  10. Dynamic Simulation of Human Gait Model With Predictive Capability.

    PubMed

    Sun, Jinming; Wu, Shaoli; Voglewede, Philip A

    2018-03-01

    In this paper, it is proposed that the central nervous system (CNS) controls human gait using a predictive control approach in conjunction with classical feedback control instead of exclusive classical feedback control theory that controls based on past error. To validate this proposition, a dynamic model of human gait is developed using a novel predictive approach to investigate the principles of the CNS. The model developed includes two parts: a plant model that represents the dynamics of human gait and a controller that represents the CNS. The plant model is a seven-segment, six-joint model that has nine degrees-of-freedom (DOF). The plant model is validated using data collected from able-bodied human subjects. The proposed controller utilizes model predictive control (MPC). MPC uses an internal model to predict the output in advance, compare the predicted output to the reference, and optimize the control input so that the predicted error is minimal. To decrease the complexity of the model, two joints are controlled using a proportional-derivative (PD) controller. The developed predictive human gait model is validated by simulating able-bodied human gait. The simulation results show that the developed model is able to simulate the kinematic output close to experimental data.

  11. Model predictive control system and method for integrated gasification combined cycle power generation

    DOEpatents

    Kumar, Aditya; Shi, Ruijie; Kumar, Rajeeva; Dokucu, Mustafa

    2013-04-09

    Control system and method for controlling an integrated gasification combined cycle (IGCC) plant are provided. The system may include a controller coupled to a dynamic model of the plant to process a prediction of plant performance and determine a control strategy for the IGCC plant over a time horizon subject to plant constraints. The control strategy may include control functionality to meet a tracking objective and control functionality to meet an optimization objective. The control strategy may be configured to prioritize the tracking objective over the optimization objective based on a coordinate transformation, such as an orthogonal or quasi-orthogonal projection. A plurality of plant control knobs may be set in accordance with the control strategy to generate a sequence of coordinated multivariable control inputs to meet the tracking objective and the optimization objective subject to the prioritization resulting from the coordinate transformation.

  12. Model Predictive Control-based Power take-off Control of an Oscillating Water Column Wave Energy Conversion System

    NASA Astrophysics Data System (ADS)

    Rajapakse, G.; Jayasinghe, S. G.; Fleming, A.; Shahnia, F.

    2017-07-01

    Australia’s extended coastline asserts abundance of wave and tidal power. The predictability of these energy sources and their proximity to cities and towns make them more desirable. Several tidal current turbine and ocean wave energy conversion projects have already been planned in the coastline of southern Australia. Some of these projects use air turbine technology with air driven turbines to harvest the energy from an oscillating water column. This study focuses on the power take-off control of a single stage unidirectional oscillating water column air turbine generator system, and proposes a model predictive control-based speed controller for the generator-turbine assembly. The proposed method is verified with simulation results that show the efficacy of the controller in extracting power from the turbine while maintaining the speed at the desired level.

  13. A Hierarchical Model Predictive Tracking Control for Independent Four-Wheel Driving/Steering Vehicles with Coaxial Steering Mechanism

    NASA Astrophysics Data System (ADS)

    Itoh, Masato; Hagimori, Yuki; Nonaka, Kenichiro; Sekiguchi, Kazuma

    2016-09-01

    In this study, we apply a hierarchical model predictive control to omni-directional mobile vehicle, and improve the tracking performance. We deal with an independent four-wheel driving/steering vehicle (IFWDS) equipped with four coaxial steering mechanisms (CSM). The coaxial steering mechanism is a special one composed of two steering joints on the same axis. In our previous study with respect to IFWDS with ideal steering, we proposed a model predictive tracking control. However, this method did not consider constraints of the coaxial steering mechanism which causes delay of steering. We also proposed a model predictive steering control considering constraints of this mechanism. In this study, we propose a hierarchical system combining above two control methods for IFWDS. An upper controller, which deals with vehicle kinematics, runs a model predictive tracking control, and a lower controller, which considers constraints of coaxial steering mechanism, runs a model predictive steering control which tracks the predicted steering angle optimized an upper controller. We verify the superiority of this method by comparing this method with the previous method.

  14. An introduction to high speed aircraft noise prediction

    NASA Technical Reports Server (NTRS)

    Wilson, Mark R.

    1992-01-01

    The Aircraft Noise Prediction Program's High Speed Research prediction system (ANOPP-HSR) is introduced. This mini-manual is an introduction which gives a brief overview of the ANOPP system and the components of the HSR prediction method. ANOPP information resources are given. Twelve of the most common ANOPP-HSR control statements are described. Each control statement's purpose and format are stated and relevant examples are provided. More detailed examples of the use of the control statements are presented in the manual along with ten ANOPP-HSR templates. The purpose of the templates is to provide the user with working ANOPP-HSR programs which can be modified to serve particular prediction requirements. Also included in this manual is a brief discussion of common errors and how to solve these problems. The appendices include the following useful information: a summary of all ANOPP-HSR functional research modules, a data unit directory, a discussion of one of the more complex control statements, and input data unit and table examples.

  15. Robust distributed model predictive control of linear systems with structured time-varying uncertainties

    NASA Astrophysics Data System (ADS)

    Zhang, Langwen; Xie, Wei; Wang, Jingcheng

    2017-11-01

    In this work, synthesis of robust distributed model predictive control (MPC) is presented for a class of linear systems subject to structured time-varying uncertainties. By decomposing a global system into smaller dimensional subsystems, a set of distributed MPC controllers, instead of a centralised controller, are designed. To ensure the robust stability of the closed-loop system with respect to model uncertainties, distributed state feedback laws are obtained by solving a min-max optimisation problem. The design of robust distributed MPC is then transformed into solving a minimisation optimisation problem with linear matrix inequality constraints. An iterative online algorithm with adjustable maximum iteration is proposed to coordinate the distributed controllers to achieve a global performance. The simulation results show the effectiveness of the proposed robust distributed MPC algorithm.

  16. Piloted Simulation Evaluation of a Model-Predictive Automatic Recovery System to Prevent Vehicle Loss of Control on Approach

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan; Liu, Yuan; Sowers, T. Shane; Owen, A. Karl; Guo, Ten-Huei

    2014-01-01

    This paper describes a model-predictive automatic recovery system for aircraft on the verge of a loss-of-control situation. The system determines when it must intervene to prevent an imminent accident, resulting from a poor approach. It estimates the altitude loss that would result from a go-around maneuver at the current flight condition. If the loss is projected to violate a minimum altitude threshold, the maneuver is automatically triggered. The system deactivates to allow landing once several criteria are met. Piloted flight simulator evaluation showed the system to provide effective envelope protection during extremely unsafe landing attempts. The results demonstrate how flight and propulsion control can be integrated to recover control of the vehicle automatically and prevent a potential catastrophe.

  17. Operational flood control of a low-lying delta system using large time step Model Predictive Control

    NASA Astrophysics Data System (ADS)

    Tian, Xin; van Overloop, Peter-Jules; Negenborn, Rudy R.; van de Giesen, Nick

    2015-01-01

    The safety of low-lying deltas is threatened not only by riverine flooding but by storm-induced coastal flooding as well. For the purpose of flood control, these deltas are mostly protected in a man-made environment, where dikes, dams and other adjustable infrastructures, such as gates, barriers and pumps are widely constructed. Instead of always reinforcing and heightening these structures, it is worth considering making the most of the existing infrastructure to reduce the damage and manage the delta in an operational and overall way. In this study, an advanced real-time control approach, Model Predictive Control, is proposed to operate these structures in the Dutch delta system (the Rhine-Meuse delta). The application covers non-linearity in the dynamic behavior of the water system and the structures. To deal with the non-linearity, a linearization scheme is applied which directly uses the gate height instead of the structure flow as the control variable. Given the fact that MPC needs to compute control actions in real-time, we address issues regarding computational time. A new large time step scheme is proposed in order to save computation time, in which different control variables can have different control time steps. Simulation experiments demonstrate that Model Predictive Control with the large time step setting is able to control a delta system better and much more efficiently than the conventional operational schemes.

  18. Towards feasible and effective predictive wavefront control for adaptive optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poyneer, L A; Veran, J

    We have recently proposed Predictive Fourier Control, a computationally efficient and adaptive algorithm for predictive wavefront control that assumes frozen flow turbulence. We summarize refinements to the state-space model that allow operation with arbitrary computational delays and reduce the computational cost of solving for new control. We present initial atmospheric characterization using observations with Gemini North's Altair AO system. These observations, taken over 1 year, indicate that frozen flow is exists, contains substantial power, and is strongly detected 94% of the time.

  19. Modelling and model predictive control for a bicycle-rider system

    NASA Astrophysics Data System (ADS)

    Chu, T. D.; Chen, C. K.

    2018-01-01

    This study proposes a bicycle-rider control model based on model predictive control (MPC). First, a bicycle-rider model with leaning motion of the rider's upper body is developed. The initial simulation data of the bicycle rider are then used to identify the linear model of the system in state-space form for MPC design. Control characteristics of the proposed controller are assessed by simulating the roll-angle tracking control. In this riding task, the MPC uses steering and leaning torques as the control inputs to control the bicycle along a reference roll angle. The simulation results in different cases have demonstrated the applicability and performance of the MPC for bicycle-rider modelling.

  20. CRN5EXP: Expert system for statistical quality control

    NASA Technical Reports Server (NTRS)

    Hentea, Mariana

    1991-01-01

    The purpose of the Expert System CRN5EXP is to assist in checking the quality of the coils at two very important mills: Hot Rolling and Cold Rolling in a steel plant. The system interprets the statistical quality control charts, diagnoses and predicts the quality of the steel. Measurements of process control variables are recorded in a database and sample statistics such as the mean and the range are computed and plotted on a control chart. The chart is analyzed through patterns using the C Language Integrated Production System (CLIPS) and a forward chaining technique to reach a conclusion about the causes of defects and to take management measures for the improvement of the quality control techniques. The Expert System combines the certainty factors associated with the process control variables to predict the quality of the steel. The paper presents the approach to extract data from the database, the reason to combine certainty factors, the architecture and the use of the Expert System. However, the interpretation of control charts patterns requires the human expert's knowledge and lends to Expert Systems rules.

  1. Nonlinear Recurrent Neural Network Predictive Control for Energy Distribution of a Fuel Cell Powered Robot

    PubMed Central

    Chen, Qihong; Long, Rong; Quan, Shuhai

    2014-01-01

    This paper presents a neural network predictive control strategy to optimize power distribution for a fuel cell/ultracapacitor hybrid power system of a robot. We model the nonlinear power system by employing time variant auto-regressive moving average with exogenous (ARMAX), and using recurrent neural network to represent the complicated coefficients of the ARMAX model. Because the dynamic of the system is viewed as operating- state- dependent time varying local linear behavior in this frame, a linear constrained model predictive control algorithm is developed to optimize the power splitting between the fuel cell and ultracapacitor. The proposed algorithm significantly simplifies implementation of the controller and can handle multiple constraints, such as limiting substantial fluctuation of fuel cell current. Experiment and simulation results demonstrate that the control strategy can optimally split power between the fuel cell and ultracapacitor, limit the change rate of the fuel cell current, and so as to extend the lifetime of the fuel cell. PMID:24707206

  2. Model Predictive Control Based on System Re-Identification (MPC-SRI) to Control Bio-H2 Production from Biomass

    NASA Astrophysics Data System (ADS)

    Wahid, A.; Taqwallah, H. M. H.

    2018-03-01

    Compressors and a steam reformer are the important units in biohydrogen from biomass plant. The compressors are useful for achieving high-pressure operating conditions while the steam reformer is the main process to produce H2 gas. To control them, in this research used a model predictive control (MPC) expected to have better controller performance than conventional controllers. Because of the explicit model empowerment in MPC, obtaining a better model is the main objective before employing MPC. The common way to get the empirical model is through the identification system, so that obtained a first-order plus dead-time (FOPDT) model. This study has already improved that way since used the system re-identification (SRI) based on closed loop mode. Based on this method the results of the compressor pressure control and temperature control of steam reformer were that MPC based on system re-identification (MPC-SRI) has better performance than MPC without system re-identification (MPCWSRI) and the proportional-integral (PI) controller, by % improvement of 73% against MPCWSRI and 75% against the PI controller.

  3. A balance of activity in brain control and reward systems predicts self-regulatory outcomes

    PubMed Central

    Chen, Pin-Hao A.; Huckins, Jeremy F.; Hofmann, Wilhelm; Kelley, William M.; Heatherton, Todd F.

    2017-01-01

    Abstract Previous neuroimaging work has shown that increased reward-related activity following exposure to food cues is predictive of self-control failure. The balance model suggests that self-regulation failures result from an imbalance in reward and executive control mechanisms. However, an open question is whether the relative balance of activity in brain systems associated with executive control (vs reward) supports self-regulatory outcomes when people encounter tempting cues in daily life. Sixty-nine chronic dieters, a population known for frequent lapses in self-control, completed a food cue-reactivity task during an fMRI scanning session, followed by a weeklong sampling of daily eating behaviors via ecological momentary assessment. We related participants’ food cue activity in brain systems associated with executive control and reward to real-world eating patterns. Specifically, a balance score representing the amount of activity in brain regions associated with self-regulatory control, relative to automatic reward-related activity, predicted dieters’ control over their eating behavior during the following week. This balance measure may reflect individual self-control capacity and be useful for examining self-regulation success in other domains and populations. PMID:28158874

  4. A balance of activity in brain control and reward systems predicts self-regulatory outcomes.

    PubMed

    Lopez, Richard B; Chen, Pin-Hao A; Huckins, Jeremy F; Hofmann, Wilhelm; Kelley, William M; Heatherton, Todd F

    2017-05-01

    Previous neuroimaging work has shown that increased reward-related activity following exposure to food cues is predictive of self-control failure. The balance model suggests that self-regulation failures result from an imbalance in reward and executive control mechanisms. However, an open question is whether the relative balance of activity in brain systems associated with executive control (vs reward) supports self-regulatory outcomes when people encounter tempting cues in daily life. Sixty-nine chronic dieters, a population known for frequent lapses in self-control, completed a food cue-reactivity task during an fMRI scanning session, followed by a weeklong sampling of daily eating behaviors via ecological momentary assessment. We related participants' food cue activity in brain systems associated with executive control and reward to real-world eating patterns. Specifically, a balance score representing the amount of activity in brain regions associated with self-regulatory control, relative to automatic reward-related activity, predicted dieters' control over their eating behavior during the following week. This balance measure may reflect individual self-control capacity and be useful for examining self-regulation success in other domains and populations. © The Author (2017). Published by Oxford University Press.

  5. Control and Optimization of Electric Ship Propulsion Systems with Hybrid Energy Storage

    NASA Astrophysics Data System (ADS)

    Hou, Jun

    Electric ships experience large propulsion-load fluctuations on their drive shaft due to encountered waves and the rotational motion of the propeller, affecting the reliability of the shipboard power network and causing wear and tear. This dissertation explores new solutions to address these fluctuations by integrating a hybrid energy storage system (HESS) and developing energy management strategies (EMS). Advanced electric propulsion drive concepts are developed to improve energy efficiency, performance and system reliability by integrating HESS, developing advanced control solutions and system integration strategies, and creating tools (including models and testbed) for design and optimization of hybrid electric drive systems. A ship dynamics model which captures the underlying physical behavior of the electric ship propulsion system is developed to support control development and system optimization. To evaluate the effectiveness of the proposed control approaches, a state-of-the-art testbed has been constructed which includes a system controller, Li-Ion battery and ultra-capacitor (UC) modules, a high-speed flywheel, electric motors with their power electronic drives, DC/DC converters, and rectifiers. The feasibility and effectiveness of HESS are investigated and analyzed. Two different HESS configurations, namely battery/UC (B/UC) and battery/flywheel (B/FW), are studied and analyzed to provide insights into the advantages and limitations of each configuration. Battery usage, loss analysis, and sensitivity to battery aging are also analyzed for each configuration. In order to enable real-time application and achieve desired performance, a model predictive control (MPC) approach is developed, where a state of charge (SOC) reference of flywheel for B/FW or UC for B/UC is used to address the limitations imposed by short predictive horizons, because the benefits of flywheel and UC working around high-efficiency range are ignored by short predictive horizons. Given the multi-frequency characteristics of load fluctuations, a filter-based control strategy is developed to illustrate the importance of the coordination within the HESS. Without proper control strategies, the HESS solution could be worse than a single energy storage system solution. The proposed HESS, when introduced into an existing shipboard electrical propulsion system, will interact with the power generation systems. A model-based analysis is performed to evaluate the interactions of the multiple power sources when a hybrid energy storage system is introduced. The study has revealed undesirable interactions when the controls are not coordinated properly, and leads to the conclusion that a proper EMS is needed. Knowledge of the propulsion-load torque is essential for the proposed system-level EMS, but this load torque is immeasurable in most marine applications. To address this issue, a model-based approach is developed so that load torque estimation and prediction can be incorporated into the MPC. In order to evaluate the effectiveness of the proposed approach, an input observer with linear prediction is developed as an alternative approach to obtain the load estimation and prediction. Comparative studies are performed to illustrate the importance of load torque estimation and prediction, and demonstrate the effectiveness of the proposed approach in terms of improved efficiency, enhanced reliability, and reduced wear and tear. Finally, the real-time MPC algorithm has been implemented on a physical testbed. Three different efforts have been made to enable real-time implementation: a specially tailored problem formulation, an efficient optimization algorithm and a multi-core hardware implementation. Compared to the filter-based strategy, the proposed real-time MPC achieves superior performance, in terms of the enhanced system reliability, improved HESS efficiency, and extended battery life.

  6. Perturbed cooperative-state feedback strategy for model predictive networked control of interconnected systems.

    PubMed

    Tran, Tri; Ha, Q P

    2018-01-01

    A perturbed cooperative-state feedback (PSF) strategy is presented for the control of interconnected systems in this paper. The subsystems of an interconnected system can exchange data via the communication network that has multiple connection topologies. The PSF strategy can resolve both issues, the sensor data losses and the communication network breaks, thanks to the two components of the control including a cooperative-state feedback and a perturbation variable, e.g., u i =K ij x j +w i . The PSF is implemented in a decentralized model predictive control scheme with a stability constraint and a non-monotonic storage function (ΔV(x(k))≥0), derived from the dissipative systems theory. Numerical simulation for the automatic generation control problem in power systems is studied to illustrate the effectiveness of the presented PSF strategy. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Model predictive control design for polytopic uncertain systems by synthesising multi-step prediction scenarios

    NASA Astrophysics Data System (ADS)

    Lu, Jianbo; Xi, Yugeng; Li, Dewei; Xu, Yuli; Gan, Zhongxue

    2018-01-01

    A common objective of model predictive control (MPC) design is the large initial feasible region, low online computational burden as well as satisfactory control performance of the resulting algorithm. It is well known that interpolation-based MPC can achieve a favourable trade-off among these different aspects. However, the existing results are usually based on fixed prediction scenarios, which inevitably limits the performance of the obtained algorithms. So by replacing the fixed prediction scenarios with the time-varying multi-step prediction scenarios, this paper provides a new insight into improvement of the existing MPC designs. The adopted control law is a combination of predetermined multi-step feedback control laws, based on which two MPC algorithms with guaranteed recursive feasibility and asymptotic stability are presented. The efficacy of the proposed algorithms is illustrated by a numerical example.

  8. Onboard utilization of ground control points for image correction. Volume 3: Ground control point simulation software design

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The software developed to simulate the ground control point navigation system is described. The Ground Control Point Simulation Program (GCPSIM) is designed as an analysis tool to predict the performance of the navigation system. The system consists of two star trackers, a global positioning system receiver, a gyro package, and a landmark tracker.

  9. Generalized predictive control for a coupled four tank MIMO system using a continuous-discrete time observer.

    PubMed

    Gouta, Houssemeddine; Hadj Saïd, Salim; Barhoumi, Nabil; M'Sahli, Faouzi

    2017-03-01

    This paper deals with the problem of the observer based control design for a coupled four-tank liquid level system. For this MIMO system's dynamics, motivated by a desire to provide precise and sensorless liquid level control, a nonlinear predictive controller based on a continuous-discrete observer is presented. First, an analytical solution from the model predictive control (MPC) technique is developed for a particular class of nonlinear MIMO systems and its corresponding exponential stability is proven. Then, a high gain observer that runs in continuous-time with an output error correction time that is updated in a mixed continuous-discrete fashion is designed in order to estimate the liquid levels in the two upper tanks. The effectiveness of the designed control schemes are validated by two tests; The first one is maintaining a constant level in the first bottom tank while making the level in the second bottom tank to follow a sinusoidal reference signal. The second test is more difficult and it is made using two trapezoidal reference signals in order to see the decoupling performance of the system's outputs. Simulation and experimental results validate the objective of the paper. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Prediction of Safety Stock Using Fuzzy Time Series (FTS) and Technology of Radio Frequency Identification (RFID) for Stock Control at Vendor Managed Inventory (VMI)

    NASA Astrophysics Data System (ADS)

    Mashuri, Chamdan; Suryono; Suseno, Jatmiko Endro

    2018-02-01

    This research was conducted by prediction of safety stock using Fuzzy Time Series (FTS) and technology of Radio Frequency Identification (RFID) for stock control at Vendor Managed Inventory (VMI). Well-controlled stock influenced company revenue and minimized cost. It discussed about information system of safety stock prediction developed through programming language of PHP. Input data consisted of demand got from automatic, online and real time acquisition using technology of RFID, then, sent to server and stored at online database. Furthermore, data of acquisition result was predicted by using algorithm of FTS applying universe of discourse defining and fuzzy sets determination. Fuzzy set result was continued to division process of universe of discourse in order to be to final step. Prediction result was displayed at information system dashboard developed. By using 60 data from demand data, prediction score was 450.331 and safety stock was 135.535. Prediction result was done by error deviation validation using Mean Square Percent Error of 15%. It proved that FTS was good enough in predicting demand and safety stock for stock control. For deeper analysis, researchers used data of demand and universe of discourse U varying at FTS to get various result based on test data used.

  11. On Application of Model Predictive Control to Power Converter with Switching

    NASA Astrophysics Data System (ADS)

    Zanma, Tadanao; Fukuta, Junichi; Doki, Shinji; Ishida, Muneaki; Okuma, Shigeru; Matsumoto, Takashi; Nishimori, Eiji

    This paper concerns a DC-DC converter control. In DC-DC converters, there exist both continuous components such as inductance, conductance and resistance and discrete ones, IGBT and MOSFET as semiconductor switching elements. Such a system can be regarded as a hybrid dynamical system. Thus, this paper presents a dc-dc control technique based on the model predictive control. Specifically, a case in which the load of the dc-dc converter changes from active to sleep is considered. In the case, a control method which makes the output voltage follow to the reference quickly in transition, and the switching frequency be constant in steady state. In addition, in applying the model predictive control to power electronics circuits, the switching characteristic of the device and the restriction condition for protection are also considered. The effectiveness of the proposed method is illustrated by comparing a conventional method through some simulation results.

  12. The predictability of frequency-altered auditory feedback changes the weighting of feedback and feedforward input for speech motor control.

    PubMed

    Scheerer, Nichole E; Jones, Jeffery A

    2014-12-01

    Speech production requires the combined effort of a feedback control system driven by sensory feedback, and a feedforward control system driven by internal models. However, the factors that dictate the relative weighting of these feedback and feedforward control systems are unclear. In this event-related potential (ERP) study, participants produced vocalisations while being exposed to blocks of frequency-altered feedback (FAF) perturbations that were either predictable in magnitude (consistently either 50 or 100 cents) or unpredictable in magnitude (50- and 100-cent perturbations varying randomly within each vocalisation). Vocal and P1-N1-P2 ERP responses revealed decreases in the magnitude and trial-to-trial variability of vocal responses, smaller N1 amplitudes, and shorter vocal, P1 and N1 response latencies following predictable FAF perturbation magnitudes. In addition, vocal response magnitudes correlated with N1 amplitudes, vocal response latencies, and P2 latencies. This pattern of results suggests that after repeated exposure to predictable FAF perturbations, the contribution of the feedforward control system increases. Examination of the presentation order of the FAF perturbations revealed smaller compensatory responses, smaller P1 and P2 amplitudes, and shorter N1 latencies when the block of predictable 100-cent perturbations occurred prior to the block of predictable 50-cent perturbations. These results suggest that exposure to large perturbations modulates responses to subsequent perturbations of equal or smaller size. Similarly, exposure to a 100-cent perturbation prior to a 50-cent perturbation within a vocalisation decreased the magnitude of vocal and N1 responses, but increased P1 and P2 latencies. Thus, exposure to a single perturbation can affect responses to subsequent perturbations. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  13. A support vector machine based control application to the experimental three-tank system.

    PubMed

    Iplikci, Serdar

    2010-07-01

    This paper presents a support vector machine (SVM) approach to generalized predictive control (GPC) of multiple-input multiple-output (MIMO) nonlinear systems. The possession of higher generalization potential and at the same time avoidance of getting stuck into the local minima have motivated us to employ SVM algorithms for modeling MIMO systems. Based on the SVM model, detailed and compact formulations for calculating predictions and gradient information, which are used in the computation of the optimal control action, are given in the paper. The proposed MIMO SVM-based GPC method has been verified on an experimental three-tank liquid level control system. Experimental results have shown that the proposed method can handle the control task successfully for different reference trajectories. Moreover, a detailed discussion on data gathering, model selection and effects of the control parameters have been given in this paper. 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Adaptive model predictive process control using neural networks

    DOEpatents

    Buescher, K.L.; Baum, C.C.; Jones, R.D.

    1997-08-19

    A control system for controlling the output of at least one plant process output parameter is implemented by adaptive model predictive control using a neural network. An improved method and apparatus provides for sampling plant output and control input at a first sampling rate to provide control inputs at the fast rate. The MPC system is, however, provided with a network state vector that is constructed at a second, slower rate so that the input control values used by the MPC system are averaged over a gapped time period. Another improvement is a provision for on-line training that may include difference training, curvature training, and basis center adjustment to maintain the weights and basis centers of the neural in an updated state that can follow changes in the plant operation apart from initial off-line training data. 46 figs.

  15. Adaptive model predictive process control using neural networks

    DOEpatents

    Buescher, Kevin L.; Baum, Christopher C.; Jones, Roger D.

    1997-01-01

    A control system for controlling the output of at least one plant process output parameter is implemented by adaptive model predictive control using a neural network. An improved method and apparatus provides for sampling plant output and control input at a first sampling rate to provide control inputs at the fast rate. The MPC system is, however, provided with a network state vector that is constructed at a second, slower rate so that the input control values used by the MPC system are averaged over a gapped time period. Another improvement is a provision for on-line training that may include difference training, curvature training, and basis center adjustment to maintain the weights and basis centers of the neural in an updated state that can follow changes in the plant operation apart from initial off-line training data.

  16. Predictive sufficiency and the use of stored internal state

    NASA Technical Reports Server (NTRS)

    Musliner, David J.; Durfee, Edmund H.; Shin, Kang G.

    1994-01-01

    In all embedded computing systems, some delay exists between sensing and acting. By choosing an action based on sensed data, a system is essentially predicting that there will be no significant changes in the world during this delay. However, the dynamic and uncertain nature of the real world can make these predictions incorrect, and thus, a system may execute inappropriate actions. Making systems more reactive by decreasing the gap between sensing and action leaves less time for predictions to err, but still provides no principled assurance that they will be correct. Using the concept of predictive sufficiency described in this paper, a system can prove that its predictions are valid, and that it will never execute inappropriate actions. In the context of our CIRCA system, we also show how predictive sufficiency allows a system to guarantee worst-case response times to changes in its environment. Using predictive sufficiency, CIRCA is able to build real-time reactive control plans which provide a sound basis for performance guarantees that are unavailable with other reactive systems.

  17. Prediction Study on Anti-Slide Control of Railway Vehicle Based on RBF Neural Networks

    NASA Astrophysics Data System (ADS)

    Yang, Lijun; Zhang, Jimin

    While railway vehicle braking, Anti-slide control system will detect operating status of each wheel-sets e.g. speed difference and deceleration etc. Once the detected value on some wheel-set is over pre-defined threshold, brake effort on such wheel-set will be adjusted automatically to avoid blocking. Such method takes effect on guarantee safety operation of vehicle and avoid wheel-set flatness, however it cannot adapt itself to the rail adhesion variation. While wheel-sets slide, the operating status is chaotic time series with certain law, and can be predicted with the law and experiment data in certain time. The predicted values can be used as the input reference signals of vehicle anti-slide control system, to judge and control the slide status of wheel-sets. In this article, the RBF neural networks is taken to predict wheel-set slide status in multi-step with weight vector adjusted based on online self-adaptive algorithm, and the center & normalizing parameters of active function of the hidden unit of RBF neural networks' hidden layer computed with K-means clustering algorithm. With multi-step prediction simulation, the predicted signal with appropriate precision can be used by anti-slide system to trace actively and adjust wheel-set slide tendency, so as to adapt to wheel-rail adhesion variation and reduce the risk of wheel-set blocking.

  18. A quantitative measure for degree of automation and its relation to system performance and mental load.

    PubMed

    Wei, Z G; Macwan, A P; Wieringa, P A

    1998-06-01

    In this paper we quantitatively model degree of automation (DofA) in supervisory control as a function of the number and nature of tasks to be performed by the operator and automation. This model uses a task weighting scheme in which weighting factors are obtained from task demand load, task mental load, and task effect on system performance. The computation of DofA is demonstrated using an experimental system. Based on controlled experiments using operators, analyses of the task effect on system performance, the prediction and assessment of task demand load, and the prediction of mental load were performed. Each experiment had a different DofA. The effect of a change in DofA on system performance and mental load was investigated. It was found that system performance became less sensitive to changes in DofA at higher levels of DofA. The experimental data showed that when the operator controlled a partly automated system, perceived mental load could be predicted from the task mental load for each task component, as calculated by analyzing a situation in which all tasks were manually controlled. Actual or potential applications of this research include a methodology to balance and optimize the automation of complex industrial systems.

  19. Multivariable adaptive closed-loop control of an artificial pancreas without meal and activity announcement.

    PubMed

    Turksoy, Kamuran; Bayrak, Elif Seyma; Quinn, Lauretta; Littlejohn, Elizabeth; Cinar, Ali

    2013-05-01

    Accurate closed-loop control is essential for developing artificial pancreas (AP) systems that adjust insulin infusion rates from insulin pumps. Glucose concentration information from continuous glucose monitoring (CGM) systems is the most important information for the control system. Additional physiological measurements can provide valuable information that can enhance the accuracy of the control system. Proportional-integral-derivative control and model predictive control have been popular in AP development. Their implementations to date rely on meal announcements (e.g., bolus insulin dose based on insulin:carbohydrate ratios) by the user. Adaptive control techniques provide a powerful alternative that do not necessitate any meal or activity announcements. Adaptive control systems based on the generalized predictive control framework are developed by extending the recursive modeling techniques. Physiological signals such as energy expenditure and galvanic skin response are used along with glucose measurements to generate a multiple-input-single-output model for predicting future glucose concentrations used by the controller. Insulin-on-board (IOB) is also estimated and used in control decisions. The controllers were tested with clinical studies that include seven cases with three different patients with type 1 diabetes for 32 or 60 h without any meal or activity announcements. The adaptive control system kept glucose concentration in the normal preprandial and postprandial range (70-180 mg/dL) without any meal or activity announcements during the test period. After IOB estimation was added to the control system, mild hypoglycemic episodes were observed only in one of the four experiments. This was reflected in a plasma glucose value of 56 mg/dL (YSI 2300 STAT; Yellow Springs Instrument, Yellow Springs, OH) and a CGM value of 63 mg/dL). Regulation of blood glucose concentration with an AP using adaptive control techniques was successful in clinical studies, even without any meal and physical activity announcement.

  20. Piloted Simulation of a Model-Predictive Automated Recovery System

    NASA Technical Reports Server (NTRS)

    Liu, James (Yuan); Litt, Jonathan; Sowers, T. Shane; Owens, A. Karl; Guo, Ten-Huei

    2014-01-01

    This presentation describes a model-predictive automatic recovery system for aircraft on the verge of a loss-of-control situation. The system determines when it must intervene to prevent an imminent accident, resulting from a poor approach. It estimates the altitude loss that would result from a go-around maneuver at the current flight condition. If the loss is projected to violate a minimum altitude threshold, the maneuver is automatically triggered. The system deactivates to allow landing once several criteria are met. Piloted flight simulator evaluation showed the system to provide effective envelope protection during extremely unsafe landing attempts. The results demonstrate how flight and propulsion control can be integrated to recover control of the vehicle automatically and prevent a potential catastrophe.

  1. Life extending control: An interdisciplinary engineering thrust

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.; Merrill, Walter C.

    1991-01-01

    The concept of Life Extending Control (LEC) is introduced. Possible extensions to the cyclic damage prediction approach are presented based on the identification of a model from elementary forms. Several candidate elementary forms are presented. These extensions will result in a continuous or differential form of the damage prediction model. Two possible approaches to the LEC based on the existing cyclic damage prediction method, the measured variables LEC and the estimated variables LEC, are defined. Here, damage estimates or measurements would be used directly in the LEC. A simple hydraulic actuator driven position control system example is used to illustrate the main ideas behind LEC. Results from a simple hydraulic actuator example demonstrate that overall system performance (dynamic plus life) can be maximized by accounting for component damage in the control design.

  2. Development and Evaluation of a Mobile Personalized Blood Glucose Prediction System for Patients With Gestational Diabetes Mellitus.

    PubMed

    Pustozerov, Evgenii; Popova, Polina; Tkachuk, Aleksandra; Bolotko, Yana; Yuldashev, Zafar; Grineva, Elena

    2018-01-09

    Personalized blood glucose (BG) prediction for diabetes patients is an important goal that is pursued by many researchers worldwide. Despite many proposals, only a few projects are dedicated to the development of complete recommender system infrastructures that incorporate BG prediction algorithms for diabetes patients. The development and implementation of such a system aided by mobile technology is of particular interest to patients with gestational diabetes mellitus (GDM), especially considering the significant importance of quickly achieving adequate BG control for these patients in a short period (ie, during pregnancy) and a typically higher acceptance rate for mobile health (mHealth) solutions for short- to midterm usage. This study was conducted with the objective of developing infrastructure comprising data processing algorithms, BG prediction models, and an appropriate mobile app for patients' electronic record management to guide BG prediction-based personalized recommendations for patients with GDM. A mobile app for electronic diary management was developed along with data exchange and continuous BG signal processing software. Both components were coupled to obtain the necessary data for use in the personalized BG prediction system. Necessary data on meals, BG measurements, and other events were collected via the implemented mobile app and continuous glucose monitoring (CGM) system processing software. These data were used to tune and evaluate the BG prediction model, which included an algorithm for dynamic coefficients tuning. In the clinical study, 62 participants (GDM: n=49; control: n=13) took part in a 1-week monitoring trial during which they used the mobile app to track their meals and self-measurements of BG and CGM system for continuous BG monitoring. The data on 909 food intakes and corresponding postprandial BG curves as well as the set of patients' characteristics (eg, glycated hemoglobin, body mass index [BMI], age, and lifestyle parameters) were selected as inputs for the BG prediction models. The prediction results by the models for BG levels 1 hour after food intake were root mean square error=0.87 mmol/L, mean absolute error=0.69 mmol/L, and mean absolute percentage error=12.8%, which correspond to an adequate prediction accuracy for BG control decisions. The mobile app for the collection and processing of relevant data, appropriate software for CGM system signals processing, and BG prediction models were developed for a recommender system. The developed system may help improve BG control in patients with GDM; this will be the subject of evaluation in a subsequent study. ©Evgenii Pustozerov, Polina Popova, Aleksandra Tkachuk, Yana Bolotko, Zafar Yuldashev, Elena Grineva. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 09.01.2018.

  3. Robust model predictive control for constrained continuous-time nonlinear systems

    NASA Astrophysics Data System (ADS)

    Sun, Tairen; Pan, Yongping; Zhang, Jun; Yu, Haoyong

    2018-02-01

    In this paper, a robust model predictive control (MPC) is designed for a class of constrained continuous-time nonlinear systems with bounded additive disturbances. The robust MPC consists of a nonlinear feedback control and a continuous-time model-based dual-mode MPC. The nonlinear feedback control guarantees the actual trajectory being contained in a tube centred at the nominal trajectory. The dual-mode MPC is designed to ensure asymptotic convergence of the nominal trajectory to zero. This paper extends current results on discrete-time model-based tube MPC and linear system model-based tube MPC to continuous-time nonlinear model-based tube MPC. The feasibility and robustness of the proposed robust MPC have been demonstrated by theoretical analysis and applications to a cart-damper springer system and a one-link robot manipulator.

  4. Evaluation of Traffic Information and Prediction System (TIPS) as work zone traffic control.

    DOT National Transportation Integrated Search

    2004-03-01

    As part of a pavement rehabilitation project on I-64, the Traffic Information and Prediction System (TIPS) was installed as a a means of providing real-time data for motorists in advance and through the work zone. This system collects real-time data ...

  5. Model predictive control of the solid oxide fuel cell stack temperature with models based on experimental data

    NASA Astrophysics Data System (ADS)

    Pohjoranta, Antti; Halinen, Matias; Pennanen, Jari; Kiviaho, Jari

    2015-03-01

    Generalized predictive control (GPC) is applied to control the maximum temperature in a solid oxide fuel cell (SOFC) stack and the temperature difference over the stack. GPC is a model predictive control method and the models utilized in this work are ARX-type (autoregressive with extra input), multiple input-multiple output, polynomial models that were identified from experimental data obtained from experiments with a complete SOFC system. The proposed control is evaluated by simulation with various input-output combinations, with and without constraints. A comparison with conventional proportional-integral-derivative (PID) control is also made. It is shown that if only the stack maximum temperature is controlled, a standard PID controller can be used to obtain output performance comparable to that obtained with the significantly more complex model predictive controller. However, in order to control the temperature difference over the stack, both the stack minimum and the maximum temperature need to be controlled and this cannot be done with a single PID controller. In such a case the model predictive controller provides a feasible and effective solution.

  6. Tank System Integrated Model: A Cryogenic Tank Performance Prediction Program

    NASA Technical Reports Server (NTRS)

    Bolshinskiy, L. G.; Hedayat, A.; Hastings, L. J.; Sutherlin, S. G.; Schnell, A. R.; Moder, J. P.

    2017-01-01

    Accurate predictions of the thermodynamic state of the cryogenic propellants, pressurization rate, and performance of pressure control techniques in cryogenic tanks are required for development of cryogenic fluid long-duration storage technology and planning for future space exploration missions. This Technical Memorandum (TM) presents the analytical tool, Tank System Integrated Model (TankSIM), which can be used for modeling pressure control and predicting the behavior of cryogenic propellant for long-term storage for future space missions. Utilizing TankSIM, the following processes can be modeled: tank self-pressurization, boiloff, ullage venting, mixing, and condensation on the tank wall. This TM also includes comparisons of TankSIM program predictions with the test data andexamples of multiphase mission calculations.

  7. Structure-based control of complex networks with nonlinear dynamics.

    PubMed

    Zañudo, Jorge Gomez Tejeda; Yang, Gang; Albert, Réka

    2017-07-11

    What can we learn about controlling a system solely from its underlying network structure? Here we adapt a recently developed framework for control of networks governed by a broad class of nonlinear dynamics that includes the major dynamic models of biological, technological, and social processes. This feedback-based framework provides realizable node overrides that steer a system toward any of its natural long-term dynamic behaviors, regardless of the specific functional forms and system parameters. We use this framework on several real networks, identify the topological characteristics that underlie the predicted node overrides, and compare its predictions to those of structural controllability in control theory. Finally, we demonstrate this framework's applicability in dynamic models of gene regulatory networks and identify nodes whose override is necessary for control in the general case but not in specific model instances.

  8. Pilots Rate Augmented Generalized Predictive Control for Reconfiguration

    NASA Technical Reports Server (NTRS)

    Soloway, Don; Haley, Pam

    2004-01-01

    The objective of this paper is to report the results from the research being conducted in reconfigurable fight controls at NASA Ames. A study was conducted with three NASA Dryden test pilots to evaluate two approaches of reconfiguring an aircraft's control system when failures occur in the control surfaces and engine. NASA Ames is investigating both a Neural Generalized Predictive Control scheme and a Neural Network based Dynamic Inverse controller. This paper highlights the Predictive Control scheme where a simple augmentation to reduce zero steady-state error led to the neural network predictor model becoming redundant for the task. Instead of using a neural network predictor model, a nominal single point linear model was used and then augmented with an error corrector. This paper shows that the Generalized Predictive Controller and the Dynamic Inverse Neural Network controller perform equally well at reconfiguration, but with less rate requirements from the actuators. Also presented are the pilot ratings for each controller for various failure scenarios and two samples of the required control actuation during reconfiguration. Finally, the paper concludes by stepping through the Generalized Predictive Control's reconfiguration process for an elevator failure.

  9. Development of a Low-Lift Chiller Controller and Simplified Precooling Control Algorithm - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gayeski, N.; Armstrong, Peter; Alvira, M.

    2011-11-30

    KGS Buildings LLC (KGS) and Pacific Northwest National Laboratory (PNNL) have developed a simplified control algorithm and prototype low-lift chiller controller suitable for model-predictive control in a demonstration project of low-lift cooling. Low-lift cooling is a highly efficient cooling strategy conceived to enable low or net-zero energy buildings. A low-lift cooling system consists of a high efficiency low-lift chiller, radiant cooling, thermal storage, and model-predictive control to pre-cool thermal storage overnight on an optimal cooling rate trajectory. We call the properly integrated and controlled combination of these elements a low-lift cooling system (LLCS). This document is the final report formore » that project.« less

  10. Sociodemographic Risk, Parenting, and Effortful Control: Relations to Salivary Alpha-amylase and Cortisol in Early Childhood

    PubMed Central

    Taylor, Zoe E.; Spinrad, Tracy L.; VanSchyndel, Sarah K.; Eisenberg, Nancy; Huynh, Jacqueline; Sulik, Michael J.; Granger, Douglas A.

    2012-01-01

    Early sociodemographic risk, parenting, and temperament were examined as predictors of the activity of children’s (N = 148; 81 boys, 67 girls) hypothalamic-pituitary-adrenal axis and autonomic nervous system. Demographic risk was assessed at 18 months (T1), intrusive-overcontrolling parenting and effortful control were assessed at 30 months (T2), and salivary cortisol and alpha-amylase were collected at 72 (T3) months of age. Demographic risk at T1 predicted lower levels of children’s effortful control and higher levels of mothers’ intrusive-overcontrolling parenting at T2. Intrusive-overcontrolling parenting at T2 predicted higher levels of children’s cortisol and alpha-amylase at T3, but effortful control did not uniquely predict children’s cortisol or alpha-amylase. Findings support the open nature of stress responsive physiological systems to influence by features of the early caregiving environment and underscore the utility of including measures of these systems in prevention trials designed to influence child outcomes by modifying parenting behavior. PMID:22949301

  11. Automated System Checkout to Support Predictive Maintenance for the Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Patterson-Hine, Ann; Deb, Somnath; Kulkarni, Deepak; Wang, Yao; Lau, Sonie (Technical Monitor)

    1998-01-01

    The Propulsion Checkout and Control System (PCCS) is a predictive maintenance software system. The real-time checkout procedures and diagnostics are designed to detect components that need maintenance based on their condition, rather than using more conventional approaches such as scheduled or reliability centered maintenance. Predictive maintenance can reduce turn-around time and cost and increase safety as compared to conventional maintenance approaches. Real-time sensor validation, limit checking, statistical anomaly detection, and failure prediction based on simulation models are employed. Multi-signal models, useful for testability analysis during system design, are used during the operational phase to detect and isolate degraded or failed components. The TEAMS-RT real-time diagnostic engine was developed to utilize the multi-signal models by Qualtech Systems, Inc. Capability of predicting the maintenance condition was successfully demonstrated with a variety of data, from simulation to actual operation on the Integrated Propulsion Technology Demonstrator (IPTD) at Marshall Space Flight Center (MSFC). Playback of IPTD valve actuations for feature recognition updates identified an otherwise undetectable Main Propulsion System 12 inch prevalve degradation. The algorithms were loaded into the Propulsion Checkout and Control System for further development and are the first known application of predictive Integrated Vehicle Health Management to an operational cryogenic testbed. The software performed successfully in real-time, meeting the required performance goal of 1 second cycle time.

  12. Detecting Controller Malfunctions in Electromagnetic Environments. Part 1; Modeling and Estimation of Nominal System Function

    NASA Technical Reports Server (NTRS)

    Weinstein, Bernice

    1999-01-01

    A strategy for detecting control law calculation errors in critical flight control computers during laboratory validation testing is presented. This paper addresses Part I of the detection strategy which involves the use of modeling of the aircraft control laws and the design of Kalman filters to predict the correct control commands. Part II of the strategy which involves the use of the predicted control commands to detect control command errors is presented in the companion paper.

  13. Research flight-control system development for the F-18 high alpha research vehicle

    NASA Technical Reports Server (NTRS)

    Pahle, Joseph W.; Powers, Bruce; Regenie, Victoria; Chacon, Vince; Degroote, Steve; Murnyak, Steven

    1991-01-01

    The F-18 high alpha research vehicle was recently modified by adding a thrust vectoring control system. A key element in the modification was the development of a research flight control system integrated with the basic F-18 flight control system. Discussed here are design requirements, system development, and research utility of the resulting configuration as an embedded system for flight research in the high angle of attack regime. Particular emphasis is given to control system modifications and control law features required for high angle of attack flight. Simulation results are used to illustrate some of the thrust vectoring control system capabilities and predicted maneuvering improvements.

  14. Analytical investigation of adaptive control of radiated inlet noise from turbofan engines

    NASA Technical Reports Server (NTRS)

    Risi, John D.; Burdisso, Ricardo A.

    1994-01-01

    An analytical model has been developed to predict the resulting far field radiation from a turbofan engine inlet. A feedforward control algorithm was simulated to predict the controlled far field radiation from the destructive combination of fan noise and secondary control sources. Numerical results were developed for two system configurations, with the resulting controlled far field radiation patterns showing varying degrees of attenuation and spillover. With one axial station of twelve control sources and error sensors with equal relative angular positions, nearly global attenuation is achieved. Shifting the angular position of one error sensor resulted in an increase of spillover to the extreme sidelines. The complex control inputs for each configuration was investigated to identify the structure of the wave pattern created by the control sources, giving an indication of performance of the system configuration. It is deduced that the locations of the error sensors and the control source configuration are equally critical to the operation of the active noise control system.

  15. MSFC Skylab attitude and pointing control system mission evaluation

    NASA Technical Reports Server (NTRS)

    Chubb, W. B.

    1974-01-01

    The results of detailed performance analyses of the attitude and pointing control system in-orbit hardware and software on Skylab are reported. Performance is compared with requirements, test results, and prelaunch predictions. A brief history of the altitude and pointing control system evolution leading to the launch configuration is presented. The report states that the attitude and pointing system satisfied all requirements.

  16. ANOPP programmer's reference manual for the executive System. [aircraft noise prediction program

    NASA Technical Reports Server (NTRS)

    Gillian, R. E.; Brown, C. G.; Bartlett, R. W.; Baucom, P. H.

    1977-01-01

    Documentation for the Aircraft Noise Prediction Program as of release level 01/00/00 is presented in a manual designed for programmers having a need for understanding the internal design and logical concepts of the executive system software. Emphasis is placed on providing sufficient information to modify the system for enhancements or error correction. The ANOPP executive system includes software related to operating system interface, executive control, and data base management for the Aircraft Noise Prediction Program. It is written in Fortran IV for use on CDC Cyber series of computers.

  17. Planner-Based Control of Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Muscettola, Nicola; Kortenkamp, David; Fry, Chuck; Bell, Scott

    2005-01-01

    The paper describes an approach to the integration of qualitative and quantitative modeling techniques for advanced life support (ALS) systems. Developing reliable control strategies that scale up to fully integrated life support systems requires augmenting quantitative models and control algorithms with the abstractions provided by qualitative, symbolic models and their associated high-level control strategies. This will allow for effective management of the combinatorics due to the integration of a large number of ALS subsystems. By focusing control actions at different levels of detail and reactivity we can use faster: simpler responses at the lowest level and predictive but complex responses at the higher levels of abstraction. In particular, methods from model-based planning and scheduling can provide effective resource management over long time periods. We describe reference implementation of an advanced control system using the IDEA control architecture developed at NASA Ames Research Center. IDEA uses planning/scheduling as the sole reasoning method for predictive and reactive closed loop control. We describe preliminary experiments in planner-based control of ALS carried out on an integrated ALS simulation developed at NASA Johnson Space Center.

  18. Design and implementation of a beam-waveguide mirror control system for vernier pointing of the DSS-13 antenna

    NASA Technical Reports Server (NTRS)

    Alvarez, L. S.; Moore, M.; Veruttipong, W.; Andres, E.

    1994-01-01

    The design and implementation of an antenna beam-waveguide (BWG) mirror position control system at the DSS-13 34-m antenna is presented. While it has several potential applications, a positioner on the last flat-plate BWG mirror (M6) at DSS 13 is installed to demonstrate the conical scan (conscan) angle-tracking technique at the Ka-band (32-GHz) operating frequency. Radio frequency (RF) beam-scanning predictions for the M6 mirror, computed from a diffraction analysis, are presented. From these predictions, position control system requirements are then derived. The final mechanical positioner and servo system designs, as implemented at DSS 13, are illustrated with detailed design descriptions given in the appendices. Preliminary measurements of antenna Ka-band beam scan versus M6 mirror tilt made at DSS 13 in December 1993 are presented. After reduction, the initial measurements are shown to be in agreement with the RF predicts. Plans for preliminary conscan experimentation at DSS 13 are summarized.

  19. Verification of an analytic modeler for capillary pump loop thermal control systems

    NASA Technical Reports Server (NTRS)

    Schweickart, R. B.; Neiswanger, L.; Ku, J.

    1987-01-01

    A number of computer programs have been written to model two-phase heat transfer systems for space use. These programs support the design of thermal control systems and provide a method of predicting their performance in the wide range of thermal environments of space. Predicting the performance of one such system known as the capillary pump loop (CPL) is the intent of the CPL Modeler. By modeling two developed CPL systems and comparing the results with actual test data, the CPL Modeler has proven useful in simulating CPL operation. Results of the modeling effort are discussed, together with plans for refinements to the modeler.

  20. Predictive Analytics for Coordinated Optimization in Distribution Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Rui

    This talk will present NREL's work on developing predictive analytics that enables the optimal coordination of all the available resources in distribution systems to achieve the control objectives of system operators. Two projects will be presented. One focuses on developing short-term state forecasting-based optimal voltage regulation in distribution systems; and the other one focuses on actively engaging electricity consumers to benefit distribution system operations.

  1. Prediction-based control for LTI systems with uncertain time-varying delays and partial state knowledge

    NASA Astrophysics Data System (ADS)

    Léchappé, V.; Moulay, E.; Plestan, F.

    2018-06-01

    The stability of a prediction-based controller for linear time-invariant (LTI) systems is studied in the presence of time-varying input and output delays. The uncertain delay case is treated as well as the partial state knowledge case. The reduction method is used in order to prove the convergence of the closed-loop system including the state observer, the predictor and the plant. Explicit conditions that guarantee the closed-loop stability are given, thanks to a Lyapunov-Razumikhin analysis. Simulations illustrate the theoretical results.

  2. Prediction and Control of Noise and Vibration in Rail Transit Systems

    DOT National Transportation Integrated Search

    1978-09-01

    The purpose of this report is to present a balanced introductory view of noise from rail transportation systems and its control, and to provide references to more specialized material. The emphasis is on urban transit systems. However, data on interc...

  3. Modeling and control for closed environment plant production systems

    NASA Technical Reports Server (NTRS)

    Fleisher, David H.; Ting, K. C.; Janes, H. W. (Principal Investigator)

    2002-01-01

    A computer program was developed to study multiple crop production and control in controlled environment plant production systems. The program simulates crop growth and development under nominal and off-nominal environments. Time-series crop models for wheat (Triticum aestivum), soybean (Glycine max), and white potato (Solanum tuberosum) are integrated with a model-based predictive controller. The controller evaluates and compensates for effects of environmental disturbances on crop production scheduling. The crop models consist of a set of nonlinear polynomial equations, six for each crop, developed using multivariate polynomial regression (MPR). Simulated data from DSSAT crop models, previously modified for crop production in controlled environments with hydroponics under elevated atmospheric carbon dioxide concentration, were used for the MPR fitting. The model-based predictive controller adjusts light intensity, air temperature, and carbon dioxide concentration set points in response to environmental perturbations. Control signals are determined from minimization of a cost function, which is based on the weighted control effort and squared-error between the system response and desired reference signal.

  4. A predictive control framework for torque-based steering assistance to improve safety in highway driving

    NASA Astrophysics Data System (ADS)

    Ercan, Ziya; Carvalho, Ashwin; Tseng, H. Eric; Gökaşan, Metin; Borrelli, Francesco

    2018-05-01

    Haptic shared control framework opens up new perspectives on the design and implementation of the driver steering assistance systems which provide torque feedback to the driver in order to improve safety. While designing such a system, it is important to account for the human-machine interactions since the driver feels the feedback torque through the hand wheel. The controller should consider the driver's impact on the steering dynamics to achieve a better performance in terms of driver's acceptance and comfort. In this paper we present a predictive control framework which uses a model of driver-in-the-loop steering dynamics to optimise the torque intervention with respect to the driver's neuromuscular response. We first validate the system in simulations to compare the performance of the controller in nominal and model mismatch cases. Then we implement the controller in a test vehicle and perform experiments with a human driver. The results show the effectiveness of the proposed system in avoiding hazardous situations under different driver behaviours.

  5. Avionic Architecture for Model Predictive Control Application in Mars Sample & Return Rendezvous Scenario

    NASA Astrophysics Data System (ADS)

    Saponara, M.; Tramutola, A.; Creten, P.; Hardy, J.; Philippe, C.

    2013-08-01

    Optimization-based control techniques such as Model Predictive Control (MPC) are considered extremely attractive for space rendezvous, proximity operations and capture applications that require high level of autonomy, optimal path planning and dynamic safety margins. Such control techniques require high-performance computational needs for solving large optimization problems. The development and implementation in a flight representative avionic architecture of a MPC based Guidance, Navigation and Control system has been investigated in the ESA R&T study “On-line Reconfiguration Control System and Avionics Architecture” (ORCSAT) of the Aurora programme. The paper presents the baseline HW and SW avionic architectures, and verification test results obtained with a customised RASTA spacecraft avionics development platform from Aeroflex Gaisler.

  6. Nonlinear engine model for idle speed control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Livshiz, M.; Sanvido, D.J.; Stiles, S.D.

    1994-12-31

    This paper describes a nonlinear model of an engine used for the design of idle speed control and prediction in a broad range of idle speeds and operational conditions. Idle speed control systems make use of both spark advance and the idle air actuator to control engine speed for improved response relative to variations in the target idle speed due to load disturbances. The control system at idle can be presented by a multiple input multiple output (MIMO) nonlinear model. Information of nonlinearities helps to improve performance of the system over the whole range of engine speeds. A proposed simplemore » nonlinear model of the engine at idle was applied for design of optimal controllers and predictors for improved steady state, load rejection and transition from and to idle. This paper describes vehicle results of engine speed prediction based on the described model.« less

  7. Jump resonant frequency islands in nonlinear feedback control systems

    NASA Technical Reports Server (NTRS)

    Koenigsberg, W. D.; Dunn, J. C.

    1975-01-01

    A new type of jump resonance is predicted and observed in certain nonlinear feedback control systems. The new jump resonance characteristic is described as a 'frequency island' due to the fact that a portion of the input-output transfer characteristic is disjoint from the main body. The presence of such frequency islands was predicted by using a sinusoidal describing function characterization of the dynamics of an inertial gyro employing nonlinear ternary rebalance logic. While the general conditions under which such islands are possible has not been examined, a numerical approach is presented which can aid in establishing their presence. The existence of the frequency islands predicted for the ternary rebalanced gyro was confirmed by simulating the nonlinear system and measuring the transfer function.

  8. Tailored high-resolution numerical weather forecasts for energy efficient predictive building control

    NASA Astrophysics Data System (ADS)

    Stauch, V. J.; Gwerder, M.; Gyalistras, D.; Oldewurtel, F.; Schubiger, F.; Steiner, P.

    2010-09-01

    The high proportion of the total primary energy consumption by buildings has increased the public interest in the optimisation of buildings' operation and is also driving the development of novel control approaches for the indoor climate. In this context, the use of weather forecasts presents an interesting and - thanks to advances in information and predictive control technologies and the continuous improvement of numerical weather prediction (NWP) models - an increasingly attractive option for improved building control. Within the research project OptiControl (www.opticontrol.ethz.ch) predictive control strategies for a wide range of buildings, heating, ventilation and air conditioning (HVAC) systems, and representative locations in Europe are being investigated with the aid of newly developed modelling and simulation tools. Grid point predictions for radiation, temperature and humidity of the high-resolution limited area NWP model COSMO-7 (see www.cosmo-model.org) and local measurements are used as disturbances and inputs into the building system. The control task considered consists in minimizing energy consumption whilst maintaining occupant comfort. In this presentation, we use the simulation-based OptiControl methodology to investigate the impact of COSMO-7 forecasts on the performance of predictive building control and the resulting energy savings. For this, we have selected building cases that were shown to benefit from a prediction horizon of up to 3 days and therefore, are particularly suitable for the use of numerical weather forecasts. We show that the controller performance is sensitive to the quality of the weather predictions, most importantly of the incident radiation on differently oriented façades. However, radiation is characterised by a high temporal and spatial variability in part caused by small scale and fast changing cloud formation and dissolution processes being only partially represented in the COSMO-7 grid point predictions. On the other hand, buildings are affected by particularly local weather conditions at the building site. To overcome this discrepancy, we make use of local measurements to statistically adapt the COSMO-7 model output to the meteorological conditions at the building. For this, we have developed a general correction algorithm that exploits systematic properties of the COSMO-7 prediction error and explicitly estimates the degree of temporal autocorrelation using online recursive estimation. The resulting corrected predictions are improved especially for the first few hours being the most crucial for the predictive controller and, ultimately for the reduction of primary energy consumption using predictive control. The use of numerical weather forecasts in predictive building automation is one example in a wide field of weather dependent advanced energy saving technologies. Our work particularly highlights the need for the development of specifically tailored weather forecast products by (statistical) postprocessing in order to meet the requirements of specific applications.

  9. A fuzzy logic approach to control anaerobic digestion.

    PubMed

    Domnanovich, A M; Strik, D P; Zani, L; Pfeiffer, B; Karlovits, M; Braun, R; Holubar, P

    2003-01-01

    One of the goals of the EU-Project AMONCO (Advanced Prediction, Monitoring and Controlling of Anaerobic Digestion Process Behaviour towards Biogas Usage in Fuel Cells) is to create a control tool for the anaerobic digestion process, which predicts the volumetric organic loading rate (Bv) for the next day, to obtain a high biogas quality and production. The biogas should contain a high methane concentration (over 50%) and a low concentration of components toxic for fuel cells, e.g. hydrogen sulphide, siloxanes, ammonia and mercaptanes. For producing data to test the control tool, four 20 l anaerobic Continuously Stirred Tank Reactors (CSTR) are operated. For controlling two systems were investigated: a pure fuzzy logic system and a hybrid-system which contains a fuzzy based reactor condition calculation and a hierachial neural net in a cascade of optimisation algorithms.

  10. Implementing Lumberjacks and Black Swans Into Model-Based Tools to Support Human-Automation Interaction.

    PubMed

    Sebok, Angelia; Wickens, Christopher D

    2017-03-01

    The objectives were to (a) implement theoretical perspectives regarding human-automation interaction (HAI) into model-based tools to assist designers in developing systems that support effective performance and (b) conduct validations to assess the ability of the models to predict operator performance. Two key concepts in HAI, the lumberjack analogy and black swan events, have been studied extensively. The lumberjack analogy describes the effects of imperfect automation on operator performance. In routine operations, an increased degree of automation supports performance, but in failure conditions, increased automation results in more significantly impaired performance. Black swans are the rare and unexpected failures of imperfect automation. The lumberjack analogy and black swan concepts have been implemented into three model-based tools that predict operator performance in different systems. These tools include a flight management system, a remotely controlled robotic arm, and an environmental process control system. Each modeling effort included a corresponding validation. In one validation, the software tool was used to compare three flight management system designs, which were ranked in the same order as predicted by subject matter experts. The second validation compared model-predicted operator complacency with empirical performance in the same conditions. The third validation compared model-predicted and empirically determined time to detect and repair faults in four automation conditions. The three model-based tools offer useful ways to predict operator performance in complex systems. The three tools offer ways to predict the effects of different automation designs on operator performance.

  11. An Experimental Evaluation of Generalized Predictive Control for Tiltrotor Aeroelastic Stability Augmentation in Airplane Mode of Flight

    NASA Technical Reports Server (NTRS)

    Kvaternik, Raymond G.; Piatak, David J.; Nixon, Mark W.; Langston, Chester W.; Singleton, Jeffrey D.; Bennett, Richard L.; Brown, Ross K.

    2001-01-01

    The results of a joint NASA/Army/Bell Helicopter Textron wind-tunnel test to assess the potential of Generalized Predictive Control (GPC) for actively controlling the swashplate of tiltrotor aircraft to enhance aeroelastic stability in the airplane mode of flight are presented. GPC is an adaptive time-domain predictive control method that uses a linear difference equation to describe the input-output relationship of the system and to design the controller. The test was conducted in the Langley Transonic Dynamics Tunnel using an unpowered 1/5-scale semispan aeroelastic model of the V-22 that was modified to incorporate a GPC-based multi-input multi-output control algorithm to individually control each of the three swashplate actuators. Wing responses were used for feedback. The GPC-based control system was highly effective in increasing the stability of the critical wing mode for all of the conditions tested, without measurable degradation of the damping in the other modes. The algorithm was also robust with respect to its performance in adjusting to rapid changes in both the rotor speed and the tunnel airspeed.

  12. Aircraft Trajectories Computation-Prediction-Control (La Trajectoire de l’Avion Calcul-Prediction-Controle). Volume 2

    DTIC Science & Technology

    1990-05-01

    faire atterrir las a~ronefs sans recourir de faqon systimatique aux attentes habituelles; un de leurs coll~gues ayant contribu6 At la recherche de la...applicable to or usable for the management of the flows of aircraft and the control of individual flights, the integration of control phases over...February 1976. AIR TRAFFIC MANAGEMENT : Civil/Military Systems and Technologies Guidance and Control Symposium, Copenhagen, Denmark, 9-12 October 1979. AGARD

  13. Decentralized robust nonlinear model predictive controller for unmanned aerial systems

    NASA Astrophysics Data System (ADS)

    Garcia Garreton, Gonzalo A.

    The nonlinear and unsteady nature of aircraft aerodynamics together with limited practical range of controls and state variables make the use of the linear control theory inadequate especially in the presence of external disturbances, such as wind. In the classical approach, aircraft are controlled by multiple inner and outer loops, designed separately and sequentially. For unmanned aerial systems in particular, control technology must evolve to a point where autonomy is extended to the entire mission flight envelope. This requires advanced controllers that have sufficient robustness, track complex trajectories, and use all the vehicles control capabilities at higher levels of accuracy. In this work, a robust nonlinear model predictive controller is designed to command and control an unmanned aerial system to track complex tight trajectories in the presence of internal and external perturbance. The Flight System developed in this work achieves the above performance by using: 1. A nonlinear guidance algorithm that enables the vehicle to follow an arbitrary trajectory shaped by moving points; 2. A formulation that embeds the guidance logic and trajectory information in the aircraft model, avoiding cross coupling and control degradation; 3. An artificial neural network, designed to adaptively estimate and provide aerodynamic and propulsive forces in real-time; and 4. A mixed sensitivity approach that enhances the robustness for a nonlinear model predictive controller overcoming the effect of un-modeled dynamics, external disturbances such as wind, and measurement additive perturbations, such as noise and biases. These elements have been integrated and tested in simulation and with previously stored flight test data and shown to be feasible.

  14. Sustained sensorimotor control as intermittent decisions about prediction errors: computational framework and application to ground vehicle steering.

    PubMed

    Markkula, Gustav; Boer, Erwin; Romano, Richard; Merat, Natasha

    2018-06-01

    A conceptual and computational framework is proposed for modelling of human sensorimotor control and is exemplified for the sensorimotor task of steering a car. The framework emphasises control intermittency and extends on existing models by suggesting that the nervous system implements intermittent control using a combination of (1) motor primitives, (2) prediction of sensory outcomes of motor actions, and (3) evidence accumulation of prediction errors. It is shown that approximate but useful sensory predictions in the intermittent control context can be constructed without detailed forward models, as a superposition of simple prediction primitives, resembling neurobiologically observed corollary discharges. The proposed mathematical framework allows straightforward extension to intermittent behaviour from existing one-dimensional continuous models in the linear control and ecological psychology traditions. Empirical data from a driving simulator are used in model-fitting analyses to test some of the framework's main theoretical predictions: it is shown that human steering control, in routine lane-keeping and in a demanding near-limit task, is better described as a sequence of discrete stepwise control adjustments, than as continuous control. Results on the possible roles of sensory prediction in control adjustment amplitudes, and of evidence accumulation mechanisms in control onset timing, show trends that match the theoretical predictions; these warrant further investigation. The results for the accumulation-based model align with other recent literature, in a possibly converging case against the type of threshold mechanisms that are often assumed in existing models of intermittent control.

  15. Predicting tree mortality following gypsy moth defoliation

    Treesearch

    D.E. Fosbroke; R.R. Hicks; K.W. Gottschalk

    1991-01-01

    Appropriate application of gypsy moth control strategies requires an accurate prediction of the distribution and intensity of tree mortality prior to defoliation. This prior information is necessary to better target investments in control activities where they are needed. This poster lays the groundwork for developing hazard-rating systems for forests of the...

  16. Predictive Feedback and Feedforward Control for Systems with Unknown Disturbances

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Eure, Kenneth W.

    1998-01-01

    Predictive feedback control has been successfully used in the regulation of plate vibrations when no reference signal is available for feedforward control. However, if a reference signal is available it may be used to enhance regulation by incorporating a feedforward path in the feedback controller. Such a controller is known as a hybrid controller. This paper presents the theory and implementation of the hybrid controller for general linear systems, in particular for structural vibration induced by acoustic noise. The generalized predictive control is extended to include a feedforward path in the multi-input multi-output case and implemented on a single-input single-output test plant to achieve plate vibration regulation. There are cases in acoustic-induce vibration where the disturbance signal is not available to be used by the hybrid controller, but a disturbance model is available. In this case the disturbance model may be used in the feedback controller to enhance performance. In practice, however, neither the disturbance signal nor the disturbance model is available. This paper presents the theory of identifying and incorporating the noise model into the feedback controller. Implementations are performed on a test plant and regulation improvements over the case where no noise model is used are demonstrated.

  17. Drug release control and system understanding of sucrose esters matrix tablets by artificial neural networks.

    PubMed

    Chansanroj, Krisanin; Petrović, Jelena; Ibrić, Svetlana; Betz, Gabriele

    2011-10-09

    Artificial neural networks (ANNs) were applied for system understanding and prediction of drug release properties from direct compacted matrix tablets using sucrose esters (SEs) as matrix-forming agents for controlled release of a highly water soluble drug, metoprolol tartrate. Complexity of the system was presented through the effects of SE concentration and tablet porosity at various hydrophilic-lipophilic balance (HLB) values of SEs ranging from 0 to 16. Both effects contributed to release behaviors especially in the system containing hydrophilic SEs where swelling phenomena occurred. A self-organizing map neural network (SOM) was applied for visualizing interrelation among the variables and multilayer perceptron neural networks (MLPs) were employed to generalize the system and predict the drug release properties based on HLB value and concentration of SEs and tablet properties, i.e., tablet porosity, volume and tensile strength. Accurate prediction was obtained after systematically optimizing network performance based on learning algorithm of MLP. Drug release was mainly attributed to the effects of SEs, tablet volume and tensile strength in multi-dimensional interrelation whereas tablet porosity gave a small impact. Ability of system generalization and accurate prediction of the drug release properties proves the validity of SOM and MLPs for the formulation modeling of direct compacted matrix tablets containing controlled release agents of different material properties. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Filtering sensory information with XCSF: improving learning robustness and robot arm control performance.

    PubMed

    Kneissler, Jan; Stalph, Patrick O; Drugowitsch, Jan; Butz, Martin V

    2014-01-01

    It has been shown previously that the control of a robot arm can be efficiently learned using the XCSF learning classifier system, which is a nonlinear regression system based on evolutionary computation. So far, however, the predictive knowledge about how actual motor activity changes the state of the arm system has not been exploited. In this paper, we utilize the forward velocity kinematics knowledge of XCSF to alleviate the negative effect of noisy sensors for successful learning and control. We incorporate Kalman filtering for estimating successive arm positions, iteratively combining sensory readings with XCSF-based predictions of hand position changes over time. The filtered arm position is used to improve both trajectory planning and further learning of the forward velocity kinematics. We test the approach on a simulated kinematic robot arm model. The results show that the combination can improve learning and control performance significantly. However, it also shows that variance estimates of XCSF prediction may be underestimated, in which case self-delusional spiraling effects can hinder effective learning. Thus, we introduce a heuristic parameter, which can be motivated by theory, and which limits the influence of XCSF's predictions on its own further learning input. As a result, we obtain drastic improvements in noise tolerance, allowing the system to cope with more than 10 times higher noise levels.

  19. A Users Guide for the NASA ANOPP Propeller Analysis System

    NASA Technical Reports Server (NTRS)

    Nguygen, L. Cathy; Kelly, Jeffrey J.

    1997-01-01

    The purpose of this report is to document improvements to the Propeller Analysis System of the Aircraft Noise Prediction Program (PAS-ANOPP) and to serve as a users guide. An overview of the functional modules and modifications made to the Propeller ANOPP system are described. Propeller noise predictions are made by executing a sequence of functional modules through the use of ANOPP control statements. The most commonly used ANOPP control statements are discussed with detailed examples demonstrating the use of each control statement. Originally, the Propeller Analysis System included the angle-of-attack only in the performance module. Recently, modifications have been made to also include angle-of-attack in the noise prediction module. A brief description of PAS prediction capabilities is presented which illustrate the input requirements necessary to run the code by way of ten templates. The purpose of the templates are to provide PAS users with complete examples which can be modified to serve their particular purposes. The examples include the use of different approximations in the computation of the noise and the effects of synchrophasing. Since modifications have been made to the original PAS-ANOPP, comparisons of the modified ANOPP and wind tunnel data are also included. Two appendices are attached at the end of this report which provide useful reference material. One appendix summarizes the PAS functional modules while the second provides a detailed discussion of the TABLE control statement.

  20. Evaluation of a Records-Review Surveillance System Used to Determine the Prevalence of Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Avchen, Rachel Nonkin; Wiggins, Lisa D.; Devine, Owen; Van Naarden Braun, Kim; Rice, Catherine; Hobson, Nancy C.; Schendel, Diana; Yeargin-Allsopp, Marshalyn

    2011-01-01

    We conducted the first study that estimates the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of a population-based autism spectrum disorders (ASD) surveillance system developed at the Centers for Disease Control and Prevention. The system employs a records-review methodology that yields ASD…

  1. Target controlled infusion for kids: trials and simulations.

    PubMed

    Mehta, Disha; McCormack, Jon; Fung, Parry; Dumont, Guy; Ansermino, J

    2008-01-01

    Target controlled infusion (TCI) for Kids is a computer controlled system designed to administer propofol for general anesthesia. A controller establishes infusion rates required to achieve a specified concentration at the drug's effect site (C(e)) by implementing a continuously updated pharmacokinetic-pharmacodymanic model. This manuscript provides an overview of the system's design, preclinical tests, and a clinical pilot study. In pre-clinical tests, predicted infusion rates for 20 simulated procedures displayed complete convergent validity between two software implementations, Labview and Matlab, at computational intervals of 5, 10, and 15s, but diverged with 20s intervals due to system rounding errors. The volume of drug delivered by the TCI system also displayed convergent validity with Tivatrainer, a widely used TCI simulation software. Further tests, were conducted for 50 random procedures to evaluate discrepancies between volumes reported and those actually delivered by the system. Accuracies were within clinically acceptable ranges and normally distributed with a mean of 0.08 +/- 0.01 ml. In the clinical study, propofol pharmacokinetics were simulated for 30 surgical procedures involving children aged 3 months to 9 years. Predicted C(e) values during standard clinical practice, the accuracy of wake-up times predicted by the system, and potential correlations between patient wake-up times, C(e), and state entropy (SE) were assessed. Neither Ce nor SE was a reliable predictor of wake-up time in children, but the small sample size of this study does not fully accommodate the noted variation in children's response to propofol. A C(e) value of 1.9 mug/ml was found to best predict emergence from anesthesia in children.

  2. A Feedback-Controlled Mandibular Positioner Identifies Individuals With Sleep Apnea Who Will Respond to Oral Appliance Therapy.

    PubMed

    Remmers, John E; Topor, Zbigniew; Grosse, Joshua; Vranjes, Nikola; Mosca, Erin V; Brant, Rollin; Bruehlmann, Sabina; Charkhandeh, Shouresh; Zareian Jahromi, Seyed Abdolali

    2017-07-15

    Mandibular protruding oral appliances represent a potentially important therapy for obstructive sleep apnea (OSA). However, their clinical utility is limited by a less-than-ideal efficacy rate and uncertainty regarding an efficacious mandibular position, pointing to the need for a tool to assist in delivery of the therapy. The current study assesses the ability to prospectively identify therapeutic responders and determine an efficacious mandibular position. Individuals (n = 202) with OSA participated in a blinded, 2-part investigation. A system for identifying therapeutic responders was developed in part 1 (n = 149); the predictive accuracy of this system was prospectively evaluated on a new population in part 2 (n = 53). Each participant underwent a 2-night, in-home feedback-controlled mandibular positioner (FCMP) test, followed by treatment with a custom oral appliance and an outcome study with the oral appliance in place. A machine learning classification system was trained to predict therapeutic outcome on data obtained from FCMP studies on part 1 participants. The accuracy of this trained system was then evaluated on part 2 participants by examining the agreement between prospectively predicted outcome and observed outcome. A predicted efficacious mandibular position was derived from each FCMP study. Predictive accuracy was as follows: sensitivity 85%; specificity 93%; positive predictive value 97%; and negative predictive value 72%. Of participants correctly predicted to respond to therapy, the predicted mandibular protrusive position proved efficacious in 86% of cases. An unattended, in-home FCMP test prospectively identifies individuals with OSA who will respond to oral appliance therapy and provides an efficacious mandibular position. The trial that this study reports on is registered on www.clinicaltrials.gov, ID NCT03011762, study name: Feasibility and Predictive Accuracy of an In-Home Computer Controlled Mandibular Positioner in Identifying Favourable Candidates for Oral Appliance Therapy. © 2017 American Academy of Sleep Medicine

  3. Modeling a multivariable reactor and on-line model predictive control.

    PubMed

    Yu, D W; Yu, D L

    2005-10-01

    A nonlinear first principle model is developed for a laboratory-scaled multivariable chemical reactor rig in this paper and the on-line model predictive control (MPC) is implemented to the rig. The reactor has three variables-temperature, pH, and dissolved oxygen with nonlinear dynamics-and is therefore used as a pilot system for the biochemical industry. A nonlinear discrete-time model is derived for each of the three output variables and their model parameters are estimated from the real data using an adaptive optimization method. The developed model is used in a nonlinear MPC scheme. An accurate multistep-ahead prediction is obtained for MPC, where the extended Kalman filter is used to estimate system unknown states. The on-line control is implemented and a satisfactory tracking performance is achieved. The MPC is compared with three decentralized PID controllers and the advantage of the nonlinear MPC over the PID is clearly shown.

  4. Short-term PV/T module temperature prediction based on PCA-RBF neural network

    NASA Astrophysics Data System (ADS)

    Li, Jiyong; Zhao, Zhendong; Li, Yisheng; Xiao, Jing; Tang, Yunfeng

    2018-02-01

    Aiming at the non-linearity and large inertia of temperature control in PV/T system, short-term temperature prediction of PV/T module is proposed, to make the PV/T system controller run forward according to the short-term forecasting situation to optimize control effect. Based on the analysis of the correlation between PV/T module temperature and meteorological factors, and the temperature of adjacent time series, the principal component analysis (PCA) method is used to pre-process the original input sample data. Combined with the RBF neural network theory, the simulation results show that the PCA method makes the prediction accuracy of the network model higher and the generalization performance stronger than that of the RBF neural network without the main component extraction.

  5. Experimental Investigations of Generalized Predictive Control for Tiltrotor Stability Augmentation

    NASA Technical Reports Server (NTRS)

    Nixon, Mark W.; Langston, Chester W.; Singleton, Jeffrey D.; Piatak, David J.; Kvaternik, Raymond G.; Bennett, Richard L.; Brown, Ross K.

    2001-01-01

    A team of researchers from the Army Research Laboratory, NASA Langley Research Center (LaRC), and Bell Helicopter-Textron, Inc. have completed hover-cell and wind-tunnel testing of a 1/5-size aeroelastically-scaled tiltrotor model using a new active control system for stability augmentation. The active system is based on a generalized predictive control (GPC) algorithm originally developed at NASA LaRC in 1997 for un-known disturbance rejection. Results of these investigations show that GPC combined with an active swashplate can significantly augment the damping and stability of tiltrotors in both hover and high-speed flight.

  6. Cell fate reprogramming by control of intracellular network dynamics

    NASA Astrophysics Data System (ADS)

    Zanudo, Jorge G. T.; Albert, Reka

    Identifying control strategies for biological networks is paramount for practical applications that involve reprogramming a cell's fate, such as disease therapeutics and stem cell reprogramming. Although the topic of controlling the dynamics of a system has a long history in control theory, most of this work is not directly applicable to intracellular networks. Here we present a network control method that integrates the structural and functional information available for intracellular networks to predict control targets. Formulated in a logical dynamic scheme, our control method takes advantage of certain function-dependent network components and their relation to steady states in order to identify control targets, which are guaranteed to drive any initial state to the target state with 100% effectiveness and need to be applied only transiently for the system to reach and stay in the desired state. We illustrate our method's potential to find intervention targets for cancer treatment and cell differentiation by applying it to a leukemia signaling network and to the network controlling the differentiation of T cells. We find that the predicted control targets are effective in a broad dynamic framework. Moreover, several of the predicted interventions are supported by experiments. This work was supported by NSF Grant PHY 1205840.

  7. Utilization of Model Predictive Control to Balance Power Absorption Against Load Accumulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbas, Nikhar; Tom, Nathan M

    2017-06-03

    Wave energy converter (WEC) control strategies have been primarily focused on maximizing power absorption. The use of model predictive control strategies allows for a finite-horizon, multiterm objective function to be solved. This work utilizes a multiterm objective function to maximize power absorption while minimizing the structural loads on the WEC system. Furthermore, a Kalman filter and autoregressive model were used to estimate and forecast the wave exciting force and predict the future dynamics of the WEC. The WEC's power-take-off time-averaged power and structural loads under a perfect forecast assumption in irregular waves were compared against results obtained from the Kalmanmore » filter and autoregressive model to evaluate model predictive control performance.« less

  8. Utilization of Model Predictive Control to Balance Power Absorption Against Load Accumulation: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbas, Nikhar; Tom, Nathan

    Wave energy converter (WEC) control strategies have been primarily focused on maximizing power absorption. The use of model predictive control strategies allows for a finite-horizon, multiterm objective function to be solved. This work utilizes a multiterm objective function to maximize power absorption while minimizing the structural loads on the WEC system. Furthermore, a Kalman filter and autoregressive model were used to estimate and forecast the wave exciting force and predict the future dynamics of the WEC. The WEC's power-take-off time-averaged power and structural loads under a perfect forecast assumption in irregular waves were compared against results obtained from the Kalmanmore » filter and autoregressive model to evaluate model predictive control performance.« less

  9. Hardware-in-the-Loop Simulation of a Distribution System with Air Conditioners under Model Predictive Control: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sparn, Bethany F; Ruth, Mark F; Krishnamurthy, Dheepak

    Many have proposed that responsive load provided by distributed energy resources (DERs) and demand response (DR) are an option to provide flexibility to the grid and especially to distribution feeders. However, because responsive load involves a complex interplay between tariffs and DER and DR technologies, it is challenging to test and evaluate options without negatively impacting customers. This paper describes a hardware-in-the-loop (HIL) simulation system that has been developed to reduce the cost of evaluating the impact of advanced controllers (e.g., model predictive controllers) and technologies (e.g., responsive appliances). The HIL simulation system combines large-scale software simulation with a smallmore » set of representative building equipment hardware. It is used to perform HIL simulation of a distribution feeder and the loads on it under various tariff structures. In the reported HIL simulation, loads include many simulated air conditioners and one physical air conditioner. Independent model predictive controllers manage operations of all air conditioners under a time-of-use tariff. Results from this HIL simulation and a discussion of future development work of the system are presented.« less

  10. Non-fragile observer-based output feedback control for polytopic uncertain system under distributed model predictive control approach

    NASA Astrophysics Data System (ADS)

    Zhu, Kaiqun; Song, Yan; Zhang, Sunjie; Zhong, Zhaozhun

    2017-07-01

    In this paper, a non-fragile observer-based output feedback control problem for the polytopic uncertain system under distributed model predictive control (MPC) approach is discussed. By decomposing the global system into some subsystems, the computation complexity is reduced, so it follows that the online designing time can be saved.Moreover, an observer-based output feedback control algorithm is proposed in the framework of distributed MPC to deal with the difficulties in obtaining the states measurements. In this way, the presented observer-based output-feedback MPC strategy is more flexible and applicable in practice than the traditional state-feedback one. What is more, the non-fragility of the controller has been taken into consideration in favour of increasing the robustness of the polytopic uncertain system. After that, a sufficient stability criterion is presented by using Lyapunov-like functional approach, meanwhile, the corresponding control law and the upper bound of the quadratic cost function are derived by solving an optimisation subject to convex constraints. Finally, some simulation examples are employed to show the effectiveness of the method.

  11. Nonlinear Dynamic Inversion Baseline Control Law: Architecture and Performance Predictions

    NASA Technical Reports Server (NTRS)

    Miller, Christopher J.

    2011-01-01

    A model reference dynamic inversion control law has been developed to provide a baseline control law for research into adaptive elements and other advanced flight control law components. This controller has been implemented and tested in a hardware-in-the-loop simulation; the simulation results show excellent handling qualities throughout the limited flight envelope. A simple angular momentum formulation was chosen because it can be included in the stability proofs for many basic adaptive theories, such as model reference adaptive control. Many design choices and implementation details reflect the requirements placed on the system by the nonlinear flight environment and the desire to keep the system as basic as possible to simplify the addition of the adaptive elements. Those design choices are explained, along with their predicted impact on the handling qualities.

  12. Measurement of semiochemical release rates with a dedicated environmental control system

    Treesearch

    Heping Zhu; Harold W. Thistle; Christopher M. Ranger; Hongping Zhou; Brian L. Strom

    2015-01-01

    Insect semiochemical dispensers are commonly deployed under variable environmental conditions over a specified period. Predictions of their longevity are hampered by a lack of methods to accurately monitor and predict how primary variables affect semiochemical release rate. A system was constructed to precisely determine semiochemical release rates under...

  13. Space Shuttle third flight /STS-3/ entry RCS analysis. [Reaction Control System

    NASA Technical Reports Server (NTRS)

    Scallion, W. I.; Compton, H. R.; Suit, W. T.; Powell, R. W.; Blackstock, T. A.; Bates, B. L.

    1983-01-01

    Flight data obtained from three Space Transportation System orbiter entries (STS-1, 2, and 3) are processed and analyzed to determine the roll interactions caused by the firing of the entry reaction control system (RCS). Comparisons between the flight-derived parameters and the predicted derivatives without interaction effects are made. The flight-derived RCS Plume flow-field interaction effects are independently deduced by direct integration of the incremental changes in the wing upper surface pressures induced by RCS side thruster firings. The separately obtained interaction effects are compared to the predicted values and the differences are discussed.

  14. A tide prediction and tide height control system for laboratory mesocosms

    PubMed Central

    Long, Jeremy D.

    2015-01-01

    Experimental mesocosm studies of rocky shore and estuarine intertidal systems may benefit from the application of natural tide cycles to better replicate variation in immersion time, water depth, and attendant fluctuations in abiotic and edaphic conditions. Here we describe a stand-alone microcontroller tide prediction open-source software program, coupled with a mechanical tidal elevation control system, which allows continuous adjustment of aquarium water depths in synchrony with local tide cycles. We used this system to monitor the growth of Spartina foliosa marsh cordgrass and scale insect herbivores at three simulated shore elevations in laboratory mesocosms. Plant growth decreased with increasing shore elevation, while scale insect population growth on the plants was not strongly affected by immersion time. This system shows promise for a range of laboratory mesocosm studies where natural tide cycling could impact organism performance or behavior, while the tide prediction system could additionally be utilized in field experiments where treatments need to be applied at certain stages of the tide cycle. PMID:26623195

  15. SYSTEMS APPROACH TO CHARACTERIZING AND PREDICTING THYROID TOXICITY

    EPA Science Inventory

    A systems approach is being undertaken in which in vivo and in vitro assays are integrated to understand the mechanisms of thyroid hormone mediated pathways controlling frog metamorphosis, and more generally the regulation and control of the HPT axis.

  16. Computer program for prediction of fuel consumption statistical data for an upper stage three-axes stabilized on-off control system

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A FORTRAN coded computer program and method to predict the reaction control fuel consumption statistics for a three axis stabilized rocket vehicle upper stage is described. A Monte Carlo approach is used which is more efficient by using closed form estimates of impulses. The effects of rocket motor thrust misalignment, static unbalance, aerodynamic disturbances, and deviations in trajectory, mass properties and control system characteristics are included. This routine can be applied to many types of on-off reaction controlled vehicles. The pseudorandom number generation and statistical analyses subroutines including the output histograms can be used for other Monte Carlo analyses problems.

  17. Theory of the control of structures by low authority controllers

    NASA Technical Reports Server (NTRS)

    Aubrun, J. N.

    1978-01-01

    The novel idea presented is based on the observation that if a structure is controlled by distributed systems of sensors and actuators with limited authority, i.e., if the controller is allowed to modify only moderately the natural modes and frequencies of the structure, then it should be possible to apply root perturbation techniques to predict analytically the behavior of the total system. Attention is given to the root perturbation formula first derived by Jacobi for infinitesimal perturbations which neglect the induced eigenvector perturbation, a more general form of Jacobi's formula, first-order structural equations and modal state vectors, state-space equations for damper-augmented structures, and modal damping prediction formulas.

  18. Study on model current predictive control method of PV grid- connected inverters systems with voltage sag

    NASA Astrophysics Data System (ADS)

    Jin, N.; Yang, F.; Shang, S. Y.; Tao, T.; Liu, J. S.

    2016-08-01

    According to the limitations of the LVRT technology of traditional photovoltaic inverter existed, this paper proposes a low voltage ride through (LVRT) control method based on model current predictive control (MCPC). This method can effectively improve the photovoltaic inverter output characteristics and response speed. The MCPC method of photovoltaic grid-connected inverter designed, the sum of the absolute value of the predictive current and the given current error is adopted as the cost function with the model predictive control method. According to the MCPC, the optimal space voltage vector is selected. Photovoltaic inverter has achieved automatically switches of priority active or reactive power control of two control modes according to the different operating states, which effectively improve the inverter capability of LVRT. The simulation and experimental results proves that the proposed method is correct and effective.

  19. A digital prediction algorithm for a single-phase boost PFC

    NASA Astrophysics Data System (ADS)

    Qing, Wang; Ning, Chen; Weifeng, Sun; Shengli, Lu; Longxing, Shi

    2012-12-01

    A novel digital control algorithm for digital control power factor correction is presented, which is called the prediction algorithm and has a feature of a higher PF (power factor) with lower total harmonic distortion, and a faster dynamic response with the change of the input voltage or load current. For a certain system, based on the current system state parameters, the prediction algorithm can estimate the track of the output voltage and the inductor current at the next switching cycle and get a set of optimized control sequences to perfectly track the trajectory of input voltage. The proposed prediction algorithm is verified at different conditions, and computer simulation and experimental results under multi-situations confirm the effectiveness of the prediction algorithm. Under the circumstances that the input voltage is in the range of 90-265 V and the load current in the range of 20%-100%, the PF value is larger than 0.998. The startup and the recovery times respectively are about 0.1 s and 0.02 s without overshoot. The experimental results also verify the validity of the proposed method.

  20. Sootblowing optimization for improved boiler performance

    DOEpatents

    James, John Robert; McDermott, John; Piche, Stephen; Pickard, Fred; Parikh, Neel J.

    2012-12-25

    A sootblowing control system that uses predictive models to bridge the gap between sootblower operation and boiler performance goals. The system uses predictive modeling and heuristics (rules) associated with different zones in a boiler to determine an optimal sequence of sootblower operations and achieve boiler performance targets. The system performs the sootblower optimization while observing any operational constraints placed on the sootblowers.

  1. Sootblowing optimization for improved boiler performance

    DOEpatents

    James, John Robert; McDermott, John; Piche, Stephen; Pickard, Fred; Parikh, Neel J

    2013-07-30

    A sootblowing control system that uses predictive models to bridge the gap between sootblower operation and boiler performance goals. The system uses predictive modeling and heuristics (rules) associated with different zones in a boiler to determine an optimal sequence of sootblower operations and achieve boiler performance targets. The system performs the sootblower optimization while observing any operational constraints placed on the sootblowers.

  2. Outdoor flocking of quadcopter drones with decentralized model predictive control.

    PubMed

    Yuan, Quan; Zhan, Jingyuan; Li, Xiang

    2017-11-01

    In this paper, we present a multi-drone system featured with a decentralized model predictive control (DMPC) flocking algorithm. The drones gather localized information from neighbors and update their velocities using the DMPC flocking algorithm. In the multi-drone system, data packages are transmitted through XBee ® wireless modules in broadcast mode, yielding such an anonymous and decentralized system where all the calculations and controls are completed on an onboard minicomputer of each drone. Each drone is a double-layered agent system with the coordination layer running multi-drone flocking algorithms and the flight control layer navigating the drone, and the final formation of the flock relies on both the communication range and the desired inter-drone distance. We give both numerical simulations and field tests with a flock of five drones, showing that the DMPC flocking algorithm performs well on the presented multi-drone system in both the convergence rate and the ability of tracking a desired path. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Robustness and cognition in stabilization problem of dynamical systems based on asymptotic methods

    NASA Astrophysics Data System (ADS)

    Dubovik, S. A.; Kabanov, A. A.

    2017-01-01

    The problem of synthesis of stabilizing systems based on principles of cognitive (logical-dynamic) control for mobile objects used under uncertain conditions is considered. This direction in control theory is based on the principles of guaranteeing robust synthesis focused on worst-case scenarios of the controlled process. The guaranteeing approach is able to provide functioning of the system with the required quality and reliability only at sufficiently low disturbances and in the absence of large deviations from some regular features of the controlled process. The main tool for the analysis of large deviations and prediction of critical states here is the action functional. After the forecast is built, the choice of anti-crisis control is the supervisory control problem that optimizes the control system in a normal mode and prevents escape of the controlled process in critical states. An essential aspect of the approach presented here is the presence of a two-level (logical-dynamic) control: the input data are used not only for generating of synthesized feedback (local robust synthesis) in advance (off-line), but also to make decisions about the current (on-line) quality of stabilization in the global sense. An example of using the presented approach for the problem of development of the ship tilting prediction system is considered.

  4. Optimal input selection for neural machine interfaces predicting multiple non-explicit outputs.

    PubMed

    Krepkovich, Eileen T; Perreault, Eric J

    2008-01-01

    This study implemented a novel algorithm that optimally selects inputs for neural machine interface (NMI) devices intended to control multiple outputs and evaluated its performance on systems lacking explicit output. NMIs often incorporate signals from multiple physiological sources and provide predictions for multidimensional control, leading to multiple-input multiple-output systems. Further, NMIs often are used with subjects who have motor disabilities and thus lack explicit motor outputs. Our algorithm was tested on simulated multiple-input multiple-output systems and on electromyogram and kinematic data collected from healthy subjects performing arm reaches. Effects of output noise in simulated systems indicated that the algorithm could be useful for systems with poor estimates of the output states, as is true for systems lacking explicit motor output. To test efficacy on physiological data, selection was performed using inputs from one subject and outputs from a different subject. Selection was effective for these cases, again indicating that this algorithm will be useful for predictions where there is no motor output, as often is the case for disabled subjects. Further, prediction results generalized for different movement types not used for estimation. These results demonstrate the efficacy of this algorithm for the development of neural machine interfaces.

  5. LMI-Based Generation of Feedback Laws for a Robust Model Predictive Control Algorithm

    NASA Technical Reports Server (NTRS)

    Acikmese, Behcet; Carson, John M., III

    2007-01-01

    This technical note provides a mathematical proof of Corollary 1 from the paper 'A Nonlinear Model Predictive Control Algorithm with Proven Robustness and Resolvability' that appeared in the 2006 Proceedings of the American Control Conference. The proof was omitted for brevity in the publication. The paper was based on algorithms developed for the FY2005 R&TD (Research and Technology Development) project for Small-body Guidance, Navigation, and Control [2].The framework established by the Corollary is for a robustly stabilizing MPC (model predictive control) algorithm for uncertain nonlinear systems that guarantees the resolvability of the associated nite-horizon optimal control problem in a receding-horizon implementation. Additional details of the framework are available in the publication.

  6. Acceleration feedback improves balancing against reflex delay

    PubMed Central

    Insperger, Tamás; Milton, John; Stépán, Gábor

    2013-01-01

    A model for human postural balance is considered in which the time-delayed feedback depends on position, velocity and acceleration (proportional–derivative–acceleration (PDA) feedback). It is shown that a PDA controller is equivalent to a predictive controller, in which the prediction is based on the most recent information of the state, but the control input is not involved into the prediction. A PDA controller is superior to the corresponding proportional–derivative controller in the sense that the PDA controller can stabilize systems with approximately 40 per cent larger feedback delays. The addition of a sensory dead zone to account for the finite thresholds for detection by sensory receptors results in highly intermittent, complex oscillations that are a typical feature of human postural sway. PMID:23173196

  7. Resource Management in Constrained Dynamic Situations

    NASA Astrophysics Data System (ADS)

    Seok, Jinwoo

    Resource management is considered in this dissertation for systems with limited resources, possibly combined with other system constraints, in unpredictably dynamic environments. Resources may represent fuel, power, capabilities, energy, and so on. Resource management is important for many practical systems; usually, resources are limited, and their use must be optimized. Furthermore, systems are often constrained, and constraints must be satisfied for safe operation. Simplistic resource management can result in poor use of resources and failure of the system. Furthermore, many real-world situations involve dynamic environments. Many traditional problems are formulated based on the assumptions of given probabilities or perfect knowledge of future events. However, in many cases, the future is completely unknown, and information on or probabilities about future events are not available. In other words, we operate in unpredictably dynamic situations. Thus, a method is needed to handle dynamic situations without knowledge of the future, but few formal methods have been developed to address them. Thus, the goal is to design resource management methods for constrained systems, with limited resources, in unpredictably dynamic environments. To this end, resource management is organized hierarchically into two levels: 1) planning, and 2) control. In the planning level, the set of tasks to be performed is scheduled based on limited resources to maximize resource usage in unpredictably dynamic environments. In the control level, the system controller is designed to follow the schedule by considering all the system constraints for safe and efficient operation. Consequently, this dissertation is mainly divided into two parts: 1) planning level design, based on finite state machines, and 2) control level methods, based on model predictive control. We define a recomposable restricted finite state machine to handle limited resource situations and unpredictably dynamic environments for the planning level. To obtain a policy, dynamic programing is applied, and to obtain a solution, limited breadth-first search is applied to the recomposable restricted finite state machine. A multi-function phased array radar resource management problem and an unmanned aerial vehicle patrolling problem are treated using recomposable restricted finite state machines. Then, we use model predictive control for the control level, because it allows constraint handling and setpoint tracking for the schedule. An aircraft power system management problem is treated that aims to develop an integrated control system for an aircraft gas turbine engine and electrical power system using rate-based model predictive control. Our results indicate that at the planning level, limited breadth-first search for recomposable restricted finite state machines generates good scheduling solutions in limited resource situations and unpredictably dynamic environments. The importance of cooperation in the planning level is also verified. At the control level, a rate-based model predictive controller allows good schedule tracking and safe operations. The importance of considering the system constraints and interactions between the subsystems is indicated. For the best resource management in constrained dynamic situations, the planning level and the control level need to be considered together.

  8. SU-D-BRA-01: Feasibility Study for Swallowing Prediction Using Pressure Sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, M; Kim, T; Kim, D

    2016-06-15

    Purpose: To develop a swallowing prediction system (SPS) using force sensing sensors and evaluate its feasibility. Methods: The SPS developed consists of force sensing sensor units, a thermoplastic mask, a signal transport device and a control PC installed with an in-house software. The SPS is designed to predict the pharyngeal stage of swallowing because it is known that internal organ movement occurs in pharyngeal stage. To detect prediction signal in the SPS, the force sensing sensor units were attached on both the submental muscle region and thyroid cartilage region of the thermoplastic mask. While the signal from the thyroid cartilagemore » region informs the action of swallowing, the signal from the submental muscle region is utilized as a precursor for swallowing. Since the duration of swallowing is relatively short, using such precursor (or warning) signals for machine control is considered more beneficial. A volunteer study was conducted to evaluate the feasibility of the system. In this volunteer study, we intended to verify that the system could predict the pharyngeal stage of the swallowing. We measured time gaps between obtaining the warning signals in the SPS and starting points of the pharyngeal stage of swallowing. Results: The measured data was examined whether the time gaps were in reasonable order to be easily utilized. The mean and standard deviation values of these time gaps were 0.550 s ± 0.183 s. in 8 volunteers. Conclusion: The proposed method was able to predict the on-set of swallowing of human subjects inside the thermoplastic mask, which has never been possible with other monitoring systems such as camera-based monitoring system. With the prediction ability of swallowing incorporated into the machine control mechanism (in the future), beam delivery can be controlled to skip swallowing periods and significant dosimetric gain is expected in head & neck cancer treatments. This work was supported by the Radiation Technology R&D program (No. 2015M2A2A7038291) and by the Mid-career Researcher Program (2014R1A2A1A10050270) through the National Research Foundation of Korea funded by the Ministry of Science, ICT&Future Planning.« less

  9. Adjoint Method and Predictive Control for 1-D Flow in NASA Ames 11-Foot Transonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Ardema, Mark

    2006-01-01

    This paper describes a modeling method and a new optimal control approach to investigate a Mach number control problem for the NASA Ames 11-Foot Transonic Wind Tunnel. The flow in the wind tunnel is modeled by the 1-D unsteady Euler equations whose boundary conditions prescribe a controlling action by a compressor. The boundary control inputs to the compressor are in turn controlled by a drive motor system and an inlet guide vane system whose dynamics are modeled by ordinary differential equations. The resulting Euler equations are thus coupled to the ordinary differential equations via the boundary conditions. Optimality conditions are established by an adjoint method and are used to develop a model predictive linear-quadratic optimal control for regulating the Mach number due to a test model disturbance during a continuous pitch

  10. A model for prediction of STOVL ejector dynamics

    NASA Technical Reports Server (NTRS)

    Drummond, Colin K.

    1989-01-01

    A semi-empirical control-volume approach to ejector modeling for transient performance prediction is presented. This new approach is motivated by the need for a predictive real-time ejector sub-system simulation for Short Take-Off Verticle Landing (STOVL) integrated flight and propulsion controls design applications. Emphasis is placed on discussion of the approximate characterization of the mixing process central to thrust augmenting ejector operation. The proposed ejector model suggests transient flow predictions are possible with a model based on steady-flow data. A practical test case is presented to illustrate model calibration.

  11. Design of nonlinear PID controller and nonlinear model predictive controller for a continuous stirred tank reactor.

    PubMed

    Prakash, J; Srinivasan, K

    2009-07-01

    In this paper, the authors have represented the nonlinear system as a family of local linear state space models, local PID controllers have been designed on the basis of linear models, and the weighted sum of the output from the local PID controllers (Nonlinear PID controller) has been used to control the nonlinear process. Further, Nonlinear Model Predictive Controller using the family of local linear state space models (F-NMPC) has been developed. The effectiveness of the proposed control schemes has been demonstrated on a CSTR process, which exhibits dynamic nonlinearity.

  12. Engineering aspects of the Stanford relativity gyro experiment

    NASA Technical Reports Server (NTRS)

    Everitt, C. W. F.; Debra, D. B.

    1981-01-01

    According to certain theoretical predictions, the Newtonian laws of motion must be corrected for the effect of a gravitational field. Schiff (1960) proposed an experiment which would demonstrate the effect predicted by Einstein's Theory of General Relativity on a gyroscope. The experiment has been under development at Stanford University since 1961. The requirements involved make it necessary that the test be performed in a satellite to take advantage of weightlessness in space. In a discussion of engineering developments related to the experiment, attention is given to the development of proportional helium thrusters, the simulation of the attitude control system, aspects of inner loop control, the mechanization of the two-loop attitude control system, the effects of helium slosh on spacecraft pointing, and the data instrumentation system.

  13. Qualitative simulation for process modeling and control

    NASA Technical Reports Server (NTRS)

    Dalle Molle, D. T.; Edgar, T. F.

    1989-01-01

    A qualitative model is developed for a first-order system with a proportional-integral controller without precise knowledge of the process or controller parameters. Simulation of the qualitative model yields all of the solutions to the system equations. In developing the qualitative model, a necessary condition for the occurrence of oscillatory behavior is identified. Initializations that cannot exhibit oscillatory behavior produce a finite set of behaviors. When the phase-space behavior of the oscillatory behavior is properly constrained, these initializations produce an infinite but comprehensible set of asymptotically stable behaviors. While the predictions include all possible behaviors of the real system, a class of spurious behaviors has been identified. When limited numerical information is included in the model, the number of predictions is significantly reduced.

  14. Distributed model predictive control for constrained nonlinear systems with decoupled local dynamics.

    PubMed

    Zhao, Meng; Ding, Baocang

    2015-03-01

    This paper considers the distributed model predictive control (MPC) of nonlinear large-scale systems with dynamically decoupled subsystems. According to the coupled state in the overall cost function of centralized MPC, the neighbors are confirmed and fixed for each subsystem, and the overall objective function is disassembled into each local optimization. In order to guarantee the closed-loop stability of distributed MPC algorithm, the overall compatibility constraint for centralized MPC algorithm is decomposed into each local controller. The communication between each subsystem and its neighbors is relatively low, only the current states before optimization and the optimized input variables after optimization are being transferred. For each local controller, the quasi-infinite horizon MPC algorithm is adopted, and the global closed-loop system is proven to be exponentially stable. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Further Investigation of Receding Horizion-Based Controllers and Neural Network-Based Systems

    NASA Technical Reports Server (NTRS)

    Kelkar, Atul G.; Haley, Pamela J. (Technical Monitor)

    2000-01-01

    This report provides a comprehensive summary of the research work performed over the entire duration of the co-operative research agreement between NASA Langley Research Center and Kansas State University. This summary briefly lists the findings and also suggests possible future directions for the continuation of the subject research in the area of Generalized Predictive Control (GPC) and Network Based Generalized Predictive Control (NGPC).

  16. Investigation of chaos and its control in a Duffing-type nano beam model

    NASA Astrophysics Data System (ADS)

    Jha, Abhishek Kumar; Dasgupta, Sovan Sundar

    2018-04-01

    The prediction of chaos of a nano beam with harmonic excitation is investigated. Using the Galerkin method the nonlinear lumped model of a clamped-clamped nano beam with nonlinear cubic stiffness is obtained. This is a Duffing system with hardening type of nonlinearity. Based on the energy function and the phase portrait of the system, the resonator dynamics is categorized into four situations in which Using Malnikov function, an analytical criterion for homoclinic intersection in the form of inequality is written in terms of the system parameters. A numerical study including largest lyapunov exponent, Poincare diagram and phase portrait confirm the analytical prediction of chaos and effect of forcing amplitude. Subsequently, a linear velocity feedback controller is introduced into the system to successfully control the chaotic motion of the system at a faster rate at larger value of gain parameter.

  17. Shuttle environmental and thermal control/life support system computer program, supplement 1

    NASA Technical Reports Server (NTRS)

    Ayotte, W. J.

    1975-01-01

    The computer programs developed to simulate the RSECS (Representative Shuttle Environmental Control System) were described. These programs were prepared to provide pretest predictions, post-test analysis and real time problem analysis for RSECS test planning and evaluation.

  18. Nonlinear Multiobjective MPC-Based Optimal Operation of a High Consistency Refining System in Papermaking

    DOE PAGES

    Li, Mingjie; Zhou, Ping; Wang, Hong; ...

    2017-09-19

    As one of the most important unit in the papermaking industry, the high consistency (HC) refining system is confronted with challenges such as improving pulp quality, energy saving, and emissions reduction in its operation processes. Here in this correspondence, an optimal operation of HC refining system is presented using nonlinear multiobjective model predictive control strategies that aim at set-point tracking objective of pulp quality, economic objective, and specific energy (SE) consumption objective, respectively. First, a set of input and output data at different times are employed to construct the subprocess model of the state process model for the HC refiningmore » system, and then the Wiener-type model can be obtained through combining the mechanism model of Canadian Standard Freeness and the state process model that determines their structures based on Akaike information criterion. Second, the multiobjective optimization strategy that optimizes both the set-point tracking objective of pulp quality and SE consumption is proposed simultaneously, which uses NSGA-II approach to obtain the Pareto optimal set. Furthermore, targeting at the set-point tracking objective of pulp quality, economic objective, and SE consumption objective, the sequential quadratic programming method is utilized to produce the optimal predictive controllers. In conclusion, the simulation results demonstrate that the proposed methods can make the HC refining system provide a better performance of set-point tracking of pulp quality when these predictive controllers are employed. In addition, while the optimal predictive controllers orienting with comprehensive economic objective and SE consumption objective, it has been shown that they have significantly reduced the energy consumption.« less

  19. Nonlinear Multiobjective MPC-Based Optimal Operation of a High Consistency Refining System in Papermaking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Mingjie; Zhou, Ping; Wang, Hong

    As one of the most important unit in the papermaking industry, the high consistency (HC) refining system is confronted with challenges such as improving pulp quality, energy saving, and emissions reduction in its operation processes. Here in this correspondence, an optimal operation of HC refining system is presented using nonlinear multiobjective model predictive control strategies that aim at set-point tracking objective of pulp quality, economic objective, and specific energy (SE) consumption objective, respectively. First, a set of input and output data at different times are employed to construct the subprocess model of the state process model for the HC refiningmore » system, and then the Wiener-type model can be obtained through combining the mechanism model of Canadian Standard Freeness and the state process model that determines their structures based on Akaike information criterion. Second, the multiobjective optimization strategy that optimizes both the set-point tracking objective of pulp quality and SE consumption is proposed simultaneously, which uses NSGA-II approach to obtain the Pareto optimal set. Furthermore, targeting at the set-point tracking objective of pulp quality, economic objective, and SE consumption objective, the sequential quadratic programming method is utilized to produce the optimal predictive controllers. In conclusion, the simulation results demonstrate that the proposed methods can make the HC refining system provide a better performance of set-point tracking of pulp quality when these predictive controllers are employed. In addition, while the optimal predictive controllers orienting with comprehensive economic objective and SE consumption objective, it has been shown that they have significantly reduced the energy consumption.« less

  20. Modeling and sliding mode predictive control of the ultra-supercritical boiler-turbine system with uncertainties and input constraints.

    PubMed

    Tian, Zhen; Yuan, Jingqi; Zhang, Xiang; Kong, Lei; Wang, Jingcheng

    2018-05-01

    The coordinated control system (CCS) serves as an important role in load regulation, efficiency optimization and pollutant reduction for coal-fired power plants. The CCS faces with tough challenges, such as the wide-range load variation, various uncertainties and constraints. This paper aims to improve the load tacking ability and robustness for boiler-turbine units under wide-range operation. To capture the key dynamics of the ultra-supercritical boiler-turbine system, a nonlinear control-oriented model is developed based on mechanism analysis and model reduction techniques, which is validated with the history operation data of a real 1000 MW unit. To simultaneously address the issues of uncertainties and input constraints, a discrete-time sliding mode predictive controller (SMPC) is designed with the dual-mode control law. Moreover, the input-to-state stability and robustness of the closed-loop system are proved. Simulation results are presented to illustrate the effectiveness of the proposed control scheme, which achieves good tracking performance, disturbance rejection ability and compatibility to input constraints. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Some aspects of control of a large-scale dynamic system

    NASA Technical Reports Server (NTRS)

    Aoki, M.

    1975-01-01

    Techniques of predicting and/or controlling the dynamic behavior of large scale systems are discussed in terms of decentralized decision making. Topics discussed include: (1) control of large scale systems by dynamic team with delayed information sharing; (2) dynamic resource allocation problems by a team (hierarchical structure with a coordinator); and (3) some problems related to the construction of a model of reduced dimension.

  2. Using VAPEPS for noise control on Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Badilla, Gloria; Bergen, Thomas; Scharton, Terry

    1991-01-01

    Noise environmental control is an important design consideration for Space Station Freedom (SSF), both for crew safety and productivity. Acoustic noise requirements are established to eliminate fatigue and potential hearing loss by crew members from long-term exposure and to facilitate speech communication. VAPEPS (VibroAcoustic Payload Environment Prediction System) is currently being applied to SSF for prediction of the on-orbit noise and vibration environments induced in the 50 to 10,000 Hz frequency range. Various sources such as fans, pumps, centrifuges, exercise equipment, and other mechanical devices are used in the analysis. The predictions will be used in design tradeoff studies and to provide confidence that requirements will be met. Preliminary predictions show that the required levels will be exceeded unless substantial noise control measures are incorporated in the SSF design. Predicted levels for an SSF design without acoustic control treatments exceed requirements by 25 dB in some one-third octave frequency bands.

  3. Predicting the stochastic guiding of kinesin-driven microtubules in microfabricated tracks: a statistical-mechanics-based modeling approach.

    PubMed

    Lin, Chih-Tin; Meyhofer, Edgar; Kurabayashi, Katsuo

    2010-01-01

    Directional control of microtubule shuttles via microfabricated tracks is key to the development of controlled nanoscale mass transport by kinesin motor molecules. Here we develop and test a model to quantitatively predict the stochastic behavior of microtubule guiding when they mechanically collide with the sidewalls of lithographically patterned tracks. By taking into account appropriate probability distributions of microscopic states of the microtubule system, the model allows us to theoretically analyze the roles of collision conditions and kinesin surface densities in determining how the motion of microtubule shuttles is controlled. In addition, we experimentally observe the statistics of microtubule collision events and compare our theoretical prediction with experimental data to validate our model. The model will direct the design of future hybrid nanotechnology devices that integrate nanoscale transport systems powered by kinesin-driven molecular shuttles.

  4. Implementation of Cyber-Physical Production Systems for Quality Prediction and Operation Control in Metal Casting.

    PubMed

    Lee, JuneHyuck; Noh, Sang Do; Kim, Hyun-Jung; Kang, Yong-Shin

    2018-05-04

    The prediction of internal defects of metal casting immediately after the casting process saves unnecessary time and money by reducing the amount of inputs into the next stage, such as the machining process, and enables flexible scheduling. Cyber-physical production systems (CPPS) perfectly fulfill the aforementioned requirements. This study deals with the implementation of CPPS in a real factory to predict the quality of metal casting and operation control. First, a CPPS architecture framework for quality prediction and operation control in metal-casting production was designed. The framework describes collaboration among internet of things (IoT), artificial intelligence, simulations, manufacturing execution systems, and advanced planning and scheduling systems. Subsequently, the implementation of the CPPS in actual plants is described. Temperature is a major factor that affects casting quality, and thus, temperature sensors and IoT communication devices were attached to casting machines. The well-known NoSQL database, HBase and the high-speed processing/analysis tool, Spark, are used for IoT repository and data pre-processing, respectively. Many machine learning algorithms such as decision tree, random forest, artificial neural network, and support vector machine were used for quality prediction and compared with R software. Finally, the operation of the entire system is demonstrated through a CPPS dashboard. In an era in which most CPPS-related studies are conducted on high-level abstract models, this study describes more specific architectural frameworks, use cases, usable software, and analytical methodologies. In addition, this study verifies the usefulness of CPPS by estimating quantitative effects. This is expected to contribute to the proliferation of CPPS in the industry.

  5. Vestibulospinal adaptation to microgravity

    NASA Technical Reports Server (NTRS)

    Paloski, W. H.

    1998-01-01

    Human balance control is known to be transiently disrupted after spaceflight; however, the mechanisms responsible for postflight postural ataxia are still under investigation. In this report, we propose a conceptual model of vestibulospinal adaptation based on theoretical adaptive control concepts and supported by the results from a comprehensive study of balance control recovery after spaceflight. The conceptual model predicts that immediately after spaceflight the balance control system of a returning astronaut does not expect to receive gravity-induced afferent inputs and that descending vestibulospinal control of balance is disrupted until the central nervous system is able to cope with the newly available vestibular otolith information. Predictions of the model are tested using data from a study of the neurosensory control of balance in astronauts immediately after landing. In that study, the mechanisms of sensorimotor balance control were assessed under normal, reduced, and/or altered (sway-referenced) visual and somatosensory input conditions. We conclude that the adaptive control model accurately describes the neurobehavioral responses to spaceflight and that similar models of altered sensory, motor, or environmental constraints are needed clinically to predict responses that patients with sensorimotor pathologies may have to various visual-vestibular or changing stimulus environments.

  6. Application of dynamical systems theory to the high angle of attack dynamics of the F-14

    NASA Technical Reports Server (NTRS)

    Jahnke, Craig C.; Culick, Fred E. C.

    1990-01-01

    Dynamical systems theory has been used to study the nonlinear dynamics of the F-14. An eight degree of freedom model that does not include the control system present in operational F-14s has been analyzed. The aerodynamic model, supplied by NASA, includes nonlinearities as functions of the angles of attack and sideslip, the rotation rate, and the elevator deflection. A continuation method has been used to calculate the steady states of the F-14 as continuous functions of the control surface deflections. Bifurcations of these steady states have been used to predict the onset of wing rock, spiral divergence, and jump phenomena which cause the aircraft to enter a spin. A simple feedback control system was designed to eliminate the wing rock and spiral divergence instabilities. The predictions were verified with numerical simulations.

  7. A predictive pilot model for STOL aircraft landing

    NASA Technical Reports Server (NTRS)

    Kleinman, D. L.; Killingsworth, W. R.

    1974-01-01

    An optimal control approach has been used to model pilot performance during STOL flare and landing. The model is used to predict pilot landing performance for three STOL configurations, each having a different level of automatic control augmentation. Model predictions are compared with flight simulator data. It is concluded that the model can be effective design tool for studying analytically the effects of display modifications, different stability augmentation systems, and proposed changes in the landing area geometry.

  8. TankSIM: A Cryogenic Tank Performance Prediction Program

    NASA Technical Reports Server (NTRS)

    Bolshinskiy, L. G.; Hedayat, A.; Hastings, L. J.; Moder, J. P.; Schnell, A. R.; Sutherlin, S. G.

    2015-01-01

    Accurate prediction of the thermodynamic state of the cryogenic propellants in launch vehicle tanks is necessary for mission planning and successful execution. Cryogenic propellant storage and transfer in space environments requires that tank pressure be controlled. The pressure rise rate is determined by the complex interaction of external heat leak, fluid temperature stratification, and interfacial heat and mass transfer. If the required storage duration of a space mission is longer than the period in which the tank pressure reaches its allowable maximum, an appropriate pressure control method must be applied. Therefore, predictions of the pressurization rate and performance of pressure control techniques in cryogenic tanks are required for development of cryogenic fluid long-duration storage technology and planning of future space exploration missions. This paper describes an analytical tool, Tank System Integrated Model (TankSIM), which can be used for modeling pressure control and predicting the behavior of cryogenic propellant for long-term storage for future space missions. It is written in the FORTRAN 90 language and can be compiled with any Visual FORTRAN compiler. A thermodynamic vent system (TVS) is used to achieve tank pressure control. Utilizing TankSIM, the following processes can be modeled: tank self-pressurization, boiloff, ullage venting, and mixing. Details of the TankSIM program and comparisons of its predictions with test data for liquid hydrogen and liquid methane will be presented in the final paper.

  9. Dissecting innate immune responses with the tools of systems biology.

    PubMed

    Smith, Kelly D; Bolouri, Hamid

    2005-02-01

    Systems biology strives to derive accurate predictive descriptions of complex systems such as innate immunity. The innate immune system is essential for host defense, yet the resulting inflammatory response must be tightly regulated. Current understanding indicates that this system is controlled by complex regulatory networks, which maintain homoeostasis while accurately distinguishing pathogenic infections from harmless exposures. Recent studies have used high throughput technologies and computational techniques that presage predictive models and will be the foundation of a systems level understanding of innate immunity.

  10. Nonlinear predictive control for durability enhancement and efficiency improvement in a fuel cell power system

    NASA Astrophysics Data System (ADS)

    Luna, Julio; Jemei, Samir; Yousfi-Steiner, Nadia; Husar, Attila; Serra, Maria; Hissel, Daniel

    2016-10-01

    In this work, a nonlinear model predictive control (NMPC) strategy is proposed to improve the efficiency and enhance the durability of a proton exchange membrane fuel cell (PEMFC) power system. The PEMFC controller is based on a distributed parameters model that describes the nonlinear dynamics of the system, considering spatial variations along the gas channels. Parasitic power from different system auxiliaries is considered, including the main parasitic losses which are those of the compressor. A nonlinear observer is implemented, based on the discretised model of the PEMFC, to estimate the internal states. This information is included in the cost function of the controller to enhance the durability of the system by means of avoiding local starvation and inappropriate water vapour concentrations. Simulation results are presented to show the performance of the proposed controller over a given case study in an automotive application (New European Driving Cycle). With the aim of representing the most relevant phenomena that affects the PEMFC voltage, the simulation model includes a two-phase water model and the effects of liquid water on the catalyst active area. The control model is a simplified version that does not consider two-phase water dynamics.

  11. Impact of active controls technology on structural integrity

    NASA Technical Reports Server (NTRS)

    Noll, Thomas; Austin, Edward; Donley, Shawn; Graham, George; Harris, Terry

    1991-01-01

    This paper summarizes the findings of The Technical Cooperation Program to assess the impact of active controls technology on the structural integrity of aeronautical vehicles and to evaluate the present state-of-the-art for predicting the loads caused by a flight-control system modification and the resulting change in the fatigue life of the flight vehicle. The potential for active controls to adversely affect structural integrity is described, and load predictions obtained using two state-of-the-art analytical methods are given.

  12. Multi-Node Thermal System Model for Lithium-Ion Battery Packs: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Ying; Smith, Kandler; Wood, Eric

    Temperature is one of the main factors that controls the degradation in lithium ion batteries. Accurate knowledge and control of cell temperatures in a pack helps the battery management system (BMS) to maximize cell utilization and ensure pack safety and service life. In a pack with arrays of cells, a cells temperature is not only affected by its own thermal characteristics but also by its neighbors, the cooling system and pack configuration, which increase the noise level and the complexity of cell temperatures prediction. This work proposes to model lithium ion packs thermal behavior using a multi-node thermal network model,more » which predicts the cell temperatures by zones. The model was parametrized and validated using commercial lithium-ion battery packs. neighbors, the cooling system and pack configuration, which increase the noise level and the complexity of cell temperatures prediction. This work proposes to model lithium ion packs thermal behavior using a multi-node thermal network model, which predicts the cell temperatures by zones. The model was parametrized and validated using commercial lithium-ion battery packs.« less

  13. Toward autonomous spacecraft

    NASA Technical Reports Server (NTRS)

    Fogel, L. J.; Calabrese, P. G.; Walsh, M. J.; Owens, A. J.

    1982-01-01

    Ways in which autonomous behavior of spacecraft can be extended to treat situations wherein a closed loop control by a human may not be appropriate or even possible are explored. Predictive models that minimize mean least squared error and arbitrary cost functions are discussed. A methodology for extracting cyclic components for an arbitrary environment with respect to usual and arbitrary criteria is developed. An approach to prediction and control based on evolutionary programming is outlined. A computer program capable of predicting time series is presented. A design of a control system for a robotic dense with partially unknown physical properties is presented.

  14. A Statistical Approach to Thermal Management of Data Centers Under Steady State and System Perturbations

    PubMed Central

    Haaland, Ben; Min, Wanli; Qian, Peter Z. G.; Amemiya, Yasuo

    2011-01-01

    Temperature control for a large data center is both important and expensive. On the one hand, many of the components produce a great deal of heat, and on the other hand, many of the components require temperatures below a fairly low threshold for reliable operation. A statistical framework is proposed within which the behavior of a large cooling system can be modeled and forecast under both steady state and perturbations. This framework is based upon an extension of multivariate Gaussian autoregressive hidden Markov models (HMMs). The estimated parameters of the fitted model provide useful summaries of the overall behavior of and relationships within the cooling system. Predictions under system perturbations are useful for assessing potential changes and improvements to be made to the system. Many data centers have far more cooling capacity than necessary under sensible circumstances, thus resulting in energy inefficiencies. Using this model, predictions for system behavior after a particular component of the cooling system is shut down or reduced in cooling power can be generated. Steady-state predictions are also useful for facility monitors. System traces outside control boundaries flag a change in behavior to examine. The proposed model is fit to data from a group of air conditioners within an enterprise data center from the IT industry. The fitted model is examined, and a particular unit is found to be underutilized. Predictions generated for the system under the removal of that unit appear very reasonable. Steady-state system behavior also is predicted well. PMID:22076026

  15. THE FORMATION OF PB (IV) OXIDES IN CHLORINATED WATER

    EPA Science Inventory

    The foundation for lead control in drinking water distribution systems is based on Pb(II) chemistry. In recent years, however, Pb(IV) oxides have been identified in distribution systems, suggesting that they may be important relative to predicting and controlling lead concentrat...

  16. Absolute Stability Analysis of a Phase Plane Controlled Spacecraft

    NASA Technical Reports Server (NTRS)

    Jang, Jiann-Woei; Plummer, Michael; Bedrossian, Nazareth; Hall, Charles; Jackson, Mark; Spanos, Pol

    2010-01-01

    Many aerospace attitude control systems utilize phase plane control schemes that include nonlinear elements such as dead zone and ideal relay. To evaluate phase plane control robustness, stability margin prediction methods must be developed. Absolute stability is extended to predict stability margins and to define an abort condition. A constrained optimization approach is also used to design flex filters for roll control. The design goal is to optimize vehicle tracking performance while maintaining adequate stability margins. Absolute stability is shown to provide satisfactory stability constraints for the optimization.

  17. Cognitive control predicts use of model-based reinforcement learning.

    PubMed

    Otto, A Ross; Skatova, Anya; Madlon-Kay, Seth; Daw, Nathaniel D

    2015-02-01

    Accounts of decision-making and its neural substrates have long posited the operation of separate, competing valuation systems in the control of choice behavior. Recent theoretical and experimental work suggest that this classic distinction between behaviorally and neurally dissociable systems for habitual and goal-directed (or more generally, automatic and controlled) choice may arise from two computational strategies for reinforcement learning (RL), called model-free and model-based RL, but the cognitive or computational processes by which one system may dominate over the other in the control of behavior is a matter of ongoing investigation. To elucidate this question, we leverage the theoretical framework of cognitive control, demonstrating that individual differences in utilization of goal-related contextual information--in the service of overcoming habitual, stimulus-driven responses--in established cognitive control paradigms predict model-based behavior in a separate, sequential choice task. The behavioral correspondence between cognitive control and model-based RL compellingly suggests that a common set of processes may underpin the two behaviors. In particular, computational mechanisms originally proposed to underlie controlled behavior may be applicable to understanding the interactions between model-based and model-free choice behavior.

  18. Prediction of active control of subsonic centrifugal compressor rotating stall

    NASA Technical Reports Server (NTRS)

    Lawless, Patrick B.; Fleeter, Sanford

    1993-01-01

    A mathematical model is developed to predict the suppression of rotating stall in a centrifugal compressor with a vaned diffuser. This model is based on the employment of a control vortical waveform generated upstream of the impeller inlet to damp weak potential disturbances that are the early stages of rotating stall. The control system is analyzed by matching the perturbation pressure in the compressor inlet and exit flow fields with a model for the unsteady behavior of the compressor. The model was effective at predicting the stalling behavior of the Purdue Low Speed Centrifugal Compressor for two distinctly different stall patterns. Predictions made for the effect of a controlled inlet vorticity wave on the stability of the compressor show that for minimum control wave magnitudes, on the order of the total inlet disturbance magnitude, significant damping of the instability can be achieved. For control waves of sufficient amplitude, the control phase angle appears to be the most important factor in maintaining a stable condition in the compressor.

  19. Validation of engineering methods for predicting hypersonic vehicle controls forces and moments

    NASA Technical Reports Server (NTRS)

    Maughmer, M.; Straussfogel, D.; Long, L.; Ozoroski, L.

    1991-01-01

    This work examines the ability of the aerodynamic analysis methods contained in an industry standard conceptual design code, the Aerodynamic Preliminary Analysis System (APAS II), to estimate the forces and moments generated through control surface deflections from low subsonic to high hypersonic speeds. Predicted control forces and moments generated by various control effectors are compared with previously published wind-tunnel and flight-test data for three vehicles: the North American X-15, a hypersonic research airplane concept, and the Space Shuttle Orbiter. Qualitative summaries of the results are given for each force and moment coefficient and each control derivative in the various speed ranges. Results show that all predictions of longitudinal stability and control derivatives are acceptable for use at the conceptual design stage.

  20. Accelerated Aging System for Prognostics of Power Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Celaya, Jose R.; Vashchenko, Vladislav; Wysocki, Philip; Saha, Sankalita

    2010-01-01

    Prognostics is an engineering discipline that focuses on estimation of the health state of a component and the prediction of its remaining useful life (RUL) before failure. Health state estimation is based on actual conditions and it is fundamental for the prediction of RUL under anticipated future usage. Failure of electronic devices is of great concern as future aircraft will see an increase of electronics to drive and control safety-critical equipment throughout the aircraft. Therefore, development of prognostics solutions for electronics is of key importance. This paper presents an accelerated aging system for gate-controlled power transistors. This system allows for the understanding of the effects of failure mechanisms, and the identification of leading indicators of failure which are essential in the development of physics-based degradation models and RUL prediction. In particular, this system isolates electrical overstress from thermal overstress. Also, this system allows for a precise control of internal temperatures, enabling the exploration of intrinsic failure mechanisms not related to the device packaging. By controlling the temperature within safe operation levels of the device, accelerated aging is induced by electrical overstress only, avoiding the generation of thermal cycles. The temperature is controlled by active thermal-electric units. Several electrical and thermal signals are measured in-situ and recorded for further analysis in the identification of leading indicators of failures. This system, therefore, provides a unique capability in the exploration of different failure mechanisms and the identification of precursors of failure that can be used to provide a health management solution for electronic devices.

  1. Predictive control of a chaotic permanent magnet synchronous generator in a wind turbine system

    NASA Astrophysics Data System (ADS)

    Manal, Messadi; Adel, Mellit; Karim, Kemih; Malek, Ghanes

    2015-01-01

    This paper investigates how to address the chaos problem in a permanent magnet synchronous generator (PMSG) in a wind turbine system. Predictive control approach is proposed to suppress chaotic behavior and make operating stable; the advantage of this method is that it can only be applied to one state of the wind turbine system. The use of the genetic algorithms to estimate the optimal parameter values of the wind turbine leads to maximization of the power generation. Moreover, some simulation results are included to visualize the effectiveness and robustness of the proposed method. Project supported by the CMEP-TASSILI Project (Grant No. 14MDU920).

  2. REVIEW: Internal models in sensorimotor integration: perspectives from adaptive control theory

    NASA Astrophysics Data System (ADS)

    Tin, Chung; Poon, Chi-Sang

    2005-09-01

    Internal models and adaptive controls are empirical and mathematical paradigms that have evolved separately to describe learning control processes in brain systems and engineering systems, respectively. This paper presents a comprehensive appraisal of the correlation between these paradigms with a view to forging a unified theoretical framework that may benefit both disciplines. It is suggested that the classic equilibrium-point theory of impedance control of arm movement is analogous to continuous gain-scheduling or high-gain adaptive control within or across movement trials, respectively, and that the recently proposed inverse internal model is akin to adaptive sliding control originally for robotic manipulator applications. Modular internal models' architecture for multiple motor tasks is a form of multi-model adaptive control. Stochastic methods, such as generalized predictive control, reinforcement learning, Bayesian learning and Hebbian feedback covariance learning, are reviewed and their possible relevance to motor control is discussed. Possible applicability of a Luenberger observer and an extended Kalman filter to state estimation problems—such as sensorimotor prediction or the resolution of vestibular sensory ambiguity—is also discussed. The important role played by vestibular system identification in postural control suggests an indirect adaptive control scheme whereby system states or parameters are explicitly estimated prior to the implementation of control. This interdisciplinary framework should facilitate the experimental elucidation of the mechanisms of internal models in sensorimotor systems and the reverse engineering of such neural mechanisms into novel brain-inspired adaptive control paradigms in future.

  3. Intermittent control: a computational theory of human control.

    PubMed

    Gawthrop, Peter; Loram, Ian; Lakie, Martin; Gollee, Henrik

    2011-02-01

    The paradigm of continuous control using internal models has advanced understanding of human motor control. However, this paradigm ignores some aspects of human control, including intermittent feedback, serial ballistic control, triggered responses and refractory periods. It is shown that event-driven intermittent control provides a framework to explain the behaviour of the human operator under a wider range of conditions than continuous control. Continuous control is included as a special case, but sampling, system matched hold, an intermittent predictor and an event trigger allow serial open-loop trajectories using intermittent feedback. The implementation here may be described as "continuous observation, intermittent action". Beyond explaining unimodal regulation distributions in common with continuous control, these features naturally explain refractoriness and bimodal stabilisation distributions observed in double stimulus tracking experiments and quiet standing, respectively. Moreover, given that human control systems contain significant time delays, a biological-cybernetic rationale favours intermittent over continuous control: intermittent predictive control is computationally less demanding than continuous predictive control. A standard continuous-time predictive control model of the human operator is used as the underlying design method for an event-driven intermittent controller. It is shown that when event thresholds are small and sampling is regular, the intermittent controller can masquerade as the underlying continuous-time controller and thus, under these conditions, the continuous-time and intermittent controller cannot be distinguished. This explains why the intermittent control hypothesis is consistent with the continuous control hypothesis for certain experimental conditions.

  4. Population-centered Risk- and Evidence-based Dental Interprofessional Care Team (PREDICT): study protocol for a randomized controlled trial.

    PubMed

    Cunha-Cruz, Joana; Milgrom, Peter; Shirtcliff, R Michael; Bailit, Howard L; Huebner, Colleen E; Conrad, Douglas; Ludwig, Sharity; Mitchell, Melissa; Dysert, Jeanne; Allen, Gary; Scott, JoAnna; Mancl, Lloyd

    2015-06-20

    To improve the oral health of low-income children, innovations in dental delivery systems are needed, including community-based care, the use of expanded duty auxiliary dental personnel, capitation payments, and global budgets. This paper describes the protocol for PREDICT (Population-centered Risk- and Evidence-based Dental Interprofessional Care Team), an evaluation project to test the effectiveness of new delivery and payment systems for improving dental care and oral health. This is a parallel-group cluster randomized controlled trial. Fourteen rural Oregon counties with a publicly insured (Medicaid) population of 82,000 children (0 to 21 years old) and pregnant women served by a managed dental care organization are randomized into test and control counties. In the test intervention (PREDICT), allied dental personnel provide screening and preventive services in community settings and case managers serve as patient navigators to arrange referrals of children who need dentist services. The delivery system intervention is paired with a compensation system for high performance (pay-for-performance) with efficient performance monitoring. PREDICT focuses on the following: 1) identifying eligible children and gaining caregiver consent for services in community settings (for example, schools); 2) providing risk-based preventive and caries stabilization services efficiently at these settings; 3) providing curative care in dental clinics; and 4) incentivizing local delivery teams to meet performance benchmarks. In the control intervention, care is delivered in dental offices without performance incentives. The primary outcome is the prevalence of untreated dental caries. Other outcomes are related to process, structure and cost. Data are collected through patient and staff surveys, clinical examinations, and the review of health and administrative records. If effective, PREDICT is expected to substantially reduce disparities in dental care and oral health. PREDICT can be disseminated to other care organizations as publicly insured clients are increasingly served by large practice organizations. ClinicalTrials.gov NCT02312921 6 December 2014. The Robert Wood Johnson Foundation and Advantage Dental Services, LLC, are supporting the evaluation.

  5. Anticipation from sensation: using anticipating synchronization to stabilize a system with inherent sensory delay.

    PubMed

    Eberle, Henry; Nasuto, Slawomir J; Hayashi, Yoshikatsu

    2018-03-01

    We present a novel way of using a dynamical model for predictive tracking control that can adapt to a wide range of delays without parameter update. This is achieved by incorporating the paradigm of anticipating synchronization (AS), where a 'slave' system predicts a 'master' via delayed self-feedback. By treating the delayed output of the plant as one half of a 'sensory' AS coupling, the plant and an internal dynamical model can be synchronized such that the plant consistently leads the target's motion. We use two simulated robotic systems with differing arrangements of the plant and internal model ('parallel' and 'serial') to demonstrate that this form of control adapts to a wide range of delays without requiring the parameters of the controller to be changed.

  6. A Computer Program Functional Design of the Simulation Subsystem of an Automated Central Flow Control System

    DOT National Transportation Integrated Search

    1976-08-01

    This report contains a functional design for the simulation of a future automation concept in support of the ATC Systems Command Center. The simulation subsystem performs airport airborne arrival delay predictions and computes flow control tables for...

  7. Coordinated control of active and reactive power of distribution network with distributed PV cluster via model predictive control

    NASA Astrophysics Data System (ADS)

    Ji, Yu; Sheng, Wanxing; Jin, Wei; Wu, Ming; Liu, Haitao; Chen, Feng

    2018-02-01

    A coordinated optimal control method of active and reactive power of distribution network with distributed PV cluster based on model predictive control is proposed in this paper. The method divides the control process into long-time scale optimal control and short-time scale optimal control with multi-step optimization. The models are transformed into a second-order cone programming problem due to the non-convex and nonlinear of the optimal models which are hard to be solved. An improved IEEE 33-bus distribution network system is used to analyse the feasibility and the effectiveness of the proposed control method

  8. Dissertation Defense Computational Fluid Dynamics Uncertainty Analysis for Payload Fairing Spacecraft Environmental Control Systems

    NASA Technical Reports Server (NTRS)

    Groves, Curtis Edward

    2014-01-01

    Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This paper describes an approach to quantify the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft without the use of test data. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional "validation by test only" mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions. Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computational Fluid Dynamics can be used to verify these requirements; however, the model must be validated by test data. This research includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available and open source solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT, STARCCM+, and OPENFOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid Dynamics model using the methodology found in "Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations". This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics predictions. The method accounts for all uncertainty terms from both numerical and input variables. Objective three is to compile a table of uncertainty parameters that could be used to estimate the error in a Computational Fluid Dynamics model of the Environmental Control System /spacecraft system. Previous studies have looked at the uncertainty in a Computational Fluid Dynamics model for a single output variable at a single point, for example the re-attachment length of a backward facing step. For the flow regime being analyzed (turbulent, three-dimensional, incompressible), the error at a single point can propagate into the solution both via flow physics and numerical methods. Calculating the uncertainty in using Computational Fluid Dynamics to accurately predict airflow speeds around encapsulated spacecraft in is imperative to the success of future missions.

  9. Dissertation Defense: Computational Fluid Dynamics Uncertainty Analysis for Payload Fairing Spacecraft Environmental Control Systems

    NASA Technical Reports Server (NTRS)

    Groves, Curtis Edward

    2014-01-01

    Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This paper describes an approach to quantify the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft without the use of test data. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional validation by test only mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions.Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computational Fluid Dynamics can be used to verify these requirements; however, the model must be validated by test data. This research includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available and open source solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT, STARCCM+, and OPENFOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid Dynamics model using the methodology found in Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations. This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics predictions. The method accounts for all uncertainty terms from both numerical and input variables. Objective three is to compile a table of uncertainty parameters that could be used to estimate the error in a Computational Fluid Dynamics model of the Environmental Control System spacecraft system.Previous studies have looked at the uncertainty in a Computational Fluid Dynamics model for a single output variable at a single point, for example the re-attachment length of a backward facing step. For the flow regime being analyzed (turbulent, three-dimensional, incompressible), the error at a single point can propagate into the solution both via flow physics and numerical methods. Calculating the uncertainty in using Computational Fluid Dynamics to accurately predict airflow speeds around encapsulated spacecraft in is imperative to the success of future missions.

  10. Computational Fluid Dynamics Uncertainty Analysis for Payload Fairing Spacecraft Environmental Control Systems

    NASA Technical Reports Server (NTRS)

    Groves, Curtis E.

    2013-01-01

    Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This proposal describes an approach to validate the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft. The research described here is absolutely cutting edge. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional"validation by test only'' mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions. Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computationaf Fluid Dynamics can be used to veritY these requirements; however, the model must be validated by test data. The proposed research project includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT and OPEN FOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid . . . Dynamics model using the methodology found in "Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations". This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics predictions. The method accounts for all uncertainty terms from both numerical and input variables. Objective three is to compile a table of uncertainty parameters that could be used to estimate the error in a Computational Fluid Dynamics model of the Environmental Control System /spacecraft system. Previous studies have looked at the uncertainty in a Computational Fluid Dynamics model for a single output variable at a single point, for example the re-attachment length of a backward facing step. To date, the author is the only person to look at the uncertainty in the entire computational domain. For the flow regime being analyzed (turbulent, threedimensional, incompressible), the error at a single point can propagate into the solution both via flow physics and numerical methods. Calculating the uncertainty in using Computational Fluid Dynamics to accurately predict airflow speeds around encapsulated spacecraft in is imperative to the success of future missions.

  11. Chapter 16 - Predictive Analytics for Comprehensive Energy Systems State Estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yingchen; Yang, Rui; Hodge, Brian S

    Energy sustainability is a subject of concern to many nations in the modern world. It is critical for electric power systems to diversify energy supply to include systems with different physical characteristics, such as wind energy, solar energy, electrochemical energy storage, thermal storage, bio-energy systems, geothermal, and ocean energy. Each system has its own range of control variables and targets. To be able to operate such a complex energy system, big-data analytics become critical to achieve the goal of predicting energy supplies and consumption patterns, assessing system operation conditions, and estimating system states - all providing situational awareness to powermore » system operators. This chapter presents data analytics and machine learning-based approaches to enable predictive situational awareness of the power systems.« less

  12. Predictive display design for the vehicles with time delay in dynamic response

    NASA Astrophysics Data System (ADS)

    Efremov, A. V.; Tiaglik, M. S.; Irgaleev, I. H.; Efremov, E. V.

    2018-02-01

    The two ways for the improvement of flying qualities are considered: the predictive display (PD) and the predictive display integrated with the flight control system (FCS). The both ways allow to transforming the controlled element dynamics in the crossover frequency range, to improve the accuracy of tracking and to suppress the effect of time delay in the vehicle response too. The technique for optimization of the predictive law is applied to the landing task. The results of the mathematical modeling and experimental investigations carried out for this task are considered in the paper.

  13. Perspectives for geographically oriented management of fusarium mycotoxins in the cereal supply chain.

    PubMed

    van der Fels-Klerx, H J; Booij, C J H

    2010-06-01

    This article provides an overview of available systems for management of Fusarium mycotoxins in the cereal grain supply chain, with an emphasis on the use of predictive mathematical modeling. From the state of the art, it proposes future developments in modeling and management and their challenges. Mycotoxin contamination in cereal grain-based feed and food products is currently managed and controlled by good agricultural practices, good manufacturing practices, hazard analysis critical control points, and by checking and more recently by notification systems and predictive mathematical models. Most of the predictive models for Fusarium mycotoxins in cereal grains focus on deoxynivalenol in wheat and aim to help growers make decisions about the application of fungicides during cultivation. Future developments in managing Fusarium mycotoxins should include the linkage between predictive mathematical models and geographical information systems, resulting into region-specific predictions for mycotoxin occurrence. The envisioned geographically oriented decision support system may incorporate various underlying models for specific users' demands and regions and various related databases to feed the particular models with (geographically oriented) input data. Depending on the user requirements, the system selects the best fitting model and available input information. Future research areas include organizing data management in the cereal grain supply chain, developing predictive models for other stakeholders (taking into account the period up to harvest), other Fusarium mycotoxins, and cereal grain types, and understanding the underlying effects of the regional component in the models.

  14. Prediction of forces and moments for flight vehicle control effectors. Part 1: Validation of methods for predicting hypersonic vehicle controls forces and moments

    NASA Technical Reports Server (NTRS)

    Maughmer, Mark D.; Ozoroski, L.; Ozoroski, T.; Straussfogel, D.

    1990-01-01

    Many types of hypersonic aircraft configurations are currently being studied for feasibility of future development. Since the control of the hypersonic configurations throughout the speed range has a major impact on acceptable designs, it must be considered in the conceptual design stage. The ability of the aerodynamic analysis methods contained in an industry standard conceptual design system, APAS II, to estimate the forces and moments generated through control surface deflections from low subsonic to high hypersonic speeds is considered. Predicted control forces and moments generated by various control effectors are compared with previously published wind tunnel and flight test data for three configurations: the North American X-15, the Space Shuttle Orbiter, and a hypersonic research airplane concept. Qualitative summaries of the results are given for each longitudinal force and moment and each control derivative in the various speed ranges. Results show that all predictions of longitudinal stability and control derivatives are acceptable for use at the conceptual design stage. Results for most lateral/directional control derivatives are acceptable for conceptual design purposes; however, predictions at supersonic Mach numbers for the change in yawing moment due to aileron deflection and the change in rolling moment due to rudder deflection are found to be unacceptable. Including shielding effects in the analysis is shown to have little effect on lift and pitching moment predictions while improving drag predictions.

  15. Shuttle active thermal control system development testing. Volume 3: Modular radiator system test data correlation with thermal model

    NASA Technical Reports Server (NTRS)

    Phillips, M. A.

    1973-01-01

    Results are presented of an analysis which compares the performance predictions of a thermal model of a multi-panel modular radiator system with thermal vacuum test data. Comparisons between measured and predicted individual panel outlet temperatures and pressure drops and system outlet temperatures have been made over the full range of heat loads, environments and plumbing arrangements expected for the shuttle radiators. Both two sided and one sided radiation have been included. The model predictions show excellent agreement with the test data for the maximum design conditions of high load and hot environment. Predictions under minimum design conditions of low load-cold environments indicate good agreement with the measured data, but evaluation of low load predictions should consider the possibility of parallel flow instabilities due to main system freezing. Performance predictions under intermediate conditions in which the majority of the flow is not in either the main or prime system are adequate although model improvements in this area may be desired. The primary modeling objective of providing an analytical technique for performance predictions of a multi-panel radiator system under the design conditions has been met.

  16. Identification of the feedforward component in manual control with predictable target signals.

    PubMed

    Drop, Frank M; Pool, Daan M; Damveld, Herman J; van Paassen, Marinus M; Mulder, Max

    2013-12-01

    In the manual control of a dynamic system, the human controller (HC) often follows a visible and predictable reference path. Compared with a purely feedback control strategy, performance can be improved by making use of this knowledge of the reference. The operator could effectively introduce feedforward control in conjunction with a feedback path to compensate for errors, as hypothesized in literature. However, feedforward behavior has never been identified from experimental data, nor have the hypothesized models been validated. This paper investigates human control behavior in pursuit tracking of a predictable reference signal while being perturbed by a quasi-random multisine disturbance signal. An experiment was done in which the relative strength of the target and disturbance signals were systematically varied. The anticipated changes in control behavior were studied by means of an ARX model analysis and by fitting three parametric HC models: two different feedback models and a combined feedforward and feedback model. The ARX analysis shows that the experiment participants employed control action on both the error and the target signal. The control action on the target was similar to the inverse of the system dynamics. Model fits show that this behavior can be modeled best by the combined feedforward and feedback model.

  17. Robust model predictive control for optimal continuous drug administration.

    PubMed

    Sopasakis, Pantelis; Patrinos, Panagiotis; Sarimveis, Haralambos

    2014-10-01

    In this paper the model predictive control (MPC) technology is used for tackling the optimal drug administration problem. The important advantage of MPC compared to other control technologies is that it explicitly takes into account the constraints of the system. In particular, for drug treatments of living organisms, MPC can guarantee satisfaction of the minimum toxic concentration (MTC) constraints. A whole-body physiologically-based pharmacokinetic (PBPK) model serves as the dynamic prediction model of the system after it is formulated as a discrete-time state-space model. Only plasma measurements are assumed to be measured on-line. The rest of the states (drug concentrations in other organs and tissues) are estimated in real time by designing an artificial observer. The complete system (observer and MPC controller) is able to drive the drug concentration to the desired levels at the organs of interest, while satisfying the imposed constraints, even in the presence of modelling errors, disturbances and noise. A case study on a PBPK model with 7 compartments, constraints on 5 tissues and a variable drug concentration set-point illustrates the efficiency of the methodology in drug dosing control applications. The proposed methodology is also tested in an uncertain setting and proves successful in presence of modelling errors and inaccurate measurements. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Optimal Predictive Control for Path Following of a Full Drive-by-Wire Vehicle at Varying Speeds

    NASA Astrophysics Data System (ADS)

    SONG, Pan; GAO, Bolin; XIE, Shugang; FANG, Rui

    2017-05-01

    The current research of the global chassis control problem for the full drive-by-wire vehicle focuses on the control allocation (CA) of the four-wheel-distributed traction/braking/steering systems. However, the path following performance and the handling stability of the vehicle can be enhanced a step further by automatically adjusting the vehicle speed to the optimal value. The optimal solution for the combined longitudinal and lateral motion control (MC) problem is given. First, a new variable step-size spatial transformation method is proposed and utilized in the prediction model to derive the dynamics of the vehicle with respect to the road, such that the tracking errors can be explicitly obtained over the prediction horizon at varying speeds. Second, a nonlinear model predictive control (NMPC) algorithm is introduced to handle the nonlinear coupling between any two directions of the vehicular planar motion and computes the sequence of the optimal motion states for following the desired path. Third, a hierarchical control structure is proposed to separate the motion controller into a NMPC based path planner and a terminal sliding mode control (TSMC) based path follower. As revealed through off-line simulations, the hierarchical methodology brings nearly 1700% improvement in computational efficiency without loss of control performance. Finally, the control algorithm is verified through a hardware in-the-loop simulation system. Double-lane-change (DLC) test results show that by using the optimal predictive controller, the root-mean-square (RMS) values of the lateral deviations and the orientation errors can be reduced by 41% and 30%, respectively, comparing to those by the optimal preview acceleration (OPA) driver model with the non-preview speed-tracking method. Additionally, the average vehicle speed is increased by 0.26 km/h with the peak sideslip angle suppressed to 1.9°. This research proposes a novel motion controller, which provides the full drive-by-wire vehicle with better lane-keeping and collision-avoidance capabilities during autonomous driving.

  19. Model Predictive Control-based Optimal Coordination of Distributed Energy Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayhorn, Ebony T.; Kalsi, Karanjit; Lian, Jianming

    2013-01-07

    Distributed energy resources, such as renewable energy resources (wind, solar), energy storage and demand response, can be used to complement conventional generators. The uncertainty and variability due to high penetration of wind makes reliable system operations and controls challenging, especially in isolated systems. In this paper, an optimal control strategy is proposed to coordinate energy storage and diesel generators to maximize wind penetration while maintaining system economics and normal operation performance. The goals of the optimization problem are to minimize fuel costs and maximize the utilization of wind while considering equipment life of generators and energy storage. Model predictive controlmore » (MPC) is used to solve a look-ahead dispatch optimization problem and the performance is compared to an open loop look-ahead dispatch problem. Simulation studies are performed to demonstrate the efficacy of the closed loop MPC in compensating for uncertainties and variability caused in the system.« less

  20. Model Predictive Control-based Optimal Coordination of Distributed Energy Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayhorn, Ebony T.; Kalsi, Karanjit; Lian, Jianming

    2013-04-03

    Distributed energy resources, such as renewable energy resources (wind, solar), energy storage and demand response, can be used to complement conventional generators. The uncertainty and variability due to high penetration of wind makes reliable system operations and controls challenging, especially in isolated systems. In this paper, an optimal control strategy is proposed to coordinate energy storage and diesel generators to maximize wind penetration while maintaining system economics and normal operation performance. The goals of the optimization problem are to minimize fuel costs and maximize the utilization of wind while considering equipment life of generators and energy storage. Model predictive controlmore » (MPC) is used to solve a look-ahead dispatch optimization problem and the performance is compared to an open loop look-ahead dispatch problem. Simulation studies are performed to demonstrate the efficacy of the closed loop MPC in compensating for uncertainties and variability caused in the system.« less

  1. Intelligent sensor-model automated control of PMR-15 autoclave processing

    NASA Technical Reports Server (NTRS)

    Hart, S.; Kranbuehl, D.; Loos, A.; Hinds, B.; Koury, J.

    1992-01-01

    An intelligent sensor model system has been built and used for automated control of the PMR-15 cure process in the autoclave. The system uses frequency-dependent FM sensing (FDEMS), the Loos processing model, and the Air Force QPAL intelligent software shell. The Loos model is used to predict and optimize the cure process including the time-temperature dependence of the extent of reaction, flow, and part consolidation. The FDEMS sensing system in turn monitors, in situ, the removal of solvent, changes in the viscosity, reaction advancement and cure completion in the mold continuously throughout the processing cycle. The sensor information is compared with the optimum processing conditions from the model. The QPAL composite cure control system allows comparison of the sensor monitoring with the model predictions to be broken down into a series of discrete steps and provides a language for making decisions on what to do next regarding time-temperature and pressure.

  2. Airport Information Retrieval System (AIRS) System Support Manual

    DOT National Transportation Integrated Search

    1973-01-01

    This handbook is a support manual for prototype air traffic flow control automation system developed for the FAA's Systems Command Center. The system is implemented on a time-sharing computer and is designed to provide airport traffic load prediction...

  3. Structure, function, and control of the human musculoskeletal network

    PubMed Central

    Murphy, Andrew C.; Muldoon, Sarah F.; Baker, David; Lastowka, Adam; Bennett, Brittany; Yang, Muzhi

    2018-01-01

    The human body is a complex organism, the gross mechanical properties of which are enabled by an interconnected musculoskeletal network controlled by the nervous system. The nature of musculoskeletal interconnection facilitates stability, voluntary movement, and robustness to injury. However, a fundamental understanding of this network and its control by neural systems has remained elusive. Here we address this gap in knowledge by utilizing medical databases and mathematical modeling to reveal the organizational structure, predicted function, and neural control of the musculoskeletal system. We constructed a highly simplified whole-body musculoskeletal network in which single muscles connect to multiple bones via both origin and insertion points. We demonstrated that, using this simplified model, a muscle’s role in this network could offer a theoretical prediction of the susceptibility of surrounding components to secondary injury. Finally, we illustrated that sets of muscles cluster into network communities that mimic the organization of control modules in primary motor cortex. This novel formalism for describing interactions between the muscular and skeletal systems serves as a foundation to develop and test therapeutic responses to injury, inspiring future advances in clinical treatments. PMID:29346370

  4. Observations of Effective Teacher-Student Interactions in Secondary School Classrooms: Predicting Student Achievement with the Classroom Assessment Scoring System--Secondary

    ERIC Educational Resources Information Center

    Allen, Joseph; Gregory, Anne; Mikami, Amori; Lun, Janetta; Hamre, Bridget; Pianta, Robert

    2013-01-01

    Multilevel modeling techniques were used with a sample of 643 students enrolled in 37 secondary school classrooms to predict future student achievement (controlling for baseline achievement) from observed teacher interactions with students in the classroom, coded using the Classroom Assessment Scoring System--Secondary. After accounting for prior…

  5. Predictive Management of Asian Carps in the Upper Mississippi River System

    USGS Publications Warehouse

    Vondracek, Bruce C.; Carlson, Andrew K.

    2014-01-01

    Prolific non-native organisms pose serious threats to ecosystems and economies worldwide. Nonnative bighead carp (Hypophthalmichthys nobilis) and silver carp (H. molitrix), collectively referred to as Asian carps, continue to colonize aquatic ecosystems throughout the central United States. These species are r-selected, exhibiting iteroparous spawning, rapid growth, broad environmental tolerance, high density, and long-distance movement. Hydrological, thermal, and physicochemical conditions are favorable for establishment beyond the current range, rendering containment and control imperative. Ecological approaches to confine Asian carp populations and prevent colonization characterize contemporary management in the United States. Foraging and reproduction of Asian carps govern habitat selection and movement, providing valuable insight for predictive control. Current management approaches are progressive and often anticipatory but deficient in human dimensions. We define predictive management of Asian carps as synthesis of ecology and human dimensions at regional and local scales to develop strategies for containment and control. We illustrate predictive management in the Upper Mississippi River System and suggest resource managers integrate predictive models, containment paradigms, and human dimensions to design effective, socially acceptable management strategies. Through continued research, university-agency collaboration, and public engagement, predictive management of Asian carps is an auspicious paradigm for preventing and alleviating consequences of colonization in the United States.

  6. Towards energy efficient operation of Heating, Ventilation and Air Conditioning systems via advanced supervisory control design

    NASA Astrophysics Data System (ADS)

    Oswiecinska, A.; Hibbs, J.; Zajic, I.; Burnham, K. J.

    2015-11-01

    This paper presents conceptual control solution for reliable and energy efficient operation of heating, ventilation and air conditioning (HVAC) systems used in large volume building applications, e.g. warehouse facilities or exhibition centres. Advanced two-level scalable control solution, designed to extend capabilities of the existing low-level control strategies via remote internet connection, is presented. The high-level, supervisory controller is based on Model Predictive Control (MPC) architecture, which is the state-of-the-art for indoor climate control systems. The innovative approach benefits from using passive heating and cooling control strategies for reducing the HVAC system operational costs, while ensuring that required environmental conditions are met.

  7. M-MRAC Backstepping for Systems with Unknown Virtual Control Coefficients

    NASA Technical Reports Server (NTRS)

    Stepanyan, Vahram; Krishnakumar, Kalmanje

    2015-01-01

    The paper presents an over-parametrization free certainty equivalence state feedback backstepping adaptive control design method for systems of any relative degree with unmatched uncertainties and unknown virtual control coefficients. It uses a fast prediction model to estimate the unknown parameters, which is independent of the control design. It is shown that the system's input and output tracking errors can be systematically decreased by the proper choice of the design parameters. The benefits of the approach are demonstrated in numerical simulations.

  8. Algorithm and data support of traffic congestion forecasting in the controlled transport

    NASA Astrophysics Data System (ADS)

    Dmitriev, S. V.

    2015-06-01

    The topicality of problem of the traffic congestion forecasting in the logistic systems of product movement highways is considered. The concepts: the controlled territory, the highway occupancy by vehicles, the parking and the controlled territory are introduced. Technical realizabilityof organizing the necessary flow of information on the state of the transport system for its regulation has been marked. Sequence of practical implementation of the solution is given. An algorithm for predicting traffic congestion in the controlled transport system is suggested.

  9. Application of Output Predictive Algorithmic Control to a Terrain Following Aircraft System.

    DTIC Science & Technology

    1982-03-01

    non-linear regime the results from an optimal control solution may be questionable. 15 -**—• - •*- "•—"".’" CHAPTER 3 Output Prpdirl- ivf ...strongly influenced by two other factors as well - the sample time T and the least-squares cost function Q. unlike the deadbeat control law of Ref...design of aircraft control systems since these methods offer tremendous insight into the dynamic behavior of the system at relatively low cost . However

  10. Programmable logic controller implementation of an auto-tuned predictive control based on minimal plant information.

    PubMed

    Valencia-Palomo, G; Rossiter, J A

    2011-01-01

    This paper makes two key contributions. First, it tackles the issue of the availability of constrained predictive control for low-level control loops. Hence, it describes how the constrained control algorithm is embedded in an industrial programmable logic controller (PLC) using the IEC 61131-3 programming standard. Second, there is a definition and implementation of a novel auto-tuned predictive controller; the key novelty is that the modelling is based on relatively crude but pragmatic plant information. Laboratory experiment tests were carried out in two bench-scale laboratory systems to prove the effectiveness of the combined algorithm and hardware solution. For completeness, the results are compared with a commercial proportional-integral-derivative (PID) controller (also embedded in the PLC) using the most up to date auto-tuning rules. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Controlling chaos faster.

    PubMed

    Bick, Christian; Kolodziejski, Christoph; Timme, Marc

    2014-09-01

    Predictive feedback control is an easy-to-implement method to stabilize unknown unstable periodic orbits in chaotic dynamical systems. Predictive feedback control is severely limited because asymptotic convergence speed decreases with stronger instabilities which in turn are typical for larger target periods, rendering it harder to effectively stabilize periodic orbits of large period. Here, we study stalled chaos control, where the application of control is stalled to make use of the chaotic, uncontrolled dynamics, and introduce an adaptation paradigm to overcome this limitation and speed up convergence. This modified control scheme is not only capable of stabilizing more periodic orbits than the original predictive feedback control but also speeds up convergence for typical chaotic maps, as illustrated in both theory and application. The proposed adaptation scheme provides a way to tune parameters online, yielding a broadly applicable, fast chaos control that converges reliably, even for periodic orbits of large period.

  12. Outpatient safety assessment of an in-home predictive low-glucose suspend system with type 1 diabetes subjects at elevated risk of nocturnal hypoglycemia.

    PubMed

    Buckingham, Bruce A; Cameron, Fraser; Calhoun, Peter; Maahs, David M; Wilson, Darrell M; Chase, H Peter; Bequette, B Wayne; Lum, John; Sibayan, Judy; Beck, Roy W; Kollman, Craig

    2013-08-01

    Nocturnal hypoglycemia is a common problem with type 1 diabetes. In the home setting, we conducted a pilot study to evaluate the safety of a system consisting of an insulin pump and continuous glucose monitor communicating wirelessly with a bedside computer running an algorithm that temporarily suspends insulin delivery when hypoglycemia is predicted. After the run-in phase, a 21-night randomized trial was conducted in which each night was randomly assigned 2:1 to have either the predictive low-glucose suspend (PLGS) system active (intervention night) or inactive (control night). Three predictive algorithm versions were studied sequentially during the study for a total of 252 intervention and 123 control nights. The trial included 19 participants 18-56 years old with type 1 diabetes (hemoglobin A1c level of 6.0-7.7%) who were current users of the MiniMed Paradigm® REAL-Time Revel™ System and Sof-sensor® glucose sensor (Medtronic Diabetes, Northridge, CA). With the final algorithm, pump suspension occurred on 53% of 77 intervention nights. Mean morning glucose level was 144±48 mg/dL on the 77 intervention nights versus 133±57 mg/dL on the 37 control nights, with morning blood ketones >0.6 mmol/L following one intervention night. Overnight hypoglycemia was lower on intervention than control nights, with at least one value ≤70 mg/dL occurring on 16% versus 30% of nights, respectively, with the final algorithm. This study demonstrated that the PLGS system in the home setting is safe and feasible. The preliminary efficacy data appear promising with the final algorithm reducing nocturnal hypoglycemia by almost 50%.

  13. A control system for orbiting tethered-body operations

    NASA Technical Reports Server (NTRS)

    Eades, J. B., Jr.

    1975-01-01

    This paper shows that through proper control logic the transfer of men and cargo between spacecrafts, or the 'positioning of packages' adjacent to orbiters, can be accomodated safely and predictably using tethers. Also, these systems may be adapted to rescue and retrieval operations where 'controlled motions' must be maintained. Shown here is a method which illustrates how tethered-body motions are controlled for 'reel-in' and 'reel-out' operations, and for precise 'positioning' purposes. Three control modes are examined; from these are derived sets of universal control parameters capable of predescribing systems of similar types. In addition, these parameters form a basis for designing tethered-body systems and operations.

  14. Expert system and process optimization techniques for real-time monitoring and control of plasma processes

    NASA Astrophysics Data System (ADS)

    Cheng, Jie; Qian, Zhaogang; Irani, Keki B.; Etemad, Hossein; Elta, Michael E.

    1991-03-01

    To meet the ever-increasing demand of the rapidly-growing semiconductor manufacturing industry it is critical to have a comprehensive methodology integrating techniques for process optimization real-time monitoring and adaptive process control. To this end we have accomplished an integrated knowledge-based approach combining latest expert system technology machine learning method and traditional statistical process control (SPC) techniques. This knowledge-based approach is advantageous in that it makes it possible for the task of process optimization and adaptive control to be performed consistently and predictably. Furthermore this approach can be used to construct high-level and qualitative description of processes and thus make the process behavior easy to monitor predict and control. Two software packages RIST (Rule Induction and Statistical Testing) and KARSM (Knowledge Acquisition from Response Surface Methodology) have been developed and incorporated with two commercially available packages G2 (real-time expert system) and ULTRAMAX (a tool for sequential process optimization).

  15. Structure-based control of complex networks with nonlinear dynamics

    NASA Astrophysics Data System (ADS)

    Zanudo, Jorge G. T.; Yang, Gang; Albert, Reka

    What can we learn about controlling a system solely from its underlying network structure? Here we use a framework for control of networks governed by a broad class of nonlinear dynamics that includes the major dynamic models of biological, technological, and social processes. This feedback-based framework provides realizable node overrides that steer a system towards any of its natural long term dynamic behaviors, regardless of the dynamic details and system parameters. We use this framework on several real networks, identify the topological characteristics that underlie the predicted node overrides, and compare its predictions to those of classical structural control theory. Finally, we demonstrate this framework's applicability in dynamic models of gene regulatory networks and identify nodes whose override is necessary for control in the general case, but not in specific model instances. This work was supported by NSF Grants PHY 1205840 and IIS 1160995. JGTZ is a recipient of a Stand Up To Cancer - The V Foundation Convergence Scholar Award.

  16. Maneuvering a reentry body via magneto-gasdynamic forces

    NASA Astrophysics Data System (ADS)

    Ohare, Leo Patrick

    1992-04-01

    Some of the characteristics of the interaction of an electrically conducting fluid with a non-uniform applied magnetic field and a potential magnetogasdynamic control system which may be used on future aerospace vehicles are presented. The flow through a two dimensional channel is predicted by numerically solving the magnetogasdynamic equations using a time marching technique. The fluid was modeled as a compressible, inviscid, supersonic gas with finite electrical conductivity. Development of the algorithm provided a means to predict and analyze phenomena associated with magnetogasdynamic flows which had not been previously explored using numerical methods. One such phenomena was the prediction of oblique waves resulting from the interaction of an electrically conducting fluid with a non-uniform applied magnetic field. Development of this tool provided a means to explore an application which might have potential use for future aerospace vehicle missions. In order to appreciate the significance of this technology, predictions were made of the pitching moment about a slender blunted cone, generated by a system relying on the fluid-magnetic interaction. These moments were compared to predictions of a pitching moment generated by a deflecting control surface on the same vehicle. It was shown that the proposed magnetogasdynamic system could produce moments which were on the same order as the moments produced by the flap systems at low deflection angles.

  17. Subsonic flight test evaluation of a propulsion system parameter estimation process for the F100 engine

    NASA Technical Reports Server (NTRS)

    Orme, John S.; Gilyard, Glenn B.

    1992-01-01

    Integrated engine-airframe optimal control technology may significantly improve aircraft performance. This technology requires a reliable and accurate parameter estimator to predict unmeasured variables. To develop this technology base, NASA Dryden Flight Research Facility (Edwards, CA), McDonnell Aircraft Company (St. Louis, MO), and Pratt & Whitney (West Palm Beach, FL) have developed and flight-tested an adaptive performance seeking control system which optimizes the quasi-steady-state performance of the F-15 propulsion system. This paper presents flight and ground test evaluations of the propulsion system parameter estimation process used by the performance seeking control system. The estimator consists of a compact propulsion system model and an extended Kalman filter. The extended Laman filter estimates five engine component deviation parameters from measured inputs. The compact model uses measurements and Kalman-filter estimates as inputs to predict unmeasured propulsion parameters such as net propulsive force and fan stall margin. The ability to track trends and estimate absolute values of propulsion system parameters was demonstrated. For example, thrust stand results show a good correlation, especially in trends, between the performance seeking control estimated and measured thrust.

  18. Implementation of Cyber-Physical Production Systems for Quality Prediction and Operation Control in Metal Casting

    PubMed Central

    Lee, JuneHyuck; Noh, Sang Do; Kim, Hyun-Jung; Kang, Yong-Shin

    2018-01-01

    The prediction of internal defects of metal casting immediately after the casting process saves unnecessary time and money by reducing the amount of inputs into the next stage, such as the machining process, and enables flexible scheduling. Cyber-physical production systems (CPPS) perfectly fulfill the aforementioned requirements. This study deals with the implementation of CPPS in a real factory to predict the quality of metal casting and operation control. First, a CPPS architecture framework for quality prediction and operation control in metal-casting production was designed. The framework describes collaboration among internet of things (IoT), artificial intelligence, simulations, manufacturing execution systems, and advanced planning and scheduling systems. Subsequently, the implementation of the CPPS in actual plants is described. Temperature is a major factor that affects casting quality, and thus, temperature sensors and IoT communication devices were attached to casting machines. The well-known NoSQL database, HBase and the high-speed processing/analysis tool, Spark, are used for IoT repository and data pre-processing, respectively. Many machine learning algorithms such as decision tree, random forest, artificial neural network, and support vector machine were used for quality prediction and compared with R software. Finally, the operation of the entire system is demonstrated through a CPPS dashboard. In an era in which most CPPS-related studies are conducted on high-level abstract models, this study describes more specific architectural frameworks, use cases, usable software, and analytical methodologies. In addition, this study verifies the usefulness of CPPS by estimating quantitative effects. This is expected to contribute to the proliferation of CPPS in the industry. PMID:29734699

  19. Numerical simulation of the actuation system for the ALDF's propulsion control valve. [Aircraft Landing Dynamics Facility

    NASA Technical Reports Server (NTRS)

    Korte, John J.

    1990-01-01

    A numerical simulation of the actuation system for the propulsion control valve (PCV) of the NASA Langley Aircraft Landing Dynamics Facility was developed during the preliminary design of the PCV and used throughout the entire project. The simulation is based on a predictive model of the PCV which is used to evaluate and design the actuation system. The PCV controls a 1.7 million-pound thrust water jet used in propelling a 108,000-pound test carriage. The PCV can open and close in 0.300 second and deliver over 9,000 gallons of water per sec at pressures up to 3150 psi. The numerical simulation results are used to predict transient performance and valve opening characteristics, specify the hydraulic control system, define transient loadings on components, and evaluate failure modes. The mathematical model used for numerically simulating the mechanical fluid power system is described, and numerical results are demonstrated for a typical opening and closing cycle of the PCV. A summary is then given on how the model is used in the design process.

  20. Possible Deficiencies in Predicting Transonic Aerodynamics on the X-43A

    NASA Technical Reports Server (NTRS)

    Labbe, Steven G.; Gilbert, Michael G.; Kehoe, Michael W.

    2009-01-01

    The initial X-43A flight test, June 2, 2001, resulted in a mishap and loss of the vehicle. A mishap investigation board (MIB) report and findings, including the established root cause, were publicly released on July, 23, 2003. The X-43A Flight 1 Hyper-X Launch Vehicle (HXLV) failed because the vehicle control system design was deficient for the trajectory flown due to inaccurate analytical models (Pegasus heritage and HXLV specific), which overestimated the (control) system margin ? X-43A Mishap Investigation Report, Vol. I. ? included as Reference 1. Several specific errors were noted, 1) HXLV aerodynamics ? failure to model changes to wing, fin and rudder airfoil shapes due to addition of thermal protection system (TPS); 2) Fin actuation system (FAS) modeling ? under prediction of the control surface hinge moments and FAS compliance; and 3) Parametric uncertainties ? insufficient variation in the aerodynamic, FAS and control system models. In response to the MIB findings, the X-43A program has been working RTF through an approved Corrective Action Plan (CAP) over the last two years.

  1. A model predictive speed tracking control approach for autonomous ground vehicles

    NASA Astrophysics Data System (ADS)

    Zhu, Min; Chen, Huiyan; Xiong, Guangming

    2017-03-01

    This paper presents a novel speed tracking control approach based on a model predictive control (MPC) framework for autonomous ground vehicles. A switching algorithm without calibration is proposed to determine the drive or brake control. Combined with a simple inverse longitudinal vehicle model and adaptive regulation of MPC, this algorithm can make use of the engine brake torque for various driving conditions and avoid high frequency oscillations automatically. A simplified quadratic program (QP) solving algorithm is used to reduce the computational time, and the approach has been applied in a 16-bit microcontroller. The performance of the proposed approach is evaluated via simulations and vehicle tests, which were carried out in a range of speed-profile tracking tasks. With a well-designed system structure, high-precision speed control is achieved. The system can robustly model uncertainty and external disturbances, and yields a faster response with less overshoot than a PI controller.

  2. Health-aware Model Predictive Control of Pasteurization Plant

    NASA Astrophysics Data System (ADS)

    Karimi Pour, Fatemeh; Puig, Vicenç; Ocampo-Martinez, Carlos

    2017-01-01

    In order to optimize the trade-off between components life and energy consumption, the integration of a system health management and control modules is required. This paper proposes the integration of model predictive control (MPC) with a fatigue estimation approach that minimizes the damage of the components of a pasteurization plant. The fatigue estimation is assessed with the rainflow counting algorithm. Using data from this algorithm, a simplified model that characterizes the health of the system is developed and integrated with MPC. The MPC controller objective is modified by adding an extra criterion that takes into account the accumulated damage. But, a steady-state offset is created by adding this extra criterion. Finally, by including an integral action in the MPC controller, the steady-state error for regulation purpose is eliminated. The proposed control scheme is validated in simulation using a simulator of a utility-scale pasteurization plant.

  3. Lay out, test verification and in orbit performance of HELIOS a temperature control system

    NASA Technical Reports Server (NTRS)

    Brungs, W.

    1975-01-01

    HELIOS temperature control system is described. The main design features and the impact of interactions between experiment, spacecraft system, and temperature control system requirements on the design are discussed. The major limitations of the thermal design regarding a closer sun approach are given and related to test experience and performance data obtained in orbit. Finally the validity of the test results achieved with prototype and flight spacecraft is evaluated by comparison between test data, orbit temperature predictions and flight data.

  4. An Improved Formulation of Hybrid Model Predictive Control With Application to Production-Inventory Systems.

    PubMed

    Nandola, Naresh N; Rivera, Daniel E

    2013-01-01

    We consider an improved model predictive control (MPC) formulation for linear hybrid systems described by mixed logical dynamical (MLD) models. The algorithm relies on a multiple-degree-of-freedom parametrization that enables the user to adjust the speed of setpoint tracking, measured disturbance rejection and unmeasured disturbance rejection independently in the closed-loop system. Consequently, controller tuning is more flexible and intuitive than relying on objective function weights (such as move suppression) traditionally used in MPC schemes. The controller formulation is motivated by the needs of non-traditional control applications that are suitably described by hybrid production-inventory systems. Two applications are considered in this paper: adaptive, time-varying interventions in behavioral health, and inventory management in supply chains under conditions of limited capacity. In the adaptive intervention application, a hypothetical intervention inspired by the Fast Track program, a real-life preventive intervention for reducing conduct disorder in at-risk children, is examined. In the inventory management application, the ability of the algorithm to judiciously alter production capacity under conditions of varying demand is presented. These case studies demonstrate that MPC for hybrid systems can be tuned for desired performance under demanding conditions involving noise and uncertainty.

  5. An Improved Formulation of Hybrid Model Predictive Control With Application to Production-Inventory Systems

    PubMed Central

    Nandola, Naresh N.; Rivera, Daniel E.

    2013-01-01

    We consider an improved model predictive control (MPC) formulation for linear hybrid systems described by mixed logical dynamical (MLD) models. The algorithm relies on a multiple-degree-of-freedom parametrization that enables the user to adjust the speed of setpoint tracking, measured disturbance rejection and unmeasured disturbance rejection independently in the closed-loop system. Consequently, controller tuning is more flexible and intuitive than relying on objective function weights (such as move suppression) traditionally used in MPC schemes. The controller formulation is motivated by the needs of non-traditional control applications that are suitably described by hybrid production-inventory systems. Two applications are considered in this paper: adaptive, time-varying interventions in behavioral health, and inventory management in supply chains under conditions of limited capacity. In the adaptive intervention application, a hypothetical intervention inspired by the Fast Track program, a real-life preventive intervention for reducing conduct disorder in at-risk children, is examined. In the inventory management application, the ability of the algorithm to judiciously alter production capacity under conditions of varying demand is presented. These case studies demonstrate that MPC for hybrid systems can be tuned for desired performance under demanding conditions involving noise and uncertainty. PMID:24348004

  6. Piloted Simulator Tests of a Guidance System which Can Continously Predict Landing Point of a Low L/D Vehicle During Atmosphere Re-Entry

    NASA Technical Reports Server (NTRS)

    Wingrove, Rodney C.; Coate, Robert E.

    1961-01-01

    The guidance system for maneuvering vehicles within a planetary atmosphere which was studied uses the concept of fast continuous prediction of the maximum maneuver capability from existing conditions rather than a stored-trajectory technique. used, desired touchdown points are compared with the maximum range capability and heating or acceleration limits, so that a proper decision and choice of control inputs can be made by the pilot. In the method of display and control a piloted fixed simulator was used t o demonstrate the feasibility od the concept and to study its application to control of lunar mission reentries and recoveries from aborts.

  7. Method for controlling start-up and steady state performance of a closed split flow recompression brayton cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasch, James Jay

    A method of resolving a balanced condition that generates control parameters for start-up and steady state operating points and various component and cycle performances for a closed split flow recompression cycle system. The method provides for improved control of a Brayton cycle thermal to electrical power conversion system. The method may also be used for system design, operational simulation and/or parameter prediction.

  8. Development and Implementation of a Hardware In-the-Loop Test Bed for Unmanned Aerial Vehicle Control Algorithms

    NASA Technical Reports Server (NTRS)

    Nyangweso, Emmanuel; Bole, Brian

    2014-01-01

    Successful prediction and management of battery life using prognostic algorithms through ground and flight tests is important for performance evaluation of electrical systems. This paper details the design of test beds suitable for replicating loading profiles that would be encountered in deployed electrical systems. The test bed data will be used to develop and validate prognostic algorithms for predicting battery discharge time and battery failure time. Online battery prognostic algorithms will enable health management strategies. The platform used for algorithm demonstration is the EDGE 540T electric unmanned aerial vehicle (UAV). The fully designed test beds developed and detailed in this paper can be used to conduct battery life tests by controlling current and recording voltage and temperature to develop a model that makes a prediction of end-of-charge and end-of-life of the system based on rapid state of health (SOH) assessment.

  9. TSAFE Interface Control Document v 2.0

    NASA Technical Reports Server (NTRS)

    Paielli, Russell A.; Bach, Ralph E.

    2013-01-01

    This document specifies the data interface for TSAFE, the Tactical Separation-Assured Flight Environment. TSAFE is a research prototype of a software application program for alerting air traffic controllers to imminent conflicts in enroute airspace. It is intended for Air Route Traffic Control Centers ("Centers") in the U.S. National Airspace System. It predicts trajectories for approximately 3 minutes into the future, searches for conflicts, and sends data about predicted conflicts to the client, which uses the data to alert an air traffic controller of conflicts. TSAFE itself does not provide a graphical user interface.

  10. A Model-based Approach to Controlling the ST-5 Constellation Lights-Out Using the GMSEC Message Bus and Simulink

    NASA Technical Reports Server (NTRS)

    Witt, Kenneth J.; Stanley, Jason; Shendock, Robert; Mandl, Daniel

    2005-01-01

    Space Technology 5 (ST-5) is a three-satellite constellation, technology validation mission under the New Millennium Program at NASA to be launched in March 2006. One of the key technologies to be validated is a lights-out, model-based operations approach to be used for one week to control the ST-5 constellation with no manual intervention. The ground architecture features the GSFC Mission Services Evolution Center (GMSEC) middleware, which allows easy plugging in of software components and a standardized messaging protocol over a software bus. A predictive modeling tool built on MatLab's Simulink software package makes use of the GMSEC standard messaging protocol to interface to the Advanced Mission Planning System (AMPS) Scenario Scheduler which controls all activities, resource allocation and real-time re-profiling of constellation resources when non-nominal events occur. The key features of this system, which we refer to as the ST-5 Simulink system, are as follows: Original daily plan is checked to make sure that predicted resources needed are available by comparing the plan against the model. As the plan is run in real-time, the system re-profiles future activities in real-time if planned activities do not occur in the predicted timeframe or fashion. Alert messages are sent out on the GMSEC bus by the system if future predicted problems are detected. This will allow the Scenario Scheduler to correct the situation before the problem happens. The predictive model is evolved automatically over time via telemetry updates thus reducing the cost of implementing and maintaining the models by an order of magnitude from previous efforts at GSFC such as the model-based system built for MAP in the mid-1990's. This paper will describe the key features, lessons learned and implications for future missions once this system is successfully validated on-orbit in 2006.

  11. Modelling and control issues of dynamically substructured systems: adaptive forward prediction taken as an example

    PubMed Central

    Tu, Jia-Ying; Hsiao, Wei-De; Chen, Chih-Ying

    2014-01-01

    Testing techniques of dynamically substructured systems dissects an entire engineering system into parts. Components can be tested via numerical simulation or physical experiments and run synchronously. Additional actuator systems, which interface numerical and physical parts, are required within the physical substructure. A high-quality controller, which is designed to cancel unwanted dynamics introduced by the actuators, is important in order to synchronize the numerical and physical outputs and ensure successful tests. An adaptive forward prediction (AFP) algorithm based on delay compensation concepts has been proposed to deal with substructuring control issues. Although the settling performance and numerical conditions of the AFP controller are improved using new direct-compensation and singular value decomposition methods, the experimental results show that a linear dynamics-based controller still outperforms the AFP controller. Based on experimental observations, the least-squares fitting technique, effectiveness of the AFP compensation and differences between delay and ordinary differential equations are discussed herein, in order to reflect the fundamental issues of actuator modelling in relevant literature and, more specifically, to show that the actuator and numerical substructure are heterogeneous dynamic components and should not be collectively modelled as a homogeneous delay differential equation. PMID:25104902

  12. Kalman-Predictive-Proportional-Integral-Derivative (KPPID) Temperature Control

    NASA Astrophysics Data System (ADS)

    Fluerasu, Andrei; Sutton, Mark

    2003-09-01

    With third generation synchrotron X-ray sources, it is possible to acquire detailed structural information about the system under study with time resolution orders of magnitude faster than was possible a few years ago. These advances have generated many new challenges for changing and controlling the state of the system on very short time scales, in a uniform and controlled manner. For our particular X-ray experiments [1] on crystallization or order-disorder phase transitions in metallic alloys, we need to change the sample temperature by hundreds of degrees as fast as possible while avoiding over or under shooting. To achieve this, we designed and implemented a computer-controlled temperature tracking system which combines standard Proportional-Integral-Derivative (PID) feedback, thermal modeling and finite difference thermal calculations (feedforward), and Kalman filtering of the temperature readings in order to reduce the noise. The resulting Kalman-Predictive-Proportional-Integral-Derivative (KPPID) algorithm allows us to obtain accurate control, to minimize the response time and to avoid over/under shooting, even in systems with inherently noisy temperature readings and time delays. The KPPID temperature controller was successfully implemented at the Advanced Photon Source at Argonne National Laboratories and was used to perform coherent and time-resolved X-ray diffraction experiments.

  13. Numerical Modeling of Cavitating Venturi: A Flow Control Element of Propulsion System

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok; Saxon, Jeff (Technical Monitor)

    2002-01-01

    In a propulsion system, the propellant flow and mixture ratio could be controlled either by variable area flow control valves or by passive flow control elements such as cavitating venturies. Cavitating venturies maintain constant propellant flowrate for fixed inlet conditions (pressure and temperature) and wide range of outlet pressures, thereby maintain constant, engine thrust and mixture ratio. The flowrate through the venturi reaches a constant value and becomes independent of outlet pressure when the pressure at throat becomes equal to vapor pressure. In order to develop a numerical model of propulsion system, it is necessary to model cavitating venturies in propellant feed systems. This paper presents a finite volume model of flow network of a cavitating venturi. The venturi was discretized into a number of control volumes and mass, momentum and energy conservation equations in each control volume are simultaneously solved to calculate one-dimensional pressure, density, and flowrate and temperature distribution. The numerical model predicts cavitations at the throat when outlet pressure was gradually reduced. Once cavitation starts, with further reduction of downstream pressure, no change in flowrate is found. The numerical predictions have been compared with test data and empirical equation based on Bernoulli's equation.

  14. Control law parameterization for an aeroelastic wind-tunnel model equipped with an active roll control system and comparison with experiment

    NASA Technical Reports Server (NTRS)

    Perry, Boyd, III; Dunn, H. J.; Sandford, Maynard C.

    1988-01-01

    Nominal roll control laws were designed, implemented, and tested on an aeroelastically-scaled free-to-roll wind-tunnel model of an advanced fighter configuration. The tests were performed in the NASA Langley Transonic Dynamics Tunnel. A parametric study of the nominal roll control system was conducted. This parametric study determined possible control system gain variations which yielded identical closed-loop stability (roll mode pole location) and identical roll response but different maximum control-surface deflections. Comparison of analytical predictions with wind-tunnel results was generally very good.

  15. On the accuracy and reliability of predictions by control-system theory.

    PubMed

    Bourbon, W T; Copeland, K E; Dyer, V R; Harman, W K; Mosley, B L

    1990-12-01

    In three experiments we used control-system theory (CST) to predict the results of tracking tasks on which people held a handle to keep a cursor even with a target on a computer screen. 10 people completed a total of 104 replications of the task. In each experiment, there were two conditions: in one, only the handle affected the position of the cursor; in the other, a random disturbance also affected the cursor. From a person's performance during Condition 1, we derived constants used in the CST model to predict the results of Condition 2. In two experiments, predictions occurred a few minutes before Condition 2; in one experiment, the delay was 1 yr. During a 1-min. experimental run, the positions of handle and cursor, produced by the person, were each sampled 1800 times, once every 1/30 sec. During a modeling run, the model predicted the positions of the handle and target for each of the 1800 intervals sampled in the experimental run. In 104 replications, the mean correlation between predicted and actual positions of the handle was .996; SD = .002.

  16. Progress in Aluminum Electrolysis Control and Future Direction for Smart Aluminum Electrolysis Plant

    NASA Astrophysics Data System (ADS)

    Zhang, Hongliang; Li, Tianshuang; Li, Jie; Yang, Shuai; Zou, Zhong

    2017-02-01

    The industrial aluminum reduction cell is an electrochemistry reactor that operates under high temperatures and highly corrosive conditions. However, these conditions have restricted the measurement of key control parameters, making the control of aluminum reduction cells a difficult problem in the industry. Because aluminum electrolysis control systems have a significant economic influence, substantial research has been conducted on control algorithms, control systems and information systems for aluminum reduction cells. This article first summarizes the development of control systems and then focuses on the progress made since 2000, including alumina concentration control, temperature control and electrolyte molecular ratio control, fault diagnosis, cell condition prediction and control system expansion. Based on these studies, the concept of a smart aluminum electrolysis plant is proposed. The frame construction, key problems and current progress are introduced. Finally, several future directions are discussed.

  17. Descent advisor preliminary field test

    NASA Technical Reports Server (NTRS)

    Green, Steven M.; Vivona, Robert A.; Sanford, Beverly

    1995-01-01

    A field test of the Descent Advisor (DA) automation tool was conducted at the Denver Air Route Traffic Control Center in September 1994. DA is being developed to assist Center controllers in the efficient management and control of arrival traffic. DA generates advisories, based on trajectory predictions, to achieve accurate meter-fix arrival times in a fuel efficient manner while assisting the controller with the prediction and resolution of potential conflicts. The test objectives were to evaluate the accuracy of DA trajectory predictions for conventional- and flight-management-system-equipped jet transports, to identify significant sources of trajectory prediction error, and to investigate procedural and training issues (both air and ground) associated with DA operations. Various commercial aircraft (97 flights total) and a Boeing 737-100 research aircraft participated in the test. Preliminary results from the primary test set of 24 commercial flights indicate a mean DA arrival time prediction error of 2.4 sec late with a standard deviation of 13.1 sec. This paper describes the field test and presents preliminary results for the commercial flights.

  18. An Efficient Interval Type-2 Fuzzy CMAC for Chaos Time-Series Prediction and Synchronization.

    PubMed

    Lee, Ching-Hung; Chang, Feng-Yu; Lin, Chih-Min

    2014-03-01

    This paper aims to propose a more efficient control algorithm for chaos time-series prediction and synchronization. A novel type-2 fuzzy cerebellar model articulation controller (T2FCMAC) is proposed. In some special cases, this T2FCMAC can be reduced to an interval type-2 fuzzy neural network, a fuzzy neural network, and a fuzzy cerebellar model articulation controller (CMAC). So, this T2FCMAC is a more generalized network with better learning ability, thus, it is used for the chaos time-series prediction and synchronization. Moreover, this T2FCMAC realizes the un-normalized interval type-2 fuzzy logic system based on the structure of the CMAC. It can provide better capabilities for handling uncertainty and more design degree of freedom than traditional type-1 fuzzy CMAC. Unlike most of the interval type-2 fuzzy system, the type-reduction of T2FCMAC is bypassed due to the property of un-normalized interval type-2 fuzzy logic system. This causes T2FCMAC to have lower computational complexity and is more practical. For chaos time-series prediction and synchronization applications, the training architectures with corresponding convergence analyses and optimal learning rates based on Lyapunov stability approach are introduced. Finally, two illustrated examples are presented to demonstrate the performance of the proposed T2FCMAC.

  19. Topological Principles of Control in Dynamical Networks

    NASA Astrophysics Data System (ADS)

    Kim, Jason; Pasqualetti, Fabio; Bassett, Danielle

    Networked biological systems, such as the brain, feature complex patterns of interactions. To predict and correct the dynamic behavior of such systems, it is imperative to understand how the underlying topological structure affects and limits the function of the system. Here, we use network control theory to extract topological features that favor or prevent network controllability, and to understand the network-wide effect of external stimuli on large-scale brain systems. Specifically, we treat each brain region as a dynamic entity with real-valued state, and model the time evolution of all interconnected regions using linear, time-invariant dynamics. We propose a simplified feed-forward scheme where the effect of upstream regions (drivers) on the connected downstream regions (non-drivers) is characterized in closed-form. Leveraging this characterization of the simplified model, we derive topological features that predict the controllability properties of non-simplified networks. We show analytically and numerically that these predictors are accurate across a large range of parameters. Among other contributions, our analysis shows that heterogeneity in the network weights facilitate controllability, and allows us to implement targeted interventions that profoundly improve controllability. By assuming an underlying dynamical mechanism, we are able to understand the complex topology of networked biological systems in a functionally meaningful way.

  20. A risk scoring system for prediction of haemorrhagic stroke.

    PubMed

    Zodpey, S P; Tiwari, R R

    2005-01-01

    The present pair-matched case control study was carried out at Government Medical College Hospital, Nagpur, India, a tertiary care hospital with the objective to devise and validate a risk scoring system for prediction of hemorrhagic stroke. The study consisted of 166 hospitalized CT scan proved cases of hemorrhagic stroke (ICD 9, 431-432), and a age and sex matched control per case. The controls were selected from patients who attended the study hospital for conditions other than stroke. On conditional multiple logistic regression five risk factors- hypertension (OR = 1.9. 95% Cl = 1.5-2.5). raised scrum total cholesterol (OR = 2.3, 95% Cl = 1.1-4.9). use of anticoagulants and antiplatelet agents (OR = 3.4, 95% Cl =1.1-10.4). past history of transient ischaemic attack (OR = 8.4, 95% Cl = 2.1- 33.6) and alcohol intake (OR = 2.1, 95% Cl = 1.3-3.6) were significant. These factors were ascribed statistical weights (based on regression coefficients) of 6, 8, 12, 21 and 8 respectively. The nonsignificant factors (diabetes mellitus, physical inactivity, obesity, smoking, type A personality, history of claudication, family history of stroke, history of cardiac diseases and oral contraceptive use in females) were not included in the development of scoring system. ROC curve suggested a total score of 21 to be the best cut-off for predicting haemorrhag stroke. At this cut-off the sensitivity, specificity, positive predictivity and Cohen's kappa were 0.74, 0.74, 0.74 and 0.48 respectively. The overall predictive accuracy of this additive risk scoring system (area under ROC curve by Wilcoxon statistic) was 0.79 (95% Cl = 0.73-0.84). Thus to conclude, if substantiated by further validation, this scorincy system can be used to predict haemorrhagic stroke, thereby helping to devise effective risk factor intervention strategy.

  1. Implementation of model predictive control for resistive wall mode stabilization on EXTRAP T2R

    NASA Astrophysics Data System (ADS)

    Setiadi, A. C.; Brunsell, P. R.; Frassinetti, L.

    2015-10-01

    A model predictive control (MPC) method for stabilization of the resistive wall mode (RWM) in the EXTRAP T2R reversed-field pinch is presented. The system identification technique is used to obtain a linearized empirical model of EXTRAP T2R. MPC employs the model for prediction and computes optimal control inputs that satisfy performance criterion. The use of a linearized form of the model allows for compact formulation of MPC, implemented on a millisecond timescale, that can be used for real-time control. The design allows the user to arbitrarily suppress any selected Fourier mode. The experimental results from EXTRAP T2R show that the designed and implemented MPC successfully stabilizes the RWM.

  2. Airport Information Retrieval System (AIRS) User's Guide

    DOT National Transportation Integrated Search

    1973-08-01

    The handbook is a user's guide for a prototype air traffic flow control automation system developed for the FAA's System Command Center. The system is implemented on a time-sharing computer and is designed to provide airport traffic load predictions ...

  3. A focused ultrasound treatment system for moving targets (part I): generic system design and in-silico first-stage evaluation.

    PubMed

    Schwenke, Michael; Strehlow, Jan; Demedts, Daniel; Haase, Sabrina; Barrios Romero, Diego; Rothlübbers, Sven; von Dresky, Caroline; Zidowitz, Stephan; Georgii, Joachim; Mihcin, Senay; Bezzi, Mario; Tanner, Christine; Sat, Giora; Levy, Yoav; Jenne, Jürgen; Günther, Matthias; Melzer, Andreas; Preusser, Tobias

    2017-01-01

    Focused ultrasound (FUS) is entering clinical routine as a treatment option. Currently, no clinically available FUS treatment system features automated respiratory motion compensation. The required quality standards make developing such a system challenging. A novel FUS treatment system with motion compensation is described, developed with the goal of clinical use. The system comprises a clinically available MR device and FUS transducer system. The controller is very generic and could use any suitable MR or FUS device. MR image sequences (echo planar imaging) are acquired for both motion observation and thermometry. Based on anatomical feature tracking, motion predictions are estimated to compensate for processing delays. FUS control parameters are computed repeatedly and sent to the hardware to steer the focus to the (estimated) target position. All involved calculations produce individually known errors, yet their impact on therapy outcome is unclear. This is solved by defining an intuitive quality measure that compares the achieved temperature to the static scenario, resulting in an overall efficiency with respect to temperature rise. To allow for extensive testing of the system over wide ranges of parameters and algorithmic choices, we replace the actual MR and FUS devices by a virtual system. It emulates the hardware and, using numerical simulations of FUS during motion, predicts the local temperature rise in the tissue resulting from the controls it receives. With a clinically available monitoring image rate of 6.67 Hz and 20 FUS control updates per second, normal respiratory motion is estimated to be compensable with an estimated efficiency of 80%. This reduces to about 70% for motion scaled by 1.5. Extensive testing (6347 simulated sonications) over wide ranges of parameters shows that the main source of error is the temporal motion prediction. A history-based motion prediction method performs better than a simple linear extrapolator. The estimated efficiency of the new treatment system is already suited for clinical applications. The simulation-based in-silico testing as a first-stage validation reduces the efforts of real-world testing. Due to the extensible modular design, the described approach might lead to faster translations from research to clinical practice.

  4. Anticipation from sensation: using anticipating synchronization to stabilize a system with inherent sensory delay

    PubMed Central

    Nasuto, Slawomir J.; Hayashi, Yoshikatsu

    2018-01-01

    We present a novel way of using a dynamical model for predictive tracking control that can adapt to a wide range of delays without parameter update. This is achieved by incorporating the paradigm of anticipating synchronization (AS), where a ‘slave’ system predicts a ‘master’ via delayed self-feedback. By treating the delayed output of the plant as one half of a ‘sensory’ AS coupling, the plant and an internal dynamical model can be synchronized such that the plant consistently leads the target’s motion. We use two simulated robotic systems with differing arrangements of the plant and internal model (‘parallel’ and ‘serial’) to demonstrate that this form of control adapts to a wide range of delays without requiring the parameters of the controller to be changed. PMID:29657750

  5. ARGES: an Expert System for Fault Diagnosis Within Space-Based ECLS Systems

    NASA Technical Reports Server (NTRS)

    Pachura, David W.; Suleiman, Salem A.; Mendler, Andrew P.

    1988-01-01

    ARGES (Atmospheric Revitalization Group Expert System) is a demonstration prototype expert system for fault management for the Solid Amine, Water Desorbed (SAWD) CO2 removal assembly, associated with the Environmental Control and Life Support (ECLS) System. ARGES monitors and reduces data in real time from either the SAWD controller or a simulation of the SAWD assembly. It can detect gradual degradations or predict failures. This allows graceful shutdown and scheduled maintenance, which reduces crew maintenance overhead. Status and fault information is presented in a user interface that simulates what would be seen by a crewperson. The user interface employs animated color graphics and an object oriented approach to provide detailed status information, fault identification, and explanation of reasoning in a rapidly assimulated manner. In addition, ARGES recommends possible courses of action for predicted and actual faults. ARGES is seen as a forerunner of AI-based fault management systems for manned space systems.

  6. Controls on the Environmental Fate of Compounds Controlled by Coupled Hydrologic and Reactive Processes

    NASA Astrophysics Data System (ADS)

    Hixson, J.; Ward, A. S.; McConville, M.; Remucal, C.

    2017-12-01

    Current understanding of how compounds interact with hydrologic processes or reactive processes have been well established. However, the environmental fate for compounds that interact with hydrologic AND reactive processes is not well known, yet critical in evaluating environmental risk. Evaluations of risk are often simplified to homogenize processes in space and time and to assess processes independently of one another. However, we know spatial heterogeneity and time-variable reactivities complicate predictions of environmental transport and fate, and is further complicated by the interaction of these processes, limiting our ability to accurately predict risk. Compounds that interact with both systems, such as photolytic compounds, require that both components are fully understood in order to predict transport and fate. Release of photolytic compounds occurs through both unintentional releases and intentional loadings. Evaluating risks associated with unintentional releases and implementing best management practices for intentional releases requires an in-depth understanding of the sensitivity of photolytic compounds to external controls. Lampricides, such as 3-trifluoromethyl-4-nitrophenol (TFM), are broadly applied in the Great Lakes system to control the population of invasive sea lamprey. Over-dosing can yield fish kills and other detrimental impacts. Still, planning accounts for time of passage and dilution, but not the interaction of the physical and chemical systems (i.e., storage in the hyporheic zone and time-variable decay rates). In this study, we model a series of TFM applications to test the efficacy of dosing as a function of system characteristics. Overall, our results demonstrate the complexity associated with photo-sensitive compounds through stream-hyporheic systems, and highlight the need to better understand how physical and chemical systems interact to control transport and fate in the environment.

  7. Predictive Hyperglycemia and Hypoglycemia Minimization: In-Home Evaluation of Safety, Feasibility, and Efficacy in Overnight Glucose Control in Type 1 Diabetes.

    PubMed

    Spaic, Tamara; Driscoll, Marsha; Raghinaru, Dan; Buckingham, Bruce A; Wilson, Darrell M; Clinton, Paula; Chase, H Peter; Maahs, David M; Forlenza, Gregory P; Jost, Emily; Hramiak, Irene; Paul, Terri; Bequette, B Wayne; Cameron, Faye; Beck, Roy W; Kollman, Craig; Lum, John W; Ly, Trang T

    2017-03-01

    The objective of this study was to determine the safety, feasibility, and efficacy of a predictive hyperglycemia and hypoglycemia minimization (PHHM) system compared with predictive low-glucose insulin suspension (PLGS) alone in overnight glucose control. A 42-night trial was conducted in 30 individuals with type 1 diabetes in the age range 15-45 years. Participants were randomly assigned each night to either PHHM or PLGS and were blinded to the assignment. The system suspended the insulin pump on both the PHHM and PLGS nights for predicted hypoglycemia but delivered correction boluses for predicted hyperglycemia on PHHM nights only. The primary outcome was the percentage of time spent in a sensor glucose range of 70-180 mg/dL during the overnight period. The addition of automated insulin delivery with PHHM increased the time spent in the target range (70-180 mg/dL) from 71 ± 10% during PLGS nights to 78 ± 10% during PHHM nights ( P < 0.001). The average morning blood glucose concentration improved from 163 ± 23 mg/dL after PLGS nights to 142 ± 18 mg/dL after PHHM nights ( P < 0.001). Various sensor-measured hypoglycemic outcomes were similar on PLGS and PHHM nights. All participants completed 42 nights with no episodes of severe hypoglycemia, diabetic ketoacidosis, or other study- or device-related adverse events. The addition of a predictive hyperglycemia minimization component to our existing PLGS system was shown to be safe, feasible, and effective in overnight glucose control. © 2017 by the American Diabetes Association.

  8. Multi-objective optimization for model predictive control.

    PubMed

    Wojsznis, Willy; Mehta, Ashish; Wojsznis, Peter; Thiele, Dirk; Blevins, Terry

    2007-06-01

    This paper presents a technique of multi-objective optimization for Model Predictive Control (MPC) where the optimization has three levels of the objective function, in order of priority: handling constraints, maximizing economics, and maintaining control. The greatest weights are assigned dynamically to control or constraint variables that are predicted to be out of their limits. The weights assigned for economics have to out-weigh those assigned for control objectives. Control variables (CV) can be controlled at fixed targets or within one- or two-sided ranges around the targets. Manipulated Variables (MV) can have assigned targets too, which may be predefined values or current actual values. This MV functionality is extremely useful when economic objectives are not defined for some or all the MVs. To achieve this complex operation, handle process outputs predicted to go out of limits, and have a guaranteed solution for any condition, the technique makes use of the priority structure, penalties on slack variables, and redefinition of the constraint and control model. An engineering implementation of this approach is shown in the MPC embedded in an industrial control system. The optimization and control of a distillation column, the standard Shell heavy oil fractionator (HOF) problem, is adequately achieved with this MPC.

  9. Predictive modeling and reducing cyclic variability in autoignition engines

    DOEpatents

    Hellstrom, Erik; Stefanopoulou, Anna; Jiang, Li; Larimore, Jacob

    2016-08-30

    Methods and systems are provided for controlling a vehicle engine to reduce cycle-to-cycle combustion variation. A predictive model is applied to predict cycle-to-cycle combustion behavior of an engine based on observed engine performance variables. Conditions are identified, based on the predicted cycle-to-cycle combustion behavior, that indicate high cycle-to-cycle combustion variation. Corrective measures are then applied to prevent the predicted high cycle-to-cycle combustion variation.

  10. The Cortical Organization of Speech Processing: Feedback Control and Predictive Coding the Context of a Dual-Stream Model

    ERIC Educational Resources Information Center

    Hickok, Gregory

    2012-01-01

    Speech recognition is an active process that involves some form of predictive coding. This statement is relatively uncontroversial. What is less clear is the source of the prediction. The dual-stream model of speech processing suggests that there are two possible sources of predictive coding in speech perception: the motor speech system and the…

  11. Systems and methods for energy cost optimization in a building system

    DOEpatents

    Turney, Robert D.; Wenzel, Michael J.

    2016-09-06

    Methods and systems to minimize energy cost in response to time-varying energy prices are presented for a variety of different pricing scenarios. A cascaded model predictive control system is disclosed comprising an inner controller and an outer controller. The inner controller controls power use using a derivative of a temperature setpoint and the outer controller controls temperature via a power setpoint or power deferral. An optimization procedure is used to minimize a cost function within a time horizon subject to temperature constraints, equality constraints, and demand charge constraints. Equality constraints are formulated using system model information and system state information whereas demand charge constraints are formulated using system state information and pricing information. A masking procedure is used to invalidate demand charge constraints for inactive pricing periods including peak, partial-peak, off-peak, critical-peak, and real-time.

  12. Advanced modelling, monitoring, and process control of bioconversion systems

    NASA Astrophysics Data System (ADS)

    Schmitt, Elliott C.

    Production of fuels and chemicals from lignocellulosic biomass is an increasingly important area of research and industrialization throughout the world. In order to be competitive with fossil-based fuels and chemicals, maintaining cost-effectiveness is critical. Advanced process control (APC) and optimization methods could significantly reduce operating costs in the biorefining industry. Two reasons APC has previously proven challenging to implement for bioprocesses include: lack of suitable online sensor technology of key system components, and strongly nonlinear first principal models required to predict bioconversion behavior. To overcome these challenges batch fermentations with the acetogen Moorella thermoacetica were monitored with Raman spectroscopy for the conversion of real lignocellulosic hydrolysates and a kinetic model for the conversion of synthetic sugars was developed. Raman spectroscopy was shown to be effective in monitoring the fermentation of sugarcane bagasse and sugarcane straw hydrolysate, where univariate models predicted acetate concentrations with a root mean square error of prediction (RMSEP) of 1.9 and 1.0 g L-1 for bagasse and straw, respectively. Multivariate partial least squares (PLS) models were employed to predict acetate, xylose, glucose, and total sugar concentrations for both hydrolysate fermentations. The PLS models were more robust than univariate models, and yielded a percent error of approximately 5% for both sugarcane bagasse and sugarcane straw. In addition, a screening technique was discussed for improving Raman spectra of hydrolysate samples prior to collecting fermentation data. Furthermore, a mechanistic model was developed to predict batch fermentation of synthetic glucose, xylose, and a mixture of the two sugars to acetate. The models accurately described the bioconversion process with an RMSEP of approximately 1 g L-1 for each model and provided insights into how kinetic parameters changed during dual substrate fermentation with diauxic growth. Model predictive control (MPC), an advanced process control strategy, is capable of utilizing nonlinear models and sensor feedback to provide optimal input while ensuring critical process constraints are met. Using the microorganism Saccharomyces cerevisiae, a commonly used microorganism for biofuel production, and work performed with M. thermoacetica, a nonlinear MPC was implemented on a continuous membrane cell-recycle bioreactor (MCRB) for the conversion of glucose to ethanol. The dilution rate was used to control the ethanol productivity of the system will maintaining total substrate conversion above the constraint of 98%. PLS multivariate models for glucose (RMSEP 1.5 g L-1) and ethanol (RMSEP 0.4 g L-1) were robust in predicting concentrations and a mechanistic kinetic model built accurately predicted continuous fermentation behavior. A setpoint trajectory, ranging from 2 - 4.5 g L-1 h-1 for productivity was closely tracked by the fermentation system using Raman measurements and an extended Kalman filter to estimate biomass concentrations. Overall, this work was able to demonstrate an effective approach for real-time monitoring and control of a complex fermentation system.

  13. GA-based fuzzy reinforcement learning for control of a magnetic bearing system.

    PubMed

    Lin, C T; Jou, C P

    2000-01-01

    This paper proposes a TD (temporal difference) and GA (genetic algorithm)-based reinforcement (TDGAR) learning method and applies it to the control of a real magnetic bearing system. The TDGAR learning scheme is a new hybrid GA, which integrates the TD prediction method and the GA to perform the reinforcement learning task. The TDGAR learning system is composed of two integrated feedforward networks. One neural network acts as a critic network to guide the learning of the other network (the action network) which determines the outputs (actions) of the TDGAR learning system. The action network can be a normal neural network or a neural fuzzy network. Using the TD prediction method, the critic network can predict the external reinforcement signal and provide a more informative internal reinforcement signal to the action network. The action network uses the GA to adapt itself according to the internal reinforcement signal. The key concept of the TDGAR learning scheme is to formulate the internal reinforcement signal as the fitness function for the GA such that the GA can evaluate the candidate solutions (chromosomes) regularly, even during periods without external feedback from the environment. This enables the GA to proceed to new generations regularly without waiting for the arrival of the external reinforcement signal. This can usually accelerate the GA learning since a reinforcement signal may only be available at a time long after a sequence of actions has occurred in the reinforcement learning problem. The proposed TDGAR learning system has been used to control an active magnetic bearing (AMB) system in practice. A systematic design procedure is developed to achieve successful integration of all the subsystems including magnetic suspension, mechanical structure, and controller training. The results show that the TDGAR learning scheme can successfully find a neural controller or a neural fuzzy controller for a self-designed magnetic bearing system.

  14. Analyses of the most influential factors for vibration monitoring of planetary power transmissions in pellet mills by adaptive neuro-fuzzy technique

    NASA Astrophysics Data System (ADS)

    Milovančević, Miloš; Nikolić, Vlastimir; Anđelković, Boban

    2017-01-01

    Vibration-based structural health monitoring is widely recognized as an attractive strategy for early damage detection in civil structures. Vibration monitoring and prediction is important for any system since it can save many unpredictable behaviors of the system. If the vibration monitoring is properly managed, that can ensure economic and safe operations. Potentials for further improvement of vibration monitoring lie in the improvement of current control strategies. One of the options is the introduction of model predictive control. Multistep ahead predictive models of vibration are a starting point for creating a successful model predictive strategy. For the purpose of this article, predictive models of are created for vibration monitoring of planetary power transmissions in pellet mills. The models were developed using the novel method based on ANFIS (adaptive neuro fuzzy inference system). The aim of this study is to investigate the potential of ANFIS for selecting the most relevant variables for predictive models of vibration monitoring of pellet mills power transmission. The vibration data are collected by PIC (Programmable Interface Controller) microcontrollers. The goal of the predictive vibration monitoring of planetary power transmissions in pellet mills is to indicate deterioration in the vibration of the power transmissions before the actual failure occurs. The ANFIS process for variable selection was implemented in order to detect the predominant variables affecting the prediction of vibration monitoring. It was also used to select the minimal input subset of variables from the initial set of input variables - current and lagged variables (up to 11 steps) of vibration. The obtained results could be used for simplification of predictive methods so as to avoid multiple input variables. It was preferable to used models with less inputs because of overfitting between training and testing data. While the obtained results are promising, further work is required in order to get results that could be directly applied in practice.

  15. Pressure control and analysis report: Hydrogen Thermal Test Article (HTTA)

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Tasks accomplished during the HTTA Program study period included: (1) performance of a literature review to provide system guidelines; (2) development of analytical procedures needed to predict system performance; (3) design and analysis of the HTTA pressurization system considering (a) future utilization of results in the design of a spacecraft maneuvering system propellant package, (b) ease of control and operation, (c) system safety, and (d) hardware cost; and (4) making conclusions and recommendations for systems design.

  16. Appendix F. Developmental enforcement algorithm definition document : predictive braking enforcement algorithm definition document.

    DOT National Transportation Integrated Search

    2012-05-01

    The purpose of this document is to fully define and describe the logic flow and mathematical equations for a predictive braking enforcement algorithm intended for implementation in a Positive Train Control (PTC) system.

  17. Cognitive Control Predicts Use of Model-Based Reinforcement-Learning

    PubMed Central

    Otto, A. Ross; Skatova, Anya; Madlon-Kay, Seth; Daw, Nathaniel D.

    2015-01-01

    Accounts of decision-making and its neural substrates have long posited the operation of separate, competing valuation systems in the control of choice behavior. Recent theoretical and experimental work suggest that this classic distinction between behaviorally and neurally dissociable systems for habitual and goal-directed (or more generally, automatic and controlled) choice may arise from two computational strategies for reinforcement learning (RL), called model-free and model-based RL, but the cognitive or computational processes by which one system may dominate over the other in the control of behavior is a matter of ongoing investigation. To elucidate this question, we leverage the theoretical framework of cognitive control, demonstrating that individual differences in utilization of goal-related contextual information—in the service of overcoming habitual, stimulus-driven responses—in established cognitive control paradigms predict model-based behavior in a separate, sequential choice task. The behavioral correspondence between cognitive control and model-based RL compellingly suggests that a common set of processes may underpin the two behaviors. In particular, computational mechanisms originally proposed to underlie controlled behavior may be applicable to understanding the interactions between model-based and model-free choice behavior. PMID:25170791

  18. The predictive protective control of the heat exchanger

    NASA Astrophysics Data System (ADS)

    Nevriva, Pavel; Filipova, Blanka; Vilimec, Ladislav

    2016-06-01

    The paper deals with the predictive control applied to flexible cogeneration energy system FES. FES was designed and developed by the VITKOVICE POWER ENGINEERING joint-stock company and represents a new solution of decentralized cogeneration energy sources. In FES, the heating medium is flue gas generated by combustion of a solid fuel. The heated medium is power gas, which is a gas mixture of air and water steam. Power gas is superheated in the main heat exchanger and led to gas turbines. To protect the main heat exchanger against damage by overheating, the novel predictive protective control based on the mathematical model of exchanger was developed. The paper describes the principle, the design and the simulation of the predictive protective method applied to main heat exchanger of FES.

  19. A feasibility study for long-path multiple detection using a neural network

    NASA Technical Reports Server (NTRS)

    Feuerbacher, G. A.; Moebes, T. A.

    1994-01-01

    Least-squares inverse filters have found widespread use in the deconvolution of seismograms and the removal of multiples. The use of least-squares prediction filters with prediction distances greater than unity leads to the method of predictive deconvolution which can be used for the removal of long path multiples. The predictive technique allows one to control the length of the desired output wavelet by control of the predictive distance, and hence to specify the desired degree of resolution. Events which are periodic within given repetition ranges can be attenuated selectively. The method is thus effective in the suppression of rather complex reverberation patterns. A back propagation(BP) neural network is constructed to perform the detection of first arrivals of the multiples and therefore aid in the more accurate determination of the predictive distance of the multiples. The neural detector is applied to synthetic reflection coefficients and synthetic seismic traces. The processing results show that the neural detector is accurate and should lead to an automated fast method for determining predictive distances across vast amounts of data such as seismic field records. The neural network system used in this study was the NASA Software Technology Branch's NETS system.

  20. Active local control of propeller-aircraft run-up noise.

    PubMed

    Hodgson, Murray; Guo, Jingnan; Germain, Pierre

    2003-12-01

    Engine run-ups are part of the regular maintenance schedule at Vancouver International Airport. The noise generated by the run-ups propagates into neighboring communities, disturbing the residents. Active noise control is a potentially cost-effective alternative to passive methods, such as enclosures. Propeller aircraft generate low-frequency tonal noise that is highly compatible with active control. This paper presents a preliminary investigation of the feasibility and effectiveness of controlling run-up noise from propeller aircraft using local active control. Computer simulations for different configurations of multi-channel active-noise-control systems, aimed at reducing run-up noise in adjacent residential areas using a local-control strategy, were performed. These were based on an optimal configuration of a single-channel control system studied previously. The variations of the attenuation and amplification zones with the number of control channels, and with source/control-system geometry, were studied. Here, the aircraft was modeled using one or two sources, with monopole or multipole radiation patterns. Both free-field and half-space conditions were considered: for the configurations studied, results were similar in the two cases. In both cases, large triangular quiet zones, with local attenuations of 10 dB or more, were obtained when nine or more control channels were used. Increases of noise were predicted outside of these areas, but these were minimized as more control channels were employed. By combining predicted attenuations with measured noise spectra, noise levels after implementation of an active control system were estimated.

  1. Respiratory protective device design using control system techniques

    NASA Technical Reports Server (NTRS)

    Burgess, W. A.; Yankovich, D.

    1972-01-01

    The feasibility of a control system analysis approach to provide a design base for respiratory protective devices is considered. A system design approach requires that all functions and components of the system be mathematically identified in a model of the RPD. The mathematical notations describe the operation of the components as closely as possible. The individual component mathematical descriptions are then combined to describe the complete RPD. Finally, analysis of the mathematical notation by control system theory is used to derive compensating component values that force the system to operate in a stable and predictable manner.

  2. Control of the NASA Langley 16-Foot Transonic Tunnel with the Self-Organizing Feature Map

    NASA Technical Reports Server (NTRS)

    Motter, Mark A.

    1998-01-01

    A predictive, multiple model control strategy is developed based on an ensemble of local linear models of the nonlinear system dynamics for a transonic wind tunnel. The local linear models are estimated directly from the weights of a Self Organizing Feature Map (SOFM). Local linear modeling of nonlinear autonomous systems with the SOFM is extended to a control framework where the modeled system is nonautonomous, driven by an exogenous input. This extension to a control framework is based on the consideration of a finite number of subregions in the control space. Multiple self organizing feature maps collectively model the global response of the wind tunnel to a finite set of representative prototype controls. These prototype controls partition the control space and incorporate experimental knowledge gained from decades of operation. Each SOFM models the combination of the tunnel with one of the representative controls, over the entire range of operation. The SOFM based linear models are used to predict the tunnel response to a larger family of control sequences which are clustered on the representative prototypes. The control sequence which corresponds to the prediction that best satisfies the requirements on the system output is applied as the external driving signal. Each SOFM provides a codebook representation of the tunnel dynamics corresponding to a prototype control. Different dynamic regimes are organized into topological neighborhoods where the adjacent entries in the codebook represent the minimization of a similarity metric which is the essence of the self organizing feature of the map. Thus, the SOFM is additionally employed to identify the local dynamical regime, and consequently implements a switching scheme than selects the best available model for the applied control. Experimental results of controlling the wind tunnel, with the proposed method, during operational runs where strict research requirements on the control of the Mach number were met, are presented. Comparison to similar runs under the same conditions with the tunnel controlled by either the existing controller or an expert operator indicate the superiority of the method.

  3. Large space structure model reduction and control system design based upon actuator and sensor influence functions

    NASA Technical Reports Server (NTRS)

    Yam, Y.; Lang, J. H.; Johnson, T. L.; Shih, S.; Staelin, D. H.

    1983-01-01

    A model reduction procedure based on aggregation with respect to sensor and actuator influences rather than modes is presented for large systems of coupled second-order differential equations. Perturbation expressions which can predict the effects of spillover on both the aggregated and residual states are derived. These expressions lead to the development of control system design constraints which are sufficient to guarantee, to within the validity of the perturbations, that the residual states are not destabilized by control systems designed from the reduced model. A numerical example is provided to illustrate the application of the aggregation and control system design method.

  4. A Humidity-Driven Prediction System for Influenza Outbreaks

    NASA Astrophysics Data System (ADS)

    Thrastarson, H. T.; Teixeira, J.

    2015-12-01

    Recent studies have highlighted the role of absolute (or specific) humidity conditions as a leading explanation for the seasonal behavior of influenza outbreaks in temperate regions. If the timing and intensity of seasonal influenza outbreaks can be forecast, this would be of great value for public health response efforts. We have developed and implemented a SIRS (Susceptible-Infectious-Recovered-Susceptible) type numerical prediction system that is driven by specific humidity to predict influenza outbreaks. For the humidity, we have explored using both satellite data from the AIRS (Atmospheric Infrared Sounder) instrument as well as ERA-Interim re-analysis data. We discuss the development, testing, sensitivities and limitations of the prediction system and show results for influenza outbreaks in the United States during the years 2010-2014 (modeled in retrospect). Comparisons are made with other existing prediction systems and available data for influenza outbreaks from Google Flu Trends and the CDC (Center for Disease Control), and the incorporation of these datasets into the forecasting system is discussed.

  5. Use of Dynamic Distortion to Predict and Alleviate Loss of Control

    NASA Technical Reports Server (NTRS)

    Klyde, David; Liang, Chi-Ying; Alvarez, Daniel

    2011-01-01

    This research has developed and evaluated the specific concepts, termed Smart-Cue and Smart-Gain, to alleviate aircraft loss of control that results from unfavorable pilot/vehicle system interactions, including pilot-induced oscillations (PIOs). Unfavorable pilot/ vehicle-system interactions have long been an aviation safety problem. While the effective aircraft dynamic properties involved in these events have been extensively studied and understood, similar scrutiny has not been paid to the many aspects of the primary manual control system that converts the pilot control inputs to motions of the control surfaces. The purpose of the Smart-Cue and Smart-Gain developments is to redress this neglect, and to develop and validate remedial manual control systems.

  6. Hybrid neural network for density limit disruption prediction and avoidance on J-TEXT tokamak

    NASA Astrophysics Data System (ADS)

    Zheng, W.; Hu, F. R.; Zhang, M.; Chen, Z. Y.; Zhao, X. Q.; Wang, X. L.; Shi, P.; Zhang, X. L.; Zhang, X. Q.; Zhou, Y. N.; Wei, Y. N.; Pan, Y.; J-TEXT team

    2018-05-01

    Increasing the plasma density is one of the key methods in achieving an efficient fusion reaction. High-density operation is one of the hot topics in tokamak plasmas. Density limit disruptions remain an important issue for safe operation. An effective density limit disruption prediction and avoidance system is the key to avoid density limit disruptions for long pulse steady state operations. An artificial neural network has been developed for the prediction of density limit disruptions on the J-TEXT tokamak. The neural network has been improved from a simple multi-layer design to a hybrid two-stage structure. The first stage is a custom network which uses time series diagnostics as inputs to predict plasma density, and the second stage is a three-layer feedforward neural network to predict the probability of density limit disruptions. It is found that hybrid neural network structure, combined with radiation profile information as an input can significantly improve the prediction performance, especially the average warning time ({{T}warn} ). In particular, the {{T}warn} is eight times better than that in previous work (Wang et al 2016 Plasma Phys. Control. Fusion 58 055014) (from 5 ms to 40 ms). The success rate for density limit disruptive shots is above 90%, while, the false alarm rate for other shots is below 10%. Based on the density limit disruption prediction system and the real-time density feedback control system, the on-line density limit disruption avoidance system has been implemented on the J-TEXT tokamak.

  7. Deep learning and model predictive control for self-tuning mode-locked lasers

    NASA Astrophysics Data System (ADS)

    Baumeister, Thomas; Brunton, Steven L.; Nathan Kutz, J.

    2018-03-01

    Self-tuning optical systems are of growing importance in technological applications such as mode-locked fiber lasers. Such self-tuning paradigms require {\\em intelligent} algorithms capable of inferring approximate models of the underlying physics and discovering appropriate control laws in order to maintain robust performance for a given objective. In this work, we demonstrate the first integration of a {\\em deep learning} (DL) architecture with {\\em model predictive control} (MPC) in order to self-tune a mode-locked fiber laser. Not only can our DL-MPC algorithmic architecture approximate the unknown fiber birefringence, it also builds a dynamical model of the laser and appropriate control law for maintaining robust, high-energy pulses despite a stochastically drifting birefringence. We demonstrate the effectiveness of this method on a fiber laser which is mode-locked by nonlinear polarization rotation. The method advocated can be broadly applied to a variety of optical systems that require robust controllers.

  8. A systems theoretic approach to analysis and control of mammalian circadian dynamics

    PubMed Central

    Abel, John H.; Doyle, Francis J.

    2016-01-01

    The mammalian circadian clock is a complex multi-scale, multivariable biological control system. In the past two decades, methods from systems engineering have led to numerous insights into the architecture and functionality of this system. In this review, we examine the mammalian circadian system through a process systems lens. We present a mathematical framework for examining the cellular circadian oscillator, and show recent extensions for understanding population-scale dynamics. We provide an overview of the routes by which the circadian system can be systemically manipulated, and present in silico proof of concept results for phase resetting of the clock via model predictive control. PMID:28496287

  9. Models for short term malaria prediction in Sri Lanka

    PubMed Central

    Briët, Olivier JT; Vounatsou, Penelope; Gunawardena, Dissanayake M; Galappaththy, Gawrie NL; Amerasinghe, Priyanie H

    2008-01-01

    Background Malaria in Sri Lanka is unstable and fluctuates in intensity both spatially and temporally. Although the case counts are dwindling at present, given the past history of resurgence of outbreaks despite effective control measures, the control programmes have to stay prepared. The availability of long time series of monitored/diagnosed malaria cases allows for the study of forecasting models, with an aim to developing a forecasting system which could assist in the efficient allocation of resources for malaria control. Methods Exponentially weighted moving average models, autoregressive integrated moving average (ARIMA) models with seasonal components, and seasonal multiplicative autoregressive integrated moving average (SARIMA) models were compared on monthly time series of district malaria cases for their ability to predict the number of malaria cases one to four months ahead. The addition of covariates such as the number of malaria cases in neighbouring districts or rainfall were assessed for their ability to improve prediction of selected (seasonal) ARIMA models. Results The best model for forecasting and the forecasting error varied strongly among the districts. The addition of rainfall as a covariate improved prediction of selected (seasonal) ARIMA models modestly in some districts but worsened prediction in other districts. Improvement by adding rainfall was more frequent at larger forecasting horizons. Conclusion Heterogeneity of patterns of malaria in Sri Lanka requires regionally specific prediction models. Prediction error was large at a minimum of 22% (for one of the districts) for one month ahead predictions. The modest improvement made in short term prediction by adding rainfall as a covariate to these prediction models may not be sufficient to merit investing in a forecasting system for which rainfall data are routinely processed. PMID:18460204

  10. A distributed predictive control approach for periodic flow-based networks: application to drinking water systems

    NASA Astrophysics Data System (ADS)

    Grosso, Juan M.; Ocampo-Martinez, Carlos; Puig, Vicenç

    2017-10-01

    This paper proposes a distributed model predictive control approach designed to work in a cooperative manner for controlling flow-based networks showing periodic behaviours. Under this distributed approach, local controllers cooperate in order to enhance the performance of the whole flow network avoiding the use of a coordination layer. Alternatively, controllers use both the monolithic model of the network and the given global cost function to optimise the control inputs of the local controllers but taking into account the effect of their decisions over the remainder subsystems conforming the entire network. In this sense, a global (all-to-all) communication strategy is considered. Although the Pareto optimality cannot be reached due to the existence of non-sparse coupling constraints, the asymptotic convergence to a Nash equilibrium is guaranteed. The resultant strategy is tested and its effectiveness is shown when applied to a large-scale complex flow-based network: the Barcelona drinking water supply system.

  11. Real-Time Flight Envelope Monitoring System

    NASA Technical Reports Server (NTRS)

    Kerho, Michael; Bragg, Michael B.; Ansell, Phillip J.

    2012-01-01

    The objective of this effort was to show that real-time aircraft control-surface hinge-moment information could be used to provide a robust and reliable prediction of vehicle performance and control authority degradation. For a given airfoil section with a control surface -- be it a wing with an aileron, rudder, or elevator -- the control-surface hinge moment is sensitive to the aerodynamic characteristics of the section. As a result, changes in the aerodynamics of the section due to angle-of-attack or environmental effects such as icing, heavy rain, surface contaminants, bird strikes, or battle damage will affect the control surface hinge moment. These changes include both the magnitude of the hinge moment and its sign in a time-averaged sense, and the variation of the hinge moment with time. The current program attempts to take the real-time hinge moment information from the aircraft control surfaces and develop a system to predict aircraft envelope boundaries across a range of conditions, alerting the flight crew to reductions in aircraft controllability and flight boundaries.

  12. Controlling the Shannon Entropy of Quantum Systems

    PubMed Central

    Xing, Yifan; Wu, Jun

    2013-01-01

    This paper proposes a new quantum control method which controls the Shannon entropy of quantum systems. For both discrete and continuous entropies, controller design methods are proposed based on probability density function control, which can drive the quantum state to any target state. To drive the entropy to any target at any prespecified time, another discretization method is proposed for the discrete entropy case, and the conditions under which the entropy can be increased or decreased are discussed. Simulations are done on both two- and three-dimensional quantum systems, where division and prediction are used to achieve more accurate tracking. PMID:23818819

  13. Controlling the shannon entropy of quantum systems.

    PubMed

    Xing, Yifan; Wu, Jun

    2013-01-01

    This paper proposes a new quantum control method which controls the Shannon entropy of quantum systems. For both discrete and continuous entropies, controller design methods are proposed based on probability density function control, which can drive the quantum state to any target state. To drive the entropy to any target at any prespecified time, another discretization method is proposed for the discrete entropy case, and the conditions under which the entropy can be increased or decreased are discussed. Simulations are done on both two- and three-dimensional quantum systems, where division and prediction are used to achieve more accurate tracking.

  14. System and Method for Providing Model-Based Alerting of Spatial Disorientation to a Pilot

    NASA Technical Reports Server (NTRS)

    Johnson, Steve (Inventor); Conner, Kevin J (Inventor); Mathan, Santosh (Inventor)

    2015-01-01

    A system and method monitor aircraft state parameters, for example, aircraft movement and flight parameters, applies those inputs to a spatial disorientation model, and makes a prediction of when pilot may become spatially disoriented. Once the system predicts a potentially disoriented pilot, the sensitivity for alerting the pilot to conditions exceeding a threshold can be increased and allow for an earlier alert to mitigate the possibility of an incorrect control input.

  15. Information modeling system for blast furnace control

    NASA Astrophysics Data System (ADS)

    Spirin, N. A.; Gileva, L. Y.; Lavrov, V. V.

    2016-09-01

    Modern Iron & Steel Works as a rule are equipped with powerful distributed control systems (DCS) and databases. Implementation of DSC system solves the problem of storage, control, protection, entry, editing and retrieving of information as well as generation of required reporting data. The most advanced and promising approach is to use decision support information technologies based on a complex of mathematical models. The model decision support system for control of blast furnace smelting is designed and operated. The basis of the model system is a complex of mathematical models created using the principle of natural mathematical modeling. This principle provides for construction of mathematical models of two levels. The first level model is a basic state model which makes it possible to assess the vector of system parameters using field data and blast furnace operation results. It is also used to calculate the adjustment (adaptation) coefficients of the predictive block of the system. The second-level model is a predictive model designed to assess the design parameters of the blast furnace process when there are changes in melting conditions relative to its current state. Tasks for which software is developed are described. Characteristics of the main subsystems of the blast furnace process as an object of modeling and control - thermal state of the furnace, blast, gas dynamic and slag conditions of blast furnace smelting - are presented.

  16. Prediction of Rate Constant for Supramolecular Systems with Multiconfigurations.

    PubMed

    Guo, Tao; Li, Haiyan; Wu, Li; Guo, Zhen; Yin, Xianzhen; Wang, Caifen; Sun, Lixin; Shao, Qun; Gu, Jingkai; York, Peter; Zhang, Jiwen

    2016-02-25

    The control of supramolecular systems requires a thorough understanding of their dynamics, especially on a molecular level. It is extremely difficult to determine the thermokinetic parameters of supramolecular systems, such as drug-cyclodextrin complexes with fast association/dissociation processes by experimental techniques. In this paper, molecular modeling combined with novel mathematical relationships integrating the thermodynamic/thermokinetic parameters of a series of isomeric multiconfigurations to predict the overall parameters in a range of pH values have been employed to study supramolecular dynamics at the molecular level. A suitable form of Eyring's equation was derived and a two-stage model was introduced. The new approach enabled accurate prediction of the apparent dissociation/association (k(off)/k(on)) and unbinding/binding (k-r/kr) rate constants of the ubiquitous multiconfiguration complexes of the supramolecular system. The pyronine Y (PY) was used as a model system for the validation of the presented method. Interestingly, the predicted k(off) value ((40 ± 1) × 10(5) s(-1), 298 K) of PY is largely in agreement with that previously determined by fluorescence correlation spectroscopy ((5 ± 3) × 10(5) s(-1), 298 K). Moreover, the k(off)/k(on) and k-r/kr for flurbiprofen-β-cylcodextrin and ibuprofen-β-cyclodextrin systems were also predicted and suggested that the association processes are diffusion-controlled. The methodology is considered to be especially useful in the design and selection of excipients for a supramolecular system with preferred association and dissociation rate constants and understanding their mechanisms. It is believed that this new approach could be applicable to a wide range of ligand-receptor supramolecular systems and will surely help in understanding their complex mechanism.

  17. Relationships between digital signal processing and control and estimation theory

    NASA Technical Reports Server (NTRS)

    Willsky, A. S.

    1978-01-01

    Research areas associated with digital signal processing and control and estimation theory are identified. Particular attention is given to image processing, system identification problems (parameter identification, linear prediction, least squares, Kalman filtering), stability analyses (the use of the Liapunov theory, frequency domain criteria, passivity), and multiparameter systems, distributed processes, and random fields.

  18. Design, implementation and control of a magnetic levitation device

    NASA Astrophysics Data System (ADS)

    Shameli, Ehsan

    Magnetic levitation technology has shown a great deal of promise for micromanipulation tasks. Due to the lack of mechanical contact, magnetic levitation systems are free of problems caused by friction, wear, sealing and lubrication. These advantages have made magnetic levitation systems a great candidate for clean room applications. In this thesis, a new large gap magnetic levitation system is designed, developed and successfully tested. The system is capable of levitating a 6.5(gr) permanent magnet in 3D space with an air gap of approximately 50(cm) with the traveling range of 20x20x30 mm3. The overall positioning accuracy of the system is 60mum. With the aid of finite elements method, an optimal geometry for the magnetic stator is proposed. Also, an energy optimization approach is utilized in the design of the electromagnets. In order to facilitate the design of various controllers for the system, a mathematical model of the magnetic force experienced by the levitated object is obtained. The dynamic magnetic force model is determined experimentally using frequency response system identification. The response of the system components including the power amplifiers, and position measurement system are also considered in the development of the force model. The force model is then employed in the controller design for the magnetic levitation device. Through a modular approach, the controller design for the 3D positioning system is started with the controller design for the vertical direction, i.e. z, and then followed by the controller design in the horizontal directions, i.e. x and y. For the vertical direction, several controllers such as PID, feed forward and feedback linearization are designed and their performances are compared. Also a control command conditioning method is introduced as a solution to increase the control performance and the results of the proposed controller are compared with the other designs. Experimental results showed that for the magnetic levitation system, the feedback linearization controller has the shortest settling time and is capable of reducing the positioning error to RMS value of 11.56mum. The force model was also utilized in the design of a model reference adaptive feedback linearization (MRAFL) controller for the z direction. For this case, the levitated object is a small microrobot equipped with a remote controlled gripper weighting approximately 28(gr). Experimental results showed that the MRAFL controller enables the micro-robot to pick up and transport a payload as heavy as 30% of its own weight without a considerable effect on its positioning accuracy. In the presence of the payload, the MRAFL controller resulted in a RMS positioning error of 8microm compared with 27.9mum of the regular feedback linearization controller. For the horizontal position control of the system, a mathematical formula for distributing the electric currents to the multiple electromagnets of the system was proposed and a PID control approach was implemented to control the position of the levitated object in the xy-plane. The control system was experimentally tested in tracking circular and spiral trajectories with overall positioning accuracy of 60mum. Also, a new mathematical approach is presented for the prediction of magnetic field distribution in the horizontal direction. The proposed approach is named the pivot point method and is capable of predicting the two dimensional position of the levitated object in a given vertical plane for an arbitrary current distribution in the electromagnets of the levitation system. Experimental results showed that the proposed method is capable of predicting the location of the levitated object with less than 10% error.

  19. Constrained model predictive control, state estimation and coordination

    NASA Astrophysics Data System (ADS)

    Yan, Jun

    In this dissertation, we study the interaction between the control performance and the quality of the state estimation in a constrained Model Predictive Control (MPC) framework for systems with stochastic disturbances. This consists of three parts: (i) the development of a constrained MPC formulation that adapts to the quality of the state estimation via constraints; (ii) the application of such a control law in a multi-vehicle formation coordinated control problem in which each vehicle operates subject to a no-collision constraint posed by others' imperfect prediction computed from finite bit-rate, communicated data; (iii) the design of the predictors and the communication resource assignment problem that satisfy the performance requirement from Part (ii). Model Predictive Control (MPC) is of interest because it is one of the few control design methods which preserves standard design variables and yet handles constraints. MPC is normally posed as a full-state feedback control and is implemented in a certainty-equivalence fashion with best estimates of the states being used in place of the exact state. However, if the state constraints were handled in the same certainty-equivalence fashion, the resulting control law could drive the real state to violate the constraints frequently. Part (i) focuses on exploring the inclusion of state estimates into the constraints. It does this by applying constrained MPC to a system with stochastic disturbances. The stochastic nature of the problem requires re-posing the constraints in a probabilistic form. In Part (ii), we consider applying constrained MPC as a local control law in a coordinated control problem of a group of distributed autonomous systems. Interactions between the systems are captured via constraints. First, we inspect the application of constrained MPC to a completely deterministic case. Formation stability theorems are derived for the subsystems and conditions on the local constraint set are derived in order to guarantee local stability or convergence to a target state. If these conditions are met for all subsystems, then this stability is inherited by the overall system. For the case when each subsystem suffers from disturbances in the dynamics, own self-measurement noises, and quantization errors on neighbors' information due to the finite-bit-rate channels, the constrained MPC strategy developed in Part (i) is appropriate to apply. In Part (iii), we discuss the local predictor design and bandwidth assignment problem in a coordinated vehicle formation context. The MPC controller used in Part (ii) relates the formation control performance and the information quality in the way that large standoff implies conservative performance. We first develop an LMI (Linear Matrix Inequality) formulation for cross-estimator design in a simple two-vehicle scenario with non-standard information: one vehicle does not have access to the other's exact control value applied at each sampling time, but to its known, pre-computed, coupling linear feedback control law. Then a similar LMI problem is formulated for the bandwidth assignment problem that minimizes the total number of bits by adjusting the prediction gain matrices and the number of bits assigned to each variable. (Abstract shortened by UMI.)

  20. Control of complex networks requires both structure and dynamics

    NASA Astrophysics Data System (ADS)

    Gates, Alexander J.; Rocha, Luis M.

    2016-04-01

    The study of network structure has uncovered signatures of the organization of complex systems. However, there is also a need to understand how to control them; for example, identifying strategies to revert a diseased cell to a healthy state, or a mature cell to a pluripotent state. Two recent methodologies suggest that the controllability of complex systems can be predicted solely from the graph of interactions between variables, without considering their dynamics: structural controllability and minimum dominating sets. We demonstrate that such structure-only methods fail to characterize controllability when dynamics are introduced. We study Boolean network ensembles of network motifs as well as three models of biochemical regulation: the segment polarity network in Drosophila melanogaster, the cell cycle of budding yeast Saccharomyces cerevisiae, and the floral organ arrangement in Arabidopsis thaliana. We demonstrate that structure-only methods both undershoot and overshoot the number and which sets of critical variables best control the dynamics of these models, highlighting the importance of the actual system dynamics in determining control. Our analysis further shows that the logic of automata transition functions, namely how canalizing they are, plays an important role in the extent to which structure predicts dynamics.

  1. Open Platform for Limit Protection with Carefree Maneuver Applications

    NASA Technical Reports Server (NTRS)

    Jeram, Geoffrey J.

    2004-01-01

    This Open Platform for Limit Protection guides the open design of maneuver limit protection systems in general, and manned, rotorcraft, aerospace applications in particular. The platform uses three stages of limit protection modules: limit cue creation, limit cue arbitration, and control system interface. A common set of limit cue modules provides commands that can include constraints, alerts, transfer functions, and friction. An arbitration module selects the "best" limit protection cues and distributes them to the most appropriate control path interface. This platform adopts a holistic approach to limit protection whereby it considers all potential interface points, including the pilot's visual, aural, and tactile displays; and automatic command restraint shaping for autonomous limit protection. For each functional module, this thesis guides the control system designer through the design choices and information interfaces among the modules. Limit cue module design choices include type of prediction, prediction mechanism, method of critical control calculation, and type of limit cue. Special consideration is given to the nature of the limit, particularly the level of knowledge about it, and the ramifications for limit protection design, especially with respect to intelligent control methods such as fuzzy inference systems and neural networks.

  2. Intelligent monitoring and control of semiconductor manufacturing equipment

    NASA Technical Reports Server (NTRS)

    Murdock, Janet L.; Hayes-Roth, Barbara

    1991-01-01

    The use of AI methods to monitor and control semiconductor fabrication in a state-of-the-art manufacturing environment called the Rapid Thermal Multiprocessor is described. Semiconductor fabrication involves many complex processing steps with limited opportunities to measure process and product properties. By applying additional process and product knowledge to that limited data, AI methods augment classical control methods by detecting abnormalities and trends, predicting failures, diagnosing, planning corrective action sequences, explaining diagnoses or predictions, and reacting to anomalous conditions that classical control systems typically would not correct. Research methodology and issues are discussed, and two diagnosis scenarios are examined.

  3. The perceptual shaping of anticipatory actions.

    PubMed

    Maffei, Giovanni; Herreros, Ivan; Sanchez-Fibla, Marti; Friston, Karl J; Verschure, Paul F M J

    2017-12-20

    Humans display anticipatory motor responses to minimize the adverse effects of predictable perturbations. A widely accepted explanation for this behaviour relies on the notion of an inverse model that, learning from motor errors, anticipates corrective responses. Here, we propose and validate the alternative hypothesis that anticipatory control can be realized through a cascade of purely sensory predictions that drive the motor system, reflecting the causal sequence of the perceptual events preceding the error. We compare both hypotheses in a simulated anticipatory postural adjustment task. We observe that adaptation in the sensory domain, but not in the motor one, supports the robust and generalizable anticipatory control characteristic of biological systems. Our proposal unites the neurobiology of the cerebellum with the theory of active inference and provides a concrete implementation of its core tenets with great relevance both to our understanding of biological control systems and, possibly, to their emulation in complex artefacts. © 2017 The Author(s).

  4. Active/Passive Control of Sound Radiation from Panels using Constrained Layer Damping

    NASA Technical Reports Server (NTRS)

    Gibbs, Gary P.; Cabell, Randolph H.

    2003-01-01

    A hybrid passive/active noise control system utilizing constrained layer damping and model predictive feedback control is presented. This system is used to control the sound radiation of panels due to broadband disturbances. To facilitate the hybrid system design, a methodology for placement of constrained layer damping which targets selected modes based on their relative radiated sound power is developed. The placement methodology is utilized to determine two constrained layer damping configurations for experimental evaluation of a hybrid system. The first configuration targets the (4,1) panel mode which is not controllable by the piezoelectric control actuator, and the (2,3) and (5,2) panel modes. The second configuration targets the (1,1) and (3,1) modes. The experimental results demonstrate the improved reduction of radiated sound power using the hybrid passive/active control system as compared to the active control system alone.

  5. Model predictive and reallocation problem for CubeSat fault recovery and attitude control

    NASA Astrophysics Data System (ADS)

    Franchi, Loris; Feruglio, Lorenzo; Mozzillo, Raffaele; Corpino, Sabrina

    2018-01-01

    In recent years, thanks to the increase of the know-how on machine-learning techniques and the advance of the computational capabilities of on-board processing, expensive computing algorithms, such as Model Predictive Control, have begun to spread in space applications even on small on-board processor. The paper presents an algorithm for an optimal fault recovery of a 3U CubeSat, developed in MathWorks Matlab & Simulink environment. This algorithm involves optimization techniques aiming at obtaining the optimal recovery solution, and involves a Model Predictive Control approach for the attitude control. The simulated system is a CubeSat in Low Earth Orbit: the attitude control is performed with three magnetic torquers and a single reaction wheel. The simulation neglects the errors in the attitude determination of the satellite, and focuses on the recovery approach and control method. The optimal recovery approach takes advantage of the properties of magnetic actuation, which gives the possibility of the redistribution of the control action when a fault occurs on a single magnetic torquer, even in absence of redundant actuators. In addition, the paper presents the results of the implementation of Model Predictive approach to control the attitude of the satellite.

  6. Monitoring and Control of an Adsorption System Using Electrical Properties of the Adsorbent for Organic Compound Abatement.

    PubMed

    Hu, Ming-Ming; Emamipour, Hamidreza; Johnsen, David L; Rood, Mark J; Song, Linhua; Zhang, Zailong

    2017-07-05

    Adsorption systems typically need gas and temperature sensors to monitor their adsorption/regeneration cycles to separate gases from gas streams. Activated carbon fiber cloth (ACFC)-electrothermal swing adsorption (ESA) is an adsorption system that has the potential to be controlled with the electrical properties of the adsorbent and is studied here to monitor and control the adsorption/regeneration cycles without the use of gas and temperature sensors and to predict breakthrough before it occurs. The ACFC's electrical resistance was characterized on the basis of the amount of adsorbed organic gas/vapor and the adsorbent temperature. These relationships were then used to develop control logic to monitor and control ESA cycles on the basis of measured resistance and applied power values. Continuous sets of adsorption and regeneration cycles were performed sequentially entirely on the basis of remote electrical measurements and achieved ≥95% capture efficiency at inlet concentrations of 2000 and 4000 ppm v for isobutane, acetone, and toluene in dry and elevated relative humidity gas streams, demonstrating a novel cyclic ESA system that does not require gas or temperature sensors. This contribution is important because it reduces the cost and simplifies the system, predicts breakthrough before its occurrence, and reduces emissions to the atmosphere.

  7. Lateral control system design for VTOL landing on a DD963 in high sea states. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Bodson, M.

    1982-01-01

    The problem of designing lateral control systems for the safe landing of VTOL aircraft on small ships is addressed. A ship model is derived. The issues of estimation and prediction of ship motions are discussed, using optimal linear linear estimation techniques. The roll motion is the most important of the lateral motions, and it is found that it can be predicted for up to 10 seconds in perfect conditions. The automatic landing of the VTOL aircraft is considered, and a lateral controller, defined as a ship motion tracker, is designed, using optimal control techniqes. The tradeoffs between the tracking errors and the control authority are obtained. The important couplings between the lateral motions and controls are demonstrated, and it is shown that the adverse couplings between the sway and the roll motion at the landing pad are significant constraints in the tracking of the lateral ship motions. The robustness of the control system, including the optimal estimator, is studied, using the singular values analysis. Through a robustification procedure, a robust control system is obtained, and the usefulness of the singular values to define stability margins that take into account general types of unstructured modelling errors is demonstrated. The minimal destabilizing perturbations indicated by the singular values analysis are interpreted and related to the multivariable Nyquist diagrams.

  8. [Design and implementation of Geographical Information System on prevention and control of cholera].

    PubMed

    Li, Xiu-jun; Fang, Li-qun; Wang, Duo-chun; Wang, Lu-xi; Li, Ya-pin; Li, Yan-li; Yang, Hong; Kan, Biao; Cao, Wu-chun

    2012-04-01

    To build the Geographical Information System (GIS) database for prevention and control of cholera programs as well as using management analysis and function demonstration to show the spatial attribute of cholera. Data from case reporting system regarding diarrhoea, vibrio cholerae, serotypes of vibrio cholerae at the surveillance spots and seafoods, as well as surveillance data on ambient environment and climate were collected. All the data were imported to system database to show the incidence of vibrio cholerae in different provinces, regions and counties to support the spatial analysis through the spatial analysis of GIS. The epidemic trends of cholera, seasonal characteristics of the cholera and the variation of the vibrio cholerae with times were better understood. Information on hotspots, regions and time of epidemics was collected, and helpful in providing risk prediction on the incidence of vibrio cholerae. The exploitation of the software can predict and simulate the spatio-temporal risks, so as to provide guidance for the prevention and control of the disease.

  9. Conflict-free trajectory planning for air traffic control automation

    NASA Technical Reports Server (NTRS)

    Slattery, Rhonda; Green, Steve

    1994-01-01

    As the traffic demand continues to grow within the National Airspace System (NAS), the need for long-range planning (30 minutes plus) of arrival traffic increases greatly. Research into air traffic control (ATC) automation at ARC has led to the development of the Center-TRACON Automation System (CTAS). CTAS determines optimum landing schedules for arrival traffic and assists controllers in meeting those schedules safely and efficiently. One crucial element in the development of CTAS is the capability to perform long-range (20 minutes) and short-range (5 minutes) conflict prediction and resolution once landing schedules are determined. The determination of conflict-free trajectories within the Center airspace is particularly difficult because of large variations in speed and altitude. The paper describes the current design and implementation of the conflict prediction and resolution tools used to generate CTAS advisories in Center airspace. Conflict criteria (separation requirements) are defined and the process of separation prediction is described. The major portion of the paper will describe the current implementation of CTAS conflict resolution algorithms in terms of the degrees of freedom for resolutions as well as resolution search techniques. The tools described in this paper have been implemented in a research system designed to rapidly develop and evaluate prototype concepts and will form the basis for an operational ATC automation system.

  10. Mixed H2/H∞ distributed robust model predictive control for polytopic uncertain systems subject to actuator saturation and missing measurements

    NASA Astrophysics Data System (ADS)

    Song, Yan; Fang, Xiaosheng; Diao, Qingda

    2016-03-01

    In this paper, we discuss the mixed H2/H∞ distributed robust model predictive control problem for polytopic uncertain systems subject to randomly occurring actuator saturation and packet loss. The global system is decomposed into several subsystems, and all the subsystems are connected by a fixed topology network, which is the definition for the packet loss among the subsystems. To better use the successfully transmitted information via Internet, both the phenomena of actuator saturation and packet loss resulting from the limitation of the communication bandwidth are taken into consideration. A novel distributed controller model is established to account for the actuator saturation and packet loss in a unified representation by using two sets of Bernoulli distributed white sequences with known conditional probabilities. With the nonlinear feedback control law represented by the convex hull of a group of linear feedback laws, the distributed controllers for subsystems are obtained by solving an linear matrix inequality (LMI) optimisation problem. Finally, numerical studies demonstrate the effectiveness of the proposed techniques.

  11. Nonlinear Dynamic Inversion Baseline Control Law: Flight-Test Results for the Full-scale Advanced Systems Testbed F/A-18 Airplane

    NASA Technical Reports Server (NTRS)

    Miller, Christopher J.

    2011-01-01

    A model reference nonlinear dynamic inversion control law has been developed to provide a baseline controller for research into simple adaptive elements for advanced flight control laws. This controller has been implemented and tested in a hardware-in-the-loop simulation and in flight. The flight results agree well with the simulation predictions and show good handling qualities throughout the tested flight envelope with some noteworthy deficiencies highlighted both by handling qualities metrics and pilot comments. Many design choices and implementation details reflect the requirements placed on the system by the nonlinear flight environment and the desire to keep the system as simple as possible to easily allow the addition of the adaptive elements. The flight-test results and how they compare to the simulation predictions are discussed, along with a discussion about how each element affected pilot opinions. Additionally, aspects of the design that performed better than expected are presented, as well as some simple improvements that will be suggested for follow-on work.

  12. Intelligent aircraft/airspace systems

    NASA Technical Reports Server (NTRS)

    Wangermann, John P.

    1995-01-01

    Projections of future air traffic predict at least a doubling of the number of revenue passenger miles flown by the year 2025. To meet this demand, an Intelligent Aircraft/Airspace System (IAAS) has been proposed. The IAAS operates on the basis of principled negotiation between intelligent agents. The aircraft/airspace system today consists of many agents, such as airlines, control facilities, and aircraft. All the agents are becoming increasingly capable as technology develops. These capabilities should be exploited to create an Intelligent Aircraft/Airspace System (IAAS) that would meet the predicted traffic levels of 2005.

  13. Emerging Tools for Synthetic Genome Design

    PubMed Central

    Lee, Bo-Rahm; Cho, Suhyung; Song, Yoseb; Kim, Sun Chang; Cho, Byung-Kwan

    2013-01-01

    Synthetic biology is an emerging discipline for designing and synthesizing predictable, measurable, controllable, and transformable biological systems. These newly designed biological systems have great potential for the development of cheaper drugs, green fuels, biodegradable plastics, and targeted cancer therapies over the coming years. Fortunately, our ability to quickly and accurately engineer biological systems that behave predictably has been dramatically expanded by significant advances in DNA-sequencing, DNA-synthesis, and DNA-editing technologies. Here, we review emerging technologies and methodologies in the field of building designed biological systems, and we discuss their future perspectives. PMID:23708771

  14. Characterization of Aerodynamic Interactions with the Mars Science Laboratory Reaction Control System Using Computation and Experiment

    NASA Technical Reports Server (NTRS)

    Schoenenberger, Mark; VanNorman, John; Rhode, Matthew; Paulson, John

    2013-01-01

    On August 5 , 2012, the Mars Science Laboratory (MSL) entry capsule successfully entered Mars' atmosphere and landed the Curiosity rover in Gale Crater. The capsule used a reaction control system (RCS) consisting of four pairs of hydrazine thrusters to fly a guided entry. The RCS provided bank control to fly along a flight path commanded by an onboard computer and also damped unwanted rates due to atmospheric disturbances and any dynamic instabilities of the capsule. A preliminary assessment of the MSL's flight data from entry showed that the capsule flew much as predicted. This paper will describe how the MSL aerodynamics team used engineering analyses, computational codes and wind tunnel testing in concert to develop the RCS system and certify it for flight. Over the course of MSL's development, the RCS configuration underwent a number of design iterations to accommodate mechanical constraints, aeroheating concerns and excessive aero/RCS interactions. A brief overview of the MSL RCS configuration design evolution is provided. Then, a brief description is presented of how the computational predictions of RCS jet interactions were validated. The primary work to certify that the RCS interactions were acceptable for flight was centered on validating computational predictions at hypersonic speeds. A comparison of computational fluid dynamics (CFD) predictions to wind tunnel force and moment data gathered in the NASA Langley 31-Inch Mach 10 Tunnel was the lynch pin to validating the CFD codes used to predict aero/RCS interactions. Using the CFD predictions and experimental data, an interaction model was developed for Monte Carlo analyses using 6-degree-of-freedom trajectory simulation. The interaction model used in the flight simulation is presented.

  15. Generating Adaptive Behaviour within a Memory-Prediction Framework

    PubMed Central

    Rawlinson, David; Kowadlo, Gideon

    2012-01-01

    The Memory-Prediction Framework (MPF) and its Hierarchical-Temporal Memory implementation (HTM) have been widely applied to unsupervised learning problems, for both classification and prediction. To date, there has been no attempt to incorporate MPF/HTM in reinforcement learning or other adaptive systems; that is, to use knowledge embodied within the hierarchy to control a system, or to generate behaviour for an agent. This problem is interesting because the human neocortex is believed to play a vital role in the generation of behaviour, and the MPF is a model of the human neocortex. We propose some simple and biologically-plausible enhancements to the Memory-Prediction Framework. These cause it to explore and interact with an external world, while trying to maximize a continuous, time-varying reward function. All behaviour is generated and controlled within the MPF hierarchy. The hierarchy develops from a random initial configuration by interaction with the world and reinforcement learning only. Among other demonstrations, we show that a 2-node hierarchy can learn to successfully play “rocks, paper, scissors” against a predictable opponent. PMID:22272231

  16. Status and trends in active control technology

    NASA Technical Reports Server (NTRS)

    Rediess, H. A.; Szalai, K. J.

    1975-01-01

    The emergence of highly reliable fly-by-wire flight control systems makes it possible to consider a strong reliance on automatic control systems in the design optimization of future aircraft. This design philosophy has been referred to as the control configured vehicle approach or the application of active control technology. Several studies and flight tests sponsored by the Air Force and NASA have demonstrated the potential benefits of control configured vehicles and active control technology. The present status and trends of active control technology are reviewed and the impact it will have on aircraft designs, design techniques, and the designer is predicted.

  17. Modeling the control of the central nervous system over the cardiovascular system using support vector machines.

    PubMed

    Díaz, José; Acosta, Jesús; González, Rafael; Cota, Juan; Sifuentes, Ernesto; Nebot, Àngela

    2018-02-01

    The control of the central nervous system (CNS) over the cardiovascular system (CS) has been modeled using different techniques, such as fuzzy inductive reasoning, genetic fuzzy systems, neural networks, and nonlinear autoregressive techniques; the results obtained so far have been significant, but not solid enough to describe the control response of the CNS over the CS. In this research, support vector machines (SVMs) are used to predict the response of a branch of the CNS, specifically, the one that controls an important part of the cardiovascular system. To do this, five models are developed to emulate the output response of five controllers for the same input signal, the carotid sinus blood pressure (CSBP). These controllers regulate parameters such as heart rate, myocardial contractility, peripheral and coronary resistance, and venous tone. The models are trained using a known set of input-output response in each controller; also, there is a set of six input-output signals for testing each proposed model. The input signals are processed using an all-pass filter, and the accuracy performance of the control models is evaluated using the percentage value of the normalized mean square error (MSE). Experimental results reveal that SVM models achieve a better estimation of the dynamical behavior of the CNS control compared to others modeling systems. The main results obtained show that the best case is for the peripheral resistance controller, with a MSE of 1.20e-4%, while the worst case is for the heart rate controller, with a MSE of 1.80e-3%. These novel models show a great reliability in fitting the output response of the CNS which can be used as an input to the hemodynamic system models in order to predict the behavior of the heart and blood vessels in response to blood pressure variations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The integrated manual and automatic control of complex flight systems

    NASA Technical Reports Server (NTRS)

    Schmidt, D. K.

    1984-01-01

    A unified control synthesis methodology for complex and/or non-conventional flight vehicles are developed. Prediction techniques for the handling characteristics of such vehicles and pilot parameter identification from experimental data are addressed.

  19. Network control principles predict neuron function in the Caenorhabditis elegans connectome

    PubMed Central

    Chew, Yee Lian; Walker, Denise S.; Schafer, William R.; Barabási, Albert-László

    2017-01-01

    Recent studies on the controllability of complex systems offer a powerful mathematical framework to systematically explore the structure-function relationship in biological, social and technological networks1–3. Despite theoretical advances, we lack direct experimental proof of the validity of these widely used control principles. Here we fill this gap by applying a control framework to the connectome of the nematode C. elegans4–6, allowing us to predict the involvement of each C. elegans neuron in locomotor behaviours. We predict that control of the muscles or motor neurons requires twelve neuronal classes, which include neuronal groups previously implicated in locomotion by laser ablation7–13, as well as one previously uncharacterised neuron, PDB. We validate this prediction experimentally, finding that the ablation of PDB leads to a significant loss of dorsoventral polarity in large body bends. Importantly, control principles also allow us to investigate the involvement of individual neurons within each neuronal class. For example, we predict that, within the class of DD motor neurons, only three (DD04, DD05, or DD06) should affect locomotion when ablated individually. This prediction is also confirmed, with single-cell ablations of DD04 or DD05, but not DD02 or DD03, specifically affecting posterior body movements. Our predictions are robust to deletions of weak connections, missing connections, and rewired connections in the current connectome, indicating the potential applicability of this analytical framework to larger and less well-characterised connectomes. PMID:29045391

  20. Network control principles predict neuron function in the Caenorhabditis elegans connectome

    NASA Astrophysics Data System (ADS)

    Yan, Gang; Vértes, Petra E.; Towlson, Emma K.; Chew, Yee Lian; Walker, Denise S.; Schafer, William R.; Barabási, Albert-László

    2017-10-01

    Recent studies on the controllability of complex systems offer a powerful mathematical framework to systematically explore the structure-function relationship in biological, social, and technological networks. Despite theoretical advances, we lack direct experimental proof of the validity of these widely used control principles. Here we fill this gap by applying a control framework to the connectome of the nematode Caenorhabditis elegans, allowing us to predict the involvement of each C. elegans neuron in locomotor behaviours. We predict that control of the muscles or motor neurons requires 12 neuronal classes, which include neuronal groups previously implicated in locomotion by laser ablation, as well as one previously uncharacterized neuron, PDB. We validate this prediction experimentally, finding that the ablation of PDB leads to a significant loss of dorsoventral polarity in large body bends. Importantly, control principles also allow us to investigate the involvement of individual neurons within each neuronal class. For example, we predict that, within the class of DD motor neurons, only three (DD04, DD05, or DD06) should affect locomotion when ablated individually. This prediction is also confirmed; single cell ablations of DD04 or DD05 specifically affect posterior body movements, whereas ablations of DD02 or DD03 do not. Our predictions are robust to deletions of weak connections, missing connections, and rewired connections in the current connectome, indicating the potential applicability of this analytical framework to larger and less well-characterized connectomes.

  1. Network control principles predict neuron function in the Caenorhabditis elegans connectome.

    PubMed

    Yan, Gang; Vértes, Petra E; Towlson, Emma K; Chew, Yee Lian; Walker, Denise S; Schafer, William R; Barabási, Albert-László

    2017-10-26

    Recent studies on the controllability of complex systems offer a powerful mathematical framework to systematically explore the structure-function relationship in biological, social, and technological networks. Despite theoretical advances, we lack direct experimental proof of the validity of these widely used control principles. Here we fill this gap by applying a control framework to the connectome of the nematode Caenorhabditis elegans, allowing us to predict the involvement of each C. elegans neuron in locomotor behaviours. We predict that control of the muscles or motor neurons requires 12 neuronal classes, which include neuronal groups previously implicated in locomotion by laser ablation, as well as one previously uncharacterized neuron, PDB. We validate this prediction experimentally, finding that the ablation of PDB leads to a significant loss of dorsoventral polarity in large body bends. Importantly, control principles also allow us to investigate the involvement of individual neurons within each neuronal class. For example, we predict that, within the class of DD motor neurons, only three (DD04, DD05, or DD06) should affect locomotion when ablated individually. This prediction is also confirmed; single cell ablations of DD04 or DD05 specifically affect posterior body movements, whereas ablations of DD02 or DD03 do not. Our predictions are robust to deletions of weak connections, missing connections, and rewired connections in the current connectome, indicating the potential applicability of this analytical framework to larger and less well-characterized connectomes.

  2. The design and optimization for light-algae bioreactor controller based on Artificial Neural Network-Model Predictive Control

    NASA Astrophysics Data System (ADS)

    Hu, Dawei; Liu, Hong; Yang, Chenliang; Hu, Enzhu

    As a subsystem of the bioregenerative life support system (BLSS), light-algae bioreactor (LABR) has properties of high reaction rate, efficiently synthesizing microalgal biomass, absorbing CO2 and releasing O2, so it is significant for BLSS to provide food and maintain gas balance. In order to manipulate the LABR properly, it has been designed as a closed-loop control system, and technology of Artificial Neural Network-Model Predictive Control (ANN-MPC) is applied to design the controller for LABR in which green microalgae, Spirulina platensis is cultivated continuously. The conclusion is drawn by computer simulation that ANN-MPC controller can intelligently learn the complicated dynamic performances of LABR, and automatically, robustly and self-adaptively regulate the light intensity illuminating on the LABR, hence make the growth of microalgae in the LABR be changed in line with the references, meanwhile provide appropriate damping to improve markedly the transient response performance of LABR.

  3. Estimation of Filling and Afterload Conditions by Pump Intrinsic Parameters in a Pulsatile Total Artificial Heart.

    PubMed

    Cuenca-Navalon, Elena; Laumen, Marco; Finocchiaro, Thomas; Steinseifer, Ulrich

    2016-07-01

    A physiological control algorithm is being developed to ensure an optimal physiological interaction between the ReinHeart total artificial heart (TAH) and the circulatory system. A key factor for that is the long-term, accurate determination of the hemodynamic state of the cardiovascular system. This study presents a method to determine estimation models for predicting hemodynamic parameters (pump chamber filling and afterload) from both left and right cardiovascular circulations. The estimation models are based on linear regression models that correlate filling and afterload values with pump intrinsic parameters derived from measured values of motor current and piston position. Predictions for filling lie in average within 5% from actual values, predictions for systemic afterload (AoPmean , AoPsys ) and mean pulmonary afterload (PAPmean ) lie in average within 9% from actual values. Predictions for systolic pulmonary afterload (PAPsys ) present an average deviation of 14%. The estimation models show satisfactory prediction and confidence intervals and are thus suitable to estimate hemodynamic parameters. This method and derived estimation models are a valuable alternative to implanted sensors and are an essential step for the development of a physiological control algorithm for a fully implantable TAH. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  4. Human factors aspects of air traffic control

    NASA Technical Reports Server (NTRS)

    Older, H. J.; Cameron, B. J.

    1972-01-01

    An overview of human factors problems associated with the operation of present and future air traffic control systems is presented. A description is included of those activities and tasks performed by air traffic controllers at each operational position within the present system. Judgemental data obtained from controllers concerning psychological dimensions related to these tasks and activities are also presented. The analysis includes consideration of psychophysiological dimensions of human performance. The role of the human controller in present air traffic control systems and his predicted role in future systems is described, particularly as that role changes as the result of the system's evolution towards a more automated configuration. Special attention is directed towards problems of staffing, training, and system operation. A series of ten specific research and development projects are recommended and suggested work plans for their implementation are included.

  5. Modeling of the Human - Operator in a Complex System Functioning Under Extreme Conditions

    NASA Astrophysics Data System (ADS)

    Getzov, Peter; Hubenova, Zoia; Yordanov, Dimitar; Popov, Wiliam

    2013-12-01

    Problems, related to the explication of sophisticated control systems of objects, operating under extreme conditions, have been examined and the impact of the effectiveness of the operator's activity on the systems as a whole. The necessity of creation of complex simulation models, reflecting operator's activity, is discussed. Organizational and technical system of an unmanned aviation complex is described as a sophisticated ergatic system. Computer realization of main subsystems of algorithmic system of the man as a controlling system is implemented and specialized software for data processing and analysis is developed. An original computer model of a Man as a tracking system has been implemented. Model of unmanned complex for operators training and formation of a mental model in emergency situation, implemented in "matlab-simulink" environment, has been synthesized. As a unit of the control loop, the pilot (operator) is simplified viewed as an autocontrol system consisting of three main interconnected subsystems: sensitive organs (perception sensors); central nervous system; executive organs (muscles of the arms, legs, back). Theoretical-data model of prediction the level of operator's information load in ergatic systems is proposed. It allows the assessment and prediction of the effectiveness of a real working operator. Simulation model of operator's activity in takeoff based on the Petri nets has been synthesized.

  6. Descent Advisor Preliminary Field Test

    NASA Technical Reports Server (NTRS)

    Green, Steven M.; Vivona, Robert A.; Sanford, Beverly

    1995-01-01

    A field test of the Descent Advisor (DA) automation tool was conducted at the Denver Air Route Traffic Control Center in September 1994. DA is being developed to assist Center controllers in the efficient management and control of arrival traffic. DA generates advisories, based on trajectory predictions, to achieve accurate meter-fix arrival times in a fuel efficient manner while assisting the controller with the prediction and resolution of potential conflicts. The test objectives were: (1) to evaluate the accuracy of DA trajectory predictions for conventional and flight-management system equipped jet transports, (2) to identify significant sources of trajectory prediction error, and (3) to investigate procedural and training issues (both air and ground) associated with DA operations. Various commercial aircraft (97 flights total) and a Boeing 737-100 research aircraft participated in the test. Preliminary results from the primary test set of 24 commercial flights indicate a mean DA arrival time prediction error of 2.4 seconds late with a standard deviation of 13.1 seconds. This paper describes the field test and presents preliminary results for the commercial flights.

  7. Simulation of the Predictive Control Algorithm for Container Crane Operation using Matlab Fuzzy Logic Tool Box

    NASA Technical Reports Server (NTRS)

    Richardson, Albert O.

    1997-01-01

    This research has investigated the use of fuzzy logic, via the Matlab Fuzzy Logic Tool Box, to design optimized controller systems. The engineering system for which the controller was designed and simulate was the container crane. The fuzzy logic algorithm that was investigated was the 'predictive control' algorithm. The plant dynamics of the container crane is representative of many important systems including robotic arm movements. The container crane that was investigated had a trolley motor and hoist motor. Total distance to be traveled by the trolley was 15 meters. The obstruction height was 5 meters. Crane height was 17.8 meters. Trolley mass was 7500 kilograms. Load mass was 6450 kilograms. Maximum trolley and rope velocities were 1.25 meters per sec. and 0.3 meters per sec., respectively. The fuzzy logic approach allowed the inclusion, in the controller model, of performance indices that are more effectively defined in linguistic terms. These include 'safety' and 'cargo swaying'. Two fuzzy inference systems were implemented using the Matlab simulation package, namely the Mamdani system (which relates fuzzy input variables to fuzzy output variables), and the Sugeno system (which relates fuzzy input variables to crisp output variable). It is found that the Sugeno FIS is better suited to including aspects of those plant dynamics whose mathematical relationships can be determined.

  8. A study on a robot arm driven by three-dimensional trajectories predicted from non-invasive neural signals.

    PubMed

    Kim, Yoon Jae; Park, Sung Woo; Yeom, Hong Gi; Bang, Moon Suk; Kim, June Sic; Chung, Chun Kee; Kim, Sungwan

    2015-08-20

    A brain-machine interface (BMI) should be able to help people with disabilities by replacing their lost motor functions. To replace lost functions, robot arms have been developed that are controlled by invasive neural signals. Although invasive neural signals have a high spatial resolution, non-invasive neural signals are valuable because they provide an interface without surgery. Thus, various researchers have developed robot arms driven by non-invasive neural signals. However, robot arm control based on the imagined trajectory of a human hand can be more intuitive for patients. In this study, therefore, an integrated robot arm-gripper system (IRAGS) that is driven by three-dimensional (3D) hand trajectories predicted from non-invasive neural signals was developed and verified. The IRAGS was developed by integrating a six-degree of freedom robot arm and adaptive robot gripper. The system was used to perform reaching and grasping motions for verification. The non-invasive neural signals, magnetoencephalography (MEG) and electroencephalography (EEG), were obtained to control the system. The 3D trajectories were predicted by multiple linear regressions. A target sphere was placed at the terminal point of the real trajectories, and the system was commanded to grasp the target at the terminal point of the predicted trajectories. The average correlation coefficient between the predicted and real trajectories in the MEG case was [Formula: see text] ([Formula: see text]). In the EEG case, it was [Formula: see text] ([Formula: see text]). The success rates in grasping the target plastic sphere were 18.75 and 7.50 % with MEG and EEG, respectively. The success rates of touching the target were 52.50 and 58.75 % respectively. A robot arm driven by 3D trajectories predicted from non-invasive neural signals was implemented, and reaching and grasping motions were performed. In most cases, the robot closely approached the target, but the success rate was not very high because the non-invasive neural signal is less accurate. However the success rate could be sufficiently improved for practical applications by using additional sensors. Robot arm control based on hand trajectories predicted from EEG would allow for portability, and the performance with EEG was comparable to that with MEG.

  9. Two-Pendulum Model of Propellant Slosh in Europa Clipper PMD Tank

    NASA Technical Reports Server (NTRS)

    Ng, Wanyi; Benson, David

    2017-01-01

    Model propellant slosh for Europa Clipper using two pendulums such that controls engineers can predict slosh behavior during the mission. Importance of predicting propellant slosh; (1) Sloshing changes CM (center of mass) of spacecraft and exerts forces and torques on spacecraft. (2) Avoid natural frequencies of structures. (3) Size ACS (Attitude Control Systems) thrusters to counteract forces and torques. Can model sloshing fluid as two pendulums with specific parameters (mass, length, damping),

  10. The systemizing quotient: an investigation of adults with Asperger syndrome or high-functioning autism, and normal sex differences.

    PubMed Central

    Baron-Cohen, Simon; Richler, Jennifer; Bisarya, Dheraj; Gurunathan, Nhishanth; Wheelwright, Sally

    2003-01-01

    Systemizing is the drive to analyse systems or construct systems. A recent model of psychological sex differences suggests that this is a major dimension in which the sexes differ, with males being more drawn to systemize than females. Currently, there are no self-report measures to assess this important dimension. A second major dimension of sex differences is empathizing (the drive to identify mental states and respond to these with an appropriate emotion). Previous studies find females score higher on empathy measures. We report a new self-report questionnaire, the Systemizing Quotient (SQ), for use with adults of normal intelligence. It contains 40 systemizing items and 20 control items. On each systemizing item, a person can score 2, 1 or 0, so the SQ has a maximum score of 80 and a minimum of zero. In Study 1, we measured the SQ of n = 278 adults (114 males, 164 females) from a general population, to test for predicted sex differences (male superiority) in systemizing. All subjects were also given the Empathy Quotient (EQ) to test if previous reports of female superiority would be replicated. In Study 2 we employed the SQ and the EQ with n = 47 adults (33 males, 14 females) with Asperger syndrome (AS) or high-functioning autism (HFA), who are predicted to be either normal or superior at systemizing, but impaired at empathizing. Their scores were compared with n = 47 matched adults from the general population in Study 1. In Study 1, as predicted, normal adult males scored significantly higher than females on the SQ and significantly lower on the EQ. In Study 2, again as predicted, adults with AS/HFA scored significantly higher on the SQ than matched controls, and significantly lower on the EQ than matched controls. The SQ reveals both a sex difference in systemizing in the general population and an unusually strong drive to systemize in AS/HFA. These results are discussed in relation to two linked theories: the 'empathizing-systemizing' (E-S) theory of sex differences and the extreme male brain (EMB) theory of autism. PMID:12639333

  11. Optimal control model predictions of system performance and attention allocation and their experimental validation in a display design study

    NASA Technical Reports Server (NTRS)

    Johannsen, G.; Govindaraj, T.

    1980-01-01

    The influence of different types of predictor displays in a longitudinal vertical takeoff and landing (VTOL) hover task is analyzed in a theoretical study. Several cases with differing amounts of predictive and rate information are compared. The optimal control model of the human operator is used to estimate human and system performance in terms of root-mean-square (rms) values and to compute optimized attention allocation. The only part of the model which is varied to predict these data is the observation matrix. Typical cases are selected for a subsequent experimental validation. The rms values as well as eye-movement data are recorded. The results agree favorably with those of the theoretical study in terms of relative differences. Better matching is achieved by revised model input data.

  12. A Technique for Transient Thermal Testing of Thick Structures

    NASA Technical Reports Server (NTRS)

    Horn, Thomas J.; Richards, W. Lance; Gong, Leslie

    1997-01-01

    A new open-loop heat flux control technique has been developed to conduct transient thermal testing of thick, thermally-conductive aerospace structures. This technique uses calibration of the radiant heater system power level as a function of heat flux, predicted aerodynamic heat flux, and the properties of an instrumented test article. An iterative process was used to generate open-loop heater power profiles prior to each transient thermal test. Differences between the measured and predicted surface temperatures were used to refine the heater power level command profiles through the iteration process. This iteration process has reduced the effects of environmental and test system design factors, which are normally compensated for by closed-loop temperature control, to acceptable levels. The final revised heater power profiles resulted in measured temperature time histories which deviated less than 25 F from the predicted surface temperatures.

  13. GM(1,N) method for the prediction of anaerobic digestion system and sensitivity analysis of influential factors.

    PubMed

    Ren, Jingzheng

    2018-01-01

    Anaerobic digestion process has been recognized as a promising way for waste treatment and energy recovery in a sustainable way. Modelling of anaerobic digestion system is significantly important for effectively and accurately controlling, adjusting, and predicting the system for higher methane yield. The GM(1,N) approach which does not need the mechanism or a large number of samples was employed to model the anaerobic digestion system to predict methane yield. In order to illustrate the proposed model, an illustrative case about anaerobic digestion of municipal solid waste for methane yield was studied, and the results demonstrate that GM(1,N) model can effectively simulate anaerobic digestion system at the cases of poor information with less computational expense. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. An Evolutionary Algorithm for Feature Subset Selection in Hard Disk Drive Failure Prediction

    ERIC Educational Resources Information Center

    Bhasin, Harpreet

    2011-01-01

    Hard disk drives are used in everyday life to store critical data. Although they are reliable, failure of a hard disk drive can be catastrophic, especially in applications like medicine, banking, air traffic control systems, missile guidance systems, computer numerical controlled machines, and more. The use of Self-Monitoring, Analysis and…

  15. Two-Speed Gearbox Dynamic Simulation Predictions and Test Validation

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; DeSmidt, Hans; Smith, Edward C.; Bauman, Steven W.

    2010-01-01

    Dynamic simulations and experimental validation tests were performed on a two-stage, two-speed gearbox as part of the drive system research activities of the NASA Fundamental Aeronautics Subsonics Rotary Wing Project. The gearbox was driven by two electromagnetic motors and had two electromagnetic, multi-disk clutches to control output speed. A dynamic model of the system was created which included a direct current electric motor with proportional-integral-derivative (PID) speed control, a two-speed gearbox with dual electromagnetically actuated clutches, and an eddy current dynamometer. A six degree-of-freedom model of the gearbox accounted for the system torsional dynamics and included gear, clutch, shaft, and load inertias as well as shaft flexibilities and a dry clutch stick-slip friction model. Experimental validation tests were performed on the gearbox in the NASA Glenn gear noise test facility. Gearbox output speed and torque as well as drive motor speed and current were compared to those from the analytical predictions. The experiments correlate very well with the predictions, thus validating the dynamic simulation methodologies.

  16. Prediction of pressure and flow transients in a gaseous bipropellant reaction control rocket engine

    NASA Technical Reports Server (NTRS)

    Markowsky, J. J.; Mcmanus, H. N., Jr.

    1974-01-01

    An analytic model is developed to predict pressure and flow transients in a gaseous hydrogen-oxygen reaction control rocket engine feed system. The one-dimensional equations of momentum and continuity are reduced by the method of characteristics from partial derivatives to a set of total derivatives which describe the state properties along the feedline. System components, e.g., valves, manifolds, and injectors are represented by pseudo steady-state relations at discrete junctions in the system. Solutions were effected by a FORTRAN IV program on an IBM 360/65. The results indicate the relative effect of manifold volume, combustion lag time, feedline pressure fluctuations, propellant temperature, and feedline length on the chamber pressure transient. The analytical combustion model is verified by good correlation between predicted and observed chamber pressure transients. The developed model enables a rocket designer to vary the design parameters analytically to obtain stable combustion for a particular mode of operation which is prescribed by mission objectives.

  17. Work, family and life-course fit

    PubMed Central

    Moen, Phyllis; Kelly, Erin; Huang, Qinlei

    2008-01-01

    This study moves from “work-family” to a multi-dimensional “life-course fit” construct (employees’ cognitive assessments of resources, resource deficits, and resource demands), using a combined work-family, demands-control and ecology of the life course framing. It examined (1) impacts of job and home ecological systems on fit dimensions, and (2) whether control over work time predicted and mediated life-course fit outcomes. Using cluster analysis of survey data on a sample of 917 white-collar employees from Best Buy headquarters, we identified four job ecologies (corresponding to the job demands-job control model) and five home ecologies (theorizing an analogous home demands-home control model). Job and home ecologies predicted fit dimensions in an additive, not interactive, fashion. Employees’ work-time control predicted every life-course fit dimension and partially mediated effects of job ecologies, organizational tenure, and job category. PMID:19430546

  18. Multivariable model predictive control design of reactive distillation column for Dimethyl Ether production

    NASA Astrophysics Data System (ADS)

    Wahid, A.; Putra, I. G. E. P.

    2018-03-01

    Dimethyl ether (DME) as an alternative clean energy has attracted a growing attention in the recent years. DME production via reactive distillation has potential for capital cost and energy requirement savings. However, combination of reaction and distillation on a single column makes reactive distillation process a very complex multivariable system with high non-linearity of process and strong interaction between process variables. This study investigates a multivariable model predictive control (MPC) based on two-point temperature control strategy for the DME reactive distillation column to maintain the purities of both product streams. The process model is estimated by a first order plus dead time model. The DME and water purity is maintained by controlling a stage temperature in rectifying and stripping section, respectively. The result shows that the model predictive controller performed faster responses compared to conventional PI controller that are showed by the smaller ISE values. In addition, the MPC controller is able to handle the loop interactions well.

  19. A study of the prediction of cruise noise and laminar flow control noise criteria for subsonic air transports

    NASA Technical Reports Server (NTRS)

    Swift, G.; Mungur, P.

    1979-01-01

    General procedures for the prediction of component noise levels incident upon airframe surfaces during cruise are developed. Contributing noise sources are those associated with the propulsion system, the airframe and the laminar flow control (LFC) system. Transformation procedures from the best prediction base of each noise source to the transonic cruise condition are established. Two approaches to LFC/acoustic criteria are developed. The first is a semi-empirical extension of the X-21 LFC/acoustic criteria to include sensitivity to the spectrum and directionality of the sound field. In the second, the more fundamental problem of how sound excites boundary layer disturbances is analyzed by deriving and solving an inhomogeneous Orr-Sommerfeld equation in which the source terms are proportional to the production and dissipation of sound induced fluctuating vorticity. Numerical solutions are obtained and compared with corresponding measurements. Recommendations are made to improve and validate both the cruise noise prediction methods and the LFC/acoustic criteria.

  20. Discriminability of Prediction Artifacts in a Time Delayed Virtual Environment

    NASA Technical Reports Server (NTRS)

    Adelstein, Bernard D.; Jung, Jae Y.; Ellis, Stephen R.

    2001-01-01

    Overall latency remains an impediment to perceived image stability and consequently to human performance in virtual environment (VE) systems. Predictive compensators have been proposed as a means to mitigate these shortcomings, but they introduce rendering errors because of induced motion overshoot and heightened noise. Discriminability of these compensator artifacts was investigated by a protocol in which head tracked image stability for 35 ms baseline VE system latency was compared against artificially added (16.7 to 100 ms) latency compensated by a previously studied Kalman Filter (K-F) predictor. A control study in which uncompensated 16.7 to 100 ms latencies were compared against the baseline was also performed. Results from 10 subjects in the main study and 8 in the control group indicate that predictive compensation artifacts are less discernible than the disruptions of uncompensated time delay for the shorter but not the longer added latencies. We propose that noise magnification and overshoot are contributory cues to the presence of predictive compensation.

  1. ERTS-1 data collection systems used to predict wheat disease severities. [Riley County, Kansas

    NASA Technical Reports Server (NTRS)

    Kanemasu, E. T.; Schimmelpfenning, H.; Choy, E. C.; Eversmeyer, M. G.; Lenhert, D.

    1974-01-01

    The author has identified the following significant results. The feasibility of using the data collection system on ERTS-1 to predict wheat leaf rust severity and resulting yield loss was tested. Ground-based data collection platforms (DCP'S), placed in two commercial wheat fields in Riley County, Kansas, transmitted to the satellite such meteorological information as maximum and minimum temperature, relative humidity, and hours of free moisture. Meteorological data received from the two DCP'S from April 23 to 29 were used to estimate the disease progress curve. Values from the curve were used to predict the percentage decrease in wheat yields resulting from leaf rust. Actual decrease in yield was obtained by applying a zinc and maneb spray (5.6 kg/ha) to control leaf rust, then comparing yields of the controlled (healthy) and the noncontrolled (rusted) areas. In each field a 9% decrease in yield was predicted by the DCP-derived data; actual decreases were 12% and 9%.

  2. Cockpit System Situational Awareness Modeling Tool

    NASA Technical Reports Server (NTRS)

    Keller, John; Lebiere, Christian; Shay, Rick; Latorella, Kara

    2004-01-01

    This project explored the possibility of predicting pilot situational awareness (SA) using human performance modeling techniques for the purpose of evaluating developing cockpit systems. The Improved Performance Research Integration Tool (IMPRINT) was combined with the Adaptive Control of Thought-Rational (ACT-R) cognitive modeling architecture to produce a tool that can model both the discrete tasks of pilots and the cognitive processes associated with SA. The techniques for using this tool to predict SA were demonstrated using the newly developed Aviation Weather Information (AWIN) system. By providing an SA prediction tool to cockpit system designers, cockpit concepts can be assessed early in the design process while providing a cost-effective complement to the traditional pilot-in-the-loop experiments and data collection techniques.

  3. Evaluation of the utility of a glycemic pattern identification system.

    PubMed

    Otto, Erik A; Tannan, Vinay

    2014-07-01

    With the increasing prevalence of systems allowing automated, real-time transmission of blood glucose data there is a need for pattern recognition techniques that can inform of deleterious patterns in glycemic control when people test. We evaluated the utility of pattern identification with a novel pattern identification system named Vigilant™ and compared it to standard pattern identification methods in diabetes. To characterize the importance of an identified pattern we evaluated the relative risk of future hypoglycemic and hyperglycemic events in diurnal periods following identification of a pattern in a data set of 536 patients with diabetes. We evaluated events 2 days, 7 days, 30 days, and 61-90 days from pattern identification, across diabetes types and cohorts of glycemic control, and also compared the system to 6 pattern identification methods consisting of deleterious event counts and percentages over 5-, 14-, and 30-day windows. Episodes of hypoglycemia, hyperglycemia, severe hypoglycemia, and severe hyperglycemia were 120%, 46%, 123%, and 76% more likely after pattern identification, respectively, compared to periods when no pattern was identified. The system was also significantly more predictive of deleterious events than other pattern identification methods evaluated, and was persistently predictive up to 3 months after pattern identification. The system identified patterns that are significantly predictive of deleterious glycemic events, and more so relative to many pattern identification methods used in diabetes management today. Further study will inform how improved pattern identification can lead to improved glycemic control. © 2014 Diabetes Technology Society.

  4. The Effects of Longitudinal Control-System Dynamics on Pilot Opinion and Response Characteristics as Determined from Flight Tests and from Ground Simulator Studies

    NASA Technical Reports Server (NTRS)

    Sadoff, Melvin

    1958-01-01

    The results of a fixed-base simulator study of the effects of variable longitudinal control-system dynamics on pilot opinion are presented and compared with flight-test data. The control-system variables considered in this investigation included stick force per g, time constant, and dead-band, or stabilizer breakout force. In general, the fairly good correlation between flight and simulator results for two pilots demonstrates the validity of fixed-base simulator studies which are designed to complement and supplement flight studies and serve as a guide in control-system preliminary design. However, in the investigation of certain problem areas (e.g., sensitive control-system configurations associated with pilot- induced oscillations in flight), fixed-base simulator results did not predict the occurrence of an instability, although the pilots noted the system was extremely sensitive and unsatisfactory. If it is desired to predict pilot-induced-oscillation tendencies, tests in moving-base simulators may be required. It was found possible to represent the human pilot by a linear pilot analog for the tracking task assumed in the present study. The criterion used to adjust the pilot analog was the root-mean-square tracking error of one of the human pilots on the fixed-base simulator. Matching the tracking error of the pilot analog to that of the human pilot gave an approximation to the variation of human-pilot behavior over a range of control-system dynamics. Results of the pilot-analog study indicated that both for optimized control-system dynamics (for poor airplane dynamics) and for a region of good airplane dynamics, the pilot response characteristics are approximately the same.

  5. Overview of the NASA Wallops Flight Facility Mobile Range Control System

    NASA Technical Reports Server (NTRS)

    Davis, Rodney A.; Semancik, Susan K.; Smith, Donna C.; Stancil, Robert K.

    1999-01-01

    The NASA GSFC's Wallops Flight Facility (WFF) Mobile Range Control System (MRCS) is based on the functionality of the WFF Range Control Center at Wallops Island, Virginia. The MRCS provides real time instantaneous impact predictions, real time flight performance data, and other critical information needed by mission and range safety personnel in support of range operations at remote launch sites. The MRCS integrates a PC telemetry processing system (TELPro), a PC radar processing system (PCDQS), multiple Silicon Graphics display workstations (IRIS), and communication links within a mobile van for worldwide support of orbital, suborbital, and aircraft missions. This paper describes the MRCS configuration; the TELPro's capability to provide single/dual telemetry tracking and vehicle state data processing; the PCDQS' capability to provide real time positional data and instantaneous impact prediction for up to 8 data sources; and the IRIS' user interface for setup/display options. With portability, PC-based data processing, high resolution graphics, and flexible multiple source support, the MRCS system is proving to be responsive to the ever-changing needs of a variety of increasingly complex missions.

  6. Predictive Mechanisms Are Not Involved the Same Way during Human-Human vs. Human-Machine Interactions: A Review

    PubMed Central

    Sahaï, Aïsha; Pacherie, Elisabeth; Grynszpan, Ouriel; Berberian, Bruno

    2017-01-01

    Nowadays, interactions with others do not only involve human peers but also automated systems. Many studies suggest that the motor predictive systems that are engaged during action execution are also involved during joint actions with peers and during other human generated action observation. Indeed, the comparator model hypothesis suggests that the comparison between a predicted state and an estimated real state enables motor control, and by a similar functioning, understanding and anticipating observed actions. Such a mechanism allows making predictions about an ongoing action, and is essential to action regulation, especially during joint actions with peers. Interestingly, the same comparison process has been shown to be involved in the construction of an individual's sense of agency, both for self-generated and observed other human generated actions. However, the implication of such predictive mechanisms during interactions with machines is not consensual, probably due to the high heterogeneousness of the automata used in the experimentations, from very simplistic devices to full humanoid robots. The discrepancies that are observed during human/machine interactions could arise from the absence of action/observation matching abilities when interacting with traditional low-level automata. Consistently, the difficulties to build a joint agency with this kind of machines could stem from the same problem. In this context, we aim to review the studies investigating predictive mechanisms during social interactions with humans and with automated artificial systems. We will start by presenting human data that show the involvement of predictions in action control and in the sense of agency during social interactions. Thereafter, we will confront this literature with data from the robotic field. Finally, we will address the upcoming issues in the field of robotics related to automated systems aimed at acting as collaborative agents. PMID:29081744

  7. Real time simulation of nonlinear generalized predictive control for wind energy conversion system with nonlinear observer.

    PubMed

    Ouari, Kamel; Rekioua, Toufik; Ouhrouche, Mohand

    2014-01-01

    In order to make a wind power generation truly cost-effective and reliable, an advanced control techniques must be used. In this paper, we develop a new control strategy, using nonlinear generalized predictive control (NGPC) approach, for DFIG-based wind turbine. The proposed control law is based on two points: NGPC-based torque-current control loop generating the rotor reference voltage and NGPC-based speed control loop that provides the torque reference. In order to enhance the robustness of the controller, a disturbance observer is designed to estimate the aerodynamic torque which is considered as an unknown perturbation. Finally, a real-time simulation is carried out to illustrate the performance of the proposed controller. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Analysis of explicit model predictive control for path-following control

    PubMed Central

    2018-01-01

    In this paper, explicit Model Predictive Control(MPC) is employed for automated lane-keeping systems. MPC has been regarded as the key to handle such constrained systems. However, the massive computational complexity of MPC, which employs online optimization, has been a major drawback that limits the range of its target application to relatively small and/or slow problems. Explicit MPC can reduce this computational burden using a multi-parametric quadratic programming technique(mp-QP). The control objective is to derive an optimal front steering wheel angle at each sampling time so that autonomous vehicles travel along desired paths, including straight, circular, and clothoid parts, at high entry speeds. In terms of the design of the proposed controller, a method of choosing weighting matrices in an optimization problem and the range of horizons for path-following control are described through simulations. For the verification of the proposed controller, simulation results obtained using other control methods such as MPC, Linear-Quadratic Regulator(LQR), and driver model are employed, and CarSim, which reflects the features of a vehicle more realistically than MATLAB/Simulink, is used for reliable demonstration. PMID:29534080

  9. Analysis of explicit model predictive control for path-following control.

    PubMed

    Lee, Junho; Chang, Hyuk-Jun

    2018-01-01

    In this paper, explicit Model Predictive Control(MPC) is employed for automated lane-keeping systems. MPC has been regarded as the key to handle such constrained systems. However, the massive computational complexity of MPC, which employs online optimization, has been a major drawback that limits the range of its target application to relatively small and/or slow problems. Explicit MPC can reduce this computational burden using a multi-parametric quadratic programming technique(mp-QP). The control objective is to derive an optimal front steering wheel angle at each sampling time so that autonomous vehicles travel along desired paths, including straight, circular, and clothoid parts, at high entry speeds. In terms of the design of the proposed controller, a method of choosing weighting matrices in an optimization problem and the range of horizons for path-following control are described through simulations. For the verification of the proposed controller, simulation results obtained using other control methods such as MPC, Linear-Quadratic Regulator(LQR), and driver model are employed, and CarSim, which reflects the features of a vehicle more realistically than MATLAB/Simulink, is used for reliable demonstration.

  10. Prediction of genotoxic potential of cosmetic ingredients by an in silico battery system consisting of a combination of an expert rule-based system and a statistics-based system.

    PubMed

    Aiba née Kaneko, Maki; Hirota, Morihiko; Kouzuki, Hirokazu; Mori, Masaaki

    2015-02-01

    Genotoxicity is the most commonly used endpoint to predict the carcinogenicity of chemicals. The International Conference on Harmonization (ICH) M7 Guideline on Assessment and Control of DNA Reactive (Mutagenic) Impurities in Pharmaceuticals to Limit Potential Carcinogenic Risk offers guidance on (quantitative) structure-activity relationship ((Q)SAR) methodologies that predict the outcome of bacterial mutagenicity assay for actual and potential impurities. We examined the effectiveness of the (Q)SAR approach with the combination of DEREK NEXUS as an expert rule-based system and ADMEWorks as a statistics-based system for the prediction of not only mutagenic potential in the Ames test, but also genotoxic potential in mutagenicity and clastogenicity tests, using a data set of 342 chemicals extracted from the literature. The prediction of mutagenic potential or genotoxic potential by DEREK NEXUS or ADMEWorks showed high values of sensitivity and concordance, while prediction by the combination of DEREK NEXUS and ADMEWorks (battery system) showed the highest values of sensitivity and concordance among the three methods, but the lowest value of specificity. The number of false negatives was reduced with the battery system. We also separately predicted the mutagenic potential and genotoxic potential of 41 cosmetic ingredients listed in the International Nomenclature of Cosmetic Ingredients (INCI) among the 342 chemicals. Although specificity was low with the battery system, sensitivity and concordance were high. These results suggest that the battery system consisting of DEREK NEXUS and ADMEWorks is useful for prediction of genotoxic potential of chemicals, including cosmetic ingredients.

  11. Real-time quality assurance testing using photonic techniques: Application to iodine water system

    NASA Technical Reports Server (NTRS)

    Arendale, W. F.; Hatcher, Richard; Garlington, Yadilett; Harwell, Jack; Everett, Tracey

    1990-01-01

    A feasibility study of the use of inspection systems incorporating photonic sensors and multivariate analyses to provide an instrumentation system that in real-time assures quality and that the system in control has been conducted. A system is in control when the near future of the product quality is predictable. Off-line chemical analyses can be used for a chemical process when slow kinetics allows time to take a sample to the laboratory and the system provides a recovery mechanism that returns the system to statistical control without intervention of the operator. The objective for this study has been the implementation of do-it-right-the-first-time and just-in-time philosophies. The Environment Control and Life Support Systems (ECLSS) water reclamation system that adds iodine for biocidal control is an ideal candidate for the study and implementation of do-it-right-the-first-time technologies.

  12. Dynamic analysis of gas-core reactor system

    NASA Technical Reports Server (NTRS)

    Turner, K. H., Jr.

    1973-01-01

    A heat transfer analysis was incorporated into a previously developed model CODYN to obtain a model of open-cycle gaseous core reactor dynamics which can predict the heat flux at the cavity wall. The resulting model was used to study the sensitivity of the model to the value of the reactivity coefficients and to determine the system response for twenty specified perturbations. In addition, the model was used to study the effectiveness of several control systems in controlling the reactor. It was concluded that control drums located in the moderator region capable of inserting reactivity quickly provided the best control.

  13. Methods of Si based ceramic components volatilization control in a gas turbine engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia-Crespo, Andres Jose; Delvaux, John; Dion Ouellet, Noemie

    A method of controlling volatilization of silicon based components in a gas turbine engine includes measuring, estimating and/or predicting a variable related to operation of the gas turbine engine; correlating the variable to determine an amount of silicon to control volatilization of the silicon based components in the gas turbine engine; and injecting silicon into the gas turbine engine to control volatilization of the silicon based components. A gas turbine with a compressor, combustion system, turbine section and silicon injection system may be controlled by a controller that implements the control method.

  14. Characterization of normality of chaotic systems including prediction and detection of anomalies

    NASA Astrophysics Data System (ADS)

    Engler, Joseph John

    Accurate prediction and control pervades domains such as engineering, physics, chemistry, and biology. Often, it is discovered that the systems under consideration cannot be well represented by linear, periodic nor random data. It has been shown that these systems exhibit deterministic chaos behavior. Deterministic chaos describes systems which are governed by deterministic rules but whose data appear to be random or quasi-periodic distributions. Deterministically chaotic systems characteristically exhibit sensitive dependence upon initial conditions manifested through rapid divergence of states initially close to one another. Due to this characterization, it has been deemed impossible to accurately predict future states of these systems for longer time scales. Fortunately, the deterministic nature of these systems allows for accurate short term predictions, given the dynamics of the system are well understood. This fact has been exploited in the research community and has resulted in various algorithms for short term predictions. Detection of normality in deterministically chaotic systems is critical in understanding the system sufficiently to able to predict future states. Due to the sensitivity to initial conditions, the detection of normal operational states for a deterministically chaotic system can be challenging. The addition of small perturbations to the system, which may result in bifurcation of the normal states, further complicates the problem. The detection of anomalies and prediction of future states of the chaotic system allows for greater understanding of these systems. The goal of this research is to produce methodologies for determining states of normality for deterministically chaotic systems, detection of anomalous behavior, and the more accurate prediction of future states of the system. Additionally, the ability to detect subtle system state changes is discussed. The dissertation addresses these goals by proposing new representational techniques and novel prediction methodologies. The value and efficiency of these methods are explored in various case studies. Presented is an overview of chaotic systems with examples taken from the real world. A representation schema for rapid understanding of the various states of deterministically chaotic systems is presented. This schema is then used to detect anomalies and system state changes. Additionally, a novel prediction methodology which utilizes Lyapunov exponents to facilitate longer term prediction accuracy is presented and compared with other nonlinear prediction methodologies. These novel methodologies are then demonstrated on applications such as wind energy, cyber security and classification of social networks.

  15. AERIS : eco-driving application development and testing.

    DOT National Transportation Integrated Search

    2012-06-01

    This exploratory study investigates the potential of developing an Eco-Driving application that utilizes an eco-cruise control (ECC) system within state-of-the-art car-following models. The research focuses on integrating predictive cruise control an...

  16. Multi input single output model predictive control of non-linear bio-polymerization process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arumugasamy, Senthil Kumar; Ahmad, Z.

    This paper focuses on Multi Input Single Output (MISO) Model Predictive Control of bio-polymerization process in which mechanistic model is developed and linked with the feedforward neural network model to obtain a hybrid model (Mechanistic-FANN) of lipase-catalyzed ring-opening polymerization of ε-caprolactone (ε-CL) for Poly (ε-caprolactone) production. In this research, state space model was used, in which the input to the model were the reactor temperatures and reactor impeller speeds and the output were the molecular weight of polymer (M{sub n}) and polymer polydispersity index. State space model for MISO created using System identification tool box of Matlab™. This state spacemore » model is used in MISO MPC. Model predictive control (MPC) has been applied to predict the molecular weight of the biopolymer and consequently control the molecular weight of biopolymer. The result shows that MPC is able to track reference trajectory and give optimum movement of manipulated variable.« less

  17. Maintenance of equilibrium point control during an unexpectedly loaded rapid limb movement.

    PubMed

    Simmons, R W; Richardson, C

    1984-06-08

    Two experiments investigated whether the equilibrium point hypothesis or the mass-spring model of motor control subserves positioning accuracy during spring loaded, rapid, bi-articulated movement. For intact preparations, the equilibrium point hypothesis predicts response accuracy to be determined by a mixture of afferent and efferent information, whereas the mass-spring model predicts positioning to be under a direct control system. Subjects completed a series of load-resisted training trials to a spatial target. The magnitude of a sustained spring load was unexpectedly increased on selected trials. Results indicated positioning accuracy and applied force varied with increases in load, which suggests that the original efferent commands are modified by afferent information during the movement as predicted by the equilibrium point hypothesis.

  18. Preliminary analysis of STS-2 entry flight data

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A preliminary analysis of the data obtained during the entry of the STS-2 flight was completed. The stability and control derivatives from STS-2 were examined. Questions still remain throughout the flight envelope and the area below Mach 3 needs more study. With three controls operating in a high gain feedback system, it is difficult to separate the individual effects of each of the controls. Analysis of the aerothermal data shows that wing structural-temperature measurements are generally repeatable and consistent with the trajectories. The measured wing upper surface temperatures are in reasonable agreement with Dryden predictions but wing lower surface temperatures are higher than Dryden predictions. Heating and heat transfer models will be adjusted to improve the temperature prediction capability for future trajectories.

  19. A Multiple Agent Model of Human Performance in Automated Air Traffic Control and Flight Management Operations

    NASA Technical Reports Server (NTRS)

    Corker, Kevin; Pisanich, Gregory; Condon, Gregory W. (Technical Monitor)

    1995-01-01

    A predictive model of human operator performance (flight crew and air traffic control (ATC)) has been developed and applied in order to evaluate the impact of automation developments in flight management and air traffic control. The model is used to predict the performance of a two person flight crew and the ATC operators generating and responding to clearances aided by the Center TRACON Automation System (CTAS). The purpose of the modeling is to support evaluation and design of automated aids for flight management and airspace management and to predict required changes in procedure both air and ground in response to advancing automation in both domains. Additional information is contained in the original extended abstract.

  20. Active and passive stabilization of body pitch in insect flight

    PubMed Central

    Ristroph, Leif; Ristroph, Gunnar; Morozova, Svetlana; Bergou, Attila J.; Chang, Song; Guckenheimer, John; Wang, Z. Jane; Cohen, Itai

    2013-01-01

    Flying insects have evolved sophisticated sensory–motor systems, and here we argue that such systems are used to keep upright against intrinsic flight instabilities. We describe a theory that predicts the instability growth rate in body pitch from flapping-wing aerodynamics and reveals two ways of achieving balanced flight: active control with sufficiently rapid reactions and passive stabilization with high body drag. By glueing magnets to fruit flies and perturbing their flight using magnetic impulses, we show that these insects employ active control that is indeed fast relative to the instability. Moreover, we find that fruit flies with their control sensors disabled can keep upright if high-drag fibres are also attached to their bodies, an observation consistent with our prediction for the passive stability condition. Finally, we extend this framework to unify the control strategies used by hovering animals and also furnish criteria for achieving pitch stability in flapping-wing robots. PMID:23697713

  1. The UKC2 regional coupled environmental prediction system

    NASA Astrophysics Data System (ADS)

    Lewis, Huw W.; Castillo Sanchez, Juan Manuel; Graham, Jennifer; Saulter, Andrew; Bornemann, Jorge; Arnold, Alex; Fallmann, Joachim; Harris, Chris; Pearson, David; Ramsdale, Steven; Martínez-de la Torre, Alberto; Bricheno, Lucy; Blyth, Eleanor; Bell, Victoria A.; Davies, Helen; Marthews, Toby R.; O'Neill, Clare; Rumbold, Heather; O'Dea, Enda; Brereton, Ashley; Guihou, Karen; Hines, Adrian; Butenschon, Momme; Dadson, Simon J.; Palmer, Tamzin; Holt, Jason; Reynard, Nick; Best, Martin; Edwards, John; Siddorn, John

    2018-01-01

    It is hypothesized that more accurate prediction and warning of natural hazards, such as of the impacts of severe weather mediated through various components of the environment, require a more integrated Earth System approach to forecasting. This hypothesis can be explored using regional coupled prediction systems, in which the known interactions and feedbacks between different physical and biogeochemical components of the environment across sky, sea and land can be simulated. Such systems are becoming increasingly common research tools. This paper describes the development of the UKC2 regional coupled research system, which has been delivered under the UK Environmental Prediction Prototype project. This provides the first implementation of an atmosphere-land-ocean-wave modelling system focussed on the United Kingdom and surrounding seas at km-scale resolution. The UKC2 coupled system incorporates models of the atmosphere (Met Office Unified Model), land surface with river routing (JULES), shelf-sea ocean (NEMO) and ocean waves (WAVEWATCH III). These components are coupled, via OASIS3-MCT libraries, at unprecedentedly high resolution across the UK within a north-western European regional domain. A research framework has been established to explore the representation of feedback processes in coupled and uncoupled modes, providing a new research tool for UK environmental science. This paper documents the technical design and implementation of UKC2, along with the associated evaluation framework. An analysis of new results comparing the output of the coupled UKC2 system with relevant forced control simulations for six contrasting case studies of 5-day duration is presented. Results demonstrate that performance can be achieved with the UKC2 system that is at least comparable to its component control simulations. For some cases, improvements in air temperature, sea surface temperature, wind speed, significant wave height and mean wave period highlight the potential benefits of coupling between environmental model components. Results also illustrate that the coupling itself is not sufficient to address all known model issues. Priorities for future development of the UK Environmental Prediction framework and component systems are discussed.

  2. Digital electronic engine control fault detection and accommodation flight evaluation

    NASA Technical Reports Server (NTRS)

    Baer-Ruedhart, J. L.

    1984-01-01

    The capabilities and performance of various fault detection and accommodation (FDA) schemes in existing and projected engine control systems were investigated. Flight tests of the digital electronic engine control (DEEC) in an F-15 aircraft show discrepancies between flight results and predictions based on simulation and altitude testing. The FDA methodology and logic in the DEEC system, and the results of the flight failures which occurred to date are described.

  3. The backend design of an environmental monitoring system upon real-time prediction of groundwater level fluctuation under the hillslope.

    PubMed

    Lin, Hsueh-Chun; Hong, Yao-Ming; Kan, Yao-Chiang

    2012-01-01

    The groundwater level represents a critical factor to evaluate hillside landslides. A monitoring system upon the real-time prediction platform with online analytical functions is important to forecast the groundwater level due to instantaneously monitored data when the heavy precipitation raises the groundwater level under the hillslope and causes instability. This study is to design the backend of an environmental monitoring system with efficient algorithms for machine learning and knowledge bank for the groundwater level fluctuation prediction. A Web-based platform upon the model-view controller-based architecture is established with technology of Web services and engineering data warehouse to support online analytical process and feedback risk assessment parameters for real-time prediction. The proposed system incorporates models of hydrological computation, machine learning, Web services, and online prediction to satisfy varieties of risk assessment requirements and approaches of hazard prevention. The rainfall data monitored from the potential landslide area at Lu-Shan, Nantou and Li-Shan, Taichung, in Taiwan, are applied to examine the system design.

  4. A reinforcement learning-based architecture for fuzzy logic control

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1992-01-01

    This paper introduces a new method for learning to refine a rule-based fuzzy logic controller. A reinforcement learning technique is used in conjunction with a multilayer neural network model of a fuzzy controller. The approximate reasoning based intelligent control (ARIC) architecture proposed here learns by updating its prediction of the physical system's behavior and fine tunes a control knowledge base. Its theory is related to Sutton's temporal difference (TD) method. Because ARIC has the advantage of using the control knowledge of an experienced operator and fine tuning it through the process of learning, it learns faster than systems that train networks from scratch. The approach is applied to a cart-pole balancing system.

  5. Effectiveness of a passive-active vibration isolation system with actuator constraints

    NASA Astrophysics Data System (ADS)

    Sun, Lingling; Sun, Wei; Song, Kongjie; Hansen, Colin H.

    2014-05-01

    In the prediction of active vibration isolation performance, control force requirements were ignored in previous work. This may limit the realization of theoretically predicted isolation performance if control force of large magnitude cannot be supplied by actuators. The behavior of a feed-forward active isolation system subjected to actuator output constraints is investigated. Distributed parameter models are developed to analyze the system response, and to produce a transfer matrix for the design of an integrated passive-active isolation system. Cost functions comprising a combination of the vibration transmission energy and the sum of the squared control forces are proposed. The example system considered is a rigid body connected to a simply supported plate via two passive-active isolation mounts. Vertical and transverse forces as well as a rotational moment are applied at the rigid body, and resonances excited in elastic mounts and the supporting plate are analyzed. The overall isolation performance is evaluated by numerical simulation. The simulation results are then compared with those obtained using unconstrained control strategies. In addition, the effects of waves in elastic mounts are analyzed. It is shown that the control strategies which rely on unconstrained actuator outputs may give substantial power transmission reductions over a wide frequency range, but also require large control force amplitudes to control excited vibration modes of the system. Expected power transmission reductions for modified control strategies that incorporate constrained actuator outputs are considerably less than typical reductions with unconstrained actuator outputs. In the frequency range in which rigid body modes are present, the control strategies can only achieve 5-10 dB power transmission reduction, when control forces are constrained to be the same order of the magnitude as the primary vertical force. The resonances of the elastic mounts result in a notable increase of power transmission in high frequency range and cannot be attenuated by active control. The investigation provides a guideline for design and evaluation of active vibration isolation systems.

  6. Guidance and control 1992; Proceedings of the 15th Annual AAS Rocky Mountain Conference, Keystone, CO, Feb. 8-12, 1992

    NASA Astrophysics Data System (ADS)

    Culp, Robert D.; Zietz, Richard P.

    The present volume on guidance and control discusses advances in guidance, navigation, and control, guidance and control storyboard displays, space robotic control, spacecraft control and flexible body interaction, and the Mission to Planet Earth. Attention is given to applications of Newton's method to attitude determination, a new family of low-cost momentum/reaction wheels, stellar attitude data handling, and satellite life prediction using propellant quantity measurements. Topics addressed include robust manipulator controller specification and design, implementations and applications of a manipulator control testbed, optimizing transparency in teleoperator architectures, and MIMO system identification using frequency response data. Also discussed are instrument configurations for the restructured Earth Observing System, the HIRIS instrument, clouds and the earth's radiant energy system, and large space-based systems for dealing with global change.

  7. Executive function predicts artificial language learning

    PubMed Central

    Kapa, Leah L.; Colombo, John

    2017-01-01

    Previous research suggests executive function (EF) advantages among bilinguals compared to monolingual peers, and these advantages are generally attributed to experience controlling two linguistic systems. However, the possibility that the relationship between bilingualism and EF might be bidirectional has not been widely considered; while experience with two languages might improve EF, better EF skills might also facilitate language learning. In the current studies, we tested whether adults’ and preschool children’s EF abilities predicted success in learning a novel artificial language. After controlling for working memory and English receptive vocabulary, adults’ artificial language performance was predicted by their inhibitory control ability (Study 1) and children’s performance was predicted by their attentional monitoring and shifting ability (Study 2). These findings provide preliminary evidence suggesting that EF processes may be employed during initial stages of language learning, particularly vocabulary acquisition, and support the possibility of a bidirectional relationship between EF and language acquisition. PMID:29129958

  8. Application of higher harmonic blade feathering for helicopter vibration reduction

    NASA Technical Reports Server (NTRS)

    Powers, R. W.

    1978-01-01

    Higher harmonic blade feathering for helicopter vibration reduction is considered. Recent wind tunnel tests confirmed the effectiveness of higher harmonic control in reducing articulated rotor vibratory hub loads. Several predictive analyses developed in support of the NASA program were shown to be capable of calculating single harmonic control inputs required to minimize a single 4P hub response. In addition, a multiple-input, multiple-output harmonic control predictive analysis was developed. All techniques developed thus far obtain a solution by extracting empirical transfer functions from sampled data. Algorithm data sampling and processing requirements are minimal to encourage adaptive control system application of such techniques in a flight environment.

  9. Analysis of Complex Valve and Feed Systems

    NASA Technical Reports Server (NTRS)

    Ahuja, Vineet; Hosangadi, Ashvin; Shipman, Jeremy; Cavallo, Peter; Dash, Sanford

    2007-01-01

    A numerical framework for analysis of complex valve systems supports testing of propulsive systems by simulating key valve and control system components in the test loop. In particular, it is designed to enhance the analysis capability in terms of identifying system transients and quantifying the valve response to these transients. This system has analysis capability for simulating valve motion in complex systems operating in diverse flow regimes ranging from compressible gases to cryogenic liquids. A key feature is the hybrid, unstructured framework with sub-models for grid movement and phase change including cryogenic cavitations. The multi-element unstructured framework offers improved predictions of valve performance characteristics under steady conditions for structurally complex valves such as pressure regulator valve. Unsteady simulations of valve motion using this computational approach have been carried out for various valves in operation at Stennis Space Center such as the split-body valve and the 10-in. (approx.25.4-cm) LOX (liquid oxygen) valve and the 4-in. (approx.10 cm) Y-pattern valve (liquid nitrogen). Such simulations make use of variable grid topologies, thereby permitting solution accuracy and resolving important flow physics in the seat region of the moving valve. An advantage to this software includes possible reduction in testing costs incurred due to disruptions relating to unexpected flow transients or functioning of valve/flow control systems. Prediction of the flow anomalies leading to system vibrations, flow resonance, and valve stall can help in valve scheduling and significantly reduce the need for activation tests. This framework has been evaluated for its ability to predict performance metrics like flow coefficient for cavitating venturis and valve coefficient curves, and could be a valuable tool in predicting and understanding anomalous behavior of system components at rocket propulsion testing and design sites.

  10. Effects of computing time delay on real-time control systems

    NASA Technical Reports Server (NTRS)

    Shin, Kang G.; Cui, Xianzhong

    1988-01-01

    The reliability of a real-time digital control system depends not only on the reliability of the hardware and software used, but also on the speed in executing control algorithms. The latter is due to the negative effects of computing time delay on control system performance. For a given sampling interval, the effects of computing time delay are classified into the delay problem and the loss problem. Analysis of these two problems is presented as a means of evaluating real-time control systems. As an example, both the self-tuning predicted (STP) control and Proportional-Integral-Derivative (PID) control are applied to the problem of tracking robot trajectories, and their respective effects of computing time delay on control performance are comparatively evaluated. For this example, the STP (PID) controller is shown to outperform the PID (STP) controller in coping with the delay (loss) problem.

  11. Internally directed cognition and mindfulness: an integrative perspective derived from predictive and reactive control systems theory

    PubMed Central

    Tops, Mattie; Boksem, Maarten A. S.; Quirin, Markus; IJzerman, Hans; Koole, Sander L.

    2013-01-01

    In the present paper, we will apply the predictive and reactive control systems (PARCS) theory as a framework that integrates competing theories of neural substrates of awareness by describing the “default mode network” (DMN) and anterior insula (AI) as parts of two different behavioral and homeostatic control systems. The DMN, a network that becomes active at rest when there is no external stimulation or task to perform, has been implicated in self-reflective awareness and prospection. By contrast, the AI is associated with awareness and task-related attention. This has led to competing theories stressing the role of the DMN in self-awareness vs. the role of interoceptive and emotional information integration in the AI in awareness of the emotional moment. In PARCS, the respective functions of the DMN and AI in a specific control system explains their association with different qualities of awareness, and how mental states can shift from one state (e.g., prospective self-reflection) to the other (e.g., awareness of the emotional moment) depending on the relative dominance of control systems. These shifts between reactive and predictive control are part of processes that enable the intake of novel information, integration of this novel information within existing knowledge structures, and the creation of a continuous personal context in which novel information can be integrated and understood. As such, PARCS can explain key characteristics of mental states, such as their temporal and spatial focus (e.g., a focus on the here and now vs. the future; a first person vs. a third person perspective). PARCS further relates mental states to brain states and functions, such as activation of the DMN or hemispheric asymmetry in frontal cortical functions. Together, PARCS deepens the understanding of a broad range of mental states, including mindfulness, mind wandering, rumination, autobiographical memory, imagery, and the experience of self. PMID:24904455

  12. Characterization and quenching of friction-induced limit cycles of electro-hydraulic servovalve control systems with transport delay.

    PubMed

    Wang, Yuan-Jay

    2010-10-01

    This paper develops a systematic and straightforward methodology to characterize and quench the friction-induced limit cycle conditions in electro-hydraulic servovalve control systems with transport delay in the transmission line. The nonlinear friction characteristic is linearized by using its corresponding describing function. The delay time in the transmission line, which could accelerate the generation of limit cycles is particularly considered. The stability equation method together with parameter plane method provides a useful tool for the establishment of necessary conditions to sustain a limit cycle directly in the constructed controller coefficient plane. Also, the stable region, the unstable region, and the limit cycle region are identified in the parameter plane. The parameter plane characterizes a clear relationship between limit cycle amplitude, frequency, transport delay, and the controller coefficients to be designed. The stability of the predicted limit cycle is checked by plotting stability curves. The stability of the system is examined when the viscous gain changes with respect to the temperature of the working fluid. A feasible stable region is characterized in the parameter plane to allow a flexible choice of controller gains. The robust prevention of limit cycle is achieved by selecting controller gains from the asymptotic stability region. The predicted results are verified by simulations. It is seen that the friction-induced limit cycles can be effectively predicted, removed, and quenched via the design of the compensator even in the case of viscous gain and delay time variations unconditionally. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Shuttle cryogenic supply system optimization study. Volume 3: Technical report, section 10, 11 and 12

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The evaluation of candidate cryogenic fuel systems for space shuttle vehicles is discussed. A set of guidelines was used to establish a matrix of possible combinations for the integration of potential cryogenic systems. The various concepts and combinations which resulted from the integration efforts are described. The parameters which were considered in developing the matrix are: (1) storage of cryogenic materials, (2) fuel lines, (3) tank pressure control, (4) thermal control, (5) fluid control, and (6) fluid conditioning. Block diagrams and drawings of the candidate systems are provided. Performance predictions for the systems are outlined in tables of data.

  14. Predicting Epidemic Risk from Past Temporal Contact Data

    PubMed Central

    Valdano, Eugenio; Poletto, Chiara; Giovannini, Armando; Palma, Diana; Savini, Lara; Colizza, Vittoria

    2015-01-01

    Understanding how epidemics spread in a system is a crucial step to prevent and control outbreaks, with broad implications on the system’s functioning, health, and associated costs. This can be achieved by identifying the elements at higher risk of infection and implementing targeted surveillance and control measures. One important ingredient to consider is the pattern of disease-transmission contacts among the elements, however lack of data or delays in providing updated records may hinder its use, especially for time-varying patterns. Here we explore to what extent it is possible to use past temporal data of a system’s pattern of contacts to predict the risk of infection of its elements during an emerging outbreak, in absence of updated data. We focus on two real-world temporal systems; a livestock displacements trade network among animal holdings, and a network of sexual encounters in high-end prostitution. We define the node’s loyalty as a local measure of its tendency to maintain contacts with the same elements over time, and uncover important non-trivial correlations with the node’s epidemic risk. We show that a risk assessment analysis incorporating this knowledge and based on past structural and temporal pattern properties provides accurate predictions for both systems. Its generalizability is tested by introducing a theoretical model for generating synthetic temporal networks. High accuracy of our predictions is recovered across different settings, while the amount of possible predictions is system-specific. The proposed method can provide crucial information for the setup of targeted intervention strategies. PMID:25763816

  15. Ground-based adaptive optics coronagraphic performance under closed-loop predictive control

    NASA Astrophysics Data System (ADS)

    Males, Jared R.; Guyon, Olivier

    2018-01-01

    The discovery of the exoplanet Proxima b highlights the potential for the coming generation of giant segmented mirror telescopes (GSMTs) to characterize terrestrial-potentially habitable-planets orbiting nearby stars with direct imaging. This will require continued development and implementation of optimized adaptive optics systems feeding coronagraphs on the GSMTs. Such development should proceed with an understanding of the fundamental limits imposed by atmospheric turbulence. Here, we seek to address this question with a semianalytic framework for calculating the postcoronagraph contrast in a closed-loop adaptive optics system. We do this starting with the temporal power spectra of the Fourier basis calculated assuming frozen flow turbulence, and then apply closed-loop transfer functions. We include the benefits of a simple predictive controller, which we show could provide over a factor of 1400 gain in raw point spread function contrast at 1 λ/D on bright stars, and more than a factor of 30 gain on an I=7.5 mag star such as Proxima. More sophisticated predictive control can be expected to improve this even further. Assuming a photon-noise limited observing technique such as high-dispersion coronagraphy, these gains in raw contrast will decrease integration times by the same large factors. Predictive control of atmospheric turbulence should therefore be seen as one of the key technologies that will enable ground-based telescopes to characterize terrestrial planets.

  16. The predictive value of external continuous lumbar drainage, with cerebrospinal fluid outflow controlled by medium pressure valve, in normal pressure hydrocephalus.

    PubMed

    Panagiotopoulos, V; Konstantinou, D; Kalogeropoulos, A; Maraziotis, T

    2005-09-01

    Although sporadic studies have described temporary external cerebrospinal fluid (CSF) lumbar drainage as a highly accurate test for predicting the outcome after ventricular shunting in normal pressure hydrocephalus (NPH) patients, a more recent study reports that the positive predictive value of external lumbar drainage (ELD) is high but the negative predictive value is deceptively low. Therefore, we conducted a prospective study in order to evaluate the predictive value of a continuous ELD, with CSF outflow controlled by medium pressure valve, in NPH patients. Twenty-seven patients with presumed NPH were admitted to our department and CSF drainage was carried out by a temporary (ELD) with CSF outflow controlled by a medium pressure valve for five days. All patients received a ventriculoperitoneal shunt using a medium pressure valve based upon preoperative clinical and radiographic criteria of NPH, regardless of ELD outcome. Clinical evaluation of gait disturbances, urinary incontinence and mental status, and radiological evaluation with brain CT was performed prior to and after ELD test, as well as three months after shunting. Twenty-two patients were finally shunted and included in this study. In a three-month follow-up, using a previously validated score system, overall improvement after permanent shunting correlated well to improvement after ELD test (Spearman's rho = 0.462, p = 0.03). When considering any degree of improvement as a positive response, ELD test yielded high positive predictive values for all individual parameters (gait disturbances 94%, 95% CI 71%-100%, urinary incontinence 100%, 95% CI 66%-100%, and mental status 100%, 95% CI 66%-100%) but negative predictive values were low (< 50%) except for cognitive impairment (85%, 95% CI 55%-98%). This study suggests that a positive ELD-valve system test should be considered a reliable criterion for preoperative selection of shunt-responsive NPH patients. In case of a negative ELD-valve system test, further investigation of the presumed NPH patients with additional tests should be performed.

  17. Predictions of Energy Savings in HVAC Systems by Lumped Models (Preprint)

    DTIC Science & Technology

    2010-04-14

    various control devices into a simulated HVAC system. Con- trols contain a setpoint of 26.7oC. The adjustable damper, variable chiller work input, and variable fanspeed contain values of αP of -1.0, 0.1, and 1.0, respectively. 25 ...Villanova, PA 19085 bCode 985, Naval System Warfare Center, Carderock Division, Philadelphia, PA 19112 Abstract An approach to optimizing the energy...suggest an order of mag- nitude greater energy savings using a variable chiller power control approach compared to control damper and variable-drive

  18. Adaptive envelope protection methods for aircraft

    NASA Astrophysics Data System (ADS)

    Unnikrishnan, Suraj

    Carefree handling refers to the ability of a pilot to operate an aircraft without the need to continuously monitor aircraft operating limits. At the heart of all carefree handling or maneuvering systems, also referred to as envelope protection systems, are algorithms and methods for predicting future limit violations. Recently, envelope protection methods that have gained more acceptance, translate limit proximity information to its equivalent in the control channel. Envelope protection algorithms either use very small prediction horizon or are static methods with no capability to adapt to changes in system configurations. Adaptive approaches maximizing prediction horizon such as dynamic trim, are only applicable to steady-state-response critical limit parameters. In this thesis, a new adaptive envelope protection method is developed that is applicable to steady-state and transient response critical limit parameters. The approach is based upon devising the most aggressive optimal control profile to the limit boundary and using it to compute control limits. Pilot-in-the-loop evaluations of the proposed approach are conducted at the Georgia Tech Carefree Maneuver lab for transient longitudinal hub moment limit protection. Carefree maneuvering is the dual of carefree handling in the realm of autonomous Uninhabited Aerial Vehicles (UAVs). Designing a flight control system to fully and effectively utilize the operational flight envelope is very difficult. With the increasing role and demands for extreme maneuverability there is a need for developing envelope protection methods for autonomous UAVs. In this thesis, a full-authority automatic envelope protection method is proposed for limit protection in UAVs. The approach uses adaptive estimate of limit parameter dynamics and finite-time horizon predictions to detect impending limit boundary violations. Limit violations are prevented by treating the limit boundary as an obstacle and by correcting nominal control/command inputs to track a limit parameter safe-response profile near the limit boundary. The method is evaluated using software-in-the-loop and flight evaluations on the Georgia Tech unmanned rotorcraft platform---GTMax. The thesis also develops and evaluates an extension for calculating control margins based on restricting limit parameter response aggressiveness near the limit boundary.

  19. Automatic weight determination in nonlinear model predictive control of wind turbines using swarm optimization technique

    NASA Astrophysics Data System (ADS)

    Tofighi, Elham; Mahdizadeh, Amin

    2016-09-01

    This paper addresses the problem of automatic tuning of weighting coefficients for the nonlinear model predictive control (NMPC) of wind turbines. The choice of weighting coefficients in NMPC is critical due to their explicit impact on efficiency of the wind turbine control. Classically, these weights are selected based on intuitive understanding of the system dynamics and control objectives. The empirical methods, however, may not yield optimal solutions especially when the number of parameters to be tuned and the nonlinearity of the system increase. In this paper, the problem of determining weighting coefficients for the cost function of the NMPC controller is formulated as a two-level optimization process in which the upper- level PSO-based optimization computes the weighting coefficients for the lower-level NMPC controller which generates control signals for the wind turbine. The proposed method is implemented to tune the weighting coefficients of a NMPC controller which drives the NREL 5-MW wind turbine. The results are compared with similar simulations for a manually tuned NMPC controller. Comparison verify the improved performance of the controller for weights computed with the PSO-based technique.

  20. Finite Control Set Model Predictive Control for Multiple Distributed Generators Microgrids

    NASA Astrophysics Data System (ADS)

    Babqi, Abdulrahman Jamal

    This dissertation proposes two control strategies for AC microgrids that consist of multiple distributed generators (DGs). The control strategies are valid for both grid-connected and islanded modes of operation. In general, microgrid can operate as a stand-alone system (i.e., islanded mode) or while it is connected to the utility grid (i.e., grid connected mode). To enhance the performance of a micrgorid, a sophisticated control scheme should be employed. The control strategies of microgrids can be divided into primary and secondary controls. The primary control regulates the output active and reactive powers of each DG in grid-connected mode as well as the output voltage and frequency of each DG in islanded mode. The secondary control is responsible for regulating the microgrid voltage and frequency in the islanded mode. Moreover, it provides power sharing schemes among the DGs. In other words, the secondary control specifies the set points (i.e. reference values) for the primary controllers. In this dissertation, Finite Control Set Model Predictive Control (FCS-MPC) was proposed for controlling microgrids. FCS-MPC was used as the primary controller to regulate the output power of each DG (in the grid-connected mode) or the voltage of the point of DG coupling (in the islanded mode of operation). In the grid-connected mode, Direct Power Model Predictive Control (DPMPC) was implemented to manage the power flow between each DG and the utility grid. In the islanded mode, Voltage Model Predictive Control (VMPC), as the primary control, and droop control, as the secondary control, were employed to control the output voltage of each DG and system frequency. The controller was equipped with a supplementary current limiting technique in order to limit the output current of each DG in abnormal incidents. The control approach also enabled smooth transition between the two modes. The performance of the control strategy was investigated and verified using PSCAD/EMTDC software platform. This dissertation also proposes a control and power sharing strategy for small-scale microgrids in both grid-connected and islanded modes based on centralized FCS-MPC. In grid-connected mode, the controller was capable of managing the output power of each DG and enabling flexible power regulation between the microgrid and the utility grid. In islanded mode, the controller regulated the microgrid voltage and frequency, and provided a precise power sharing scheme among the DGs. In addition, the power sharing can be adjusted flexibly by changing the sharing ratio. The proposed control also enabled plug-and-play operation. Moreover, a smooth transition between the two modes of operation was achieved without any disturbance in the system. Case studies were carried out in order to validate the proposed control strategy with the PSCAD/EMTDA software package.

  1. Large-scale neural networks and the lateralization of motivation and emotion.

    PubMed

    Tops, Mattie; Quirin, Markus; Boksem, Maarten A S; Koole, Sander L

    2017-09-01

    Several lines of research in animals and humans converge on the distinction between two basic large-scale brain networks of self-regulation, giving rise to predictive and reactive control systems (PARCS). Predictive (internally-driven) and reactive (externally-guided) control are supported by dorsal versus ventral corticolimbic systems, respectively. Based on extant empirical evidence, we demonstrate how the PARCS produce frontal laterality effects in emotion and motivation. In addition, we explain how this framework gives rise to individual differences in appraising and coping with challenges. PARCS theory integrates separate fields of research, such as research on the motivational correlates of affect, EEG frontal alpha power asymmetry and implicit affective priming effects on cardiovascular indicators of effort during cognitive task performance. Across these different paradigms, converging evidence points to a qualitative motivational division between, on the one hand, angry and happy emotions, and, on the other hand, sad and fearful emotions. PARCS suggests that those two pairs of emotions are associated with predictive and reactive control, respectively. PARCS theory may thus generate important new insights on the motivational and emotional dynamics that drive autonomic and homeostatic control processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Spatial Map of Synthesized Criteria for the Redundancy Resolution of Human Arm Movements.

    PubMed

    Li, Zhi; Milutinovic, Dejan; Rosen, Jacob

    2015-11-01

    The kinematic redundancy of the human arm enables the elbow position to rotate about the axis going through the shoulder and wrist, which results in infinite possible arm postures when the arm reaches to a target in a 3-D workspace. To infer the control strategy the human motor system uses to resolve redundancy in reaching movements, this paper compares five redundancy resolution criteria and evaluates their arm posture prediction performance using data on healthy human motion. Two synthesized criteria are developed to provide better real-time arm posture prediction than the five individual criteria. Of these two, the criterion synthesized using an exponential method predicts the arm posture more accurately than that using a least squares approach, and therefore is preferable for inferring the contributions of the individual criteria to motor control during reaching movements. As a methodology contribution, this paper proposes a framework to compare and evaluate redundancy resolution criteria for arm motion control. A cluster analysis which associates criterion contributions with regions of the workspace provides a guideline for designing a real-time motion control system applicable to upper-limb exoskeletons for stroke rehabilitation.

  3. ITC/USA/'90; Proceedings of the International Telemetering Conference, Las Vegas, NV, Oct. 29-Nov. 2, 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-01-01

    This conference presents papers in the fields of airborne telemetry, measurement technology, video instrumentation and monitoring, tracking and receiving systems, and real-time processing in telemetry. Topics presented include packet telemetry ground station simulation, a predictable performance wideband noise generator, an improved drone tracking control system transponder, the application of neural networks to drone control, and an integrated real-time turbine engine flight test system.

  4. Information driven self-organization of complex robotic behaviors.

    PubMed

    Martius, Georg; Der, Ralf; Ay, Nihat

    2013-01-01

    Information theory is a powerful tool to express principles to drive autonomous systems because it is domain invariant and allows for an intuitive interpretation. This paper studies the use of the predictive information (PI), also called excess entropy or effective measure complexity, of the sensorimotor process as a driving force to generate behavior. We study nonlinear and nonstationary systems and introduce the time-local predicting information (TiPI) which allows us to derive exact results together with explicit update rules for the parameters of the controller in the dynamical systems framework. In this way the information principle, formulated at the level of behavior, is translated to the dynamics of the synapses. We underpin our results with a number of case studies with high-dimensional robotic systems. We show the spontaneous cooperativity in a complex physical system with decentralized control. Moreover, a jointly controlled humanoid robot develops a high behavioral variety depending on its physics and the environment it is dynamically embedded into. The behavior can be decomposed into a succession of low-dimensional modes that increasingly explore the behavior space. This is a promising way to avoid the curse of dimensionality which hinders learning systems to scale well.

  5. A Morphing Radiator for High-Turndown Thermal Control of Crewed Space Exploration Vehicles

    NASA Technical Reports Server (NTRS)

    Cognata, Thomas J.; Hardtl, Darren; Sheth, Rubik; Dinsmore, Craig

    2015-01-01

    Spacecraft designed for missions beyond low earth orbit (LEO) face a difficult thermal control challenge, particularly in the case of crewed vehicles where the thermal control system (TCS) must maintain a relatively constant internal environment temperature despite a vastly varying external thermal environment and despite heat rejection needs that are contrary to the potential of the environment. A thermal control system is in other words required to reject a higher heat load to warm environments and a lower heat load to cold environments, necessitating a quite high turndown ratio. A modern thermal control system is capable of a turndown ratio of on the order of 12:1, but for crew safety and environment compatibility these are massive multi-loop fluid systems. This paper discusses the analysis of a unique radiator design which employs the behavior of shape memory alloys (SMA) to vary the turndown of, and thus enable, a single-loop vehicle thermal control system for space exploration vehicles. This design, a morphing radiator, varies its shape in response to facesheet temperature to control view of space and primary surface emissivity. Because temperature dependence is inherent to SMA behavior, the design requires no accommodation for control, instrumentation, nor power supply in order to operate. Thermal and radiation modeling of the morphing radiator predict a turndown ranging from 11.9:1 to 35:1 independent of TCS configuration. Stress and deformation analyses predict the desired morphing behavior of the concept. A system level mass analysis shows that by enabling a single loop architecture this design could reduce the TCS mass by between 139 kg and 225 kg. The concept is demonstrated in proof-of-concept benchtop tests.

  6. A Morphing Radiator for High-Turndown Thermal Control of Crewed Space Exploration Vehicles

    NASA Technical Reports Server (NTRS)

    Cognata, Thomas J.; Hartl, Darren J.; Sheth, Rubik; Dinsmore, Craig

    2014-01-01

    Spacecraft designed for missions beyond low earth orbit (LEO) face a difficult thermal control challenge, particularly in the case of crewed vehicles where the thermal control system (TCS) must maintain a relatively constant internal environment temperature despite a vastly varying external thermal environment and despite heat rejection needs that are contrary to the potential of the environment. A thermal control system may be required to reject a higher heat load to warm environments and a lower heat load to cold environments, necessitating a relatively high turndown ratio. A modern thermal control system is capable of a turndown ratio of on the order of 12:1, but crew safety and environment compatibility have constrained these solutions to massive multi-loop fluid systems. This paper discusses the analysis of a unique radiator design that employs the behavior of shape memory alloys (SMAs) to vary the turndown of, and thus enable, a single-loop vehicle thermal control system for space exploration vehicles. This design, a morphing radiator, varies its shape in response to facesheet temperature to control view of space and primary surface emissivity. Because temperature dependence is inherent to SMA behavior, the design requires no accommodation for control, instrumentation, or power supply in order to operate. Thermal and radiation modeling of the morphing radiator predict a turndown ranging from 11.9:1 to 35:1 independent of TCS configuration. Coupled thermal-stress analyses predict that the desired morphing behavior of the concept is attainable. A system level mass analysis shows that by enabling a single loop architecture this design could reduce the TCS mass by between 139 kg and 225 kg. The concept has been demonstrated in proof-of-concept benchtop tests.

  7. Design and development of low pressure evaporator/condenser unit for water-based adsorption type climate control systems

    NASA Astrophysics Data System (ADS)

    Venkataramanan, Arjun; Rios Perez, Carlos A.; Hidrovo, Carlos H.

    2016-11-01

    Electric vehicles (EVs) are the future of clean transportation and driving range is one of the important parameters which dictates its marketability. In order to increase driving range, electrical battery energy consumption should be minimized. Vapor-compression refrigeration systems currently employed in EVs for climate control consume a significant fraction of the battery charge. Thus, by replacing this traditional heating ventilation and air-conditioning system with an adsorption based climate control system one can have the capability of increasing the drive range of EVs.The Advanced Thermo-adsorptive Battery (ATB) for climate control is a water-based adsorption type refrigeration cycle. An essential component of the ATB is a low pressure evaporator/condenser unit (ECU) which facilitates both the evaporation and condensation processes. The thermal design of the ECU relies predominantly on the accurate prediction of evaporation/boiling heat transfer coefficients since the standard correlations for predicting boiling heat transfer coefficients have large uncertainty at the low operating pressures of the ATB. This work describes the design and development of a low pressure ECU as well as the thermal performance of the actual ECU prototype.

  8. Defect measurement and analysis of JPL ground software: a case study

    NASA Technical Reports Server (NTRS)

    Powell, John D.; Spagnuolo, John N., Jr.

    2004-01-01

    Ground software systems at JPL must meet high assurance standards while remaining on schedule due to relatively immovable launch dates for spacecraft that will be controlled by such systems. Toward this end, the Software Quality Improvement (SQI) project's Measurement and Benchmarking (M&B) team is collecting and analyzing defect data of JPL ground system software projects to build software defect prediction models. The aim of these models is to improve predictability with regard to software quality activities. Predictive models will quantitatively define typical trends for JPL ground systems as well as Critical Discriminators (CDs) to provide explanations for atypical deviations from the norm at JPL. CDs are software characteristics that can be estimated or foreseen early in a software project's planning. Thus, these CDs will assist in planning for the predicted degree to which software quality activities for a project are likely to deviation from the normal JPL ground system based on pasted experience across the lab.

  9. Analog-digital simulation of transient-induced logic errors and upset susceptibility of an advanced control system

    NASA Technical Reports Server (NTRS)

    Carreno, Victor A.; Choi, G.; Iyer, R. K.

    1990-01-01

    A simulation study is described which predicts the susceptibility of an advanced control system to electrical transients resulting in logic errors, latched errors, error propagation, and digital upset. The system is based on a custom-designed microprocessor and it incorporates fault-tolerant techniques. The system under test and the method to perform the transient injection experiment are described. Results for 2100 transient injections are analyzed and classified according to charge level, type of error, and location of injection.

  10. Stellar tracking attitude reference system

    NASA Technical Reports Server (NTRS)

    Klestadt, B.

    1974-01-01

    A satellite precision attitude control system was designed, based on the use of STARS as the principal sensing system. The entire system was analyzed and simulated in detail, considering the nonideal properties of the control and sensing components and realistic spacecraft mass properties. Experimental results were used to improve the star tracker noise model. The results of the simulation indicate that STARS performs in general as predicted in a realistic application and should be a strong contender in most precision earth pointing applications.

  11. Modelling and Simulation of the Dynamics of the Antigen-Specific T Cell Response Using Variable Structure Control Theory.

    PubMed

    Anelone, Anet J N; Spurgeon, Sarah K

    2016-01-01

    Experimental and mathematical studies in immunology have revealed that the dynamics of the programmed T cell response to vigorous infection can be conveniently modelled using a sigmoidal or a discontinuous immune response function. This paper hypothesizes strong synergies between this existing work and the dynamical behaviour of engineering systems with a variable structure control (VSC) law. These findings motivate the interpretation of the immune system as a variable structure control system. It is shown that dynamical properties as well as conditions to analytically assess the transition from health to disease can be developed for the specific T cell response from the theory of variable structure control. In particular, it is shown that the robustness properties of the specific T cell response as observed in experiments can be explained analytically using a VSC perspective. Further, the predictive capacity of the VSC framework to determine the T cell help required to overcome chronic Lymphocytic Choriomeningitis Virus (LCMV) infection is demonstrated. The findings demonstrate that studying the immune system using variable structure control theory provides a new framework for evaluating immunological dynamics and experimental observations. A modelling and simulation tool results with predictive capacity to determine how to modify the immune response to achieve healthy outcomes which may have application in drug development and vaccine design.

  12. Predicting the effects of unmodeled dynamics on an aircraft flight control system design using eigenspace assignment

    NASA Technical Reports Server (NTRS)

    Johnson, Eric N.; Davidson, John B.; Murphy, Patrick C.

    1994-01-01

    When using eigenspace assignment to design an aircraft flight control system, one must first develop a model of the plant. Certain questions arise when creating this model as to which dynamics of the plant need to be included in the model and which dynamics can be left out or approximated. The answers to these questions are important because a poor choice can lead to closed-loop dynamics that are unpredicted by the design model. To alleviate this problem, a method has been developed for predicting the effect of not including certain dynamics in the design model on the final closed-loop eigenspace. This development provides insight as to which characteristics of unmodeled dynamics will ultimately affect the closed-loop rigid-body dynamics. What results from this insight is a guide for eigenstructure control law designers to aid them in determining which dynamics need or do not need to be included and a new way to include these dynamics in the flight control system design model to achieve a required accuracy in the closed-loop rigid-body dynamics. The method is illustrated for a lateral-directional flight control system design using eigenspace assignment for the NASA High Alpha Research Vehicle (HARV).

  13. Artificial neural networks and approximate reasoning for intelligent control in space

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1991-01-01

    A method is introduced for learning to refine the control rules of approximate reasoning-based controllers. A reinforcement-learning technique is used in conjunction with a multi-layer neural network model of an approximate reasoning-based controller. The model learns by updating its prediction of the physical system's behavior. The model can use the control knowledge of an experienced operator and fine-tune it through the process of learning. Some of the space domains suitable for applications of the model such as rendezvous and docking, camera tracking, and tethered systems control are discussed.

  14. Predictive onboard flow control for packet switching satellites

    NASA Technical Reports Server (NTRS)

    Bobinsky, Eric A.

    1992-01-01

    We outline two alternate approaches to predicting the onset of congestion in a packet switching satellite, and argue that predictive, rather than reactive, flow control is necessary for the efficient operation of such a system. The first method discussed is based on standard, statistical techniques which are used to periodically calculate a probability of near-term congestion based on arrival rate statistics. If this probability exceeds a present threshold, the satellite would transmit a rate-reduction signal to all active ground stations. The second method discussed would utilize a neural network to periodically predict the occurrence of buffer overflow based on input data which would include, in addition to arrival rates, the distributions of packet lengths, source addresses, and destination addresses.

  15. Hybrid neural intelligent system to predict business failure in small-to-medium-size enterprises.

    PubMed

    Borrajo, M Lourdes; Baruque, Bruno; Corchado, Emilio; Bajo, Javier; Corchado, Juan M

    2011-08-01

    During the last years there has been a growing need of developing innovative tools that can help small to medium sized enterprises to predict business failure as well as financial crisis. In this study we present a novel hybrid intelligent system aimed at monitoring the modus operandi of the companies and predicting possible failures. This system is implemented by means of a neural-based multi-agent system that models the different actors of the companies as agents. The core of the multi-agent system is a type of agent that incorporates a case-based reasoning system and automates the business control process and failure prediction. The stages of the case-based reasoning system are implemented by means of web services: the retrieval stage uses an innovative weighted voting summarization of self-organizing maps ensembles-based method and the reuse stage is implemented by means of a radial basis function neural network. An initial prototype was developed and the results obtained related to small and medium enterprises in a real scenario are presented.

  16. Analyses of ACPL thermal/fluid conditioning system

    NASA Technical Reports Server (NTRS)

    Stephen, L. A.; Usher, L. H.

    1976-01-01

    Results of engineering analyses are reported. Initial computations were made using a modified control transfer function where the systems performance was characterized parametrically using an analytical model. The analytical model was revised to represent the latest expansion chamber fluid manifold design, and systems performance predictions were made. Parameters which were independently varied in these computations are listed. Systems predictions which were used to characterize performance are primarily transient computer plots comparing the deviation between average chamber temperature and the chamber temperature requirement. Additional computer plots were prepared. Results of parametric computations with the latest fluid manifold design are included.

  17. Method of controlling temperature of a thermoelectric generator in an exhaust system

    DOEpatents

    Prior, Gregory P; Reynolds, Michael G; Cowgill, Joshua D

    2013-05-21

    A method of controlling the temperature of a thermoelectric generator (TEG) in an exhaust system of an engine is provided. The method includes determining the temperature of the heated side of the TEG, determining exhaust gas flow rate through the TEG, and determining the exhaust gas temperature through the TEG. A rate of change in temperature of the heated side of the TEG is predicted based on the determined temperature, the determined exhaust gas flow rate, and the determined exhaust gas temperature through the TEG. Using the predicted rate of change of temperature of the heated side, exhaust gas flow rate through the TEG is calculated that will result in a maximum temperature of the heated side of the TEG less than a predetermined critical temperature given the predicted rate of change in temperature of the heated side of the TEG. A corresponding apparatus is provided.

  18. An alternative approach based on artificial neural networks to study controlled drug release.

    PubMed

    Reis, Marcus A A; Sinisterra, Rubén D; Belchior, Jadson C

    2004-02-01

    An alternative methodology based on artificial neural networks is proposed to be a complementary tool to other conventional methods to study controlled drug release. Two systems are used to test the approach; namely, hydrocortisone in a biodegradable matrix and rhodium (II) butyrate complexes in a bioceramic matrix. Two well-established mathematical models are used to simulate different release profiles as a function of fundamental properties; namely, diffusion coefficient (D), saturation solubility (C(s)), drug loading (A), and the height of the device (h). The models were tested, and the results show that these fundamental properties can be predicted after learning the experimental or model data for controlled drug release systems. The neural network results obtained after the learning stage can be considered to quantitatively predict ideal experimental conditions. Overall, the proposed methodology was shown to be efficient for ideal experiments, with a relative average error of <1% in both tests. This approach can be useful for the experimental analysis to simulate and design efficient controlled drug-release systems. Copyright 2004 Wiley-Liss, Inc. and the American Pharmacists Association

  19. Sensitivity of Space Station alpha joint robust controller to structural modal parameter variations

    NASA Technical Reports Server (NTRS)

    Kumar, Renjith R.; Cooper, Paul A.; Lim, Tae W.

    1991-01-01

    The photovoltaic array sun tracking control system of Space Station Freedom is described. A synthesis procedure for determining optimized values of the design variables of the control system is developed using a constrained optimization technique. The synthesis is performed to provide a given level of stability margin, to achieve the most responsive tracking performance, and to meet other design requirements. Performance of the baseline design, which is synthesized using predicted structural characteristics, is discussed and the sensitivity of the stability margin is examined for variations of the frequencies, mode shapes and damping ratios of dominant structural modes. The design provides enough robustness to tolerate a sizeable error in the predicted modal parameters. A study was made of the sensitivity of performance indicators as the modal parameters of the dominant modes vary. The design variables are resynthesized for varying modal parameters in order to achieve the most responsive tracking performance while satisfying the design requirements. This procedure of reoptimization design parameters would be useful in improving the control system performance if accurate model data are provided.

  20. Model predictive controller design for boost DC-DC converter using T-S fuzzy cost function

    NASA Astrophysics Data System (ADS)

    Seo, Sang-Wha; Kim, Yong; Choi, Han Ho

    2017-11-01

    This paper proposes a Takagi-Sugeno (T-S) fuzzy method to select cost function weights of finite control set model predictive DC-DC converter control algorithms. The proposed method updates the cost function weights at every sample time by using T-S type fuzzy rules derived from the common optimal control engineering knowledge that a state or input variable with an excessively large magnitude can be penalised by increasing the weight corresponding to the variable. The best control input is determined via the online optimisation of the T-S fuzzy cost function for all the possible control input sequences. This paper implements the proposed model predictive control algorithm in real time on a Texas Instruments TMS320F28335 floating-point Digital Signal Processor (DSP). Some experimental results are given to illuminate the practicality and effectiveness of the proposed control system under several operating conditions. The results verify that our method can yield not only good transient and steady-state responses (fast recovery time, small overshoot, zero steady-state error, etc.) but also insensitiveness to abrupt load or input voltage parameter variations.

  1. An Agent-Based Model for Analyzing Control Policies and the Dynamic Service-Time Performance of a Capacity-Constrained Air Traffic Management Facility

    NASA Technical Reports Server (NTRS)

    Conway, Sheila R.

    2006-01-01

    Simple agent-based models may be useful for investigating air traffic control strategies as a precursory screening for more costly, higher fidelity simulation. Of concern is the ability of the models to capture the essence of the system and provide insight into system behavior in a timely manner and without breaking the bank. The method is put to the test with the development of a model to address situations where capacity is overburdened and potential for propagation of the resultant delay though later flights is possible via flight dependencies. The resultant model includes primitive representations of principal air traffic system attributes, namely system capacity, demand, airline schedules and strategy, and aircraft capability. It affords a venue to explore their interdependence in a time-dependent, dynamic system simulation. The scope of the research question and the carefully-chosen modeling fidelity did allow for the development of an agent-based model in short order. The model predicted non-linear behavior given certain initial conditions and system control strategies. Additionally, a combination of the model and dimensionless techniques borrowed from fluid systems was demonstrated that can predict the system s dynamic behavior across a wide range of parametric settings.

  2. Anticipatory Neurofuzzy Control

    NASA Technical Reports Server (NTRS)

    Mccullough, Claire L.

    1994-01-01

    Technique of feedback control, called "anticipatory neurofuzzy control," developed for use in controlling flexible structures and other dynamic systems for which mathematical models of dynamics poorly known or unknown. Superior ability to act during operation to compensate for, and adapt to, errors in mathematical model of dynamics, changes in dynamics, and noise. Also offers advantage of reduced computing time. Hybrid of two older fuzzy-logic control techniques: standard fuzzy control and predictive fuzzy control.

  3. Active Control of Fan Noise: Feasibility Study. Volume 5; Numerical Computation of Acoustic Mode Reflection Coefficients for an Unflanged Cylindrical Duct

    NASA Technical Reports Server (NTRS)

    Kraft, R. E.

    1996-01-01

    A computational method to predict modal reflection coefficients in cylindrical ducts has been developed based on the work of Homicz, Lordi, and Rehm, which uses the Wiener-Hopf method to account for the boundary conditions at the termination of a thin cylindrical pipe. The purpose of this study is to develop a computational routine to predict the reflection coefficients of higher order acoustic modes impinging on the unflanged termination of a cylindrical duct. This effort was conducted wider Task Order 5 of the NASA Lewis LET Program, Active Noise Control of aircraft Engines: Feasibility Study, and will be used as part of the development of an integrated source noise, acoustic propagation, ANC actuator coupling, and control system algorithm simulation. The reflection coefficient prediction will be incorporated into an existing cylindrical duct modal analysis to account for the reflection of modes from the duct termination. This will provide a more accurate, rapid computation design tool for evaluating the effect of reflected waves on active noise control systems mounted in the duct, as well as providing a tool for the design of acoustic treatment in inlet ducts. As an active noise control system design tool, the method can be used preliminary to more accurate but more numerically intensive acoustic propagation models such as finite element methods. The resulting computer program has been shown to give reasonable results, some examples of which are presented. Reliable data to use for comparison is scarce, so complete checkout is difficult, and further checkout is needed over a wider range of system parameters. In future efforts the method will be adapted as a subroutine to the GEAE segmented cylindrical duct modal analysis program.

  4. A Sensorless Predictive Current Controlled Boost Converter by Using an EKF with Load Variation Effect Elimination Function

    PubMed Central

    Tong, Qiaoling; Chen, Chen; Zhang, Qiao; Zou, Xuecheng

    2015-01-01

    To realize accurate current control for a boost converter, a precise measurement of the inductor current is required to achieve high resolution current regulating. Current sensors are widely used to measure the inductor current. However, the current sensors and their processing circuits significantly contribute extra hardware cost, delay and noise to the system. They can also harm the system reliability. Therefore, current sensorless control techniques can bring cost effective and reliable solutions for various boost converter applications. According to the derived accurate model, which contains a number of parasitics, the boost converter is a nonlinear system. An Extended Kalman Filter (EKF) is proposed for inductor current estimation and output voltage filtering. With this approach, the system can have the same advantages as sensored current control mode. To implement EKF, the load value is necessary. However, the load may vary from time to time. This can lead to errors of current estimation and filtered output voltage. To solve this issue, a load variation elimination effect elimination (LVEE) module is added. In addition, a predictive average current controller is used to regulate the current. Compared with conventional voltage controlled system, the transient response is greatly improved since it only takes two switching cycles for the current to reach its reference. Finally, experimental results are presented to verify the stable operation and output tracking capability for large-signal transients of the proposed algorithm. PMID:25928061

  5. A Discrete-Time Average Model Based Predictive Control for Quasi-Z-Source Inverter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yushan; Abu-Rub, Haitham; Xue, Yaosuo

    A discrete-time average model-based predictive control (DTA-MPC) is proposed for a quasi-Z-source inverter (qZSI). As a single-stage inverter topology, the qZSI regulates the dc-link voltage and the ac output voltage through the shoot-through (ST) duty cycle and the modulation index. Several feedback strategies have been dedicated to produce these two control variables, among which the most popular are the proportional–integral (PI)-based control and the conventional model-predictive control (MPC). However, in the former, there are tradeoffs between fast response and stability; the latter is robust, but at the cost of high calculation burden and variable switching frequency. Moreover, they require anmore » elaborated design or fine tuning of controller parameters. The proposed DTA-MPC predicts future behaviors of the ST duty cycle and modulation signals, based on the established discrete-time average model of the quasi-Z-source (qZS) inductor current, the qZS capacitor voltage, and load currents. The prediction actions are applied to the qZSI modulator in the next sampling instant, without the need of other controller parameters’ design. A constant switching frequency and significantly reduced computations are achieved with high performance. Transient responses and steady-state accuracy of the qZSI system under the proposed DTA-MPC are investigated and compared with the PI-based control and the conventional MPC. Simulation and experimental results verify the effectiveness of the proposed approach for the qZSI.« less

  6. A Discrete-Time Average Model Based Predictive Control for Quasi-Z-Source Inverter

    DOE PAGES

    Liu, Yushan; Abu-Rub, Haitham; Xue, Yaosuo; ...

    2017-12-25

    A discrete-time average model-based predictive control (DTA-MPC) is proposed for a quasi-Z-source inverter (qZSI). As a single-stage inverter topology, the qZSI regulates the dc-link voltage and the ac output voltage through the shoot-through (ST) duty cycle and the modulation index. Several feedback strategies have been dedicated to produce these two control variables, among which the most popular are the proportional–integral (PI)-based control and the conventional model-predictive control (MPC). However, in the former, there are tradeoffs between fast response and stability; the latter is robust, but at the cost of high calculation burden and variable switching frequency. Moreover, they require anmore » elaborated design or fine tuning of controller parameters. The proposed DTA-MPC predicts future behaviors of the ST duty cycle and modulation signals, based on the established discrete-time average model of the quasi-Z-source (qZS) inductor current, the qZS capacitor voltage, and load currents. The prediction actions are applied to the qZSI modulator in the next sampling instant, without the need of other controller parameters’ design. A constant switching frequency and significantly reduced computations are achieved with high performance. Transient responses and steady-state accuracy of the qZSI system under the proposed DTA-MPC are investigated and compared with the PI-based control and the conventional MPC. Simulation and experimental results verify the effectiveness of the proposed approach for the qZSI.« less

  7. Punishment Sensitivity Predicts the Impact of Punishment on Cognitive Control

    PubMed Central

    Braem, Senne; Duthoo, Wout; Notebaert, Wim

    2013-01-01

    Cognitive control theories predict enhanced conflict adaptation after punishment. However, no such effect was found in previous work. In the present study, we demonstrate in a flanker task how behavioural adjustments following punishment signals are highly dependent on punishment sensitivity (as measured by the Behavioural Inhibition System (BIS) scale): Whereas low punishment-sensitive participants do show increased conflict adaptation after punishment, high punishment-sensitive participants show no such modulation. Interestingly, participants with a high punishment-sensitivity showed an overall reaction time increase after punishments. Our results stress the role of individual differences in explaining motivational modulations of cognitive control. PMID:24058520

  8. Model Based Predictive Control of Multivariable Hammerstein Processes with Fuzzy Logic Hypercube Interpolated Models

    PubMed Central

    Coelho, Antonio Augusto Rodrigues

    2016-01-01

    This paper introduces the Fuzzy Logic Hypercube Interpolator (FLHI) and demonstrates applications in control of multiple-input single-output (MISO) and multiple-input multiple-output (MIMO) processes with Hammerstein nonlinearities. FLHI consists of a Takagi-Sugeno fuzzy inference system where membership functions act as kernel functions of an interpolator. Conjunction of membership functions in an unitary hypercube space enables multivariable interpolation of N-dimensions. Membership functions act as interpolation kernels, such that choice of membership functions determines interpolation characteristics, allowing FLHI to behave as a nearest-neighbor, linear, cubic, spline or Lanczos interpolator, to name a few. The proposed interpolator is presented as a solution to the modeling problem of static nonlinearities since it is capable of modeling both a function and its inverse function. Three study cases from literature are presented, a single-input single-output (SISO) system, a MISO and a MIMO system. Good results are obtained regarding performance metrics such as set-point tracking, control variation and robustness. Results demonstrate applicability of the proposed method in modeling Hammerstein nonlinearities and their inverse functions for implementation of an output compensator with Model Based Predictive Control (MBPC), in particular Dynamic Matrix Control (DMC). PMID:27657723

  9. 10 CFR 55.4 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... means testing conducted to verify a simulation facility's performance as compared to actual or predicted... which a simulation facility's control room configuration, system control arrangement, and design data... of a facility and to direct the licensed activities of licensed operators. Simulation facility means...

  10. 10 CFR 55.4 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... means testing conducted to verify a simulation facility's performance as compared to actual or predicted... which a simulation facility's control room configuration, system control arrangement, and design data... of a facility and to direct the licensed activities of licensed operators. Simulation facility means...

  11. 10 CFR 55.4 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... means testing conducted to verify a simulation facility's performance as compared to actual or predicted... which a simulation facility's control room configuration, system control arrangement, and design data... of a facility and to direct the licensed activities of licensed operators. Simulation facility means...

  12. Application of color to reduce complexity in air traffic control.

    DOT National Transportation Integrated Search

    2002-11-01

    The United States Air Traffic Control (ATC) system is designed to provide for the safe and efficient flow of air : traffic from origin to destination. The Federal Aviation Administration predicts that traffic levels will continue : increasing over th...

  13. Frictionless segmented mechanics for controlled space closure

    PubMed Central

    Andrade, Ildeu

    2017-01-01

    ABSTRACT Extraction spaces may be needed to achieve specific orthodontic goals of positioning the dentition in harmony with the craniofacial complex. However, the fundamental reality that determines the occlusion final position is the control exerted by the orthodontist while closing the extraction spaces. A specific treatment objective may require the posterior teeth to remain in a constant position anteroposteriorly as well as vertically, while the anterior teeth occupy the entire extraction site. Another treatment objective may require the opposite, or any number of intentional alternatives of extraction site closure. The present case report describes a simple controlled segmented mechanic system that permitted definable and predictable force systems to be applied and allowed to predict the treatment outcome with confidence. This case was presented to the Brazilian Board of Orthodontics and Dentofacial Orthopedics (BBO) in partial fulfillment of the requirements for Diplomate certification. PMID:28444016

  14. Characterization and Design of Digital Pointing Subsystem for Optical Communication Demonstrator

    NASA Technical Reports Server (NTRS)

    Racho, C.; Portillo, A.

    1998-01-01

    The Optical Communications Demonstrator (OCD) is a laboratory-based lasercom demonstration terminal designed to validate several key technologies, including beacon acquisition, high bandwidth tracking, precision bearn pointing, and point-ahead compensation functions. It has been under active development over the past few years. The instrument uses a CCD array detector for both spatial acquisition and high-bandwidth tracking, and a fiber coupled laser transmitter. The array detector tracking concept provides wide field-of-view acquisition and permits effective platform jitter compensation and point-ahead control using only one steering mirror. This paper describes the detailed design and characterization of the digital control loop system which includes the Fast Steering Mirror (FSM), the CCD image tracker, and the associated electronics. The objective is to improve the overall system performance using laboratory measured data. The. design of the digital control loop is based on a linear time invariant open loop model. The closed loop performance is predicted using the theoretical model. With the digital filter programmed into the OCD control software, data is collected to verify the predictions. This paper presents the results of the, system modeling and performance analysis. It has been shown that measurement data closely matches theoretical predictions. An important part of the laser communication experiment is the ability of FSM to track the laser beacon within the. required tolerances. The pointing must be maintained to an accuracy that is much smaller than the transmit signal beamwidth. For an earth orbit distance, the system must be able to track the receiving station to within a few microradians. The failure. to do so will result in a severely degraded system performance.

  15. ANOPP/VMS HSCT ground contour system

    NASA Technical Reports Server (NTRS)

    Rawls, John, Jr.; Glaab, Lou

    1992-01-01

    This viewgraph shows the integration of the Visual Motion Simulator with ANOPP. ANOPP is an acronym for the Aircraft NOise Prediction Program. It is a computer code consisting of dedicated noise prediction modules for jet, propeller, and rotor powered aircraft along with flight support and noise propagation modules, all executed under the control of an executive system. The Visual Motion Simulator (VMS) is a ground based motion simulator with six degrees of freedom. The transport-type cockpit is equipped with conventional flight and engine-thrust controls and with flight instrument displays. Control forces on the wheel, column, and rudder pedals are provided by a hydraulic system coupled with an analog computer. The simulator provides variable-feel characteristics of stiffness, damping, coulomb friction, breakout forces, and inertia. The VMS provides a wide range of realistic flight trajectories necessary for computing accurate ground contours. The NASA VMS will be discussed in detail later in this presentation. An equally important part of the system for both ANOPP and VMS is the engine performance. This will also be discussed in the presentation.

  16. Sensor-model prediction, monitoring and in-situ control of liquid RTM advanced fiber architecture composite processing

    NASA Technical Reports Server (NTRS)

    Kranbuehl, D.; Kingsley, P.; Hart, S.; Loos, A.; Hasko, G.; Dexter, B.

    1992-01-01

    In-situ frequency dependent electromagnetic sensors (FDEMS) and the Loos resin transfer model have been used to select and control the processing properties of an epoxy resin during liquid pressure RTM impregnation and cure. Once correlated with viscosity and degree of cure the FDEMS sensor monitors and the RTM processing model predicts the reaction advancement of the resin, viscosity and the impregnation of the fabric. This provides a direct means for predicting, monitoring, and controlling the liquid RTM process in-situ in the mold throughout the fabrication process and the effects of time, temperature, vacuum and pressure. Most importantly, the FDEMS-sensor model system has been developed to make intelligent decisions, thereby automating the liquid RTM process and removing the need for operator direction.

  17. Dynamic Modeling, Controls, and Testing for Electrified Aircraft

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph; Stalcup, Erik

    2017-01-01

    Electrified aircraft have the potential to provide significant benefits for efficiency and emissions reductions. To assess these potential benefits, modeling tools are needed to provide rapid evaluation of diverse concepts and to ensure safe operability and peak performance over the mission. The modeling challenge for these vehicles is the ability to show significant benefits over the current highly refined aircraft systems. The STARC-ABL (single-aisle turbo-electric aircraft with an aft boundary layer propulsor) is a new test proposal that builds upon previous N3-X team hybrid designs. This presentation describes the STARC-ABL concept, the NASA Electric Aircraft Testbed (NEAT) which will allow testing of the STARC-ABL powertrain, and the related modeling and simulation efforts to date. Modeling and simulation includes a turbofan simulation, Numeric Propulsion System Simulation (NPSS), which has been integrated with NEAT; and a power systems and control model for predicting testbed performance and evaluating control schemes. Model predictions provide good comparisons with testbed data for an NPSS-integrated test of the single-string configuration of NEAT.

  18. A Combined Energy Management Algorithm for Wind Turbine/Battery Hybrid System

    NASA Astrophysics Data System (ADS)

    Altin, Necmi; Eyimaya, Süleyman Emre

    2018-03-01

    From an energy management standpoint, natural phenomena such as solar irradiation and wind speed are uncontrolled variables, so the correlation between the energy generated by renewable energy sources and energy demand cannot always be predicted. For this reason, energy storage systems are used to provide more efficient renewable energy systems. In these systems, energy management systems are used to control the energy storage system and establish a balance between the generated power and the power demand. In addition, especially in wind turbines, rapidly varying wind speeds cause wind power fluctuations, which threaten the power system stability, especially at high power levels. Energy storage systems are also used to mitigate the power fluctuations and sustain the power system's stability. In these systems, another controller which controls the energy storage system power to mitigate power fluctuations is required. These two controllers are different from each other. In this study, a combined energy management algorithm is proposed which can perform both as an energy control system and a power fluctuation mitigation system. The proposed controller is tested with wind energy conversion system modeled in MATLAB/Simulink. Simulation results show that the proposed controller acts as an energy management system while, at the same time, mitigating power fluctuations.

  19. Control and communication co-design: analysis and practice on performance improvement in distributed measurement and control system based on fieldbus and Ethernet.

    PubMed

    Liang, Geng

    2015-01-01

    In this paper, improving control performance of a networked control system by reducing DTD in a different perspective was investigated. Two different network architectures for system implementation were presented. Analysis and improvement dealing with DTD for the experimental control system were expounded. Effects of control scheme configuration on DTD in the form of FB were investigated and corresponding improvements by reallocation of FB and re-arrangement of schedule table are proposed. Issues of DTD in hybrid network were investigated and corresponding approaches to improve performance including (1) reducing DTD in PLC or PAC by way of IEC61499 and (2) cascade Smith predictive control with BPNN-based identification were proposed and investigated. Control effects under the proposed methodologies were also given. Experimental and field practices validated these methodologies. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Adaptive control of artificial pancreas systems - a review.

    PubMed

    Turksoy, Kamuran; Cinar, Ali

    2014-01-01

    Artificial pancreas (AP) systems offer an important improvement in regulating blood glucose concentration for patients with type 1 diabetes, compared to current approaches. AP consists of sensors, control algorithms and an insulin pump. Different AP control algorithms such as proportional-integral-derivative, model-predictive control, adaptive control, and fuzzy logic control have been investigated in simulation and clinical studies in the past three decades. The variability over time and complexity of the dynamics of blood glucose concentration, unsteady disturbances such as meals, time-varying delays on measurements and insulin infusion, and noisy data from sensors create a challenging system to AP. Adaptive control is a powerful control technique that can deal with such challenges. In this paper, a review of adaptive control techniques for blood glucose regulation with an AP system is presented. The investigations and advances in technology produced impressive results, but there is still a need for a reliable AP system that is both commercially viable and appealing to patients with type 1 diabetes.

  1. Gust prediction via artificial hair sensor array and neural network

    NASA Astrophysics Data System (ADS)

    Pankonien, Alexander M.; Thapa Magar, Kaman S.; Beblo, Richard V.; Reich, Gregory W.

    2017-04-01

    Gust Load Alleviation (GLA) is an important aspect of flight dynamics and control that reduces structural loadings and enhances ride quality. In conventional GLA systems, the structural response to aerodynamic excitation informs the control scheme. A phase lag, imposed by inertia, between the excitation and the measurement inherently limits the effectiveness of these systems. Hence, direct measurement of the aerodynamic loading can eliminate this lag, providing valuable information for effective GLA system design. Distributed arrays of Artificial Hair Sensors (AHS) are ideal for surface flow measurements that can be used to predict other necessary parameters such as aerodynamic forces, moments, and turbulence. In previous work, the spatially distributed surface flow velocities obtained from an array of artificial hair sensors using a Single-State (or feedforward) Neural Network were found to be effective in estimating the steady aerodynamic parameters such as air speed, angle of attack, lift and moment coefficient. This paper extends the investigation of the same configuration to unsteady force and moment estimation, which is important for active GLA control design. Implementing a Recurrent Neural Network that includes previous-timestep sensor information, the hair sensor array is shown to be capable of capturing gust disturbances with a wide range of periods, reducing predictive error in lift and moment by 68% and 52% respectively. The L2 norms of the first layer of the weight matrices were compared showing a 23% emphasis on prior versus current information. The Recurrent architecture also improves robustness, exhibiting only a 30% increase in predictive error when undertrained as compared to a 170% increase by the Single-State NN. This diverse, localized information can thus be directly implemented into a control scheme that alleviates the gusts without waiting for a structural response or requiring user-intensive sensor calibration.

  2. A problem of optimal control and observation for distributed homogeneous multi-agent system

    NASA Astrophysics Data System (ADS)

    Kruglikov, Sergey V.

    2017-12-01

    The paper considers the implementation of a algorithm for controlling a distributed complex of several mobile multi-robots. The concept of a unified information space of the controlling system is applied. The presented information and mathematical models of participants and obstacles, as real agents, and goals and scenarios, as virtual agents, create the base forming the algorithmic and software background for computer decision support system. The controlling scheme assumes the indirect management of the robotic team on the basis of optimal control and observation problem predicting intellectual behavior in a dynamic, hostile environment. A basic content problem is a compound cargo transportation by a group of participants in the case of a distributed control scheme in the terrain with multiple obstacles.

  3. Autonomous collision avoidance system by combined control of steering and braking using geometrically optimised vehicular trajectory

    NASA Astrophysics Data System (ADS)

    Hayashi, Ryuzo; Isogai, Juzo; Raksincharoensak, Pongsathorn; Nagai, Masao

    2012-01-01

    This study proposes an autonomous obstacle avoidance system not only by braking but also by steering, as one of the active safety technologies to prevent traffic accidents. The proposed system prevents the vehicle from colliding with a moving obstacle like a pedestrian jumping out from the roadside. In the proposed system, to avoid the predicted colliding position based on constant-velocity obstacle motion assumption, the avoidance trajectory is derived as connected two identical arcs. The system then controls the vehicle autonomously by the combined control of the braking and steering systems. In this paper, the proposed system is examined by real car experiments and its effectiveness is shown from the results of the experiments.

  4. Integrated System Health Management Development Toolkit

    NASA Technical Reports Server (NTRS)

    Figueroa, Jorge; Smith, Harvey; Morris, Jon

    2009-01-01

    This software toolkit is designed to model complex systems for the implementation of embedded Integrated System Health Management (ISHM) capability, which focuses on determining the condition (health) of every element in a complex system (detect anomalies, diagnose causes, and predict future anomalies), and to provide data, information, and knowledge (DIaK) to control systems for safe and effective operation.

  5. Characterization of Tactical Departure Scheduling in the National Airspace System

    NASA Technical Reports Server (NTRS)

    Capps, Alan; Engelland, Shawn A.

    2011-01-01

    This paper discusses and analyzes current day utilization and performance of the tactical departure scheduling process in the National Airspace System (NAS) to understand the benefits in improving this process. The analysis used operational air traffic data from over 1,082,000 flights during the month of January, 2011. Specific metrics included the frequency of tactical departure scheduling, site specific variances in the technology's utilization, departure time prediction compliance used in the tactical scheduling process and the performance with which the current system can predict the airborne slot that aircraft are being scheduled into from the airport surface. Operational data analysis described in this paper indicates significant room for improvement exists in the current system primarily in the area of reduced departure time prediction uncertainty. Results indicate that a significant number of tactically scheduled aircraft did not meet their scheduled departure slot due to departure time uncertainty. In addition to missed slots, the operational data analysis identified increased controller workload associated with tactical departures which were subject to traffic management manual re-scheduling or controller swaps. An analysis of achievable levels of departure time prediction accuracy as obtained by a new integrated surface and tactical scheduling tool is provided to assess the benefit it may provide as a solution to the identified shortfalls. A list of NAS facilities which are likely to receive the greatest benefit from the integrated surface and tactical scheduling technology are provided.

  6. Computational Model of Human and System Dynamics in Free Flight: Studies in Distributed Control Technologies

    NASA Technical Reports Server (NTRS)

    Corker, Kevin M.; Pisanich, Gregory; Lebacqz, J. Victor (Technical Monitor)

    1998-01-01

    This paper presents a set of studies in full mission simulation and the development of a predictive computational model of human performance in control of complex airspace operations. NASA and the FAA have initiated programs of research and development to provide flight crew, airline operations and air traffic managers with automation aids to increase capacity in en route and terminal area to support the goals of safe, flexible, predictable and efficient operations. In support of these developments, we present a computational model to aid design that includes representation of multiple cognitive agents (both human operators and intelligent aiding systems). The demands of air traffic management require representation of many intelligent agents sharing world-models, coordinating action/intention, and scheduling goals and actions in a potentially unpredictable world of operations. The operator-model structure includes attention functions, action priority, and situation assessment. The cognitive model has been expanded to include working memory operations including retrieval from long-term store, and interference. The operator's activity structures have been developed to provide for anticipation (knowledge of the intention and action of remote operators), and to respond to failures of the system and other operators in the system in situation-specific paradigms. System stability and operator actions can be predicted by using the model. The model's predictive accuracy was verified using the full-mission simulation data of commercial flight deck operations with advanced air traffic management techniques.

  7. Educators' Pupil-Control Ideology as a Predictor of Educator's Reactions to Pupil Disruptive Behavior.

    ERIC Educational Resources Information Center

    Lunenburg, Fred C.

    Given the importance of pupil control in the school's social system, it would seem reasonable to predict a significant relationship between educators' pupil control ideology and their reactions to disruptive behavior incidents. This study examines whether humanistically oriented educators would prefer to levy less punitive measures on disruptive…

  8. Distributed control system for parallel-connected DC boost converters

    DOEpatents

    Goldsmith, Steven

    2017-08-15

    The disclosed invention is a distributed control system for operating a DC bus fed by disparate DC power sources that service a known or unknown load. The voltage sources vary in v-i characteristics and have time-varying, maximum supply capacities. Each source is connected to the bus via a boost converter, which may have different dynamic characteristics and power transfer capacities, but are controlled through PWM. The invention tracks the time-varying power sources and apportions their power contribution while maintaining the DC bus voltage within the specifications. A central digital controller solves the steady-state system for the optimal duty cycle settings that achieve a desired power supply apportionment scheme for a known or predictable DC load. A distributed networked control system is derived from the central system that utilizes communications among controllers to compute a shared estimate of the unknown time-varying load through shared bus current measurements and bus voltage measurements.

  9. Adaptive Data Processing Technique for Lidar-Assisted Control to Bridge the Gap between Lidar Systems and Wind Turbines: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlipf, David; Raach, Steffen; Haizmann, Florian

    2015-12-14

    This paper presents first steps toward an adaptive lidar data processing technique crucial for lidar-assisted control in wind turbines. The prediction time and the quality of the wind preview from lidar measurements depend on several factors and are not constant. If the data processing is not continually adjusted, the benefit of lidar-assisted control cannot be fully exploited, or can even result in harmful control action. An online analysis of the lidar and turbine data are necessary to continually reassess the prediction time and lidar data quality. In this work, a structured process to develop an analysis tool for the predictionmore » time and a new hardware setup for lidar-assisted control are presented. The tool consists of an online estimation of the rotor effective wind speed from lidar and turbine data and the implementation of an online cross correlation to determine the time shift between both signals. Further, initial results from an ongoing campaign in which this system was employed for providing lidar preview for feed-forward pitch control are presented.« less

  10. Direct modeling parameter signature analysis and failure mode prediction of physical systems using hybrid computer optimization

    NASA Technical Reports Server (NTRS)

    Drake, R. L.; Duvoisin, P. F.; Asthana, A.; Mather, T. W.

    1971-01-01

    High speed automated identification and design of dynamic systems, both linear and nonlinear, are discussed. Special emphasis is placed on developing hardware and techniques which are applicable to practical problems. The basic modeling experiment and new results are described. Using the improvements developed successful identification of several systems, including a physical example as well as simulated systems, was obtained. The advantages of parameter signature analysis over signal signature analysis in go-no go testing of operational systems were demonstrated. The feasibility of using these ideas in failure mode prediction in operating systems was also investigated. An improved digital controlled nonlinear function generator was developed, de-bugged, and completely documented.

  11. Modelling and control for laser based welding processes: modern methods of process control to improve quality of laser-based joining methods

    NASA Astrophysics Data System (ADS)

    Zäh, Ralf-Kilian; Mosbach, Benedikt; Hollwich, Jan; Faupel, Benedikt

    2017-02-01

    To ensure the competitiveness of manufacturing companies it is indispensable to optimize their manufacturing processes. Slight variations of process parameters and machine settings have only marginally effects on the product quality. Therefore, the largest possible editing window is required. Such parameters are, for example, the movement of the laser beam across the component for the laser keyhole welding. That`s why it is necessary to keep the formation of welding seams within specified limits. Therefore, the quality of laser welding processes is ensured, by using post-process methods, like ultrasonic inspection, or special in-process methods. These in-process systems only achieve a simple evaluation which shows whether the weld seam is acceptable or not. Furthermore, in-process systems use no feedback for changing the control variables such as speed of the laser or adjustment of laser power. In this paper the research group presents current results of the research field of Online Monitoring, Online Controlling and Model predictive controlling in laser welding processes to increase the product quality. To record the characteristics of the welding process, tested online methods are used during the process. Based on the measurement data, a state space model is ascertained, which includes all the control variables of the system. Depending on simulation tools the model predictive controller (MPC) is designed for the model and integrated into an NI-Real-Time-System.

  12. Theoretical Tools and Software for Modeling, Simulation and Control Design of Rocket Test Facilities

    NASA Technical Reports Server (NTRS)

    Richter, Hanz

    2004-01-01

    A rocket test stand and associated subsystems are complex devices whose operation requires that certain preparatory calculations be carried out before a test. In addition, real-time control calculations must be performed during the test, and further calculations are carried out after a test is completed. The latter may be required in order to evaluate if a particular test conformed to specifications. These calculations are used to set valve positions, pressure setpoints, control gains and other operating parameters so that a desired system behavior is obtained and the test can be successfully carried out. Currently, calculations are made in an ad-hoc fashion and involve trial-and-error procedures that may involve activating the system with the sole purpose of finding the correct parameter settings. The goals of this project are to develop mathematical models, control methodologies and associated simulation environments to provide a systematic and comprehensive prediction and real-time control capability. The models and controller designs are expected to be useful in two respects: 1) As a design tool, a model is the only way to determine the effects of design choices without building a prototype, which is, in the context of rocket test stands, impracticable; 2) As a prediction and tuning tool, a good model allows to set system parameters off-line, so that the expected system response conforms to specifications. This includes the setting of physical parameters, such as valve positions, and the configuration and tuning of any feedback controllers in the loop.

  13. A control-theory model for human decision-making

    NASA Technical Reports Server (NTRS)

    Levison, W. H.; Tanner, R. B.

    1971-01-01

    A model for human decision making is an adaptation of an optimal control model for pilot/vehicle systems. The models for decision and control both contain concepts of time delay, observation noise, optimal prediction, and optimal estimation. The decision making model was intended for situations in which the human bases his decision on his estimate of the state of a linear plant. Experiments are described for the following task situations: (a) single decision tasks, (b) two-decision tasks, and (c) simultaneous manual control and decision making. Using fixed values for model parameters, single-task and two-task decision performance can be predicted to within an accuracy of 10 percent. Agreement is less good for the simultaneous decision and control situation.

  14. Fundamental concepts of structural loading and load relief techniques for the space shuttle

    NASA Technical Reports Server (NTRS)

    Ryan, R. S.; Mowery, D. K.; Winder, S. W.

    1972-01-01

    The prediction of flight loads and their potential reduction, using various control system logics for the space shuttle vehicles, is discussed. Some factors not found on previous launch vehicles that increase the complexity are large lifting surfaces, unsymmetrical structure, unsymmetrical aerodynamics, trajectory control system coupling, and large aeroelastic effects. These load-producing factors and load-reducing techniques are analyzed.

  15. Advanced flight control system study

    NASA Technical Reports Server (NTRS)

    Hartmann, G. L.; Wall, J. E., Jr.; Rang, E. R.; Lee, H. P.; Schulte, R. W.; Ng, W. K.

    1982-01-01

    A fly by wire flight control system architecture designed for high reliability includes spare sensor and computer elements to permit safe dispatch with failed elements, thereby reducing unscheduled maintenance. A methodology capable of demonstrating that the architecture does achieve the predicted performance characteristics consists of a hierarchy of activities ranging from analytical calculations of system reliability and formal methods of software verification to iron bird testing followed by flight evaluation. Interfacing this architecture to the Lockheed S-3A aircraft for flight test is discussed. This testbed vehicle can be expanded to support flight experiments in advanced aerodynamics, electromechanical actuators, secondary power systems, flight management, new displays, and air traffic control concepts.

  16. Computer simulation of multigrid body dynamics and control

    NASA Technical Reports Server (NTRS)

    Swaminadham, M.; Moon, Young I.; Venkayya, V. B.

    1990-01-01

    The objective is to set up and analyze benchmark problems on multibody dynamics and to verify the predictions of two multibody computer simulation codes. TREETOPS and DISCOS have been used to run three example problems - one degree-of-freedom spring mass dashpot system, an inverted pendulum system, and a triple pendulum. To study the dynamics and control interaction, an inverted planar pendulum with an external body force and a torsional control spring was modeled as a hinge connected two-rigid body system. TREETOPS and DISCOS affected the time history simulation of this problem. System state space variables and their time derivatives from two simulation codes were compared.

  17. Slip control for LIM propelled transit vehicles

    NASA Astrophysics Data System (ADS)

    Wallace, A. K.; Parker, J. H.; Dawson, G. E.

    1980-09-01

    Short stator linear induction motors, with an iron-backed aluminum sheet reaction rail and powered by a controlled inverter, have been selected as the propulsion system for transit vehicles in an intermediate capacity system (12-20,000 pphpd). The linear induction motor is capable of adhesion independent braking and acceleration levels which permit safe, close headways. In addition, simple control is possible allowing moving block automatic train control. This paper presents a slip frequency control scheme for the LIM. Experimental results for motoring and braking obtained from a test vehicle are also presented. These values are compared with theoretical predictions.

  18. Prediction of wastewater treatment plants performance based on artificial fish school neural network

    NASA Astrophysics Data System (ADS)

    Zhang, Ruicheng; Li, Chong

    2011-10-01

    A reliable model for wastewater treatment plant is essential in providing a tool for predicting its performance and to form a basis for controlling the operation of the process. This would minimize the operation costs and assess the stability of environmental balance. For the multi-variable, uncertainty, non-linear characteristics of the wastewater treatment system, an artificial fish school neural network prediction model is established standing on actual operation data in the wastewater treatment system. The model overcomes several disadvantages of the conventional BP neural network. The results of model calculation show that the predicted value can better match measured value, played an effect on simulating and predicting and be able to optimize the operation status. The establishment of the predicting model provides a simple and practical way for the operation and management in wastewater treatment plant, and has good research and engineering practical value.

  19. Prognostics and Health Monitoring: Application to Electric Vehicles

    NASA Technical Reports Server (NTRS)

    Kulkarni, Chetan S.

    2017-01-01

    As more and more autonomous electric vehicles emerge in our daily operation progressively, a very critical challenge lies in accurate prediction of remaining useful life of the systemssubsystems, specifically the electrical powertrain. In case of electric aircrafts, computing remaining flying time is safety-critical, since an aircraft that runs out of power (battery charge) while in the air will eventually lose control leading to catastrophe. In order to tackle and solve the prediction problem, it is essential to have awareness of the current state and health of the system, especially since it is necessary to perform condition-based predictions. To be able to predict the future state of the system, it is also required to possess knowledge of the current and future operations of the vehicle.Our research approach is to develop a system level health monitoring safety indicator either to the pilotautopilot for the electric vehicles which runs estimation and prediction algorithms to estimate remaining useful life of the vehicle e.g. determine state-of-charge in batteries. Given models of the current and future system behavior, a general approach of model-based prognostics can be employed as a solution to the prediction problem and further for decision making.

  20. Head-target tracking control of well drilling

    NASA Astrophysics Data System (ADS)

    Agzamov, Z. V.

    2018-05-01

    The method of directional drilling trajectory control for oil and gas wells using predictive models is considered in the paper. The developed method does not apply optimization and therefore there is no need for the high-performance computing. Nevertheless, it allows following the well-plan with high precision taking into account process input saturation. Controller output is calculated both from the present target reference point of the well-plan and from well trajectory prediction with using the analytical model. This method allows following a well-plan not only on angular, but also on the Cartesian coordinates. Simulation of the control system has confirmed the high precision and operation performance with a wide range of random disturbance action.

  1. Output-Feedback Model Predictive Control of a Pasteurization Pilot Plant based on an LPV model

    NASA Astrophysics Data System (ADS)

    Karimi Pour, Fatemeh; Ocampo-Martinez, Carlos; Puig, Vicenç

    2017-01-01

    This paper presents a model predictive control (MPC) of a pasteurization pilot plant based on an LPV model. Since not all the states are measured, an observer is also designed, which allows implementing an output-feedback MPC scheme. However, the model of the plant is not completely observable when augmented with the disturbance models. In order to solve this problem, the following strategies are used: (i) the whole system is decoupled into two subsystems, (ii) an inner state-feedback controller is implemented into the MPC control scheme. A real-time example based on the pasteurization pilot plant is simulated as a case study for testing the behavior of the approaches.

  2. Real-time sensing of fatigue crack damage for information-based decision and control

    NASA Astrophysics Data System (ADS)

    Keller, Eric Evans

    Information-based decision and control for structures that are subject to failure by fatigue cracking is based on the following notion: Maintenance, usage scheduling, and control parameter tuning can be optimized through real time knowledge of the current state of fatigue crack damage. Additionally, if the material properties of a mechanical structure can be identified within a smaller range, then the remaining life prediction of that structure will be substantially more accurate. Information-based decision systems can rely one physical models, estimation of material properties, exact knowledge of usage history, and sensor data to synthesize an accurate snapshot of the current state of damage and the likely remaining life of a structure under given assumed loading. The work outlined in this thesis is structured to enhance the development of information-based decision and control systems. This is achieved by constructing a test facility for laboratory experiments on real-time damage sensing. This test facility makes use of a methodology that has been formulated for fatigue crack model parameter estimation and significantly improves the quality of predictions of remaining life. Specifically, the thesis focuses on development of an on-line fatigue crack damage sensing and life prediction system that is built upon the disciplines of Systems Sciences and Mechanics of Materials. A major part of the research effort has been expended to design and fabricate a test apparatus which allows: (i) measurement and recording of statistical data for fatigue crack growth in metallic materials via different sensing techniques; and (ii) identification of stochastic model parameters for prediction of fatigue crack damage. To this end, this thesis describes the test apparatus and the associated instrumentation based on four different sensing techniques, namely, traveling optical microscopy, ultrasonic flaw detection, Alternating Current Potential Drop (ACPD), and fiber-optic extensometry-based compliance, for crack length measurements.

  3. Systems and methods for distributing power using photovoltaic resources and a shifting battery system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mammoli, Andrea A.; Lavrova, Olga; Arellano, Brian

    The present invention is an apparatus and method for delivering energy using a renewable resource. The method includes providing a photovoltaic energy source and applying energy storage to the photovoltaic energy source via a battery storage unit. The energy output from the photovoltaic energy source and the battery system is controlled using a battery control system. The battery control system predicts peak load, develops a schedule that includes when to begin discharging power and when to stop discharging power, shifts power to the battery storage unit when excess power is available, and prioritizes the functionality of the battery storage unitmore » and the photovoltaic energy source.« less

  4. Interesting examples of supervised continuous variable systems

    NASA Technical Reports Server (NTRS)

    Chase, Christopher; Serrano, Joe; Ramadge, Peter

    1990-01-01

    The authors analyze two simple deterministic flow models for multiple buffer servers which are examples of the supervision of continuous variable systems by a discrete controller. These systems exhibit what may be regarded as the two extremes of complexity of the closed loop behavior: one is eventually periodic, the other is chaotic. The first example exhibits chaotic behavior that could be characterized statistically. The dual system, the switched server system, exhibits very predictable behavior, which is modeled by a finite state automaton. This research has application to multimodal discrete time systems where the controller can choose from a set of transition maps to implement.

  5. Comparison of measured and simulated friction velocity and threshold friction velocity using SWEEP

    USDA-ARS?s Scientific Manuscript database

    The Wind Erosion Prediction System (WEPS) was developed by the USDA Agricultural Research Service as a tool to predict wind erosion and assess the influence of control practices on windblown soil loss. Occasional failure of the WEPS erosion submodel (SWEEP) to simulate erosion in the Columbia Platea...

  6. Interaction of Physical and Chemical Processes Controlling the Environmental Fate and Transport of Lampricides Through Stream-Hyporheic Systems

    NASA Astrophysics Data System (ADS)

    Hixson, J.; Ward, A. S.; Schmadel, N.; McConville, M.; Remucal, C.

    2016-12-01

    The transport and fate of contaminants of emerging concern through the environment is complicated by the heterogeneity of natural systems and the unique reaction pathways of individual compounds. Our current evaluation of risk is often simplified to controls assumed to be homogeneous in space and time. However, we know spatial heterogeneity and time-variable reaction rates complicate predictions of environmental transport and fate, and therefore risk. These complications are the result of the interactions between the physical and chemical systems and the time-variable equilibrium that exists between the two. Compounds that interact with both systems, such as photolytic compounds, require that both components are fully understood in order to predict transport and fate. Release of photolytic compounds occurs through both unintentional releases and intentional loadings. Evaluating risks associated with unintentional releases and implementing best management practices for intentional releases requires an in-depth understanding of the sensitivity of photolytic compounds to external controls. Lampricides, such as 3-trifluoromethyl-4-nitrophenol (TFM), are broadly applied in the Great Lakes system to control the population of invasive sea lamprey. Over-dosing can yield fish kills and other detrimental impacts. Still, planning accounts for time of passage and dilution, but not the interaction of the physical and chemical systems (i.e., storage in the hyporheic zone and time-variable decay rates). In this study, we model a series of TFM applications to test the efficacy of dosing as a function of system characteristics. Overall, our results demonstrate the complexity associated with photo-sensitive compounds through stream-hyporheic systems, and highlight the need to better understand how physical and chemical systems interact to control transport and fate in the environment.

  7. Active Control of Wind-Tunnel Model Aeroelastic Response Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Scott, Robert C.

    2000-01-01

    NASA Langley Research Center, Hampton, VA 23681 Under a joint research and development effort conducted by the National Aeronautics and Space Administration and The Boeing Company (formerly McDonnell Douglas) three neural-network based control systems were developed and tested. The control systems were experimentally evaluated using a transonic wind-tunnel model in the Langley Transonic Dynamics Tunnel. One system used a neural network to schedule flutter suppression control laws, another employed a neural network in a predictive control scheme, and the third employed a neural network in an inverse model control scheme. All three of these control schemes successfully suppressed flutter to or near the limits of the testing apparatus, and represent the first experimental applications of neural networks to flutter suppression. This paper will summarize the findings of this project.

  8. User-Preference-Driven Model Predictive Control of Residential Building Loads and Battery Storage for Demand Response: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Xin; Baker, Kyri A.; Christensen, Dane T.

    This paper presents a user-preference-driven home energy management system (HEMS) for demand response (DR) with residential building loads and battery storage. The HEMS is based on a multi-objective model predictive control algorithm, where the objectives include energy cost, thermal comfort, and carbon emission. A multi-criterion decision making method originating from social science is used to quickly determine user preferences based on a brief survey and derive the weights of different objectives used in the optimization process. Besides the residential appliances used in the traditional DR programs, a home battery system is integrated into the HEMS to improve the flexibility andmore » reliability of the DR resources. Simulation studies have been performed on field data from a residential building stock data set. Appliance models and usage patterns were learned from the data to predict the DR resource availability. Results indicate the HEMS was able to provide a significant amount of load reduction with less than 20% prediction error in both heating and cooling cases.« less

  9. User-Preference-Driven Model Predictive Control of Residential Building Loads and Battery Storage for Demand Response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Xin; Baker, Kyri A; Isley, Steven C

    This paper presents a user-preference-driven home energy management system (HEMS) for demand response (DR) with residential building loads and battery storage. The HEMS is based on a multi-objective model predictive control algorithm, where the objectives include energy cost, thermal comfort, and carbon emission. A multi-criterion decision making method originating from social science is used to quickly determine user preferences based on a brief survey and derive the weights of different objectives used in the optimization process. Besides the residential appliances used in the traditional DR programs, a home battery system is integrated into the HEMS to improve the flexibility andmore » reliability of the DR resources. Simulation studies have been performed on field data from a residential building stock data set. Appliance models and usage patterns were learned from the data to predict the DR resource availability. Results indicate the HEMS was able to provide a significant amount of load reduction with less than 20% prediction error in both heating and cooling cases.« less

  10. Digital signal processing and control and estimation theory -- Points of tangency, area of intersection, and parallel directions

    NASA Technical Reports Server (NTRS)

    Willsky, A. S.

    1976-01-01

    A number of current research directions in the fields of digital signal processing and modern control and estimation theory were studied. Topics such as stability theory, linear prediction and parameter identification, system analysis and implementation, two-dimensional filtering, decentralized control and estimation, image processing, and nonlinear system theory were examined in order to uncover some of the basic similarities and differences in the goals, techniques, and philosophy of the two disciplines. An extensive bibliography is included.

  11. Prognostics using Engineering and Environmental Parameters as Applied to State of Health (SOH) Radionuclide Aerosol Sampler Analyzer (RASA) Real-Time Monitoring

    NASA Astrophysics Data System (ADS)

    Hutchenson, K. D.; Hartley-McBride, S.; Saults, T.; Schmidt, D. P.

    2006-05-01

    The International Monitoring System (IMS) is composed in part of radionuclide particulate and gas monitoring systems. Monitoring the operational status of these systems is an important aspect of nuclear weapon test monitoring. Quality data, process control techniques, and predictive models are necessary to detect and predict system component failures. Predicting failures in advance provides time to mitigate these failures, thus minimizing operational downtime. The Provisional Technical Secretariat (PTS) requires IMS radionuclide systems be operational 95 percent of the time. The United States National Data Center (US NDC) offers contributing components to the IMS. This effort focuses on the initial research and process development using prognostics for monitoring and predicting failures of the RASA two (2) days into the future. The predictions, using time series methods, are input to an expert decision system, called SHADES (State of Health Airflow and Detection Expert System). The results enable personnel to make informed judgments about the health of the RASA system. Data are read from a relational database, processed, and displayed to the user in a GIS as a prototype GUI. This procedure mimics the real time application process that could be implemented as an operational system, This initial proof-of-concept effort developed predictive models focused on RASA components for a single site (USP79). Future work shall include the incorporation of other RASA systems, as well as their environmental conditions that play a significant role in performance. Similarly, SHADES currently accommodates specific component behaviors at this one site. Future work shall also include important environmental variables that play an important part of the prediction algorithms.

  12. Network Randomization and Dynamic Defense for Critical Infrastructure Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavez, Adrian R.; Martin, Mitchell Tyler; Hamlet, Jason

    2015-04-01

    Critical Infrastructure control systems continue to foster predictable communication paths, static configurations, and unpatched systems that allow easy access to our nation's most critical assets. This makes them attractive targets for cyber intrusion. We seek to address these attack vectors by automatically randomizing network settings, randomizing applications on the end devices themselves, and dynamically defending these systems against active attacks. Applying these protective measures will convert control systems into moving targets that proactively defend themselves against attack. Sandia National Laboratories has led this effort by gathering operational and technical requirements from Tennessee Valley Authority (TVA) and performing research and developmentmore » to create a proof-of-concept solution. Our proof-of-concept has been tested in a laboratory environment with over 300 nodes. The vision of this project is to enhance control system security by converting existing control systems into moving targets and building these security measures into future systems while meeting the unique constraints that control systems face.« less

  13. H∞ control for switched fuzzy systems via dynamic output feedback: Hybrid and switched approaches

    NASA Astrophysics Data System (ADS)

    Xiang, Weiming; Xiao, Jian; Iqbal, Muhammad Naveed

    2013-06-01

    Fuzzy T-S model has been proven to be a practical and effective way to deal with the analysis and synthesis problems for complex nonlinear systems. As for switched nonlinear system, describing its subsystems as fuzzy T-S models, namely switched fuzzy system, naturally is an alternative method to conventional control approaches. In this paper, the H∞ control problem for a class of switched fuzzy systems is addressed. Hybrid and switched design approaches are proposed with different availability of switching signal information at switching instant. The hybrid control strategy includes two parts: fuzzy controllers for subsystems and state updating controller at switching instant, and the switched control strategy contains the controllers for subsystems. It is demonstrated that the conservativeness is reduced by introducing the state updating behavior but its cost is an online prediction of switching signal. Numerical examples are given to illustrate the effectiveness of proposed approaches and compare the conservativeness of two approaches.

  14. Predictive optimized adaptive PSS in a single machine infinite bus.

    PubMed

    Milla, Freddy; Duarte-Mermoud, Manuel A

    2016-07-01

    Power System Stabilizer (PSS) devices are responsible for providing a damping torque component to generators for reducing fluctuations in the system caused by small perturbations. A Predictive Optimized Adaptive PSS (POA-PSS) to improve the oscillations in a Single Machine Infinite Bus (SMIB) power system is discussed in this paper. POA-PSS provides the optimal design parameters for the classic PSS using an optimization predictive algorithm, which adapts to changes in the inputs of the system. This approach is part of small signal stability analysis, which uses equations in an incremental form around an operating point. Simulation studies on the SMIB power system illustrate that the proposed POA-PSS approach has better performance than the classical PSS. In addition, the effort in the control action of the POA-PSS is much less than that of other approaches considered for comparison. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Understanding climate: A strategy for climate modeling and predictability research, 1985-1995

    NASA Technical Reports Server (NTRS)

    Thiele, O. (Editor); Schiffer, R. A. (Editor)

    1985-01-01

    The emphasis of the NASA strategy for climate modeling and predictability research is on the utilization of space technology to understand the processes which control the Earth's climate system and it's sensitivity to natural and man-induced changes and to assess the possibilities for climate prediction on time scales of from about two weeks to several decades. Because the climate is a complex multi-phenomena system, which interacts on a wide range of space and time scales, the diversity of scientific problems addressed requires a hierarchy of models along with the application of modern empirical and statistical techniques which exploit the extensive current and potential future global data sets afforded by space observations. Observing system simulation experiments, exploiting these models and data, will also provide the foundation for the future climate space observing system, e.g., Earth observing system (EOS), 1985; Tropical Rainfall Measuring Mission (TRMM) North, et al. NASA, 1984.

  16. Atmospheric cloud physics laboratory project study

    NASA Technical Reports Server (NTRS)

    Schultz, W. E.; Stephen, L. A.; Usher, L. H.

    1976-01-01

    Engineering studies were performed for the Zero-G Cloud Physics Experiment liquid cooling and air pressure control systems. A total of four concepts for the liquid cooling system was evaluated, two of which were found to closely approach the systems requirements. Thermal insulation requirements, system hardware, and control sensor locations were established. The reservoir sizes and initial temperatures were defined as well as system power requirements. In the study of the pressure control system, fluid analyses by the Atmospheric Cloud Physics Laboratory were performed to determine flow characteristics of various orifice sizes, vacuum pump adequacy, and control systems performance. System parameters predicted in these analyses as a function of time include the following for various orifice sizes: (1) chamber and vacuum pump mass flow rates, (2) the number of valve openings or closures, (3) the maximum cloud chamber pressure deviation from the allowable, and (4) cloud chamber and accumulator pressure.

  17. The kinetics and location of intra-host HIV evolution to evade cellular immunity are predictable

    NASA Astrophysics Data System (ADS)

    Barton, John; Goonetilleke, Nilu; Butler, Thomas; Walker, Bruce; McMichael, Andrew; Chakraborty, Arup

    Human immunodeficiency virus (HIV) evolves within infected persons to escape targeting and clearance by the host immune system, thereby preventing effective immune control of infection. Knowledge of the timing and pathways of escape that result in loss of control of the virus could aid in the design of effective strategies to overcome the challenge of viral diversification and immune escape. We combined methods from statistical physics and evolutionary dynamics to predict the course of in vivo viral sequence evolution in response to T cell-mediated immune pressure in a cohort of 17 persons with acute HIV infection. Our predictions agree well with both the location of documented escape mutations and the clinically observed time to escape. We also find that that the mutational pathways to escape depend on the viral sequence background due to epistatic interactions. The ability to predict escape pathways, and the duration over which control is maintained by specific immune responses prior to escape, could be exploited for the rational design of immunotherapeutic strategies that may enable long-term control of HIV infection.

  18. Test and theory for piezoelectric actuator-active vibration control of rotating machinery

    NASA Technical Reports Server (NTRS)

    Palazzolo, A. B.; Lin, R. R.; Alexander, R. M.; Kascak, A. F.; Montague, J.

    1989-01-01

    The application of piezoelectric actuators for active vibration control (AVC) of rotating machinery is examined. Theory is derived and the resulting predictions are shown to agree closely with results of tests performed on an air turbine driven-overhung rotor. The test results show significant reduction in unbalance, transient and sub-synchronous responses. Results from a 30-hour endurance test support the AVD system reliability. Various aspects of the electro-mechanical stability of the control system are also discussed and illustrated. Finally, application of the AVC system to an actual jet engine is discussed.

  19. MSFC Skylab contamination control systems mission evaluation

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Cluster external contamination control evaluation was made throughout the Skylab Mission. This evaluation indicated that contamination control measures instigated during the design, development, and operational phases of this program were adequate to reduce the general contamination environment external to the Cluster below the threshold senstivity levels for experiments and affected subsystems. Launch and orbit contamination control features included eliminating certain vents, rerouting vents for minimum contamination impact, establishing filters, incorporating materials with minimum outgassing characteristics and developing operational constraints and mission rules to minimize contamination effects. Prior to the launch of Skylab, contamination control math models were developed which were used to predict Cluster surface deposition and background brightness levels throughout the mission. The report summarizes the Skylab system and experiment contamination control evaluation. The Cluster systems and experiments evaluated include Induced Atmosphere, Corollary and ATM Experiments, Thermal Control Surfaces, Solar Array Systems, Windows and Star Tracker.

  20. Adaptive neural network motion control for aircraft under uncertainty conditions

    NASA Astrophysics Data System (ADS)

    Efremov, A. V.; Tiaglik, M. S.; Tiumentsev, Yu V.

    2018-02-01

    We need to provide motion control of modern and advanced aircraft under diverse uncertainty conditions. This problem can be solved by using adaptive control laws. We carry out an analysis of the capabilities of these laws for such adaptive systems as MRAC (Model Reference Adaptive Control) and MPC (Model Predictive Control). In the case of a nonlinear control object, the most efficient solution to the adaptive control problem is the use of neural network technologies. These technologies are suitable for the development of both a control object model and a control law for the object. The approximate nature of the ANN model was taken into account by introducing additional compensating feedback into the control system. The capabilities of adaptive control laws under uncertainty in the source data are considered. We also conduct simulations to assess the contribution of adaptivity to the behavior of the system.

Top