Data-Based Predictive Control with Multirate Prediction Step
NASA Technical Reports Server (NTRS)
Barlow, Jonathan S.
2010-01-01
Data-based predictive control is an emerging control method that stems from Model Predictive Control (MPC). MPC computes current control action based on a prediction of the system output a number of time steps into the future and is generally derived from a known model of the system. Data-based predictive control has the advantage of deriving predictive models and controller gains from input-output data. Thus, a controller can be designed from the outputs of complex simulation code or a physical system where no explicit model exists. If the output data happens to be corrupted by periodic disturbances, the designed controller will also have the built-in ability to reject these disturbances without the need to know them. When data-based predictive control is implemented online, it becomes a version of adaptive control. One challenge of MPC is computational requirements increasing with prediction horizon length. This paper develops a closed-loop dynamic output feedback controller that minimizes a multi-step-ahead receding-horizon cost function with multirate prediction step. One result is a reduced influence of prediction horizon and the number of system outputs on the computational requirements of the controller. Another result is an emphasis on portions of the prediction window that are sampled more frequently. A third result is the ability to include more outputs in the feedback path than in the cost function.
Adaptive Data-based Predictive Control for Short Take-off and Landing (STOL) Aircraft
NASA Technical Reports Server (NTRS)
Barlow, Jonathan Spencer; Acosta, Diana Michelle; Phan, Minh Q.
2010-01-01
Data-based Predictive Control is an emerging control method that stems from Model Predictive Control (MPC). MPC computes current control action based on a prediction of the system output a number of time steps into the future and is generally derived from a known model of the system. Data-based predictive control has the advantage of deriving predictive models and controller gains from input-output data. Thus, a controller can be designed from the outputs of complex simulation code or a physical system where no explicit model exists. If the output data happens to be corrupted by periodic disturbances, the designed controller will also have the built-in ability to reject these disturbances without the need to know them. When data-based predictive control is implemented online, it becomes a version of adaptive control. The characteristics of adaptive data-based predictive control are particularly appropriate for the control of nonlinear and time-varying systems, such as Short Take-off and Landing (STOL) aircraft. STOL is a capability of interest to NASA because conceptual Cruise Efficient Short Take-off and Landing (CESTOL) transport aircraft offer the ability to reduce congestion in the terminal area by utilizing existing shorter runways at airports, as well as to lower community noise by flying steep approach and climb-out patterns that reduce the noise footprint of the aircraft. In this study, adaptive data-based predictive control is implemented as an integrated flight-propulsion controller for the outer-loop control of a CESTOL-type aircraft. Results show that the controller successfully tracks velocity while attempting to maintain a constant flight path angle, using longitudinal command, thrust and flap setting as the control inputs.
Predicting Loss-of-Control Boundaries Toward a Piloting Aid
NASA Technical Reports Server (NTRS)
Barlow, Jonathan; Stepanyan, Vahram; Krishnakumar, Kalmanje
2012-01-01
This work presents an approach to predicting loss-of-control with the goal of providing the pilot a decision aid focused on maintaining the pilot's control action within predicted loss-of-control boundaries. The predictive architecture combines quantitative loss-of-control boundaries, a data-based predictive control boundary estimation algorithm and an adaptive prediction method to estimate Markov model parameters in real-time. The data-based loss-of-control boundary estimation algorithm estimates the boundary of a safe set of control inputs that will keep the aircraft within the loss-of-control boundaries for a specified time horizon. The adaptive prediction model generates estimates of the system Markov Parameters, which are used by the data-based loss-of-control boundary estimation algorithm. The combined algorithm is applied to a nonlinear generic transport aircraft to illustrate the features of the architecture.
Generalized Predictive and Neural Generalized Predictive Control of Aerospace Systems
NASA Technical Reports Server (NTRS)
Kelkar, Atul G.
2000-01-01
The research work presented in this thesis addresses the problem of robust control of uncertain linear and nonlinear systems using Neural network-based Generalized Predictive Control (NGPC) methodology. A brief overview of predictive control and its comparison with Linear Quadratic (LQ) control is given to emphasize advantages and drawbacks of predictive control methods. It is shown that the Generalized Predictive Control (GPC) methodology overcomes the drawbacks associated with traditional LQ control as well as conventional predictive control methods. It is shown that in spite of the model-based nature of GPC it has good robustness properties being special case of receding horizon control. The conditions for choosing tuning parameters for GPC to ensure closed-loop stability are derived. A neural network-based GPC architecture is proposed for the control of linear and nonlinear uncertain systems. A methodology to account for parametric uncertainty in the system is proposed using on-line training capability of multi-layer neural network. Several simulation examples and results from real-time experiments are given to demonstrate the effectiveness of the proposed methodology.
NASA Astrophysics Data System (ADS)
Velarde, P.; Valverde, L.; Maestre, J. M.; Ocampo-Martinez, C.; Bordons, C.
2017-03-01
In this paper, a performance comparison among three well-known stochastic model predictive control approaches, namely, multi-scenario, tree-based, and chance-constrained model predictive control is presented. To this end, three predictive controllers have been designed and implemented in a real renewable-hydrogen-based microgrid. The experimental set-up includes a PEM electrolyzer, lead-acid batteries, and a PEM fuel cell as main equipment. The real experimental results show significant differences from the plant components, mainly in terms of use of energy, for each implemented technique. Effectiveness, performance, advantages, and disadvantages of these techniques are extensively discussed and analyzed to give some valid criteria when selecting an appropriate stochastic predictive controller.
Rate-Based Model Predictive Control of Turbofan Engine Clearance
NASA Technical Reports Server (NTRS)
DeCastro, Jonathan A.
2006-01-01
An innovative model predictive control strategy is developed for control of nonlinear aircraft propulsion systems and sub-systems. At the heart of the controller is a rate-based linear parameter-varying model that propagates the state derivatives across the prediction horizon, extending prediction fidelity to transient regimes where conventional models begin to lose validity. The new control law is applied to a demanding active clearance control application, where the objectives are to tightly regulate blade tip clearances and also anticipate and avoid detrimental blade-shroud rub occurrences by optimally maintaining a predefined minimum clearance. Simulation results verify that the rate-based controller is capable of satisfying the objectives during realistic flight scenarios where both a conventional Jacobian-based model predictive control law and an unconstrained linear-quadratic optimal controller are incapable of doing so. The controller is evaluated using a variety of different actuators, illustrating the efficacy and versatility of the control approach. It is concluded that the new strategy has promise for this and other nonlinear aerospace applications that place high importance on the attainment of control objectives during transient regimes.
Life Extending Control. [mechanical fatigue in reusable rocket engines
NASA Technical Reports Server (NTRS)
Lorenzo, Carl F.; Merrill, Walter C.
1991-01-01
The concept of Life Extending Control is defined. Life is defined in terms of mechanical fatigue life. A brief description is given of the current approach to life prediction using a local, cyclic, stress-strain approach for a critical system component. An alternative approach to life prediction based on a continuous functional relationship to component performance is proposed. Based on cyclic life prediction, an approach to life extending control, called the Life Management Approach, is proposed. A second approach, also based on cyclic life prediction, called the implicit approach, is presented. Assuming the existence of the alternative functional life prediction approach, two additional concepts for Life Extending Control are presented.
Life extending control: A concept paper
NASA Technical Reports Server (NTRS)
Lorenzo, Carl F.; Merrill, Walter C.
1991-01-01
The concept of Life Extending Control is defined. Life is defined in terms of mechanical fatigue life. A brief description is given of the current approach to life prediction using a local, cyclic, stress-strain approach for a critical system component. An alternative approach to life prediction based on a continuous functional relationship to component performance is proposed.Base on cyclic life prediction an approach to Life Extending Control, called the Life Management Approach is proposed. A second approach, also based on cyclic life prediction, called the Implicit Approach, is presented. Assuming the existence of the alternative functional life prediction approach, two additional concepts for Life Extending Control are presented.
Maaoui-Ben Hassine, Ikram; Naouar, Mohamed Wissem; Mrabet-Bellaaj, Najiba
2016-05-01
In this paper, Model Predictive Control and Dead-beat predictive control strategies are proposed for the control of a PMSG based wind energy system. The proposed MPC considers the model of the converter-based system to forecast the possible future behavior of the controlled variables. It allows selecting the voltage vector to be applied that leads to a minimum error by minimizing a predefined cost function. The main features of the MPC are low current THD and robustness against parameters variations. The Dead-beat predictive control is based on the system model to compute the optimum voltage vector that ensures zero-steady state error. The optimum voltage vector is then applied through Space Vector Modulation (SVM) technique. The main advantages of the Dead-beat predictive control are low current THD and constant switching frequency. The proposed control techniques are presented and detailed for the control of back-to-back converter in a wind turbine system based on PMSG. Simulation results (under Matlab-Simulink software environment tool) and experimental results (under developed prototyping platform) are presented in order to show the performances of the considered control strategies. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Robust predictive cruise control for commercial vehicles
NASA Astrophysics Data System (ADS)
Junell, Jaime; Tumer, Kagan
2013-10-01
In this paper we explore learning-based predictive cruise control and the impact of this technology on increasing fuel efficiency for commercial trucks. Traditional cruise control is wasteful when maintaining a constant velocity over rolling hills. Predictive cruise control (PCC) is able to look ahead at future road conditions and solve for a cost-effective course of action. Model- based controllers have been implemented in this field but cannot accommodate many complexities of a dynamic environment which includes changing road and vehicle conditions. In this work, we focus on incorporating a learner into an already successful model- based predictive cruise controller in order to improve its performance. We explore back propagating neural networks to predict future errors then take actions to prevent said errors from occurring. The results show that this approach improves the model based PCC by up to 60% under certain conditions. In addition, we explore the benefits of classifier ensembles to further improve the gains due to intelligent cruise control.
NASA Astrophysics Data System (ADS)
Lu, Jianbo; Xi, Yugeng; Li, Dewei; Xu, Yuli; Gan, Zhongxue
2018-01-01
A common objective of model predictive control (MPC) design is the large initial feasible region, low online computational burden as well as satisfactory control performance of the resulting algorithm. It is well known that interpolation-based MPC can achieve a favourable trade-off among these different aspects. However, the existing results are usually based on fixed prediction scenarios, which inevitably limits the performance of the obtained algorithms. So by replacing the fixed prediction scenarios with the time-varying multi-step prediction scenarios, this paper provides a new insight into improvement of the existing MPC designs. The adopted control law is a combination of predetermined multi-step feedback control laws, based on which two MPC algorithms with guaranteed recursive feasibility and asymptotic stability are presented. The efficacy of the proposed algorithms is illustrated by a numerical example.
Dubay, Rickey; Hassan, Marwan; Li, Chunying; Charest, Meaghan
2014-09-01
This paper presents a unique approach for active vibration control of a one-link flexible manipulator. The method combines a finite element model of the manipulator and an advanced model predictive controller to suppress vibration at its tip. This hybrid methodology improves significantly over the standard application of a predictive controller for vibration control. The finite element model used in place of standard modelling in the control algorithm provides a more accurate prediction of dynamic behavior, resulting in enhanced control. Closed loop control experiments were performed using the flexible manipulator, instrumented with strain gauges and piezoelectric actuators. In all instances, experimental and simulation results demonstrate that the finite element based predictive controller provides improved active vibration suppression in comparison with using a standard predictive control strategy. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
An improved predictive functional control method with application to PMSM systems
NASA Astrophysics Data System (ADS)
Li, Shihua; Liu, Huixian; Fu, Wenshu
2017-01-01
In common design of prediction model-based control method, usually disturbances are not considered in the prediction model as well as the control design. For the control systems with large amplitude or strong disturbances, it is difficult to precisely predict the future outputs according to the conventional prediction model, and thus the desired optimal closed-loop performance will be degraded to some extent. To this end, an improved predictive functional control (PFC) method is developed in this paper by embedding disturbance information into the system model. Here, a composite prediction model is thus obtained by embedding the estimated value of disturbances, where disturbance observer (DOB) is employed to estimate the lumped disturbances. So the influence of disturbances on system is taken into account in optimisation procedure. Finally, considering the speed control problem for permanent magnet synchronous motor (PMSM) servo system, a control scheme based on the improved PFC method is designed to ensure an optimal closed-loop performance even in the presence of disturbances. Simulation and experimental results based on a hardware platform are provided to confirm the effectiveness of the proposed algorithm.
Predictive control and estimation algorithms for the NASA/JPL 70-meter antennas
NASA Technical Reports Server (NTRS)
Gawronski, W.
1991-01-01
A modified output prediction procedure and a new controller design is presented based on the predictive control law. Also, a new predictive estimator is developed to complement the controller and to enhance system performance. The predictive controller is designed and applied to the tracking control of the Deep Space Network 70 m antennas. Simulation results show significant improvement in tracking performance over the linear quadratic controller and estimator presently in use.
NASA Technical Reports Server (NTRS)
Mercer, Joey S.; Bienert, Nancy; Gomez, Ashley; Hunt, Sarah; Kraut, Joshua; Martin, Lynne; Morey, Susan; Green, Steven M.; Prevot, Thomas; Wu, Minghong G.
2013-01-01
A Human-In-The-Loop air traffic control simulation investigated the impact of uncertainties in trajectory predictions on NextGen Trajectory-Based Operations concepts, seeking to understand when the automation would become unacceptable to controllers or when performance targets could no longer be met. Retired air traffic controllers staffed two en route transition sectors, delivering arrival traffic to the northwest corner-post of Atlanta approach control under time-based metering operations. Using trajectory-based decision-support tools, the participants worked the traffic under varying levels of wind forecast error and aircraft performance model error, impacting the ground automations ability to make accurate predictions. Results suggest that the controllers were able to maintain high levels of performance, despite even the highest levels of trajectory prediction errors.
Motor prediction in Brain-Computer Interfaces for controlling mobile robots.
Geng, Tao; Gan, John Q
2008-01-01
EEG-based Brain-Computer Interface (BCI) can be regarded as a new channel for motor control except that it does not involve muscles. Normal neuromuscular motor control has two fundamental components: (1) to control the body, and (2) to predict the consequences of the control command, which is called motor prediction. In this study, after training with a specially designed BCI paradigm based on motor imagery, two subjects learnt to predict the time course of some features of the EEG signals. It is shown that, with this newly-obtained motor prediction skill, subjects can use motor imagery of feet to directly control a mobile robot to avoid obstacles and reach a small target in a time-critical scenario.
Missile Guidance Law Based on Robust Model Predictive Control Using Neural-Network Optimization.
Li, Zhijun; Xia, Yuanqing; Su, Chun-Yi; Deng, Jun; Fu, Jun; He, Wei
2015-08-01
In this brief, the utilization of robust model-based predictive control is investigated for the problem of missile interception. Treating the target acceleration as a bounded disturbance, novel guidance law using model predictive control is developed by incorporating missile inside constraints. The combined model predictive approach could be transformed as a constrained quadratic programming (QP) problem, which may be solved using a linear variational inequality-based primal-dual neural network over a finite receding horizon. Online solutions to multiple parametric QP problems are used so that constrained optimal control decisions can be made in real time. Simulation studies are conducted to illustrate the effectiveness and performance of the proposed guidance control law for missile interception.
NASA Astrophysics Data System (ADS)
Lim, Yeerang; Jung, Youeyun; Bang, Hyochoong
2018-05-01
This study presents model predictive formation control based on an eccentricity/inclination vector separation strategy. Alternative collision avoidance can be accomplished by using eccentricity/inclination vectors and adding a simple goal function term for optimization process. Real-time control is also achievable with model predictive controller based on convex formulation. Constraint-tightening approach is address as well improve robustness of the controller, and simulation results are presented to verify performance enhancement for the proposed approach.
NASA Astrophysics Data System (ADS)
Qiu, Peng; D'Souza, Warren D.; McAvoy, Thomas J.; Liu, K. J. Ray
2007-09-01
Tumor motion induced by respiration presents a challenge to the reliable delivery of conformal radiation treatments. Real-time motion compensation represents the technologically most challenging clinical solution but has the potential to overcome the limitations of existing methods. The performance of a real-time couch-based motion compensation system is mainly dependent on two aspects: the ability to infer the internal anatomical position and the performance of the feedback control system. In this paper, we propose two novel methods for the two aspects respectively, and then combine the proposed methods into one system. To accurately estimate the internal tumor position, we present partial-least squares (PLS) regression to predict the position of the diaphragm using skin-based motion surrogates. Four radio-opaque markers were placed on the abdomen of patients who underwent fluoroscopic imaging of the diaphragm. The coordinates of the markers served as input variables and the position of the diaphragm served as the output variable. PLS resulted in lower prediction errors compared with standard multiple linear regression (MLR). The performance of the feedback control system depends on the system dynamics and dead time (delay between the initiation and execution of the control action). While the dynamics of the system can be inverted in a feedback control system, the dead time cannot be inverted. To overcome the dead time of the system, we propose a predictive feedback control system by incorporating forward prediction using least-mean-square (LMS) and recursive least square (RLS) filtering into the couch-based control system. Motion data were obtained using a skin-based marker. The proposed predictive feedback control system was benchmarked against pure feedback control (no forward prediction) and resulted in a significant performance gain. Finally, we combined the PLS inference model and the predictive feedback control to evaluate the overall performance of the feedback control system. Our results show that, with the tumor motion unknown but inferred by skin-based markers through the PLS model, the predictive feedback control system was able to effectively compensate intra-fraction motion.
Simulation analysis of adaptive cruise prediction control
NASA Astrophysics Data System (ADS)
Zhang, Li; Cui, Sheng Min
2017-09-01
Predictive control is suitable for multi-variable and multi-constraint system control.In order to discuss the effect of predictive control on the vehicle longitudinal motion, this paper establishes the expected spacing model by combining variable pitch spacing and the of safety distance strategy. The model predictive control theory and the optimization method based on secondary planning are designed to obtain and track the best expected acceleration trajectory quickly. Simulation models are established including predictive and adaptive fuzzy control. Simulation results show that predictive control can realize the basic function of the system while ensuring the safety. The application of predictive and fuzzy adaptive algorithm in cruise condition indicates that the predictive control effect is better.
NASA Astrophysics Data System (ADS)
Sun, Chao; Zhang, Chunran; Gu, Xinfeng; Liu, Bin
2017-10-01
Constraints of the optimization objective are often unable to be met when predictive control is applied to industrial production process. Then, online predictive controller will not find a feasible solution or a global optimal solution. To solve this problem, based on Back Propagation-Auto Regressive with exogenous inputs (BP-ARX) combined control model, nonlinear programming method is used to discuss the feasibility of constrained predictive control, feasibility decision theorem of the optimization objective is proposed, and the solution method of soft constraint slack variables is given when the optimization objective is not feasible. Based on this, for the interval control requirements of the controlled variables, the slack variables that have been solved are introduced, the adaptive weighted interval predictive control algorithm is proposed, achieving adaptive regulation of the optimization objective and automatically adjust of the infeasible interval range, expanding the scope of the feasible region, and ensuring the feasibility of the interval optimization objective. Finally, feasibility and effectiveness of the algorithm is validated through the simulation comparative experiments.
Liu, Xudong; Zhang, Chenghui; Li, Ke; Zhang, Qi
2017-11-01
This paper addresses the current control of permanent magnet synchronous motor (PMSM) for electric drives with model uncertainties and disturbances. A generalized predictive current control method combined with sliding mode disturbance compensation is proposed to satisfy the requirement of fast response and strong robustness. Firstly, according to the generalized predictive control (GPC) theory based on the continuous time model, a predictive current control method is presented without considering the disturbance, which is convenient to be realized in the digital controller. In fact, it's difficult to derive the exact motor model and parameters in the practical system. Thus, a sliding mode disturbance compensation controller is studied to improve the adaptiveness and robustness of the control system. The designed controller attempts to combine the merits of both predictive control and sliding mode control, meanwhile, the controller parameters are easy to be adjusted. Lastly, the proposed controller is tested on an interior PMSM by simulation and experiment, and the results indicate that it has good performance in both current tracking and disturbance rejection. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Improved fuzzy PID controller design using predictive functional control structure.
Wang, Yuzhong; Jin, Qibing; Zhang, Ridong
2017-11-01
In conventional PID scheme, the ensemble control performance may be unsatisfactory due to limited degrees of freedom under various kinds of uncertainty. To overcome this disadvantage, a novel PID control method that inherits the advantages of fuzzy PID control and the predictive functional control (PFC) is presented and further verified on the temperature model of a coke furnace. Based on the framework of PFC, the prediction of the future process behavior is first obtained using the current process input signal. Then, the fuzzy PID control based on the multi-step prediction is introduced to acquire the optimal control law. Finally, the case study on a temperature model of a coke furnace shows the effectiveness of the fuzzy PID control scheme when compared with conventional PID control and fuzzy self-adaptive PID control. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Model predictive control based on reduced order models applied to belt conveyor system.
Chen, Wei; Li, Xin
2016-11-01
In the paper, a model predictive controller based on reduced order model is proposed to control belt conveyor system, which is an electro-mechanics complex system with long visco-elastic body. Firstly, in order to design low-degree controller, the balanced truncation method is used for belt conveyor model reduction. Secondly, MPC algorithm based on reduced order model for belt conveyor system is presented. Because of the error bound between the full-order model and reduced order model, two Kalman state estimators are applied in the control scheme to achieve better system performance. Finally, the simulation experiments are shown that balanced truncation method can significantly reduce the model order with high-accuracy and model predictive control based on reduced-model performs well in controlling the belt conveyor system. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Improved disturbance rejection for predictor-based control of MIMO linear systems with input delay
NASA Astrophysics Data System (ADS)
Shi, Shang; Liu, Wenhui; Lu, Junwei; Chu, Yuming
2018-02-01
In this paper, we are concerned with the predictor-based control of multi-input multi-output (MIMO) linear systems with input delay and disturbances. By taking the future values of disturbances into consideration, a new improved predictive scheme is proposed. Compared with the existing predictive schemes, our proposed predictive scheme can achieve a finite-time exact state prediction for some smooth disturbances including the constant disturbances, and a better disturbance attenuation can also be achieved for a large class of other time-varying disturbances. The attenuation of mismatched disturbances for second-order linear systems with input delay is also investigated by using our proposed predictor-based controller.
A Discrete-Time Average Model Based Predictive Control for Quasi-Z-Source Inverter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yushan; Abu-Rub, Haitham; Xue, Yaosuo
A discrete-time average model-based predictive control (DTA-MPC) is proposed for a quasi-Z-source inverter (qZSI). As a single-stage inverter topology, the qZSI regulates the dc-link voltage and the ac output voltage through the shoot-through (ST) duty cycle and the modulation index. Several feedback strategies have been dedicated to produce these two control variables, among which the most popular are the proportional–integral (PI)-based control and the conventional model-predictive control (MPC). However, in the former, there are tradeoffs between fast response and stability; the latter is robust, but at the cost of high calculation burden and variable switching frequency. Moreover, they require anmore » elaborated design or fine tuning of controller parameters. The proposed DTA-MPC predicts future behaviors of the ST duty cycle and modulation signals, based on the established discrete-time average model of the quasi-Z-source (qZS) inductor current, the qZS capacitor voltage, and load currents. The prediction actions are applied to the qZSI modulator in the next sampling instant, without the need of other controller parameters’ design. A constant switching frequency and significantly reduced computations are achieved with high performance. Transient responses and steady-state accuracy of the qZSI system under the proposed DTA-MPC are investigated and compared with the PI-based control and the conventional MPC. Simulation and experimental results verify the effectiveness of the proposed approach for the qZSI.« less
A Discrete-Time Average Model Based Predictive Control for Quasi-Z-Source Inverter
Liu, Yushan; Abu-Rub, Haitham; Xue, Yaosuo; ...
2017-12-25
A discrete-time average model-based predictive control (DTA-MPC) is proposed for a quasi-Z-source inverter (qZSI). As a single-stage inverter topology, the qZSI regulates the dc-link voltage and the ac output voltage through the shoot-through (ST) duty cycle and the modulation index. Several feedback strategies have been dedicated to produce these two control variables, among which the most popular are the proportional–integral (PI)-based control and the conventional model-predictive control (MPC). However, in the former, there are tradeoffs between fast response and stability; the latter is robust, but at the cost of high calculation burden and variable switching frequency. Moreover, they require anmore » elaborated design or fine tuning of controller parameters. The proposed DTA-MPC predicts future behaviors of the ST duty cycle and modulation signals, based on the established discrete-time average model of the quasi-Z-source (qZS) inductor current, the qZS capacitor voltage, and load currents. The prediction actions are applied to the qZSI modulator in the next sampling instant, without the need of other controller parameters’ design. A constant switching frequency and significantly reduced computations are achieved with high performance. Transient responses and steady-state accuracy of the qZSI system under the proposed DTA-MPC are investigated and compared with the PI-based control and the conventional MPC. Simulation and experimental results verify the effectiveness of the proposed approach for the qZSI.« less
Improved model predictive control of resistive wall modes by error field estimator in EXTRAP T2R
NASA Astrophysics Data System (ADS)
Setiadi, A. C.; Brunsell, P. R.; Frassinetti, L.
2016-12-01
Many implementations of a model-based approach for toroidal plasma have shown better control performance compared to the conventional type of feedback controller. One prerequisite of model-based control is the availability of a control oriented model. This model can be obtained empirically through a systematic procedure called system identification. Such a model is used in this work to design a model predictive controller to stabilize multiple resistive wall modes in EXTRAP T2R reversed-field pinch. Model predictive control is an advanced control method that can optimize the future behaviour of a system. Furthermore, this paper will discuss an additional use of the empirical model which is to estimate the error field in EXTRAP T2R. Two potential methods are discussed that can estimate the error field. The error field estimator is then combined with the model predictive control and yields better radial magnetic field suppression.
NASA Astrophysics Data System (ADS)
Li, Decang; Meng, Jianjun; Bai, Huan; Xu, Ruxun
2018-07-01
This paper focuses on the safety of high-speed trains under strong crosswind conditions. A new active control strategy is proposed based on the adaptive predictive control theory. The new control strategy aims at adjusting the attitudes of a train by controlling the new-type intelligent giant magnetostrictive actuator (GMA). It combined adaptive control with dynamic matrix control; parameters of predictive controller was real-time adjusted by online distinguishing to enhance the robustness of the control algorithm. On this basis, a correction control algorithm is also designed to regulate the parameters of predictive controller based on the step response of a controlled objective. Finally, the simulation results show that the proposed control strategy can adjust the running attitudes of high-speed trains under strong crosswind conditions; they also indicate that the new active control strategy is effective and applicable in improving the safety performance of a train based on a host-target computer technology provided by Matlab/Simulink.
Fourier transform wavefront control with adaptive prediction of the atmosphere.
Poyneer, Lisa A; Macintosh, Bruce A; Véran, Jean-Pierre
2007-09-01
Predictive Fourier control is a temporal power spectral density-based adaptive method for adaptive optics that predicts the atmosphere under the assumption of frozen flow. The predictive controller is based on Kalman filtering and a Fourier decomposition of atmospheric turbulence using the Fourier transform reconstructor. It provides a stable way to compensate for arbitrary numbers of atmospheric layers. For each Fourier mode, efficient and accurate algorithms estimate the necessary atmospheric parameters from closed-loop telemetry and determine the predictive filter, adjusting as conditions change. This prediction improves atmospheric rejection, leading to significant improvements in system performance. For a 48x48 actuator system operating at 2 kHz, five-layer prediction for all modes is achievable in under 2x10(9) floating-point operations/s.
NASA Astrophysics Data System (ADS)
Maljaars, E.; Felici, F.; Blanken, T. C.; Galperti, C.; Sauter, O.; de Baar, M. R.; Carpanese, F.; Goodman, T. P.; Kim, D.; Kim, S. H.; Kong, M.; Mavkov, B.; Merle, A.; Moret, J. M.; Nouailletas, R.; Scheffer, M.; Teplukhina, A. A.; Vu, N. M. T.; The EUROfusion MST1-team; The TCV-team
2017-12-01
The successful performance of a model predictive profile controller is demonstrated in simulations and experiments on the TCV tokamak, employing a profile controller test environment. Stable high-performance tokamak operation in hybrid and advanced plasma scenarios requires control over the safety factor profile (q-profile) and kinetic plasma parameters such as the plasma beta. This demands to establish reliable profile control routines in presently operational tokamaks. We present a model predictive profile controller that controls the q-profile and plasma beta using power requests to two clusters of gyrotrons and the plasma current request. The performance of the controller is analyzed in both simulation and TCV L-mode discharges where successful tracking of the estimated inverse q-profile as well as plasma beta is demonstrated under uncertain plasma conditions and the presence of disturbances. The controller exploits the knowledge of the time-varying actuator limits in the actuator input calculation itself such that fast transitions between targets are achieved without overshoot. A software environment is employed to prepare and test this and three other profile controllers in parallel in simulations and experiments on TCV. This set of tools includes the rapid plasma transport simulator RAPTOR and various algorithms to reconstruct the plasma equilibrium and plasma profiles by merging the available measurements with model-based predictions. In this work the estimated q-profile is merely based on RAPTOR model predictions due to the absence of internal current density measurements in TCV. These results encourage to further exploit model predictive profile control in experiments on TCV and other (future) tokamaks.
A combined-slip predictive control of vehicle stability with experimental verification
NASA Astrophysics Data System (ADS)
Jalali, Milad; Hashemi, Ehsan; Khajepour, Amir; Chen, Shih-ken; Litkouhi, Bakhtiar
2018-02-01
In this paper, a model predictive vehicle stability controller is designed based on a combined-slip LuGre tyre model. Variations in the lateral tyre forces due to changes in tyre slip ratios are considered in the prediction model of the controller. It is observed that the proposed combined-slip controller takes advantage of the more accurate tyre model and can adjust tyre slip ratios based on lateral forces of the front axle. This results in an interesting closed-loop response that challenges the notion of braking only the wheels on one side of the vehicle in differential braking. The performance of the proposed controller is evaluated in software simulations and is compared to a similar pure-slip controller. Furthermore, experimental tests are conducted on a rear-wheel drive electric Chevrolet Equinox equipped with differential brakes to evaluate the closed-loop response of the model predictive control controller.
Prediction based active ramp metering control strategy with mobility and safety assessment
NASA Astrophysics Data System (ADS)
Fang, Jie; Tu, Lili
2018-04-01
Ramp metering is one of the most direct and efficient motorway traffic flow management measures so as to improve traffic conditions. However, owing to short of traffic conditions prediction, in earlier studies, the impact on traffic flow dynamics of the applied RM control was not quantitatively evaluated. In this study, a RM control algorithm adopting Model Predictive Control (MPC) framework to predict and assess future traffic conditions, which taking both the current traffic conditions and the RM-controlled future traffic states into consideration, was presented. The designed RM control algorithm targets at optimizing the network mobility and safety performance. The designed algorithm is evaluated in a field-data-based simulation. Through comparing the presented algorithm controlled scenario with the uncontrolled scenario, it was proved that the proposed RM control algorithm can effectively relieve the congestion of traffic network with no significant compromises in safety aspect.
Adaptive MPC based on MIMO ARX-Laguerre model.
Ben Abdelwahed, Imen; Mbarek, Abdelkader; Bouzrara, Kais
2017-03-01
This paper proposes a method for synthesizing an adaptive predictive controller using a reduced complexity model. This latter is given by the projection of the ARX model on Laguerre bases. The resulting model is entitled MIMO ARX-Laguerre and it is characterized by an easy recursive representation. The adaptive predictive control law is computed based on multi-step-ahead finite-element predictors, identified directly from experimental input/output data. The model is tuned in each iteration by an online identification algorithms of both model parameters and Laguerre poles. The proposed approach avoids time consuming numerical optimization algorithms associated with most common linear predictive control strategies, which makes it suitable for real-time implementation. The method is used to synthesize and test in numerical simulations adaptive predictive controllers for the CSTR process benchmark. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Further Investigation of Receding Horizion-Based Controllers and Neural Network-Based Systems
NASA Technical Reports Server (NTRS)
Kelkar, Atul G.; Haley, Pamela J. (Technical Monitor)
2000-01-01
This report provides a comprehensive summary of the research work performed over the entire duration of the co-operative research agreement between NASA Langley Research Center and Kansas State University. This summary briefly lists the findings and also suggests possible future directions for the continuation of the subject research in the area of Generalized Predictive Control (GPC) and Network Based Generalized Predictive Control (NGPC).
NASA Astrophysics Data System (ADS)
Falugi, P.; Olaru, S.; Dumur, D.
2010-08-01
This article proposes an explicit robust predictive control solution based on linear matrix inequalities (LMIs). The considered predictive control strategy uses different local descriptions of the system dynamics and uncertainties and thus allows the handling of less conservative input constraints. The computed control law guarantees constraint satisfaction and asymptotic stability. The technique is effective for a class of nonlinear systems embedded into polytopic models. A detailed discussion of the procedures which adapt the partition of the state space is presented. For the practical implementation the construction of suitable (explicit) descriptions of the control law are described upon concrete algorithms.
Extended active disturbance rejection controller
NASA Technical Reports Server (NTRS)
Tian, Gang (Inventor); Gao, Zhiqiang (Inventor)
2012-01-01
Multiple designs, systems, methods and processes for controlling a system or plant using an extended active disturbance rejection control (ADRC) based controller are presented. The extended ADRC controller accepts sensor information from the plant. The sensor information is used in conjunction with an extended state observer in combination with a predictor that estimates and predicts the current state of the plant and a co-joined estimate of the system disturbances and system dynamics. The extended state observer estimates and predictions are used in conjunction with a control law that generates an input to the system based in part on the extended state observer estimates and predictions as well as a desired trajectory for the plant to follow.
Extended Active Disturbance Rejection Controller
NASA Technical Reports Server (NTRS)
Gao, Zhiqiang (Inventor); Tian, Gang (Inventor)
2016-01-01
Multiple designs, systems, methods and processes for controlling a system or plant using an extended active disturbance rejection control (ADRC) based controller are presented. The extended ADRC controller accepts sensor information from the plant. The sensor information is used in conjunction with an extended state observer in combination with a predictor that estimates and predicts the current state of the plant and a co-joined estimate of the system disturbances and system dynamics. The extended state observer estimates and predictions are used in conjunction with a control law that generates an input to the system based in part on the extended state observer estimates and predictions as well as a desired trajectory for the plant to follow.
Extended Active Disturbance Rejection Controller
NASA Technical Reports Server (NTRS)
Tian, Gang (Inventor); Gao, Zhiqiang (Inventor)
2014-01-01
Multiple designs, systems, methods and processes for controlling a system or plant using an extended active disturbance rejection control (ADRC) based controller are presented. The extended ADRC controller accepts sensor information from the plant. The sensor information is used in conjunction with an extended state observer in combination with a predictor that estimates and predicts the current state of the plant and a co-joined estimate of the system disturbances and system dynamics. The extended state observer estimates and predictions are used in conjunction with a control law that generates an input to the system based in part on the extended state observer estimates and predictions as well as a desired trajectory for the plant to follow.
Model Predictive Control Based Motion Drive Algorithm for a Driving Simulator
NASA Astrophysics Data System (ADS)
Rehmatullah, Faizan
In this research, we develop a model predictive control based motion drive algorithm for the driving simulator at Toronto Rehabilitation Institute. Motion drive algorithms exploit the limitations of the human vestibular system to formulate a perception of motion within the constrained workspace of a simulator. In the absence of visual cues, the human perception system is unable to distinguish between acceleration and the force of gravity. The motion drive algorithm determines control inputs to displace the simulator platform, and by using the resulting inertial forces and angular rates, creates the perception of motion. By using model predictive control, we can optimize the use of simulator workspace for every maneuver while simulating the vehicle perception. With the ability to handle nonlinear constraints, the model predictive control allows us to incorporate workspace limitations.
Qu, Xingda; Nussbaum, Maury A
2009-01-01
The purpose of this study was to identify the effects of external loads on balance control during upright stance, and to examine the ability of a new balance control model to predict these effects. External loads were applied to 12 young, healthy participants, and effects on balance control were characterized by center-of-pressure (COP) based measures. Several loading conditions were studied, involving combinations of load mass (10% and 20% of individual body mass) and height (at or 15% of stature above the whole-body COM). A balance control model based on an optimal control strategy was used to predict COP time series. It was assumed that a given individual would adopt the same neural optimal control mechanisms, identified in a no-load condition, under diverse external loading conditions. With the application of external loads, COP mean velocity in the anterior-posterior direction and RMS distance in the medial-lateral direction increased 8.1% and 10.4%, respectively. Predicted COP mean velocity and RMS distance in the anterior-posterior direction also increased with external loading, by 11.1% and 2.9%, respectively. Both experimental COP data and model-based predictions provided the same general conclusion, that application of larger external loads and loads more superior to the whole body center of mass lead to less effective postural control and perhaps a greater risk of loss of balance or falls. Thus, it can be concluded that the assumption about consistency in control mechanisms was partially supported, and it is the mechanical changes induced by external loads that primarily affect balance control.
Ouari, Kamel; Rekioua, Toufik; Ouhrouche, Mohand
2014-01-01
In order to make a wind power generation truly cost-effective and reliable, an advanced control techniques must be used. In this paper, we develop a new control strategy, using nonlinear generalized predictive control (NGPC) approach, for DFIG-based wind turbine. The proposed control law is based on two points: NGPC-based torque-current control loop generating the rotor reference voltage and NGPC-based speed control loop that provides the torque reference. In order to enhance the robustness of the controller, a disturbance observer is designed to estimate the aerodynamic torque which is considered as an unknown perturbation. Finally, a real-time simulation is carried out to illustrate the performance of the proposed controller. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhu, Baolong; Zhang, Zhiping; Zhou, Ding; Ma, Jie; Li, Shunli
2017-08-01
This paper investigates the H∞ control problem of the attitude stabilisation of a rigid spacecraft with external disturbances using prediction-based sampled-data control strategy. Aiming to achieve a 'virtual' closed-loop system, a type of parameterised sampled-data controller is designed by introducing a prediction mechanism. The resultant closed-loop system is equivalent to a hybrid system featured by a continuous-time and an impulsive differential system. By using a time-varying Lyapunov functional, a generalised bounded real lemma (GBRL) is first established for a kind of impulsive differential system. Based on this GBRL and Lyapunov functional approach, a sufficient condition is derived to guarantee the closed-loop system to be asymptotically stable and to achieve a prescribed H∞ performance. In addition, the controller parameter tuning is cast into a convex optimisation problem. Simulation and comparative results are provided to illustrate the effectiveness of the developed control scheme.
LMI-Based Generation of Feedback Laws for a Robust Model Predictive Control Algorithm
NASA Technical Reports Server (NTRS)
Acikmese, Behcet; Carson, John M., III
2007-01-01
This technical note provides a mathematical proof of Corollary 1 from the paper 'A Nonlinear Model Predictive Control Algorithm with Proven Robustness and Resolvability' that appeared in the 2006 Proceedings of the American Control Conference. The proof was omitted for brevity in the publication. The paper was based on algorithms developed for the FY2005 R&TD (Research and Technology Development) project for Small-body Guidance, Navigation, and Control [2].The framework established by the Corollary is for a robustly stabilizing MPC (model predictive control) algorithm for uncertain nonlinear systems that guarantees the resolvability of the associated nite-horizon optimal control problem in a receding-horizon implementation. Additional details of the framework are available in the publication.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miltiadis Alamaniotis; Vivek Agarwal
This paper places itself in the realm of anticipatory systems and envisions monitoring and control methods being capable of making predictions over system critical parameters. Anticipatory systems allow intelligent control of complex systems by predicting their future state. In the current work, an intelligent model aimed at implementing anticipatory monitoring and control in energy industry is presented and tested. More particularly, a set of support vector regressors (SVRs) are trained using both historical and observed data. The trained SVRs are used to predict the future value of the system based on current operational system parameter. The predicted values are thenmore » inputted to a fuzzy logic based module where the values are fused to obtain a single value, i.e., final system output prediction. The methodology is tested on real turbine degradation datasets. The outcome of the approach presented in this paper highlights the superiority over single support vector regressors. In addition, it is shown that appropriate selection of fuzzy sets and fuzzy rules plays an important role in improving system performance.« less
Multiplexed Predictive Control of a Large Commercial Turbofan Engine
NASA Technical Reports Server (NTRS)
Richter, hanz; Singaraju, Anil; Litt, Jonathan S.
2008-01-01
Model predictive control is a strategy well-suited to handle the highly complex, nonlinear, uncertain, and constrained dynamics involved in aircraft engine control problems. However, it has thus far been infeasible to implement model predictive control in engine control applications, because of the combination of model complexity and the time allotted for the control update calculation. In this paper, a multiplexed implementation is proposed that dramatically reduces the computational burden of the quadratic programming optimization that must be solved online as part of the model-predictive-control algorithm. Actuator updates are calculated sequentially and cyclically in a multiplexed implementation, as opposed to the simultaneous optimization taking place in conventional model predictive control. Theoretical aspects are discussed based on a nominal model, and actual computational savings are demonstrated using a realistic commercial engine model.
Hernández, Maciel M.; Eisenberg, Nancy; Valiente, Carlos; Diaz, Anjolii; VanSchyndel, Sarah K.; Berger, Rebecca H.; Terrell, Nathan; Silva, Kassondra M.; Spinrad, Tracy L.; Southworth, Jody
2015-01-01
The purpose of the study was to evaluate bidirectional associations between peer acceptance and both emotion and effortful control during kindergarten (N = 301). In both the fall and spring semesters, we obtained peer nominations of acceptance, measures of positive and negative emotion based on naturalistic observations in school (i.e., classroom, lunch/recess), and observers’ reports of effortful control (i.e., inhibitory control, attention focusing) and emotions (i.e., positive, negative). In structural equation panel models, peer acceptance in fall predicted higher effortful control in spring. Effortful control in fall did not predict peer acceptance in spring. Negative emotion predicted lower peer acceptance across time for girls but not for boys. Peer acceptance did not predict negative or positive emotion over time. In addition, we tested interactions between positive or negative emotion and effortful control predicting peer acceptance. Positive emotion predicted higher peer acceptance for children low in effortful control. PMID:28348445
The second phase of the MicroArray Quality Control (MAQC-II) project evaluated common practices for developing and validating microarray-based models aimed at predicting toxicological and clinical endpoints. Thirty-six teams developed classifiers for 13 endpoints - some easy, som...
Initial Evaluations of LoC Prediction Algorithms Using the NASA Vertical Motion Simulator
NASA Technical Reports Server (NTRS)
Krishnakumar, Kalmanje; Stepanyan, Vahram; Barlow, Jonathan; Hardy, Gordon; Dorais, Greg; Poolla, Chaitanya; Reardon, Scott; Soloway, Donald
2014-01-01
Flying near the edge of the safe operating envelope is an inherently unsafe proposition. Edge of the envelope here implies that small changes or disturbances in system state or system dynamics can take the system out of the safe envelope in a short time and could result in loss-of-control events. This study evaluated approaches to predicting loss-of-control safety margins as the aircraft gets closer to the edge of the safe operating envelope. The goal of the approach is to provide the pilot aural, visual, and tactile cues focused on maintaining the pilot's control action within predicted loss-of-control boundaries. Our predictive architecture combines quantitative loss-of-control boundaries, an adaptive prediction method to estimate in real-time Markov model parameters and associated stability margins, and a real-time data-based predictive control margins estimation algorithm. The combined architecture is applied to a nonlinear transport class aircraft. Evaluations of various feedback cues using both test and commercial pilots in the NASA Ames Vertical Motion-base Simulator (VMS) were conducted in the summer of 2013. The paper presents results of this evaluation focused on effectiveness of these approaches and the cues in preventing the pilots from entering a loss-of-control event.
Dynamic Simulation of Human Gait Model With Predictive Capability.
Sun, Jinming; Wu, Shaoli; Voglewede, Philip A
2018-03-01
In this paper, it is proposed that the central nervous system (CNS) controls human gait using a predictive control approach in conjunction with classical feedback control instead of exclusive classical feedback control theory that controls based on past error. To validate this proposition, a dynamic model of human gait is developed using a novel predictive approach to investigate the principles of the CNS. The model developed includes two parts: a plant model that represents the dynamics of human gait and a controller that represents the CNS. The plant model is a seven-segment, six-joint model that has nine degrees-of-freedom (DOF). The plant model is validated using data collected from able-bodied human subjects. The proposed controller utilizes model predictive control (MPC). MPC uses an internal model to predict the output in advance, compare the predicted output to the reference, and optimize the control input so that the predicted error is minimal. To decrease the complexity of the model, two joints are controlled using a proportional-derivative (PD) controller. The developed predictive human gait model is validated by simulating able-bodied human gait. The simulation results show that the developed model is able to simulate the kinematic output close to experimental data.
Valencia-Palomo, G; Rossiter, J A
2011-01-01
This paper makes two key contributions. First, it tackles the issue of the availability of constrained predictive control for low-level control loops. Hence, it describes how the constrained control algorithm is embedded in an industrial programmable logic controller (PLC) using the IEC 61131-3 programming standard. Second, there is a definition and implementation of a novel auto-tuned predictive controller; the key novelty is that the modelling is based on relatively crude but pragmatic plant information. Laboratory experiment tests were carried out in two bench-scale laboratory systems to prove the effectiveness of the combined algorithm and hardware solution. For completeness, the results are compared with a commercial proportional-integral-derivative (PID) controller (also embedded in the PLC) using the most up to date auto-tuning rules. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.
Design and experiment of vehicular charger AC/DC system based on predictive control algorithm
NASA Astrophysics Data System (ADS)
He, Guangbi; Quan, Shuhai; Lu, Yuzhang
2018-06-01
For the car charging stage rectifier uncontrollable system, this paper proposes a predictive control algorithm of DC/DC converter based on the prediction model, established by the state space average method and its prediction model, obtained by the optimal mathematical description of mathematical calculation, to analysis prediction algorithm by Simulink simulation. The design of the structure of the car charging, at the request of the rated output power and output voltage adjustable control circuit, the first stage is the three-phase uncontrolled rectifier DC voltage Ud through the filter capacitor, after by using double-phase interleaved buck-boost circuit with wide range output voltage required value, analyzing its working principle and the the parameters for the design and selection of components. The analysis of current ripple shows that the double staggered parallel connection has the advantages of reducing the output current ripple and reducing the loss. The simulation experiment of the whole charging circuit is carried out by software, and the result is in line with the design requirements of the system. Finally combining the soft with hardware circuit to achieve charging of the system according to the requirements, experimental platform proved the feasibility and effectiveness of the proposed predictive control algorithm based on the car charging of the system, which is consistent with the simulation results.
Choosing the appropriate forecasting model for predictive parameter control.
Aleti, Aldeida; Moser, Irene; Meedeniya, Indika; Grunske, Lars
2014-01-01
All commonly used stochastic optimisation algorithms have to be parameterised to perform effectively. Adaptive parameter control (APC) is an effective method used for this purpose. APC repeatedly adjusts parameter values during the optimisation process for optimal algorithm performance. The assignment of parameter values for a given iteration is based on previously measured performance. In recent research, time series prediction has been proposed as a method of projecting the probabilities to use for parameter value selection. In this work, we examine the suitability of a variety of prediction methods for the projection of future parameter performance based on previous data. All considered prediction methods have assumptions the time series data has to conform to for the prediction method to provide accurate projections. Looking specifically at parameters of evolutionary algorithms (EAs), we find that all standard EA parameters with the exception of population size conform largely to the assumptions made by the considered prediction methods. Evaluating the performance of these prediction methods, we find that linear regression provides the best results by a very small and statistically insignificant margin. Regardless of the prediction method, predictive parameter control outperforms state of the art parameter control methods when the performance data adheres to the assumptions made by the prediction method. When a parameter's performance data does not adhere to the assumptions made by the forecasting method, the use of prediction does not have a notable adverse impact on the algorithm's performance.
NASA Astrophysics Data System (ADS)
Rajapakse, G.; Jayasinghe, S. G.; Fleming, A.; Shahnia, F.
2017-07-01
Australia’s extended coastline asserts abundance of wave and tidal power. The predictability of these energy sources and their proximity to cities and towns make them more desirable. Several tidal current turbine and ocean wave energy conversion projects have already been planned in the coastline of southern Australia. Some of these projects use air turbine technology with air driven turbines to harvest the energy from an oscillating water column. This study focuses on the power take-off control of a single stage unidirectional oscillating water column air turbine generator system, and proposes a model predictive control-based speed controller for the generator-turbine assembly. The proposed method is verified with simulation results that show the efficacy of the controller in extracting power from the turbine while maintaining the speed at the desired level.
A Two-Time Scale Decentralized Model Predictive Controller Based on Input and Output Model
Niu, Jian; Zhao, Jun; Xu, Zuhua; Qian, Jixin
2009-01-01
A decentralized model predictive controller applicable for some systems which exhibit different dynamic characteristics in different channels was presented in this paper. These systems can be regarded as combinations of a fast model and a slow model, the response speeds of which are in two-time scale. Because most practical models used for control are obtained in the form of transfer function matrix by plant tests, a singular perturbation method was firstly used to separate the original transfer function matrix into two models in two-time scale. Then a decentralized model predictive controller was designed based on the two models derived from the original system. And the stability of the control method was proved. Simulations showed that the method was effective. PMID:19834542
Life extending control for rocket engines
NASA Technical Reports Server (NTRS)
Lorenzo, C. F.; Saus, J. R.; Ray, A.; Carpino, M.; Wu, M.-K.
1992-01-01
The concept of life extending control is defined. A brief discussion of current fatigue life prediction methods is given and the need for an alternative life prediction model based on a continuous functional relationship is established. Two approaches to life extending control are considered: (1) the implicit approach which uses cyclic fatigue life prediction as a basis for control design; and (2) the continuous life prediction approach which requires a continuous damage law. Progress on an initial formulation of a continuous (in time) fatigue model is presented. Finally, nonlinear programming is used to develop initial results for life extension for a simplified rocket engine (model).
Predictive onboard flow control for packet switching satellites
NASA Technical Reports Server (NTRS)
Bobinsky, Eric A.
1992-01-01
We outline two alternate approaches to predicting the onset of congestion in a packet switching satellite, and argue that predictive, rather than reactive, flow control is necessary for the efficient operation of such a system. The first method discussed is based on standard, statistical techniques which are used to periodically calculate a probability of near-term congestion based on arrival rate statistics. If this probability exceeds a present threshold, the satellite would transmit a rate-reduction signal to all active ground stations. The second method discussed would utilize a neural network to periodically predict the occurrence of buffer overflow based on input data which would include, in addition to arrival rates, the distributions of packet lengths, source addresses, and destination addresses.
USDA-ARS?s Scientific Manuscript database
Title: PARENT WEIGHT CHANGE PREDICTS CHILD WEIGHT CHANGE IN FAMILY-BASED WEIGHT CONTROL PROGRAM FOR PRE-SCHOOL CHILDREN (BUFFALO HEALTHY TOTS), Teresa Quattrin, MOl, James N Roemmich, PhDI, Rocco Paluch, MAl, Jihnhee Yu, PhD2, Leonard H Epstein, PhDI and Michelle A Ecker, RD, CDEI . lpediatrics, Uni...
NASA Astrophysics Data System (ADS)
Bürger, Adrian; Sawant, Parantapa; Bohlayer, Markus; Altmann-Dieses, Angelika; Braun, Marco; Diehl, Moritz
2017-10-01
Within this work, the benefits of using predictive control methods for the operation of Adsorption Cooling Machines (ACMs) are shown on a simulation study. Since the internal control decisions of series-manufactured ACMs often cannot be influenced, the work focuses on optimized scheduling of an ACM considering its internal functioning as well as forecasts for load and driving energy occurrence. For illustration, an assumed solar thermal climate system is introduced and a system model suitable for use within gradient-based optimization methods is developed. The results of a system simulation using a conventional scheme for ACM scheduling are compared to the results of a predictive, optimization-based scheduling approach for the same exemplary scenario of load and driving energy occurrence. The benefits of the latter approach are shown and future actions for application of these methods for system control are addressed.
A novel auto-tuning PID control mechanism for nonlinear systems.
Cetin, Meric; Iplikci, Serdar
2015-09-01
In this paper, a novel Runge-Kutta (RK) discretization-based model-predictive auto-tuning proportional-integral-derivative controller (RK-PID) is introduced for the control of continuous-time nonlinear systems. The parameters of the PID controller are tuned using RK model of the system through prediction error-square minimization where the predicted information of tracking error provides an enhanced tuning of the parameters. Based on the model-predictive control (MPC) approach, the proposed mechanism provides necessary PID parameter adaptations while generating additive correction terms to assist the initially inadequate PID controller. Efficiency of the proposed mechanism has been tested on two experimental real-time systems: an unstable single-input single-output (SISO) nonlinear magnetic-levitation system and a nonlinear multi-input multi-output (MIMO) liquid-level system. RK-PID has been compared to standard PID, standard nonlinear MPC (NMPC), RK-MPC and conventional sliding-mode control (SMC) methods in terms of control performance, robustness, computational complexity and design issue. The proposed mechanism exhibits acceptable tuning and control performance with very small steady-state tracking errors, and provides very short settling time for parameter convergence. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Changes in Predictive Task Switching with Age and with Cognitive Load.
Levy-Tzedek, Shelly
2017-01-01
Predictive control of movement is more efficient than feedback-based control, and is an important skill in everyday life. We tested whether the ability to predictively control movements of the upper arm is affected by age and by cognitive load. A total of 63 participants were tested in two experiments. In both experiments participants were seated, and controlled a cursor on a computer screen by flexing and extending their dominant arm. In Experiment 1, 20 young adults and 20 older adults were asked to continuously change the frequency of their horizontal arm movements, with the goal of inducing an abrupt switch between discrete movements (at low frequencies) and rhythmic movements (at high frequencies). We tested whether that change was performed based on a feed-forward (predictive) or on a feedback (reactive) control. In Experiment 2, 23 young adults performed the same task, while being exposed to a cognitive load half of the time via a serial subtraction task. We found that both aging and cognitive load diminished, on average, the ability of participants to predictively control their movements. Five older adults and one young adult under a cognitive load were not able to perform the switch between rhythmic and discrete movement (or vice versa). In Experiment 1, 40% of the older participants were able to predictively control their movements, compared with 70% in the young group. In Experiment 2, 48% of the participants were able to predictively control their movements with a cognitively loading task, compared with 70% in the no-load condition. The ability to predictively change a motor plan in anticipation of upcoming changes may be an important component in performing everyday functions, such as safe driving and avoiding falls.
Kamesh, Reddi; Rani, Kalipatnapu Yamuna
2017-12-01
In this paper, a novel formulation for nonlinear model predictive control (MPC) has been proposed incorporating the extended Kalman filter (EKF) control concept using a purely data-driven artificial neural network (ANN) model based on measurements for supervisory control. The proposed scheme consists of two modules focusing on online parameter estimation based on past measurements and control estimation over control horizon based on minimizing the deviation of model output predictions from set points along the prediction horizon. An industrial case study for temperature control of a multiproduct semibatch polymerization reactor posed as a challenge problem has been considered as a test bed to apply the proposed ANN-EKFMPC strategy at supervisory level as a cascade control configuration along with proportional integral controller [ANN-EKFMPC with PI (ANN-EKFMPC-PI)]. The proposed approach is formulated incorporating all aspects of MPC including move suppression factor for control effort minimization and constraint-handling capability including terminal constraints. The nominal stability analysis and offset-free tracking capabilities of the proposed controller are proved. Its performance is evaluated by comparison with a standard MPC-based cascade control approach using the same adaptive ANN model. The ANN-EKFMPC-PI control configuration has shown better controller performance in terms of temperature tracking, smoother input profiles, as well as constraint-handling ability compared with the ANN-MPC with PI approach for two products in summer and winter. The proposed scheme is found to be versatile although it is based on a purely data-driven model with online parameter estimation.
Vassena, Eliana; Deraeve, James; Alexander, William H
2017-10-01
Human behavior is strongly driven by the pursuit of rewards. In daily life, however, benefits mostly come at a cost, often requiring that effort be exerted to obtain potential benefits. Medial PFC (MPFC) and dorsolateral PFC (DLPFC) are frequently implicated in the expectation of effortful control, showing increased activity as a function of predicted task difficulty. Such activity partially overlaps with expectation of reward and has been observed both during decision-making and during task preparation. Recently, novel computational frameworks have been developed to explain activity in these regions during cognitive control, based on the principle of prediction and prediction error (predicted response-outcome [PRO] model [Alexander, W. H., & Brown, J. W. Medial prefrontal cortex as an action-outcome predictor. Nature Neuroscience, 14, 1338-1344, 2011], hierarchical error representation [HER] model [Alexander, W. H., & Brown, J. W. Hierarchical error representation: A computational model of anterior cingulate and dorsolateral prefrontal cortex. Neural Computation, 27, 2354-2410, 2015]). Despite the broad explanatory power of these models, it is not clear whether they can also accommodate effects related to the expectation of effort observed in MPFC and DLPFC. Here, we propose a translation of these computational frameworks to the domain of effort-based behavior. First, we discuss how the PRO model, based on prediction error, can explain effort-related activity in MPFC, by reframing effort-based behavior in a predictive context. We propose that MPFC activity reflects monitoring of motivationally relevant variables (such as effort and reward), by coding expectations and discrepancies from such expectations. Moreover, we derive behavioral and neural model-based predictions for healthy controls and clinical populations with impairments of motivation. Second, we illustrate the possible translation to effort-based behavior of the HER model, an extended version of PRO model based on hierarchical error prediction, developed to explain MPFC-DLPFC interactions. We derive behavioral predictions that describe how effort and reward information is coded in PFC and how changing the configuration of such environmental information might affect decision-making and task performance involving motivation.
Real-time and simultaneous control of artificial limbs based on pattern recognition algorithms.
Ortiz-Catalan, Max; Håkansson, Bo; Brånemark, Rickard
2014-07-01
The prediction of simultaneous limb motions is a highly desirable feature for the control of artificial limbs. In this work, we investigate different classification strategies for individual and simultaneous movements based on pattern recognition of myoelectric signals. Our results suggest that any classifier can be potentially employed in the prediction of simultaneous movements if arranged in a distributed topology. On the other hand, classifiers inherently capable of simultaneous predictions, such as the multi-layer perceptron (MLP), were found to be more cost effective, as they can be successfully employed in their simplest form. In the prediction of individual movements, the one-vs-one (OVO) topology was found to improve classification accuracy across different classifiers and it was therefore used to benchmark the benefits of simultaneous control. As opposed to previous work reporting only offline accuracy, the classification performance and the resulting controllability are evaluated in real time using the motion test and target achievement control (TAC) test, respectively. We propose a simultaneous classification strategy based on MLP that outperformed a top classifier for individual movements (LDA-OVO), thus improving the state-of-the-art classification approach. Furthermore, all the presented classification strategies and data collected in this study are freely available in BioPatRec, an open source platform for the development of advanced prosthetic control strategies.
NASA Technical Reports Server (NTRS)
Cull, R. C.; Eltimsahy, A. H.
1983-01-01
The present investigation is concerned with the formulation of energy management strategies for stand-alone photovoltaic (PV) systems, taking into account a basic control algorithm for a possible predictive, (and adaptive) controller. The control system controls the flow of energy in the system according to the amount of energy available, and predicts the appropriate control set-points based on the energy (insolation) available by using an appropriate system model. Aspects of adaptation to the conditions of the system are also considered. Attention is given to a statistical analysis technique, the analysis inputs, the analysis procedure, and details regarding the basic control algorithm.
Predictive modeling and reducing cyclic variability in autoignition engines
Hellstrom, Erik; Stefanopoulou, Anna; Jiang, Li; Larimore, Jacob
2016-08-30
Methods and systems are provided for controlling a vehicle engine to reduce cycle-to-cycle combustion variation. A predictive model is applied to predict cycle-to-cycle combustion behavior of an engine based on observed engine performance variables. Conditions are identified, based on the predicted cycle-to-cycle combustion behavior, that indicate high cycle-to-cycle combustion variation. Corrective measures are then applied to prevent the predicted high cycle-to-cycle combustion variation.
Offset-Free Model Predictive Control of Open Water Channel Based on Moving Horizon Estimation
NASA Astrophysics Data System (ADS)
Ekin Aydin, Boran; Rutten, Martine
2016-04-01
Model predictive control (MPC) is a powerful control option which is increasingly used by operational water managers for managing water systems. The explicit consideration of constraints and multi-objective management are important features of MPC. However, due to the water loss in open water systems by seepage, leakage and evaporation a mismatch between the model and the real system will be created. These mismatch affects the performance of MPC and creates an offset from the reference set point of the water level. We present model predictive control based on moving horizon estimation (MHE-MPC) to achieve offset free control of water level for open water canals. MHE-MPC uses the past predictions of the model and the past measurements of the system to estimate unknown disturbances and the offset in the controlled water level is systematically removed. We numerically tested MHE-MPC on an accurate hydro-dynamic model of the laboratory canal UPC-PAC located in Barcelona. In addition, we also used well known disturbance modeling offset free control scheme for the same test case. Simulation experiments on a single canal reach show that MHE-MPC outperforms disturbance modeling offset free control scheme.
Output-Feedback Model Predictive Control of a Pasteurization Pilot Plant based on an LPV model
NASA Astrophysics Data System (ADS)
Karimi Pour, Fatemeh; Ocampo-Martinez, Carlos; Puig, Vicenç
2017-01-01
This paper presents a model predictive control (MPC) of a pasteurization pilot plant based on an LPV model. Since not all the states are measured, an observer is also designed, which allows implementing an output-feedback MPC scheme. However, the model of the plant is not completely observable when augmented with the disturbance models. In order to solve this problem, the following strategies are used: (i) the whole system is decoupled into two subsystems, (ii) an inner state-feedback controller is implemented into the MPC control scheme. A real-time example based on the pasteurization pilot plant is simulated as a case study for testing the behavior of the approaches.
An intelligent system with EMG-based joint angle estimation for telemanipulation.
Suryanarayanan, S; Reddy, N P; Gupta, V
1996-01-01
Bio-control of telemanipulators is being researched as an alternate control strategy. This study investigates the use of surface EMG from the biceps to predict joint angle during flexion of the arm that can be used to control an anthropomorphic telemanipulator. An intelligent system based on neural networks and fuzzy logic has been developed to use the processed surface EMG signal and predict the joint angle. The system has been tested on various angles of flexion-extension of the arm and at several speeds of flexion-extension. Preliminary results show the RMS error between the predicted angle and the actual angle to be less than 3% during training and less than 15% during testing. The technique of direct bio-control using EMG has the potential as an interface for telemanipulation applications.
Life extending control: An interdisciplinary engineering thrust
NASA Technical Reports Server (NTRS)
Lorenzo, Carl F.; Merrill, Walter C.
1991-01-01
The concept of Life Extending Control (LEC) is introduced. Possible extensions to the cyclic damage prediction approach are presented based on the identification of a model from elementary forms. Several candidate elementary forms are presented. These extensions will result in a continuous or differential form of the damage prediction model. Two possible approaches to the LEC based on the existing cyclic damage prediction method, the measured variables LEC and the estimated variables LEC, are defined. Here, damage estimates or measurements would be used directly in the LEC. A simple hydraulic actuator driven position control system example is used to illustrate the main ideas behind LEC. Results from a simple hydraulic actuator example demonstrate that overall system performance (dynamic plus life) can be maximized by accounting for component damage in the control design.
NASA Astrophysics Data System (ADS)
Pohjoranta, Antti; Halinen, Matias; Pennanen, Jari; Kiviaho, Jari
2015-03-01
Generalized predictive control (GPC) is applied to control the maximum temperature in a solid oxide fuel cell (SOFC) stack and the temperature difference over the stack. GPC is a model predictive control method and the models utilized in this work are ARX-type (autoregressive with extra input), multiple input-multiple output, polynomial models that were identified from experimental data obtained from experiments with a complete SOFC system. The proposed control is evaluated by simulation with various input-output combinations, with and without constraints. A comparison with conventional proportional-integral-derivative (PID) control is also made. It is shown that if only the stack maximum temperature is controlled, a standard PID controller can be used to obtain output performance comparable to that obtained with the significantly more complex model predictive controller. However, in order to control the temperature difference over the stack, both the stack minimum and the maximum temperature need to be controlled and this cannot be done with a single PID controller. In such a case the model predictive controller provides a feasible and effective solution.
Puig, V; Cembrano, G; Romera, J; Quevedo, J; Aznar, B; Ramón, G; Cabot, J
2009-01-01
This paper deals with the global control of the Riera Blanca catchment in the Barcelona sewer network using a predictive optimal control approach. This catchment has been modelled using a conceptual modelling approach based on decomposing the catchments in subcatchments and representing them as virtual tanks. This conceptual modelling approach allows real-time model calibration and control of the sewer network. The global control problem of the Riera Blanca catchment is solved using a optimal/predictive control algorithm. To implement the predictive optimal control of the Riera Blanca catchment, a software tool named CORAL is used. The on-line control is simulated by interfacing CORAL with a high fidelity simulator of sewer networks (MOUSE). CORAL interchanges readings from the limnimeters and gate commands with MOUSE as if it was connected with the real SCADA system. Finally, the global control results obtained using the predictive optimal control are presented and compared against the results obtained using current local control system. The results obtained using the global control are very satisfactory compared to those obtained using the local control.
A Novel Approach to Adaptive Flow Separation Control
2016-09-03
particular, it considers control of flow separation over a NACA-0025 airfoil using microjet actuators and develops Adaptive Sampling Based Model...Predictive Control ( Adaptive SBMPC), a novel approach to Nonlinear Model Predictive Control that applies the Minimal Resource Allocation Network...Distribution Unlimited UU UU UU UU 03-09-2016 1-May-2013 30-Apr-2016 Final Report: A Novel Approach to Adaptive Flow Separation Control The views, opinions
Does teacher evaluation based on student performance predict motivation, well-being, and ill-being?
Cuevas, Ricardo; Ntoumanis, Nikos; Fernandez-Bustos, Juan G; Bartholomew, Kimberley
2018-06-01
This study tests an explanatory model based on self-determination theory, which posits that pressure experienced by teachers when they are evaluated based on their students' academic performance will differentially predict teacher adaptive and maladaptive motivation, well-being, and ill-being. A total of 360 Spanish physical education teachers completed a multi-scale inventory. We found support for a structural equation model that showed that perceived pressure predicted teacher autonomous motivation negatively, predicted amotivation positively, and was unrelated to controlled motivation. In addition, autonomous motivation predicted vitality positively and exhaustion negatively, whereas controlled motivation and amotivation predicted vitality negatively and exhaustion positively. Amotivation significantly mediated the relation between pressure and vitality and between pressure and exhaustion. The results underline the potential negative impact of pressure felt by teachers due to this type of evaluation on teacher motivation and psychological health. Copyright © 2018 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Goodwin, Graham. C.; Medioli, Adrian. M.
2013-08-01
Model predictive control has been a major success story in process control. More recently, the methodology has been used in other contexts, including automotive engine control, power electronics and telecommunications. Most applications focus on set-point tracking and use single-sequence optimisation. Here we consider an alternative class of problems motivated by the scheduling of emergency vehicles. Here disturbances are the dominant feature. We develop a novel closed-loop model predictive control strategy aimed at this class of problems. We motivate, and illustrate, the ideas via the problem of fluid deployment of ambulance resources.
Cao, Pengxing
2017-01-01
Models of within-host influenza viral dynamics have contributed to an improved understanding of viral dynamics and antiviral effects over the past decade. Existing models can be classified into two broad types based on the mechanism of viral control: models utilising target cell depletion to limit the progress of infection and models which rely on timely activation of innate and adaptive immune responses to control the infection. In this paper, we compare how two exemplar models based on these different mechanisms behave and investigate how the mechanistic difference affects the assessment and prediction of antiviral treatment. We find that the assumed mechanism for viral control strongly influences the predicted outcomes of treatment. Furthermore, we observe that for the target cell-limited model the assumed drug efficacy strongly influences the predicted treatment outcomes. The area under the viral load curve is identified as the most reliable predictor of drug efficacy, and is robust to model selection. Moreover, with support from previous clinical studies, we suggest that the target cell-limited model is more suitable for modelling in vitro assays or infection in some immunocompromised/immunosuppressed patients while the immune response model is preferred for predicting the infection/antiviral effect in immunocompetent animals/patients. PMID:28933757
Pilots Rate Augmented Generalized Predictive Control for Reconfiguration
NASA Technical Reports Server (NTRS)
Soloway, Don; Haley, Pam
2004-01-01
The objective of this paper is to report the results from the research being conducted in reconfigurable fight controls at NASA Ames. A study was conducted with three NASA Dryden test pilots to evaluate two approaches of reconfiguring an aircraft's control system when failures occur in the control surfaces and engine. NASA Ames is investigating both a Neural Generalized Predictive Control scheme and a Neural Network based Dynamic Inverse controller. This paper highlights the Predictive Control scheme where a simple augmentation to reduce zero steady-state error led to the neural network predictor model becoming redundant for the task. Instead of using a neural network predictor model, a nominal single point linear model was used and then augmented with an error corrector. This paper shows that the Generalized Predictive Controller and the Dynamic Inverse Neural Network controller perform equally well at reconfiguration, but with less rate requirements from the actuators. Also presented are the pilot ratings for each controller for various failure scenarios and two samples of the required control actuation during reconfiguration. Finally, the paper concludes by stepping through the Generalized Predictive Control's reconfiguration process for an elevator failure.
Control surface hinge moment prediction using computational fluid dynamics
NASA Astrophysics Data System (ADS)
Simpson, Christopher David
The following research determines the feasibility of predicting control surface hinge moments using various computational methods. A detailed analysis is conducted using a 2D GA(W)-1 airfoil with a 20% plain flap. Simple hinge moment prediction methods are tested, including empirical Datcom relations and XFOIL. Steady-state and time-accurate turbulent, viscous, Navier-Stokes solutions are computed using Fun3D. Hinge moment coefficients are computed. Mesh construction techniques are discussed. An adjoint-based mesh adaptation case is also evaluated. An NACA 0012 45-degree swept horizontal stabilizer with a 25% elevator is also evaluated using Fun3D. Results are compared with experimental wind-tunnel data obtained from references. Finally, the costs of various solution methods are estimated. Results indicate that while a steady-state Navier-Stokes solution can accurately predict control surface hinge moments for small angles of attack and deflection angles, a time-accurate solution is necessary to accurately predict hinge moments in the presence of flow separation. The ability to capture the unsteady vortex shedding behavior present in moderate to large control surface deflections is found to be critical to hinge moment prediction accuracy. Adjoint-based mesh adaptation is shown to give hinge moment predictions similar to a globally-refined mesh for a steady-state 2D simulation.
Robust model predictive control for constrained continuous-time nonlinear systems
NASA Astrophysics Data System (ADS)
Sun, Tairen; Pan, Yongping; Zhang, Jun; Yu, Haoyong
2018-02-01
In this paper, a robust model predictive control (MPC) is designed for a class of constrained continuous-time nonlinear systems with bounded additive disturbances. The robust MPC consists of a nonlinear feedback control and a continuous-time model-based dual-mode MPC. The nonlinear feedback control guarantees the actual trajectory being contained in a tube centred at the nominal trajectory. The dual-mode MPC is designed to ensure asymptotic convergence of the nominal trajectory to zero. This paper extends current results on discrete-time model-based tube MPC and linear system model-based tube MPC to continuous-time nonlinear model-based tube MPC. The feasibility and robustness of the proposed robust MPC have been demonstrated by theoretical analysis and applications to a cart-damper springer system and a one-link robot manipulator.
Cognitive control predicts use of model-based reinforcement learning.
Otto, A Ross; Skatova, Anya; Madlon-Kay, Seth; Daw, Nathaniel D
2015-02-01
Accounts of decision-making and its neural substrates have long posited the operation of separate, competing valuation systems in the control of choice behavior. Recent theoretical and experimental work suggest that this classic distinction between behaviorally and neurally dissociable systems for habitual and goal-directed (or more generally, automatic and controlled) choice may arise from two computational strategies for reinforcement learning (RL), called model-free and model-based RL, but the cognitive or computational processes by which one system may dominate over the other in the control of behavior is a matter of ongoing investigation. To elucidate this question, we leverage the theoretical framework of cognitive control, demonstrating that individual differences in utilization of goal-related contextual information--in the service of overcoming habitual, stimulus-driven responses--in established cognitive control paradigms predict model-based behavior in a separate, sequential choice task. The behavioral correspondence between cognitive control and model-based RL compellingly suggests that a common set of processes may underpin the two behaviors. In particular, computational mechanisms originally proposed to underlie controlled behavior may be applicable to understanding the interactions between model-based and model-free choice behavior.
Lyyra, Tiina-Mari; Heikkinen, Eino; Lyyra, Anna-Liisa; Jylhä, Marja
2006-01-01
It is well established that self-rated health (SRH) predicts mortality even when other indicators of health status are taken into account. It has been suggested that SRH measures a wide array of mortality-related physiological and pathological characteristics not captured by the covariates included in the analyses. Our aim was to test this hypothesis by examining the predictive value of SRH on mortality controlling for different measurements of body structure, performance-based functioning and diagnosed diseases with a population-based, prospective study over an 18-year follow-up. Subjects consisted of 257 male residents of the city of Jyväskylä, central Finland, aged 51-55 and 71-75 years. Among the 71-75-year-olds the association between SRH and mortality was weaker over the longer compared to shorter follow-up period. In the multivariate Cox regression models with an 18-year follow-up time for middle-aged and a10-year follow-up time for older men, SRH predicted mortality even when the anthropometrics, clinical chemistry and performance-based measures of functioning were controlled for, but not when the number of chronic diseases was included. Although our results confirm the hypothesis that the predictive value of SRH can be explained by diagnosed diseases, its predictive power remained, when the clinical and performance-based measures of health and functioning were controlled.
Structured Kernel Subspace Learning for Autonomous Robot Navigation.
Kim, Eunwoo; Choi, Sungjoon; Oh, Songhwai
2018-02-14
This paper considers two important problems for autonomous robot navigation in a dynamic environment, where the goal is to predict pedestrian motion and control a robot with the prediction for safe navigation. While there are several methods for predicting the motion of a pedestrian and controlling a robot to avoid incoming pedestrians, it is still difficult to safely navigate in a dynamic environment due to challenges, such as the varying quality and complexity of training data with unwanted noises. This paper addresses these challenges simultaneously by proposing a robust kernel subspace learning algorithm based on the recent advances in nuclear-norm and l 1 -norm minimization. We model the motion of a pedestrian and the robot controller using Gaussian processes. The proposed method efficiently approximates a kernel matrix used in Gaussian process regression by learning low-rank structured matrix (with symmetric positive semi-definiteness) to find an orthogonal basis, which eliminates the effects of erroneous and inconsistent data. Based on structured kernel subspace learning, we propose a robust motion model and motion controller for safe navigation in dynamic environments. We evaluate the proposed robust kernel learning in various tasks, including regression, motion prediction, and motion control problems, and demonstrate that the proposed learning-based systems are robust against outliers and outperform existing regression and navigation methods.
NASA Astrophysics Data System (ADS)
Wahid, A.; Taqwallah, H. M. H.
2018-03-01
Compressors and a steam reformer are the important units in biohydrogen from biomass plant. The compressors are useful for achieving high-pressure operating conditions while the steam reformer is the main process to produce H2 gas. To control them, in this research used a model predictive control (MPC) expected to have better controller performance than conventional controllers. Because of the explicit model empowerment in MPC, obtaining a better model is the main objective before employing MPC. The common way to get the empirical model is through the identification system, so that obtained a first-order plus dead-time (FOPDT) model. This study has already improved that way since used the system re-identification (SRI) based on closed loop mode. Based on this method the results of the compressor pressure control and temperature control of steam reformer were that MPC based on system re-identification (MPC-SRI) has better performance than MPC without system re-identification (MPCWSRI) and the proportional-integral (PI) controller, by % improvement of 73% against MPCWSRI and 75% against the PI controller.
Predictive Multiple Model Switching Control with the Self-Organizing Map
NASA Technical Reports Server (NTRS)
Motter, Mark A.
2000-01-01
A predictive, multiple model control strategy is developed by extension of self-organizing map (SOM) local dynamic modeling of nonlinear autonomous systems to a control framework. Multiple SOMs collectively model the global response of a nonautonomous system to a finite set of representative prototype controls. Each SOM provides a codebook representation of the dynamics corresponding to a prototype control. Different dynamic regimes are organized into topological neighborhoods where the adjacent entries in the codebook represent the global minimization of a similarity metric. The SOM is additionally employed to identify the local dynamical regime, and consequently implements a switching scheme that selects the best available model for the applied control. SOM based linear models are used to predict the response to a larger family of control sequences which are clustered on the representative prototypes. The control sequence which corresponds to the prediction that best satisfies the requirements on the system output is applied as the external driving signal.
Qiao, Wenjun; Tang, Xiaoqi; Zheng, Shiqi; Xie, Yuanlong; Song, Bao
2016-09-01
In this paper, an adaptive two-degree-of-freedom (2Dof) proportional-integral (PI) controller is proposed for the speed control of permanent magnet synchronous motor (PMSM). Firstly, an enhanced just-in-time learning technique consisting of two novel searching engines is presented to identify the model of the speed control system in a real-time manner. Secondly, a general formula is given to predict the future speed reference which is unavailable at the interval of two bus-communication cycles. Thirdly, the fractional order generalized predictive control (FOGPC) is introduced to improve the control performance of the servo drive system. Based on the identified model parameters and predicted speed reference, the optimal control law of FOGPC is derived. Finally, the designed 2Dof PI controller is auto-tuned by matching with the optimal control law. Simulations and real-time experimental results on the servo drive system of PMSM are provided to illustrate the effectiveness of the proposed strategy. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Prediction of Regulation Reserve Requirements in California ISO Control Area based on BAAL Standard
DOE Office of Scientific and Technical Information (OSTI.GOV)
Etingov, Pavel V.; Makarov, Yuri V.; Samaan, Nader A.
This paper presents new methodologies developed at Pacific Northwest National Laboratory (PNNL) to estimate regulation capacity requirements in the California ISO control area. Two approaches have been developed: (1) an approach based on statistical analysis of actual historical area control error (ACE) and regulation data, and (2) an approach based on balancing authority ACE limit control performance standard. The approaches predict regulation reserve requirements on a day-ahead basis including upward and downward requirements, for each operating hour of a day. California ISO data has been used to test the performance of the proposed algorithms. Results show that software tool allowsmore » saving up to 30% on the regulation procurements cost .« less
Predictive IP controller for robust position control of linear servo system.
Lu, Shaowu; Zhou, Fengxing; Ma, Yajie; Tang, Xiaoqi
2016-07-01
Position control is a typical application of linear servo system. In this paper, to reduce the system overshoot, an integral plus proportional (IP) controller is used in the position control implementation. To further improve the control performance, a gain-tuning IP controller based on a generalized predictive control (GPC) law is proposed. Firstly, to represent the dynamics of the position loop, a second-order linear model is used and its model parameters are estimated on-line by using a recursive least squares method. Secondly, based on the GPC law, an optimal control sequence is obtained by using receding horizon, then directly supplies the IP controller with the corresponding control parameters in the real operations. Finally, simulation and experimental results are presented to show the efficiency of proposed scheme. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Ross, Mindy K; Yoon, Jinsung; van der Schaar, Auke; van der Schaar, Mihaela
2018-01-01
Pediatric asthma has variable underlying inflammation and symptom control. Approaches to addressing this heterogeneity, such as clustering methods to find phenotypes and predict outcomes, have been investigated. However, clustering based on the relationship between treatment and clinical outcome has not been performed, and machine learning approaches for long-term outcome prediction in pediatric asthma have not been studied in depth. Our objectives were to use our novel machine learning algorithm, predictor pursuit (PP), to discover pediatric asthma phenotypes on the basis of asthma control in response to controller medications, to predict longitudinal asthma control among children with asthma, and to identify features associated with asthma control within each discovered pediatric phenotype. We applied PP to the Childhood Asthma Management Program study data (n = 1,019) to discover phenotypes on the basis of asthma control between assigned controller therapy groups (budesonide vs. nedocromil). We confirmed PP's ability to discover phenotypes using the Asthma Clinical Research Network/Childhood Asthma Research and Education network data. We next predicted children's asthma control over time and compared PP's performance with that of traditional prediction methods. Last, we identified clinical features most correlated with asthma control in the discovered phenotypes. Four phenotypes were discovered in both datasets: allergic not obese (A + /O - ), obese not allergic (A - /O + ), allergic and obese (A + /O + ), and not allergic not obese (A - /O - ). Of the children with well-controlled asthma in the Childhood Asthma Management Program dataset, we found more nonobese children treated with budesonide than with nedocromil (P = 0.015) and more obese children treated with nedocromil than with budesonide (P = 0.008). Within the obese group, more A + /O + children's asthma was well controlled with nedocromil than with budesonide (P = 0.022) or with placebo (P = 0.011). The PP algorithm performed significantly better (P < 0.001) than traditional machine learning algorithms for both short- and long-term asthma control prediction. Asthma control and bronchodilator response were the features most predictive of short-term asthma control, regardless of type of controller medication or phenotype. Bronchodilator response and serum eosinophils were the most predictive features of asthma control, regardless of type of controller medication or phenotype. Advanced statistical machine learning approaches can be powerful tools for discovery of phenotypes based on treatment response and can aid in asthma control prediction in complex medical conditions such as asthma.
Markkula, Gustav; Boer, Erwin; Romano, Richard; Merat, Natasha
2018-06-01
A conceptual and computational framework is proposed for modelling of human sensorimotor control and is exemplified for the sensorimotor task of steering a car. The framework emphasises control intermittency and extends on existing models by suggesting that the nervous system implements intermittent control using a combination of (1) motor primitives, (2) prediction of sensory outcomes of motor actions, and (3) evidence accumulation of prediction errors. It is shown that approximate but useful sensory predictions in the intermittent control context can be constructed without detailed forward models, as a superposition of simple prediction primitives, resembling neurobiologically observed corollary discharges. The proposed mathematical framework allows straightforward extension to intermittent behaviour from existing one-dimensional continuous models in the linear control and ecological psychology traditions. Empirical data from a driving simulator are used in model-fitting analyses to test some of the framework's main theoretical predictions: it is shown that human steering control, in routine lane-keeping and in a demanding near-limit task, is better described as a sequence of discrete stepwise control adjustments, than as continuous control. Results on the possible roles of sensory prediction in control adjustment amplitudes, and of evidence accumulation mechanisms in control onset timing, show trends that match the theoretical predictions; these warrant further investigation. The results for the accumulation-based model align with other recent literature, in a possibly converging case against the type of threshold mechanisms that are often assumed in existing models of intermittent control.
Reference governors for controlled belt restraint systems
NASA Astrophysics Data System (ADS)
van der Laan, E. P.; Heemels, W. P. M. H.; Luijten, H.; Veldpaus, F. E.; Steinbuch, M.
2010-07-01
Today's restraint systems typically include a number of airbags, and a three-point seat belt with load limiter and pretensioner. For the class of real-time controlled restraint systems, the restraint actuator settings are continuously manipulated during the crash. This paper presents a novel control strategy for these systems. The control strategy developed here is based on a combination of model predictive control and reference management, in which a non-linear device - a reference governor (RG) - is added to a primal closed-loop controlled system. This RG determines an optimal setpoint in terms of injury reduction and constraint satisfaction by solving a constrained optimisation problem. Prediction of the vehicle motion, required to predict future constraint violation, is included in the design and is based on past crash data, using linear regression techniques. Simulation results with MADYMO models show that, with ideal sensors and actuators, a significant reduction (45%) of the peak chest acceleration can be achieved, without prior knowledge of the crash. Furthermore, it is shown that the algorithms are sufficiently fast to be implemented online.
Kengne, Andre Pascal; Libend, Christelle Nong; Dzudie, Anastase; Menanga, Alain; Dehayem, Mesmin Yefou; Kingue, Samuel; Sobngwi, Eugene
2014-01-01
Ambulatory blood pressure (BP) measurements (ABPM) predict health outcomes better than office BP, and are recommended for assessing BP control, particularly in high-risk patients. We assessed the performance of office BP in predicting optimal ambulatory BP control in sub-Saharan Africans with type 2 diabetes (T2DM). Participants were a random sample of 51 T2DM patients (25 men) drug-treated for hypertension, receiving care in a referral diabetes clinic in Yaounde, Cameroon. A quality control group included 46 non-diabetic individuals with hypertension. Targets for BP control were systolic (and diastolic) BP. Mean age of diabetic participants was 60 years (standard deviation: 10) and median duration of diabetes was 6 years (min-max: 0-29). Correlation coefficients between each office-based variable and the 24-h ABPM equivalent (diabetic vs. non-diabetic participants) were 0.571 and 0.601 for systolic (SBP), 0.520 and 0.539 for diastolic (DBP), 0.631 and 0.549 for pulse pressure (PP), and 0.522 and 0.583 for mean arterial pressure (MAP). The c-statistic for the prediction of optimal ambulatory control from office-BP in diabetic participants was 0.717 for SBP, 0.494 for DBP, 0.712 for PP, 0.582 for MAP, and 0.721 for either SBP + DBP or PP + MAP. Equivalents in diabetes-free participants were 0.805, 0.763, 0.695, 0.801 and 0.813. Office DBP was ineffective in discriminating optimal ambulatory BP control in diabetic patients, and did not improve predictions based on office SBP alone. Targeting ABPM to those T2DM patients who are already at optimal office-based SBP would likely be more cost effective in this setting.
NASA Technical Reports Server (NTRS)
Kvaternik, Raymond G.; Piatak, David J.; Nixon, Mark W.; Langston, Chester W.; Singleton, Jeffrey D.; Bennett, Richard L.; Brown, Ross K.
2001-01-01
The results of a joint NASA/Army/Bell Helicopter Textron wind-tunnel test to assess the potential of Generalized Predictive Control (GPC) for actively controlling the swashplate of tiltrotor aircraft to enhance aeroelastic stability in the airplane mode of flight are presented. GPC is an adaptive time-domain predictive control method that uses a linear difference equation to describe the input-output relationship of the system and to design the controller. The test was conducted in the Langley Transonic Dynamics Tunnel using an unpowered 1/5-scale semispan aeroelastic model of the V-22 that was modified to incorporate a GPC-based multi-input multi-output control algorithm to individually control each of the three swashplate actuators. Wing responses were used for feedback. The GPC-based control system was highly effective in increasing the stability of the critical wing mode for all of the conditions tested, without measurable degradation of the damping in the other modes. The algorithm was also robust with respect to its performance in adjusting to rapid changes in both the rotor speed and the tunnel airspeed.
Modeling and control for closed environment plant production systems
NASA Technical Reports Server (NTRS)
Fleisher, David H.; Ting, K. C.; Janes, H. W. (Principal Investigator)
2002-01-01
A computer program was developed to study multiple crop production and control in controlled environment plant production systems. The program simulates crop growth and development under nominal and off-nominal environments. Time-series crop models for wheat (Triticum aestivum), soybean (Glycine max), and white potato (Solanum tuberosum) are integrated with a model-based predictive controller. The controller evaluates and compensates for effects of environmental disturbances on crop production scheduling. The crop models consist of a set of nonlinear polynomial equations, six for each crop, developed using multivariate polynomial regression (MPR). Simulated data from DSSAT crop models, previously modified for crop production in controlled environments with hydroponics under elevated atmospheric carbon dioxide concentration, were used for the MPR fitting. The model-based predictive controller adjusts light intensity, air temperature, and carbon dioxide concentration set points in response to environmental perturbations. Control signals are determined from minimization of a cost function, which is based on the weighted control effort and squared-error between the system response and desired reference signal.
NASA Astrophysics Data System (ADS)
Saponara, M.; Tramutola, A.; Creten, P.; Hardy, J.; Philippe, C.
2013-08-01
Optimization-based control techniques such as Model Predictive Control (MPC) are considered extremely attractive for space rendezvous, proximity operations and capture applications that require high level of autonomy, optimal path planning and dynamic safety margins. Such control techniques require high-performance computational needs for solving large optimization problems. The development and implementation in a flight representative avionic architecture of a MPC based Guidance, Navigation and Control system has been investigated in the ESA R&T study “On-line Reconfiguration Control System and Avionics Architecture” (ORCSAT) of the Aurora programme. The paper presents the baseline HW and SW avionic architectures, and verification test results obtained with a customised RASTA spacecraft avionics development platform from Aeroflex Gaisler.
A support vector machine based control application to the experimental three-tank system.
Iplikci, Serdar
2010-07-01
This paper presents a support vector machine (SVM) approach to generalized predictive control (GPC) of multiple-input multiple-output (MIMO) nonlinear systems. The possession of higher generalization potential and at the same time avoidance of getting stuck into the local minima have motivated us to employ SVM algorithms for modeling MIMO systems. Based on the SVM model, detailed and compact formulations for calculating predictions and gradient information, which are used in the computation of the optimal control action, are given in the paper. The proposed MIMO SVM-based GPC method has been verified on an experimental three-tank liquid level control system. Experimental results have shown that the proposed method can handle the control task successfully for different reference trajectories. Moreover, a detailed discussion on data gathering, model selection and effects of the control parameters have been given in this paper. 2010 ISA. Published by Elsevier Ltd. All rights reserved.
Teklehaimanot, Hailay D; Schwartz, Joel; Teklehaimanot, Awash; Lipsitch, Marc
2004-11-19
Timely and accurate information about the onset of malaria epidemics is essential for effective control activities in epidemic-prone regions. Early warning methods that provide earlier alerts (usually by the use of weather variables) may permit control measures to interrupt transmission earlier in the epidemic, perhaps at the expense of some level of accuracy. Expected case numbers were modeled using a Poisson regression with lagged weather factors in a 4th-degree polynomial distributed lag model. For each week, the numbers of malaria cases were predicted using coefficients obtained using all years except that for which the prediction was being made. The effectiveness of alerts generated by the prediction system was compared against that of alerts based on observed cases. The usefulness of the prediction system was evaluated in cold and hot districts. The system predicts the overall pattern of cases well, yet underestimates the height of the largest peaks. Relative to alerts triggered by observed cases, the alerts triggered by the predicted number of cases performed slightly worse, within 5% of the detection system. The prediction-based alerts were able to prevent 10-25% more cases at a given sensitivity in cold districts than in hot ones. The prediction of malaria cases using lagged weather performed well in identifying periods of increased malaria cases. Weather-derived predictions identified epidemics with reasonable accuracy and better timeliness than early detection systems; therefore, the prediction of malarial epidemics using weather is a plausible alternative to early detection systems.
NASA Astrophysics Data System (ADS)
Li, Peng; Zhu, Zheng H.; Meguid, S. A.
2016-07-01
This paper studies the pulse-width pulse-frequency modulation based trajectory planning for orbital rendezvous and proximity maneuvering near a non-cooperative spacecraft in an elliptical orbit. The problem is formulated by converting the continuous control input, output from the state dependent model predictive control, into a sequence of pulses of constant magnitude by controlling firing frequency and duration of constant-magnitude thrusters. The state dependent model predictive control is derived by minimizing the control error of states and control roughness of control input for a safe, smooth and fuel efficient approaching trajectory. The resulting nonlinear programming problem is converted into a series of quadratic programming problem and solved by numerical iteration using the receding horizon strategy. The numerical results show that the proposed state dependent model predictive control with the pulse-width pulse-frequency modulation is able to effectively generate optimized trajectories using equivalent control pulses for the proximity maneuvering with less energy consumption.
Neural network-based run-to-run controller using exposure and resist thickness adjustment
NASA Astrophysics Data System (ADS)
Geary, Shane; Barry, Ronan
2003-06-01
This paper describes the development of a run-to-run control algorithm using a feedforward neural network, trained using the backpropagation training method. The algorithm is used to predict the critical dimension of the next lot using previous lot information. It is compared to a common prediction algorithm - the exponentially weighted moving average (EWMA) and is shown to give superior prediction performance in simulations. The manufacturing implementation of the final neural network showed significantly improved process capability when compared to the case where no run-to-run control was utilised.
Cognitive Control Predicts Use of Model-Based Reinforcement-Learning
Otto, A. Ross; Skatova, Anya; Madlon-Kay, Seth; Daw, Nathaniel D.
2015-01-01
Accounts of decision-making and its neural substrates have long posited the operation of separate, competing valuation systems in the control of choice behavior. Recent theoretical and experimental work suggest that this classic distinction between behaviorally and neurally dissociable systems for habitual and goal-directed (or more generally, automatic and controlled) choice may arise from two computational strategies for reinforcement learning (RL), called model-free and model-based RL, but the cognitive or computational processes by which one system may dominate over the other in the control of behavior is a matter of ongoing investigation. To elucidate this question, we leverage the theoretical framework of cognitive control, demonstrating that individual differences in utilization of goal-related contextual information—in the service of overcoming habitual, stimulus-driven responses—in established cognitive control paradigms predict model-based behavior in a separate, sequential choice task. The behavioral correspondence between cognitive control and model-based RL compellingly suggests that a common set of processes may underpin the two behaviors. In particular, computational mechanisms originally proposed to underlie controlled behavior may be applicable to understanding the interactions between model-based and model-free choice behavior. PMID:25170791
Short-term PV/T module temperature prediction based on PCA-RBF neural network
NASA Astrophysics Data System (ADS)
Li, Jiyong; Zhao, Zhendong; Li, Yisheng; Xiao, Jing; Tang, Yunfeng
2018-02-01
Aiming at the non-linearity and large inertia of temperature control in PV/T system, short-term temperature prediction of PV/T module is proposed, to make the PV/T system controller run forward according to the short-term forecasting situation to optimize control effect. Based on the analysis of the correlation between PV/T module temperature and meteorological factors, and the temperature of adjacent time series, the principal component analysis (PCA) method is used to pre-process the original input sample data. Combined with the RBF neural network theory, the simulation results show that the PCA method makes the prediction accuracy of the network model higher and the generalization performance stronger than that of the RBF neural network without the main component extraction.
Robust PBPK/PD-Based Model Predictive Control of Blood Glucose.
Schaller, Stephan; Lippert, Jorg; Schaupp, Lukas; Pieber, Thomas R; Schuppert, Andreas; Eissing, Thomas
2016-07-01
Automated glucose control (AGC) has not yet reached the point where it can be applied clinically [3]. Challenges are accuracy of subcutaneous (SC) glucose sensors, physiological lag times, and both inter- and intraindividual variability. To address above issues, we developed a novel scheme for MPC that can be applied to AGC. An individualizable generic whole-body physiology-based pharmacokinetic and dynamics (PBPK/PD) model of the glucose, insulin, and glucagon metabolism has been used as the predictive kernel. The high level of mechanistic detail represented by the model takes full advantage of the potential of MPC and may make long-term prediction possible as it captures at least some relevant sources of variability [4]. Robustness against uncertainties was increased by a control cascade relying on proportional-integrative derivative-based offset control. The performance of this AGC scheme was evaluated in silico and retrospectively using data from clinical trials. This analysis revealed that our approach handles sensor noise with a MARD of 10%-14%, and model uncertainties and disturbances. The results suggest that PBPK/PD models are well suited for MPC in a glucose control setting, and that their predictive power in combination with the integrated database-driven (a priori individualizable) model framework will help overcome current challenges in the development of AGC systems. This study provides a new, generic, and robust mechanistic approach to AGC using a PBPK platform with extensive a priori (database) knowledge for individualization.
NASA Astrophysics Data System (ADS)
Jin, N.; Yang, F.; Shang, S. Y.; Tao, T.; Liu, J. S.
2016-08-01
According to the limitations of the LVRT technology of traditional photovoltaic inverter existed, this paper proposes a low voltage ride through (LVRT) control method based on model current predictive control (MCPC). This method can effectively improve the photovoltaic inverter output characteristics and response speed. The MCPC method of photovoltaic grid-connected inverter designed, the sum of the absolute value of the predictive current and the given current error is adopted as the cost function with the model predictive control method. According to the MCPC, the optimal space voltage vector is selected. Photovoltaic inverter has achieved automatically switches of priority active or reactive power control of two control modes according to the different operating states, which effectively improve the inverter capability of LVRT. The simulation and experimental results proves that the proposed method is correct and effective.
ShinyGPAS: interactive genomic prediction accuracy simulator based on deterministic formulas.
Morota, Gota
2017-12-20
Deterministic formulas for the accuracy of genomic predictions highlight the relationships among prediction accuracy and potential factors influencing prediction accuracy prior to performing computationally intensive cross-validation. Visualizing such deterministic formulas in an interactive manner may lead to a better understanding of how genetic factors control prediction accuracy. The software to simulate deterministic formulas for genomic prediction accuracy was implemented in R and encapsulated as a web-based Shiny application. Shiny genomic prediction accuracy simulator (ShinyGPAS) simulates various deterministic formulas and delivers dynamic scatter plots of prediction accuracy versus genetic factors impacting prediction accuracy, while requiring only mouse navigation in a web browser. ShinyGPAS is available at: https://chikudaisei.shinyapps.io/shinygpas/ . ShinyGPAS is a shiny-based interactive genomic prediction accuracy simulator using deterministic formulas. It can be used for interactively exploring potential factors that influence prediction accuracy in genome-enabled prediction, simulating achievable prediction accuracy prior to genotyping individuals, or supporting in-class teaching. ShinyGPAS is open source software and it is hosted online as a freely available web-based resource with an intuitive graphical user interface.
Online intelligent controllers for an enzyme recovery plant: design methodology and performance.
Leite, M S; Fujiki, T L; Silva, F V; Fileti, A M F
2010-12-27
This paper focuses on the development of intelligent controllers for use in a process of enzyme recovery from pineapple rind. The proteolytic enzyme bromelain (EC 3.4.22.4) is precipitated with alcohol at low temperature in a fed-batch jacketed tank. Temperature control is crucial to avoid irreversible protein denaturation. Fuzzy or neural controllers offer a way of implementing solutions that cover dynamic and nonlinear processes. The design methodology and a comparative study on the performance of fuzzy-PI, neurofuzzy, and neural network intelligent controllers are presented. To tune the fuzzy PI Mamdani controller, various universes of discourse, rule bases, and membership function support sets were tested. A neurofuzzy inference system (ANFIS), based on Takagi-Sugeno rules, and a model predictive controller, based on neural modeling, were developed and tested as well. Using a Fieldbus network architecture, a coolant variable speed pump was driven by the controllers. The experimental results show the effectiveness of fuzzy controllers in comparison to the neural predictive control. The fuzzy PI controller exhibited a reduced error parameter (ITAE), lower power consumption, and better recovery of enzyme activity.
Online Intelligent Controllers for an Enzyme Recovery Plant: Design Methodology and Performance
Leite, M. S.; Fujiki, T. L.; Silva, F. V.; Fileti, A. M. F.
2010-01-01
This paper focuses on the development of intelligent controllers for use in a process of enzyme recovery from pineapple rind. The proteolytic enzyme bromelain (EC 3.4.22.4) is precipitated with alcohol at low temperature in a fed-batch jacketed tank. Temperature control is crucial to avoid irreversible protein denaturation. Fuzzy or neural controllers offer a way of implementing solutions that cover dynamic and nonlinear processes. The design methodology and a comparative study on the performance of fuzzy-PI, neurofuzzy, and neural network intelligent controllers are presented. To tune the fuzzy PI Mamdani controller, various universes of discourse, rule bases, and membership function support sets were tested. A neurofuzzy inference system (ANFIS), based on Takagi-Sugeno rules, and a model predictive controller, based on neural modeling, were developed and tested as well. Using a Fieldbus network architecture, a coolant variable speed pump was driven by the controllers. The experimental results show the effectiveness of fuzzy controllers in comparison to the neural predictive control. The fuzzy PI controller exhibited a reduced error parameter (ITAE), lower power consumption, and better recovery of enzyme activity. PMID:21234106
Acceleration feedback improves balancing against reflex delay
Insperger, Tamás; Milton, John; Stépán, Gábor
2013-01-01
A model for human postural balance is considered in which the time-delayed feedback depends on position, velocity and acceleration (proportional–derivative–acceleration (PDA) feedback). It is shown that a PDA controller is equivalent to a predictive controller, in which the prediction is based on the most recent information of the state, but the control input is not involved into the prediction. A PDA controller is superior to the corresponding proportional–derivative controller in the sense that the PDA controller can stabilize systems with approximately 40 per cent larger feedback delays. The addition of a sensory dead zone to account for the finite thresholds for detection by sensory receptors results in highly intermittent, complex oscillations that are a typical feature of human postural sway. PMID:23173196
NASA Astrophysics Data System (ADS)
Li, Guang
2017-01-01
This paper presents a fast constrained optimization approach, which is tailored for nonlinear model predictive control of wave energy converters (WEC). The advantage of this approach relies on its exploitation of the differential flatness of the WEC model. This can reduce the dimension of the resulting nonlinear programming problem (NLP) derived from the continuous constrained optimal control of WEC using pseudospectral method. The alleviation of computational burden using this approach helps to promote an economic implementation of nonlinear model predictive control strategy for WEC control problems. The method is applicable to nonlinear WEC models, nonconvex objective functions and nonlinear constraints, which are commonly encountered in WEC control problems. Numerical simulations demonstrate the efficacy of this approach.
Disturbance observer based model predictive control for accurate atmospheric entry of spacecraft
NASA Astrophysics Data System (ADS)
Wu, Chao; Yang, Jun; Li, Shihua; Li, Qi; Guo, Lei
2018-05-01
Facing the complex aerodynamic environment of Mars atmosphere, a composite atmospheric entry trajectory tracking strategy is investigated in this paper. External disturbances, initial states uncertainties and aerodynamic parameters uncertainties are the main problems. The composite strategy is designed to solve these problems and improve the accuracy of Mars atmospheric entry. This strategy includes a model predictive control for optimized trajectory tracking performance, as well as a disturbance observer based feedforward compensation for external disturbances and uncertainties attenuation. 500-run Monte Carlo simulations show that the proposed composite control scheme achieves more precise Mars atmospheric entry (3.8 km parachute deployment point distribution error) than the baseline control scheme (8.4 km) and integral control scheme (5.8 km).
NASA Astrophysics Data System (ADS)
Zhu, Kaiqun; Song, Yan; Zhang, Sunjie; Zhong, Zhaozhun
2017-07-01
In this paper, a non-fragile observer-based output feedback control problem for the polytopic uncertain system under distributed model predictive control (MPC) approach is discussed. By decomposing the global system into some subsystems, the computation complexity is reduced, so it follows that the online designing time can be saved.Moreover, an observer-based output feedback control algorithm is proposed in the framework of distributed MPC to deal with the difficulties in obtaining the states measurements. In this way, the presented observer-based output-feedback MPC strategy is more flexible and applicable in practice than the traditional state-feedback one. What is more, the non-fragility of the controller has been taken into consideration in favour of increasing the robustness of the polytopic uncertain system. After that, a sufficient stability criterion is presented by using Lyapunov-like functional approach, meanwhile, the corresponding control law and the upper bound of the quadratic cost function are derived by solving an optimisation subject to convex constraints. Finally, some simulation examples are employed to show the effectiveness of the method.
Exhaled Breath Markers for Nonimaging and Noninvasive Measures for Detection of Multiple Sclerosis.
Broza, Yoav Y; Har-Shai, Lior; Jeries, Raneen; Cancilla, John C; Glass-Marmor, Lea; Lejbkowicz, Izabella; Torrecilla, José S; Yao, Xuelin; Feng, Xinliang; Narita, Akimitsu; Müllen, Klaus; Miller, Ariel; Haick, Hossam
2017-11-15
Multiple sclerosis (MS) is the most common chronic neurological disease affecting young adults. MS diagnosis is based on clinical characteristics and confirmed by examination of the cerebrospinal fluids (CSF) or by magnetic resonance imaging (MRI) of the brain or spinal cord or both. However, neither of the current diagnostic procedures are adequate as a routine tool to determine disease state. Thus, diagnostic biomarkers are needed. In the current study, a novel approach that could meet these expectations is presented. The approach is based on noninvasive analysis of volatile organic compounds (VOCs) in breath. Exhaled breath was collected from 204 participants, 146 MS and 58 healthy control individuals. Analysis was performed by gas-chromatography mass-spectrometry (GC-MS) and nanomaterial-based sensor array. Predictive models were derived from the sensors, using artificial neural networks (ANNs). GC-MS analysis revealed significant differences in VOC abundance between MS patients and controls. Sensor data analysis on training sets was able to discriminate in binary comparisons between MS patients and controls with accuracies up to 90%. Blinded sets showed 95% positive predictive value (PPV) between MS-remission and control, 100% sensitivity with 100% negative predictive value (NPV) between MS not-treated (NT) and control, and 86% NPV between relapse and control. Possible links between VOC biomarkers and the MS pathogenesis were established. Preliminary results suggest the applicability of a new nanotechnology-based method for MS diagnostics.
Wang, Xun-Heng; Jiao, Yun; Li, Lihua
2017-10-24
Attention deficit hyperactivity disorder (ADHD) is a common brain disorder with high prevalence in school-age children. Previously developed machine learning-based methods have discriminated patients with ADHD from normal controls by providing label information of the disease for individuals. Inattention and impulsivity are the two most significant clinical symptoms of ADHD. However, predicting clinical symptoms (i.e., inattention and impulsivity) is a challenging task based on neuroimaging data. The goal of this study is twofold: to build predictive models for clinical symptoms of ADHD based on resting-state fMRI and to mine brain networks for predictive patterns of inattention and impulsivity. To achieve this goal, a cohort of 74 boys with ADHD and a cohort of 69 age-matched normal controls were recruited from the ADHD-200 Consortium. Both structural and resting-state fMRI images were obtained for each participant. Temporal patterns between and within intrinsic connectivity networks (ICNs) were applied as raw features in the predictive models. Specifically, sample entropy was taken asan intra-ICN feature, and phase synchronization (PS) was used asan inter-ICN feature. The predictive models were based on the least absolute shrinkage and selectionator operator (LASSO) algorithm. The performance of the predictive model for inattention is r=0.79 (p<10 -8 ), and the performance of the predictive model for impulsivity is r=0.48 (p<10 -8 ). The ICN-related predictive patterns may provide valuable information for investigating the brain network mechanisms of ADHD. In summary, the predictive models for clinical symptoms could be beneficial for personalizing ADHD medications. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
SU-F-R-51: Radiomics in CT Perfusion Maps of Head and Neck Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nesteruk, M; Riesterer, O; Veit-Haibach, P
2016-06-15
Purpose: The aim of this study was to test the predictive value of radiomics features of CT perfusion (CTP) for tumor control, based on a preselection of radiomics features in a robustness study. Methods: 11 patients with head and neck cancer (HNC) and 11 patients with lung cancer were included in the robustness study to preselect stable radiomics parameters. Data from 36 HNC patients treated with definitive radiochemotherapy (median follow-up 30 months) was used to build a predictive model based on these parameters. All patients underwent pre-treatment CTP. 315 texture parameters were computed for three perfusion maps: blood volume, bloodmore » flow and mean transit time. The variability of texture parameters was tested with respect to non-standardizable perfusion computation factors (noise level and artery contouring) using intraclass correlation coefficients (ICC). The parameter with the highest ICC in the correlated group of parameters (inter-parameter Spearman correlations) was tested for its predictive value. The final model to predict tumor control was built using multivariate Cox regression analysis with backward selection of the variables. For comparison, a predictive model based on tumor volume was created. Results: Ten parameters were found to be stable in both HNC and lung cancer regarding potentially non-standardizable factors after the correction for inter-parameter correlations. In the multivariate backward selection of the variables, blood flow entropy showed a highly significant impact on tumor control (p=0.03) with concordance index (CI) of 0.76. Blood flow entropy was significantly lower in the patient group with controlled tumors at 18 months (p<0.1). The new model showed a higher concordance index compared to the tumor volume model (CI=0.68). Conclusion: The preselection of variables in the robustness study allowed building a predictive radiomics-based model of tumor control in HNC despite a small patient cohort. This model was found to be superior to the volume-based model. The project was supported by the KFSP Tumor Oxygenation of the University of Zurich, by a grant of the Center for Clinical Research, University and University Hospital Zurich and by a research grant from Merck (Schweiz) AG.« less
A model for prediction of STOVL ejector dynamics
NASA Technical Reports Server (NTRS)
Drummond, Colin K.
1989-01-01
A semi-empirical control-volume approach to ejector modeling for transient performance prediction is presented. This new approach is motivated by the need for a predictive real-time ejector sub-system simulation for Short Take-Off Verticle Landing (STOVL) integrated flight and propulsion controls design applications. Emphasis is placed on discussion of the approximate characterization of the mixing process central to thrust augmenting ejector operation. The proposed ejector model suggests transient flow predictions are possible with a model based on steady-flow data. A practical test case is presented to illustrate model calibration.
Mwangi, Benson; Wu, Mon-Ju; Bauer, Isabelle E; Modi, Haina; Zeni, Cristian P; Zunta-Soares, Giovana B; Hasan, Khader M; Soares, Jair C
2015-11-30
Previous studies have reported abnormalities of white-matter diffusivity in pediatric bipolar disorder. However, it has not been established whether these abnormalities are able to distinguish individual subjects with pediatric bipolar disorder from healthy controls with a high specificity and sensitivity. Diffusion-weighted imaging scans were acquired from 16 youths diagnosed with DSM-IV bipolar disorder and 16 demographically matched healthy controls. Regional white matter tissue microstructural measurements such as fractional anisotropy, axial diffusivity and radial diffusivity were computed using an atlas-based approach. These measurements were used to 'train' a support vector machine (SVM) algorithm to predict new or 'unseen' subjects' diagnostic labels. The SVM algorithm predicted individual subjects with specificity=87.5%, sensitivity=68.75%, accuracy=78.12%, positive predictive value=84.62%, negative predictive value=73.68%, area under receiver operating characteristic curve (AUROC)=0.7812 and chi-square p-value=0.0012. A pattern of reduced regional white matter fractional anisotropy was observed in pediatric bipolar disorder patients. These results suggest that atlas-based diffusion weighted imaging measurements can distinguish individual pediatric bipolar disorder patients from healthy controls. Notably, from a clinical perspective these findings will contribute to the pathophysiological understanding of pediatric bipolar disorder. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delgoshaei, Parastoo; Austin, Mark A.; Pertzborn, Amanda J.
State-of-the-art building simulation control methods incorporate physical constraints into their mathematical models, but omit implicit constraints associated with policies of operation and dependency relationships among rules representing those constraints. To overcome these shortcomings, there is a recent trend in enabling the control strategies with inference-based rule checking capabilities. One solution is to exploit semantic web technologies in building simulation control. Such approaches provide the tools for semantic modeling of domains, and the ability to deduce new information based on the models through use of Description Logic (DL). In a step toward enabling this capability, this paper presents a cross-disciplinary data-drivenmore » control strategy for building energy management simulation that integrates semantic modeling and formal rule checking mechanisms into a Model Predictive Control (MPC) formulation. The results show that MPC provides superior levels of performance when initial conditions and inputs are derived from inference-based rules.« less
NASA Astrophysics Data System (ADS)
Grosso, Juan M.; Ocampo-Martinez, Carlos; Puig, Vicenç
2017-10-01
This paper proposes a distributed model predictive control approach designed to work in a cooperative manner for controlling flow-based networks showing periodic behaviours. Under this distributed approach, local controllers cooperate in order to enhance the performance of the whole flow network avoiding the use of a coordination layer. Alternatively, controllers use both the monolithic model of the network and the given global cost function to optimise the control inputs of the local controllers but taking into account the effect of their decisions over the remainder subsystems conforming the entire network. In this sense, a global (all-to-all) communication strategy is considered. Although the Pareto optimality cannot be reached due to the existence of non-sparse coupling constraints, the asymptotic convergence to a Nash equilibrium is guaranteed. The resultant strategy is tested and its effectiveness is shown when applied to a large-scale complex flow-based network: the Barcelona drinking water supply system.
Stability theory applications to laminar-flow control
NASA Technical Reports Server (NTRS)
Malik, Mujeeb R.
1987-01-01
In order to design Laminar Flow Control (LFC) configurations, reliable methods are needed for boundary-layer transition predictions. Among the available methods, there are correlations based upon R sub e, shape factors, Goertler number and crossflow Reynolds number. The most advanced transition prediction method is based upon linear stability theory in the form of the e sup N method which has proven to be successful in predicting transition in two- and three-dimensional boundary layers. When transition occurs in a low disturbance environment, the e sup N method provides a viable design tool for transition prediction and LFC in both 2-D and 3-D subsonic/supersonic flows. This is true for transition dominated by either TS, crossflow, or Goertler instability. If Goertler/TS or crossflow/TS interaction is present, the e sup N will fail to predict transition. However, there is no evidence of such interaction at low amplitudes of Goertler and crossflow vortices.
NASA Astrophysics Data System (ADS)
Stockert, Sven; Wehr, Matthias; Lohmar, Johannes; Abel, Dirk; Hirt, Gerhard
2017-10-01
In the electrical and medical industries the trend towards further miniaturization of devices is accompanied by the demand for smaller manufacturing tolerances. Such industries use a plentitude of small and narrow cold rolled metal strips with high thickness accuracy. Conventional rolling mills can hardly achieve further improvement of these tolerances. However, a model-based controller in combination with an additional piezoelectric actuator for high dynamic roll adjustment is expected to enable the production of the required metal strips with a thickness tolerance of +/-1 µm. The model-based controller has to be based on a rolling theory which can describe the rolling process very accurately. Additionally, the required computing time has to be low in order to predict the rolling process in real-time. In this work, four rolling theories from literature with different levels of complexity are tested for their suitability for the predictive controller. Rolling theories of von Kármán, Siebel, Bland & Ford and Alexander are implemented in Matlab and afterwards transferred to the real-time computer used for the controller. The prediction accuracy of these theories is validated using rolling trials with different thickness reduction and a comparison to the calculated results. Furthermore, the required computing time on the real-time computer is measured. Adequate results according the prediction accuracy can be achieved with the rolling theories developed by Bland & Ford and Alexander. A comparison of the computing time of those two theories reveals that Alexander's theory exceeds the sample rate of 1 kHz of the real-time computer.
Methods of Si based ceramic components volatilization control in a gas turbine engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia-Crespo, Andres Jose; Delvaux, John; Dion Ouellet, Noemie
A method of controlling volatilization of silicon based components in a gas turbine engine includes measuring, estimating and/or predicting a variable related to operation of the gas turbine engine; correlating the variable to determine an amount of silicon to control volatilization of the silicon based components in the gas turbine engine; and injecting silicon into the gas turbine engine to control volatilization of the silicon based components. A gas turbine with a compressor, combustion system, turbine section and silicon injection system may be controlled by a controller that implements the control method.
Braun, Alexandra C; Ilko, David; Merget, Benjamin; Gieseler, Henning; Germershaus, Oliver; Holzgrabe, Ulrike; Meinel, Lorenz
2015-08-01
This manuscript addresses the capability of compendial methods in controlling polysorbate 80 (PS80) functionality. Based on the analysis of sixteen batches, functionality related characteristics (FRC) including critical micelle concentration (CMC), cloud point, hydrophilic-lipophilic balance (HLB) value and micelle molecular weight were correlated to chemical composition including fatty acids before and after hydrolysis, content of non-esterified polyethylene glycols and sorbitan polyethoxylates, sorbitan- and isosorbide polyethoxylate fatty acid mono- and diesters, polyoxyethylene diesters, and peroxide values. Batches from some suppliers had a high variability in functionality related characteristic (FRC), questioning the ability of the current monograph in controlling these. Interestingly, the combined use of the input parameters oleic acid content and peroxide value - both of which being monographed methods - resulted in a model adequately predicting CMC. Confining the batches to those complying with specifications for peroxide value proved oleic acid content alone as being predictive for CMC. Similarly, a four parameter model based on chemical analyses alone was instrumental in predicting the molecular weight of PS80 micelles. Improved models based on analytical outcome from fingerprint analyses are also presented. A road map controlling PS80 batches with respect to FRC and based on chemical analyses alone is provided for the formulator. Copyright © 2014 Elsevier B.V. All rights reserved.
The management submodel of the Wind Erosion Prediction System
USDA-ARS?s Scientific Manuscript database
The Wind Erosion Prediction System (WEPS) is a process-based, daily time-step, computer model that predicts soil erosion via simulation of the physical processes controlling wind erosion. WEPS is comprised of several individual modules (submodels) that reflect different sets of physical processes, ...
Prediction Study on Anti-Slide Control of Railway Vehicle Based on RBF Neural Networks
NASA Astrophysics Data System (ADS)
Yang, Lijun; Zhang, Jimin
While railway vehicle braking, Anti-slide control system will detect operating status of each wheel-sets e.g. speed difference and deceleration etc. Once the detected value on some wheel-set is over pre-defined threshold, brake effort on such wheel-set will be adjusted automatically to avoid blocking. Such method takes effect on guarantee safety operation of vehicle and avoid wheel-set flatness, however it cannot adapt itself to the rail adhesion variation. While wheel-sets slide, the operating status is chaotic time series with certain law, and can be predicted with the law and experiment data in certain time. The predicted values can be used as the input reference signals of vehicle anti-slide control system, to judge and control the slide status of wheel-sets. In this article, the RBF neural networks is taken to predict wheel-set slide status in multi-step with weight vector adjusted based on online self-adaptive algorithm, and the center & normalizing parameters of active function of the hidden unit of RBF neural networks' hidden layer computed with K-means clustering algorithm. With multi-step prediction simulation, the predicted signal with appropriate precision can be used by anti-slide system to trace actively and adjust wheel-set slide tendency, so as to adapt to wheel-rail adhesion variation and reduce the risk of wheel-set blocking.
NASA Astrophysics Data System (ADS)
Avci, Mesut
A practical cost and energy efficient model predictive control (MPC) strategy is proposed for HVAC load control under dynamic real-time electricity pricing. The MPC strategy is built based on a proposed model that jointly minimizes the total energy consumption and hence, cost of electricity for the user, and the deviation of the inside temperature from the consumer's preference. An algorithm that assigns temperature set-points (reference temperatures) to price ranges based on the consumer's discomfort tolerance index is developed. A practical parameter prediction model is also designed for mapping between the HVAC load and the inside temperature. The prediction model and the produced temperature set-points are integrated as inputs into the MPC controller, which is then used to generate signal actions for the AC unit. To investigate and demonstrate the effectiveness of the proposed approach, a simulation based experimental analysis is presented using real-life pricing data. An actual prototype for the proposed HVAC load control strategy is then built and a series of prototype experiments are conducted similar to the simulation studies. The experiments reveal that the MPC strategy can lead to significant reductions in overall energy consumption and cost savings for the consumer. Results suggest that by providing an efficient response strategy for the consumers, the proposed MPC strategy can enable the utility providers to adopt efficient demand management policies using real-time pricing. Finally, a cost-benefit analysis is performed to display the economic feasibility of implementing such a controller as part of a building energy management system, and the payback period is identified considering cost of prototype build and cost savings to help the adoption of this controller in the building HVAC control industry.
Patient-specific dosimetric endpoints based treatment plan quality control in radiotherapy.
Song, Ting; Staub, David; Chen, Mingli; Lu, Weiguo; Tian, Zhen; Jia, Xun; Li, Yongbao; Zhou, Linghong; Jiang, Steve B; Gu, Xuejun
2015-11-07
In intensity modulated radiotherapy (IMRT), the optimal plan for each patient is specific due to unique patient anatomy. To achieve such a plan, patient-specific dosimetric goals reflecting each patient's unique anatomy should be defined and adopted in the treatment planning procedure for plan quality control. This study is to develop such a personalized treatment plan quality control tool by predicting patient-specific dosimetric endpoints (DEs). The incorporation of patient specific DEs is realized by a multi-OAR geometry-dosimetry model, capable of predicting optimal DEs based on the individual patient's geometry. The overall quality of a treatment plan is then judged with a numerical treatment plan quality indicator and characterized as optimal or suboptimal. Taking advantage of clinically available prostate volumetric modulated arc therapy (VMAT) treatment plans, we built and evaluated our proposed plan quality control tool. Using our developed tool, six of twenty evaluated plans were identified as sub-optimal plans. After plan re-optimization, these suboptimal plans achieved better OAR dose sparing without sacrificing the PTV coverage, and the dosimetric endpoints of the re-optimized plans agreed well with the model predicted values, which validate the predictability of the proposed tool. In conclusion, the developed tool is able to accurately predict optimally achievable DEs of multiple OARs, identify suboptimal plans, and guide plan optimization. It is a useful tool for achieving patient-specific treatment plan quality control.
Planner-Based Control of Advanced Life Support Systems
NASA Technical Reports Server (NTRS)
Muscettola, Nicola; Kortenkamp, David; Fry, Chuck; Bell, Scott
2005-01-01
The paper describes an approach to the integration of qualitative and quantitative modeling techniques for advanced life support (ALS) systems. Developing reliable control strategies that scale up to fully integrated life support systems requires augmenting quantitative models and control algorithms with the abstractions provided by qualitative, symbolic models and their associated high-level control strategies. This will allow for effective management of the combinatorics due to the integration of a large number of ALS subsystems. By focusing control actions at different levels of detail and reactivity we can use faster: simpler responses at the lowest level and predictive but complex responses at the higher levels of abstraction. In particular, methods from model-based planning and scheduling can provide effective resource management over long time periods. We describe reference implementation of an advanced control system using the IDEA control architecture developed at NASA Ames Research Center. IDEA uses planning/scheduling as the sole reasoning method for predictive and reactive closed loop control. We describe preliminary experiments in planner-based control of ALS carried out on an integrated ALS simulation developed at NASA Johnson Space Center.
Prediction of active control of subsonic centrifugal compressor rotating stall
NASA Technical Reports Server (NTRS)
Lawless, Patrick B.; Fleeter, Sanford
1993-01-01
A mathematical model is developed to predict the suppression of rotating stall in a centrifugal compressor with a vaned diffuser. This model is based on the employment of a control vortical waveform generated upstream of the impeller inlet to damp weak potential disturbances that are the early stages of rotating stall. The control system is analyzed by matching the perturbation pressure in the compressor inlet and exit flow fields with a model for the unsteady behavior of the compressor. The model was effective at predicting the stalling behavior of the Purdue Low Speed Centrifugal Compressor for two distinctly different stall patterns. Predictions made for the effect of a controlled inlet vorticity wave on the stability of the compressor show that for minimum control wave magnitudes, on the order of the total inlet disturbance magnitude, significant damping of the instability can be achieved. For control waves of sufficient amplitude, the control phase angle appears to be the most important factor in maintaining a stable condition in the compressor.
NASA Technical Reports Server (NTRS)
Fogel, L. J.; Calabrese, P. G.; Walsh, M. J.; Owens, A. J.
1982-01-01
Ways in which autonomous behavior of spacecraft can be extended to treat situations wherein a closed loop control by a human may not be appropriate or even possible are explored. Predictive models that minimize mean least squared error and arbitrary cost functions are discussed. A methodology for extracting cyclic components for an arbitrary environment with respect to usual and arbitrary criteria is developed. An approach to prediction and control based on evolutionary programming is outlined. A computer program capable of predicting time series is presented. A design of a control system for a robotic dense with partially unknown physical properties is presented.
Flight-determined aerodynamic derivatives of the AD-1 oblique-wing research airplane
NASA Technical Reports Server (NTRS)
Sim, A. G.; Curry, R. E.
1984-01-01
The AD-1 is a variable-sweep oblique-wing research airplane that exhibits unconventional stability and control characteristics. In this report, flight-determined and predicted stability and control derivatives for the AD-1 airplane are compared. The predictions are based on both wind tunnel and computational results. A final best estimate of derivatives is presented.
Affective Dynamics of Leadership: An Experimental Test of Affect Control Theory
ERIC Educational Resources Information Center
Schroder, Tobias; Scholl, Wolfgang
2009-01-01
Affect Control Theory (ACT; Heise 1979, 2007) states that people control social interactions by striving to maintain culturally shared feelings about the situation. The theory is based on mathematical models of language-based impression formation. In a laboratory experiment, we tested the predictive power of a new German-language ACT model with…
Event-Based Sensing and Control for Remote Robot Guidance: An Experimental Case
Santos, Carlos; Martínez-Rey, Miguel; Santiso, Enrique
2017-01-01
This paper describes the theoretical and practical foundations for remote control of a mobile robot for nonlinear trajectory tracking using an external localisation sensor. It constitutes a classical networked control system, whereby event-based techniques for both control and state estimation contribute to efficient use of communications and reduce sensor activity. Measurement requests are dictated by an event-based state estimator by setting an upper bound to the estimation error covariance matrix. The rest of the time, state prediction is carried out with the Unscented transformation. This prediction method makes it possible to select the appropriate instants at which to perform actuations on the robot so that guidance performance does not degrade below a certain threshold. Ultimately, we obtained a combined event-based control and estimation solution that drastically reduces communication accesses. The magnitude of this reduction is set according to the tracking error margin of a P3-DX robot following a nonlinear trajectory, remotely controlled with a mini PC and whose pose is detected by a camera sensor. PMID:28878144
Job Design and Ethnic Differences in Working Women’s Physical Activity
Grzywacz, Joseph G.; Crain, A. Lauren; Martinson, Brian C.; Quandt, Sara A.
2014-01-01
Objective To document the role job control and schedule control play in shaping women’s physical activity, and how it delineates educational and racial variability in associations of job and social control with physical activity. Methods Prospective data were obtained from a community-based sample of working women (N = 302). Validated instruments measured job control and schedule control. Steps per day were assessed using New Lifestyles 800 activity monitors. Results Greater job control predicted more steps per day, whereas greater schedule control predicted fewer steps. Small indirect associations between ethnicity and physical activity were observed among women with a trade school degree or less but not for women with a college degree. Conclusions Low job control created barriers to physical activity among working women with a trade school degree or less. Greater schedule control predicted less physical activity, suggesting women do not use time “created” by schedule flexibility for personal health enhancement. PMID:24034681
Job design and ethnic differences in working women's physical activity.
Grzywacz, Joseph G; Crain, A Lauren; Martinson, Brian C; Quandt, Sara A
2014-01-01
To document the role job control and schedule control play in shaping women's physical activity, and how it delineates educational and racial variability in associations of job and social control with physical activity. Prospective data were obtained from a community-based sample of working women (N = 302). Validated instruments measured job control and schedule control. Steps per day were assessed using New Lifestyles 800 activity monitors. Greater job control predicted more steps per day, whereas greater schedule control predicted fewer steps. Small indirect associations between ethnicity and physical activity were observed among women with a trade school degree or less but not for women with a college degree. Low job control created barriers to physical activity among working women with a trade school degree or less. Greater schedule control predicted less physical activity, suggesting women do not use time "created" by schedule flexibility for personal health enhancement.
NASA Astrophysics Data System (ADS)
Zakaria, M. A.; Majeed, A. P. P. A.; Taha, Z.; Alim, M. M.; Baarath, K.
2018-03-01
The movement of a lower limb exoskeleton requires a reasonably accurate control method to allow for an effective gait therapy session to transpire. Trajectory tracking is a nontrivial means of passive rehabilitation technique to correct the motion of the patients’ impaired limb. This paper proposes an inverse predictive model that is coupled together with the forward kinematics of the exoskeleton to estimate the behaviour of the system. A conventional PID control system is used to converge the required joint angles based on the desired input from the inverse predictive model. It was demonstrated through the present study, that the inverse predictive model is capable of meeting the trajectory demand with acceptable error tolerance. The findings further suggest the ability of the predictive model of the exoskeleton to predict a correct joint angle command to the system.
Structure-based control of complex networks with nonlinear dynamics.
Zañudo, Jorge Gomez Tejeda; Yang, Gang; Albert, Réka
2017-07-11
What can we learn about controlling a system solely from its underlying network structure? Here we adapt a recently developed framework for control of networks governed by a broad class of nonlinear dynamics that includes the major dynamic models of biological, technological, and social processes. This feedback-based framework provides realizable node overrides that steer a system toward any of its natural long-term dynamic behaviors, regardless of the specific functional forms and system parameters. We use this framework on several real networks, identify the topological characteristics that underlie the predicted node overrides, and compare its predictions to those of structural controllability in control theory. Finally, we demonstrate this framework's applicability in dynamic models of gene regulatory networks and identify nodes whose override is necessary for control in the general case but not in specific model instances.
Control of Thermo-Acoustics Instabilities: The Multi-Scale Extended Kalman Approach
NASA Technical Reports Server (NTRS)
Le, Dzu K.; DeLaat, John C.; Chang, Clarence T.
2003-01-01
"Multi-Scale Extended Kalman" (MSEK) is a novel model-based control approach recently found to be effective for suppressing combustion instabilities in gas turbines. A control law formulated in this approach for fuel modulation demonstrated steady suppression of a high-frequency combustion instability (less than 500Hz) in a liquid-fuel combustion test rig under engine-realistic conditions. To make-up for severe transport-delays on control effect, the MSEK controller combines a wavelet -like Multi-Scale analysis and an Extended Kalman Observer to predict the thermo-acoustic states of combustion pressure perturbations. The commanded fuel modulation is composed of a damper action based on the predicted states, and a tones suppression action based on the Multi-Scale estimation of thermal excitations and other transient disturbances. The controller performs automatic adjustments of the gain and phase of these actions to minimize the Time-Scale Averaged Variances of the pressures inside the combustion zone and upstream of the injector. The successful demonstration of Active Combustion Control with this MSEK controller completed an important NASA milestone for the current research in advanced combustion technologies.
NASA Astrophysics Data System (ADS)
Love, D. M.; Venturas, M.; Sperry, J.; Wang, Y.; Anderegg, W.
2017-12-01
Modeling approaches for tree stomatal control often rely on empirical fitting to provide accurate estimates of whole tree transpiration (E) and assimilation (A), which are limited in their predictive power by the data envelope used to calibrate model parameters. Optimization based models hold promise as a means to predict stomatal behavior under novel climate conditions. We designed an experiment to test a hydraulic trait based optimization model, which predicts stomatal conductance from a gain/risk approach. Optimal stomatal conductance is expected to maximize the potential carbon gain by photosynthesis, and minimize the risk to hydraulic transport imposed by cavitation. The modeled risk to the hydraulic network is assessed from cavitation vulnerability curves, a commonly measured physiological trait in woody plant species. Over a growing season garden grown plots of aspen (Populus tremuloides, Michx.) and ponderosa pine (Pinus ponderosa, Douglas) were subjected to three distinct drought treatments (moderate, severe, severe with rehydration) relative to a control plot to test model predictions. Model outputs of predicted E, A, and xylem pressure can be directly compared to both continuous data (whole tree sapflux, soil moisture) and point measurements (leaf level E, A, xylem pressure). The model also predicts levels of whole tree hydraulic impairment expected to increase mortality risk. This threshold is used to estimate survivorship in the drought treatment plots. The model can be run at two scales, either entirely from climate (meteorological inputs, irrigation) or using the physiological measurements as a starting point. These data will be used to study model performance and utility, and aid in developing the model for larger scale applications.
Wombacher, Kevin; Dai, Minhao; Matig, Jacob J; Harrington, Nancy Grant
2018-03-22
To identify salient behavioral determinants related to STI testing among college students by testing a model based on the integrative model of behavioral (IMBP) prediction. 265 undergraduate students from a large university in the Southeastern US. Formative and survey research to test an IMBP-based model that explores the relationships between determinants and STI testing intention and behavior. Results of path analyses supported a model in which attitudinal beliefs predicted intention and intention predicted behavior. Normative beliefs and behavioral control beliefs were not significant in the model; however, select individual normative and control beliefs were significantly correlated with intention and behavior. Attitudinal beliefs are the strongest predictor of STI testing intention and behavior. Future efforts to increase STI testing rates should identify and target salient attitudinal beliefs.
NASA Astrophysics Data System (ADS)
Ji, Yu; Sheng, Wanxing; Jin, Wei; Wu, Ming; Liu, Haitao; Chen, Feng
2018-02-01
A coordinated optimal control method of active and reactive power of distribution network with distributed PV cluster based on model predictive control is proposed in this paper. The method divides the control process into long-time scale optimal control and short-time scale optimal control with multi-step optimization. The models are transformed into a second-order cone programming problem due to the non-convex and nonlinear of the optimal models which are hard to be solved. An improved IEEE 33-bus distribution network system is used to analyse the feasibility and the effectiveness of the proposed control method
Prospective versus predictive control in timing of hitting a falling ball.
Katsumata, Hiromu; Russell, Daniel M
2012-02-01
Debate exists as to whether humans use prospective or predictive control to intercept an object falling under gravity (Baurès et al. in Vis Res 47:2982-2991, 2007; Zago et al. in Vis Res 48:1532-1538, 2008). Prospective control involves using continuous information to regulate action. τ, the ratio of the size of the gap to the rate of gap closure, has been proposed as the information used in guiding interceptive actions prospectively (Lee in Ecol Psychol 10:221-250, 1998). This form of control is expected to generate movement modulation, where variability decreases over the course of an action based upon more accurate timing information. In contrast, predictive control assumes that a pre-programmed movement is triggered at an appropriate criterion timing variable. For a falling object it is commonly argued that an internal model of gravitational acceleration is used to predict the motion of the object and determine movement initiation. This form of control predicts fixed duration movements initiated at consistent time-to-contact (TTC), either across conditions (constant criterion operational timing) or within conditions (variable criterion operational timing). The current study sought to test predictive and prospective control hypotheses by disrupting continuous visual information of a falling ball and examining consistency in movement initiation and duration, and evidence for movement modulation. Participants (n = 12) batted a ball dropped from three different heights (1, 1.3 and 1.5 m), under both full-vision and partial occlusion conditions. In the occlusion condition, only the initial ball drop and the final 200 ms of ball flight to the interception point could be observed. The initiation of the swing did not occur at a consistent TTC, τ, or any other timing variable across drop heights, in contrast with previous research. However, movement onset was not impacted by occluding the ball flight for 280-380 ms. This finding indicates that humans did not need to be continuously coupled to vision of the ball to initiate the swing accurately, but instead could use predictive control based on acceleration timing information (TTC2). However, other results provide evidence for movement modulation, a characteristic of prospective control. Strong correlations between movement initiation and duration and reduced timing variability from swing onset to arrival at the interception point, both support compensatory variability. An analysis of modulation within the swing revealed that early in the swing, the movement acceleration was strongly correlated to the required mean velocity at swing onset and that later in the swing, the movement acceleration was again strongly correlated with the current required mean velocity. Rather than a consistent movement initiated at the same time, these findings show that the swing was variable but modulated for meeting the demands of each trial. A prospective model of coupling τ (bat-ball) with τ (ball-target) was found to provide a very strong linear fit for an average of 69% of the movement duration. These findings provide evidence for predictive control based on TTC2 information in initiating the swing and prospective control based on τ in guiding the bat to intercept the ball.
NASA Astrophysics Data System (ADS)
Sun, Xiaoqiang; Yuan, Chaochun; Cai, Yingfeng; Wang, Shaohua; Chen, Long
2017-09-01
This paper presents the hybrid modeling and the model predictive control of an air suspension system with damping multi-mode switching damper. Unlike traditional damper with continuously adjustable damping, in this study, a new damper with four discrete damping modes is applied to vehicle semi-active air suspension. The new damper can achieve different damping modes by just controlling the on-off statuses of two solenoid valves, which makes its damping adjustment more efficient and more reliable. However, since the damping mode switching induces different modes of operation, the air suspension system with the new damper poses challenging hybrid control problem. To model both the continuous/discrete dynamics and the switching between different damping modes, the framework of mixed logical dynamical (MLD) systems is used to establish the system hybrid model. Based on the resulting hybrid dynamical model, the system control problem is recast as a model predictive control (MPC) problem, which allows us to optimize the switching sequences of the damping modes by taking into account the suspension performance requirements. Numerical simulations results demonstrate the efficacy of the proposed control method finally.
ERIC Educational Resources Information Center
Hawk, Mary
2015-01-01
Randomized controlled trials are the gold standard in research but may not fully explain or predict outcome variations in community-based interventions. Demonstrating efficacy of externally driven programs in well-controlled environments may not translate to community-based implementation where resources and priorities vary. A bottom-up evaluation…
A predictive control framework for optimal energy extraction of wind farms
NASA Astrophysics Data System (ADS)
Vali, M.; van Wingerden, J. W.; Boersma, S.; Petrović, V.; Kühn, M.
2016-09-01
This paper proposes an adjoint-based model predictive control for optimal energy extraction of wind farms. It employs the axial induction factor of wind turbines to influence their aerodynamic interactions through the wake. The performance index is defined here as the total power production of the wind farm over a finite prediction horizon. A medium-fidelity wind farm model is utilized to predict the inflow propagation in advance. The adjoint method is employed to solve the formulated optimization problem in a cost effective way and the first part of the optimal solution is implemented over the control horizon. This procedure is repeated at the next controller sample time providing the feedback into the optimization. The effectiveness and some key features of the proposed approach are studied for a two turbine test case through simulations.
Cunha-Cruz, Joana; Milgrom, Peter; Shirtcliff, R Michael; Bailit, Howard L; Huebner, Colleen E; Conrad, Douglas; Ludwig, Sharity; Mitchell, Melissa; Dysert, Jeanne; Allen, Gary; Scott, JoAnna; Mancl, Lloyd
2015-06-20
To improve the oral health of low-income children, innovations in dental delivery systems are needed, including community-based care, the use of expanded duty auxiliary dental personnel, capitation payments, and global budgets. This paper describes the protocol for PREDICT (Population-centered Risk- and Evidence-based Dental Interprofessional Care Team), an evaluation project to test the effectiveness of new delivery and payment systems for improving dental care and oral health. This is a parallel-group cluster randomized controlled trial. Fourteen rural Oregon counties with a publicly insured (Medicaid) population of 82,000 children (0 to 21 years old) and pregnant women served by a managed dental care organization are randomized into test and control counties. In the test intervention (PREDICT), allied dental personnel provide screening and preventive services in community settings and case managers serve as patient navigators to arrange referrals of children who need dentist services. The delivery system intervention is paired with a compensation system for high performance (pay-for-performance) with efficient performance monitoring. PREDICT focuses on the following: 1) identifying eligible children and gaining caregiver consent for services in community settings (for example, schools); 2) providing risk-based preventive and caries stabilization services efficiently at these settings; 3) providing curative care in dental clinics; and 4) incentivizing local delivery teams to meet performance benchmarks. In the control intervention, care is delivered in dental offices without performance incentives. The primary outcome is the prevalence of untreated dental caries. Other outcomes are related to process, structure and cost. Data are collected through patient and staff surveys, clinical examinations, and the review of health and administrative records. If effective, PREDICT is expected to substantially reduce disparities in dental care and oral health. PREDICT can be disseminated to other care organizations as publicly insured clients are increasingly served by large practice organizations. ClinicalTrials.gov NCT02312921 6 December 2014. The Robert Wood Johnson Foundation and Advantage Dental Services, LLC, are supporting the evaluation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, L.; Britt, J.; Birkmire, R.
ITN Energy Systems, Inc., and Global Solar Energy, Inc., assisted by NREL's PV Manufacturing R&D program, have continued to advance CIGS production technology by developing trajectory-oriented predictive/control models, fault-tolerance control, control platform development, in-situ sensors, and process improvements. Modeling activities included developing physics-based and empirical models for CIGS and sputter-deposition processing, implementing model-based control, and applying predictive models to the construction of new evaporation sources and for control. Model-based control is enabled by implementing reduced or empirical models into a control platform. Reliability improvement activities include implementing preventive maintenance schedules; detecting failed sensors/equipment and reconfiguring to tinue processing; and systematicmore » development of fault prevention and reconfiguration strategies for the full range of CIGS PV production deposition processes. In-situ sensor development activities have resulted in improved control and indicated the potential for enhanced process status monitoring and control of the deposition processes. Substantial process improvements have been made, including significant improvement in CIGS uniformity, thickness control, efficiency, yield, and throughput. In large measure, these gains have been driven by process optimization, which in turn have been enabled by control and reliability improvements due to this PV Manufacturing R&D program.« less
Optimal Predictive Control for Path Following of a Full Drive-by-Wire Vehicle at Varying Speeds
NASA Astrophysics Data System (ADS)
SONG, Pan; GAO, Bolin; XIE, Shugang; FANG, Rui
2017-05-01
The current research of the global chassis control problem for the full drive-by-wire vehicle focuses on the control allocation (CA) of the four-wheel-distributed traction/braking/steering systems. However, the path following performance and the handling stability of the vehicle can be enhanced a step further by automatically adjusting the vehicle speed to the optimal value. The optimal solution for the combined longitudinal and lateral motion control (MC) problem is given. First, a new variable step-size spatial transformation method is proposed and utilized in the prediction model to derive the dynamics of the vehicle with respect to the road, such that the tracking errors can be explicitly obtained over the prediction horizon at varying speeds. Second, a nonlinear model predictive control (NMPC) algorithm is introduced to handle the nonlinear coupling between any two directions of the vehicular planar motion and computes the sequence of the optimal motion states for following the desired path. Third, a hierarchical control structure is proposed to separate the motion controller into a NMPC based path planner and a terminal sliding mode control (TSMC) based path follower. As revealed through off-line simulations, the hierarchical methodology brings nearly 1700% improvement in computational efficiency without loss of control performance. Finally, the control algorithm is verified through a hardware in-the-loop simulation system. Double-lane-change (DLC) test results show that by using the optimal predictive controller, the root-mean-square (RMS) values of the lateral deviations and the orientation errors can be reduced by 41% and 30%, respectively, comparing to those by the optimal preview acceleration (OPA) driver model with the non-preview speed-tracking method. Additionally, the average vehicle speed is increased by 0.26 km/h with the peak sideslip angle suppressed to 1.9°. This research proposes a novel motion controller, which provides the full drive-by-wire vehicle with better lane-keeping and collision-avoidance capabilities during autonomous driving.
Tang, Xiaoming; Qu, Hongchun; Wang, Ping; Zhao, Meng
2015-03-01
This paper investigates the off-line synthesis approach of model predictive control (MPC) for a class of networked control systems (NCSs) with network-induced delays. A new augmented model which can be readily applied to time-varying control law, is proposed to describe the NCS where bounded deterministic network-induced delays may occur in both sensor to controller (S-A) and controller to actuator (C-A) links. Based on this augmented model, a sufficient condition of the closed-loop stability is derived by applying the Lyapunov method. The off-line synthesis approach of model predictive control is addressed using the stability results of the system, which explicitly considers the satisfaction of input and state constraints. Numerical example is given to illustrate the effectiveness of the proposed method. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Convolutional neural networks for prostate cancer recurrence prediction
NASA Astrophysics Data System (ADS)
Kumar, Neeraj; Verma, Ruchika; Arora, Ashish; Kumar, Abhay; Gupta, Sanchit; Sethi, Amit; Gann, Peter H.
2017-03-01
Accurate prediction of the treatment outcome is important for cancer treatment planning. We present an approach to predict prostate cancer (PCa) recurrence after radical prostatectomy using tissue images. We used a cohort whose case vs. control (recurrent vs. non-recurrent) status had been determined using post-treatment follow up. Further, to aid the development of novel biomarkers of PCa recurrence, cases and controls were paired based on matching of other predictive clinical variables such as Gleason grade, stage, age, and race. For this cohort, tissue resection microarray with up to four cores per patient was available. The proposed approach is based on deep learning, and its novelty lies in the use of two separate convolutional neural networks (CNNs) - one to detect individual nuclei even in the crowded areas, and the other to classify them. To detect nuclear centers in an image, the first CNN predicts distance transform of the underlying (but unknown) multi-nuclear map from the input HE image. The second CNN classifies the patches centered at nuclear centers into those belonging to cases or controls. Voting across patches extracted from image(s) of a patient yields the probability of recurrence for the patient. The proposed approach gave 0.81 AUC for a sample of 30 recurrent cases and 30 non-recurrent controls, after being trained on an independent set of 80 case-controls pairs. If validated further, such an approach might help in choosing between a combination of treatment options such as active surveillance, radical prostatectomy, radiation, and hormone therapy. It can also generalize to the prediction of treatment outcomes in other cancers.
Jeunet, Camille; N'Kaoua, Bernard; Subramanian, Sriram; Hachet, Martin; Lotte, Fabien
2015-01-01
Mental-Imagery based Brain-Computer Interfaces (MI-BCIs) allow their users to send commands to a computer using their brain-activity alone (typically measured by ElectroEncephaloGraphy-EEG), which is processed while they perform specific mental tasks. While very promising, MI-BCIs remain barely used outside laboratories because of the difficulty encountered by users to control them. Indeed, although some users obtain good control performances after training, a substantial proportion remains unable to reliably control an MI-BCI. This huge variability in user-performance led the community to look for predictors of MI-BCI control ability. However, these predictors were only explored for motor-imagery based BCIs, and mostly for a single training session per subject. In this study, 18 participants were instructed to learn to control an EEG-based MI-BCI by performing 3 MI-tasks, 2 of which were non-motor tasks, across 6 training sessions, on 6 different days. Relationships between the participants' BCI control performances and their personality, cognitive profile and neurophysiological markers were explored. While no relevant relationships with neurophysiological markers were found, strong correlations between MI-BCI performances and mental-rotation scores (reflecting spatial abilities) were revealed. Also, a predictive model of MI-BCI performance based on psychometric questionnaire scores was proposed. A leave-one-subject-out cross validation process revealed the stability and reliability of this model: it enabled to predict participants' performance with a mean error of less than 3 points. This study determined how users' profiles impact their MI-BCI control ability and thus clears the way for designing novel MI-BCI training protocols, adapted to the profile of each user.
Jeunet, Camille; N’Kaoua, Bernard; Subramanian, Sriram; Hachet, Martin; Lotte, Fabien
2015-01-01
Mental-Imagery based Brain-Computer Interfaces (MI-BCIs) allow their users to send commands to a computer using their brain-activity alone (typically measured by ElectroEncephaloGraphy—EEG), which is processed while they perform specific mental tasks. While very promising, MI-BCIs remain barely used outside laboratories because of the difficulty encountered by users to control them. Indeed, although some users obtain good control performances after training, a substantial proportion remains unable to reliably control an MI-BCI. This huge variability in user-performance led the community to look for predictors of MI-BCI control ability. However, these predictors were only explored for motor-imagery based BCIs, and mostly for a single training session per subject. In this study, 18 participants were instructed to learn to control an EEG-based MI-BCI by performing 3 MI-tasks, 2 of which were non-motor tasks, across 6 training sessions, on 6 different days. Relationships between the participants’ BCI control performances and their personality, cognitive profile and neurophysiological markers were explored. While no relevant relationships with neurophysiological markers were found, strong correlations between MI-BCI performances and mental-rotation scores (reflecting spatial abilities) were revealed. Also, a predictive model of MI-BCI performance based on psychometric questionnaire scores was proposed. A leave-one-subject-out cross validation process revealed the stability and reliability of this model: it enabled to predict participants’ performance with a mean error of less than 3 points. This study determined how users’ profiles impact their MI-BCI control ability and thus clears the way for designing novel MI-BCI training protocols, adapted to the profile of each user. PMID:26625261
Fällmar, David; Haller, Sven; Lilja, Johan; Danfors, Torsten; Kilander, Lena; Tolboom, Nelleke; Egger, Karl; Kellner, Elias; Croon, Philip M; Verfaillie, Sander C J; van Berckel, Bart N M; Ossenkoppele, Rik; Barkhof, Frederik; Larsson, Elna-Marie
2017-10-01
Cerebral perfusion analysis based on arterial spin labeling (ASL) MRI has been proposed as an alternative to FDG-PET in patients with neurodegenerative disease. Z-maps show normal distribution values relating an image to a database of controls. They are routinely used for FDG-PET to demonstrate disease-specific patterns of hypometabolism at the individual level. This study aimed to compare the performance of Z-maps based on ASL to FDG-PET. Data were combined from two separate sites, each cohort consisting of patients with Alzheimer's disease (n = 18 + 7), frontotemporal dementia (n = 12 + 8) and controls (n = 9 + 29). Subjects underwent pseudocontinuous ASL and FDG-PET. Z-maps were created for each subject and modality. Four experienced physicians visually assessed the 166 Z-maps in random order, blinded to modality and diagnosis. Discrimination of patients versus controls using ASL-based Z-maps yielded high specificity (84%) and positive predictive value (80%), but significantly lower sensitivity compared to FDG-PET-based Z-maps (53% vs. 96%, p < 0.001). Among true-positive cases, correct diagnoses were made in 76% (ASL) and 84% (FDG-PET) (p = 0.168). ASL-based Z-maps can be used for visual assessment of neurodegenerative dementia with high specificity and positive predictive value, but with inferior sensitivity compared to FDG-PET. • ASL-based Z-maps yielded high specificity and positive predictive value in neurodegenerative dementia. • ASL-based Z-maps had significantly lower sensitivity compared to FDG-PET-based Z-maps. • FDG-PET might be reserved for ASL-negative cases where clinical suspicion persists. • Findings were similar at two study sites.
NASA Astrophysics Data System (ADS)
Léchappé, V.; Moulay, E.; Plestan, F.
2018-06-01
The stability of a prediction-based controller for linear time-invariant (LTI) systems is studied in the presence of time-varying input and output delays. The uncertain delay case is treated as well as the partial state knowledge case. The reduction method is used in order to prove the convergence of the closed-loop system including the state observer, the predictor and the plant. Explicit conditions that guarantee the closed-loop stability are given, thanks to a Lyapunov-Razumikhin analysis. Simulations illustrate the theoretical results.
Aircraft Engine Thrust Estimator Design Based on GSA-LSSVM
NASA Astrophysics Data System (ADS)
Sheng, Hanlin; Zhang, Tianhong
2017-08-01
In view of the necessity of highly precise and reliable thrust estimator to achieve direct thrust control of aircraft engine, based on support vector regression (SVR), as well as least square support vector machine (LSSVM) and a new optimization algorithm - gravitational search algorithm (GSA), by performing integrated modelling and parameter optimization, a GSA-LSSVM-based thrust estimator design solution is proposed. The results show that compared to particle swarm optimization (PSO) algorithm, GSA can find unknown optimization parameter better and enables the model developed with better prediction and generalization ability. The model can better predict aircraft engine thrust and thus fulfills the need of direct thrust control of aircraft engine.
Neural network based automatic limit prediction and avoidance system and method
NASA Technical Reports Server (NTRS)
Calise, Anthony J. (Inventor); Prasad, Jonnalagadda V. R. (Inventor); Horn, Joseph F. (Inventor)
2001-01-01
A method for performance envelope boundary cueing for a vehicle control system comprises the steps of formulating a prediction system for a neural network and training the neural network to predict values of limited parameters as a function of current control positions and current vehicle operating conditions. The method further comprises the steps of applying the neural network to the control system of the vehicle, where the vehicle has capability for measuring current control positions and current vehicle operating conditions. The neural network generates a map of current control positions and vehicle operating conditions versus the limited parameters in a pre-determined vehicle operating condition. The method estimates critical control deflections from the current control positions required to drive the vehicle to a performance envelope boundary. Finally, the method comprises the steps of communicating the critical control deflection to the vehicle control system; and driving the vehicle control system to provide a tactile cue to an operator of the vehicle as the control positions approach the critical control deflections.
Toward a Model-Based Predictive Controller Design in Brain–Computer Interfaces
Kamrunnahar, M.; Dias, N. S.; Schiff, S. J.
2013-01-01
A first step in designing a robust and optimal model-based predictive controller (MPC) for brain–computer interface (BCI) applications is presented in this article. An MPC has the potential to achieve improved BCI performance compared to the performance achieved by current ad hoc, nonmodel-based filter applications. The parameters in designing the controller were extracted as model-based features from motor imagery task-related human scalp electroencephalography. Although the parameters can be generated from any model-linear or non-linear, we here adopted a simple autoregressive model that has well-established applications in BCI task discriminations. It was shown that the parameters generated for the controller design can as well be used for motor imagery task discriminations with performance (with 8–23% task discrimination errors) comparable to the discrimination performance of the commonly used features such as frequency specific band powers and the AR model parameters directly used. An optimal MPC has significant implications for high performance BCI applications. PMID:21267657
Toward a model-based predictive controller design in brain-computer interfaces.
Kamrunnahar, M; Dias, N S; Schiff, S J
2011-05-01
A first step in designing a robust and optimal model-based predictive controller (MPC) for brain-computer interface (BCI) applications is presented in this article. An MPC has the potential to achieve improved BCI performance compared to the performance achieved by current ad hoc, nonmodel-based filter applications. The parameters in designing the controller were extracted as model-based features from motor imagery task-related human scalp electroencephalography. Although the parameters can be generated from any model-linear or non-linear, we here adopted a simple autoregressive model that has well-established applications in BCI task discriminations. It was shown that the parameters generated for the controller design can as well be used for motor imagery task discriminations with performance (with 8-23% task discrimination errors) comparable to the discrimination performance of the commonly used features such as frequency specific band powers and the AR model parameters directly used. An optimal MPC has significant implications for high performance BCI applications.
Predicting moisture content: fuel moisture indicator sticks in the Pacific Northwest.
Owen P. Cramer
1961-01-01
Successful day-to-day planning of presuppression activities requires accurate prediction of burning index. In the Pacific Northwest, forecasts of burning index are prepared by the fire-control man and are based on predictions of windspeed and fuel moisture. Although fuel moisture is affected by a number of weather elements and is consequently difficult to predict, the...
NASA Astrophysics Data System (ADS)
Tofighi, Elham; Mahdizadeh, Amin
2016-09-01
This paper addresses the problem of automatic tuning of weighting coefficients for the nonlinear model predictive control (NMPC) of wind turbines. The choice of weighting coefficients in NMPC is critical due to their explicit impact on efficiency of the wind turbine control. Classically, these weights are selected based on intuitive understanding of the system dynamics and control objectives. The empirical methods, however, may not yield optimal solutions especially when the number of parameters to be tuned and the nonlinearity of the system increase. In this paper, the problem of determining weighting coefficients for the cost function of the NMPC controller is formulated as a two-level optimization process in which the upper- level PSO-based optimization computes the weighting coefficients for the lower-level NMPC controller which generates control signals for the wind turbine. The proposed method is implemented to tune the weighting coefficients of a NMPC controller which drives the NREL 5-MW wind turbine. The results are compared with similar simulations for a manually tuned NMPC controller. Comparison verify the improved performance of the controller for weights computed with the PSO-based technique.
Predicting outcome of Internet-based treatment for depressive symptoms.
Warmerdam, Lisanne; Van Straten, Annemieke; Twisk, Jos; Cuijpers, Pim
2013-01-01
In this study we explored predictors and moderators of response to Internet-based cognitive behavioral therapy (CBT) and Internet-based problem-solving therapy (PST) for depressive symptoms. The sample consisted of 263 participants with moderate to severe depressive symptoms. Of those, 88 were randomized to CBT, 88 to PST and 87 to a waiting list control condition. Outcomes were improvement and clinically significant change in depressive symptoms after 8 weeks. Higher baseline depression and higher education predicted improvement, while higher education, less avoidance behavior and decreased rational problem-solving skills predicted clinically significant change across all groups. No variables were found that differentially predicted outcome between Internet-based CBT and Internet-based PST. More research is needed with sufficient power to investigate predictors and moderators of response to reveal for whom Internet-based therapy is best suited.
Sebok, Angelia; Wickens, Christopher D
2017-03-01
The objectives were to (a) implement theoretical perspectives regarding human-automation interaction (HAI) into model-based tools to assist designers in developing systems that support effective performance and (b) conduct validations to assess the ability of the models to predict operator performance. Two key concepts in HAI, the lumberjack analogy and black swan events, have been studied extensively. The lumberjack analogy describes the effects of imperfect automation on operator performance. In routine operations, an increased degree of automation supports performance, but in failure conditions, increased automation results in more significantly impaired performance. Black swans are the rare and unexpected failures of imperfect automation. The lumberjack analogy and black swan concepts have been implemented into three model-based tools that predict operator performance in different systems. These tools include a flight management system, a remotely controlled robotic arm, and an environmental process control system. Each modeling effort included a corresponding validation. In one validation, the software tool was used to compare three flight management system designs, which were ranked in the same order as predicted by subject matter experts. The second validation compared model-predicted operator complacency with empirical performance in the same conditions. The third validation compared model-predicted and empirically determined time to detect and repair faults in four automation conditions. The three model-based tools offer useful ways to predict operator performance in complex systems. The three tools offer ways to predict the effects of different automation designs on operator performance.
Strategic modulation of cognitive control.
Lungu, Ovidiu V; Liu, Tao; Waechter, Tobias; Willingham, Daniel T; Ashe, James
2007-08-01
The neural substrate of cognitive control is thought to comprise an evaluative component located in the anterior cingulate cortex (ACC) and an executive component in the prefrontal cortex (PFC). The control mechanism itself is mainly local, triggered by response conflict (monitored by the ACC) and involving the allocation of executive resources (recruited by the PFC) in a trial-to-trial fashion. However, another way to achieve control would be to use a strategic mechanism based on long-term prediction of upcoming events and on a chronic response strategy that ignores local features of the task. In the current study, we showed that such a strategic control mechanism was based on a functional dissociation or complementary relationship between the ACC and the PFC. When information in the environment was available to make predictions about upcoming stimuli, local task features (e.g., response conflict) were no longer used as a control signal. We suggest that having separate control mechanisms based on local or global task features allows humans to be persistent in pursuing their goals, yet flexible enough to adapt to changes in the environment.
Li, Huixia; Luo, Miyang; Luo, Jiayou; Zheng, Jianfei; Zeng, Rong; Du, Qiyun; Fang, Junqun; Ouyang, Na
2016-11-23
A risk prediction model of non-syndromic cleft lip with or without cleft palate (NSCL/P) was established by a discriminant analysis to predict the individual risk of NSCL/P in pregnant women. A hospital-based case-control study was conducted with 113 cases of NSCL/P and 226 controls without NSCL/P. The cases and the controls were obtained from 52 birth defects' surveillance hospitals in Hunan Province, China. A questionnaire was administered in person to collect the variables relevant to NSCL/P by face to face interviews. Logistic regression models were used to analyze the influencing factors of NSCL/P, and a stepwise Fisher discriminant analysis was subsequently used to construct the prediction model. In the univariate analysis, 13 influencing factors were related to NSCL/P, of which the following 8 influencing factors as predictors determined the discriminant prediction model: family income, maternal occupational hazards exposure, premarital medical examination, housing renovation, milk/soymilk intake in the first trimester of pregnancy, paternal occupational hazards exposure, paternal strong tea drinking, and family history of NSCL/P. The model had statistical significance (lambda = 0.772, chi-square = 86.044, df = 8, P < 0.001). Self-verification showed that 83.8 % of the participants were correctly predicted to be NSCL/P cases or controls with a sensitivity of 74.3 % and a specificity of 88.5 %. The area under the receiver operating characteristic curve (AUC) was 0.846. The prediction model that was established using the risk factors of NSCL/P can be useful for predicting the risk of NSCL/P. Further research is needed to improve the model, and confirm the validity and reliability of the model.
Ding, Jinliang; Chai, Tianyou; Wang, Hong
2011-03-01
This paper presents a novel offline modeling for product quality prediction of mineral processing which consists of a number of unit processes in series. The prediction of the product quality of the whole mineral process (i.e., the mixed concentrate grade) plays an important role and the establishment of its predictive model is a key issue for the plantwide optimization. For this purpose, a hybrid modeling approach of the mixed concentrate grade prediction is proposed, which consists of a linear model and a nonlinear model. The least-squares support vector machine is adopted to establish the nonlinear model. The inputs of the predictive model are the performance indices of each unit process, while the output is the mixed concentrate grade. In this paper, the model parameter selection is transformed into the shape control of the probability density function (PDF) of the modeling error. In this context, both the PDF-control-based and minimum-entropy-based model parameter selection approaches are proposed. Indeed, this is the first time that the PDF shape control idea is used to deal with system modeling, where the key idea is to turn model parameters so that either the modeling error PDF is controlled to follow a target PDF or the modeling error entropy is minimized. The experimental results using the real plant data and the comparison of the two approaches are discussed. The results show the effectiveness of the proposed approaches.
ERIC Educational Resources Information Center
Zimmermann, Judith; Brodersen, Kay H.; Heinimann, Hans R.; Buhmann, Joachim M.
2015-01-01
The graduate admissions process is crucial for controlling the quality of higher education, yet, rules-of-thumb and domain-specific experiences often dominate evidence-based approaches. The goal of the present study is to dissect the predictive power of undergraduate performance indicators and their aggregates. We analyze 81 variables in 171…
Descent advisor preliminary field test
NASA Technical Reports Server (NTRS)
Green, Steven M.; Vivona, Robert A.; Sanford, Beverly
1995-01-01
A field test of the Descent Advisor (DA) automation tool was conducted at the Denver Air Route Traffic Control Center in September 1994. DA is being developed to assist Center controllers in the efficient management and control of arrival traffic. DA generates advisories, based on trajectory predictions, to achieve accurate meter-fix arrival times in a fuel efficient manner while assisting the controller with the prediction and resolution of potential conflicts. The test objectives were to evaluate the accuracy of DA trajectory predictions for conventional- and flight-management-system-equipped jet transports, to identify significant sources of trajectory prediction error, and to investigate procedural and training issues (both air and ground) associated with DA operations. Various commercial aircraft (97 flights total) and a Boeing 737-100 research aircraft participated in the test. Preliminary results from the primary test set of 24 commercial flights indicate a mean DA arrival time prediction error of 2.4 sec late with a standard deviation of 13.1 sec. This paper describes the field test and presents preliminary results for the commercial flights.
Nonparametric method for failures diagnosis in the actuating subsystem of aircraft control system
NASA Astrophysics Data System (ADS)
Terentev, M. N.; Karpenko, S. S.; Zybin, E. Yu; Kosyanchuk, V. V.
2018-02-01
In this paper we design a nonparametric method for failures diagnosis in the aircraft control system that uses the measurements of the control signals and the aircraft states only. It doesn’t require a priori information of the aircraft model parameters, training or statistical calculations, and is based on analytical nonparametric one-step-ahead state prediction approach. This makes it possible to predict the behavior of unidentified and failure dynamic systems, to weaken the requirements to control signals, and to reduce the diagnostic time and problem complexity.
Roughness Based Crossflow Transition Control: A Computational Assessment
NASA Technical Reports Server (NTRS)
Li, Fei; Choudhari, Meelan M.; Chang, Chau-Lyan; Streett, Craig L.; Carpenter, Mark H.
2009-01-01
A combination of parabolized stability equations and secondary instability theory has been applied to a low-speed swept airfoil model with a chord Reynolds number of 7.15 million, with the goals of (i) evaluating this methodology in the context of transition prediction for a known configuration for which roughness based crossflow transition control has been demonstrated under flight conditions and (ii) of analyzing the mechanism of transition delay via the introduction of discrete roughness elements (DRE). Roughness based transition control involves controlled seeding of suitable, subdominant crossflow modes, so as to weaken the growth of naturally occurring, linearly more unstable crossflow modes. Therefore, a synthesis of receptivity, linear and nonlinear growth of stationary crossflow disturbances, and the ensuing development of high frequency secondary instabilities is desirable to understand the experimentally observed transition behavior. With further validation, such higher fidelity prediction methodology could be utilized to assess the potential for crossflow transition control at even higher Reynolds numbers, where experimental data is currently unavailable.
NASA Astrophysics Data System (ADS)
Lingren, Joe; Vanstone, Leon; Hashemi, Kelley; Gogineni, Sivaram; Donbar, Jeffrey; Akella, Maruthi; Clemens, Noel
2016-11-01
This study develops an analytical model for predicting the leading shock of a shock-train in the constant area isolator section in a Mach 2.2 direct-connect scramjet simulation tunnel. The effective geometry of the isolator is assumed to be a weakly converging duct owing to boundary-layer growth. For some given pressure rise across the isolator, quasi-1D equations relating to isentropic or normal shock flows can be used to predict the normal shock location in the isolator. The surface pressure distribution through the isolator was measured during experiments and both the actual and predicted locations can be calculated. Three methods of finding the shock-train location are examined, one based on the measured pressure rise, one using a non-physics-based control model, and one using the physics-based analytical model. It is shown that the analytical model performs better than the non-physics-based model in all cases. The analytic model is less accurate than the pressure threshold method but requires significantly less information to compute. In contrast to other methods for predicting shock-train location, this method is relatively accurate and requires as little as a single pressure measurement. This makes this method potentially useful for unstart control applications.
Real-time Adaptive Control Using Neural Generalized Predictive Control
NASA Technical Reports Server (NTRS)
Haley, Pam; Soloway, Don; Gold, Brian
1999-01-01
The objective of this paper is to demonstrate the feasibility of a Nonlinear Generalized Predictive Control algorithm by showing real-time adaptive control on a plant with relatively fast time-constants. Generalized Predictive Control has classically been used in process control where linear control laws were formulated for plants with relatively slow time-constants. The plant of interest for this paper is a magnetic levitation device that is nonlinear and open-loop unstable. In this application, the reference model of the plant is a neural network that has an embedded nominal linear model in the network weights. The control based on the linear model provides initial stability at the beginning of network training. In using a neural network the control laws are nonlinear and online adaptation of the model is possible to capture unmodeled or time-varying dynamics. Newton-Raphson is the minimization algorithm. Newton-Raphson requires the calculation of the Hessian, but even with this computational expense the low iteration rate make this a viable algorithm for real-time control.
Dynamics and control of quadcopter using linear model predictive control approach
NASA Astrophysics Data System (ADS)
Islam, M.; Okasha, M.; Idres, M. M.
2017-12-01
This paper investigates the dynamics and control of a quadcopter using the Model Predictive Control (MPC) approach. The dynamic model is of high fidelity and nonlinear, with six degrees of freedom that include disturbances and model uncertainties. The control approach is developed based on MPC to track different reference trajectories ranging from simple ones such as circular to complex helical trajectories. In this control technique, a linearized model is derived and the receding horizon method is applied to generate the optimal control sequence. Although MPC is computer expensive, it is highly effective to deal with the different types of nonlinearities and constraints such as actuators’ saturation and model uncertainties. The MPC parameters (control and prediction horizons) are selected by trial-and-error approach. Several simulation scenarios are performed to examine and evaluate the performance of the proposed control approach using MATLAB and Simulink environment. Simulation results show that this control approach is highly effective to track a given reference trajectory.
Jiang, Jiefeng; Beck, Jeffrey; Heller, Katherine; Egner, Tobias
2015-01-01
The anterior cingulate and lateral prefrontal cortices have been implicated in implementing context-appropriate attentional control, but the learning mechanisms underlying our ability to flexibly adapt the control settings to changing environments remain poorly understood. Here we show that human adjustments to varying control demands are captured by a reinforcement learner with a flexible, volatility-driven learning rate. Using model-based functional magnetic resonance imaging, we demonstrate that volatility of control demand is estimated by the anterior insula, which in turn optimizes the prediction of forthcoming demand in the caudate nucleus. The caudate's prediction of control demand subsequently guides the implementation of proactive and reactive attentional control in dorsal anterior cingulate and dorsolateral prefrontal cortices. These data enhance our understanding of the neuro-computational mechanisms of adaptive behaviour by connecting the classic cingulate-prefrontal cognitive control network to a subcortical control-learning mechanism that infers future demands by flexibly integrating remote and recent past experiences. PMID:26391305
A Grammatical Approach to RNA-RNA Interaction Prediction
NASA Astrophysics Data System (ADS)
Kato, Yuki; Akutsu, Tatsuya; Seki, Hiroyuki
2007-11-01
Much attention has been paid to two interacting RNA molecules involved in post-transcriptional control of gene expression. Although there have been a few studies on RNA-RNA interaction prediction based on dynamic programming algorithm, no grammar-based approach has been proposed. The purpose of this paper is to provide a new modeling for RNA-RNA interaction based on multiple context-free grammar (MCFG). We present a polynomial time parsing algorithm for finding the most likely derivation tree for the stochastic version of MCFG, which is applicable to RNA joint secondary structure prediction including kissing hairpin loops. Also, elementary tests on RNA-RNA interaction prediction have shown that the proposed method is comparable to Alkan et al.'s method.
Unscented Kalman Filter-Trained Neural Networks for Slip Model Prediction
Li, Zhencai; Wang, Yang; Liu, Zhen
2016-01-01
The purpose of this work is to investigate the accurate trajectory tracking control of a wheeled mobile robot (WMR) based on the slip model prediction. Generally, a nonholonomic WMR may increase the slippage risk, when traveling on outdoor unstructured terrain (such as longitudinal and lateral slippage of wheels). In order to control a WMR stably and accurately under the effect of slippage, an unscented Kalman filter and neural networks (NNs) are applied to estimate the slip model in real time. This method exploits the model approximating capabilities of nonlinear state–space NN, and the unscented Kalman filter is used to train NN’s weights online. The slip parameters can be estimated and used to predict the time series of deviation velocity, which can be used to compensate control inputs of a WMR. The results of numerical simulation show that the desired trajectory tracking control can be performed by predicting the nonlinear slip model. PMID:27467703
Modelling and model predictive control for a bicycle-rider system
NASA Astrophysics Data System (ADS)
Chu, T. D.; Chen, C. K.
2018-01-01
This study proposes a bicycle-rider control model based on model predictive control (MPC). First, a bicycle-rider model with leaning motion of the rider's upper body is developed. The initial simulation data of the bicycle rider are then used to identify the linear model of the system in state-space form for MPC design. Control characteristics of the proposed controller are assessed by simulating the roll-angle tracking control. In this riding task, the MPC uses steering and leaning torques as the control inputs to control the bicycle along a reference roll angle. The simulation results in different cases have demonstrated the applicability and performance of the MPC for bicycle-rider modelling.
The predictive protective control of the heat exchanger
NASA Astrophysics Data System (ADS)
Nevriva, Pavel; Filipova, Blanka; Vilimec, Ladislav
2016-06-01
The paper deals with the predictive control applied to flexible cogeneration energy system FES. FES was designed and developed by the VITKOVICE POWER ENGINEERING joint-stock company and represents a new solution of decentralized cogeneration energy sources. In FES, the heating medium is flue gas generated by combustion of a solid fuel. The heated medium is power gas, which is a gas mixture of air and water steam. Power gas is superheated in the main heat exchanger and led to gas turbines. To protect the main heat exchanger against damage by overheating, the novel predictive protective control based on the mathematical model of exchanger was developed. The paper describes the principle, the design and the simulation of the predictive protective method applied to main heat exchanger of FES.
Kim, Kwang-Yon; Shin, Seong Eun; No, Kyoung Tai
2015-01-01
Objectives For successful adoption of legislation controlling registration and assessment of chemical substances, it is important to obtain sufficient toxicological experimental evidence and other related information. It is also essential to obtain a sufficient number of predicted risk and toxicity results. Particularly, methods used in predicting toxicities of chemical substances during acquisition of required data, ultimately become an economic method for future dealings with new substances. Although the need for such methods is gradually increasing, the-required information about reliability and applicability range has not been systematically provided. Methods There are various representative environmental and human toxicity models based on quantitative structure-activity relationships (QSAR). Here, we secured the 10 representative QSAR-based prediction models and its information that can make predictions about substances that are expected to be regulated. We used models that predict and confirm usability of the information expected to be collected and submitted according to the legislation. After collecting and evaluating each predictive model and relevant data, we prepared methods quantifying the scientific validity and reliability, which are essential conditions for using predictive models. Results We calculated predicted values for the models. Furthermore, we deduced and compared adequacies of the models using the Alternative non-testing method assessed for Registration, Evaluation, Authorization, and Restriction of Chemicals Substances scoring system, and deduced the applicability domains for each model. Additionally, we calculated and compared inclusion rates of substances expected to be regulated, to confirm the applicability. Conclusions We evaluated and compared the data, adequacy, and applicability of our selected QSAR-based toxicity prediction models, and included them in a database. Based on this data, we aimed to construct a system that can be used with predicted toxicity results. Furthermore, by presenting the suitability of individual predicted results, we aimed to provide a foundation that could be used in actual assessments and regulations. PMID:26206368
Real-time sensing of fatigue crack damage for information-based decision and control
NASA Astrophysics Data System (ADS)
Keller, Eric Evans
Information-based decision and control for structures that are subject to failure by fatigue cracking is based on the following notion: Maintenance, usage scheduling, and control parameter tuning can be optimized through real time knowledge of the current state of fatigue crack damage. Additionally, if the material properties of a mechanical structure can be identified within a smaller range, then the remaining life prediction of that structure will be substantially more accurate. Information-based decision systems can rely one physical models, estimation of material properties, exact knowledge of usage history, and sensor data to synthesize an accurate snapshot of the current state of damage and the likely remaining life of a structure under given assumed loading. The work outlined in this thesis is structured to enhance the development of information-based decision and control systems. This is achieved by constructing a test facility for laboratory experiments on real-time damage sensing. This test facility makes use of a methodology that has been formulated for fatigue crack model parameter estimation and significantly improves the quality of predictions of remaining life. Specifically, the thesis focuses on development of an on-line fatigue crack damage sensing and life prediction system that is built upon the disciplines of Systems Sciences and Mechanics of Materials. A major part of the research effort has been expended to design and fabricate a test apparatus which allows: (i) measurement and recording of statistical data for fatigue crack growth in metallic materials via different sensing techniques; and (ii) identification of stochastic model parameters for prediction of fatigue crack damage. To this end, this thesis describes the test apparatus and the associated instrumentation based on four different sensing techniques, namely, traveling optical microscopy, ultrasonic flaw detection, Alternating Current Potential Drop (ACPD), and fiber-optic extensometry-based compliance, for crack length measurements.
Neural network-based nonlinear model predictive control vs. linear quadratic gaussian control
Cho, C.; Vance, R.; Mardi, N.; Qian, Z.; Prisbrey, K.
1997-01-01
One problem with the application of neural networks to the multivariable control of mineral and extractive processes is determining whether and how to use them. The objective of this investigation was to compare neural network control to more conventional strategies and to determine if there are any advantages in using neural network control in terms of set-point tracking, rise time, settling time, disturbance rejection and other criteria. The procedure involved developing neural network controllers using both historical plant data and simulation models. Various control patterns were tried, including both inverse and direct neural network plant models. These were compared to state space controllers that are, by nature, linear. For grinding and leaching circuits, a nonlinear neural network-based model predictive control strategy was superior to a state space-based linear quadratic gaussian controller. The investigation pointed out the importance of incorporating state space into neural networks by making them recurrent, i.e., feeding certain output state variables into input nodes in the neural network. It was concluded that neural network controllers can have better disturbance rejection, set-point tracking, rise time, settling time and lower set-point overshoot, and it was also concluded that neural network controllers can be more reliable and easy to implement in complex, multivariable plants.
Control and prediction of the course of brewery fermentations by gravimetric analysis.
Kosín, P; Savel, J; Broz, A; Sigler, K
2008-01-01
A simple, fast and cheap test suitable for predicting the course of brewery fermentations based on mass analysis is described and its efficiency is evaluated. Compared to commonly used yeast vitality tests, this analysis takes into account wort composition and other factors that influence fermentation performance. It can be used to predict the shape of the fermentation curve in brewery fermentations and in research and development projects concerning yeast vitality, fermentation conditions and wort composition. It can also be a useful tool for homebrewers to control their fermentations.
1947-06-01
effective dihedral, and the sharp reduction In lateral- control effectiveness. In general, simple theory enables good predictions to be made of the...ifoloh the simplified sweeo theory may fee used to predict the characteristics of swept Mings is eval- uated by it oompiFlsnn with the experimental...are shown together with the predictions baaed on theory for both concepts of aspect ratio*. For awept-bcok wings, basing the aspect ratio on the
Control of Systems With Slow Actuators Using Time Scale Separation
NASA Technical Reports Server (NTRS)
Stepanyan, Vehram; Nguyen, Nhan
2009-01-01
This paper addresses the problem of controlling a nonlinear plant with a slow actuator using singular perturbation method. For the known plant-actuator cascaded system the proposed scheme achieves tracking of a given reference model with considerably less control demand than would otherwise result when using conventional design techniques. This is the consequence of excluding the small parameter from the actuator dynamics via time scale separation. The resulting tracking error is within the order of this small parameter. For the unknown system the adaptive counterpart is developed based on the prediction model, which is driven towards the reference model by the control design. It is proven that the prediction model tracks the reference model with an error proportional to the small parameter, while the prediction error converges to zero. The resulting closed-loop system with all prediction models and adaptive laws remains stable. The benefits of the approach are demonstrated in simulation studies and compared to conventional control approaches.
Optimal strategy analysis based on robust predictive control for inventory system with random demand
NASA Astrophysics Data System (ADS)
Saputra, Aditya; Widowati, Sutrisno
2017-12-01
In this paper, the optimal strategy for a single product single supplier inventory system with random demand is analyzed by using robust predictive control with additive random parameter. We formulate the dynamical system of this system as a linear state space with additive random parameter. To determine and analyze the optimal strategy for the given inventory system, we use robust predictive control approach which gives the optimal strategy i.e. the optimal product volume that should be purchased from the supplier for each time period so that the expected cost is minimal. A numerical simulation is performed with some generated random inventory data. We simulate in MATLAB software where the inventory level must be controlled as close as possible to a set point decided by us. From the results, robust predictive control model provides the optimal strategy i.e. the optimal product volume that should be purchased and the inventory level was followed the given set point.
ERIC Educational Resources Information Center
Stright, Anne Dopkins; Yeo, Kim Lian
2014-01-01
This study examined the roles of children's perceptions of maternal parenting styles (warmth, psychological control, and behavioral control) and maternal involvement in school-focused parenting practices (home-based involvement, home-school conferencing, and school-based involvement) predicting children's school achievement and conduct in…
ERIC Educational Resources Information Center
Yilmaz, Diba; Tekkaya, Ceren; Sungur, Semra
2011-01-01
The present study examined the comparative effects of a prediction/discussion-based learning cycle, conceptual change text (CCT), and traditional instructions on students' understanding of genetics concepts. A quasi-experimental research design of the pre-test-post-test non-equivalent control group was adopted. The three intact classes, taught by…
NASA Astrophysics Data System (ADS)
Mashuri, Chamdan; Suryono; Suseno, Jatmiko Endro
2018-02-01
This research was conducted by prediction of safety stock using Fuzzy Time Series (FTS) and technology of Radio Frequency Identification (RFID) for stock control at Vendor Managed Inventory (VMI). Well-controlled stock influenced company revenue and minimized cost. It discussed about information system of safety stock prediction developed through programming language of PHP. Input data consisted of demand got from automatic, online and real time acquisition using technology of RFID, then, sent to server and stored at online database. Furthermore, data of acquisition result was predicted by using algorithm of FTS applying universe of discourse defining and fuzzy sets determination. Fuzzy set result was continued to division process of universe of discourse in order to be to final step. Prediction result was displayed at information system dashboard developed. By using 60 data from demand data, prediction score was 450.331 and safety stock was 135.535. Prediction result was done by error deviation validation using Mean Square Percent Error of 15%. It proved that FTS was good enough in predicting demand and safety stock for stock control. For deeper analysis, researchers used data of demand and universe of discourse U varying at FTS to get various result based on test data used.
On Application of Model Predictive Control to Power Converter with Switching
NASA Astrophysics Data System (ADS)
Zanma, Tadanao; Fukuta, Junichi; Doki, Shinji; Ishida, Muneaki; Okuma, Shigeru; Matsumoto, Takashi; Nishimori, Eiji
This paper concerns a DC-DC converter control. In DC-DC converters, there exist both continuous components such as inductance, conductance and resistance and discrete ones, IGBT and MOSFET as semiconductor switching elements. Such a system can be regarded as a hybrid dynamical system. Thus, this paper presents a dc-dc control technique based on the model predictive control. Specifically, a case in which the load of the dc-dc converter changes from active to sleep is considered. In the case, a control method which makes the output voltage follow to the reference quickly in transition, and the switching frequency be constant in steady state. In addition, in applying the model predictive control to power electronics circuits, the switching characteristic of the device and the restriction condition for protection are also considered. The effectiveness of the proposed method is illustrated by comparing a conventional method through some simulation results.
Bootstrapping agency: How control-relevant information affects motivation.
Karsh, Noam; Eitam, Baruch; Mark, Ilya; Higgins, E Tory
2016-10-01
How does information about one's control over the environment (e.g., having an own-action effect) influence motivation? The control-based response selection framework was proposed to predict and explain such findings. Its key tenant is that control relevant information modulates both the frequency and speed of responses by determining whether a perceptual event is an outcome of one's actions or not. To test this framework empirically, the current study examines whether and how temporal and spatial contiguity/predictability-previously established as being important for one's sense of agency-modulate motivation from control. In 5 experiments, participants responded to a cue, potentially triggering a perceptual effect. Temporal (Experiments 1a-c) and spatial (Experiments 2a and b) contiguity/predictability between actions and their potential effects were experimentally manipulated. The influence of these control-relevant factors was measured, both indirectly (through their effect on explicit judgments of agency) and directly on response time and response frequency. The pattern of results was highly consistent with the control-based response selection framework in suggesting that control relevant information reliably modulates the impact of "having an effect" on different levels of action selection. We discuss the implications of this study for the notion of motivation from control and for the empirical work on the sense of agency. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
NASA Technical Reports Server (NTRS)
Zipf, Mark E.
1989-01-01
An overview is presented of research work focussed on the design and insertion of classical models of human pilot dynamics within the flight control loops of V/STOL aircraft. The pilots were designed and configured for use in integrated control system research and design. The models of human behavior that were considered are: McRuer-Krendel (a single variable transfer function model); and Optimal Control Model (a multi-variable approach based on optimal control and stochastic estimation theory). These models attempt to predict human control response characteristics when confronted with compensatory tracking and state regulation tasks. An overview, mathematical description, and discussion of predictive limitations of the pilot models is presented. Design strategies and closed loop insertion configurations are introduced and considered for various flight control scenarios. Models of aircraft dynamics (both transfer function and state space based) are developed and discussed for their use in pilot design and application. Pilot design and insertion are illustrated for various flight control objectives. Results of pilot insertion within the control loops of two V/STOL research aricraft (Sikorski Black Hawk UH-60A, McDonnell Douglas Harrier II AV-8B) are presented and compared against actual pilot flight data. Conclusions are reached on the ability of the pilot models to adequately predict human behavior when confronted with similar control objectives.
A Numerical Process Control Method for Circular-Tube Hydroforming Prediction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Kenneth I.; Nguyen, Ba Nghiep; Davies, Richard W.
2004-03-01
This paper describes the development of a solution control method that tracks the stresses, strains and mechanical behavior of a tube during hydroforming to estimate the proper axial feed (end-feed) and internal pressure loads through time. The analysis uses the deformation theory of plasticity and Hill?s criterion to describe the plastic flow. Before yielding, the pressure and end-feed increments are estimated based on the initial tube geometry, elastic properties and yield stress. After yielding, the pressure increment is calculated based on the tube geometry at the previous solution increment and the current hoop stress increment. The end-feed increment is computedmore » from the increment of the axial plastic strain. Limiting conditions such as column buckling (of long tubes), local axi-symmetric wrinkling of shorter tubes, and bursting due to localized wall thinning are considered. The process control method has been implemented in the Marc finite element code. Hydroforming simulations using this process control method were conducted to predict the load histories for controlled expansion of 6061-T4 aluminum tubes within a conical die shape and under free hydroforming conditions. The predicted loading paths were transferred to the hydroforming equipment to form the conical and free-formed tube shapes. The model predictions and experimental results are compared for deformed shape, strains and the extent of forming at rupture.« less
Spatial pattern formation facilitates eradication of infectious diseases
Eisinger, Dirk; Thulke, Hans-Hermann
2008-01-01
Control of animal-born diseases is a major challenge faced by applied ecologists and public health managers. To improve cost-effectiveness, the effort required to control such pathogens needs to be predicted as accurately as possible. In this context, we reviewed the anti-rabies vaccination schemes applied around the world during the past 25 years. We contrasted predictions from classic approaches based on theoretical population ecology (which governs rabies control to date) with a newly developed individual-based model. Our spatially explicit approach allowed for the reproduction of pattern formation emerging from a pathogen's spread through its host population. We suggest that a much lower management effort could eliminate the disease than that currently in operation. This is supported by empirical evidence from historic field data. Adapting control measures to the new prediction would save one-third of resources in future control programmes. The reason for the lower prediction is the spatial structure formed by spreading infections in spatially arranged host populations. It is not the result of technical differences between models. Synthesis and applications. For diseases predominantly transmitted by neighbourhood interaction, our findings suggest that the emergence of spatial structures facilitates eradication. This may have substantial implications for the cost-effectiveness of existing disease management schemes, and suggests that when planning management strategies consideration must be given to methods that reflect the spatial nature of the pathogen–host system. PMID:18784795
NASA Technical Reports Server (NTRS)
Prevot, Thomas; Lee, Paul U.
2011-01-01
In this paper we introduce a new complexity metric to predict -in real-time- sector complexity for trajectory-based operations (TBO). TBO will be implemented in the Next Generation Air Transportation System (NextGen). Trajectory-Based Complexity (TBX) is a modified aircraft count that can easily be computed and communicated in a TBO environment based upon predictions of aircraft and weather trajectories. TBX is scaled to aircraft count and represents an alternate and additional means to manage air traffic demand and capacity with more consideration of dynamic factors such as weather, aircraft equipage or predicted separation violations, as well as static factors such as sector size. We have developed and evaluated TBX in the Airspace Operations Laboratory (AOL) at the NASA Ames Research Center during human-in-the-loop studies of trajectory-based concepts since 2009. In this paper we will describe the TBX computation in detail and present the underlying algorithm. Next, we will describe the specific TBX used in an experiment at NASA's AOL. We will evaluate the performance of this metric using data collected during a controller-inthe- loop study on trajectory-based operations at different equipage levels. In this study controllers were prompted at regular intervals to rate their current workload on a numeric scale. When comparing this real-time workload rating to the TBX values predicted for these time periods we demonstrate that TBX is a better predictor of workload than aircraft count. Furthermore we demonstrate that TBX is well suited to be used for complexity management in TBO and can easily be adjusted to future operational concepts.
Model Predictive Control-based gait pattern generation for wearable exoskeletons.
Wang, Letian; van Asseldonk, Edwin H F; van der Kooij, Herman
2011-01-01
This paper introduces a new method for controlling wearable exoskeletons that do not need predefined joint trajectories. Instead, it only needs basic gait descriptors such as step length, swing duration, and walking speed. End point Model Predictive Control (MPC) is used to generate the online joint trajectories based on these gait parameters. Real-time ability and control performance of the method during the swing phase of gait cycle is studied in this paper. Experiments are performed by helping a human subject swing his leg with different patterns in the LOPES gait trainer. Results show that the method is able to assist subjects to make steps with different step length and step duration without predefined joint trajectories and is fast enough for real-time implementation. Future study of the method will focus on controlling the exoskeletons in the entire gait cycle. © 2011 IEEE
A plasma rotation control scheme for NSTX and NSTX-U
NASA Astrophysics Data System (ADS)
Goumiri, Imene
2016-10-01
Plasma rotation has been proven to play a key role in stabilizing large scale instabilities and improving plasma confinement by suppressing micro-turbulence. A model-based feedback system which controls the plasma rotation profile on the National Spherical Torus Experiment (NSTX) and its upgrade (NSTX-U) is presented. The first part of this work uses experimental measurements from NSTX as a starting point and models the control of plasma rotation using two different types of actuation: momentum from injected neutral beams and neoclassical toroidal viscosity generated by three-dimensional applied magnetic fields. Whether based on the data-driven model for NSTX or purely predictive modeling for NSTX-U, a reduced order model based feedback controller was designed. Predictive simulations using the TRANSP plasma transport code with the actuator input determined by the controller (controller-in-the-loop) show that the controller drives the plasma's rotation to the desired profiles in less than 100 ms given practical constraints on the actuators and the available real-time rotation measurements. This is the first time that TRANSP has been used as a plasma in simulator in a closed feedback loop test. Another approach to control simultaneously the toroidal rotation profile as well as βN is then shown for NSTX-U. For this case, the neutral beams (actuators) have been augmented in the modeling to match the upgrade version which spread the injection throughout the edge of the plasma. Control robustness in stability and performance has then been tested and used to predict the limits of the resulting controllers when the energy confinement time (τE) and the momentum diffusivity coefficient (χϕ) vary.
EPA perspective - exposure and effects prediction and monitoring
Risk-based decisions for environmental chemicals often rely on estimates of human exposure and biological response. Biomarkers have proven a useful empirical tool for evaluating exposure and hazard predictions. In the United States, the Centers for Disease Control and Preventio...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Ping; Song, Heda; Wang, Hong
Blast furnace (BF) in ironmaking is a nonlinear dynamic process with complicated physical-chemical reactions, where multi-phase and multi-field coupling and large time delay occur during its operation. In BF operation, the molten iron temperature (MIT) as well as Si, P and S contents of molten iron are the most essential molten iron quality (MIQ) indices, whose measurement, modeling and control have always been important issues in metallurgic engineering and automation field. This paper develops a novel data-driven nonlinear state space modeling for the prediction and control of multivariate MIQ indices by integrating hybrid modeling and control techniques. First, to improvemore » modeling efficiency, a data-driven hybrid method combining canonical correlation analysis and correlation analysis is proposed to identify the most influential controllable variables as the modeling inputs from multitudinous factors would affect the MIQ indices. Then, a Hammerstein model for the prediction of MIQ indices is established using the LS-SVM based nonlinear subspace identification method. Such a model is further simplified by using piecewise cubic Hermite interpolating polynomial method to fit the complex nonlinear kernel function. Compared to the original Hammerstein model, this simplified model can not only significantly reduce the computational complexity, but also has almost the same reliability and accuracy for a stable prediction of MIQ indices. Last, in order to verify the practicability of the developed model, it is applied in designing a genetic algorithm based nonlinear predictive controller for multivariate MIQ indices by directly taking the established model as a predictor. Industrial experiments show the advantages and effectiveness of the proposed approach.« less
Control Strategy of Active Power Filter Based on Modular Multilevel Converter
NASA Astrophysics Data System (ADS)
Xie, Xifeng
2018-03-01
To improve the capacity, pressure resistance and the equivalent switching frequency of active power filter (APF), a control strategy of APF based on Modular Multilevel Converter (MMC) is presented. In this Control Strategy, the indirect current control method is used to achieve active current and reactive current decoupling control; Voltage Balance Control Strategy is to stabilize sub-module capacitor voltage, the predictive current control method is used to Track and control of harmonic currents. As a result, the harmonic current is restrained, and power quality is improved. Finally, the simulation model of active power filter controller based on MMC is established in Matlab/Simulink, the simulation proves that the proposed strategy is feasible and correct.
A reinforcement learning-based architecture for fuzzy logic control
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.
1992-01-01
This paper introduces a new method for learning to refine a rule-based fuzzy logic controller. A reinforcement learning technique is used in conjunction with a multilayer neural network model of a fuzzy controller. The approximate reasoning based intelligent control (ARIC) architecture proposed here learns by updating its prediction of the physical system's behavior and fine tunes a control knowledge base. Its theory is related to Sutton's temporal difference (TD) method. Because ARIC has the advantage of using the control knowledge of an experienced operator and fine tuning it through the process of learning, it learns faster than systems that train networks from scratch. The approach is applied to a cart-pole balancing system.
Balasubramani, Pragathi P.; Chakravarthy, V. Srinivasa; Ravindran, Balaraman; Moustafa, Ahmed A.
2014-01-01
Although empirical and neural studies show that serotonin (5HT) plays many functional roles in the brain, prior computational models mostly focus on its role in behavioral inhibition. In this study, we present a model of risk based decision making in a modified Reinforcement Learning (RL)-framework. The model depicts the roles of dopamine (DA) and serotonin (5HT) in Basal Ganglia (BG). In this model, the DA signal is represented by the temporal difference error (δ), while the 5HT signal is represented by a parameter (α) that controls risk prediction error. This formulation that accommodates both 5HT and DA reconciles some of the diverse roles of 5HT particularly in connection with the BG system. We apply the model to different experimental paradigms used to study the role of 5HT: (1) Risk-sensitive decision making, where 5HT controls risk assessment, (2) Temporal reward prediction, where 5HT controls time-scale of reward prediction, and (3) Reward/Punishment sensitivity, in which the punishment prediction error depends on 5HT levels. Thus the proposed integrated RL model reconciles several existing theories of 5HT and DA in the BG. PMID:24795614
Towards Assessing the Human Trajectory Planning Horizon
Nitsch, Verena; Meinzer, Dominik; Wollherr, Dirk
2016-01-01
Mobile robots are envisioned to cooperate closely with humans and to integrate seamlessly into a shared environment. For locomotion, these environments resemble traversable areas which are shared between multiple agents like humans and robots. The seamless integration of mobile robots into these environments requires accurate predictions of human locomotion. This work considers optimal control and model predictive control approaches for accurate trajectory prediction and proposes to integrate aspects of human behavior to improve their performance. Recently developed models are not able to reproduce accurately trajectories that result from sudden avoidance maneuvers. Particularly, the human locomotion behavior when handling disturbances from other agents poses a problem. The goal of this work is to investigate whether humans alter their trajectory planning horizon, in order to resolve abruptly emerging collision situations. By modeling humans as model predictive controllers, the influence of the planning horizon is investigated in simulations. Based on these results, an experiment is designed to identify, whether humans initiate a change in their locomotion planning behavior while moving in a complex environment. The results support the hypothesis, that humans employ a shorter planning horizon to avoid collisions that are triggered by unexpected disturbances. Observations presented in this work are expected to further improve the generalizability and accuracy of prediction methods based on dynamic models. PMID:27936015
Towards Assessing the Human Trajectory Planning Horizon.
Carton, Daniel; Nitsch, Verena; Meinzer, Dominik; Wollherr, Dirk
2016-01-01
Mobile robots are envisioned to cooperate closely with humans and to integrate seamlessly into a shared environment. For locomotion, these environments resemble traversable areas which are shared between multiple agents like humans and robots. The seamless integration of mobile robots into these environments requires accurate predictions of human locomotion. This work considers optimal control and model predictive control approaches for accurate trajectory prediction and proposes to integrate aspects of human behavior to improve their performance. Recently developed models are not able to reproduce accurately trajectories that result from sudden avoidance maneuvers. Particularly, the human locomotion behavior when handling disturbances from other agents poses a problem. The goal of this work is to investigate whether humans alter their trajectory planning horizon, in order to resolve abruptly emerging collision situations. By modeling humans as model predictive controllers, the influence of the planning horizon is investigated in simulations. Based on these results, an experiment is designed to identify, whether humans initiate a change in their locomotion planning behavior while moving in a complex environment. The results support the hypothesis, that humans employ a shorter planning horizon to avoid collisions that are triggered by unexpected disturbances. Observations presented in this work are expected to further improve the generalizability and accuracy of prediction methods based on dynamic models.
Vuong, Kylie; Armstrong, Bruce K; Weiderpass, Elisabete; Lund, Eiliv; Adami, Hans-Olov; Veierod, Marit B; Barrett, Jennifer H; Davies, John R; Bishop, D Timothy; Whiteman, David C; Olsen, Catherine M; Hopper, John L; Mann, Graham J; Cust, Anne E; McGeechan, Kevin
2016-08-01
Identifying individuals at high risk of melanoma can optimize primary and secondary prevention strategies. To develop and externally validate a risk prediction model for incident first-primary cutaneous melanoma using self-assessed risk factors. We used unconditional logistic regression to develop a multivariable risk prediction model. Relative risk estimates from the model were combined with Australian melanoma incidence and competing mortality rates to obtain absolute risk estimates. A risk prediction model was developed using the Australian Melanoma Family Study (629 cases and 535 controls) and externally validated using 4 independent population-based studies: the Western Australia Melanoma Study (511 case-control pairs), Leeds Melanoma Case-Control Study (960 cases and 513 controls), Epigene-QSkin Study (44 544, of which 766 with melanoma), and Swedish Women's Lifestyle and Health Cohort Study (49 259 women, of which 273 had melanoma). We validated model performance internally and externally by assessing discrimination using the area under the receiver operating curve (AUC). Additionally, using the Swedish Women's Lifestyle and Health Cohort Study, we assessed model calibration and clinical usefulness. The risk prediction model included hair color, nevus density, first-degree family history of melanoma, previous nonmelanoma skin cancer, and lifetime sunbed use. On internal validation, the AUC was 0.70 (95% CI, 0.67-0.73). On external validation, the AUC was 0.66 (95% CI, 0.63-0.69) in the Western Australia Melanoma Study, 0.67 (95% CI, 0.65-0.70) in the Leeds Melanoma Case-Control Study, 0.64 (95% CI, 0.62-0.66) in the Epigene-QSkin Study, and 0.63 (95% CI, 0.60-0.67) in the Swedish Women's Lifestyle and Health Cohort Study. Model calibration showed close agreement between predicted and observed numbers of incident melanomas across all deciles of predicted risk. In the external validation setting, there was higher net benefit when using the risk prediction model to classify individuals as high risk compared with classifying all individuals as high risk. The melanoma risk prediction model performs well and may be useful in prevention interventions reliant on a risk assessment using self-assessed risk factors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, Yaosuo
The matrix converter solid state transformer (MC-SST), formed from the back-to-back connection of two three-to-single-phase matrix converters, is studied for use in the interconnection of two ac grids. The matrix converter topology provides a light weight and low volume single-stage bidirectional ac-ac power conversion without the need for a dc link. Thus, the lifetime limitations of dc-bus storage capacitors are avoided. However, space vector modulation of this type of MC-SST requires to compute vectors for each of the two MCs, which must be carefully coordinated to avoid commutation failure. An additional controller is also required to control power exchange betweenmore » the two ac grids. In this paper, model predictive control (MPC) is proposed for an MC-SST connecting two different ac power grids. The proposed MPC predicts the circuit variables based on the discrete model of MC-SST system and the cost function is formulated so that the optimal switch vector for the next sample period is selected, thereby generating the required grid currents for the SST. Simulation and experimental studies are carried out to demonstrate the effectiveness and simplicity of the proposed MPC for such MC-SST-based grid interfacing systems.« less
NASA Astrophysics Data System (ADS)
Kim, Jae-Chang; Moon, Sung-Ki; Kwak, Sangshin
2018-04-01
This paper presents a direct model-based predictive control scheme for voltage source inverters (VSIs) with reduced common-mode voltages (CMVs). The developed method directly finds optimal vectors without using repetitive calculation of a cost function. To adjust output currents with the CMVs in the range of -Vdc/6 to +Vdc/6, the developed method uses voltage vectors, as finite control resources, excluding zero voltage vectors which produce the CMVs in the VSI within ±Vdc/2. In a model-based predictive control (MPC), not using zero voltage vectors increases the output current ripples and the current errors. To alleviate these problems, the developed method uses two non-zero voltage vectors in one sampling step. In addition, the voltage vectors scheduled to be used are directly selected at every sampling step once the developed method calculates the future reference voltage vector, saving the efforts of repeatedly calculating the cost function. And the two non-zero voltage vectors are optimally allocated to make the output current approach the reference current as close as possible. Thus, low CMV, rapid current-following capability and sufficient output current ripple performance are attained by the developed method. The results of a simulation and an experiment verify the effectiveness of the developed method.
NASA Astrophysics Data System (ADS)
Huang, Darong; Bai, Xing-Rong
Based on wavelet transform and neural network theory, a traffic-flow prediction model, which was used in optimal control of Intelligent Traffic system, is constructed. First of all, we have extracted the scale coefficient and wavelet coefficient from the online measured raw data of traffic flow via wavelet transform; Secondly, an Artificial Neural Network model of Traffic-flow Prediction was constructed and trained using the coefficient sequences as inputs and raw data as outputs; Simultaneous, we have designed the running principium of the optimal control system of traffic-flow Forecasting model, the network topological structure and the data transmitted model; Finally, a simulated example has shown that the technique is effectively and exactly. The theoretical results indicated that the wavelet neural network prediction model and algorithms have a broad prospect for practical application.
Chang, Xuling; Salim, Agus; Dorajoo, Rajkumar; Han, Yi; Khor, Chiea-Chuen; van Dam, Rob M; Yuan, Jian-Min; Koh, Woon-Puay; Liu, Jianjun; Goh, Daniel Yt; Wang, Xu; Teo, Yik-Ying; Friedlander, Yechiel; Heng, Chew-Kiat
2017-01-01
Background Although numerous phenotype based equations for predicting risk of 'hard' coronary heart disease are available, data on the utility of genetic information for such risk prediction is lacking in Chinese populations. Design Case-control study nested within the Singapore Chinese Health Study. Methods A total of 1306 subjects comprising 836 men (267 incident cases and 569 controls) and 470 women (128 incident cases and 342 controls) were included. A Genetic Risk Score comprising 156 single nucleotide polymorphisms that have been robustly associated with coronary heart disease or its risk factors ( p < 5 × 10 -8 ) in at least two independent cohorts of genome-wide association studies was built. For each gender, three base models were used: recalibrated Adult Treatment Panel III (ATPIII) Model (M 1 ); ATP III model fitted using Singapore Chinese Health Study data (M 2 ) and M 3 : M 2 + C-reactive protein + creatinine. Results The Genetic Risk Score was significantly associated with incident 'hard' coronary heart disease ( p for men: 1.70 × 10 -10 -1.73 × 10 -9 ; p for women: 0.001). The inclusion of the Genetic Risk Score in the prediction models improved discrimination in both genders (c-statistics: 0.706-0.722 vs. 0.663-0.695 from base models for men; 0.788-0.790 vs. 0.765-0.773 for women). In addition, the inclusion of the Genetic Risk Score also improved risk classification with a net gain of cases being reclassified to higher risk categories (men: 12.4%-16.5%; women: 10.2% (M 3 )), while not significantly reducing the classification accuracy in controls. Conclusions The Genetic Risk Score is an independent predictor for incident 'hard' coronary heart disease in our ethnic Chinese population. Inclusion of genetic factors into coronary heart disease prediction models could significantly improve risk prediction performance.
Seaton, Sarah E; Manktelow, Bradley N
2012-07-16
Emphasis is increasingly being placed on the monitoring of clinical outcomes for health care providers. Funnel plots have become an increasingly popular graphical methodology used to identify potential outliers. It is assumed that a provider only displaying expected random variation (i.e. 'in-control') will fall outside a control limit with a known probability. In reality, the discrete count nature of these data, and the differing methods, can lead to true probabilities quite different from the nominal value. This paper investigates the true probability of an 'in control' provider falling outside control limits for the Standardised Mortality Ratio (SMR). The true probabilities of an 'in control' provider falling outside control limits for the SMR were calculated and compared for three commonly used limits: Wald confidence interval; 'exact' confidence interval; probability-based prediction interval. The probability of falling above the upper limit, or below the lower limit, often varied greatly from the nominal value. This was particularly apparent when there were a small number of expected events: for expected events ≤ 50 the median probability of an 'in-control' provider falling above the upper 95% limit was 0.0301 (Wald), 0.0121 ('exact'), 0.0201 (prediction). It is important to understand the properties and probability of being identified as an outlier by each of these different methods to aid the correct identification of poorly performing health care providers. The limits obtained using probability-based prediction limits have the most intuitive interpretation and their properties can be defined a priori. Funnel plot control limits for the SMR should not be based on confidence intervals.
Möller, Christiane; Pijnenburg, Yolande A L; van der Flier, Wiesje M; Versteeg, Adriaan; Tijms, Betty; de Munck, Jan C; Hafkemeijer, Anne; Rombouts, Serge A R B; van der Grond, Jeroen; van Swieten, John; Dopper, Elise; Scheltens, Philip; Barkhof, Frederik; Vrenken, Hugo; Wink, Alle Meije
2016-06-01
Purpose To investigate the diagnostic accuracy of an image-based classifier to distinguish between Alzheimer disease (AD) and behavioral variant frontotemporal dementia (bvFTD) in individual patients by using gray matter (GM) density maps computed from standard T1-weighted structural images obtained with multiple imagers and with independent training and prediction data. Materials and Methods The local institutional review board approved the study. Eighty-four patients with AD, 51 patients with bvFTD, and 94 control subjects were divided into independent training (n = 115) and prediction (n = 114) sets with identical diagnosis and imager type distributions. Training of a support vector machine (SVM) classifier used diagnostic status and GM density maps and produced voxelwise discrimination maps. Discriminant function analysis was used to estimate suitability of the extracted weights for single-subject classification in the prediction set. Receiver operating characteristic (ROC) curves and area under the ROC curve (AUC) were calculated for image-based classifiers and neuropsychological z scores. Results Training accuracy of the SVM was 85% for patients with AD versus control subjects, 72% for patients with bvFTD versus control subjects, and 79% for patients with AD versus patients with bvFTD (P ≤ .029). Single-subject diagnosis in the prediction set when using the discrimination maps yielded accuracies of 88% for patients with AD versus control subjects, 85% for patients with bvFTD versus control subjects, and 82% for patients with AD versus patients with bvFTD, with a good to excellent AUC (range, 0.81-0.95; P ≤ .001). Machine learning-based categorization of AD versus bvFTD based on GM density maps outperforms classification based on neuropsychological test results. Conclusion The SVM can be used in single-subject discrimination and can help the clinician arrive at a diagnosis. The SVM can be used to distinguish disease-specific GM patterns in patients with AD and those with bvFTD as compared with normal aging by using common T1-weighted structural MR imaging. (©) RSNA, 2015.
Descent Advisor Preliminary Field Test
NASA Technical Reports Server (NTRS)
Green, Steven M.; Vivona, Robert A.; Sanford, Beverly
1995-01-01
A field test of the Descent Advisor (DA) automation tool was conducted at the Denver Air Route Traffic Control Center in September 1994. DA is being developed to assist Center controllers in the efficient management and control of arrival traffic. DA generates advisories, based on trajectory predictions, to achieve accurate meter-fix arrival times in a fuel efficient manner while assisting the controller with the prediction and resolution of potential conflicts. The test objectives were: (1) to evaluate the accuracy of DA trajectory predictions for conventional and flight-management system equipped jet transports, (2) to identify significant sources of trajectory prediction error, and (3) to investigate procedural and training issues (both air and ground) associated with DA operations. Various commercial aircraft (97 flights total) and a Boeing 737-100 research aircraft participated in the test. Preliminary results from the primary test set of 24 commercial flights indicate a mean DA arrival time prediction error of 2.4 seconds late with a standard deviation of 13.1 seconds. This paper describes the field test and presents preliminary results for the commercial flights.
Gouta, Houssemeddine; Hadj Saïd, Salim; Barhoumi, Nabil; M'Sahli, Faouzi
2017-03-01
This paper deals with the problem of the observer based control design for a coupled four-tank liquid level system. For this MIMO system's dynamics, motivated by a desire to provide precise and sensorless liquid level control, a nonlinear predictive controller based on a continuous-discrete observer is presented. First, an analytical solution from the model predictive control (MPC) technique is developed for a particular class of nonlinear MIMO systems and its corresponding exponential stability is proven. Then, a high gain observer that runs in continuous-time with an output error correction time that is updated in a mixed continuous-discrete fashion is designed in order to estimate the liquid levels in the two upper tanks. The effectiveness of the designed control schemes are validated by two tests; The first one is maintaining a constant level in the first bottom tank while making the level in the second bottom tank to follow a sinusoidal reference signal. The second test is more difficult and it is made using two trapezoidal reference signals in order to see the decoupling performance of the system's outputs. Simulation and experimental results validate the objective of the paper. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Multivariate Radiological-Based Models for the Prediction of Future Knee Pain: Data from the OAI
Galván-Tejada, Jorge I.; Celaya-Padilla, José M.; Treviño, Victor; Tamez-Peña, José G.
2015-01-01
In this work, the potential of X-ray based multivariate prognostic models to predict the onset of chronic knee pain is presented. Using X-rays quantitative image assessments of joint-space-width (JSW) and paired semiquantitative central X-ray scores from the Osteoarthritis Initiative (OAI), a case-control study is presented. The pain assessments of the right knee at the baseline and the 60-month visits were used to screen for case/control subjects. Scores were analyzed at the time of pain incidence (T-0), the year prior incidence (T-1), and two years before pain incidence (T-2). Multivariate models were created by a cross validated elastic-net regularized generalized linear models feature selection tool. Univariate differences between cases and controls were reported by AUC, C-statistics, and ODDs ratios. Univariate analysis indicated that the medial osteophytes were significantly more prevalent in cases than controls: C-stat 0.62, 0.62, and 0.61, at T-0, T-1, and T-2, respectively. The multivariate JSW models significantly predicted pain: AUC = 0.695, 0.623, and 0.620, at T-0, T-1, and T-2, respectively. Semiquantitative multivariate models predicted paint with C-stat = 0.671, 0.648, and 0.645 at T-0, T-1, and T-2, respectively. Multivariate models derived from plain X-ray radiography assessments may be used to predict subjects that are at risk of developing knee pain. PMID:26504490
Robustness and cognition in stabilization problem of dynamical systems based on asymptotic methods
NASA Astrophysics Data System (ADS)
Dubovik, S. A.; Kabanov, A. A.
2017-01-01
The problem of synthesis of stabilizing systems based on principles of cognitive (logical-dynamic) control for mobile objects used under uncertain conditions is considered. This direction in control theory is based on the principles of guaranteeing robust synthesis focused on worst-case scenarios of the controlled process. The guaranteeing approach is able to provide functioning of the system with the required quality and reliability only at sufficiently low disturbances and in the absence of large deviations from some regular features of the controlled process. The main tool for the analysis of large deviations and prediction of critical states here is the action functional. After the forecast is built, the choice of anti-crisis control is the supervisory control problem that optimizes the control system in a normal mode and prevents escape of the controlled process in critical states. An essential aspect of the approach presented here is the presence of a two-level (logical-dynamic) control: the input data are used not only for generating of synthesized feedback (local robust synthesis) in advance (off-line), but also to make decisions about the current (on-line) quality of stabilization in the global sense. An example of using the presented approach for the problem of development of the ship tilting prediction system is considered.
NASA Astrophysics Data System (ADS)
Wu, Z. R.; Li, X.; Fang, L.; Song, Y. D.
2018-04-01
A new multiaxial fatigue life prediction model has been proposed in this paper. The concepts of nonlinear continuum damage mechanics and critical plane criteria were incorporated in the proposed model. The shear strain-based damage control parameter was chosen to account for multiaxial fatigue damage under constant amplitude loading. Fatigue tests were conducted on nickel-based superalloy GH4169 tubular specimens at the temperature of 400 °C under proportional and nonproportional loading. The proposed method was checked against the multiaxial fatigue test data of GH4169. Most of prediction results are within a factor of two scatter band of the test results.
Szekér, Szabolcs; Vathy-Fogarassy, Ágnes
2018-01-01
Logistic regression based propensity score matching is a widely used method in case-control studies to select the individuals of the control group. This method creates a suitable control group if all factors affecting the output variable are known. However, if relevant latent variables exist as well, which are not taken into account during the calculations, the quality of the control group is uncertain. In this paper, we present a statistics-based research in which we try to determine the relationship between the accuracy of the logistic regression model and the uncertainty of the dependent variable of the control group defined by propensity score matching. Our analyses show that there is a linear correlation between the fit of the logistic regression model and the uncertainty of the output variable. In certain cases, a latent binary explanatory variable can result in a relative error of up to 70% in the prediction of the outcome variable. The observed phenomenon calls the attention of analysts to an important point, which must be taken into account when deducting conclusions.
NASA Astrophysics Data System (ADS)
Wahid, A.; Putra, I. G. E. P.
2018-03-01
Dimethyl ether (DME) as an alternative clean energy has attracted a growing attention in the recent years. DME production via reactive distillation has potential for capital cost and energy requirement savings. However, combination of reaction and distillation on a single column makes reactive distillation process a very complex multivariable system with high non-linearity of process and strong interaction between process variables. This study investigates a multivariable model predictive control (MPC) based on two-point temperature control strategy for the DME reactive distillation column to maintain the purities of both product streams. The process model is estimated by a first order plus dead time model. The DME and water purity is maintained by controlling a stage temperature in rectifying and stripping section, respectively. The result shows that the model predictive controller performed faster responses compared to conventional PI controller that are showed by the smaller ISE values. In addition, the MPC controller is able to handle the loop interactions well.
Working memory capacity as controlled attention in tactical decision making.
Furley, Philip A; Memmert, Daniel
2012-06-01
The controlled attention theory of working memory capacity (WMC, Engle 2002) suggests that WMC represents a domain free limitation in the ability to control attention and is predictive of an individual's capability of staying focused, avoiding distraction and impulsive errors. In the present paper we test the predictive power of WMC in computer-based sport decision-making tasks. Experiment 1 demonstrated that high-WMC athletes were better able at focusing their attention on tactical decision making while blocking out irrelevant auditory distraction. Experiment 2 showed that high-WMC athletes were more successful at adapting their tactical decision making according to the situation instead of relying on prepotent inappropriate decisions. The present results provide additional but also unique support for the controlled attention theory of WMC by demonstrating that WMC is predictive of controlling attention in complex settings among different modalities and highlight the importance of working memory in tactical decision making.
Selecting an Informative/Discriminating Multivariate Response for Inverse Prediction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Edward V.; Lewis, John. R.; Anderson-Cook, Christine Michaela
The inverse prediction is important in a variety of scientific and engineering applications, such as to predict properties/characteristics of an object by using multiple measurements obtained from it. Inverse prediction can be accomplished by inverting parameterized forward models that relate the measurements (responses) to the properties/characteristics of interest. Sometimes forward models are computational/science based; but often, forward models are empirically based response surface models, obtained by using the results of controlled experimentation. For empirical models, it is important that the experiments provide a sound basis to develop accurate forward models in terms of the properties/characteristics (factors). And while nature dictatesmore » the causal relationships between factors and responses, experimenters can control the complexity, accuracy, and precision of forward models constructed via selection of factors, factor levels, and the set of trials that are performed. Recognition of the uncertainty in the estimated forward models leads to an errors-in-variables approach for inverse prediction. The forward models (estimated by experiments or science based) can also be used to analyze how well candidate responses complement one another for inverse prediction over the range of the factor space of interest. Furthermore, one may find that some responses are complementary, redundant, or noninformative. Simple analysis and examples illustrate how an informative and discriminating subset of responses could be selected among candidates in cases where the number of responses that can be acquired during inverse prediction is limited by difficulty, expense, and/or availability of material.« less
Selecting an Informative/Discriminating Multivariate Response for Inverse Prediction
Thomas, Edward V.; Lewis, John. R.; Anderson-Cook, Christine Michaela; ...
2017-07-01
The inverse prediction is important in a variety of scientific and engineering applications, such as to predict properties/characteristics of an object by using multiple measurements obtained from it. Inverse prediction can be accomplished by inverting parameterized forward models that relate the measurements (responses) to the properties/characteristics of interest. Sometimes forward models are computational/science based; but often, forward models are empirically based response surface models, obtained by using the results of controlled experimentation. For empirical models, it is important that the experiments provide a sound basis to develop accurate forward models in terms of the properties/characteristics (factors). And while nature dictatesmore » the causal relationships between factors and responses, experimenters can control the complexity, accuracy, and precision of forward models constructed via selection of factors, factor levels, and the set of trials that are performed. Recognition of the uncertainty in the estimated forward models leads to an errors-in-variables approach for inverse prediction. The forward models (estimated by experiments or science based) can also be used to analyze how well candidate responses complement one another for inverse prediction over the range of the factor space of interest. Furthermore, one may find that some responses are complementary, redundant, or noninformative. Simple analysis and examples illustrate how an informative and discriminating subset of responses could be selected among candidates in cases where the number of responses that can be acquired during inverse prediction is limited by difficulty, expense, and/or availability of material.« less
Measured vs. Predicted Pedestal Pressure During RMP ELM Control in DIII-D
NASA Astrophysics Data System (ADS)
Zywicki, Bailey; Fenstermacher, Max; Groebner, Richard; Meneghini, Orso
2017-10-01
From database analysis of DIII-D plasmas with Resonant Magnetic Perturbations (RMPs) for ELM control, we will compare the experimental pedestal pressure (p_ped) to EPED code predictions and present the dependence of any p_ped differences from EPED on RMP parameters not included in the EPED model e.g. RMP field strength, toroidal and poloidal spectrum etc. The EPED code, based on Peeling-Ballooning and Kinetic Ballooning instability constraints, will also be used by ITER to predict the H-mode p_ped without RMPs. ITER plans to use RMPs as an effective ELM control method. The need to control ELMs in ITER is of the utmost priority, as it directly correlates to the lifetime of the plasma facing components. An accurate means of determining the impact of RMP ELM control on the p_ped is needed, because the device fusion power is strongly dependent on p_ped. With this new collection of data, we aim to provide guidance to predictions of the ITER pedestal during RMP ELM control that can be incorporated in a future predictive code. Work supported in part by US DoE under the Science Undergraduate Laboratory Internship (SULI) program and under DE-FC02-04ER54698, and DE-AC52-07NA27344.
Control Theory and Statistical Generalizations.
ERIC Educational Resources Information Center
Powers, William T.
1990-01-01
Contrasts modeling methods in control theory to the methods of statistical generalizations in empirical studies of human or animal behavior. Presents a computer simulation that predicts behavior based on variables (effort and rewards) determined by the invariable (desired reward). Argues that control theory methods better reflect relationships to…
Predicting influent biochemical oxygen demand: Balancing energy demand and risk management.
Zhu, Jun-Jie; Kang, Lulu; Anderson, Paul R
2018-01-01
Ready access to comprehensive influent information can help water reclamation plant (WRP) operators implement better real-time process controls, provide operational reliability and reduce energy consumption. The five-day biochemical oxygen demand (BOD 5 ), a critical parameter for WRP process control, is expensive and difficult to measure using hard-sensors. An alternative approach based on a soft-sensor methodology shows promise, but can be problematic when used to predict high BOD 5 values. Underestimating high BOD 5 concentrations for process control could result in an insufficient amount of aeration, increasing the risk of an effluent violation. To address this issue, we tested a hierarchical hybrid soft-sensor approach involving multiple linear regression, artificial neural networks (ANN), and compromise programming. While this hybrid approach results in a slight decrease in overall prediction accuracy relative to the approach based on ANN only, the underestimation percentage is substantially lower (37% vs. 61%) for predictions of carbonaceous BOD 5 (CBOD 5 ) concentrations higher than the long-term average value. The hybrid approach is also flexible and can be adjusted depending on the relative importance between energy savings and managing the risk of an effluent violation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Stapleton, Jessie N; Martin Ginis, Kathleen A
2014-09-01
To examine sex differences in theory-based predictors of leisure time physical activity (LTPA) among men and women with spinal cord injury, and secondarily, to identify factors that might explain any sex differences in social cognitions. A secondary analysis of Study of Health and Activity in People with Spinal Cord Injury survey data. Community. Community-dwelling men (n=536) and women (n=164) recruited from 4 rehabilitation and research centers. Not applicable. Subjective norms, attitudes, barrier self-efficacy, perceived controllability (PC), and intentions. Men had stronger PC and barrier self-efficacy than women. Hierarchical regression analyses revealed that social support significantly predicted PC for both sexes, and health, pain, and physical independence also significantly predicted PC for men. Social support, health, and pain significantly predicted barrier self-efficacy for men. Social support was the only significant predictor of barrier self-efficacy for women. Women felt significantly less control over their physical activity behavior and had lower confidence to overcome barriers to physical activity than did men. Although social support predicted PC and barrier self-efficacy in both men and women, men seemed to take additional factors into consideration when formulating their control beliefs for LTPA. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Edwards, Ann L; Dawson, Michael R; Hebert, Jacqueline S; Sherstan, Craig; Sutton, Richard S; Chan, K Ming; Pilarski, Patrick M
2016-10-01
Myoelectric prostheses currently used by amputees can be difficult to control. Machine learning, and in particular learned predictions about user intent, could help to reduce the time and cognitive load required by amputees while operating their prosthetic device. The goal of this study was to compare two switching-based methods of controlling a myoelectric arm: non-adaptive (or conventional) control and adaptive control (involving real-time prediction learning). Case series study. We compared non-adaptive and adaptive control in two different experiments. In the first, one amputee and one non-amputee subject controlled a robotic arm to perform a simple task; in the second, three able-bodied subjects controlled a robotic arm to perform a more complex task. For both tasks, we calculated the mean time and total number of switches between robotic arm functions over three trials. Adaptive control significantly decreased the number of switches and total switching time for both tasks compared with the conventional control method. Real-time prediction learning was successfully used to improve the control interface of a myoelectric robotic arm during uninterrupted use by an amputee subject and able-bodied subjects. Adaptive control using real-time prediction learning has the potential to help decrease both the time and the cognitive load required by amputees in real-world functional situations when using myoelectric prostheses. © The International Society for Prosthetics and Orthotics 2015.
Clennon, Julie A; Kamanga, Aniset; Musapa, Mulenga; Shiff, Clive; Glass, Gregory E
2010-11-05
Malaria, caused by the parasite Plasmodium falciparum, is a significant source of morbidity and mortality in southern Zambia. In the Mapanza Chiefdom, where transmission is seasonal, Anopheles arabiensis is the dominant malaria vector. The ability to predict larval habitats can help focus control measures. A survey was conducted in March-April 2007, at the end of the rainy season, to identify and map locations of water pooling and the occurrence anopheline larval habitats; this was repeated in October 2007 at the end of the dry season and in March-April 2008 during the next rainy season. Logistic regression and generalized linear mixed modeling were applied to assess the predictive value of terrain-based landscape indices along with LandSat imagery to identify aquatic habitats and, especially, those with anopheline mosquito larvae. Approximately two hundred aquatic habitat sites were identified with 69 percent positive for anopheline mosquitoes. Nine species of anopheline mosquitoes were identified, of which, 19% were An. arabiensis. Terrain-based landscape indices combined with LandSat predicted sites with water, sites with anopheline mosquitoes and sites specifically with An. arabiensis. These models were especially successful at ruling out potential locations, but had limited ability in predicting which anopheline species inhabited aquatic sites. Terrain indices derived from 90 meter Shuttle Radar Topography Mission (SRTM) digital elevation data (DEM) were better at predicting water drainage patterns and characterizing the landscape than those derived from 30 m Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) DEM. The low number of aquatic habitats available and the ability to locate the limited number of aquatic habitat locations for surveillance, especially those containing anopheline larvae, suggest that larval control maybe a cost-effective control measure in the fight against malaria in Zambia and other regions with seasonal transmission. This work shows that, in areas of seasonal malaria transmission, incorporating terrain-based landscape models to the planning stages of vector control allows for the exclusion of significant portions of landscape that would be unsuitable for water to accumulate and for mosquito larvae occupation. With increasing free availability of satellite imagery such as SRTM and LandSat, the development of satellite imagery-based prediction models is becoming more accessible to vector management coordinators.
NASA Astrophysics Data System (ADS)
Gwitira, Isaiah; Murwira, Amon; Zengeya, Fadzai M.; Shekede, Munyaradzi Davis
2018-02-01
Malaria remains a major public health problem and a principal cause of morbidity and mortality in most developing countries. Although malaria still presents health problems, significant successes have been recorded in reducing deaths resulting from the disease. As malaria transmission continues to decline, control interventions will increasingly depend on the ability to define high-risk areas known as malaria hotspots. Therefore, there is urgent need to use geospatial tools such as geographic information system to detect spatial patterns of malaria and delineate disease hot spots for better planning and management. Thus, accurate mapping and prediction of seasonality of malaria hotspots is an important step towards developing strategies for effective malaria control. In this study, we modelled seasonal malaria hotspots as a function of habitat suitability of Anopheles arabiensis (A. Arabiensis) as a first step towards predicting likely seasonal malaria hotspots that could provide guidance in targeted malaria control. We used Geographical information system (GIS) and spatial statistic methods to identify seasonal hotspots of malaria cases at the country level. In order to achieve this, we first determined the spatial distribution of seasonal malaria hotspots using the Getis Ord Gi* statistic based on confirmed positive malaria cases recorded at health facilities in Zimbabwe over four years (1996-1999). We then used MAXENT technique to model habitat suitability of A. arabiensis from presence data collected from 1990 to 2002 based on bioclimatic variables and altitude. Finally, we used autologistic regression to test the extent to which malaria hotspots can be predicted using A. arabiensis habitat suitability. Our results show that A. arabiensis habitat suitability consistently and significantly (p < 0.05) predicts malaria hotspots from 1996 to 1999. Overall, our results show that malaria hotspots can be predicted using A. arabiensis habitat suitability, suggesting the possibility of developing models for malaria early warning based on vector habitat suitability.
NASA Astrophysics Data System (ADS)
Stauch, V. J.; Gwerder, M.; Gyalistras, D.; Oldewurtel, F.; Schubiger, F.; Steiner, P.
2010-09-01
The high proportion of the total primary energy consumption by buildings has increased the public interest in the optimisation of buildings' operation and is also driving the development of novel control approaches for the indoor climate. In this context, the use of weather forecasts presents an interesting and - thanks to advances in information and predictive control technologies and the continuous improvement of numerical weather prediction (NWP) models - an increasingly attractive option for improved building control. Within the research project OptiControl (www.opticontrol.ethz.ch) predictive control strategies for a wide range of buildings, heating, ventilation and air conditioning (HVAC) systems, and representative locations in Europe are being investigated with the aid of newly developed modelling and simulation tools. Grid point predictions for radiation, temperature and humidity of the high-resolution limited area NWP model COSMO-7 (see www.cosmo-model.org) and local measurements are used as disturbances and inputs into the building system. The control task considered consists in minimizing energy consumption whilst maintaining occupant comfort. In this presentation, we use the simulation-based OptiControl methodology to investigate the impact of COSMO-7 forecasts on the performance of predictive building control and the resulting energy savings. For this, we have selected building cases that were shown to benefit from a prediction horizon of up to 3 days and therefore, are particularly suitable for the use of numerical weather forecasts. We show that the controller performance is sensitive to the quality of the weather predictions, most importantly of the incident radiation on differently oriented façades. However, radiation is characterised by a high temporal and spatial variability in part caused by small scale and fast changing cloud formation and dissolution processes being only partially represented in the COSMO-7 grid point predictions. On the other hand, buildings are affected by particularly local weather conditions at the building site. To overcome this discrepancy, we make use of local measurements to statistically adapt the COSMO-7 model output to the meteorological conditions at the building. For this, we have developed a general correction algorithm that exploits systematic properties of the COSMO-7 prediction error and explicitly estimates the degree of temporal autocorrelation using online recursive estimation. The resulting corrected predictions are improved especially for the first few hours being the most crucial for the predictive controller and, ultimately for the reduction of primary energy consumption using predictive control. The use of numerical weather forecasts in predictive building automation is one example in a wide field of weather dependent advanced energy saving technologies. Our work particularly highlights the need for the development of specifically tailored weather forecast products by (statistical) postprocessing in order to meet the requirements of specific applications.
NASA Astrophysics Data System (ADS)
Williams, Bruce W.; Agnew, Sean R.; Klein, Robert W.; McKinley, Jonathan
Recent investigations suggest that it is possible to achieve dramatic modifications to both strength and ductility of magnesium alloys through a combination of alloying, grain refinement, and texture control. The current work explores the possibility of altering the texture in extruded thin-walled magnesium alloy tubes for improved ductility during axial crush in which energy is absorbed through progressive buckling. The texture evolution was predicted using the viscoplastic self-consistent (VPSC) crystal plasticity model, with strain path input from continuum-based finite element simulations of extrusion. A limited diversity of textures can be induced by altering the strain path through the extrusion die design. In some cases, such as for simple bar extrusion, the textures predicted can be connected with simple shape change. In other cases, a subtle influence of strain path involving shear-reverse-shear is predicted. The most promising textures predicted for a variety of strain paths are selected for subsequent experimental study.
Prediction-based association control scheme in dense femtocell networks.
Sung, Nak Woon; Pham, Ngoc-Thai; Huynh, Thong; Hwang, Won-Joo; You, Ilsun; Choo, Kim-Kwang Raymond
2017-01-01
The deployment of large number of femtocell base stations allows us to extend the coverage and efficiently utilize resources in a low cost manner. However, the small cell size of femtocell networks can result in frequent handovers to the mobile user, and consequently throughput degradation. Thus, in this paper, we propose predictive association control schemes to improve the system's effective throughput. Our design focuses on reducing handover frequency without impacting on throughput. The proposed schemes determine handover decisions that contribute most to the network throughput and are proper for distributed implementations. The simulation results show significant gains compared with existing methods in terms of handover frequency and network throughput perspective.
Indicators of asthma control among students in a rural, school-based asthma management program
Rasberry, Catherine N.; Cheung, Karen; Buckley, Rebekah; Dunville, Richard; Daniels, Brandy; Cook, Deborah; Robin, Leah; Dean, Blair
2015-01-01
Objective The evaluation sought to determine if a comprehensive, school-based asthma management program in a small, rural school district helped students improve asthma control. Methods To determine if students in the asthma program demonstrated better asthma control than students in a comparison school district, the evaluation team used a quasi-experimental, cross-sectional design and administered questionnaires assessing asthma control (which included FEV1 measurement) to 456 students with asthma in the intervention and comparison districts. Data were analyzed for differences in asthma control between students in the two districts. To determine if students in the intervention experienced increased asthma control between baseline and follow-up, the evaluation team used a one-group retrospective design. Program records for 323 students were analyzed for differences in percent of predicted forced expiratory volume in one second (FEV1) between baseline and follow-up. Results Students with asthma in the intervention district exhibited significantly better asthma control than students with asthma in the comparison district. Percent of predicted FEV1 did not change significantly between baseline and follow-up for the intervention participants; however, post hoc analyses revealed students with poorly-controlled asthma at baseline had significantly higher FEV1 scores at follow-up, and students with well-controlled asthma at baseline had significantly lower FEV1 scores at follow-up. Conclusions Findings suggest the comprehensive school-based program led to improvements in asthma control for students with poorly controlled asthma at baseline, and school-based programs need mechanisms for tracking students with initially well-controlled asthma in order to ensure they maintain control. PMID:24730771
NASA Technical Reports Server (NTRS)
Togai, Masaki
1990-01-01
Viewgraphs on commercial applications of fuzzy logic in Japan are presented. Topics covered include: suitable application area of fuzzy theory; characteristics of fuzzy control; fuzzy closed-loop controller; Mitsubishi heavy air conditioner; predictive fuzzy control; the Sendai subway system; automatic transmission; fuzzy logic-based command system for antilock braking system; fuzzy feed-forward controller; and fuzzy auto-tuning system.
Aissa, Oualid; Moulahoum, Samir; Colak, Ilhami; Babes, Badreddine; Kabache, Nadir
2017-10-12
This paper discusses the use of the concept of classical and predictive direct power control for shunt active power filter function. These strategies are used to improve the active power filter performance by compensation of the reactive power and the elimination of the harmonic currents drawn by non-linear loads. A theoretical analysis followed by a simulation using MATLAB/Simulink software for the studied techniques has been established. Moreover, two test benches have been carried out using the dSPACE card 1104 for the classic and predictive DPC control to evaluate the studied methods in real time. Obtained results are presented and compared in this paper to confirm the superiority of the predictive technique. To overcome the pollution problems caused by the consumption of fossil fuels, renewable energies are the alternatives recommended to ensure green energy. In the same context, the tested predictive filter can easily be supplied by a renewable energy source that will give its impact to enhance the power quality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, L.
ITN Energy Systems, Inc., and Global Solar Energy, Inc., with the assistance of NREL's PV Manufacturing R&D program, have continued the advancement of CIGS production technology through the development of trajectory-oriented predictive/control models, fault-tolerance control, control-platform development, in-situ sensors, and process improvements. Modeling activities to date include the development of physics-based and empirical models for CIGS and sputter-deposition processing, implementation of model-based control, and application of predictive models to the construction of new evaporation sources and for control. Model-based control is enabled through implementation of reduced or empirical models into a control platform. Reliability improvement activities include implementation of preventivemore » maintenance schedules; detection of failed sensors/equipment and reconfiguration to continue processing; and systematic development of fault prevention and reconfiguration strategies for the full range of CIGS PV production deposition processes. In-situ sensor development activities have resulted in improved control and indicated the potential for enhanced process status monitoring and control of the deposition processes. Substantial process improvements have been made, including significant improvement in CIGS uniformity, thickness control, efficiency, yield, and throughput. In large measure, these gains have been driven by process optimization, which, in turn, have been enabled by control and reliability improvements due to this PV Manufacturing R&D program. This has resulted in substantial improvements of flexible CIGS PV module performance and efficiency.« less
Sampath, Sivananthan; Tkachenko, Pavlo; Renard, Eric; Pereverzev, Sergei V
2016-11-01
Despite the risk associated with nocturnal hypoglycemia (NH) there are only a few methods aiming at the prediction of such events based on intermittent blood glucose monitoring data. One of the first methods that potentially can be used for NH prediction is based on the low blood glucose index (LBGI) and suggested, for example, in Accu-Chek® Connect as a hypoglycemia risk indicator. On the other hand, nowadays there are other glucose control indices (GCI), which could be used for NH prediction in the same spirit as LBGI. In the present study we propose a general approach of combining NH predictors constructed from different GCI. The approach is based on a recently developed strategy for aggregating ranking algorithms in machine learning. NH predictors have been calibrated and tested on data extracted from clinical trials, performed in EU FP7-funded project DIAdvisor. Then, to show a portability of the method we have tested it on another dataset that was received from EU Horizon 2020-funded project AMMODIT. We exemplify the proposed approach by aggregating NH predictors that have been constructed based on 4 GCI associated with hypoglycemia. Even though these predictors have been preliminary optimized to exhibit better performance on the considered dataset, our aggregation approach allows a further performance improvement. On the dataset, where a portability of the proposed approach has been demonstrated, the aggregating predictor has exhibited the following performance: sensitivity 77%, specificity 83.4%, positive predictive value 80.2%, negative predictive value 80.6%, which is higher than conventionally considered as acceptable. The proposed approach shows potential to be used in telemedicine systems for NH prediction. © 2016 Diabetes Technology Society.
Tu, Jia-Ying; Hsiao, Wei-De; Chen, Chih-Ying
2014-01-01
Testing techniques of dynamically substructured systems dissects an entire engineering system into parts. Components can be tested via numerical simulation or physical experiments and run synchronously. Additional actuator systems, which interface numerical and physical parts, are required within the physical substructure. A high-quality controller, which is designed to cancel unwanted dynamics introduced by the actuators, is important in order to synchronize the numerical and physical outputs and ensure successful tests. An adaptive forward prediction (AFP) algorithm based on delay compensation concepts has been proposed to deal with substructuring control issues. Although the settling performance and numerical conditions of the AFP controller are improved using new direct-compensation and singular value decomposition methods, the experimental results show that a linear dynamics-based controller still outperforms the AFP controller. Based on experimental observations, the least-squares fitting technique, effectiveness of the AFP compensation and differences between delay and ordinary differential equations are discussed herein, in order to reflect the fundamental issues of actuator modelling in relevant literature and, more specifically, to show that the actuator and numerical substructure are heterogeneous dynamic components and should not be collectively modelled as a homogeneous delay differential equation. PMID:25104902
ERIC Educational Resources Information Center
Yeh, Jui-Yuan; Xirasagar, Sudha; Liu, Tsai-Ching; Li, Chong-Yi; Lin, Herng-Ching
2008-01-01
Using nationwide, 7-year population-based data for 1997-2003, we examined marital status to see if it predicted suicide among the ethnic Chinese population of Taiwan. Using cause of death data, with a case-control design, two groups--total adult suicide deaths, n = 17,850, the study group, and adult deaths other than suicide, n = 71,400 (randomly…
NASA Astrophysics Data System (ADS)
Zhukovskiy, Yu L.; Korolev, N. A.; Babanova, I. S.; Boikov, A. V.
2017-10-01
This article is devoted to the prediction of the residual life based on an estimate of the technical state of the induction motor. The proposed system allows to increase the accuracy and completeness of diagnostics by using an artificial neural network (ANN), and also identify and predict faulty states of an electrical equipment in dynamics. The results of the proposed system for estimation the technical condition are probability technical state diagrams and a quantitative evaluation of the residual life, taking into account electrical, vibrational, indirect parameters and detected defects. Based on the evaluation of the technical condition and the prediction of the residual life, a decision is made to change the control of the operating and maintenance modes of the electric motors.
Bagut, Elena Tatiana; Cambier, Ludivine; Heinen, Marie-Pierre; Cozma, Vasile; Monod, Michel; Mignon, Bernard
2013-08-01
The aim of this study was to develop an in-house enzyme-linked immunosorbent assay (ELISA) for the serological diagnosis of ringworm infection in cattle. We used available recombinant forms of Trichophyton rubrum dipeptidyl peptidase V (TruDppV) and T. rubrum leucin aminopeptidase 2 (TruLap2), which are 98% identical to Trichophyton verrucosum orthologues. Field serum samples from 135 cattle with ringworm infection, as confirmed by direct microscopy, fluorescence microscopy, and PCR, and from 55 cattle without any apparent skin lesions or history of ringworm infection that served as negative controls were used. Sensitivities, specificities, and positive and negative predictive values were determined to evaluate the diagnostic value of our ELISA. Overall, the ELISAs based on recombinant TruDppV and TruLap2 discriminated well between infected animals and healthy controls. Highly significant differences (P < 0.0001, Mann-Whitney U test) were noted between optical density values obtained when sera from infected versus control cattle were tested. The ELISA developed for the detection of specific antibodies against DppV gave 89.6% sensitivity, 92.7% specificity, a 96.8% positive predictive value, and a 78.4% negative predictive value. The recombinant TruLap2-based ELISA displayed 88.1% sensitivity, 90.9% specificity, a 95.9% positive predictive value, and a 75.7% negative predictive value. To the best of our knowledge, this is the first ELISA based on recombinant antigens for assessing immune responses to ringworm infection in cattle; it is particularly suitable for epidemiological studies and also for the evaluation of vaccines and/or vaccination procedures.
NASA Astrophysics Data System (ADS)
Shadmand, Mohammad Bagher
Renewable energy sources continue to gain popularity. However, two major limitations exist that prevent widespread adoption: availability and variability of the electricity generated and the cost of the equipment. The focus of this dissertation is Model Predictive Control (MPC) for optimal sized photovoltaic (PV), DC Microgrid, and multi-sourced hybrid energy systems. The main considered applications are: maximum power point tracking (MPPT) by MPC, droop predictive control of DC microgrid, MPC of grid-interaction inverter, MPC of a capacitor-less VAR compensator based on matrix converter (MC). This dissertation firstly investigates a multi-objective optimization technique for a hybrid distribution system. The variability of a high-penetration PV scenario is also studied when incorporated into the microgrid concept. Emerging (PV) technologies have enabled the creation of contoured and conformal PV surfaces; the effect of using non-planar PV modules on variability is also analyzed. The proposed predictive control to achieve maximum power point for isolated and grid-tied PV systems speeds up the control loop since it predicts error before the switching signal is applied to the converter. The low conversion efficiency of PV cells means we want to ensure always operating at maximum possible power point to make the system economical. Thus the proposed MPPT technique can capture more energy compared to the conventional MPPT techniques from same amount of installed solar panel. Because of the MPPT requirement, the output voltage of the converter may vary. Therefore a droop control is needed to feed multiple arrays of photovoltaic systems to a DC bus in microgrid community. Development of a droop control technique by means of predictive control is another application of this dissertation. Reactive power, denoted as Volt Ampere Reactive (VAR), has several undesirable consequences on AC power system network such as reduction in power transfer capability and increase in transmission loss if not controlled appropriately. Inductive loads which operate with lagging power factor consume VARs, thus load compensation techniques by capacitor bank employment locally supply VARs needed by the load. Capacitors are highly unreliable components due to their failure modes and aging inherent. Approximately 60% of power electronic devices failure such as voltage-source inverter based static synchronous compensator (STATCOM) is due to the use of aluminum electrolytic DC capacitors. Therefore, a capacitor-less VAR compensation is desired. This dissertation also investigates a STATCOM capacitor-less reactive power compensation that uses only inductors combined with predictive controlled matrix converter.
NASA Astrophysics Data System (ADS)
Liang, Yunyun; Liu, Sanyang; Zhang, Shengli
2017-02-01
Apoptosis is a fundamental process controlling normal tissue homeostasis by regulating a balance between cell proliferation and death. Predicting subcellular location of apoptosis proteins is very helpful for understanding its mechanism of programmed cell death. Prediction of apoptosis protein subcellular location is still a challenging and complicated task, and existing methods mainly based on protein primary sequences. In this paper, we propose a new position-specific scoring matrix (PSSM)-based model by using Geary autocorrelation function and detrended cross-correlation coefficient (DCCA coefficient). Then a 270-dimensional (270D) feature vector is constructed on three widely used datasets: ZD98, ZW225 and CL317, and support vector machine is adopted as classifier. The overall prediction accuracies are significantly improved by rigorous jackknife test. The results show that our model offers a reliable and effective PSSM-based tool for prediction of apoptosis protein subcellular localization.
Literature-based condition-specific miRNA-mRNA target prediction.
Oh, Minsik; Rhee, Sungmin; Moon, Ji Hwan; Chae, Heejoon; Lee, Sunwon; Kang, Jaewoo; Kim, Sun
2017-01-01
miRNAs are small non-coding RNAs that regulate gene expression by binding to the 3'-UTR of genes. Many recent studies have reported that miRNAs play important biological roles by regulating specific mRNAs or genes. Many sequence-based target prediction algorithms have been developed to predict miRNA targets. However, these methods are not designed for condition-specific target predictions and produce many false positives; thus, expression-based target prediction algorithms have been developed for condition-specific target predictions. A typical strategy to utilize expression data is to leverage the negative control roles of miRNAs on genes. To control false positives, a stringent cutoff value is typically set, but in this case, these methods tend to reject many true target relationships, i.e., false negatives. To overcome these limitations, additional information should be utilized. The literature is probably the best resource that we can utilize. Recent literature mining systems compile millions of articles with experiments designed for specific biological questions, and the systems provide a function to search for specific information. To utilize the literature information, we used a literature mining system, BEST, that automatically extracts information from the literature in PubMed and that allows the user to perform searches of the literature with any English words. By integrating omics data analysis methods and BEST, we developed Context-MMIA, a miRNA-mRNA target prediction method that combines expression data analysis results and the literature information extracted based on the user-specified context. In the pathway enrichment analysis using genes included in the top 200 miRNA-targets, Context-MMIA outperformed the four existing target prediction methods that we tested. In another test on whether prediction methods can re-produce experimentally validated target relationships, Context-MMIA outperformed the four existing target prediction methods. In summary, Context-MMIA allows the user to specify a context of the experimental data to predict miRNA targets, and we believe that Context-MMIA is very useful for predicting condition-specific miRNA targets.
Predictive momentum management for the Space Station
NASA Technical Reports Server (NTRS)
Hatis, P. D.
1986-01-01
Space station control moment gyro momentum management is addressed by posing a deterministic optimization problem with a performance index that includes station external torque loading, gyro control torque demand, and excursions from desired reference attitudes. It is shown that a simple analytic desired attitude solution exists for all axes with pitch prescription decoupled, but roll and yaw coupled. Continuous gyro desaturation is shown to fit neatly into the scheme. Example results for pitch axis control of the NASA power tower Space Station are shown based on predictive attitude prescription. Control effector loading is shown to be reduced by this method when compared to more conventional momentum management techniques.
Departments of Defense and Agriculture Team Up to Develop New Insecticides for Mosquito Control
2010-01-01
archives of insecticide data by quantita- tive structure-activity relationship ( QSAR ) modeling to predict and synthesize new insecticides. This...blood- sucking arthropods. The key thrust of IIBBL’s approach involves QSAR -based modeling of fast-acting pyrethroid insecticides to predict and
Ławryńczuk, Maciej
2017-03-01
This paper details development of a Model Predictive Control (MPC) algorithm for a boiler-turbine unit, which is a nonlinear multiple-input multiple-output process. The control objective is to follow set-point changes imposed on two state (output) variables and to satisfy constraints imposed on three inputs and one output. In order to obtain a computationally efficient control scheme, the state-space model is successively linearised on-line for the current operating point and used for prediction. In consequence, the future control policy is easily calculated from a quadratic optimisation problem. For state estimation the extended Kalman filter is used. It is demonstrated that the MPC strategy based on constant linear models does not work satisfactorily for the boiler-turbine unit whereas the discussed algorithm with on-line successive model linearisation gives practically the same trajectories as the truly nonlinear MPC controller with nonlinear optimisation repeated at each sampling instant. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Robust predictive control with optimal load tracking for critical applications. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tse, J.; Bentsman, J.; Miller, N.
1994-09-01
This report derives a multi-input multi-output (MIMO) version of a two-degree-of-freedom receding-horizon control law based on mixed H{sub 2}/H{infinity} minimization. First, the integrand in the frequency domain representation of the MIMO performance criterion is decomposed into disturbance and reference spectra. Then the controller is derived which minimizes the peak of the disturbance spectrum and the integral of the reference spectrum on the unit circle. The resulting two-degree-of-freedom MIMO control strategy, referred to as the minimax predictive multivariable control (MPC), is shown to have worst-case-disturbance-rejection and robust-stability properties superior to those of purely H{sub 2}-optimal controllers, such as Generalized Predictive Controlmore » (GPC), for identical horizons. An attractive feature of the receding horizon structure of MPC is that it can, in ways similar to GPC, directly incorporate input constraints and pre-programmed reference inputs, which are nontrivial tasks in the standard H{infinity} design.« less
Network congestion control algorithm based on Actor-Critic reinforcement learning model
NASA Astrophysics Data System (ADS)
Xu, Tao; Gong, Lina; Zhang, Wei; Li, Xuhong; Wang, Xia; Pan, Wenwen
2018-04-01
Aiming at the network congestion control problem, a congestion control algorithm based on Actor-Critic reinforcement learning model is designed. Through the genetic algorithm in the congestion control strategy, the network congestion problems can be better found and prevented. According to Actor-Critic reinforcement learning, the simulation experiment of network congestion control algorithm is designed. The simulation experiments verify that the AQM controller can predict the dynamic characteristics of the network system. Moreover, the learning strategy is adopted to optimize the network performance, and the dropping probability of packets is adaptively adjusted so as to improve the network performance and avoid congestion. Based on the above finding, it is concluded that the network congestion control algorithm based on Actor-Critic reinforcement learning model can effectively avoid the occurrence of TCP network congestion.
NASA Astrophysics Data System (ADS)
Zhang, Jia-shi; Yang, Xi-xiang
2017-11-01
The stratospheric airship has the characteristics of large inertia, long time delay and large disturbance of wind field , so the trajectory control is very difficult .Build the lateral three degrees of freedom dynamic model which consider the wind interference , the dynamics equation is linearized by the small perturbation theory, propose a trajectory control method Combine with the sliding mode control and prediction, design the trajectory controller , takes the HAA airship as the reference to carry out simulation analysis. Results show that the improved sliding mode control with front-feedback method not only can solve well control problems of airship trajectory in wind field, but also can effectively improve the control accuracy of the traditional sliding mode control method, solved problems that using the traditional sliding mode control to control. It provides a useful reference for dynamic modeling and trajectory control of stratospheric airship.
Kneissler, Jan; Stalph, Patrick O; Drugowitsch, Jan; Butz, Martin V
2014-01-01
It has been shown previously that the control of a robot arm can be efficiently learned using the XCSF learning classifier system, which is a nonlinear regression system based on evolutionary computation. So far, however, the predictive knowledge about how actual motor activity changes the state of the arm system has not been exploited. In this paper, we utilize the forward velocity kinematics knowledge of XCSF to alleviate the negative effect of noisy sensors for successful learning and control. We incorporate Kalman filtering for estimating successive arm positions, iteratively combining sensory readings with XCSF-based predictions of hand position changes over time. The filtered arm position is used to improve both trajectory planning and further learning of the forward velocity kinematics. We test the approach on a simulated kinematic robot arm model. The results show that the combination can improve learning and control performance significantly. However, it also shows that variance estimates of XCSF prediction may be underestimated, in which case self-delusional spiraling effects can hinder effective learning. Thus, we introduce a heuristic parameter, which can be motivated by theory, and which limits the influence of XCSF's predictions on its own further learning input. As a result, we obtain drastic improvements in noise tolerance, allowing the system to cope with more than 10 times higher noise levels.
Real-time control of walking using recordings from dorsal root ganglia.
Holinski, B J; Everaert, D G; Mushahwar, V K; Stein, R B
2013-10-01
The goal of this study was to decode sensory information from the dorsal root ganglia (DRG) in real time, and to use this information to adapt the control of unilateral stepping with a state-based control algorithm consisting of both feed-forward and feedback components. In five anesthetized cats, hind limb stepping on a walkway or treadmill was produced by patterned electrical stimulation of the spinal cord through implanted microwire arrays, while neuronal activity was recorded from the DRG. Different parameters, including distance and tilt of the vector between hip and limb endpoint, integrated gyroscope and ground reaction force were modelled from recorded neural firing rates. These models were then used for closed-loop feedback. Overall, firing-rate-based predictions of kinematic sensors (limb endpoint, integrated gyroscope) were the most accurate with variance accounted for >60% on average. Force prediction had the lowest prediction accuracy (48 ± 13%) but produced the greatest percentage of successful rule activations (96.3%) for stepping under closed-loop feedback control. The prediction of all sensor modalities degraded over time, with the exception of tilt. Sensory feedback from moving limbs would be a desirable component of any neuroprosthetic device designed to restore walking in people after a spinal cord injury. This study provides a proof-of-principle that real-time feedback from the DRG is possible and could form part of a fully implantable neuroprosthetic device with further development.
Ground-based adaptive optics coronagraphic performance under closed-loop predictive control
NASA Astrophysics Data System (ADS)
Males, Jared R.; Guyon, Olivier
2018-01-01
The discovery of the exoplanet Proxima b highlights the potential for the coming generation of giant segmented mirror telescopes (GSMTs) to characterize terrestrial-potentially habitable-planets orbiting nearby stars with direct imaging. This will require continued development and implementation of optimized adaptive optics systems feeding coronagraphs on the GSMTs. Such development should proceed with an understanding of the fundamental limits imposed by atmospheric turbulence. Here, we seek to address this question with a semianalytic framework for calculating the postcoronagraph contrast in a closed-loop adaptive optics system. We do this starting with the temporal power spectra of the Fourier basis calculated assuming frozen flow turbulence, and then apply closed-loop transfer functions. We include the benefits of a simple predictive controller, which we show could provide over a factor of 1400 gain in raw point spread function contrast at 1 λ/D on bright stars, and more than a factor of 30 gain on an I=7.5 mag star such as Proxima. More sophisticated predictive control can be expected to improve this even further. Assuming a photon-noise limited observing technique such as high-dispersion coronagraphy, these gains in raw contrast will decrease integration times by the same large factors. Predictive control of atmospheric turbulence should therefore be seen as one of the key technologies that will enable ground-based telescopes to characterize terrestrial planets.
A Pressure Control Method for Emulsion Pump Station Based on Elman Neural Network
Tan, Chao; Qi, Nan; Yao, Xingang; Wang, Zhongbin; Si, Lei
2015-01-01
In order to realize pressure control of emulsion pump station which is key equipment of coal mine in the safety production, the control requirements were analyzed and a pressure control method based on Elman neural network was proposed. The key techniques such as system framework, pressure prediction model, pressure control model, and the flowchart of proposed approach were presented. Finally, a simulation example was carried out and comparison results indicated that the proposed approach was feasible and efficient and outperformed others. PMID:25861253
Dicko, Ahmadou H.; Lancelot, Renaud; Seck, Momar T.; Guerrini, Laure; Sall, Baba; Lo, Mbargou; Vreysen, Marc J. B.; Lefrançois, Thierry; Fonta, William M.; Peck, Steven L.; Bouyer, Jérémy
2014-01-01
Tsetse flies are vectors of human and animal trypanosomoses in sub-Saharan Africa and are the target of the Pan African Tsetse and Trypanosomiasis Eradication Campaign (PATTEC). Glossina palpalis gambiensis (Diptera: Glossinidae) is a riverine species that is still present as an isolated metapopulation in the Niayes area of Senegal. It is targeted by a national eradication campaign combining a population reduction phase based on insecticide-treated targets (ITTs) and cattle and an eradication phase based on the sterile insect technique. In this study, we used species distribution models to optimize control operations. We compared the probability of the presence of G. p. gambiensis and habitat suitability using a regularized logistic regression and Maxent, respectively. Both models performed well, with an area under the curve of 0.89 and 0.92, respectively. Only the Maxent model predicted an expert-based classification of landscapes correctly. Maxent predictions were therefore used throughout the eradication campaign in the Niayes to make control operations more efficient in terms of deployment of ITTs, release density of sterile males, and location of monitoring traps used to assess program progress. We discuss how the models’ results informed about the particular ecology of tsetse in the target area. Maxent predictions allowed optimizing efficiency and cost within our project, and might be useful for other tsetse control campaigns in the framework of the PATTEC and, more generally, other vector or insect pest control programs. PMID:24982143
Dicko, Ahmadou H; Lancelot, Renaud; Seck, Momar T; Guerrini, Laure; Sall, Baba; Lo, Mbargou; Vreysen, Marc J B; Lefrançois, Thierry; Fonta, William M; Peck, Steven L; Bouyer, Jérémy
2014-07-15
Tsetse flies are vectors of human and animal trypanosomoses in sub-Saharan Africa and are the target of the Pan African Tsetse and Trypanosomiasis Eradication Campaign (PATTEC). Glossina palpalis gambiensis (Diptera: Glossinidae) is a riverine species that is still present as an isolated metapopulation in the Niayes area of Senegal. It is targeted by a national eradication campaign combining a population reduction phase based on insecticide-treated targets (ITTs) and cattle and an eradication phase based on the sterile insect technique. In this study, we used species distribution models to optimize control operations. We compared the probability of the presence of G. p. gambiensis and habitat suitability using a regularized logistic regression and Maxent, respectively. Both models performed well, with an area under the curve of 0.89 and 0.92, respectively. Only the Maxent model predicted an expert-based classification of landscapes correctly. Maxent predictions were therefore used throughout the eradication campaign in the Niayes to make control operations more efficient in terms of deployment of ITTs, release density of sterile males, and location of monitoring traps used to assess program progress. We discuss how the models' results informed about the particular ecology of tsetse in the target area. Maxent predictions allowed optimizing efficiency and cost within our project, and might be useful for other tsetse control campaigns in the framework of the PATTEC and, more generally, other vector or insect pest control programs.
Hellerstein, Marc K
2008-01-01
Contemporary drug discovery and development (DDD) is dominated by a molecular target-based paradigm. Molecular targets that are potentially important in disease are physically characterized; chemical entities that interact with these targets are identified by ex vivo high-throughput screening assays, and optimized lead compounds enter testing as drugs. Contrary to highly publicized claims, the ascendance of this approach has in fact resulted in the lowest rate of new drug approvals in a generation. The primary explanation for low rates of new drugs is attrition, or the failure of candidates identified by molecular target-based methods to advance successfully through the DDD process. In this essay, I advance the thesis that this failure was predictable, based on modern principles of metabolic control that have emerged and been applied most forcefully in the field of metabolic engineering. These principles, such as the robustness of flux distributions, address connectivity relationships in complex metabolic networks and make it unlikely a priori that modulating most molecular targets will have predictable, beneficial functional outcomes. These same principles also suggest, however, that unexpected therapeutic actions will be common for agents that have any effect (i.e., that complexity can be exploited therapeutically). A potential operational solution (pathway-based DDD), based on observability rather than predictability, is described, focusing on emergent properties of key metabolic pathways in vivo. Recent examples of pathway-based DDD are described. In summary, the molecular target-based DDD paradigm is built on a naïve and misleading model of biologic control and is not heuristically adequate for advancing the mission of modern therapeutics. New approaches that take account of and are built on principles described by metabolic engineers are needed for the next generation of DDD.
Resource Management in Constrained Dynamic Situations
NASA Astrophysics Data System (ADS)
Seok, Jinwoo
Resource management is considered in this dissertation for systems with limited resources, possibly combined with other system constraints, in unpredictably dynamic environments. Resources may represent fuel, power, capabilities, energy, and so on. Resource management is important for many practical systems; usually, resources are limited, and their use must be optimized. Furthermore, systems are often constrained, and constraints must be satisfied for safe operation. Simplistic resource management can result in poor use of resources and failure of the system. Furthermore, many real-world situations involve dynamic environments. Many traditional problems are formulated based on the assumptions of given probabilities or perfect knowledge of future events. However, in many cases, the future is completely unknown, and information on or probabilities about future events are not available. In other words, we operate in unpredictably dynamic situations. Thus, a method is needed to handle dynamic situations without knowledge of the future, but few formal methods have been developed to address them. Thus, the goal is to design resource management methods for constrained systems, with limited resources, in unpredictably dynamic environments. To this end, resource management is organized hierarchically into two levels: 1) planning, and 2) control. In the planning level, the set of tasks to be performed is scheduled based on limited resources to maximize resource usage in unpredictably dynamic environments. In the control level, the system controller is designed to follow the schedule by considering all the system constraints for safe and efficient operation. Consequently, this dissertation is mainly divided into two parts: 1) planning level design, based on finite state machines, and 2) control level methods, based on model predictive control. We define a recomposable restricted finite state machine to handle limited resource situations and unpredictably dynamic environments for the planning level. To obtain a policy, dynamic programing is applied, and to obtain a solution, limited breadth-first search is applied to the recomposable restricted finite state machine. A multi-function phased array radar resource management problem and an unmanned aerial vehicle patrolling problem are treated using recomposable restricted finite state machines. Then, we use model predictive control for the control level, because it allows constraint handling and setpoint tracking for the schedule. An aircraft power system management problem is treated that aims to develop an integrated control system for an aircraft gas turbine engine and electrical power system using rate-based model predictive control. Our results indicate that at the planning level, limited breadth-first search for recomposable restricted finite state machines generates good scheduling solutions in limited resource situations and unpredictably dynamic environments. The importance of cooperation in the planning level is also verified. At the control level, a rate-based model predictive controller allows good schedule tracking and safe operations. The importance of considering the system constraints and interactions between the subsystems is indicated. For the best resource management in constrained dynamic situations, the planning level and the control level need to be considered together.
Adaptive State Predictor Based Human Operator Modeling on Longitudinal and Lateral Control
NASA Technical Reports Server (NTRS)
Trujillo, Anna C.; Gregory, Irene M.; Hempley, Lucas E.
2015-01-01
Control-theoretic modeling of the human operator dynamic behavior in manual control tasks has a long and rich history. In the last two decades, there has been a renewed interest in modeling the human operator. There has also been significant work on techniques used to identify the pilot model of a given structure. The purpose of this research is to attempt to go beyond pilot identification based on collected experimental data and to develop a predictor of pilot behavior. An experiment was conducted to categorize these interactions of the pilot with an adaptive controller compensating during control surface failures. A general linear in-parameter model structure is used to represent a pilot. Three different estimation methods are explored. A gradient descent estimator (GDE), a least squares estimator with exponential forgetting (LSEEF), and a least squares estimator with bounded gain forgetting (LSEBGF) used the experiment data to predict pilot stick input. Previous results have found that the GDE and LSEEF methods are fairly accurate in predicting longitudinal stick input from commanded pitch. This paper discusses the accuracy of each of the three methods - GDE, LSEEF, and LSEBGF - to predict both pilot longitudinal and lateral stick input from the flight director's commanded pitch and bank attitudes.
Kumar, Aditya; Shi, Ruijie; Kumar, Rajeeva; Dokucu, Mustafa
2013-04-09
Control system and method for controlling an integrated gasification combined cycle (IGCC) plant are provided. The system may include a controller coupled to a dynamic model of the plant to process a prediction of plant performance and determine a control strategy for the IGCC plant over a time horizon subject to plant constraints. The control strategy may include control functionality to meet a tracking objective and control functionality to meet an optimization objective. The control strategy may be configured to prioritize the tracking objective over the optimization objective based on a coordinate transformation, such as an orthogonal or quasi-orthogonal projection. A plurality of plant control knobs may be set in accordance with the control strategy to generate a sequence of coordinated multivariable control inputs to meet the tracking objective and the optimization objective subject to the prioritization resulting from the coordinate transformation.
Network of listed companies based on common shareholders and the prediction of market volatility
NASA Astrophysics Data System (ADS)
Li, Jie; Ren, Da; Feng, Xu; Zhang, Yongjie
2016-11-01
In this paper, we build a network of listed companies in the Chinese stock market based on common shareholding data from 2003 to 2013. We analyze the evolution of topological characteristics of the network (e.g., average degree, diameter, average path length and clustering coefficient) with respect to the time sequence. Additionally, we consider the economic implications of topological characteristic changes on market volatility and use them to make future predictions. Our study finds that the network diameter significantly predicts volatility. After adding control variables used in traditional financial studies (volume, turnover and previous volatility), network topology still significantly influences volatility and improves the predictive ability of the model.
Temperature control in a solar collector field using Filtered Dynamic Matrix Control.
Lima, Daniel Martins; Normey-Rico, Julio Elias; Santos, Tito Luís Maia
2016-05-01
This paper presents the output temperature control of a solar collector field of a desalinization plant using the Filtered Dynamic Matrix Control (FDMC). The FDMC is a modified controller based on the Dynamic Matrix Control (DMC), a predictive control strategy widely used in industry. In the FDMC, a filter is used in the prediction error, which allows the modification of the robustness and disturbance rejection characteristics of the original algorithm. The implementation and tuning of the FDMC are simple and maintain the advantages of DMC. Several simulation results using a validated model of the solar plant are presented considering different scenarios. The results are also compared to nonlinear control techniques, showing that FDMC, if properly tuned, can yield similar results to more complex control algorithms. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cheng, Jie; Qian, Zhaogang; Irani, Keki B.; Etemad, Hossein; Elta, Michael E.
1991-03-01
To meet the ever-increasing demand of the rapidly-growing semiconductor manufacturing industry it is critical to have a comprehensive methodology integrating techniques for process optimization real-time monitoring and adaptive process control. To this end we have accomplished an integrated knowledge-based approach combining latest expert system technology machine learning method and traditional statistical process control (SPC) techniques. This knowledge-based approach is advantageous in that it makes it possible for the task of process optimization and adaptive control to be performed consistently and predictably. Furthermore this approach can be used to construct high-level and qualitative description of processes and thus make the process behavior easy to monitor predict and control. Two software packages RIST (Rule Induction and Statistical Testing) and KARSM (Knowledge Acquisition from Response Surface Methodology) have been developed and incorporated with two commercially available packages G2 (real-time expert system) and ULTRAMAX (a tool for sequential process optimization).
NASA Technical Reports Server (NTRS)
Li, Fei; Choudhari, Meelan M.; Chang, Chau-Lyan; Streett, Craig L.; Carpenter, Mark H.
2011-01-01
A combination of parabolized stability equations and secondary instability theory has been applied to a low-speed swept airfoil model with a chord Reynolds number of 7.15 million, with the goals of (i) evaluating this methodology in the context of transition prediction for a known configuration for which roughness based crossflow transition control has been demonstrated under flight conditions and (ii) of analyzing the mechanism of transition delay via the introduction of discrete roughness elements (DRE). Roughness based transition control involves controlled seeding of suitable, subdominant crossflow modes, so as to weaken the growth of naturally occurring, linearly more unstable crossflow modes. Therefore, a synthesis of receptivity, linear and nonlinear growth of stationary crossflow disturbances, and the ensuing development of high frequency secondary instabilities is desirable to understand the experimentally observed transition behavior. With further validation, such higher fidelity prediction methodology could be utilized to assess the potential for crossflow transition control at even higher Reynolds numbers, where experimental data is currently unavailable.
Structure-based control of complex networks with nonlinear dynamics
NASA Astrophysics Data System (ADS)
Zanudo, Jorge G. T.; Yang, Gang; Albert, Reka
What can we learn about controlling a system solely from its underlying network structure? Here we use a framework for control of networks governed by a broad class of nonlinear dynamics that includes the major dynamic models of biological, technological, and social processes. This feedback-based framework provides realizable node overrides that steer a system towards any of its natural long term dynamic behaviors, regardless of the dynamic details and system parameters. We use this framework on several real networks, identify the topological characteristics that underlie the predicted node overrides, and compare its predictions to those of classical structural control theory. Finally, we demonstrate this framework's applicability in dynamic models of gene regulatory networks and identify nodes whose override is necessary for control in the general case, but not in specific model instances. This work was supported by NSF Grants PHY 1205840 and IIS 1160995. JGTZ is a recipient of a Stand Up To Cancer - The V Foundation Convergence Scholar Award.
Short-term Operation of Multi-purpose Reservoir using Model Predictive Control
NASA Astrophysics Data System (ADS)
Uysal, Gokcen; Schwanenberg, Dirk; Alvarado Montero, Rodolfo; Sensoy, Aynur; Arda Sorman, Ali
2017-04-01
Operation of water structures especially with conflicting water supply and flood mitigation objectives is under more stress attributed to growing water demand and changing hydro-climatic conditions. Model Predictive Control (MPC) based optimal control solutions has been successfully applied to different water resources applications. In this study, Feedback Control (FBC) and MPC get combined and an improved joint optimization-simulation operating scheme is proposed. Water supply and flood control objectives are fulfilled by incorporating the long term water supply objectives into a time-dependent variable guide curve policy whereas the extreme floods are attenuated by means of short-term optimization based on MPC. A final experiment is carried out to assess the lead time performance and reliability of forecasts in a hindcasting experiment with imperfect, perturbed forecasts. The framework is tested in Yuvacık Dam reservoir where the main water supply reservoir of Kocaeli City in the northwestern part of Turkey (the Marmara region) and it requires a challenging gate operation due to restricted downstream flow conditions.
Learning-based Nonlinear Model Predictive Control to Improve Vision-based Mobile Robot Path Tracking
2015-07-01
corresponding cost function to be J(u) = ( xd − x)TQx ( xd − x) + uTRu, (20) where Qx ∈ RKnx×Knx is positive semi-definite, R and u are as in (3), xd is a...sequence of desired states, xd = ( xd ,k+1, . . . , xd ,k+K), x is a sequence of predicted states, x = (xk+1, . . . ,xk+K), and K is the given prediction...vact,k−1+b, ωact,k−1+b), based ωk θk vk xd ,i−1 xd ,i xd ,i+1 xk yk Figure 5: Definition of the robot velocities, vk and ωk, and three pose variables
Ensemble-based prediction of RNA secondary structures.
Aghaeepour, Nima; Hoos, Holger H
2013-04-24
Accurate structure prediction methods play an important role for the understanding of RNA function. Energy-based, pseudoknot-free secondary structure prediction is one of the most widely used and versatile approaches, and improved methods for this task have received much attention over the past five years. Despite the impressive progress that as been achieved in this area, existing evaluations of the prediction accuracy achieved by various algorithms do not provide a comprehensive, statistically sound assessment. Furthermore, while there is increasing evidence that no prediction algorithm consistently outperforms all others, no work has been done to exploit the complementary strengths of multiple approaches. In this work, we present two contributions to the area of RNA secondary structure prediction. Firstly, we use state-of-the-art, resampling-based statistical methods together with a previously published and increasingly widely used dataset of high-quality RNA structures to conduct a comprehensive evaluation of existing RNA secondary structure prediction procedures. The results from this evaluation clarify the performance relationship between ten well-known existing energy-based pseudoknot-free RNA secondary structure prediction methods and clearly demonstrate the progress that has been achieved in recent years. Secondly, we introduce AveRNA, a generic and powerful method for combining a set of existing secondary structure prediction procedures into an ensemble-based method that achieves significantly higher prediction accuracies than obtained from any of its component procedures. Our new, ensemble-based method, AveRNA, improves the state of the art for energy-based, pseudoknot-free RNA secondary structure prediction by exploiting the complementary strengths of multiple existing prediction procedures, as demonstrated using a state-of-the-art statistical resampling approach. In addition, AveRNA allows an intuitive and effective control of the trade-off between false negative and false positive base pair predictions. Finally, AveRNA can make use of arbitrary sets of secondary structure prediction procedures and can therefore be used to leverage improvements in prediction accuracy offered by algorithms and energy models developed in the future. Our data, MATLAB software and a web-based version of AveRNA are publicly available at http://www.cs.ubc.ca/labs/beta/Software/AveRNA.
The report describes the development of (1) a modified procedure for obtaining consistent and reproducible laboratory resistivity values for mixtures of coal fly ash and partially spent sorbent, and (2) an approach for predicting resistivity based on the chemical composition of t...
Experimental Investigations of Generalized Predictive Control for Tiltrotor Stability Augmentation
NASA Technical Reports Server (NTRS)
Nixon, Mark W.; Langston, Chester W.; Singleton, Jeffrey D.; Piatak, David J.; Kvaternik, Raymond G.; Bennett, Richard L.; Brown, Ross K.
2001-01-01
A team of researchers from the Army Research Laboratory, NASA Langley Research Center (LaRC), and Bell Helicopter-Textron, Inc. have completed hover-cell and wind-tunnel testing of a 1/5-size aeroelastically-scaled tiltrotor model using a new active control system for stability augmentation. The active system is based on a generalized predictive control (GPC) algorithm originally developed at NASA LaRC in 1997 for un-known disturbance rejection. Results of these investigations show that GPC combined with an active swashplate can significantly augment the damping and stability of tiltrotors in both hover and high-speed flight.
NASA Astrophysics Data System (ADS)
Lavrinov, V. V.; Lavrinova, L. N.
2017-11-01
The statistically optimal control algorithm for the correcting mirror is formed by constructing a prediction of distortions of the optical signal and improves the time resolution of the adaptive optics system. The prediction of distortions is based on an analysis of the dynamics of changes in the optical inhomogeneities of the turbulent atmosphere or the evolution of phase fluctuations at the input aperture of the adaptive system. Dynamic properties of the system are manifested during the temporary transformation of the stresses controlling the mirror and are determined by the dynamic characteristics of the flexible mirror.
Mated vertical ground vibration test
NASA Technical Reports Server (NTRS)
Ivey, E. W.
1980-01-01
The Mated Vertical Ground Vibration Test (MVGVT) was considered to provide an experimental base in the form of structural dynamic characteristics for the shuttle vehicle. This data base was used in developing high confidence analytical models for the prediction and design of loads, pogo controls, and flutter criteria under various payloads and operational missions. The MVGVT boost and launch program evolution, test configurations, and their suspensions are described. Test results are compared with predicted analytical results.
Artificial neural networks and approximate reasoning for intelligent control in space
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.
1991-01-01
A method is introduced for learning to refine the control rules of approximate reasoning-based controllers. A reinforcement-learning technique is used in conjunction with a multi-layer neural network model of an approximate reasoning-based controller. The model learns by updating its prediction of the physical system's behavior. The model can use the control knowledge of an experienced operator and fine-tune it through the process of learning. Some of the space domains suitable for applications of the model such as rendezvous and docking, camera tracking, and tethered systems control are discussed.
Control of the NASA Langley 16-Foot Transonic Tunnel with the Self-Organizing Feature Map
NASA Technical Reports Server (NTRS)
Motter, Mark A.
1998-01-01
A predictive, multiple model control strategy is developed based on an ensemble of local linear models of the nonlinear system dynamics for a transonic wind tunnel. The local linear models are estimated directly from the weights of a Self Organizing Feature Map (SOFM). Local linear modeling of nonlinear autonomous systems with the SOFM is extended to a control framework where the modeled system is nonautonomous, driven by an exogenous input. This extension to a control framework is based on the consideration of a finite number of subregions in the control space. Multiple self organizing feature maps collectively model the global response of the wind tunnel to a finite set of representative prototype controls. These prototype controls partition the control space and incorporate experimental knowledge gained from decades of operation. Each SOFM models the combination of the tunnel with one of the representative controls, over the entire range of operation. The SOFM based linear models are used to predict the tunnel response to a larger family of control sequences which are clustered on the representative prototypes. The control sequence which corresponds to the prediction that best satisfies the requirements on the system output is applied as the external driving signal. Each SOFM provides a codebook representation of the tunnel dynamics corresponding to a prototype control. Different dynamic regimes are organized into topological neighborhoods where the adjacent entries in the codebook represent the minimization of a similarity metric which is the essence of the self organizing feature of the map. Thus, the SOFM is additionally employed to identify the local dynamical regime, and consequently implements a switching scheme than selects the best available model for the applied control. Experimental results of controlling the wind tunnel, with the proposed method, during operational runs where strict research requirements on the control of the Mach number were met, are presented. Comparison to similar runs under the same conditions with the tunnel controlled by either the existing controller or an expert operator indicate the superiority of the method.
Assessment of Rifle Marksmanship Skill Using Sensor-Based Measures. CRESST Report 755
ERIC Educational Resources Information Center
Nagashima, Sam O.; Chung, Gregory K. W. K.; Espinosa, Paul D.; Berka, Chris; Baker, Eva L.
2009-01-01
The goal of this report was to test the use of sensor-based skill measures in evaluating performance differences in rifle marksmanship. Ten shots were collected from 30 novices and 9 experts. Three measures for breath control and one for trigger control were used to predict skill classification. The data were fitted with a logistic regression…
Thøgersen-Ntoumani, Cecilie; Ntoumanis, Nikos; Nikitaras, Nikitas
2010-06-01
This study used self-determination theory (Deci, E.L., & Ryan, R.M. (2000). The 'what' and 'why' of goal pursuits: Human needs and the self-determination of behavior. Psychological Inquiry, 11, 227-268.) to examine predictors of body image concerns and unhealthy weight control behaviours in a sample of 350 Greek adolescent girls. A process model was tested which proposed that perceptions of parental autonomy support and two life goals (health and image) would predict adolescents' degree of satisfaction of their basic psychological needs. In turn, psychological need satisfaction was hypothesised to negatively predict body image concerns (i.e. drive for thinness and body dissatisfaction) and, indirectly, unhealthy weight control behaviours. The predictions of the model were largely supported indicating that parental autonomy support and adaptive life goals can indirectly impact upon the extent to which female adolescents engage in unhealthy weight control behaviours via facilitating the latter's psychological need satisfaction.
Predicting flight delay based on multiple linear regression
NASA Astrophysics Data System (ADS)
Ding, Yi
2017-08-01
Delay of flight has been regarded as one of the toughest difficulties in aviation control. How to establish an effective model to handle the delay prediction problem is a significant work. To solve the problem that the flight delay is difficult to predict, this study proposes a method to model the arriving flights and a multiple linear regression algorithm to predict delay, comparing with Naive-Bayes and C4.5 approach. Experiments based on a realistic dataset of domestic airports show that the accuracy of the proposed model approximates 80%, which is further improved than the Naive-Bayes and C4.5 approach approaches. The result testing shows that this method is convenient for calculation, and also can predict the flight delays effectively. It can provide decision basis for airport authorities.
Wright, Julie A.; Velicer, Wayne F.; Prochaska, James O.
2009-01-01
This study evaluated how well predictions from the transtheoretical model (TTM) generalized from smoking to diet. Longitudinal data were used from a randomized control trial on reducing dietary fat consumption in adults (n =1207) recruited from primary care practices. Predictive power was evaluated by making a priori predictions of the magnitude of change expected in the TTM constructs of temptation, pros and cons, and 10 processes of change when an individual transitions between the stages of change. Generalizability was evaluated by testing predictions based on smoking data. Three sets of predictions were made for each stage: Precontemplation (PC), Contemplation (C) and Preparation (PR) based on stage transition categories of no progress, progress and regression determined by stage at baseline versus stage at the 12-month follow-up. Univariate analysis of variance between stage transition groups was used to calculate the effect size [omega squared (ω2)]. For diet predictions based on diet data, there was a high degree of confirmation: 92%, 95% and 92% for PC, C and PR, respectively. For diet predictions based on smoking data, 77%, 79% and 85% were confirmed, respectively, suggesting a moderate degree of generalizability. This study revised effect size estimates for future theory testing on the TTM applied to dietary fat. PMID:18400785
NAPR: a Cloud-Based Framework for Neuroanatomical Age Prediction.
Pardoe, Heath R; Kuzniecky, Ruben
2018-01-01
The availability of cloud computing services has enabled the widespread adoption of the "software as a service" (SaaS) approach for software distribution, which utilizes network-based access to applications running on centralized servers. In this paper we apply the SaaS approach to neuroimaging-based age prediction. Our system, named "NAPR" (Neuroanatomical Age Prediction using R), provides access to predictive modeling software running on a persistent cloud-based Amazon Web Services (AWS) compute instance. The NAPR framework allows external users to estimate the age of individual subjects using cortical thickness maps derived from their own locally processed T1-weighted whole brain MRI scans. As a demonstration of the NAPR approach, we have developed two age prediction models that were trained using healthy control data from the ABIDE, CoRR, DLBS and NKI Rockland neuroimaging datasets (total N = 2367, age range 6-89 years). The provided age prediction models were trained using (i) relevance vector machines and (ii) Gaussian processes machine learning methods applied to cortical thickness surfaces obtained using Freesurfer v5.3. We believe that this transparent approach to out-of-sample evaluation and comparison of neuroimaging age prediction models will facilitate the development of improved age prediction models and allow for robust evaluation of the clinical utility of these methods.
Böttche, Maria; Kuwert, Philipp; Pietrzak, Robert H; Knaevelsrud, Christine
2016-03-01
The aim of this study was to evaluate the role of resource-oriented variables such as self-efficacy, locus of control (LOC) and post-traumatic growth (PTG) in predicting treatment response in older adults with post-traumatic stress. Fifty-eight older adults with subsyndromal or greater severity of war-associated post-traumatic stress disorder (PTSD) symptoms completed a randomized controlled Internet-based cognitive-behavioural therapy (CBT) with immediate and delayed treatment groups. Assessments of PTSD severity and resource-oriented variables of self-efficacy, LOC and PTG were conducted at baseline, post-treatment and at a 6-month follow-up. Results revealed that pre-treatment scores on measures of internal LOC and PTG predicted PTSD symptom severity at post-treatment, even after controlling for initial PTSD. At a 6-month follow-up, internal LOC continued to predict PTSD symptom severity. In addition, repeated-measures analyses of variance revealed that, relative to older adults with low internal LOC and PTG, older adults with high internal LOC and PTG, respectively, did not differ with respect to initial PTSD severity, but they showed a more pronounced response to treatment. These findings suggest that greater locus of control and post-traumatic growth is associated with greater improvement in PTSD symptoms following Internet-based CBT. Assessment of these constructs may be useful in identifying trauma survivors who are most likely to respond to CBT. Greater internal locus of control and post-traumatic growth is associated with greater improvement in PTSD symptoms following Internet-based CBT. Older adults with initial high internal locus of control and post-traumatic growth, respectively, did not differ with respect to initial PTSD severity, but they showed a more pronounced response to treatment. It could be assumed that patients with initial functional appraisals could benefit easier and faster from a trauma-focused cognitive-behavioural therapy compared to individuals with lower internal locus of control and post-traumatic growth. © 2015 The British Psychological Society.
Prediction-based association control scheme in dense femtocell networks
Pham, Ngoc-Thai; Huynh, Thong; Hwang, Won-Joo; You, Ilsun; Choo, Kim-Kwang Raymond
2017-01-01
The deployment of large number of femtocell base stations allows us to extend the coverage and efficiently utilize resources in a low cost manner. However, the small cell size of femtocell networks can result in frequent handovers to the mobile user, and consequently throughput degradation. Thus, in this paper, we propose predictive association control schemes to improve the system’s effective throughput. Our design focuses on reducing handover frequency without impacting on throughput. The proposed schemes determine handover decisions that contribute most to the network throughput and are proper for distributed implementations. The simulation results show significant gains compared with existing methods in terms of handover frequency and network throughput perspective. PMID:28328992
Feldman, Anatol G; Latash, Mark L
2005-02-01
Criticisms of the equilibrium point (EP) hypothesis have recently appeared that are based on misunderstandings of some of its central notions. Starting from such interpretations of the hypothesis, incorrect predictions are made and tested. When the incorrect predictions prove false, the hypothesis is claimed to be falsified. In particular, the hypothesis has been rejected based on the wrong assumptions that it conflicts with empirically defined joint stiffness values or that it is incompatible with violations of equifinality under certain velocity-dependent perturbations. Typically, such attempts use notions describing the control of movements of artificial systems in place of physiologically relevant ones. While appreciating constructive criticisms of the EP hypothesis, we feel that incorrect interpretations have to be clarified by reiterating what the EP hypothesis does and does not predict. We conclude that the recent claims of falsifying the EP hypothesis and the calls for its replacement by EMG-force control hypothesis are unsubstantiated. The EP hypothesis goes far beyond the EMG-force control view. In particular, the former offers a resolution for the famous posture-movement paradox while the latter fails to resolve it.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bickmore, Barry R.; Rosso, Kevin M.; Tadanier, Christopher J.
2006-08-15
In a previous contribution, we outlined a method for predicting (hydr)oxy-acid and oxide surface acidity constants based on three main factors: bond valence, Me?O bond ionicity, and molecular shape. Here electrostatics calculations and ab initio molecular dynamics simulations are used to qualitatively show that Me?O bond ionicity controls the extent to which the electrostatic work of proton removal departs from ideality, bond valence controls the extent of solvation of individual functional groups, and bond valence and molecular shape controls local dielectric response. These results are consistent with our model of acidity, but completely at odds with other methods of predictingmore » acidity constants for use in multisite complexation models. In particular, our ab initio molecular dynamics simulations of solvated monomers clearly indicate that hydrogen bonding between (hydr)oxo-groups and water molecules adjusts to obey the valence sum rule, rather than maintaining a fixed valence based on the coordination of the oxygen atom as predicted by the standard MUSIC model.« less
A Dynamic Hydrology-Critical Zone Framework for Rainfall-triggered Landslide Hazard Prediction
NASA Astrophysics Data System (ADS)
Dialynas, Y. G.; Foufoula-Georgiou, E.; Dietrich, W. E.; Bras, R. L.
2017-12-01
Watershed-scale coupled hydrologic-stability models are still in their early stages, and are characterized by important limitations: (a) either they assume steady-state or quasi-dynamic watershed hydrology, or (b) they simulate landslide occurrence based on a simple one-dimensional stability criterion. Here we develop a three-dimensional landslide prediction framework, based on a coupled hydrologic-slope stability model and incorporation of the influence of deep critical zone processes (i.e., flow through weathered bedrock and exfiltration to the colluvium) for more accurate prediction of the timing, location, and extent of landslides. Specifically, a watershed-scale slope stability model that systematically accounts for the contribution of driving and resisting forces in three-dimensional hillslope segments was coupled with a spatially-explicit and physically-based hydrologic model. The landslide prediction framework considers critical zone processes and structure, and explicitly accounts for the spatial heterogeneity of surface and subsurface properties that control slope stability, including soil and weathered bedrock hydrological and mechanical characteristics, vegetation, and slope morphology. To test performance, the model was applied in landslide-prone sites in the US, the hydrology of which has been extensively studied. Results showed that both rainfall infiltration in the soil and groundwater exfiltration exert a strong control on the timing and magnitude of landslide occurrence. We demonstrate the extent to which three-dimensional slope destabilizing factors, which are modulated by dynamic hydrologic conditions in the soil-bedrock column, control landslide initiation at the watershed scale.
Walby, Fredrik A; Odegaard, Erik; Mehlum, Lars
2006-06-01
To investigate the differential impact of DSM-IV axis-I and axis-II disorders on completed suicide and to study if psychiatric comorbidity increases the risk of suicide in currently and previously hospitalized psychiatric patients. A nested case-control design based on case notes from 136 suicides and 166 matched controls. All cases and controls were rediagnosed using the SCID-CV for axis-I and the DSM-IV criteria for axis-II disorders and the inter-rater reliability was satisfactory. Raters were blind to the case and control status and the original hospital diagnoses. Depressive disorders and bipolar disorders were associated with an increased risk of suicide. No such effect was found for comorbidity between axis-I disorders and for comorbidity between axis-I and axis-II disorders. Psychiatric diagnoses, although made using a structured and criteria-based approach, was based on information recorded in case notes. Axis-II comorbidity could only be investigated at an aggregated level. Psychiatric comorbidity did not predict suicide in this sample. Mood disorders did, however, increase the risk significantly independent of history of previous suicide attempts. Both findings can inform identification and treatment of patients at high risk for completed suicide.
NASA Technical Reports Server (NTRS)
Acikmese, Behcet A.; Carson, John M., III
2005-01-01
A robustly stabilizing MPC (model predictive control) algorithm for uncertain nonlinear systems is developed that guarantees the resolvability of the associated finite-horizon optimal control problem in a receding-horizon implementation. The control consists of two components; (i) feedforward, and (ii) feedback part. Feed-forward control is obtained by online solution of a finite-horizon optimal control problem for the nominal system dynamics. The feedback control policy is designed off-line based on a bound on the uncertainty in the system model. The entire controller is shown to be robustly stabilizing with a region of attraction composed of initial states for which the finite-horizon optimal control problem is feasible. The controller design for this algorithm is demonstrated on a class of systems with uncertain nonlinear terms that have norm-bounded derivatives, and derivatives in polytopes. An illustrative numerical example is also provided.
NASA Technical Reports Server (NTRS)
Acikmese, Ahmet Behcet; Carson, John M., III
2006-01-01
A robustly stabilizing MPC (model predictive control) algorithm for uncertain nonlinear systems is developed that guarantees resolvability. With resolvability, initial feasibility of the finite-horizon optimal control problem implies future feasibility in a receding-horizon framework. The control consists of two components; (i) feed-forward, and (ii) feedback part. Feed-forward control is obtained by online solution of a finite-horizon optimal control problem for the nominal system dynamics. The feedback control policy is designed off-line based on a bound on the uncertainty in the system model. The entire controller is shown to be robustly stabilizing with a region of attraction composed of initial states for which the finite-horizon optimal control problem is feasible. The controller design for this algorithm is demonstrated on a class of systems with uncertain nonlinear terms that have norm-bounded derivatives and derivatives in polytopes. An illustrative numerical example is also provided.
NASA Astrophysics Data System (ADS)
Huang, Guoqin; Zhang, Meiqin; Huang, Hui; Guo, Hua; Xu, Xipeng
2018-04-01
Circular sawing is an important method for the processing of natural stone. The ability to predict sawing power is important in the optimisation, monitoring and control of the sawing process. In this paper, a predictive model (PFD) of sawing power, which is based on the tangential force distribution at the sawing contact zone, was proposed, experimentally validated and modified. With regard to the influence of sawing speed on tangential force distribution, the modified PFD (MPFD) performed with high predictive accuracy across a wide range of sawing parameters, including sawing speed. The mean maximum absolute error rate was within 6.78%, and the maximum absolute error rate was within 11.7%. The practicability of predicting sawing power by the MPFD with few initial experimental samples was proved in case studies. On the premise of high sample measurement accuracy, only two samples are required for a fixed sawing speed. The feasibility of applying the MPFD to optimise sawing parameters while lowering the energy consumption of the sawing system was validated. The case study shows that energy use was reduced 28% by optimising the sawing parameters. The MPFD model can be used to predict sawing power, optimise sawing parameters and control energy.
Warren, David E; Denburg, Natalie L; Power, Jonathan D; Bruss, Joel; Waldron, Eric J; Sun, Haoxin; Petersen, Steve E; Tranel, Daniel
2017-02-01
Theories of brain-network organization based on neuroimaging data have burgeoned in recent years, but the predictive power of such theories for cognition and behavior has only rarely been examined. Here, predictions from clinical neuropsychologists about the cognitive profiles of patients with focal brain lesions were used to evaluate a brain-network theory (Warren et al., 2014). Neuropsychologists made predictions regarding the neuropsychological profiles of a neurological patient sample (N = 30) based on lesion location. The neuropsychologists then rated the congruence of their predictions with observed neuropsychological outcomes, in regard to the "severity" of neuropsychological deficits and the "focality" of neuropsychological deficits. Based on the network theory, two types of lesion locations were identified: "target" locations (putative hubs in a brain-wide network) and "control" locations (hypothesized to play limited roles in network function). We found that patients with lesions of target locations (N = 19) had deficits of greater than expected severity that were more widespread than expected, whereas patients with lesions of control locations (N = 11) showed milder, circumscribed deficits that were more congruent with expectations. The findings for the target brain locations suggest that prevailing views of brain-behavior relationships may be sharpened and refined by integrating recently proposed network-oriented perspectives. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Preserving privacy whilst maintaining robust epidemiological predictions.
Werkman, Marleen; Tildesley, Michael J; Brooks-Pollock, Ellen; Keeling, Matt J
2016-12-01
Mathematical models are invaluable tools for quantifying potential epidemics and devising optimal control strategies in case of an outbreak. State-of-the-art models increasingly require detailed individual farm-based and sensitive data, which may not be available due to either lack of capacity for data collection or privacy concerns. However, in many situations, aggregated data are available for use. In this study, we systematically investigate the accuracy of predictions made by mathematical models initialised with varying data aggregations, using the UK 2001 Foot-and-Mouth Disease Epidemic as a case study. We consider the scenario when the only data available are aggregated into spatial grid cells, and develop a metapopulation model where individual farms in a single subpopulation are assumed to behave uniformly and transmit randomly. We also adapt this standard metapopulation model to capture heterogeneity in farm size and composition, using farm census data. Our results show that homogeneous models based on aggregated data overestimate final epidemic size but can perform well for predicting spatial spread. Recognising heterogeneity in farm sizes improves predictions of the final epidemic size, identifying risk areas, determining the likelihood of epidemic take-off and identifying the optimal control strategy. In conclusion, in cases where individual farm-based data are not available, models can still generate meaningful predictions, although care must be taken in their interpretation and use. Copyright © 2016. Published by Elsevier B.V.
A control-theory model for human decision-making
NASA Technical Reports Server (NTRS)
Levison, W. H.; Tanner, R. B.
1971-01-01
A model for human decision making is an adaptation of an optimal control model for pilot/vehicle systems. The models for decision and control both contain concepts of time delay, observation noise, optimal prediction, and optimal estimation. The decision making model was intended for situations in which the human bases his decision on his estimate of the state of a linear plant. Experiments are described for the following task situations: (a) single decision tasks, (b) two-decision tasks, and (c) simultaneous manual control and decision making. Using fixed values for model parameters, single-task and two-task decision performance can be predicted to within an accuracy of 10 percent. Agreement is less good for the simultaneous decision and control situation.
Alamaniotis, Miltiadis; Agarwal, Vivek
2014-04-01
Anticipatory control systems are a class of systems whose decisions are based on predictions for the future state of the system under monitoring. Anticipation denotes intelligence and is an inherent property of humans that make decisions by projecting in future. Likewise, artificially intelligent systems equipped with predictive functions may be utilized for anticipating future states of complex systems, and therefore facilitate automated control decisions. Anticipatory control of complex energy systems is paramount to their normal and safe operation. In this paper a new intelligent methodology integrating fuzzy inference with support vector regression is introduced. Our proposed methodology implements an anticipatorymore » system aiming at controlling energy systems in a robust way. Initially a set of support vector regressors is adopted for making predictions over critical system parameters. Furthermore, the predicted values are fed into a two stage fuzzy inference system that makes decisions regarding the state of the energy system. The inference system integrates the individual predictions into a single one at its first stage, and outputs a decision together with a certainty factor computed at its second stage. The certainty factor is an index of the significance of the decision. The proposed anticipatory control system is tested on a real world set of data obtained from a complex energy system, describing the degradation of a turbine. Results exhibit the robustness of the proposed system in controlling complex energy systems.« less
Statistics based sampling for controller and estimator design
NASA Astrophysics Data System (ADS)
Tenne, Dirk
The purpose of this research is the development of statistical design tools for robust feed-forward/feedback controllers and nonlinear estimators. This dissertation is threefold and addresses the aforementioned topics nonlinear estimation, target tracking and robust control. To develop statistically robust controllers and nonlinear estimation algorithms, research has been performed to extend existing techniques, which propagate the statistics of the state, to achieve higher order accuracy. The so-called unscented transformation has been extended to capture higher order moments. Furthermore, higher order moment update algorithms based on a truncated power series have been developed. The proposed techniques are tested on various benchmark examples. Furthermore, the unscented transformation has been utilized to develop a three dimensional geometrically constrained target tracker. The proposed planar circular prediction algorithm has been developed in a local coordinate framework, which is amenable to extension of the tracking algorithm to three dimensional space. This tracker combines the predictions of a circular prediction algorithm and a constant velocity filter by utilizing the Covariance Intersection. This combined prediction can be updated with the subsequent measurement using a linear estimator. The proposed technique is illustrated on a 3D benchmark trajectory, which includes coordinated turns and straight line maneuvers. The third part of this dissertation addresses the design of controller which include knowledge of parametric uncertainties and their distributions. The parameter distributions are approximated by a finite set of points which are calculated by the unscented transformation. This set of points is used to design robust controllers which minimize a statistical performance of the plant over the domain of uncertainty consisting of a combination of the mean and variance. The proposed technique is illustrated on three benchmark problems. The first relates to the design of prefilters for a linear and nonlinear spring-mass-dashpot system and the second applies a feedback controller to a hovering helicopter. Lastly, the statistical robust controller design is devoted to a concurrent feed-forward/feedback controller structure for a high-speed low tension tape drive.
An Efficient Interval Type-2 Fuzzy CMAC for Chaos Time-Series Prediction and Synchronization.
Lee, Ching-Hung; Chang, Feng-Yu; Lin, Chih-Min
2014-03-01
This paper aims to propose a more efficient control algorithm for chaos time-series prediction and synchronization. A novel type-2 fuzzy cerebellar model articulation controller (T2FCMAC) is proposed. In some special cases, this T2FCMAC can be reduced to an interval type-2 fuzzy neural network, a fuzzy neural network, and a fuzzy cerebellar model articulation controller (CMAC). So, this T2FCMAC is a more generalized network with better learning ability, thus, it is used for the chaos time-series prediction and synchronization. Moreover, this T2FCMAC realizes the un-normalized interval type-2 fuzzy logic system based on the structure of the CMAC. It can provide better capabilities for handling uncertainty and more design degree of freedom than traditional type-1 fuzzy CMAC. Unlike most of the interval type-2 fuzzy system, the type-reduction of T2FCMAC is bypassed due to the property of un-normalized interval type-2 fuzzy logic system. This causes T2FCMAC to have lower computational complexity and is more practical. For chaos time-series prediction and synchronization applications, the training architectures with corresponding convergence analyses and optimal learning rates based on Lyapunov stability approach are introduced. Finally, two illustrated examples are presented to demonstrate the performance of the proposed T2FCMAC.
Perceived control and communication about sex: a study of South African families.
Goodnight, Bradley; Salama, Christina; Grim, Elizabeth C; Anthony, Elizabeth R; Armistead, Lisa; Cook, Sarah L; Skinner, Donald; Toefy, Yoesrie
2014-01-01
Caregiver-youth communication about sex protects youth against HIV/AIDS, and caregivers who believe that sex knowledge is important are more likely to talk to their youth about sex. However, caregivers who experience barriers to communication about sex may not talk to their youth about sex even if the caregiver believes that sex education is important. The Theory of Planned Behaviour predicts that an actor has perceived control is necessary for behavioural change. This study therefore hypothesised that caregivers' perceived control moderates the relationship between caregiver attitudes about youth sex knowledge and caregiver-youth communication about sex. Results from a sample of 99 female South African caregivers of adolescent (10-14 year old) youth supported our hypothesis, indicating that caregiver attitudes about providing youth with sex knowledge positively predict communication about sex only when caregivers have perceived control. This finding illustrates the importance of perceived control in predicting caregiver-youth communication, and therefore has implications for family-based interventions aimed at improving caregiver-youth communication about sex.
Sourander, Andre; Ronning, John; Brunstein-Klomek, Anat; Gyllenberg, David; Kumpulainen, Kirsti; Niemelä, Solja; Helenius, Hans; Sillanmäki, Lauri; Ristkari, Terja; Tamminen, Tuula; Moilanen, Irma; Piha, Jorma; Almqvist, Fredrik
2009-09-01
No prospective population-based study examining predictive associations between childhood bullying behavior and long-term mental health outcomes in both males and females exists. To study predictive associations between bullying and victimization in childhood and later psychiatric hospital and psychopharmacologic treatment. Nationwide birth cohort study from age 8 to 24 years. Five thousand thirty-eight Finnish children born in 1981 with complete information about bullying and victimization at age 8 years from parents, teachers, and self-reports. National register-based lifetime information about psychiatric hospital treatments and psychopharmacologic medication prescriptions. When controlled for psychopathology score, frequent victim status at age 8 years among females independently predicted psychiatric hospital treatment and use of antipsychotic, antidepressant, and anxiolytic drugs. Among males, frequent bully-victim and bully-only statuses predicted use of antidepressant and anxiolytic drugs. Frequent bully-victim status among males also predicted psychiatric hospital treatment and use of antipsychotics. However, when the analysis was controlled with total psychopathology score at age 8 years, frequent bully, victim, or bully-victim status did not predict any psychiatric outcomes among males. Boys and girls who display frequent bullying behavior should be evaluated for possible psychiatric problems, as bullying behaviors in concert with psychiatric symptoms are early markers of risk of psychiatric outcome. Among females, frequent childhood victimization predicts later psychiatric problems irrespective of psychiatric problems at baseline.
76 FR 61566 - Significant New Use Rules on Certain Chemical Substances
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-05
... foam control agents. Based on EcoSAR analysis of test data on analogous epoxides, EPA predicts toxicity... control; and an unscheduled DNA synthesis in mammalian cells in culture (OPPTS Test Guideline 870.5550) in...) under section 5(a)(2) of the Toxic Substances Control Act (TSCA) for 36 chemical substances which were...
Simulation-based model to explore the benefits of monitoring and control to energy saving opportunities in residential homes; an adaptive algorithm to predict the type of electrical loads; a prototype user friendly interface monitoring and control device to save energy; a p...
Control and Optimization of Electric Ship Propulsion Systems with Hybrid Energy Storage
NASA Astrophysics Data System (ADS)
Hou, Jun
Electric ships experience large propulsion-load fluctuations on their drive shaft due to encountered waves and the rotational motion of the propeller, affecting the reliability of the shipboard power network and causing wear and tear. This dissertation explores new solutions to address these fluctuations by integrating a hybrid energy storage system (HESS) and developing energy management strategies (EMS). Advanced electric propulsion drive concepts are developed to improve energy efficiency, performance and system reliability by integrating HESS, developing advanced control solutions and system integration strategies, and creating tools (including models and testbed) for design and optimization of hybrid electric drive systems. A ship dynamics model which captures the underlying physical behavior of the electric ship propulsion system is developed to support control development and system optimization. To evaluate the effectiveness of the proposed control approaches, a state-of-the-art testbed has been constructed which includes a system controller, Li-Ion battery and ultra-capacitor (UC) modules, a high-speed flywheel, electric motors with their power electronic drives, DC/DC converters, and rectifiers. The feasibility and effectiveness of HESS are investigated and analyzed. Two different HESS configurations, namely battery/UC (B/UC) and battery/flywheel (B/FW), are studied and analyzed to provide insights into the advantages and limitations of each configuration. Battery usage, loss analysis, and sensitivity to battery aging are also analyzed for each configuration. In order to enable real-time application and achieve desired performance, a model predictive control (MPC) approach is developed, where a state of charge (SOC) reference of flywheel for B/FW or UC for B/UC is used to address the limitations imposed by short predictive horizons, because the benefits of flywheel and UC working around high-efficiency range are ignored by short predictive horizons. Given the multi-frequency characteristics of load fluctuations, a filter-based control strategy is developed to illustrate the importance of the coordination within the HESS. Without proper control strategies, the HESS solution could be worse than a single energy storage system solution. The proposed HESS, when introduced into an existing shipboard electrical propulsion system, will interact with the power generation systems. A model-based analysis is performed to evaluate the interactions of the multiple power sources when a hybrid energy storage system is introduced. The study has revealed undesirable interactions when the controls are not coordinated properly, and leads to the conclusion that a proper EMS is needed. Knowledge of the propulsion-load torque is essential for the proposed system-level EMS, but this load torque is immeasurable in most marine applications. To address this issue, a model-based approach is developed so that load torque estimation and prediction can be incorporated into the MPC. In order to evaluate the effectiveness of the proposed approach, an input observer with linear prediction is developed as an alternative approach to obtain the load estimation and prediction. Comparative studies are performed to illustrate the importance of load torque estimation and prediction, and demonstrate the effectiveness of the proposed approach in terms of improved efficiency, enhanced reliability, and reduced wear and tear. Finally, the real-time MPC algorithm has been implemented on a physical testbed. Three different efforts have been made to enable real-time implementation: a specially tailored problem formulation, an efficient optimization algorithm and a multi-core hardware implementation. Compared to the filter-based strategy, the proposed real-time MPC achieves superior performance, in terms of the enhanced system reliability, improved HESS efficiency, and extended battery life.
Theory of the control of structures by low authority controllers
NASA Technical Reports Server (NTRS)
Aubrun, J. N.
1978-01-01
The novel idea presented is based on the observation that if a structure is controlled by distributed systems of sensors and actuators with limited authority, i.e., if the controller is allowed to modify only moderately the natural modes and frequencies of the structure, then it should be possible to apply root perturbation techniques to predict analytically the behavior of the total system. Attention is given to the root perturbation formula first derived by Jacobi for infinitesimal perturbations which neglect the induced eigenvector perturbation, a more general form of Jacobi's formula, first-order structural equations and modal state vectors, state-space equations for damper-augmented structures, and modal damping prediction formulas.
Pandey, Gaurav; Pandey, Om P; Rogers, Angela J; Ahsen, Mehmet E; Hoffman, Gabriel E; Raby, Benjamin A; Weiss, Scott T; Schadt, Eric E; Bunyavanich, Supinda
2018-06-11
Asthma is a common, under-diagnosed disease affecting all ages. We sought to identify a nasal brush-based classifier of mild/moderate asthma. 190 subjects with mild/moderate asthma and controls underwent nasal brushing and RNA sequencing of nasal samples. A machine learning-based pipeline identified an asthma classifier consisting of 90 genes interpreted via an L2-regularized logistic regression classification model. This classifier performed with strong predictive value and sensitivity across eight test sets, including (1) a test set of independent asthmatic and control subjects profiled by RNA sequencing (positive and negative predictive values of 1.00 and 0.96, respectively; AUC of 0.994), (2) two independent case-control cohorts of asthma profiled by microarray, and (3) five cohorts with other respiratory conditions (allergic rhinitis, upper respiratory infection, cystic fibrosis, smoking), where the classifier had a low to zero misclassification rate. Following validation in large, prospective cohorts, this classifier could be developed into a nasal biomarker of asthma.
Sil, Soumitri; Lynch-Jordan, Anne; Ting, Tracy V; Peugh, James; Noll, Jennie; Kashikar-Zuck, Susmita
2013-06-01
Little is known about the impact of family environment on the long-term adjustment of patients with juvenile-onset fibromyalgia (JFM). Our objective was to evaluate whether family environment in early adolescence predicted later physical functioning and depressive symptoms of adolescents with JFM as they transitioned to early adulthood in the context of a controlled long-term followup study. Participants consisted of 39 youth (mean age 18.7 years) with JFM and 38 healthy matched controls who completed web-based surveys about their health status (Short Form 36 health survey) and depressive symptoms (Beck Depression Inventory II) ~4 years after a home-based, in-person assessment of child and family functioning. During the initial assessment, parents of the participants (94% mothers) completed the Family Environment Scale and adolescents (mean age 14.8 years) completed self-report questionnaires about pain (visual analog scale) and depressive symptoms (Children's Depression Inventory). The results indicated that family environment during early adolescence significantly predicted greater depressive symptoms in early adulthood for both the JFM group and the healthy controls. In particular, a controlling family environment (use of rules to control the family and allowing little independence) during early adolescence was the driving factor in predicting poorer long-term emotional functioning for patients with JFM. Family environment did not significantly predict longer-term physical impairment for either group. Adolescents with JFM from controlling family environments are at an increased risk for poorer emotional functioning in early adulthood. Behavioral and family interventions should foster independent coping among adolescents with JFM and greater parenting flexibility to enhance successful long-term coping. Copyright © 2013 by the American College of Rheumatology.
Muzaffar, Henna; Chapman-Novakofski, Karen; Castelli, Darla M; Scherer, Jane A
2014-01-01
We hypothesized that Theory of Planned Behavior (TPB) constructs (behavioral belief, attitude, subjective norm, perceived behavioral control, knowledge and behavioral intention) regarding preventive behaviors for obesity and type 2 diabetes will change favorably after completing the web-based intervention, HOT (Healthy Outcome for Teens) project, grounded in the TPB; and that passive online learning (POL) group will improve more than the active online learning (AOL) group. The secondary hypothesis was to determine to what extent constructs of the TPB predict intentions. 216 adolescents were recruited, 127 randomly allocated to the treatment group (AOL) and 89 to the control group (POL). The subjects completed a TPB questionnaire pre and post intervention. Both POL and AOL groups showed significant improvements from pretest to posttest survey. However, the results indicated no significant difference between POL and AOL for all constructs except behavioral belief. Correlational analysis indicated that all TPB constructs were significantly correlated with intentions for pretest and posttest for both groups. Attitude and behavioral control showed strongest correlations. Regression analysis indicated that TPB constructs were predictive of intentions and the predictive power improved post intervention. Behavioral control consistently predicted intentions for all categories and was the strongest predictor for pretest scores. For posttest scores, knowledge and attitude were the strongest predictors for POL and AOL groups respectively. Thus, HOT project improved knowledge and the TPB constructs scores for targeted behaviors, healthy eating and physical activity, for prevention of obesity and type 2 diabetes. Published by Elsevier Ltd.
Wu, Xiao; Shen, Jiong; Li, Yiguo; Lee, Kwang Y
2014-05-01
This paper develops a novel data-driven fuzzy modeling strategy and predictive controller for boiler-turbine unit using fuzzy clustering and subspace identification (SID) methods. To deal with the nonlinear behavior of boiler-turbine unit, fuzzy clustering is used to provide an appropriate division of the operation region and develop the structure of the fuzzy model. Then by combining the input data with the corresponding fuzzy membership functions, the SID method is extended to extract the local state-space model parameters. Owing to the advantages of the both methods, the resulting fuzzy model can represent the boiler-turbine unit very closely, and a fuzzy model predictive controller is designed based on this model. As an alternative approach, a direct data-driven fuzzy predictive control is also developed following the same clustering and subspace methods, where intermediate subspace matrices developed during the identification procedure are utilized directly as the predictor. Simulation results show the advantages and effectiveness of the proposed approach. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Nonprincipal plane scattering of flat plates and pattern control of horn antennas
NASA Technical Reports Server (NTRS)
Balanis, Constantine A.; Polka, Lesley A.; Liu, Kefeng
1989-01-01
Using the geometrical theory of diffraction, the traditional method of high frequency scattering analysis, the prediction of the radar cross section of a perfectly conducting, flat, rectangular plate is limited to principal planes. Part A of this report predicts the radar cross section in nonprincipal planes using the method of equivalent currents. This technique is based on an asymptotic end-point reduction of the surface radiation integrals for an infinite wedge and enables nonprincipal plane prediction. The predicted radar cross sections for both horizontal and vertical polarizations are compared to moment method results and experimental data from Arizona State University's anechoic chamber. In part B, a variational calculus approach to the pattern control of the horn antenna is outlined. The approach starts with the optimization of the aperture field distribution so that the control of the radiation pattern in a range of directions can be realized. A control functional is thus formulated. Next, a spectral analysis method is introduced to solve for the eigenfunctions from the extremal condition of the formulated functional. Solutions to the optimized aperture field distribution are then obtained.
GOBF-ARMA based model predictive control for an ideal reactive distillation column.
Seban, Lalu; Kirubakaran, V; Roy, B K; Radhakrishnan, T K
2015-11-01
This paper discusses the control of an ideal reactive distillation column (RDC) using model predictive control (MPC) based on a combination of deterministic generalized orthonormal basis filter (GOBF) and stochastic autoregressive moving average (ARMA) models. Reactive distillation (RD) integrates reaction and distillation in a single process resulting in process and energy integration promoting green chemistry principles. Improved selectivity of products, increased conversion, better utilization and control of reaction heat, scope for difficult separations and the avoidance of azeotropes are some of the advantages that reactive distillation offers over conventional technique of distillation column after reactor. The introduction of an in situ separation in the reaction zone leads to complex interactions between vapor-liquid equilibrium, mass transfer rates, diffusion and chemical kinetics. RD with its high order and nonlinear dynamics, and multiple steady states is a good candidate for testing and verification of new control schemes. Here a combination of GOBF-ARMA models is used to catch and represent the dynamics of the RDC. This GOBF-ARMA model is then used to design an MPC scheme for the control of product purity of RDC under different operating constraints and conditions. The performance of proposed modeling and control using GOBF-ARMA based MPC is simulated and analyzed. The proposed controller is found to perform satisfactorily for reference tracking and disturbance rejection in RDC. Copyright © 2015 Elsevier Inc. All rights reserved.
Zaninelli, Augusto; Parati, Gianfranco; Cricelli, Claudio; Bignamini, Angelo A; Modesti, Pietro A; Pamparana, Franco; Bilo, Grzegorz; Mancia, Giuseppe; Gensini, Gian F
2010-05-01
Guidelines recommend that blood pressure (BP) should be lowered in hypertensive patients to prevent cardiovascular accidents. Management of antihypertensive treatment by general practitioners is usually based on office measurements, which may not allow an assessment of BP control over 24 h, which requires ambulatory BP monitoring (ABPM) to be implemented. This is rarely done in general practice, and limited information is available on the consistency between the evaluations of the response to treatment provided by office measurement and by ABPM in this setting. To assess concordance between office BP measurements and ABPM-based estimates of hypertension control in a general practice setting. Prospective, comparative between techniques. General practice. Seventy-eight general practices, representative of all Italian regions, participated in this study by recruiting sequential hypertensive adults on stabilized treatment, who were subdivided into even groups with office BP, respectively, controlled or noncontrolled by treatment. In each individual, ABPM was applied by the general practitioner after appropriate training, and 24-h ABP values were defined as controlled or not according to current guidelines. Concordance between office and ABPM evaluation of BP control was assessed with kappa statistics. Positive and negative predictive values of office measurement versus ABPM were estimated. Between July 2005 and November 2006, 190 general practitioners recruited 2059 hypertensive patients based on office BP measurements; in 1728 patients, a 24-h ABPM was performed, yielding 1524 recordings considered as valid for further analysis. The agreement between the assessment of BP control by office measurement and by ABPM was poor (kappa = 0.120), with office measurements showing a satisfactory positive predictive value (0.842) and a poor negative predictive value (0.278); the situation was worse in patients with three or more among the following features: male sex, age of at least 65 years, alcohol consumption, diabetes, and obesity (negative predictive value = 0.149). In general practice, the agreement between assessment of BP control by treatment provided by office and ambulatory BP measurements is better in patients of 'uncontrolled' office BP than in 'controlled' office BP patients. This emphasizes the need for the larger use of out-of-office BP monitoring in a general practice setting, in particular, in patients considered as 'controlled' during consultation.
Wang, Ching-Fu; Yang, Shih-Hung; Lin, Sheng-Huang; Chen, Po-Chuan; Lo, Yu-Chun; Pan, Han-Chi; Lai, Hsin-Yi; Liao, Lun-De; Lin, Hui-Ching; Chen, Hsu-Yan; Huang, Wei-Chen; Huang, Wun-Jhu; Chen, You-Yin
Deep brain stimulation (DBS) has been applied as an effective therapy for treating Parkinson's disease or essential tremor. Several open-loop DBS control strategies have been developed for clinical experiments, but they are limited by short battery life and inefficient therapy. Therefore, many closed-loop DBS control systems have been designed to tackle these problems by automatically adjusting the stimulation parameters via feedback from neural signals, which has been reported to reduce the power consumption. However, when the association between the biomarkers of the model and stimulation is unclear, it is difficult to develop an optimal control scheme for other DBS applications, i.e., DBS-enhanced instrumental learning. Furthermore, few studies have investigated the effect of closed-loop DBS control for cognition function, such as instrumental skill learning, and have been implemented in simulation environments. In this paper, we proposed a proof-of-principle design for a closed-loop DBS system, cognitive-enhancing DBS (ceDBS), which enhanced skill learning based on in vivo experimental data. The ceDBS acquired local field potential (LFP) signal from the thalamic central lateral (CL) nuclei of animals through a neural signal processing system. A strong coupling of the theta oscillation (4-7 Hz) and the learning period was found in the water reward-related lever-pressing learning task. Therefore, the theta-band power ratio, which was the averaged theta band to averaged total band (1-55 Hz) power ratio, could be used as a physiological marker for enhancement of instrumental skill learning. The on-line extraction of the theta-band power ratio was implemented on a field-programmable gate array (FPGA). An autoregressive with exogenous inputs (ARX)-based predictor was designed to construct a CL-thalamic DBS model and forecast the future physiological marker according to the past physiological marker and applied DBS. The prediction could further assist the design of a closed-loop DBS controller. A DBS controller based on a fuzzy expert system was devised to automatically control DBS according to the predicted physiological marker via a set of rules. The simulated experimental results demonstrate that the ceDBS based on the closed-loop control architecture not only reduced power consumption using the predictive physiological marker, but also achieved a desired level of physiological marker through the DBS controller. Copyright © 2017 Elsevier Inc. All rights reserved.
Methylphenidate Modulates Functional Network Connectivity to Enhance Attention
Zhang, Sheng; Hsu, Wei-Ting; Scheinost, Dustin; Finn, Emily S.; Shen, Xilin; Constable, R. Todd; Li, Chiang-Shan R.; Chun, Marvin M.
2016-01-01
Recent work has demonstrated that human whole-brain functional connectivity patterns measured with fMRI contain information about cognitive abilities, including sustained attention. To derive behavioral predictions from connectivity patterns, our group developed a connectome-based predictive modeling (CPM) approach (Finn et al., 2015; Rosenberg et al., 2016). Previously using CPM, we defined a high-attention network, comprising connections positively correlated with performance on a sustained attention task, and a low-attention network, comprising connections negatively correlated with performance. Validating the networks as generalizable biomarkers of attention, models based on network strength at rest predicted attention-deficit/hyperactivity disorder (ADHD) symptoms in an independent group of individuals (Rosenberg et al., 2016). To investigate whether these networks play a causal role in attention, here we examined their strength in healthy adults given methylphenidate (Ritalin), a common ADHD treatment, compared with unmedicated controls. As predicted, individuals given methylphenidate showed patterns of connectivity associated with better sustained attention: higher high-attention and lower low-attention network strength than controls. There was significant overlap between the high-attention network and a network with greater strength in the methylphenidate group, and between the low-attention network and a network with greater strength in the control group. Network strength also predicted behavior on a stop-signal task, such that participants with higher go response rates showed higher high-attention and lower low-attention network strength. These results suggest that methylphenidate acts by modulating functional brain networks related to sustained attention, and that changing whole-brain connectivity patterns may help improve attention. SIGNIFICANCE STATEMENT Recent work identified a promising neuromarker of sustained attention based on whole-brain functional connectivity networks. To investigate the causal role of these networks in attention, we examined their response to a dose of methylphenidate, a common and effective treatment for attention-deficit/hyperactivity disorder, in healthy adults. As predicted, individuals on methylphenidate showed connectivity signatures of better sustained attention: higher high-attention and lower low-attention network strength than controls. These results suggest that methylphenidate acts by modulating strength in functional brain networks related to attention, and that changing whole-brain connectivity patterns may improve attention. PMID:27629707
Methylphenidate Modulates Functional Network Connectivity to Enhance Attention.
Rosenberg, Monica D; Zhang, Sheng; Hsu, Wei-Ting; Scheinost, Dustin; Finn, Emily S; Shen, Xilin; Constable, R Todd; Li, Chiang-Shan R; Chun, Marvin M
2016-09-14
Recent work has demonstrated that human whole-brain functional connectivity patterns measured with fMRI contain information about cognitive abilities, including sustained attention. To derive behavioral predictions from connectivity patterns, our group developed a connectome-based predictive modeling (CPM) approach (Finn et al., 2015; Rosenberg et al., 2016). Previously using CPM, we defined a high-attention network, comprising connections positively correlated with performance on a sustained attention task, and a low-attention network, comprising connections negatively correlated with performance. Validating the networks as generalizable biomarkers of attention, models based on network strength at rest predicted attention-deficit/hyperactivity disorder (ADHD) symptoms in an independent group of individuals (Rosenberg et al., 2016). To investigate whether these networks play a causal role in attention, here we examined their strength in healthy adults given methylphenidate (Ritalin), a common ADHD treatment, compared with unmedicated controls. As predicted, individuals given methylphenidate showed patterns of connectivity associated with better sustained attention: higher high-attention and lower low-attention network strength than controls. There was significant overlap between the high-attention network and a network with greater strength in the methylphenidate group, and between the low-attention network and a network with greater strength in the control group. Network strength also predicted behavior on a stop-signal task, such that participants with higher go response rates showed higher high-attention and lower low-attention network strength. These results suggest that methylphenidate acts by modulating functional brain networks related to sustained attention, and that changing whole-brain connectivity patterns may help improve attention. Recent work identified a promising neuromarker of sustained attention based on whole-brain functional connectivity networks. To investigate the causal role of these networks in attention, we examined their response to a dose of methylphenidate, a common and effective treatment for attention-deficit/hyperactivity disorder, in healthy adults. As predicted, individuals on methylphenidate showed connectivity signatures of better sustained attention: higher high-attention and lower low-attention network strength than controls. These results suggest that methylphenidate acts by modulating strength in functional brain networks related to attention, and that changing whole-brain connectivity patterns may improve attention. Copyright © 2016 the authors 0270-6474/16/369547-11$15.00/0.
Qin, J; Choi, K S; Ho, Simon S M; Heng, P A
2008-01-01
A force prediction algorithm is proposed to facilitate virtual-reality (VR) based collaborative surgical simulation by reducing the effect of network latencies. State regeneration is used to correct the estimated prediction. This algorithm is incorporated into an adaptive transmission protocol in which auxiliary features such as view synchronization and coupling control are equipped to ensure the system consistency. We implemented this protocol using multi-threaded technique on a cluster-based network architecture.
A digital prediction algorithm for a single-phase boost PFC
NASA Astrophysics Data System (ADS)
Qing, Wang; Ning, Chen; Weifeng, Sun; Shengli, Lu; Longxing, Shi
2012-12-01
A novel digital control algorithm for digital control power factor correction is presented, which is called the prediction algorithm and has a feature of a higher PF (power factor) with lower total harmonic distortion, and a faster dynamic response with the change of the input voltage or load current. For a certain system, based on the current system state parameters, the prediction algorithm can estimate the track of the output voltage and the inductor current at the next switching cycle and get a set of optimized control sequences to perfectly track the trajectory of input voltage. The proposed prediction algorithm is verified at different conditions, and computer simulation and experimental results under multi-situations confirm the effectiveness of the prediction algorithm. Under the circumstances that the input voltage is in the range of 90-265 V and the load current in the range of 20%-100%, the PF value is larger than 0.998. The startup and the recovery times respectively are about 0.1 s and 0.02 s without overshoot. The experimental results also verify the validity of the proposed method.
Assessing Probabilistic Risk Assessment Approaches for Insect Biological Control Introductions.
Kaufman, Leyla V; Wright, Mark G
2017-07-07
The introduction of biological control agents to new environments requires host specificity tests to estimate potential non-target impacts of a prospective agent. Currently, the approach is conservative, and is based on physiological host ranges determined under captive rearing conditions, without consideration for ecological factors that may influence realized host range. We use historical data and current field data from introduced parasitoids that attack an endemic Lepidoptera species in Hawaii to validate a probabilistic risk assessment (PRA) procedure for non-target impacts. We use data on known host range and habitat use in the place of origin of the parasitoids to determine whether contemporary levels of non-target parasitism could have been predicted using PRA. Our results show that reasonable predictions of potential non-target impacts may be made if comprehensive data are available from places of origin of biological control agents, but scant data produce poor predictions. Using apparent mortality data rather than marginal attack rate estimates in PRA resulted in over-estimates of predicted non-target impact. Incorporating ecological data into PRA models improved the predictive power of the risk assessments.
Assessing Probabilistic Risk Assessment Approaches for Insect Biological Control Introductions
Kaufman, Leyla V.; Wright, Mark G.
2017-01-01
The introduction of biological control agents to new environments requires host specificity tests to estimate potential non-target impacts of a prospective agent. Currently, the approach is conservative, and is based on physiological host ranges determined under captive rearing conditions, without consideration for ecological factors that may influence realized host range. We use historical data and current field data from introduced parasitoids that attack an endemic Lepidoptera species in Hawaii to validate a probabilistic risk assessment (PRA) procedure for non-target impacts. We use data on known host range and habitat use in the place of origin of the parasitoids to determine whether contemporary levels of non-target parasitism could have been predicted using PRA. Our results show that reasonable predictions of potential non-target impacts may be made if comprehensive data are available from places of origin of biological control agents, but scant data produce poor predictions. Using apparent mortality data rather than marginal attack rate estimates in PRA resulted in over-estimates of predicted non-target impact. Incorporating ecological data into PRA models improved the predictive power of the risk assessments. PMID:28686180
The phantom robot - Predictive displays for teleoperation with time delay
NASA Technical Reports Server (NTRS)
Bejczy, Antal K.; Kim, Won S.; Venema, Steven C.
1990-01-01
An enhanced teleoperation technique for time-delayed bilateral teleoperator control is discussed. The control technique selected for time delay is based on the use of a high-fidelity graphics phantom robot that is being controlled in real time (without time delay) against the static task image. Thus, the motion of the phantom robot image on the monitor predicts the motion of the real robot. The real robot's motion will follow the phantom robot's motion on the monitor with the communication time delay implied in the task. Real-time high-fidelity graphics simulation of a PUMA arm is generated and overlaid on the actual camera view of the arm. A simple camera calibration technique is used for calibrated graphics overlay. A preliminary experiment is performed with the predictive display by using a very simple tapping task. The results with this simple task indicate that predictive display enhances the human operator's telemanipulation task performance significantly during free motion when there is a long time delay. It appears, however, that either two-view or stereoscopic predictive displays are necessary for general three-dimensional tasks.
Motivational state controls the prediction error in Pavlovian appetitive-aversive interactions.
Laurent, Vincent; Balleine, Bernard W; Westbrook, R Frederick
2018-01-01
Contemporary theories of learning emphasize the role of a prediction error signal in driving learning, but the nature of this signal remains hotly debated. Here, we used Pavlovian conditioning in rats to investigate whether primary motivational and emotional states interact to control prediction error. We initially generated cues that positively or negatively predicted an appetitive food outcome. We then assessed how these cues modulated aversive conditioning when a novel cue was paired with a foot shock. We found that a positive predictor of food enhances, whereas a negative predictor of that same food impairs, aversive conditioning. Critically, we also showed that the enhancement produced by the positive predictor is removed by reducing the value of its associated food. In contrast, the impairment triggered by the negative predictor remains insensitive to devaluation of its associated food. These findings provide compelling evidence that the motivational value attributed to a predicted food outcome can directly control appetitive-aversive interactions and, therefore, that motivational processes can modulate emotional processes to generate the final error term on which subsequent learning is based. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Milovančević, Miloš; Nikolić, Vlastimir; Anđelković, Boban
2017-01-01
Vibration-based structural health monitoring is widely recognized as an attractive strategy for early damage detection in civil structures. Vibration monitoring and prediction is important for any system since it can save many unpredictable behaviors of the system. If the vibration monitoring is properly managed, that can ensure economic and safe operations. Potentials for further improvement of vibration monitoring lie in the improvement of current control strategies. One of the options is the introduction of model predictive control. Multistep ahead predictive models of vibration are a starting point for creating a successful model predictive strategy. For the purpose of this article, predictive models of are created for vibration monitoring of planetary power transmissions in pellet mills. The models were developed using the novel method based on ANFIS (adaptive neuro fuzzy inference system). The aim of this study is to investigate the potential of ANFIS for selecting the most relevant variables for predictive models of vibration monitoring of pellet mills power transmission. The vibration data are collected by PIC (Programmable Interface Controller) microcontrollers. The goal of the predictive vibration monitoring of planetary power transmissions in pellet mills is to indicate deterioration in the vibration of the power transmissions before the actual failure occurs. The ANFIS process for variable selection was implemented in order to detect the predominant variables affecting the prediction of vibration monitoring. It was also used to select the minimal input subset of variables from the initial set of input variables - current and lagged variables (up to 11 steps) of vibration. The obtained results could be used for simplification of predictive methods so as to avoid multiple input variables. It was preferable to used models with less inputs because of overfitting between training and testing data. While the obtained results are promising, further work is required in order to get results that could be directly applied in practice.
Early strength prediction of concrete based on accelerated curing methods : final report.
DOT National Transportation Integrated Search
1995-12-01
Concrete mix designs and components may currently be changed during the course of a project. The possible negative effects of such changes on concrete strength, are not determined under the current plant control/project control process. Also, the cur...
THE FORMATION OF PB (IV) OXIDES IN CHLORINATED WATER
The foundation for lead control in drinking water distribution systems is based on Pb(II) chemistry. In recent years, however, Pb(IV) oxides have been identified in distribution systems, suggesting that they may be important relative to predicting and controlling lead concentrat...
Kwon, Kideok; Yang, Jihoon; Yoo, Younghwan
2015-04-24
A number of research works has studied packet scheduling policies in energy scavenging wireless sensor networks, based on the predicted amount of harvested energy. Most of them aim to achieve energy neutrality, which means that an embedded system can operate perpetually while meeting application requirements. Unlike other renewable energy sources, solar energy has the feature of distinct periodicity in the amount of harvested energy over a day. Using this feature, this paper proposes a packet transmission control policy that can enhance the network performance while keeping sensor nodes alive. Furthermore, this paper suggests a novel solar energy prediction method that exploits the relation between cloudiness and solar radiation. The experimental results and analyses show that the proposed packet transmission policy outperforms others in terms of the deadline miss rate and data throughput. Furthermore, the proposed solar energy prediction method can predict more accurately than others by 6.92%.
For Whom the Mind Wanders, and When, Varies Across Laboratory and Daily-Life Settings.
Kane, Michael J; Gross, Georgina M; Chun, Charlotte A; Smeekens, Bridget A; Meier, Matt E; Silvia, Paul J; Kwapil, Thomas R
2017-09-01
Undergraduates ( N = 274) participated in a weeklong daily-life experience-sampling study of mind wandering after being assessed in the lab for executive-control abilities (working memory capacity; attention-restraint ability; attention-constraint ability; and propensity for task-unrelated thoughts, or TUTs) and personality traits. Eight times a day, electronic devices prompted subjects to report on their current thoughts and context. Working memory capacity and attention abilities predicted subjects' TUT rates in the lab, but predicted the frequency of daily-life mind wandering only as a function of subjects' momentary attempts to concentrate. This pattern replicates prior daily-life findings but conflicts with laboratory findings. Results for personality factors also revealed different associations in the lab and daily life: Only neuroticism predicted TUT rate in the lab, but only openness predicted mind-wandering rate in daily life (both predicted the content of daily-life mind wandering). Cognitive and personality factors also predicted dimensions of everyday thought other than mind wandering, such as subjective judgments of controllability of thought. Mind wandering in people's daily environments and TUTs during controlled and artificial laboratory tasks have different correlates (and perhaps causes). Thus, mind-wandering theories based solely on lab phenomena may be incomplete.
Tomáš Václavík; Ross K. Meentemeyer
2009-01-01
Species distribution models (SDMs) based on statistical relationships between occurrence data and underlying environmental conditions are increasingly used to predict spatial patterns of biological invasions and prioritize locations for early detection and control of invasion outbreaks. However, invasive species distribution models (iSDMs) face special challenges...
USDA-ARS?s Scientific Manuscript database
The promise of genomic selection is that genetic potential can be accurately predicted from genotypes. Simple deoxyribonucleic acid (DNA) tests might replace low accuracy predictions based on performance and pedigree for expensive or lowly heritable measures of puberty and fertility. The promise i...
USDA-ARS?s Scientific Manuscript database
The promise of genomic selection is accurate prediction of animals' genetic potential from their genotypes. Simple DNA tests might replace low accuracy predictions for expensive or lowly heritable measures of puberty and fertility based on performance and pedigree. Knowing which DNA variants affec...
ERIC Educational Resources Information Center
Fan, Weiqiao; Zhang, Li-Fang; Watkins, David
2010-01-01
The study examined the incremental validity of thinking styles in predicting academic achievement after controlling for personality and achievement motivation in the hypermedia-based learning environment. Seventy-two Chinese college students from Shanghai, the People's Republic of China, took part in this instructional experiment. The…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Xin; Baker, Kyri A.; Christensen, Dane T.
This paper presents a user-preference-driven home energy management system (HEMS) for demand response (DR) with residential building loads and battery storage. The HEMS is based on a multi-objective model predictive control algorithm, where the objectives include energy cost, thermal comfort, and carbon emission. A multi-criterion decision making method originating from social science is used to quickly determine user preferences based on a brief survey and derive the weights of different objectives used in the optimization process. Besides the residential appliances used in the traditional DR programs, a home battery system is integrated into the HEMS to improve the flexibility andmore » reliability of the DR resources. Simulation studies have been performed on field data from a residential building stock data set. Appliance models and usage patterns were learned from the data to predict the DR resource availability. Results indicate the HEMS was able to provide a significant amount of load reduction with less than 20% prediction error in both heating and cooling cases.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Xin; Baker, Kyri A; Isley, Steven C
This paper presents a user-preference-driven home energy management system (HEMS) for demand response (DR) with residential building loads and battery storage. The HEMS is based on a multi-objective model predictive control algorithm, where the objectives include energy cost, thermal comfort, and carbon emission. A multi-criterion decision making method originating from social science is used to quickly determine user preferences based on a brief survey and derive the weights of different objectives used in the optimization process. Besides the residential appliances used in the traditional DR programs, a home battery system is integrated into the HEMS to improve the flexibility andmore » reliability of the DR resources. Simulation studies have been performed on field data from a residential building stock data set. Appliance models and usage patterns were learned from the data to predict the DR resource availability. Results indicate the HEMS was able to provide a significant amount of load reduction with less than 20% prediction error in both heating and cooling cases.« less
Influence of household rat infestation on leptospira transmission in the urban slum environment.
Costa, Federico; Ribeiro, Guilherme S; Felzemburgh, Ridalva D M; Santos, Norlan; Reis, Renato Barbosa; Santos, Andreia C; Fraga, Deborah Bittencourt Mothe; Araujo, Wildo N; Santana, Carlos; Childs, James E; Reis, Mitermayer G; Ko, Albert I
2014-12-01
The Norway rat (Rattus norvegicus) is the principal reservoir for leptospirosis in many urban settings. Few studies have identified markers for rat infestation in slum environments while none have evaluated the association between household rat infestation and Leptospira infection in humans or the use of infestation markers as a predictive model to stratify risk for leptospirosis. We enrolled a cohort of 2,003 urban slum residents from Salvador, Brazil in 2004, and followed the cohort during four annual serosurveys to identify serologic evidence for Leptospira infection. In 2007, we performed rodent infestation and environmental surveys of 80 case households, in which resided at least one individual with Leptospira infection, and 109 control households. In the case-control study, signs of rodent infestation were identified in 78% and 42% of the households, respectively. Regression modeling identified the presence of R. norvegicus feces (OR, 4.95; 95% CI, 2.13-11.47), rodent burrows (2.80; 1.06-7.36), access to water (2.79; 1.28-6.09), and un-plastered walls (2.71; 1.21-6.04) as independent risk factors associated with Leptospira infection in a household. We developed a predictive model for infection, based on assigning scores to each of the rodent infestation risk factors. Receiver operating characteristic curve analysis found that the prediction score produced a good/excellent fit based on an area under the curve of 0.78 (0.71-0.84). Our study found that a high proportion of slum households were infested with R. norvegicus and that rat infestation was significantly associated with the risk of Leptospira infection, indicating that high level transmission occurs among slum households. We developed an easily applicable prediction score based on rat infestation markers, which identified households with highest infection risk. The use of the prediction score in community-based screening may therefore be an effective risk stratification strategy for targeting control measures in slum settings of high leptospirosis transmission.
Adaptive PIF Control for Permanent Magnet Synchronous Motors Based on GPC
Lu, Shaowu; Tang, Xiaoqi; Song, Bao
2013-01-01
To enhance the control performance of permanent magnet synchronous motors (PMSMs), a generalized predictive control (GPC)-based proportional integral feedforward (PIF) controller is proposed for the speed control system. In this new approach, firstly, based on the online identification of controlled model parameters, a simplified GPC law supplies the PIF controller with suitable control parameters according to the uncertainties in the operating conditions. Secondly, the speed reference curve for PMSMs is usually required to be continuous and continuously differentiable according to the general servo system design requirements, so the adaptation of the speed reference is discussed in details in this paper. Hence, the performance of the speed control system using a GPC-based PIF controller is improved for tracking some specified signals. The main motivation of this paper is the extension of GPC law to replace the traditional PI or PIF controllers in industrial applications. The efficacy and usefulness of the proposed controller are verified through experimental results. PMID:23262481
Adaptive PIF control for permanent magnet synchronous motors based on GPC.
Lu, Shaowu; Tang, Xiaoqi; Song, Bao
2012-12-24
To enhance the control performance of permanent magnet synchronous motors (PMSMs), a generalized predictive control (GPC)-based proportional integral feedforward (PIF) controller is proposed for the speed control system. In this new approach, firstly, based on the online identification of controlled model parameters, a simplified GPC law supplies the PIF controller with suitable control parameters according to the uncertainties in the operating conditions. Secondly, the speed reference curve for PMSMs is usually required to be continuous and continuously differentiable according to the general servo system design requirements, so the adaptation of the speed reference is discussed in details in this paper. Hence, the performance of the speed control system using a GPC-based PIF controller is improved for tracking some specified signals. The main motivation of this paper is the extension of GPC law to replace the traditional PI or PIF controllers in industrial applications. The efficacy and usefulness of the proposed controller are verified through experimental results.
Model-Based and Model-Free Pavlovian Reward Learning: Revaluation, Revision and Revelation
Dayan, Peter; Berridge, Kent C.
2014-01-01
Evidence supports at least two methods for learning about reward and punishment and making predictions for guiding actions. One method, called model-free, progressively acquires cached estimates of the long-run values of circumstances and actions from retrospective experience. The other method, called model-based, uses representations of the environment, expectations and prospective calculations to make cognitive predictions of future value. Extensive attention has been paid to both methods in computational analyses of instrumental learning. By contrast, although a full computational analysis has been lacking, Pavlovian learning and prediction has typically been presumed to be solely model-free. Here, we revise that presumption and review compelling evidence from Pavlovian revaluation experiments showing that Pavlovian predictions can involve their own form of model-based evaluation. In model-based Pavlovian evaluation, prevailing states of the body and brain influence value computations, and thereby produce powerful incentive motivations that can sometimes be quite new. We consider the consequences of this revised Pavlovian view for the computational landscape of prediction, response and choice. We also revisit differences between Pavlovian and instrumental learning in the control of incentive motivation. PMID:24647659
Model-based and model-free Pavlovian reward learning: revaluation, revision, and revelation.
Dayan, Peter; Berridge, Kent C
2014-06-01
Evidence supports at least two methods for learning about reward and punishment and making predictions for guiding actions. One method, called model-free, progressively acquires cached estimates of the long-run values of circumstances and actions from retrospective experience. The other method, called model-based, uses representations of the environment, expectations, and prospective calculations to make cognitive predictions of future value. Extensive attention has been paid to both methods in computational analyses of instrumental learning. By contrast, although a full computational analysis has been lacking, Pavlovian learning and prediction has typically been presumed to be solely model-free. Here, we revise that presumption and review compelling evidence from Pavlovian revaluation experiments showing that Pavlovian predictions can involve their own form of model-based evaluation. In model-based Pavlovian evaluation, prevailing states of the body and brain influence value computations, and thereby produce powerful incentive motivations that can sometimes be quite new. We consider the consequences of this revised Pavlovian view for the computational landscape of prediction, response, and choice. We also revisit differences between Pavlovian and instrumental learning in the control of incentive motivation.
Real-time control of walking using recordings from dorsal root ganglia
NASA Astrophysics Data System (ADS)
Holinski, B. J.; Everaert, D. G.; Mushahwar, V. K.; Stein, R. B.
2013-10-01
Objective. The goal of this study was to decode sensory information from the dorsal root ganglia (DRG) in real time, and to use this information to adapt the control of unilateral stepping with a state-based control algorithm consisting of both feed-forward and feedback components. Approach. In five anesthetized cats, hind limb stepping on a walkway or treadmill was produced by patterned electrical stimulation of the spinal cord through implanted microwire arrays, while neuronal activity was recorded from the DRG. Different parameters, including distance and tilt of the vector between hip and limb endpoint, integrated gyroscope and ground reaction force were modelled from recorded neural firing rates. These models were then used for closed-loop feedback. Main results. Overall, firing-rate-based predictions of kinematic sensors (limb endpoint, integrated gyroscope) were the most accurate with variance accounted for >60% on average. Force prediction had the lowest prediction accuracy (48 ± 13%) but produced the greatest percentage of successful rule activations (96.3%) for stepping under closed-loop feedback control. The prediction of all sensor modalities degraded over time, with the exception of tilt. Significance. Sensory feedback from moving limbs would be a desirable component of any neuroprosthetic device designed to restore walking in people after a spinal cord injury. This study provides a proof-of-principle that real-time feedback from the DRG is possible and could form part of a fully implantable neuroprosthetic device with further development.
Real-time control of walking using recordings from dorsal root ganglia
Holinski, B J; Everaert, D G; Mushahwar, V K; Stein, R B
2013-01-01
Objective The goal of this study was to decode sensory information from the dorsal root ganglia (DRG) in real time, and to use this information to adapt the control of unilateral stepping with a state-based control algorithm consisting of both feed-forward and feedback components. Approach In five anesthetized cats, hind limb stepping on a walkway or treadmill was produced by patterned electrical stimulation of the spinal cord through implanted microwire arrays, while neuronal activity was recorded from the dorsal root ganglia. Different parameters, including distance and tilt of the vector between hip and limb endpoint, integrated gyroscope and ground reaction force were modeled from recorded neural firing rates. These models were then used for closed-loop feedback. Main Results Overall, firing-rate based predictions of kinematic sensors (limb endpoint, integrated gyroscope) were the most accurate with variance accounted for >60% on average. Force prediction had the lowest prediction accuracy (48±13%) but produced the greatest percentage of successful rule activations (96.3%) for stepping under closed-loop feedback control. The prediction of all sensor modalities degraded over time, with the exception of tilt. Significance Sensory feedback from moving limbs would be a desirable component of any neuroprosthetic device designed to restore walking in people after a spinal cord injury. This study provides a proof-of-principle that real-time feedback from the DRG is possible and could form part of a fully implantable neuroprosthetic device with further development. PMID:23928579
Campos, Rui C; Holden, Ronald R; Costa, Fátima; Oliveira, Ana Rita; Abreu, Marta; Fresca, Natália
2017-02-01
Background and aims(s): The study evaluated the contribution of coping strategies, based on the Toulousiane conceptualization of coping, to the prediction of suicide risk and tested the moderating effect of gender, controlling for depressive symptoms. A two-time data collection design was used. A community sample of 195 adults (91 men and 104 women) ranging in age from 19 to 65 years and living in several Portuguese regions, mostly in Alentejo, participated in this research. Gender, depressive symptoms, control, and withdrawal and conversion significantly predicted suicide risk and gender interacted with control, withdrawal and conversion, and social distraction in the prediction of suicide risk. Coping predicted suicide risk only for women. Results have important implications for assessment and intervention with suicide at-risk individuals. In particular,the evaluation and development of coping skills is indicated as a goal for therapists having suicide at-risk women as clients.
Evolution of Bacterial Suicide
NASA Astrophysics Data System (ADS)
Tchernookov, Martin; Nemenman, Ilya
2013-03-01
While active, controlled cellular suicide (autolysis) in bacteria is commonly observed, it has been hard to argue that autolysis can be beneficial to an individual who commits it. We propose a theoretical model that predicts that bacterial autolysis is evolutionarily advantageous to an individualand would fixate in physically structured environments for stationary phase colonies. We perform spatially resolved agent-based simulations of the model, which predict that lower mixing in the environment results in fixation of a higher autolysis rate from a single mutated cell, regardless of the colony's genetic diversity. We argue that quorum sensing will fixate as well, even if initially rare, if it is coupled to controlling the autolysis rate. The model does not predict a strong additional competitive advantage for cells where autolysis is controlled by quorum sensing systems that distinguish self from nonself. These predictions are broadly supported by recent experimental results in B. subtilisand S. pneumoniae. Research partially supported by the James S McDonnell Foundation grant No. 220020321 and by HFSP grant No. RGY0084/2011.
Electrophysiological evidence for a general auditory prediction deficit in adults who stutter
Daliri, Ayoub; Max, Ludo
2015-01-01
We previously found that stuttering individuals do not show the typical auditory modulation observed during speech planning in nonstuttering individuals. In this follow-up study, we further elucidate this difference by investigating whether stuttering speakers’ atypical auditory modulation is observed only when sensory predictions are based on movement planning or also when predictable auditory input is not a consequence of one’s own actions. We recorded 10 stuttering and 10 nonstuttering adults’ auditory evoked potentials in response to random probe tones delivered while anticipating either speaking aloud or hearing one’s own speech played back and in a control condition without auditory input (besides probe tones). N1 amplitude of nonstuttering speakers was reduced prior to both speaking and hearing versus the control condition. Stuttering speakers, however, showed no N1 amplitude reduction in either the speaking or hearing condition as compared with control. Thus, findings suggest that stuttering speakers have general auditory prediction difficulties. PMID:26335995
Efficient Strategies for Predictive Cell-Level Control of Lithium-Ion Batteries
NASA Astrophysics Data System (ADS)
Xavier, Marcelo A.
This dissertation introduces a set of state-space based model predictive control (MPC) algorithms tailored to a non-zero feedthrough term to account for the ohmic resistance that is inherent to the battery dynamics. MPC is herein applied to the problem of regulating cell-level measures of performance for lithium-ion batteries; the control methodologies are used first to compute a fast charging profile that respects input, output, and state constraints, i.e., input current, terminal voltage, and state of charge for an equivalent circuit model of the battery cell, and extended later to a linearized physics-based reduced-order model. The novelty of this work can summarized as follows: (1) the MPC variants are employed to a physics based reduce-order model in order to make use of the available set of internal electrochemical variables and mitigate internal mechanisms of cell degradation. (e.g., lithium plating); (2) we developed a dual-mode MPC closed-loop paradigm that suits the battery control problem with the objective of reducing computational effort by solving simpler optimization routines and guaranteeing stability; and finally (3) we developed a completely new approach of the use of a predictive control strategy where MPC is employed as a "smart sensor" for power estimation. Results are presented that show the comparative performance of the MPC algorithms for both EMC and PBROM These results highlight that dual-mode MPC can deliver optimal input current profiles by using a shorter horizon while still guaranteeing stability. Additionally, rigorous mathematical developments are presented for the development of the MPC algorithms. The use of MPC as a "smart sensor" presents it self as an appealing method for power estimation, since MPC permits a fully dynamic input profile that is able to achieve performance right at the proper constraint boundaries. Therefore, MPC is expected to produce accurate power limits for each computed sample time when compared to the Bisection method [1] which assumes constant input values over the prediction interval.
Lin, Chih-Tin; Meyhofer, Edgar; Kurabayashi, Katsuo
2010-01-01
Directional control of microtubule shuttles via microfabricated tracks is key to the development of controlled nanoscale mass transport by kinesin motor molecules. Here we develop and test a model to quantitatively predict the stochastic behavior of microtubule guiding when they mechanically collide with the sidewalls of lithographically patterned tracks. By taking into account appropriate probability distributions of microscopic states of the microtubule system, the model allows us to theoretically analyze the roles of collision conditions and kinesin surface densities in determining how the motion of microtubule shuttles is controlled. In addition, we experimentally observe the statistics of microtubule collision events and compare our theoretical prediction with experimental data to validate our model. The model will direct the design of future hybrid nanotechnology devices that integrate nanoscale transport systems powered by kinesin-driven molecular shuttles.
Model Predictive Control of the Current Profile and the Internal Energy of DIII-D Plasmas
NASA Astrophysics Data System (ADS)
Lauret, M.; Wehner, W.; Schuster, E.
2015-11-01
For efficient and stable operation of tokamak plasmas it is important that the current density profile and the internal energy are jointly controlled by using the available heating and current-drive (H&CD) sources. The proposed approach is a version of nonlinear model predictive control in which the input set is restricted in size by the possible combinations of the H&CD on/off states. The controller uses real-time predictions over a receding-time horizon of both the current density profile (nonlinear partial differential equation) and the internal energy (nonlinear ordinary differential equation) evolutions. At every time instant the effect of every possible combination of H&CD sources on the current profile and internal energy is evaluated over the chosen time horizon. The combination that leads to the best result, which is assessed by a user-defined cost function, is then applied up until the next time instant. Simulations results based on a control-oriented transport code illustrate the effectiveness of the proposed control method. Supported by the US DOE under DE-FC02-04ER54698 & DE-SC0010661.
NASA Technical Reports Server (NTRS)
Morey, Susan; Prevot, Thomas; Mercer, Joey; Martin, Lynne; Bienert, Nancy; Cabrall, Christopher; Hunt, Sarah; Homola, Jeffrey; Kraut, Joshua
2013-01-01
A human-in-the-loop simulation was conducted to examine the effects of varying levels of trajectory prediction uncertainty on air traffic controller workload and performance, as well as how strategies and the use of decision support tools change in response. This paper focuses on the strategies employed by two controllers from separate teams who worked in parallel but independently under identical conditions (airspace, arrival traffic, tools) with the goal of ensuring schedule conformance and safe separation for a dense arrival flow in en route airspace. Despite differences in strategy and methods, both controllers achieved high levels of schedule conformance and safe separation. Overall, results show that trajectory uncertainties introduced by wind and aircraft performance prediction errors do not affect the controllers' ability to manage traffic. Controller strategies were fairly robust to changes in error, though strategies were affected by the amount of delay to absorb (scheduled time of arrival minus estimated time of arrival). Using the results and observations, this paper proposes an ability to dynamically customize the display of information including delay time based on observed error to better accommodate different strategies and objectives.
Real-time economic nonlinear model predictive control for wind turbine control
NASA Astrophysics Data System (ADS)
Gros, Sebastien; Schild, Axel
2017-12-01
Nonlinear model predictive control (NMPC) is a strong candidate to handle the control challenges emerging in the modern wind energy industry. Recent research suggested that wind turbine (WT) control based on economic NMPC (ENMPC) can improve the closed-loop performance and simplify the task of controller design when compared to a classical NMPC approach. This paper establishes a formal relationship between the ENMPC controller and the classic NMPC approach, and compares empirically their closed-loop nominal behaviour and performance. The robustness of the performance is assessed for an inaccurate modelling of the tower fore-aft main frequency. Additionally, though a perfect wind preview is assumed here, the effect of having a limited horizon of preview of the wind speed via the LIght Detection And Ranging (LIDAR) sensor is investigated. Finally, this paper provides new algorithmic solutions for deploying ENMPC for WT control, and report improved computational times.
NASA Technical Reports Server (NTRS)
Taylor, R. B.; Zwicke, P. E.; Gold, P.; Miao, W.
1980-01-01
An analytical study was conducted to define the basic configuration of an active control system for helicopter vibration and gust response alleviation. The study culminated in a control system design which has two separate systems: narrow band loop for vibration reduction and wider band loop for gust response alleviation. The narrow band vibration loop utilizes the standard swashplate control configuration to input controller for the vibration loop is based on adaptive optimal control theory and is designed to adapt to any flight condition including maneuvers and transients. The prime characteristics of the vibration control system is its real time capability. The gust alleviation control system studied consists of optimal sampled data feedback gains together with an optimal one-step-ahead prediction. The prediction permits the estimation of the gust disturbance which can then be used to minimize the gust effects on the helicopter.
Vestibulospinal adaptation to microgravity
NASA Technical Reports Server (NTRS)
Paloski, W. H.
1998-01-01
Human balance control is known to be transiently disrupted after spaceflight; however, the mechanisms responsible for postflight postural ataxia are still under investigation. In this report, we propose a conceptual model of vestibulospinal adaptation based on theoretical adaptive control concepts and supported by the results from a comprehensive study of balance control recovery after spaceflight. The conceptual model predicts that immediately after spaceflight the balance control system of a returning astronaut does not expect to receive gravity-induced afferent inputs and that descending vestibulospinal control of balance is disrupted until the central nervous system is able to cope with the newly available vestibular otolith information. Predictions of the model are tested using data from a study of the neurosensory control of balance in astronauts immediately after landing. In that study, the mechanisms of sensorimotor balance control were assessed under normal, reduced, and/or altered (sway-referenced) visual and somatosensory input conditions. We conclude that the adaptive control model accurately describes the neurobehavioral responses to spaceflight and that similar models of altered sensory, motor, or environmental constraints are needed clinically to predict responses that patients with sensorimotor pathologies may have to various visual-vestibular or changing stimulus environments.
Method and system for fault accommodation of machines
NASA Technical Reports Server (NTRS)
Goebel, Kai Frank (Inventor); Subbu, Rajesh Venkat (Inventor); Rausch, Randal Thomas (Inventor); Frederick, Dean Kimball (Inventor)
2011-01-01
A method for multi-objective fault accommodation using predictive modeling is disclosed. The method includes using a simulated machine that simulates a faulted actual machine, and using a simulated controller that simulates an actual controller. A multi-objective optimization process is performed, based on specified control settings for the simulated controller and specified operational scenarios for the simulated machine controlled by the simulated controller, to generate a Pareto frontier-based solution space relating performance of the simulated machine to settings of the simulated controller, including adjustment to the operational scenarios to represent a fault condition of the simulated machine. Control settings of the actual controller are adjusted, represented by the simulated controller, for controlling the actual machine, represented by the simulated machine, in response to a fault condition of the actual machine, based on the Pareto frontier-based solution space, to maximize desirable operational conditions and minimize undesirable operational conditions while operating the actual machine in a region of the solution space defined by the Pareto frontier.
Case-Based Policy and Goal Recognition
2015-09-30
or noisy. Ontanón et al. [8] use case-based reasoning (CBR) to model human driving vehicle control behaviors and skill level to reduce teen crash...Snodgrass, S., Bonfiglio, D., Winston, F.K., McDonald, C., Gonzalez, A.J.: Case-based prediction of teen driver behavior and skill. In: Pro- ceedings
Model predictive control of a wind turbine modelled in Simpack
NASA Astrophysics Data System (ADS)
Jassmann, U.; Berroth, J.; Matzke, D.; Schelenz, R.; Reiter, M.; Jacobs, G.; Abel, D.
2014-06-01
Wind turbines (WT) are steadily growing in size to increase their power production, which also causes increasing loads acting on the turbine's components. At the same time large structures, such as the blades and the tower get more flexible. To minimize this impact, the classical control loops for keeping the power production in an optimum state are more and more extended by load alleviation strategies. These additional control loops can be unified by a multiple-input multiple-output (MIMO) controller to achieve better balancing of tuning parameters. An example for MIMO control, which has been paid more attention to recently by wind industry, is Model Predictive Control (MPC). In a MPC framework a simplified model of the WT is used to predict its controlled outputs. Based on a user-defined cost function an online optimization calculates the optimal control sequence. Thereby MPC can intrinsically incorporate constraints e.g. of actuators. Turbine models used for calculation within the MPC are typically simplified. For testing and verification usually multi body simulations, such as FAST, BLADED or FLEX5 are used to model system dynamics, but they are still limited in the number of degrees of freedom (DOF). Detailed information about load distribution (e.g. inside the gearbox) cannot be provided by such models. In this paper a Model Predictive Controller is presented and tested in a co-simulation with SlMPACK, a multi body system (MBS) simulation framework used for detailed load analysis. The analysis are performed on the basis of the IME6.0 MBS WT model, described in this paper. It is based on the rotor of the NREL 5MW WT and consists of a detailed representation of the drive train. This takes into account a flexible main shaft and its main bearings with a planetary gearbox, where all components are modelled flexible, as well as a supporting flexible main frame. The wind loads are simulated using the NREL AERODYN v13 code which has been implemented as a routine to SlMPACK. This modeling approach allows to investigate the nonlinear behavior of wind loads and nonlinear drive train dynamics. Thereby the MPC's impact on specific loads and effects not covered by standard simulation tools can be assessed and investigated. Keywords. wind turbine simulation, model predictive control, multi body simulation, MIMO, load alleviation
An Optimal Current Observer for Predictive Current Controlled Buck DC-DC Converters
Min, Run; Chen, Chen; Zhang, Xiaodong; Zou, Xuecheng; Tong, Qiaoling; Zhang, Qiao
2014-01-01
In digital current mode controlled DC-DC converters, conventional current sensors might not provide isolation at a minimized price, power loss and size. Therefore, a current observer which can be realized based on the digital circuit itself, is a possible substitute. However, the observed current may diverge due to the parasitic resistors and the forward conduction voltage of the diode. Moreover, the divergence of the observed current will cause steady state errors in the output voltage. In this paper, an optimal current observer is proposed. It achieves the highest observation accuracy by compensating for all the known parasitic parameters. By employing the optimal current observer-based predictive current controller, a buck converter is implemented. The converter has a convergently and accurately observed inductor current, and shows preferable transient response than the conventional voltage mode controlled converter. Besides, costs, power loss and size are minimized since the strategy requires no additional hardware for current sensing. The effectiveness of the proposed optimal current observer is demonstrated experimentally. PMID:24854061
Aliabadi, Mohsen; Golmohammadi, Rostam; Khotanlou, Hassan; Mansoorizadeh, Muharram; Salarpour, Amir
2014-01-01
Noise prediction is considered to be the best method for evaluating cost-preventative noise controls in industrial workrooms. One of the most important issues is the development of accurate models for analysis of the complex relationships among acoustic features affecting noise level in workrooms. In this study, advanced fuzzy approaches were employed to develop relatively accurate models for predicting noise in noisy industrial workrooms. The data were collected from 60 industrial embroidery workrooms in the Khorasan Province, East of Iran. The main acoustic and embroidery process features that influence the noise were used to develop prediction models using MATLAB software. Multiple regression technique was also employed and its results were compared with those of fuzzy approaches. Prediction errors of all prediction models based on fuzzy approaches were within the acceptable level (lower than one dB). However, Neuro-fuzzy model (RMSE=0.53dB and R2=0.88) could slightly improve the accuracy of noise prediction compared with generate fuzzy model. Moreover, fuzzy approaches provided more accurate predictions than did regression technique. The developed models based on fuzzy approaches as useful prediction tools give professionals the opportunity to have an optimum decision about the effectiveness of acoustic treatment scenarios in embroidery workrooms.
Savolainen, Otto; Fagerberg, Björn; Vendelbo Lind, Mads; Sandberg, Ann-Sofie; Ross, Alastair B; Bergström, Göran
2017-01-01
The aim was to determine if metabolomics could be used to build a predictive model for type 2 diabetes (T2D) risk that would improve prediction of T2D over current risk markers. Gas chromatography-tandem mass spectrometry metabolomics was used in a nested case-control study based on a screening sample of 64-year-old Caucasian women (n = 629). Candidate metabolic markers of T2D were identified in plasma obtained at baseline and the power to predict diabetes was tested in 69 incident cases occurring during 5.5 years follow-up. The metabolomics results were used as a standalone prediction model and in combination with established T2D predictive biomarkers for building eight T2D prediction models that were compared with each other based on their sensitivity and selectivity for predicting T2D. Established markers of T2D (impaired fasting glucose, impaired glucose tolerance, insulin resistance (HOMA), smoking, serum adiponectin)) alone, and in combination with metabolomics had the largest areas under the curve (AUC) (0.794 (95% confidence interval [0.738-0.850]) and 0.808 [0.749-0.867] respectively), with the standalone metabolomics model based on nine fasting plasma markers having a lower predictive power (0.657 [0.577-0.736]). Prediction based on non-blood based measures was 0.638 [0.565-0.711]). Established measures of T2D risk remain the best predictor of T2D risk in this population. Additional markers detected using metabolomics are likely related to these measures as they did not enhance the overall prediction in a combined model.
Savolainen, Otto; Fagerberg, Björn; Vendelbo Lind, Mads; Sandberg, Ann-Sofie; Ross, Alastair B.; Bergström, Göran
2017-01-01
Aim The aim was to determine if metabolomics could be used to build a predictive model for type 2 diabetes (T2D) risk that would improve prediction of T2D over current risk markers. Methods Gas chromatography-tandem mass spectrometry metabolomics was used in a nested case-control study based on a screening sample of 64-year-old Caucasian women (n = 629). Candidate metabolic markers of T2D were identified in plasma obtained at baseline and the power to predict diabetes was tested in 69 incident cases occurring during 5.5 years follow-up. The metabolomics results were used as a standalone prediction model and in combination with established T2D predictive biomarkers for building eight T2D prediction models that were compared with each other based on their sensitivity and selectivity for predicting T2D. Results Established markers of T2D (impaired fasting glucose, impaired glucose tolerance, insulin resistance (HOMA), smoking, serum adiponectin)) alone, and in combination with metabolomics had the largest areas under the curve (AUC) (0.794 (95% confidence interval [0.738–0.850]) and 0.808 [0.749–0.867] respectively), with the standalone metabolomics model based on nine fasting plasma markers having a lower predictive power (0.657 [0.577–0.736]). Prediction based on non-blood based measures was 0.638 [0.565–0.711]). Conclusions Established measures of T2D risk remain the best predictor of T2D risk in this population. Additional markers detected using metabolomics are likely related to these measures as they did not enhance the overall prediction in a combined model. PMID:28692646
Controller evaluations of the descent advisor automation aid
NASA Technical Reports Server (NTRS)
Tobias, Leonard; Volckers, Uwe; Erzberger, Heinz
1989-01-01
An automation aid to assist air traffic controllers in efficiently spacing traffic and meeting arrival times at a fix has been developed at NASA Ames Research Center. The automation aid, referred to as the descent advisor (DA), is based on accurate models of aircraft performance and weather conditions. The DA generates suggested clearances, including both top-of-descent point and speed profile data, for one or more aircraft in order to achieve specific time or distance separation objectives. The DA algorithm is interfaced with a mouse-based, menu-driven controller display that allows the air traffic controller to interactively use its accurate predictive capability to resolve conflicts and issue advisories to arrival aircraft. This paper focuses on operational issues concerning the utilization of the DA, specifically, how the DA can be used for prediction, intrail spacing, and metering. In order to evaluate the DA, a real time simulation was conducted using both current and retired controller subjects. Controllers operated in teams of two, as they do in the present environment; issues of training and team interaction will be discussed. Evaluations by controllers indicated considerable enthusiasm for the DA aid, and provided specific recommendations for using the tool effectively.
Bingi, Jayachandra; Murukeshan, Vadakke Matham
2015-12-18
Laser speckle pattern is a granular structure formed due to random coherent wavelet interference and generally considered as noise in optical systems including photolithography. Contrary to this, in this paper, we use the speckle pattern to generate predictable and controlled Gaussian random structures and quasi-random structures photo-lithographically. The random structures made using this proposed speckle lithography technique are quantified based on speckle statistics, radial distribution function (RDF) and fast Fourier transform (FFT). The control over the speckle size, density and speckle clustering facilitates the successful fabrication of black silicon with different surface structures. The controllability and tunability of randomness makes this technique a robust method for fabricating predictable 2D Gaussian random structures and black silicon structures. These structures can enhance the light trapping significantly in solar cells and hence enable improved energy harvesting. Further, this technique can enable efficient fabrication of disordered photonic structures and random media based devices.
Text Mining Improves Prediction of Protein Functional Sites
Cohn, Judith D.; Ravikumar, Komandur E.
2012-01-01
We present an approach that integrates protein structure analysis and text mining for protein functional site prediction, called LEAP-FS (Literature Enhanced Automated Prediction of Functional Sites). The structure analysis was carried out using Dynamics Perturbation Analysis (DPA), which predicts functional sites at control points where interactions greatly perturb protein vibrations. The text mining extracts mentions of residues in the literature, and predicts that residues mentioned are functionally important. We assessed the significance of each of these methods by analyzing their performance in finding known functional sites (specifically, small-molecule binding sites and catalytic sites) in about 100,000 publicly available protein structures. The DPA predictions recapitulated many of the functional site annotations and preferentially recovered binding sites annotated as biologically relevant vs. those annotated as potentially spurious. The text-based predictions were also substantially supported by the functional site annotations: compared to other residues, residues mentioned in text were roughly six times more likely to be found in a functional site. The overlap of predictions with annotations improved when the text-based and structure-based methods agreed. Our analysis also yielded new high-quality predictions of many functional site residues that were not catalogued in the curated data sources we inspected. We conclude that both DPA and text mining independently provide valuable high-throughput protein functional site predictions, and that integrating the two methods using LEAP-FS further improves the quality of these predictions. PMID:22393388
Predicting Dynamic Postural Instability Using Center of Mass Time-to-Contact Information
Hasson, Christopher J.; Van Emmerik, Richard E.A.; Caldwell, Graham E.
2008-01-01
Our purpose was to determine whether spatiotemporal measures of center of mass motion relative to the base of support boundary could predict stepping strategies after upper-body postural perturbations in humans. We expected that inclusion of center of mass acceleration in such time-to-contact (TtC) calculations would give better predictions and more advanced warning of perturbation severity. TtC measures were compared with traditional postural variables, which don’t consider support boundaries, and with an inverted pendulum model of dynamic stability developed by Hof et al. (2005). A pendulum was used to deliver sequentially increasing perturbations to 10 young adults, who were strapped to a wooden backboard that constrained motion to sagittal plane rotation about the ankle joint. Subjects were instructed to resist the perturbations, stepping only if necessary to prevent a fall. Peak center of mass and center of pressure velocity and acceleration demonstrated linear increases with postural challenge. In contrast, boundary relevant minimum TtC values decreased nonlinearly with postural challenge, enabling prediction of stepping responses using quadratic equations. When TtC calculations incorporated center of mass acceleration, the quadratic fits were better and gave more accurate predictions of the TtC values that would trigger stepping responses. In addition, TtC minima occurred earlier with acceleration inclusion, giving more advanced warning of perturbation severity. Our results were in agreement with TtC predictions based on Hof’s model, and suggest that TtC may function as a control parameter, influencing the postural control system’s decision to transition from a stationary base of support to a stepping strategy. PMID:18556003
NASA Astrophysics Data System (ADS)
Xavier, Marcelo A.; Trimboli, M. Scott
2015-07-01
This paper introduces a novel application of model predictive control (MPC) to cell-level charging of a lithium-ion battery utilizing an equivalent circuit model of battery dynamics. The approach employs a modified form of the MPC algorithm that caters for direct feed-though signals in order to model near-instantaneous battery ohmic resistance. The implementation utilizes a 2nd-order equivalent circuit discrete-time state-space model based on actual cell parameters; the control methodology is used to compute a fast charging profile that respects input, output, and state constraints. Results show that MPC is well-suited to the dynamics of the battery control problem and further suggest significant performance improvements might be achieved by extending the result to electrochemical models.
NASA Astrophysics Data System (ADS)
Mu, G. Y.; Mi, X. Z.; Wang, F.
2018-01-01
The high temperature low cycle fatigue tests of TC4 titanium alloy and TC11 titanium alloy are carried out under strain controlled. The relationships between cyclic stress-life and strain-life are analyzed. The high temperature low cycle fatigue life prediction model of two kinds of titanium alloys is established by using Manson-Coffin method. The relationship between failure inverse number and plastic strain range presents nonlinear in the double logarithmic coordinates. Manson-Coffin method assumes that they have linear relation. Therefore, there is bound to be a certain prediction error by using the Manson-Coffin method. In order to solve this problem, a new method based on exponential function is proposed. The results show that the fatigue life of the two kinds of titanium alloys can be predicted accurately and effectively by using these two methods. Prediction accuracy is within ±1.83 times scatter zone. The life prediction capability of new methods based on exponential function proves more effective and accurate than Manson-Coffin method for two kinds of titanium alloys. The new method based on exponential function can give better fatigue life prediction results with the smaller standard deviation and scatter zone than Manson-Coffin method. The life prediction results of two methods for TC4 titanium alloy prove better than TC11 titanium alloy.
Moretz, Chad; Zhou, Yunping; Dhamane, Amol D; Burslem, Kate; Saverno, Kim; Jain, Gagan; Devercelli, Giovanna; Kaila, Shuchita; Ellis, Jeffrey J; Hernandez, Gemzel; Renda, Andrew
2015-12-01
Despite the importance of early detection, delayed diagnosis of chronic obstructive pulmonary disease (COPD) is relatively common. Approximately 12 million people in the United States have undiagnosed COPD. Diagnosis of COPD is essential for the timely implementation of interventions, such as smoking cessation programs, drug therapies, and pulmonary rehabilitation, which are aimed at improving outcomes and slowing disease progression. To develop and validate a predictive model to identify patients likely to have undiagnosed COPD using administrative claims data. A predictive model was developed and validated utilizing a retro-spective cohort of patients with and without a COPD diagnosis (cases and controls), aged 40-89, with a minimum of 24 months of continuous health plan enrollment (Medicare Advantage Prescription Drug [MAPD] and commercial plans), and identified between January 1, 2009, and December 31, 2012, using Humana's claims database. Stratified random sampling based on plan type (commercial or MAPD) and index year was performed to ensure that cases and controls had a similar distribution of these variables. Cases and controls were compared to identify demographic, clinical, and health care resource utilization (HCRU) characteristics associated with a COPD diagnosis. Stepwise logistic regression (SLR), neural networking, and decision trees were used to develop a series of models. The models were trained, validated, and tested on randomly partitioned subsets of the sample (Training, Validation, and Test data subsets). Measures used to evaluate and compare the models included area under the curve (AUC); index of the receiver operating characteristics (ROC) curve; sensitivity, specificity, positive predictive value (PPV); and negative predictive value (NPV). The optimal model was selected based on AUC index on the Test data subset. A total of 50,880 cases and 50,880 controls were included, with MAPD patients comprising 92% of the study population. Compared with controls, cases had a statistically significantly higher comorbidity burden and HCRU (including hospitalizations, emergency room visits, and medical procedures). The optimal predictive model was generated using SLR, which included 34 variables that were statistically significantly associated with a COPD diagnosis. After adjusting for covariates, anticholinergic bronchodilators (OR = 3.336) and tobacco cessation counseling (OR = 2.871) were found to have a large influence on the model. The final predictive model had an AUC of 0.754, sensitivity of 60%, specificity of 78%, PPV of 73%, and an NPV of 66%. This claims-based predictive model provides an acceptable level of accuracy in identifying patients likely to have undiagnosed COPD in a large national health plan. Identification of patients with undiagnosed COPD may enable timely management and lead to improved health outcomes and reduced COPD-related health care expenditures.
Sheppy, Michael; Beach, A.; Pless, Shanti
2016-08-09
Modern buildings are complex energy systems that must be controlled for energy efficiency. The Research Support Facility (RSF) at the National Renewable Energy Laboratory (NREL) has hundreds of controllers -- computers that communicate with the building's various control systems -- to control the building based on tens of thousands of variables and sensor points. These control strategies were designed for the RSF's systems to efficiently support research activities. Many events that affect energy use cannot be reliably predicted, but certain decisions (such as control strategies) must be made ahead of time. NREL researchers modeled the RSF systems to predict how they might perform. They then monitor these systems to understand how they are actually performing and reacting to the dynamic conditions of weather, occupancy, and maintenance.
Adeleke, Jude Adekunle; Moodley, Deshendran; Rens, Gavin; Adewumi, Aderemi Oluyinka
2017-04-09
Proactive monitoring and control of our natural and built environments is important in various application scenarios. Semantic Sensor Web technologies have been well researched and used for environmental monitoring applications to expose sensor data for analysis in order to provide responsive actions in situations of interest. While these applications provide quick response to situations, to minimize their unwanted effects, research efforts are still necessary to provide techniques that can anticipate the future to support proactive control, such that unwanted situations can be averted altogether. This study integrates a statistical machine learning based predictive model in a Semantic Sensor Web using stream reasoning. The approach is evaluated in an indoor air quality monitoring case study. A sliding window approach that employs the Multilayer Perceptron model to predict short term PM 2 . 5 pollution situations is integrated into the proactive monitoring and control framework. Results show that the proposed approach can effectively predict short term PM 2 . 5 pollution situations: precision of up to 0.86 and sensitivity of up to 0.85 is achieved over half hour prediction horizons, making it possible for the system to warn occupants or even to autonomously avert the predicted pollution situations within the context of Semantic Sensor Web.
Adeleke, Jude Adekunle; Moodley, Deshendran; Rens, Gavin; Adewumi, Aderemi Oluyinka
2017-01-01
Proactive monitoring and control of our natural and built environments is important in various application scenarios. Semantic Sensor Web technologies have been well researched and used for environmental monitoring applications to expose sensor data for analysis in order to provide responsive actions in situations of interest. While these applications provide quick response to situations, to minimize their unwanted effects, research efforts are still necessary to provide techniques that can anticipate the future to support proactive control, such that unwanted situations can be averted altogether. This study integrates a statistical machine learning based predictive model in a Semantic Sensor Web using stream reasoning. The approach is evaluated in an indoor air quality monitoring case study. A sliding window approach that employs the Multilayer Perceptron model to predict short term PM2.5 pollution situations is integrated into the proactive monitoring and control framework. Results show that the proposed approach can effectively predict short term PM2.5 pollution situations: precision of up to 0.86 and sensitivity of up to 0.85 is achieved over half hour prediction horizons, making it possible for the system to warn occupants or even to autonomously avert the predicted pollution situations within the context of Semantic Sensor Web. PMID:28397776
Hammer, Eva M.; Kaufmann, Tobias; Kleih, Sonja C.; Blankertz, Benjamin; Kübler, Andrea
2014-01-01
Modulation of sensorimotor rhythms (SMR) was suggested as a control signal for brain-computer interfaces (BCI). Yet, there is a population of users estimated between 10 to 50% not able to achieve reliable control and only about 20% of users achieve high (80–100%) performance. Predicting performance prior to BCI use would facilitate selection of the most feasible system for an individual, thus constitute a practical benefit for the user, and increase our knowledge about the correlates of BCI control. In a recent study, we predicted SMR-BCI performance from psychological variables that were assessed prior to the BCI sessions and BCI control was supported with machine-learning techniques. We described two significant psychological predictors, namely the visuo-motor coordination ability and the ability to concentrate on the task. The purpose of the current study was to replicate these results thereby validating these predictors within a neurofeedback based SMR-BCI that involved no machine learning.Thirty-three healthy BCI novices participated in a calibration session and three further neurofeedback training sessions. Two variables were related with mean SMR-BCI performance: (1) a measure for the accuracy of fine motor skills, i.e., a trade for a person’s visuo-motor control ability; and (2) subject’s “attentional impulsivity”. In a linear regression they accounted for almost 20% in variance of SMR-BCI performance, but predictor (1) failed significance. Nevertheless, on the basis of our prior regression model for sensorimotor control ability we could predict current SMR-BCI performance with an average prediction error of M = 12.07%. In more than 50% of the participants, the prediction error was smaller than 10%. Hence, psychological variables played a moderate role in predicting SMR-BCI performance in a neurofeedback approach that involved no machine learning. Future studies are needed to further consolidate (or reject) the present predictors. PMID:25147518
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lall, Pradeep; Wei, Junchao; Davis, Lynn
2013-08-08
Solid-state lighting (SSL) luminaires containing light emitting diodes (LEDs) have the potential of seeing excessive temperatures when being transported across country or being stored in non-climate controlled warehouses. They are also being used in outdoor applications in desert environments that see little or no humidity but will experience extremely high temperatures during the day. This makes it important to increase our understanding of what effects high temperature exposure for a prolonged period of time will have on the usability and survivability of these devices. Traditional light sources “burn out” at end-of-life. For an incandescent bulb, the lamp life is definedmore » by B50 life. However, the LEDs have no filament to “burn”. The LEDs continually degrade and the light output decreases eventually below useful levels causing failure. Presently, the TM-21 test standard is used to predict the L70 life of LEDs from LM-80 test data. Several failure mechanisms may be active in a LED at a single time causing lumen depreciation. The underlying TM-21 Model may not capture the failure physics in presence of multiple failure mechanisms. Correlation of lumen maintenance with underlying physics of degradation at system-level is needed. In this paper, Kalman Filter (KF) and Extended Kalman Filters (EKF) have been used to develop a 70-percent Lumen Maintenance Life Prediction Model for LEDs used in SSL luminaires. Ten-thousand hour LM-80 test data for various LEDs have been used for model development. System state at each future time has been computed based on the state space at preceding time step, system dynamics matrix, control vector, control matrix, measurement matrix, measured vector, process noise and measurement noise. The future state of the lumen depreciation has been estimated based on a second order Kalman Filter model and a Bayesian Framework. The measured state variable has been related to the underlying damage using physics-based models. Life prediction of L70 life for the LEDs used in SSL luminaires from KF and EKF based models have been compared with the TM-21 model predictions and experimental data.« less
Mancia, Claire; Loustaud-Ratti, Véronique; Carrier, Paul; Naudet, Florian; Bellissant, Eric; Labrousse, François; Pichon, Nicolas
2015-08-01
One of the main selection criteria of the quality of a liver graft is the degree of steatosis, which will determine the success of the transplantation. The aim of this study was to evaluate the ability of FibroScan and its related methods Controlled Attenuation Parameter and Liver Stiffness to assess objectively steatosis and fibrosis in livers from brain-dead donors to be potentially used for transplantation. Over a period of 10 months, 23 consecutive brain dead donors screened for liver procurement underwent a FibroScan and a liver biopsy. The different predictive models of liver retrievability using liver biopsy as the gold standard have led to the following area under receiver operating characteristic curve: 76.6% (95% confidence intervals [95% CIs], 48.2%-100%) when based solely on controlled attenuation parameter, 75.0% (95% CIs, 34.3%-100%) when based solely on liver stiffness, and 96.7% (95% CIs, 88.7%-100%) when based on combined indices. Our study suggests that a preoperative selection of brain-dead donors based on a combination of both Controlled Attenuation Parameter and Liver Stiffness obtained with FibroScan could result in a good preoperative prediction of the histological status and degree of steatosis of a potential liver graft.
Predicting plant biomass accumulation from image-derived parameters
Chen, Dijun; Shi, Rongli; Pape, Jean-Michel; Neumann, Kerstin; Graner, Andreas; Chen, Ming; Klukas, Christian
2018-01-01
Abstract Background Image-based high-throughput phenotyping technologies have been rapidly developed in plant science recently, and they provide a great potential to gain more valuable information than traditionally destructive methods. Predicting plant biomass is regarded as a key purpose for plant breeders and ecologists. However, it is a great challenge to find a predictive biomass model across experiments. Results In the present study, we constructed 4 predictive models to examine the quantitative relationship between image-based features and plant biomass accumulation. Our methodology has been applied to 3 consecutive barley (Hordeum vulgare) experiments with control and stress treatments. The results proved that plant biomass can be accurately predicted from image-based parameters using a random forest model. The high prediction accuracy based on this model will contribute to relieving the phenotyping bottleneck in biomass measurement in breeding applications. The prediction performance is still relatively high across experiments under similar conditions. The relative contribution of individual features for predicting biomass was further quantified, revealing new insights into the phenotypic determinants of the plant biomass outcome. Furthermore, methods could also be used to determine the most important image-based features related to plant biomass accumulation, which would be promising for subsequent genetic mapping to uncover the genetic basis of biomass. Conclusions We have developed quantitative models to accurately predict plant biomass accumulation from image data. We anticipate that the analysis results will be useful to advance our views of the phenotypic determinants of plant biomass outcome, and the statistical methods can be broadly used for other plant species. PMID:29346559
Polygenic risk score analysis of pathologically confirmed Alzheimer disease.
Escott-Price, Valentina; Myers, Amanda J; Huentelman, Matt; Hardy, John
2017-08-01
Previous estimates of the utility of polygenic risk score analysis for the prediction of Alzheimer disease have given area under the curve (AUC) estimates of <80%. However, these have been based on the genetic analysis of clinical case-control series. Here, we apply the same analytic approaches to a pathological case-control series and show a predictive AUC of 84%. We suggest that this analysis has clinical utility and that there is limited room for further improvement using genetic data. Ann Neurol 2017;82:311-314. © 2017 American Neurological Association.
Self-Tuning of Design Variables for Generalized Predictive Control
NASA Technical Reports Server (NTRS)
Lin, Chaung; Juang, Jer-Nan
2000-01-01
Three techniques are introduced to determine the order and control weighting for the design of a generalized predictive controller. These techniques are based on the application of fuzzy logic, genetic algorithms, and simulated annealing to conduct an optimal search on specific performance indexes or objective functions. Fuzzy logic is found to be feasible for real-time and on-line implementation due to its smooth and quick convergence. On the other hand, genetic algorithms and simulated annealing are applicable for initial estimation of the model order and control weighting, and final fine-tuning within a small region of the solution space, Several numerical simulations for a multiple-input and multiple-output system are given to illustrate the techniques developed in this paper.
Terminal spacecraft rendezvous and capture with LASSO model predictive control
NASA Astrophysics Data System (ADS)
Hartley, Edward N.; Gallieri, Marco; Maciejowski, Jan M.
2013-11-01
The recently investigated ℓasso model predictive control (MPC) is applied to the terminal phase of a spacecraft rendezvous and capture mission. The interaction between the cost function and the treatment of minimum impulse bit is also investigated. The propellant consumption with ℓasso MPC for the considered scenario is noticeably less than with a conventional quadratic cost and control actions are sparser in time. Propellant consumption and sparsity are competitive with those achieved using a zone-based ℓ1 cost function, whilst requiring fewer decision variables in the optimisation problem than the latter. The ℓasso MPC is demonstrated to meet tighter specifications on control precision and also avoids the risk of undesirable behaviours often associated with pure ℓ1 stage costs.
ERIC Educational Resources Information Center
Avchen, Rachel Nonkin; Wiggins, Lisa D.; Devine, Owen; Van Naarden Braun, Kim; Rice, Catherine; Hobson, Nancy C.; Schendel, Diana; Yeargin-Allsopp, Marshalyn
2011-01-01
We conducted the first study that estimates the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of a population-based autism spectrum disorders (ASD) surveillance system developed at the Centers for Disease Control and Prevention. The system employs a records-review methodology that yields ASD…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nandi, Taraj; Brasseur, James; Vijayakumar, Ganesh
2016-01-04
This study is aimed at gaining insight into the nonsteady transitional boundary layer dynamics of wind turbine blades and the predictive capabilities of URANS based transition and turbulence models for similar physics through the analysis of a controlled flow with similar nonsteady parameters.
Turksoy, Kamuran; Bayrak, Elif Seyma; Quinn, Lauretta; Littlejohn, Elizabeth; Cinar, Ali
2013-05-01
Accurate closed-loop control is essential for developing artificial pancreas (AP) systems that adjust insulin infusion rates from insulin pumps. Glucose concentration information from continuous glucose monitoring (CGM) systems is the most important information for the control system. Additional physiological measurements can provide valuable information that can enhance the accuracy of the control system. Proportional-integral-derivative control and model predictive control have been popular in AP development. Their implementations to date rely on meal announcements (e.g., bolus insulin dose based on insulin:carbohydrate ratios) by the user. Adaptive control techniques provide a powerful alternative that do not necessitate any meal or activity announcements. Adaptive control systems based on the generalized predictive control framework are developed by extending the recursive modeling techniques. Physiological signals such as energy expenditure and galvanic skin response are used along with glucose measurements to generate a multiple-input-single-output model for predicting future glucose concentrations used by the controller. Insulin-on-board (IOB) is also estimated and used in control decisions. The controllers were tested with clinical studies that include seven cases with three different patients with type 1 diabetes for 32 or 60 h without any meal or activity announcements. The adaptive control system kept glucose concentration in the normal preprandial and postprandial range (70-180 mg/dL) without any meal or activity announcements during the test period. After IOB estimation was added to the control system, mild hypoglycemic episodes were observed only in one of the four experiments. This was reflected in a plasma glucose value of 56 mg/dL (YSI 2300 STAT; Yellow Springs Instrument, Yellow Springs, OH) and a CGM value of 63 mg/dL). Regulation of blood glucose concentration with an AP using adaptive control techniques was successful in clinical studies, even without any meal and physical activity announcement.
Bilingual Control: Sequential Memory in Language Switching
ERIC Educational Resources Information Center
Declerck, Mathieu; Philipp, Andrea M.; Koch, Iring
2013-01-01
To investigate bilingual language control, prior language switching studies presented visual objects, which had to be named in different languages, typically indicated by a visual cue. The present study examined language switching of predictable responses by introducing a novel sequence-based language switching paradigm. In 4 experiments,…
2011-01-01
Background Allergic contact dermatitis is an inflammatory skin disease that affects a significant proportion of the population. This disease is caused by an adverse immune response towards chemical haptens, and leads to a substantial economic burden for society. Current test of sensitizing chemicals rely on animal experimentation. New legislations on the registration and use of chemicals within pharmaceutical and cosmetic industries have stimulated significant research efforts to develop alternative, human cell-based assays for the prediction of sensitization. The aim is to replace animal experiments with in vitro tests displaying a higher predictive power. Results We have developed a novel cell-based assay for the prediction of sensitizing chemicals. By analyzing the transcriptome of the human cell line MUTZ-3 after 24 h stimulation, using 20 different sensitizing chemicals, 20 non-sensitizing chemicals and vehicle controls, we have identified a biomarker signature of 200 genes with potent discriminatory ability. Using a Support Vector Machine for supervised classification, the prediction performance of the assay revealed an area under the ROC curve of 0.98. In addition, categorizing the chemicals according to the LLNA assay, this gene signature could also predict sensitizing potency. The identified markers are involved in biological pathways with immunological relevant functions, which can shed light on the process of human sensitization. Conclusions A gene signature predicting sensitization, using a human cell line in vitro, has been identified. This simple and robust cell-based assay has the potential to completely replace or drastically reduce the utilization of test systems based on experimental animals. Being based on human biology, the assay is proposed to be more accurate for predicting sensitization in humans, than the traditional animal-based tests. PMID:21824406
Bogard, Matthieu; Ravel, Catherine; Paux, Etienne; Bordes, Jacques; Balfourier, François; Chapman, Scott C.; Le Gouis, Jacques; Allard, Vincent
2014-01-01
Prediction of wheat phenology facilitates the selection of cultivars with specific adaptations to a particular environment. However, while QTL analysis for heading date can identify major genes controlling phenology, the results are limited to the environments and genotypes tested. Moreover, while ecophysiological models allow accurate predictions in new environments, they may require substantial phenotypic data to parameterize each genotype. Also, the model parameters are rarely related to all underlying genes, and all the possible allelic combinations that could be obtained by breeding cannot be tested with models. In this study, a QTL-based model is proposed to predict heading date in bread wheat (Triticum aestivum L.). Two parameters of an ecophysiological model (V sat and P base, representing genotype vernalization requirements and photoperiod sensitivity, respectively) were optimized for 210 genotypes grown in 10 contrasting location × sowing date combinations. Multiple linear regression models predicting V sat and P base with 11 and 12 associated genetic markers accounted for 71 and 68% of the variance of these parameters, respectively. QTL-based V sat and P base estimates were able to predict heading date of an independent validation data set (88 genotypes in six location × sowing date combinations) with a root mean square error of prediction of 5 to 8.6 days, explaining 48 to 63% of the variation for heading date. The QTL-based model proposed in this study may be used for agronomic purposes and to assist breeders in suggesting locally adapted ideotypes for wheat phenology. PMID:25148833
En Route Spacing System and Method
NASA Technical Reports Server (NTRS)
Erzberger, Heinz (Inventor); Green, Steven M. (Inventor)
2002-01-01
A method of and computer software for minimizing aircraft deviations needed to comply with an en route miles-in-trail spacing requirement imposed during air traffic control operations via establishing a spacing reference geometry, predicting spatial locations of a plurality of aircraft at a predicted time of intersection of a path of a first of said plurality of aircraft with the spacing reference geometry, and determining spacing of each of the plurality of aircraft based on the predicted spatial locations.
En route spacing system and method
NASA Technical Reports Server (NTRS)
Erzberger, Heinz (Inventor); Green, Steven M. (Inventor)
2002-01-01
A method of and computer software for minimizing aircraft deviations needed to comply with an en route miles-in-trail spacing requirement imposed during air traffic control operations via establishing a spacing reference geometry, predicting spatial locations of a plurality of aircraft at a predicted time of intersection of a path of a first of said plurality of aircraft with the spacing reference geometry, and determining spacing of each of the plurality of aircraft based on the predicted spatial locations.
Automated System Checkout to Support Predictive Maintenance for the Reusable Launch Vehicle
NASA Technical Reports Server (NTRS)
Patterson-Hine, Ann; Deb, Somnath; Kulkarni, Deepak; Wang, Yao; Lau, Sonie (Technical Monitor)
1998-01-01
The Propulsion Checkout and Control System (PCCS) is a predictive maintenance software system. The real-time checkout procedures and diagnostics are designed to detect components that need maintenance based on their condition, rather than using more conventional approaches such as scheduled or reliability centered maintenance. Predictive maintenance can reduce turn-around time and cost and increase safety as compared to conventional maintenance approaches. Real-time sensor validation, limit checking, statistical anomaly detection, and failure prediction based on simulation models are employed. Multi-signal models, useful for testability analysis during system design, are used during the operational phase to detect and isolate degraded or failed components. The TEAMS-RT real-time diagnostic engine was developed to utilize the multi-signal models by Qualtech Systems, Inc. Capability of predicting the maintenance condition was successfully demonstrated with a variety of data, from simulation to actual operation on the Integrated Propulsion Technology Demonstrator (IPTD) at Marshall Space Flight Center (MSFC). Playback of IPTD valve actuations for feature recognition updates identified an otherwise undetectable Main Propulsion System 12 inch prevalve degradation. The algorithms were loaded into the Propulsion Checkout and Control System for further development and are the first known application of predictive Integrated Vehicle Health Management to an operational cryogenic testbed. The software performed successfully in real-time, meeting the required performance goal of 1 second cycle time.
Ma, Chuang; Xin, Mingming; Feldmann, Kenneth A.; Wang, Xiangfeng
2014-01-01
Machine learning (ML) is an intelligent data mining technique that builds a prediction model based on the learning of prior knowledge to recognize patterns in large-scale data sets. We present an ML-based methodology for transcriptome analysis via comparison of gene coexpression networks, implemented as an R package called machine learning–based differential network analysis (mlDNA) and apply this method to reanalyze a set of abiotic stress expression data in Arabidopsis thaliana. The mlDNA first used a ML-based filtering process to remove nonexpressed, constitutively expressed, or non-stress-responsive “noninformative” genes prior to network construction, through learning the patterns of 32 expression characteristics of known stress-related genes. The retained “informative” genes were subsequently analyzed by ML-based network comparison to predict candidate stress-related genes showing expression and network differences between control and stress networks, based on 33 network topological characteristics. Comparative evaluation of the network-centric and gene-centric analytic methods showed that mlDNA substantially outperformed traditional statistical testing–based differential expression analysis at identifying stress-related genes, with markedly improved prediction accuracy. To experimentally validate the mlDNA predictions, we selected 89 candidates out of the 1784 predicted salt stress–related genes with available SALK T-DNA mutagenesis lines for phenotypic screening and identified two previously unreported genes, mutants of which showed salt-sensitive phenotypes. PMID:24520154
Cheng, Ningtao; Wu, Leihong; Cheng, Yiyu
2013-01-01
The promise of microarray technology in providing prediction classifiers for cancer outcome estimation has been confirmed by a number of demonstrable successes. However, the reliability of prediction results relies heavily on the accuracy of statistical parameters involved in classifiers. It cannot be reliably estimated with only a small number of training samples. Therefore, it is of vital importance to determine the minimum number of training samples and to ensure the clinical value of microarrays in cancer outcome prediction. We evaluated the impact of training sample size on model performance extensively based on 3 large-scale cancer microarray datasets provided by the second phase of MicroArray Quality Control project (MAQC-II). An SSNR-based (scale of signal-to-noise ratio) protocol was proposed in this study for minimum training sample size determination. External validation results based on another 3 cancer datasets confirmed that the SSNR-based approach could not only determine the minimum number of training samples efficiently, but also provide a valuable strategy for estimating the underlying performance of classifiers in advance. Once translated into clinical routine applications, the SSNR-based protocol would provide great convenience in microarray-based cancer outcome prediction in improving classifier reliability. PMID:23861920
Ngeo, Jimson; Tamei, Tomoya; Shibata, Tomohiro; Orlando, M F Felix; Behera, Laxmidhar; Saxena, Anupam; Dutta, Ashish
2013-01-01
Patients suffering from loss of hand functions caused by stroke and other spinal cord injuries have driven a surge in the development of wearable assistive devices in recent years. In this paper, we present a system made up of a low-profile, optimally designed finger exoskeleton continuously controlled by a user's surface electromyographic (sEMG) signals. The mechanical design is based on an optimal four-bar linkage that can model the finger's irregular trajectory due to the finger's varying lengths and changing instantaneous center. The desired joint angle positions are given by the predictive output of an artificial neural network with an EMG-to-Muscle Activation model that parameterizes electromechanical delay (EMD). After confirming good prediction accuracy of multiple finger joint angles we evaluated an index finger exoskeleton by obtaining a subject's EMG signals from the left forearm and using the signal to actuate a finger on the right hand with the exoskeleton. Our results show that our sEMG-based control strategy worked well in controlling the exoskeleton, obtaining the intended positions of the device, and that the subject felt the appropriate motion support from the device.
Latash, M L; Goodman, S R
1994-01-01
The purpose of this work has been to develop a model of electromyographic (EMG) patterns during single-joint movements based on a version of the equilibrium-point hypothesis, a method for experimental reconstruction of the joint compliant characteristics, the dual-strategy hypothesis, and a kinematic model of movement trajectory. EMG patterns are considered emergent properties of hypothetical control patterns that are equally affected by the control signals and peripheral feedback reflecting actual movement trajectory. A computer model generated the EMG patterns based on simulated movement kinematics and hypothetical control signals derived from the reconstructed joint compliant characteristics. The model predictions have been compared to published recordings of movement kinematics and EMG patterns in a variety of movement conditions, including movements over different distances, at different speeds, against different-known inertial loads, and in conditions of possible unexpected decrease in the inertial load. Changes in task parameters within the model led to simulated EMG patterns qualitatively similar to the experimentally recorded EMG patterns. The model's predictive power compares it favourably to the existing models of the EMG patterns. Copyright © 1994. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Venkataramanan, Arjun; Rios Perez, Carlos A.; Hidrovo, Carlos H.
2016-11-01
Electric vehicles (EVs) are the future of clean transportation and driving range is one of the important parameters which dictates its marketability. In order to increase driving range, electrical battery energy consumption should be minimized. Vapor-compression refrigeration systems currently employed in EVs for climate control consume a significant fraction of the battery charge. Thus, by replacing this traditional heating ventilation and air-conditioning system with an adsorption based climate control system one can have the capability of increasing the drive range of EVs.The Advanced Thermo-adsorptive Battery (ATB) for climate control is a water-based adsorption type refrigeration cycle. An essential component of the ATB is a low pressure evaporator/condenser unit (ECU) which facilitates both the evaporation and condensation processes. The thermal design of the ECU relies predominantly on the accurate prediction of evaporation/boiling heat transfer coefficients since the standard correlations for predicting boiling heat transfer coefficients have large uncertainty at the low operating pressures of the ATB. This work describes the design and development of a low pressure ECU as well as the thermal performance of the actual ECU prototype.
Han, Seunghoon; Jeon, Sangil; Hong, Taegon; Lee, Jongtae; Bae, Soo Hyeon; Park, Wan-su; Park, Gab-jin; Youn, Sunil; Jang, Doo Yeon; Kim, Kyung-Soo; Yim, Dong-Seok
2015-01-01
No wholly successful weight-control drugs have been developed to date, despite the tremendous demand. We present an exposure–response model of sibutramine mesylate that can be applied during clinical development of other weight-control drugs. Additionally, we provide a model-based evaluation of sibutramine efficacy. Data from a double-blind, randomized, placebo-controlled, multicenter study were used (N=120). Subjects in the treatment arm were initially given 8.37 mg sibutramine base daily, and those who lost <2 kg after 4 weeks’ treatment were escalated to 12.55 mg. The duration of treatment was 24 weeks. Drug concentration and body weight were measured predose and at 4 weeks, 8 weeks, and 24 weeks after treatment initiation. Exposure and response to sibutramine, including the placebo effect, were modeled using NONMEM 7.2. An asymptotic model approaching the final body weight was chosen to describe the time course of weight loss. Extent of weight loss was described successfully using a sigmoidal exposure–response relationship of the drug with a constant placebo effect in each individual. The placebo effect was influenced by subjects’ sex and baseline body mass index. Maximal weight loss was predicted to occur around 1 year after treatment initiation. The difference in mean weight loss between the sibutramine (daily 12.55 mg) and placebo groups was predicted to be 4.5% in a simulation of 1 year of treatment, with considerable overlap of prediction intervals. Our exposure–response model, which included the placebo effect, is the first example of a quantitative model that can be used to predict the efficacy of weight-control drugs. Similar approaches can help decision-making during clinical development of novel weight-loss drugs. PMID:26392753
Han, Seunghoon; Jeon, Sangil; Hong, Taegon; Lee, Jongtae; Bae, Soo Hyeon; Park, Wan-su; Park, Gab-jin; Youn, Sunil; Jang, Doo Yeon; Kim, Kyung-Soo; Yim, Dong-Seok
2015-01-01
No wholly successful weight-control drugs have been developed to date, despite the tremendous demand. We present an exposure-response model of sibutramine mesylate that can be applied during clinical development of other weight-control drugs. Additionally, we provide a model-based evaluation of sibutramine efficacy. Data from a double-blind, randomized, placebo-controlled, multicenter study were used (N=120). Subjects in the treatment arm were initially given 8.37 mg sibutramine base daily, and those who lost <2 kg after 4 weeks' treatment were escalated to 12.55 mg. The duration of treatment was 24 weeks. Drug concentration and body weight were measured predose and at 4 weeks, 8 weeks, and 24 weeks after treatment initiation. Exposure and response to sibutramine, including the placebo effect, were modeled using NONMEM 7.2. An asymptotic model approaching the final body weight was chosen to describe the time course of weight loss. Extent of weight loss was described successfully using a sigmoidal exposure-response relationship of the drug with a constant placebo effect in each individual. The placebo effect was influenced by subjects' sex and baseline body mass index. Maximal weight loss was predicted to occur around 1 year after treatment initiation. The difference in mean weight loss between the sibutramine (daily 12.55 mg) and placebo groups was predicted to be 4.5% in a simulation of 1 year of treatment, with considerable overlap of prediction intervals. Our exposure-response model, which included the placebo effect, is the first example of a quantitative model that can be used to predict the efficacy of weight-control drugs. Similar approaches can help decision-making during clinical development of novel weight-loss drugs.
Applied Distributed Model Predictive Control for Energy Efficient Buildings and Ramp Metering
NASA Astrophysics Data System (ADS)
Koehler, Sarah Muraoka
Industrial large-scale control problems present an interesting algorithmic design challenge. A number of controllers must cooperate in real-time on a network of embedded hardware with limited computing power in order to maximize system efficiency while respecting constraints and despite communication delays. Model predictive control (MPC) can automatically synthesize a centralized controller which optimizes an objective function subject to a system model, constraints, and predictions of disturbance. Unfortunately, the computations required by model predictive controllers for large-scale systems often limit its industrial implementation only to medium-scale slow processes. Distributed model predictive control (DMPC) enters the picture as a way to decentralize a large-scale model predictive control problem. The main idea of DMPC is to split the computations required by the MPC problem amongst distributed processors that can compute in parallel and communicate iteratively to find a solution. Some popularly proposed solutions are distributed optimization algorithms such as dual decomposition and the alternating direction method of multipliers (ADMM). However, these algorithms ignore two practical challenges: substantial communication delays present in control systems and also problem non-convexity. This thesis presents two novel and practically effective DMPC algorithms. The first DMPC algorithm is based on a primal-dual active-set method which achieves fast convergence, making it suitable for large-scale control applications which have a large communication delay across its communication network. In particular, this algorithm is suited for MPC problems with a quadratic cost, linear dynamics, forecasted demand, and box constraints. We measure the performance of this algorithm and show that it significantly outperforms both dual decomposition and ADMM in the presence of communication delay. The second DMPC algorithm is based on an inexact interior point method which is suited for nonlinear optimization problems. The parallel computation of the algorithm exploits iterative linear algebra methods for the main linear algebra computations in the algorithm. We show that the splitting of the algorithm is flexible and can thus be applied to various distributed platform configurations. The two proposed algorithms are applied to two main energy and transportation control problems. The first application is energy efficient building control. Buildings represent 40% of energy consumption in the United States. Thus, it is significant to improve the energy efficiency of buildings. The goal is to minimize energy consumption subject to the physics of the building (e.g. heat transfer laws), the constraints of the actuators as well as the desired operating constraints (thermal comfort of the occupants), and heat load on the system. In this thesis, we describe the control systems of forced air building systems in practice. We discuss the "Trim and Respond" algorithm which is a distributed control algorithm that is used in practice, and show that it performs similarly to a one-step explicit DMPC algorithm. Then, we apply the novel distributed primal-dual active-set method and provide extensive numerical results for the building MPC problem. The second main application is the control of ramp metering signals to optimize traffic flow through a freeway system. This application is particularly important since urban congestion has more than doubled in the past few decades. The ramp metering problem is to maximize freeway throughput subject to freeway dynamics (derived from mass conservation), actuation constraints, freeway capacity constraints, and predicted traffic demand. In this thesis, we develop a hybrid model predictive controller for ramp metering that is guaranteed to be persistently feasible and stable. This contrasts to previous work on MPC for ramp metering where such guarantees are absent. We apply a smoothing method to the hybrid model predictive controller and apply the inexact interior point method to this nonlinear non-convex ramp metering problem.
Model-Based Angular Scan Error Correction of an Electrothermally-Actuated MEMS Mirror
Zhang, Hao; Xu, Dacheng; Zhang, Xiaoyang; Chen, Qiao; Xie, Huikai; Li, Suiqiong
2015-01-01
In this paper, the actuation behavior of a two-axis electrothermal MEMS (Microelectromechanical Systems) mirror typically used in miniature optical scanning probes and optical switches is investigated. The MEMS mirror consists of four thermal bimorph actuators symmetrically located at the four sides of a central mirror plate. Experiments show that an actuation characteristics difference of as much as 4.0% exists among the four actuators due to process variations, which leads to an average angular scan error of 0.03°. A mathematical model between the actuator input voltage and the mirror-plate position has been developed to predict the actuation behavior of the mirror. It is a four-input, four-output model that takes into account the thermal-mechanical coupling and the differences among the four actuators; the vertical positions of the ends of the four actuators are also monitored. Based on this model, an open-loop control method is established to achieve accurate angular scanning. This model-based open loop control has been experimentally verified and is useful for the accurate control of the mirror. With this control method, the precise actuation of the mirror solely depends on the model prediction and does not need the real-time mirror position monitoring and feedback, greatly simplifying the MEMS control system. PMID:26690432
Hahn, Andreas; Lang, Michael; Stuckart, Claudia
2016-01-01
Abstract The objective of this work is to evaluate whether clinically important factors may predict an individual's capability to utilize the functional benefits provided by an advanced hydraulic, microprocessor-controlled exo-prosthetic knee component. This retrospective cross-sectional cohort analysis investigated the data of above knee amputees captured during routine trial fittings. Prosthetists rated the performance indicators showing the functional benefits of the advanced maneuvering capabilities of the device. Subjects were asked to rate their perception. Simple and multiple linear and logistic regression was applied. Data from 899 subjects with demographics typical for the population were evaluated. Ability to vary gait speed, perform toileting, and ascend stairs were identified as the most sensitive performance predictors. Prior C-Leg users showed benefits during advanced maneuvering. Variables showed plausible and meaningful effects, however, could not claim predictive power. Mobility grade showed the largest effect but also failed to be predictive. Clinical parameters such as etiology, age, mobility grade, and others analyzed here do not suffice to predict individual potential. Daily walking distance may pose a threshold value and be part of a predictive instrument. Decisions based solely on single parameters such as mobility grade rating or walking distance seem to be questionable. PMID:27828871
Hahn, Andreas; Lang, Michael; Stuckart, Claudia
2016-11-01
The objective of this work is to evaluate whether clinically important factors may predict an individual's capability to utilize the functional benefits provided by an advanced hydraulic, microprocessor-controlled exo-prosthetic knee component.This retrospective cross-sectional cohort analysis investigated the data of above knee amputees captured during routine trial fittings. Prosthetists rated the performance indicators showing the functional benefits of the advanced maneuvering capabilities of the device. Subjects were asked to rate their perception. Simple and multiple linear and logistic regression was applied.Data from 899 subjects with demographics typical for the population were evaluated. Ability to vary gait speed, perform toileting, and ascend stairs were identified as the most sensitive performance predictors. Prior C-Leg users showed benefits during advanced maneuvering. Variables showed plausible and meaningful effects, however, could not claim predictive power. Mobility grade showed the largest effect but also failed to be predictive.Clinical parameters such as etiology, age, mobility grade, and others analyzed here do not suffice to predict individual potential. Daily walking distance may pose a threshold value and be part of a predictive instrument. Decisions based solely on single parameters such as mobility grade rating or walking distance seem to be questionable.
NASA Technical Reports Server (NTRS)
Sadoff, Melvin
1958-01-01
The results of a fixed-base simulator study of the effects of variable longitudinal control-system dynamics on pilot opinion are presented and compared with flight-test data. The control-system variables considered in this investigation included stick force per g, time constant, and dead-band, or stabilizer breakout force. In general, the fairly good correlation between flight and simulator results for two pilots demonstrates the validity of fixed-base simulator studies which are designed to complement and supplement flight studies and serve as a guide in control-system preliminary design. However, in the investigation of certain problem areas (e.g., sensitive control-system configurations associated with pilot- induced oscillations in flight), fixed-base simulator results did not predict the occurrence of an instability, although the pilots noted the system was extremely sensitive and unsatisfactory. If it is desired to predict pilot-induced-oscillation tendencies, tests in moving-base simulators may be required. It was found possible to represent the human pilot by a linear pilot analog for the tracking task assumed in the present study. The criterion used to adjust the pilot analog was the root-mean-square tracking error of one of the human pilots on the fixed-base simulator. Matching the tracking error of the pilot analog to that of the human pilot gave an approximation to the variation of human-pilot behavior over a range of control-system dynamics. Results of the pilot-analog study indicated that both for optimized control-system dynamics (for poor airplane dynamics) and for a region of good airplane dynamics, the pilot response characteristics are approximately the same.
Chansanroj, Krisanin; Petrović, Jelena; Ibrić, Svetlana; Betz, Gabriele
2011-10-09
Artificial neural networks (ANNs) were applied for system understanding and prediction of drug release properties from direct compacted matrix tablets using sucrose esters (SEs) as matrix-forming agents for controlled release of a highly water soluble drug, metoprolol tartrate. Complexity of the system was presented through the effects of SE concentration and tablet porosity at various hydrophilic-lipophilic balance (HLB) values of SEs ranging from 0 to 16. Both effects contributed to release behaviors especially in the system containing hydrophilic SEs where swelling phenomena occurred. A self-organizing map neural network (SOM) was applied for visualizing interrelation among the variables and multilayer perceptron neural networks (MLPs) were employed to generalize the system and predict the drug release properties based on HLB value and concentration of SEs and tablet properties, i.e., tablet porosity, volume and tensile strength. Accurate prediction was obtained after systematically optimizing network performance based on learning algorithm of MLP. Drug release was mainly attributed to the effects of SEs, tablet volume and tensile strength in multi-dimensional interrelation whereas tablet porosity gave a small impact. Ability of system generalization and accurate prediction of the drug release properties proves the validity of SOM and MLPs for the formulation modeling of direct compacted matrix tablets containing controlled release agents of different material properties. Copyright © 2011 Elsevier B.V. All rights reserved.
Machine learning derived risk prediction of anorexia nervosa.
Guo, Yiran; Wei, Zhi; Keating, Brendan J; Hakonarson, Hakon
2016-01-20
Anorexia nervosa (AN) is a complex psychiatric disease with a moderate to strong genetic contribution. In addition to conventional genome wide association (GWA) studies, researchers have been using machine learning methods in conjunction with genomic data to predict risk of diseases in which genetics play an important role. In this study, we collected whole genome genotyping data on 3940 AN cases and 9266 controls from the Genetic Consortium for Anorexia Nervosa (GCAN), the Wellcome Trust Case Control Consortium 3 (WTCCC3), Price Foundation Collaborative Group and the Children's Hospital of Philadelphia (CHOP), and applied machine learning methods for predicting AN disease risk. The prediction performance is measured by area under the receiver operating characteristic curve (AUC), indicating how well the model distinguishes cases from unaffected control subjects. Logistic regression model with the lasso penalty technique generated an AUC of 0.693, while Support Vector Machines and Gradient Boosted Trees reached AUC's of 0.691 and 0.623, respectively. Using different sample sizes, our results suggest that larger datasets are required to optimize the machine learning models and achieve higher AUC values. To our knowledge, this is the first attempt to assess AN risk based on genome wide genotype level data. Future integration of genomic, environmental and family-based information is likely to improve the AN risk evaluation process, eventually benefitting AN patients and families in the clinical setting.
Fuzzy Behavior-Based Navigation for Planetary
NASA Technical Reports Server (NTRS)
Tunstel, Edward; Danny, Harrison; Lippincott, Tanya; Jamshidi, Mo
1997-01-01
Adaptive behavioral capabilities are necessary for robust rover navigation in unstructured and partially-mapped environments. A control approach is described which exploits the approximate reasoning capability of fuzzy logic to produce adaptive motion behavior. In particular, a behavior-based architecture for hierarchical fuzzy control of microrovers is presented. Its structure is described, as well as mechanisms of control decision-making which give rise to adaptive behavior. Control decisions for local navigation result from a consensus of recommendations offered only by behaviors that are applicable to current situations. Simulation predicts the navigation performance on a microrover in simplified Mars-analog terrain.
Intelligent Control of Micro Grid: A Big Data-Based Control Center
NASA Astrophysics Data System (ADS)
Liu, Lu; Wang, Yanping; Liu, Li; Wang, Zhiseng
2018-01-01
In this paper, a structure of micro grid system with big data-based control center is introduced. Energy data from distributed generation, storage and load are analized through the control center, and from the results new trends will be predicted and applied as a feedback to optimize the control. Therefore, each step proceeded in micro grid can be adjusted and orgnized in a form of comprehensive management. A framework of real-time data collection, data processing and data analysis will be proposed by employing big data technology. Consequently, a integrated distributed generation and a optimized energy storage and transmission process can be implemented in the micro grid system.
NASA Astrophysics Data System (ADS)
Goumiri, Imene; Rowley, Clarence; Sabbagh, Steven; Gates, David; Gerhardt, Stefan; Boyer, Mark
2015-11-01
A model-based system is presented allowing control of the plasma rotation profile in a magnetically confined toroidal fusion device to maintain plasma stability for long pulse operation. The analysis, using NSTX data and NSTX-U TRANSP simulations, is aimed at controlling plasma rotation using momentum from six injected neutral beams and neoclassical toroidal viscosity generated by three-dimensional applied magnetic fields as actuators. Based on the momentum diffusion and torque balance model obtained, a feedback controller is designed and predictive simulations using TRANSP will be presented. Robustness of the model and the rotation controller will be discussed.
NASA Technical Reports Server (NTRS)
Engelland, Shawn A.; Capps, Alan
2011-01-01
Current aircraft departure release times are based on manual estimates of aircraft takeoff times. Uncertainty in takeoff time estimates may result in missed opportunities to merge into constrained en route streams and lead to lost throughput. However, technology exists to improve takeoff time estimates by using the aircraft surface trajectory predictions that enable air traffic control tower (ATCT) decision support tools. NASA s Precision Departure Release Capability (PDRC) is designed to use automated surface trajectory-based takeoff time estimates to improve en route tactical departure scheduling. This is accomplished by integrating an ATCT decision support tool with an en route tactical departure scheduling decision support tool. The PDRC concept and prototype software have been developed, and an initial test was completed at air traffic control facilities in Dallas/Fort Worth. This paper describes the PDRC operational concept, system design, and initial observations.
Anestis, Joye C; Gottfried, Emily D; Joiner, Thomas E
2015-02-01
This study examined the utility of the Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF) substantive scales in the prediction of premature termination and therapy no-shows while controlling for other relevant predictors in a university-based community mental health center, a sample at high risk of both premature termination and no-show appointments. Participants included 457 individuals seeking services from a university-based psychology clinic. Results indicated that Juvenile Conduct Problems (JCP) predicted premature termination and Behavioral/Externalizing Dysfunction and JCP predicted number of no-shows, when accounting for initial severity of illness, personality disorder diagnosis, therapist experience, and other related MMPI-2-RF scales. The MMPI-2-RF Aesthetic-Literary Interests scale also predicted number of no-shows. Recommendations for applying these findings in clinical practice are discussed. © The Author(s) 2014.
Temporal Prediction Errors Affect Short-Term Memory Scanning Response Time.
Limongi, Roberto; Silva, Angélica M
2016-11-01
The Sternberg short-term memory scanning task has been used to unveil cognitive operations involved in time perception. Participants produce time intervals during the task, and the researcher explores how task performance affects interval production - where time estimation error is the dependent variable of interest. The perspective of predictive behavior regards time estimation error as a temporal prediction error (PE), an independent variable that controls cognition, behavior, and learning. Based on this perspective, we investigated whether temporal PEs affect short-term memory scanning. Participants performed temporal predictions while they maintained information in memory. Model inference revealed that PEs affected memory scanning response time independently of the memory-set size effect. We discuss the results within the context of formal and mechanistic models of short-term memory scanning and predictive coding, a Bayes-based theory of brain function. We state the hypothesis that our finding could be associated with weak frontostriatal connections and weak striatal activity.
Quantitative self-assembly prediction yields targeted nanomedicines
NASA Astrophysics Data System (ADS)
Shamay, Yosi; Shah, Janki; Işık, Mehtap; Mizrachi, Aviram; Leibold, Josef; Tschaharganeh, Darjus F.; Roxbury, Daniel; Budhathoki-Uprety, Januka; Nawaly, Karla; Sugarman, James L.; Baut, Emily; Neiman, Michelle R.; Dacek, Megan; Ganesh, Kripa S.; Johnson, Darren C.; Sridharan, Ramya; Chu, Karen L.; Rajasekhar, Vinagolu K.; Lowe, Scott W.; Chodera, John D.; Heller, Daniel A.
2018-02-01
Development of targeted nanoparticle drug carriers often requires complex synthetic schemes involving both supramolecular self-assembly and chemical modification. These processes are generally difficult to predict, execute, and control. We describe herein a targeted drug delivery system that is accurately and quantitatively predicted to self-assemble into nanoparticles based on the molecular structures of precursor molecules, which are the drugs themselves. The drugs assemble with the aid of sulfated indocyanines into particles with ultrahigh drug loadings of up to 90%. We devised quantitative structure-nanoparticle assembly prediction (QSNAP) models to identify and validate electrotopological molecular descriptors as highly predictive indicators of nano-assembly and nanoparticle size. The resulting nanoparticles selectively targeted kinase inhibitors to caveolin-1-expressing human colon cancer and autochthonous liver cancer models to yield striking therapeutic effects while avoiding pERK inhibition in healthy skin. This finding enables the computational design of nanomedicines based on quantitative models for drug payload selection.
Predictive Rotation Profile Control for the DIII-D Tokamak
NASA Astrophysics Data System (ADS)
Wehner, W. P.; Schuster, E.; Boyer, M. D.; Walker, M. L.; Humphreys, D. A.
2017-10-01
Control-oriented modeling and model-based control of the rotation profile are employed to build a suitable control capability for aiding rotation-related physics studies at DIII-D. To obtain a control-oriented model, a simplified version of the momentum balance equation is combined with empirical representations of the momentum sources. The control approach is rooted in a Model Predictive Control (MPC) framework to regulate the rotation profile while satisfying constraints associated with the desired plasma stored energy and/or βN limit. Simple modifications allow for alternative control objectives, such as maximizing the plasma rotation while maintaining a specified input torque. Because the MPC approach can explicitly incorporate various types of constraints, this approach is well suited to a variety of control objectives, and therefore serves as a valuable tool for experimental physics studies. Closed-loop TRANSP simulations are presented to demonstrate the effectiveness of the control approach. Supported by the US DOE under DE-SC0010661 and DE-FC02-04ER54698.
Kramer, Jeannet; Keuken, Max; Smit, Filip; Schippers, Gerard; Cuijpers, Pim
2008-01-01
Background Web-based self-help interventions for problem drinking are coming of age. They have shown promising results in terms of cost-effectiveness, and they offer opportunities to reach out on a broad scale to problem drinkers. The question now is whether certain groups of problem drinkers benefit more from such Web-based interventions than others. Objective We sought to identify baseline, client-related predictors of the effectiveness of Drinking Less, a 24/7, free-access, interactive, Web-based self-help intervention without therapist guidance for problem drinkers who want to reduce their alcohol consumption. The intervention is based on cognitive-behavioral and self-control principles. Methods We conducted secondary analysis of data from a pragmatic randomized trial with follow-up at 6 and 12 months. Participants (N = 261) were adult problem drinkers in the Dutch general population with a weekly alcohol consumption above 210 g of ethanol for men or 140 g for women, or consumption of at least 60 g (men) or 40 g (women) one or more days a week over the past 3 months. Six baseline participant characteristics were designated as putative predictors of treatment response: (1) gender, (2) education, (3) Internet use competence (sociodemographics), (4) mean weekly alcohol consumption, (5) prior professional help for alcohol problems (level of problem drinking), and (6) participants’ expectancies of Web-based interventions for problem drinking. Intention-to-treat (ITT) analyses, using last-observation-carried-forward (LOCF) data, and regression imputation (RI) were performed to deal with loss to follow-up. Statistical tests for interaction terms were conducted and linear regression analysis was performed to investigate whether the participants’ characteristics as measured at baseline predicted positive treatment responses at 6- and 12-month follow-ups. Results At 6 months, prior help for alcohol problems predicted a small, marginally significant positive treatment outcome in the RI model only (beta = .18, P = .05, R2 = .11). At 12 months, females displayed modest predictive power in both imputation models (LOCF: beta = .22, P = .045, R2 = .02; regression: beta = .27, P = .01, R2 = .03). Those with higher levels of education exhibited modest predictive power in the LOCF model only (beta = .33, P = .01, R2 = .03). Conclusions Although female and more highly educated users appeared slightly more likely to derive benefit from the Drinking Less intervention, none of the baseline characteristics we studied persuasively predicted a favorable treatment outcome. The Web-based intervention therefore seems well suited for a heterogeneous group of problem drinkers and could hence be offered as a first-step treatment in a stepped-care approach directed at problem drinkers in the general population. Trial Registration International Standard Randomized Controlled Trial Number (ISRCTN): 47285230; http://www.controlled-trials.com/isrctn47285230 (Archived by WebCite at http://www.webcitation.org/5cSR2sMkp). PMID:19033150
Riper, Heleen; Kramer, Jeannet; Keuken, Max; Smit, Filip; Schippers, Gerard; Cuijpers, Pim
2008-11-22
Web-based self-help interventions for problem drinking are coming of age. They have shown promising results in terms of cost-effectiveness, and they offer opportunities to reach out on a broad scale to problem drinkers. The question now is whether certain groups of problem drinkers benefit more from such Web-based interventions than others. We sought to identify baseline, client-related predictors of the effectiveness of Drinking Less, a 24/7, free-access, interactive, Web-based self-help intervention without therapist guidance for problem drinkers who want to reduce their alcohol consumption. The intervention is based on cognitive-behavioral and self-control principles. We conducted secondary analysis of data from a pragmatic randomized trial with follow-up at 6 and 12 months. Participants (N = 261) were adult problem drinkers in the Dutch general population with a weekly alcohol consumption above 210 g of ethanol for men or 140 g for women, or consumption of at least 60 g (men) or 40 g (women) one or more days a week over the past 3 months. Six baseline participant characteristics were designated as putative predictors of treatment response: (1) gender, (2) education, (3) Internet use competence (sociodemographics), (4) mean weekly alcohol consumption, (5) prior professional help for alcohol problems (level of problem drinking), and (6) participants' expectancies of Web-based interventions for problem drinking. Intention-to-treat (ITT) analyses, using last-observation-carried-forward (LOCF) data, and regression imputation (RI) were performed to deal with loss to follow-up. Statistical tests for interaction terms were conducted and linear regression analysis was performed to investigate whether the participants' characteristics as measured at baseline predicted positive treatment responses at 6- and 12-month follow-ups. At 6 months, prior help for alcohol problems predicted a small, marginally significant positive treatment outcome in the RI model only (beta = .18, P = .05, R(2) = .11). At 12 months, females displayed modest predictive power in both imputation models (LOCF: beta = .22, P = .045, R(2) = .02; regression: beta = .27, P = .01, R(2) = .03). Those with higher levels of education exhibited modest predictive power in the LOCF model only (beta = .33, P = .01, R(2) = .03). Although female and more highly educated users appeared slightly more likely to derive benefit from the Drinking Less intervention, none of the baseline characteristics we studied persuasively predicted a favorable treatment outcome. The Web-based intervention therefore seems well suited for a heterogeneous group of problem drinkers and could hence be offered as a first-step treatment in a stepped-care approach directed at problem drinkers in the general population. International Standard Randomized Controlled Trial Number (ISRCTN): 47285230; http://www.controlled-trials.com/isrctn47285230 (Archived by WebCite at http://www.webcitation.org/5cSR2sMkp).
NASA Astrophysics Data System (ADS)
Huang, Wentao; Hua, Wei; Yu, Feng
2017-05-01
Due to high airgap flux density generated by magnets and the special double salient structure, the cogging torque of the flux-switching permanent magnet (FSPM) machine is considerable, which limits the further applications. Based on the model predictive current control (MPCC) and the compensation control theory, a compensating-current MPCC (CC-MPCC) scheme is proposed and implemented to counteract the dominated components in cogging torque of an existing three-phase 12/10 FSPM prototyped machine, and thus to alleviate the influence of the cogging torque and improve the smoothness of electromagnetic torque as well as speed, where a comprehensive cost function is designed to evaluate the switching states. The simulated results indicate that the proposed CC-MPCC scheme can suppress the torque ripple significantly and offer satisfactory dynamic performances by comparisons with the conventional MPCC strategy. Finally, experimental results validate both the theoretical and simulated predictions.
NASA Astrophysics Data System (ADS)
khawaldeh, Salem A. Al
2013-07-01
Background and purpose: The purpose of this study was to investigate the comparative effects of a prediction/discussion-based learning cycle (HPD-LC), conceptual change text (CCT) and traditional instruction on 10th grade students' understanding of genetics concepts. Sample: Participants were 112 10th basic grade male students in three classes of the same school located in an urban area. The three classes taught by the same biology teacher were randomly assigned as a prediction/discussion-based learning cycle class (n = 39), conceptual change text class (n = 37) and traditional class (n = 36). Design and method: A quasi-experimental research design of pre-test-post-test non-equivalent control group was adopted. Participants completed the Genetics Concept Test as pre-test-post-test, to examine the effects of instructional strategies on their genetics understanding. Pre-test scores and Test of Logical Thinking scores were used as covariates. Results: The analysis of covariance showed a statistically significant difference between the experimental and control groups in the favor of experimental groups after treatment. However, no statistically significant difference between the experimental groups (HPD-LC versus CCT instruction) was found. Conclusions: Overall, the findings of this study support the use of the prediction/discussion-based learning cycle and conceptual change text in both research and teaching. The findings may be useful for improving classroom practices in teaching science concepts and for the development of suitable materials promoting students' understanding of science.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Fan; Parker, Jack C.; Luo, Wensui
2008-01-01
Many geochemical reactions that control aqueous metal concentrations are directly affected by solution pH. However, changes in solution pH are strongly buffered by various aqueous phase and solid phase precipitation/dissolution and adsorption/desorption reactions. The ability to predict acid-base behavior of the soil-solution system is thus critical to predict metal transport under variable pH conditions. This study was undertaken to develop a practical generic geochemical modeling approach to predict aqueous and solid phase concentrations of metals and anions during conditions of acid or base additions. The method of Spalding and Spalding was utilized to model soil buffer capacity and pH-dependent cationmore » exchange capacity by treating aquifer solids as a polyprotic acid. To simulate the dynamic and pH-dependent anion exchange capacity, the aquifer solids were simultaneously treated as a polyprotic base controlled by mineral precipitation/dissolution reactions. An equilibrium reaction model that describes aqueous complexation, precipitation, sorption and soil buffering with pH-dependent ion exchange was developed using HydroGeoChem v5.0 (HGC5). Comparison of model results with experimental titration data of pH, Al, Ca, Mg, Sr, Mn, Ni, Co, and SO{sub 4}{sup 2-} for contaminated sediments indicated close agreement, suggesting that the model could potentially be used to predict the acid-base behavior of the sediment-solution system under variable pH conditions.« less
USDA-ARS?s Scientific Manuscript database
Understanding the processes controlling nutrient delivery in headwater agricultural watersheds is essential for predicting and mitigating eutrophication and harmful algal blooms in receiving surface waters. The objective of this study was to elucidate nutrient transport pathways and examine key comp...
Handling qualities effects of display latency
NASA Technical Reports Server (NTRS)
King, David W.
1993-01-01
Display latency is the time delay between aircraft response and the corresponding response of the cockpit displays. Currently, there is no explicit specification for allowable display lags to ensure acceptable aircraft handling qualities in instrument flight conditions. This paper examines the handling qualities effects of display latency between 70 and 400 milliseconds for precision instrument flight tasks of the V-22 Tiltrotor aircraft. Display delay effects on the pilot control loop are analytically predicted through a second order pilot crossover model of the V-22 lateral axis, and handling qualities trends are evaluated through a series of fixed-base piloted simulation tests. The results show that the effects of display latency for flight path tracking tasks are driven by the stability characteristics of the attitude control loop. The data indicate that the loss of control damping due to latency can be simply predicted from knowledge of the aircraft's stability margins, control system lags, and required control bandwidths. Based on the relationship between attitude control damping and handling qualities ratings, latency design guidelines are presented. In addition, this paper presents a design philosophy, supported by simulation data, for using flight director display augmentation to suppress the effects of display latency for delays up to 300 milliseconds.
NASA Astrophysics Data System (ADS)
Luna, Julio; Jemei, Samir; Yousfi-Steiner, Nadia; Husar, Attila; Serra, Maria; Hissel, Daniel
2016-10-01
In this work, a nonlinear model predictive control (NMPC) strategy is proposed to improve the efficiency and enhance the durability of a proton exchange membrane fuel cell (PEMFC) power system. The PEMFC controller is based on a distributed parameters model that describes the nonlinear dynamics of the system, considering spatial variations along the gas channels. Parasitic power from different system auxiliaries is considered, including the main parasitic losses which are those of the compressor. A nonlinear observer is implemented, based on the discretised model of the PEMFC, to estimate the internal states. This information is included in the cost function of the controller to enhance the durability of the system by means of avoiding local starvation and inappropriate water vapour concentrations. Simulation results are presented to show the performance of the proposed controller over a given case study in an automotive application (New European Driving Cycle). With the aim of representing the most relevant phenomena that affects the PEMFC voltage, the simulation model includes a two-phase water model and the effects of liquid water on the catalyst active area. The control model is a simplified version that does not consider two-phase water dynamics.
NASA Astrophysics Data System (ADS)
Trabucchi, Stefano; Casella, Francesco; Maioli, Tommaso; Elsido, Cristina; Franzini, Davide; Ramond, Mathieu
2017-06-01
Concentrated Solar Power plants (CSP) coupled with thermal storage have the potential to guarantee both flexible and continuous energy production, thus being competitive with conventional fossil fuel and hydro power plants, in terms of dispatchability and provision of ancillary services. Hence, the plant equipment and control design have to be focused on flexible operation on one hand, and on plant safety concerning the molten salt freezing on the other hand. The PreFlexMS European project aims to introduce a molten salt Once-Through Steam Generator (OTSG) within a Rankine cycle based power unit, a technology that has greater flexibility potential if compared to steam drum boilers, currently used in CSP plants. The dynamic modelling and simulation from the early design stages is, thus, of paramount importance, to assess the plant dynamic behavior and controllability, and to predict the achievable closed-loop dynamic performance, potentially saving money and time during the detailed design, construction and commissioning phases. The present paper reports the main results of the analysis carried out during the first part of the project, regarding the system analysis and control design. In particular, two different control systems have been studied and tested with the plant dynamic model: a decentralized control strategy based on PI controllers and a Linear Model Predictive Control (LMPC).
Huikang Wang; Luzheng Bi; Teng Teng
2017-07-01
This paper proposes a novel method of electroencephalography (EEG)-based driver emergency braking intention detection system for brain-controlled driving considering one electrode falling-off. First, whether one electrode falls off is discriminated based on EEG potentials. Then, the missing signals are estimated by using the signals collected from other channels based on multivariate linear regression. Finally, a linear decoder is applied to classify driver intentions. Experimental results show that the falling-off discrimination accuracy is 99.63% on average and the correlation coefficient and root mean squared error (RMSE) between the estimated and experimental data are 0.90 and 11.43 μV, respectively, on average. Given one electrode falls off, the system accuracy of the proposed intention prediction method is significantly higher than that of the original method (95.12% VS 79.11%) and is close to that (95.95%) of the original system under normal situations (i. e., no electrode falling-off).
Li, Mingjie; Zhou, Ping; Wang, Hong; ...
2017-09-19
As one of the most important unit in the papermaking industry, the high consistency (HC) refining system is confronted with challenges such as improving pulp quality, energy saving, and emissions reduction in its operation processes. Here in this correspondence, an optimal operation of HC refining system is presented using nonlinear multiobjective model predictive control strategies that aim at set-point tracking objective of pulp quality, economic objective, and specific energy (SE) consumption objective, respectively. First, a set of input and output data at different times are employed to construct the subprocess model of the state process model for the HC refiningmore » system, and then the Wiener-type model can be obtained through combining the mechanism model of Canadian Standard Freeness and the state process model that determines their structures based on Akaike information criterion. Second, the multiobjective optimization strategy that optimizes both the set-point tracking objective of pulp quality and SE consumption is proposed simultaneously, which uses NSGA-II approach to obtain the Pareto optimal set. Furthermore, targeting at the set-point tracking objective of pulp quality, economic objective, and SE consumption objective, the sequential quadratic programming method is utilized to produce the optimal predictive controllers. In conclusion, the simulation results demonstrate that the proposed methods can make the HC refining system provide a better performance of set-point tracking of pulp quality when these predictive controllers are employed. In addition, while the optimal predictive controllers orienting with comprehensive economic objective and SE consumption objective, it has been shown that they have significantly reduced the energy consumption.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Mingjie; Zhou, Ping; Wang, Hong
As one of the most important unit in the papermaking industry, the high consistency (HC) refining system is confronted with challenges such as improving pulp quality, energy saving, and emissions reduction in its operation processes. Here in this correspondence, an optimal operation of HC refining system is presented using nonlinear multiobjective model predictive control strategies that aim at set-point tracking objective of pulp quality, economic objective, and specific energy (SE) consumption objective, respectively. First, a set of input and output data at different times are employed to construct the subprocess model of the state process model for the HC refiningmore » system, and then the Wiener-type model can be obtained through combining the mechanism model of Canadian Standard Freeness and the state process model that determines their structures based on Akaike information criterion. Second, the multiobjective optimization strategy that optimizes both the set-point tracking objective of pulp quality and SE consumption is proposed simultaneously, which uses NSGA-II approach to obtain the Pareto optimal set. Furthermore, targeting at the set-point tracking objective of pulp quality, economic objective, and SE consumption objective, the sequential quadratic programming method is utilized to produce the optimal predictive controllers. In conclusion, the simulation results demonstrate that the proposed methods can make the HC refining system provide a better performance of set-point tracking of pulp quality when these predictive controllers are employed. In addition, while the optimal predictive controllers orienting with comprehensive economic objective and SE consumption objective, it has been shown that they have significantly reduced the energy consumption.« less
Ste-Marie, Diane M; Carter, Michael J; Law, Barbi; Vertes, Kelly; Smith, Victoria
2016-09-01
Research has shown learning advantages for self-controlled practice contexts relative to yoked (i.e., experimenter-imposed) contexts; yet, explanations for this phenomenon remain relatively untested. We examined, via path analysis, whether self-efficacy and intrinsic motivation are important constructs for explaining self-controlled learning benefits. The path model was created using theory-based and empirically supported relationships to examine causal links between these psychological constructs and physical performance. We hypothesised that self-efficacy and intrinsic motivation would have greater predictive power for learning under self-controlled compared to yoked conditions. Participants learned double-mini trampoline progressions, and measures of physical performance, self-efficacy and intrinsic motivation were collected over two practice days and a delayed retention day. The self-controlled group (M = 2.04, SD = .98) completed significantly more skill progressions in retention than their yoked counterparts (M = 1.3, SD = .65). The path model displayed adequate fit, and similar significant path coefficients were found for both groups wherein each variable was predominantly predicted by its preceding time point (e.g., self-efficacy time 1 predicts self-efficacy time 2). Interestingly, the model was not moderated by group; thus, failing to support the hypothesis that self-efficacy and intrinsic motivation have greater predictive power for learning under self-controlled relative to yoked conditions.
Personality and emotion-based high-level control of affective story characters.
Su, Wen-Poh; Pham, Binh; Wardhani, Aster
2007-01-01
Human emotional behavior, personality, and body language are the essential elements in the recognition of a believable synthetic story character. This paper presents an approach using story scripts and action descriptions in a form similar to the content description of storyboards to predict specific personality and emotional states. By adopting the Abridged Big Five Circumplex (AB5C) Model of personality from the study of psychology as a basis for a computational model, we construct a hierarchical fuzzy rule-based system to facilitate the personality and emotion control of the body language of a dynamic story character. The story character can consistently perform specific postures and gestures based on his/her personality type. Story designers can devise a story context in the form of our story interface which predictably motivates personality and emotion values to drive the appropriate movements of the story characters. Our system takes advantage of relevant knowledge described by psychologists and researchers of storytelling, nonverbal communication, and human movement. Our ultimate goal is to facilitate the high-level control of a synthetic character.
NASA Technical Reports Server (NTRS)
Leiden, Ken; Green, Steven
2000-01-01
The development of a decision support tool (DST) for the en-route domain with accurate conflict prediction time horizons of 20 minutes has introduced an interesting problem. A 20 minute time horizon for conflict prediction often results in the predicted conflict occurring one or more sectors downstream from the sector controller who "owns" (i-e., is responsible for the safe separation of aircraft) one or both of the aircraft in the conflict pair. Based on current roles and responsibilities of today's en route controllers, the upstream controller would not resolve this conflict. In most cases, the downstream controller would wait until the conflicting aircraft entered higher sector before resolving the conflict. This results in a delay of several minutes from the time when the conflict was initially predicted. This delay is inefficient from both a controller workload and user's cost of operations perspective. Trajectory orientation, a new concept for facilitating an efficient, conflict-free flight path across several sectors while conforming to metering or miles-in-trail spacing, is proposed as an alternative to today's sector-oriented method. This concept necessitates a fundamental shift in thinking about inter-sector coordination. Instead of operating independently, with the main focus on protecting their internal airspace, controllers would work cooperatively, depending on each other for well-planned, conflict-free flow of aircraft. To support the trajectory orientation concept, a long time horizon (15 to 20 minutes) for conflict prediction and resolution would most likely be a primary requirement. In addition, new tools, such as controller-pilot data link will be identified to determine their necessity and applicability for trajectory orientation. Finally, with significant controller participation from selected Air Route Traffic Control Centers, potential shifts in R-side/D-side roles and responsibilities as well as the creation of a new controller position for multi-sector planning will be examined to determine the most viable solutions.
NASA Astrophysics Data System (ADS)
Cleves, Ann E.; Jain, Ajay N.
2008-03-01
Inductive bias is the set of assumptions that a person or procedure makes in making a prediction based on data. Different methods for ligand-based predictive modeling have different inductive biases, with a particularly sharp contrast between 2D and 3D similarity methods. A unique aspect of ligand design is that the data that exist to test methodology have been largely man-made, and that this process of design involves prediction. By analyzing the molecular similarities of known drugs, we show that the inductive bias of the historic drug discovery process has a very strong 2D bias. In studying the performance of ligand-based modeling methods, it is critical to account for this issue in dataset preparation, use of computational controls, and in the interpretation of results. We propose specific strategies to explicitly address the problems posed by inductive bias considerations.
NASA Astrophysics Data System (ADS)
Beier, F.; de Vries, O.; Schreiber, T.; Eberhardt, R.; Tünnermann, A.; Bollig, C.; Hofmeister, P. G.; Schmidt, J.; Reuter, R.
2013-02-01
Scaling of the power yield of offshore wind farms relies on the capacity of the individual wind turbines. This results in a trend to very large rotor diameters, which are difficult to control. It is crucial to monitor the inhomogeneous wind field in front of the wind turbines at different distances to ensure reliable operation and a long lifetime at high output levels. In this contribution, we demonstrate an all-fiber ns-pulsed fiber amplifier based on cost-efficient commercially available components. The amplifier is a suitable source for coherent Doppler lidar pulses making a predictive control of the turbine operation feasible.
Study on Coagulant Dosing Control System of Micro Vortex Water Treatment
NASA Astrophysics Data System (ADS)
Fengping, Hu; Qi, Fan; Wenjie, Hu; Xizhen, He; Hongling, Dai
2018-03-01
In view of the characteristics of nonlinearity, large time delay and multi disturbance in the process of coagulant dosing in water treatment, it is difficult to control the dosage of coagulant. According to the four indexes of raw water quality parameters (raw water flow, turbidity, pH value) and turbidity of sedimentation tank, the micro vortex coagulation dosing control model is constructed based on BP neural network and GA. The forecast results of BP neural network model are ideal, and after the optimization of GA, the prediction accuracy of the model is partly improved. The prediction error of the optimized network is ±0.5 mg/L, and has a better performance than non-optimized network.
A Risk Prediction Model for Sporadic CRC Based on Routine Lab Results.
Boursi, Ben; Mamtani, Ronac; Hwang, Wei-Ting; Haynes, Kevin; Yang, Yu-Xiao
2016-07-01
Current risk scores for colorectal cancer (CRC) are based on demographic and behavioral factors and have limited predictive values. To develop a novel risk prediction model for sporadic CRC using clinical and laboratory data in electronic medical records. We conducted a nested case-control study in a UK primary care database. Cases included those with a diagnostic code of CRC, aged 50-85. Each case was matched with four controls using incidence density sampling. CRC predictors were examined using univariate conditional logistic regression. Variables with p value <0.25 in the univariate analysis were further evaluated in multivariate models using backward elimination. Discrimination was assessed using receiver operating curve. Calibration was evaluated using the McFadden's R2. Net reclassification index (NRI) associated with incorporation of laboratory results was calculated. Results were internally validated. A model similar to existing CRC prediction models which included age, sex, height, obesity, ever smoking, alcohol dependence, and previous screening colonoscopy had an AUC of 0.58 (0.57-0.59) with poor goodness of fit. A laboratory-based model including hematocrit, MCV, lymphocytes, and neutrophil-lymphocyte ratio (NLR) had an AUC of 0.76 (0.76-0.77) and a McFadden's R2 of 0.21 with a NRI of 47.6 %. A combined model including sex, hemoglobin, MCV, white blood cells, platelets, NLR, and oral hypoglycemic use had an AUC of 0.80 (0.79-0.81) with a McFadden's R2 of 0.27 and a NRI of 60.7 %. Similar results were shown in an internal validation set. A laboratory-based risk model had good predictive power for sporadic CRC risk.
Jarnevich, Catherine S.; Young, Nicholas E; Sheffels, Trevor R.; Carter, Jacoby; Systma, Mark D.; Talbert, Colin
2017-01-01
Invasive species provide a unique opportunity to evaluate factors controlling biogeographic distributions; we can consider introduction success as an experiment testing suitability of environmental conditions. Predicting potential distributions of spreading species is not easy, and forecasting potential distributions with changing climate is even more difficult. Using the globally invasive coypu (Myocastor coypus [Molina, 1782]), we evaluate and compare the utility of a simplistic ecophysiological based model and a correlative model to predict current and future distribution. The ecophysiological model was based on winter temperature relationships with nutria survival. We developed correlative statistical models using the Software for Assisted Habitat Modeling and biologically relevant climate data with a global extent. We applied the ecophysiological based model to several global circulation model (GCM) predictions for mid-century. We used global coypu introduction data to evaluate these models and to explore a hypothesized physiological limitation, finding general agreement with known coypu distribution locally and globally and support for an upper thermal tolerance threshold. Global circulation model based model results showed variability in coypu predicted distribution among GCMs, but had general agreement of increasing suitable area in the USA. Our methods highlighted the dynamic nature of the edges of the coypu distribution due to climate non-equilibrium, and uncertainty associated with forecasting future distributions. Areas deemed suitable habitat, especially those on the edge of the current known range, could be used for early detection of the spread of coypu populations for management purposes. Combining approaches can be beneficial to predicting potential distributions of invasive species now and in the future and in exploring hypotheses of factors controlling distributions.
The predictive value of selected serum microRNAs for acute GVHD by TaqMan MicroRNA arrays.
Zhang, Chunyan; Bai, Nan; Huang, Wenrong; Zhang, Pengjun; Luo, Yuan; Men, Shasha; Wen, Ting; Tong, Hongli; Wang, Shuhong; Tian, Ya-Ping
2016-10-01
Currently, the diagnosis of acute graft-versus-host disease (aGVHD) is mainly based on clinical symptoms and biopsy results. This study was designed to further explore new no noninvasive biomarkers for aGVHD prediction/diagnosis. We profiled miRNAs in serum pools from patients with aGVHD (grades II-IV) (n = 9) and non-aGVHD controls (n = 9) by real-time qPCR-based TaqMan MicroRNA arrays. Then, predictive models were established using related miRNAs (n = 38) and verified by a double-blind trial (n = 54). We found that miR-411 was significantly down regulated when aGVHD developed and recovered when aGVHD was controlled, which demonstrated that miR-411 has potential as an indicator for aGVHD monitoring. We developed and validated a predictive model and a diagnostic model for aGVHD. The predictive model included two miRNAs (miR-26b and miR-374a), which could predict an increased risk for aGVHD 1 or 2 weeks in advance, with an AUC, Positive Predictive Value (PPV), and Negative Predictive Value (NPV) of 0.722, 76.19 %, and 69.70 %, respectively. The diagnostic model included three miRNAs (miR-28-5p, miR-489, and miR-671-3p) with an AUC, PPV, and NPV of 0.841, 85.71 % and 83.33 %, respectively. Our results show that circulating miRNAs (miR-26b and miR-374a, miR-28-5p, miR-489 and miR-671-3p) may serve as biomarkers for the prediction and diagnosis of grades II-IV aGVHD.
A fuzzy logic approach to control anaerobic digestion.
Domnanovich, A M; Strik, D P; Zani, L; Pfeiffer, B; Karlovits, M; Braun, R; Holubar, P
2003-01-01
One of the goals of the EU-Project AMONCO (Advanced Prediction, Monitoring and Controlling of Anaerobic Digestion Process Behaviour towards Biogas Usage in Fuel Cells) is to create a control tool for the anaerobic digestion process, which predicts the volumetric organic loading rate (Bv) for the next day, to obtain a high biogas quality and production. The biogas should contain a high methane concentration (over 50%) and a low concentration of components toxic for fuel cells, e.g. hydrogen sulphide, siloxanes, ammonia and mercaptanes. For producing data to test the control tool, four 20 l anaerobic Continuously Stirred Tank Reactors (CSTR) are operated. For controlling two systems were investigated: a pure fuzzy logic system and a hybrid-system which contains a fuzzy based reactor condition calculation and a hierachial neural net in a cascade of optimisation algorithms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xavier, MA; Trimboli, MS
This paper introduces a novel application of model predictive control (MPC) to cell-level charging of a lithium-ion battery utilizing an equivalent circuit model of battery dynamics. The approach employs a modified form of the MPC algorithm that caters for direct feed-though signals in order to model near-instantaneous battery ohmic resistance. The implementation utilizes a 2nd-order equivalent circuit discrete-time state-space model based on actual cell parameters; the control methodology is used to compute a fast charging profile that respects input, output, and state constraints. Results show that MPC is well-suited to the dynamics of the battery control problem and further suggestmore » significant performance improvements might be achieved by extending the result to electrochemical models. (C) 2015 Elsevier B.V. All rights reserved.« less
NASA Astrophysics Data System (ADS)
Virgili-Llop, Josep; Zagaris, Costantinos; Park, Hyeongjun; Zappulla, Richard; Romano, Marcello
2018-03-01
An experimental campaign has been conducted to evaluate the performance of two different guidance and control algorithms on a multi-constrained docking maneuver. The evaluated algorithms are model predictive control (MPC) and inverse dynamics in the virtual domain (IDVD). A linear-quadratic approach with a quadratic programming solver is used for the MPC approach. A nonconvex optimization problem results from the IDVD approach, and a nonlinear programming solver is used. The docking scenario is constrained by the presence of a keep-out zone, an entry cone, and by the chaser's maximum actuation level. The performance metrics for the experiments and numerical simulations include the required control effort and time to dock. The experiments have been conducted in a ground-based air-bearing test bed, using spacecraft simulators that float over a granite table.
Are Droughts in the United States Great Plains Predictable on Seasonal and Longer Time Scales?
NASA Technical Reports Server (NTRS)
Schubert, Siegfried D.; Suarez, M.; Pegion, P.; Kistler, M.; Einaudi, Franco (Technical Monitor)
2001-01-01
The United States Great Plains has experienced numerous episodes of unusually dry conditions lasting anywhere from months to several years, In this presentation, we will examine the predictability of such episodes and the physical mechanisms controlling the variability of the summer climate of the continental United States. The analysis is based on ensembles of multi-year simulations and seasonal hindcasts generated with the NASA Seasonal to-Interannual Prediction Project (NSIPP-1) General Circulation Model.
Circadian Phase Resetting via Single and Multiple Control Targets
Bagheri, Neda; Stelling, Jörg; Doyle, Francis J.
2008-01-01
Circadian entrainment is necessary for rhythmic physiological functions to be appropriately timed over the 24-hour day. Disruption of circadian rhythms has been associated with sleep and neuro-behavioral impairments as well as cancer. To date, light is widely accepted to be the most powerful circadian synchronizer, motivating its use as a key control input for phase resetting. Through sensitivity analysis, we identify additional control targets whose individual and simultaneous manipulation (via a model predictive control algorithm) out-perform the open-loop light-based phase recovery dynamics by nearly 3-fold. We further demonstrate the robustness of phase resetting by synchronizing short- and long-period mutant phenotypes to the 24-hour environment; the control algorithm is robust in the presence of model mismatch. These studies prove the efficacy and immediate application of model predictive control in experimental studies and medicine. In particular, maintaining proper circadian regulation may significantly decrease the chance of acquiring chronic illness. PMID:18795146
A model predictive speed tracking control approach for autonomous ground vehicles
NASA Astrophysics Data System (ADS)
Zhu, Min; Chen, Huiyan; Xiong, Guangming
2017-03-01
This paper presents a novel speed tracking control approach based on a model predictive control (MPC) framework for autonomous ground vehicles. A switching algorithm without calibration is proposed to determine the drive or brake control. Combined with a simple inverse longitudinal vehicle model and adaptive regulation of MPC, this algorithm can make use of the engine brake torque for various driving conditions and avoid high frequency oscillations automatically. A simplified quadratic program (QP) solving algorithm is used to reduce the computational time, and the approach has been applied in a 16-bit microcontroller. The performance of the proposed approach is evaluated via simulations and vehicle tests, which were carried out in a range of speed-profile tracking tasks. With a well-designed system structure, high-precision speed control is achieved. The system can robustly model uncertainty and external disturbances, and yields a faster response with less overshoot than a PI controller.
Nonlinear engine model for idle speed control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Livshiz, M.; Sanvido, D.J.; Stiles, S.D.
1994-12-31
This paper describes a nonlinear model of an engine used for the design of idle speed control and prediction in a broad range of idle speeds and operational conditions. Idle speed control systems make use of both spark advance and the idle air actuator to control engine speed for improved response relative to variations in the target idle speed due to load disturbances. The control system at idle can be presented by a multiple input multiple output (MIMO) nonlinear model. Information of nonlinearities helps to improve performance of the system over the whole range of engine speeds. A proposed simplemore » nonlinear model of the engine at idle was applied for design of optimal controllers and predictors for improved steady state, load rejection and transition from and to idle. This paper describes vehicle results of engine speed prediction based on the described model.« less
Khazaee, Mostafa; Markazi, Amir H D; Omidi, Ehsan
2015-11-01
In this paper, a new Adaptive Fuzzy Predictive Sliding Mode Control (AFP-SMC) is presented for nonlinear systems with uncertain dynamics and unknown input delay. The control unit consists of a fuzzy inference system to approximate the ideal linearization control, together with a switching strategy to compensate for the estimation errors. Also, an adaptive fuzzy predictor is used to estimate the future values of the system states to compensate for the time delay. The adaptation laws are used to tune the controller and predictor parameters, which guarantee the stability based on a Lyapunov-Krasovskii functional. To evaluate the method effectiveness, the simulation and experiment on an overhead crane system are presented. According to the obtained results, AFP-SMC can effectively control the uncertain nonlinear systems, subject to input delays of known bound. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Payload/orbiter contamination control requirement study
NASA Technical Reports Server (NTRS)
Bareiss, L. E.; Ress, E. B.
1975-01-01
The results of a contamination impact analysis upon the spacelab carrier and the spacelab carrier upon some of its potential payloads are presented. These results are based upon contamination computer modeling techniques developed to predict the induced environment for spacelab and to provide the basis for evaluation of the predicted environment against the current on orbit contamination control criteria as specified for payloads. Those spacelab carrier contamination sources evaluated against the stated contamination control criteria were outgassing/offgassing of the major nonmetallic thermal control coating of the spacelab carriers, spacelab core and experiment module and tunnel cabin atmosphere leakage, avionics bay vent, spacelab condensate vent, random particulate sloughing, and the return flux of the molecular content of these sources from the gas-gas interactions with the ambient orbital environment. It is indicated that the spacelab carrier can meet the intent of the contamination control criteria through incorporating known contamination control practices.
NASA Astrophysics Data System (ADS)
TayyebTaher, M.; Esmaeilzadeh, S. Majid
2017-07-01
This article presents an application of Model Predictive Controller (MPC) to the attitude control of a geostationary flexible satellite. SIMO model has been used for the geostationary satellite, using the Lagrange equations. Flexibility is also included in the modelling equations. The state space equations are expressed in order to simplify the controller. Naturally there is no specific tuning rule to find the best parameters of an MPC controller which fits the desired controller. Being an intelligence method for optimizing problem, Genetic Algorithm has been used for optimizing the performance of MPC controller by tuning the controller parameter due to minimum rise time, settling time, overshoot of the target point of the flexible structure and its mode shape amplitudes to make large attitude maneuvers possible. The model included geosynchronous orbit environment and geostationary satellite parameters. The simulation results of the flexible satellite with attitude maneuver shows the efficiency of proposed optimization method in comparison with LQR optimal controller.
NASA Astrophysics Data System (ADS)
Wayand, N. E.; Stimberis, J.; Zagrodnik, J.; Mass, C.; Lundquist, J. D.
2016-12-01
Low-level cold air from eastern Washington state often flows westward through mountain passes in the Washington Cascades, creating localized inversions and locally reducing climatological temperatures. The persistence of this inversion during a frontal passage can result in complex patterns of snow and rain that are difficult to predict. Yet, these predictions are critical to support highway avalanche control, ski resort operations, and modeling of headwater snowpack storage. In this study we used observations of precipitation phase from a disdrometer and snow depth sensors across Snoqualmie Pass, WA, to evaluate surface-air-temperature-based and mesoscale-model-based predictions of precipitation phase during the anomalously warm 2014-2015 winter. The skill of surface-based methods was greatly improved by using air temperature from a nearby higher-elevation station, which was less impacted by low-level inversions. Alternatively, we found a hybrid method that combines surface-based predictions with output from the Weather Research and Forecasting mesoscale model to have improved skill over both parent models. These results suggest that prediction of precipitation phase in mountain passes can be improved by incorporating observations or models from above the surface layer.
ERIC Educational Resources Information Center
Basak, Chandramallika; Voss, Michelle W.; Erickson, Kirk I.; Boot, Walter R.; Kramer, Arthur F.
2011-01-01
Previous studies have found that differences in brain volume among older adults predict performance in laboratory tasks of executive control, memory, and motor learning. In the present study we asked whether regional differences in brain volume as assessed by the application of a voxel-based morphometry technique on high resolution MRI would also…
Simulation of Surface Erosion on a Logging Road in the Jackson Demonstration State Forest
Teresa Ish; David Tomberlin
2007-01-01
In constructing management models for the control of sediment delivery to streams, we have used a simulation model of road surface erosion known as the Watershed Erosion Prediction Project (WEPP) model, developed by the USDA Forest Service. This model predicts discharge, erosion, and sediment delivery at the road segment level, based on a stochastic climate simulator...
Corbit, Laura H; Balleine, Bernard W
2016-01-01
Pavlovian stimuli exert a range of effects on behavior from simple conditioned reflexes, such as salivation, to altering the vigor and direction of instrumental actions. It is currently accepted that these distinct behavioral effects stem from two sources (i) the various associative connections between predictive stimuli and the component features of the events that these stimuli predict and (ii) the distinct motivational and cognitive functions served by cues, particularly their arousing and informational effects on the selection and performance of specific actions. Here, we describe studies that have assessed these latter phenomena using a paradigm that has come to be called Pavlovian-instrumental transfer. We focus first on behavioral experiments that have described distinct sources of stimulus control derived from the general affective and outcome-specific predictions of conditioned stimuli, referred to as general transfer and specific transfer, respectively. Subsequently, we describe research efforts attempting to establish the neural bases of these transfer effects, largely in the afferent and efferent connections of the nucleus accumbens (NAc) core and shell. Finally, we examine the role of predictive cues in examples of aberrant stimulus control associated with psychiatric disorders and addiction.
Emotion Awareness Predicts Body Mass Index Percentile Trajectories in Youth.
Whalen, Diana J; Belden, Andy C; Barch, Deanna; Luby, Joan
2015-10-01
To examine the rate of change in body mass index (BMI) percentile across 3 years in relation to emotion identification ability and brain-based reactivity in emotional processing regions. A longitudinal sample of 202 youths completed 3 functional magnetic resonance imaging-based facial processing tasks and behavioral emotion differentiation tasks. We examined the rate of change in the youth's BMI percentile as a function of reactivity in emotional processing brain regions and behavioral emotion identification tasks using multilevel modeling. Lower correct identification of both happiness and sadness measured behaviorally predicted increases in BMI percentile across development, whereas higher correct identification of both happiness and sadness predicted decreases in BMI percentile, while controlling for children's pubertal status, sex, ethnicity, IQ score, exposure to antipsychotic medication, family income-to-needs ratio, and externalizing, internalizing, and depressive symptoms. Greater neural activation in emotional reactivity regions to sad faces also predicted increases in BMI percentile during development, also controlling for the aforementioned covariates. Our findings provide longitudinal developmental data demonstrating links between both emotion identification ability and greater neural reactivity in emotional processing regions with trajectories of BMI percentiles across childhood. Copyright © 2015 Elsevier Inc. All rights reserved.
Yeh, Jui-Yuan; Xirasagar, Sudha; Liu, Tsai-Ching; Li, Chong-Yi; Lin, Herng-Ching
2008-06-01
Using nationwide, 7-year population-based data for 1997-2003, we examined marital status to see if it predicted suicide among the ethnic Chinese population of Taiwan. Using cause of death data, with a case-control design, two groups-total adult suicide deaths, n = 17,850, the study group, and adult deaths other than suicide, n = 71,400 (randomly selected from age, sex, and geographic region matched controls, four per suicide)-were studied. Using multiple logistic regression analysis including age-marital status interaction, adjusted estimates show divorced status to be the most detrimental for suicide propensity, with males showing stronger effect size. Females never married, aged below 35 and 65-plus, and widowed 65-plus had lower suicide odds.
Rodriguez, Christina M; Richardson, Michael J
2007-11-01
Progress in the child maltreatment field depends on refinements in leading models. This study examines aspects of social information processing theory (Milner, 2000) in predicting physical maltreatment risk in a community sample. Consistent with this theory, selected preexisting schema (external locus-of-control orientation, inappropriate developmental expectations, low empathic perspective-taking ability, and low perceived attachment relationship to child) were expected to predict child abuse risk beyond contextual factors (parenting stress and anger expression). Based on 115 parents' self-report, results from this study support cognitive factors that predict abuse risk (with locus of control, perceived attachment, or empathy predicting different abuse risk measures, but not developmental expectations), although the broad contextual factors involving negative affectivity and stress were consistent predictors across abuse risk markers. Findings are discussed with regard to implications for future model evaluations, with indications the model may apply to other forms of maltreatment, such as psychological maltreatment or neglect.
High capacity reversible watermarking for audio by histogram shifting and predicted error expansion.
Wang, Fei; Xie, Zhaoxin; Chen, Zuo
2014-01-01
Being reversible, the watermarking information embedded in audio signals can be extracted while the original audio data can achieve lossless recovery. Currently, the few reversible audio watermarking algorithms are confronted with following problems: relatively low SNR (signal-to-noise) of embedded audio; a large amount of auxiliary embedded location information; and the absence of accurate capacity control capability. In this paper, we present a novel reversible audio watermarking scheme based on improved prediction error expansion and histogram shifting. First, we use differential evolution algorithm to optimize prediction coefficients and then apply prediction error expansion to output stego data. Second, in order to reduce location map bits length, we introduced histogram shifting scheme. Meanwhile, the prediction error modification threshold according to a given embedding capacity can be computed by our proposed scheme. Experiments show that this algorithm improves the SNR of embedded audio signals and embedding capacity, drastically reduces location map bits length, and enhances capacity control capability.
The cognitive bases of the development of past and future episodic cognition in preschoolers.
Ünal, Gülten; Hohenberger, Annette
2017-10-01
The aim of this study was to use a minimalist framework to examine the joint development of past and future episodic cognition and their underlying cognitive abilities in 3- to 5-year-old Turkish preschoolers. Participants engaged in two main tasks, a what-where-when (www) task to measure episodic memory and a future prediction task to measure episodic future thinking. Three additional tasks were used for predicting children's performance in the two main tasks: a temporal language task, an executive function task, and a spatial working memory task. Results indicated that past and future episodic tasks were significantly correlated with each other even after controlling for age. Hierarchical multiple regressions showed that, after controlling for age, the www task was predicted by executive functions, possibly supporting binding of episodic information and by linguistic abilities. The future prediction task was predicted by linguistic abilities alone, underlining the importance of language for episodic past and future thinking. Copyright © 2017 Elsevier Inc. All rights reserved.
Rébufa, Catherine; Pany, Inès; Bombarda, Isabelle
2018-09-30
A rapid methodology was developed to simultaneously predict water content and activity values (a w ) of Moringa oleifera leaf powders (MOLP) using near infrared (NIR) signatures and experimental sorption isotherms. NIR spectra of MOLP samples (n = 181) were recorded. A Partial Least Square Regression model (PLS2) was obtained with low standard errors of prediction (SEP of 1.8% and 0.07 for water content and a w respectively). Experimental sorption isotherms obtained at 20, 30 and 40 °C showed similar profiles. This result is particularly important to use MOLP in food industry. In fact, a temperature variation of the drying process will not affect their available water content (self-life). Nutrient contents based on protein and selected minerals (Ca, Fe, K) were also predicted from PLS1 models. Protein contents were well predicted (SEP of 2.3%). This methodology allowed for an improvement in MOLP safety, quality control and traceability. Published by Elsevier Ltd.
Rational metareasoning and the plasticity of cognitive control.
Lieder, Falk; Shenhav, Amitai; Musslick, Sebastian; Griffiths, Thomas L
2018-04-01
The human brain has the impressive capacity to adapt how it processes information to high-level goals. While it is known that these cognitive control skills are malleable and can be improved through training, the underlying plasticity mechanisms are not well understood. Here, we develop and evaluate a model of how people learn when to exert cognitive control, which controlled process to use, and how much effort to exert. We derive this model from a general theory according to which the function of cognitive control is to select and configure neural pathways so as to make optimal use of finite time and limited computational resources. The central idea of our Learned Value of Control model is that people use reinforcement learning to predict the value of candidate control signals of different types and intensities based on stimulus features. This model correctly predicts the learning and transfer effects underlying the adaptive control-demanding behavior observed in an experiment on visual attention and four experiments on interference control in Stroop and Flanker paradigms. Moreover, our model explained these findings significantly better than an associative learning model and a Win-Stay Lose-Shift model. Our findings elucidate how learning and experience might shape people's ability and propensity to adaptively control their minds and behavior. We conclude by predicting under which circumstances these learning mechanisms might lead to self-control failure.
Rational metareasoning and the plasticity of cognitive control
Shenhav, Amitai; Musslick, Sebastian; Griffiths, Thomas L.
2018-01-01
The human brain has the impressive capacity to adapt how it processes information to high-level goals. While it is known that these cognitive control skills are malleable and can be improved through training, the underlying plasticity mechanisms are not well understood. Here, we develop and evaluate a model of how people learn when to exert cognitive control, which controlled process to use, and how much effort to exert. We derive this model from a general theory according to which the function of cognitive control is to select and configure neural pathways so as to make optimal use of finite time and limited computational resources. The central idea of our Learned Value of Control model is that people use reinforcement learning to predict the value of candidate control signals of different types and intensities based on stimulus features. This model correctly predicts the learning and transfer effects underlying the adaptive control-demanding behavior observed in an experiment on visual attention and four experiments on interference control in Stroop and Flanker paradigms. Moreover, our model explained these findings significantly better than an associative learning model and a Win-Stay Lose-Shift model. Our findings elucidate how learning and experience might shape people’s ability and propensity to adaptively control their minds and behavior. We conclude by predicting under which circumstances these learning mechanisms might lead to self-control failure. PMID:29694347
Rezazadeh, Afsaneh; Solhi, Mahnaz; Azam, Kamal
2015-01-01
Adolescence is a sensitive period of acquiring normal and abnormal habits for all oflife. The study investigates determinants of responsibility for health, spiritual health and interpersonal relations and predictive factors based on the theory of planned behavior in high school girl students in Tabriz. In this Cross-sectional study, 340 students were selected thorough multi-stage sampling. An author-made questionnaire based on standard questionnaires of Health Promotion and Lifestyle II (HPLPII), spiritual health standards (Palutzian & Ellison) and components of the theory of planned behavior (attitudes, subjective norms, perceived behavioral control, and behavioral intention) was used for data collection. The questionnaire was validated in a pilot study. Data were analyzed using SPSS v.15 and descriptive and analytical tests (Chi-square test, Pearson correlation co-efficient and liner regression test in backward method). Students' responsibility for health, spiritual health, interpersonal relationships, and concepts of theory of planned behavior was moderate. We found a significant positive correlation (p<0/001) among all concepts of theory of planned behavior. Attitude and perceived behavioral control predicted 35% of intention of behavioral change (p<0.001). Attitude, subjective norms, and perceived behavioral control predicted 74% of behavioral change in accountability for health (p<0.0001), 56% for behavioral change in spiritual health (p<0.0001) and 63% for behavioral change in interpersonal relationship (p<0.0001). Status of responsibility for health, spiritual health and interpersonal relationships of students was moderate. Hence, behavioral intention and its determinants such as perceived behavioral control should be noted in promoting intervention programs.
Combination of acoustical radiosity and the image source method.
Koutsouris, Georgios I; Brunskog, Jonas; Jeong, Cheol-Ho; Jacobsen, Finn
2013-06-01
A combined model for room acoustic predictions is developed, aiming to treat both diffuse and specular reflections in a unified way. Two established methods are incorporated: acoustical radiosity, accounting for the diffuse part, and the image source method, accounting for the specular part. The model is based on conservation of acoustical energy. Losses are taken into account by the energy absorption coefficient, and the diffuse reflections are controlled via the scattering coefficient, which defines the portion of energy that has been diffusely reflected. The way the model is formulated allows for a dynamic control of the image source production, so that no fixed maximum reflection order is required. The model is optimized for energy impulse response predictions in arbitrary polyhedral rooms. The predictions are validated by comparison with published measured data for a real music studio hall. The proposed model turns out to be promising for acoustic predictions providing a high level of detail and accuracy.
NASA Technical Reports Server (NTRS)
Schneider, Steven J.
2015-01-01
Heat transfer correlations of data on flat plates are used to explore the parameters in the Coolit program used for calculating the quantity of cooling air for controlling turbine blade temperature. Correlations for both convection and film cooling are explored for their relevance to predicting blade temperature as a function of a total cooling flow which is split between external film and internal convection flows. Similar trends to those in Coolit are predicted as a function of the percent of the total cooling flow that is in the film. The exceptions are that no film or 100 percent convection is predicted to not be able to control blade temperature, while leaving less than 25 percent of the cooling flow in the convection path results in nearing a limit on convection cooling as predicted by a thermal effectiveness parameter not presently used in Coolit.
Shimizu, Yu; Yoshimoto, Junichiro; Takamura, Masahiro; Okada, Go; Okamoto, Yasumasa; Yamawaki, Shigeto; Doya, Kenji
2017-01-01
In diagnostic applications of statistical machine learning methods to brain imaging data, common problems include data high-dimensionality and co-linearity, which often cause over-fitting and instability. To overcome these problems, we applied partial least squares (PLS) regression to resting-state functional magnetic resonance imaging (rs-fMRI) data, creating a low-dimensional representation that relates symptoms to brain activity and that predicts clinical measures. Our experimental results, based upon data from clinically depressed patients and healthy controls, demonstrated that PLS and its kernel variants provided significantly better prediction of clinical measures than ordinary linear regression. Subsequent classification using predicted clinical scores distinguished depressed patients from healthy controls with 80% accuracy. Moreover, loading vectors for latent variables enabled us to identify brain regions relevant to depression, including the default mode network, the right superior frontal gyrus, and the superior motor area. PMID:28700672
NASA Astrophysics Data System (ADS)
Haq, R.; Prayitno, H.; Dzulkiflih; Sucahyo, I.; Rahmawati, E.
2018-03-01
In this article, the development of a low cost mobile robot based on PID controller and odometer for education is presented. PID controller and odometer is applied for controlling mobile robot position. Two-dimensional position vector in cartesian coordinate system have been inserted to robot controller as an initial and final position. Mobile robot has been made based on differential drive and sensor magnetic rotary encoder which measured robot position from a number of wheel rotation. Odometry methode use data from actuator movements for predicting change of position over time. The mobile robot is examined to get final position with three different heading angle 30°, 45° and 60° by applying various value of KP, KD and KI constant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yueqiang; Sabbagh, S. A.; Chapman, I. T.
The high-frequency noise measured by magnetic sensors, at levels above the typical frequency of resistive wall modes, is analyzed across a range of present tokamak devices including DIII-D, JET, MAST, ASDEX Upgrade, JT-60U, and NSTX. A high-pass filter enables identification of the noise component with Gaussian-like statistics that shares certain common characteristics in all devices considered. A conservative prediction is made for ITER plasma operation of the high-frequency noise component of the sensor signals, to be used for resistive wall mode feedback stabilization, based on the multimachine database. The predicted root-mean-square n = 1 (n is the toroidal mode number)more » noise level is 10 4 to 10 5 G/s for the voltage signal, and 0.1 to 1 G for the perturbed magnetic field signal. The lower cutoff frequency of the Gaussian pickup noise scales linearly with the sampling frequency, with a scaling coefficient of about 0.1. As a result, these basic noise characteristics should be useful for the modeling-based design of the feedback control system for the resistive wall mode in ITER.« less
Liu, Yueqiang; Sabbagh, S. A.; Chapman, I. T.; ...
2017-03-27
The high-frequency noise measured by magnetic sensors, at levels above the typical frequency of resistive wall modes, is analyzed across a range of present tokamak devices including DIII-D, JET, MAST, ASDEX Upgrade, JT-60U, and NSTX. A high-pass filter enables identification of the noise component with Gaussian-like statistics that shares certain common characteristics in all devices considered. A conservative prediction is made for ITER plasma operation of the high-frequency noise component of the sensor signals, to be used for resistive wall mode feedback stabilization, based on the multimachine database. The predicted root-mean-square n = 1 (n is the toroidal mode number)more » noise level is 10 4 to 10 5 G/s for the voltage signal, and 0.1 to 1 G for the perturbed magnetic field signal. The lower cutoff frequency of the Gaussian pickup noise scales linearly with the sampling frequency, with a scaling coefficient of about 0.1. As a result, these basic noise characteristics should be useful for the modeling-based design of the feedback control system for the resistive wall mode in ITER.« less
Identifying Model-Based Reconfiguration Goals through Functional Deficiencies
NASA Technical Reports Server (NTRS)
Benazera, Emmanuel; Trave-Massuyes, Louise
2004-01-01
Model-based diagnosis is now advanced to the point autonomous systems face some uncertain and faulty situations with success. The next step toward more autonomy is to have the system recovering itself after faults occur, a process known as model-based reconfiguration. After faults occur, given a prediction of the nominal behavior of the system and the result of the diagnosis operation, this paper details how to automatically determine the functional deficiencies of the system. These deficiencies are characterized in the case of uncertain state estimates. A methodology is then presented to determine the reconfiguration goals based on the deficiencies. Finally, a recovery process interleaves planning and model predictive control to restore the functionalities in prioritized order.
NASA Astrophysics Data System (ADS)
Zäh, Ralf-Kilian; Mosbach, Benedikt; Hollwich, Jan; Faupel, Benedikt
2017-02-01
To ensure the competitiveness of manufacturing companies it is indispensable to optimize their manufacturing processes. Slight variations of process parameters and machine settings have only marginally effects on the product quality. Therefore, the largest possible editing window is required. Such parameters are, for example, the movement of the laser beam across the component for the laser keyhole welding. That`s why it is necessary to keep the formation of welding seams within specified limits. Therefore, the quality of laser welding processes is ensured, by using post-process methods, like ultrasonic inspection, or special in-process methods. These in-process systems only achieve a simple evaluation which shows whether the weld seam is acceptable or not. Furthermore, in-process systems use no feedback for changing the control variables such as speed of the laser or adjustment of laser power. In this paper the research group presents current results of the research field of Online Monitoring, Online Controlling and Model predictive controlling in laser welding processes to increase the product quality. To record the characteristics of the welding process, tested online methods are used during the process. Based on the measurement data, a state space model is ascertained, which includes all the control variables of the system. Depending on simulation tools the model predictive controller (MPC) is designed for the model and integrated into an NI-Real-Time-System.
Operating Comfort Prediction Model of Human-Machine Interface Layout for Cabin Based on GEP.
Deng, Li; Wang, Guohua; Chen, Bo
2015-01-01
In view of the evaluation and decision-making problem of human-machine interface layout design for cabin, the operating comfort prediction model is proposed based on GEP (Gene Expression Programming), using operating comfort to evaluate layout scheme. Through joint angles to describe operating posture of upper limb, the joint angles are taken as independent variables to establish the comfort model of operating posture. Factor analysis is adopted to decrease the variable dimension; the model's input variables are reduced from 16 joint angles to 4 comfort impact factors, and the output variable is operating comfort score. The Chinese virtual human body model is built by CATIA software, which will be used to simulate and evaluate the operators' operating comfort. With 22 groups of evaluation data as training sample and validation sample, GEP algorithm is used to obtain the best fitting function between the joint angles and the operating comfort; then, operating comfort can be predicted quantitatively. The operating comfort prediction result of human-machine interface layout of driller control room shows that operating comfort prediction model based on GEP is fast and efficient, it has good prediction effect, and it can improve the design efficiency.
Operating Comfort Prediction Model of Human-Machine Interface Layout for Cabin Based on GEP
Wang, Guohua; Chen, Bo
2015-01-01
In view of the evaluation and decision-making problem of human-machine interface layout design for cabin, the operating comfort prediction model is proposed based on GEP (Gene Expression Programming), using operating comfort to evaluate layout scheme. Through joint angles to describe operating posture of upper limb, the joint angles are taken as independent variables to establish the comfort model of operating posture. Factor analysis is adopted to decrease the variable dimension; the model's input variables are reduced from 16 joint angles to 4 comfort impact factors, and the output variable is operating comfort score. The Chinese virtual human body model is built by CATIA software, which will be used to simulate and evaluate the operators' operating comfort. With 22 groups of evaluation data as training sample and validation sample, GEP algorithm is used to obtain the best fitting function between the joint angles and the operating comfort; then, operating comfort can be predicted quantitatively. The operating comfort prediction result of human-machine interface layout of driller control room shows that operating comfort prediction model based on GEP is fast and efficient, it has good prediction effect, and it can improve the design efficiency. PMID:26448740
Experimental evaluation of a recursive model identification technique for type 1 diabetes.
Finan, Daniel A; Doyle, Francis J; Palerm, Cesar C; Bevier, Wendy C; Zisser, Howard C; Jovanovic, Lois; Seborg, Dale E
2009-09-01
A model-based controller for an artificial beta cell requires an accurate model of the glucose-insulin dynamics in type 1 diabetes subjects. To ensure the robustness of the controller for changing conditions (e.g., changes in insulin sensitivity due to illnesses, changes in exercise habits, or changes in stress levels), the model should be able to adapt to the new conditions by means of a recursive parameter estimation technique. Such an adaptive strategy will ensure that the most accurate model is used for the current conditions, and thus the most accurate model predictions are used in model-based control calculations. In a retrospective analysis, empirical dynamic autoregressive exogenous input (ARX) models were identified from glucose-insulin data for nine type 1 diabetes subjects in ambulatory conditions. Data sets consisted of continuous (5-minute) glucose concentration measurements obtained from a continuous glucose monitor, basal insulin infusion rates and times and amounts of insulin boluses obtained from the subjects' insulin pumps, and subject-reported estimates of the times and carbohydrate content of meals. Two identification techniques were investigated: nonrecursive, or batch methods, and recursive methods. Batch models were identified from a set of training data, whereas recursively identified models were updated at each sampling instant. Both types of models were used to make predictions of new test data. For the purpose of comparison, model predictions were compared to zero-order hold (ZOH) predictions, which were made by simply holding the current glucose value constant for p steps into the future, where p is the prediction horizon. Thus, the ZOH predictions are model free and provide a base case for the prediction metrics used to quantify the accuracy of the model predictions. In theory, recursive identification techniques are needed only when there are changing conditions in the subject that require model adaptation. Thus, the identification and validation techniques were performed with both "normal" data and data collected during conditions of reduced insulin sensitivity. The latter were achieved by having the subjects self-administer a medication, prednisone, for 3 consecutive days. The recursive models were allowed to adapt to this condition of reduced insulin sensitivity, while the batch models were only identified from normal data. Data from nine type 1 diabetes subjects in ambulatory conditions were analyzed; six of these subjects also participated in the prednisone portion of the study. For normal test data, the batch ARX models produced 30-, 45-, and 60-minute-ahead predictions that had average root mean square error (RMSE) values of 26, 34, and 40 mg/dl, respectively. For test data characterized by reduced insulin sensitivity, the batch ARX models produced 30-, 60-, and 90-minute-ahead predictions with average RMSE values of 27, 46, and 59 mg/dl, respectively; the recursive ARX models demonstrated similar performance with corresponding values of 27, 45, and 61 mg/dl, respectively. The identified ARX models (batch and recursive) produced more accurate predictions than the model-free ZOH predictions, but only marginally. For test data characterized by reduced insulin sensitivity, RMSE values for the predictions of the batch ARX models were 9, 5, and 5% more accurate than the ZOH predictions for prediction horizons of 30, 60, and 90 minutes, respectively. In terms of RMSE values, the 30-, 60-, and 90-minute predictions of the recursive models were more accurate than the ZOH predictions, by 10, 5, and 2%, respectively. In this experimental study, the recursively identified ARX models resulted in predictions of test data that were similar, but not superior, to the batch models. Even for the test data characteristic of reduced insulin sensitivity, the batch and recursive models demonstrated similar prediction accuracy. The predictions of the identified ARX models were only marginally more accurate than the model-free ZOH predictions. Given the simplicity of the ARX models and the computational ease with which they are identified, however, even modest improvements may justify the use of these models in a model-based controller for an artificial beta cell. 2009 Diabetes Technology Society.
Sinclair-McBride, Keneisha; Cole, David A
2017-05-01
A sample of 353 community adolescents (grades 9 to 12, 57.6 % female) participated in a 2-wave longitudinal study of eating behaviors (overeating, loss of control eating [LOC], and binge eating) and depression. The study addresses 4 hypotheses. (1) The prospective relations between eating behaviors and depressive symptoms will be reciprocal, with each predicting the other over time. (2) These relations will be stronger for girls than for boys. (3) These relations will be stronger for adolescents with high (not low) body mass index (BMI). (4) LOC will show incremental predictive utility in relation to depressive symptoms over and above overeating. Evidence supported reciprocal relations between binge eating and depressive symptoms and between overeating and depressive symptoms, but not between LOC and depressive symptoms. Sex and BMI did not substantially moderate these relations. Taken separately, overeating but not LOC predicted depressive symptoms. Taken together, neither predictor was significant controlling for the other. Results raise questions about the importance of LOC alone in predicting depressive symptoms in adolescence.
The Theory of Planned Behavior as a Predictor of HIV Testing Intention.
Ayodele, Olabode
2017-03-01
This investigation tests the theory of planned behavior (TPB) as a predictor of HIV testing intention among Nigerian university undergraduate students. A cross-sectional study of 392 students was conducted using a self-administered structured questionnaire that measured socio-demographics, perceived risk of human immunodeficiency virus (HIV) infection, and TPB constructs. Analysis was based on 273 students who had never been tested for HIV. Hierarchical multiple regression analysis assessed the applicability of the TPB in predicting HIV testing intention and additional predictive value of perceived risk of HIV infection. The prediction model containing TPB constructs explained 35% of the variance in HIV testing intention, with attitude and perceived behavioral control making significant and unique contributions to intention. Perceived risk of HIV infection contributed marginally (2%) but significantly to the final prediction model. Findings supported the TPB in predicting HIV testing intention. Although future studies must determine the generalizability of these results, the findings highlight the importance of perceived behavioral control, attitude, and perceived risk of HIV infection in the prediction of HIV testing intention among students who have not previously tested for HIV.
Takemura, Naohiro; Fukui, Takao; Inui, Toshio
2015-01-01
In human reach-to-grasp movement, visual occlusion of a target object leads to a larger peak grip aperture compared to conditions where online vision is available. However, no previous computational and neural network models for reach-to-grasp movement explain the mechanism of this effect. We simulated the effect of online vision on the reach-to-grasp movement by proposing a computational control model based on the hypothesis that the grip aperture is controlled to compensate for both motor variability and sensory uncertainty. In this model, the aperture is formed to achieve a target aperture size that is sufficiently large to accommodate the actual target; it also includes a margin to ensure proper grasping despite sensory and motor variability. To this end, the model considers: (i) the variability of the grip aperture, which is predicted by the Kalman filter, and (ii) the uncertainty of the object size, which is affected by visual noise. Using this model, we simulated experiments in which the effect of the duration of visual occlusion was investigated. The simulation replicated the experimental result wherein the peak grip aperture increased when the target object was occluded, especially in the early phase of the movement. Both predicted motor variability and sensory uncertainty play important roles in the online visuomotor process responsible for grip aperture control. PMID:26696874
Energy efficiency technologies in cement and steel industry
NASA Astrophysics Data System (ADS)
Zanoli, Silvia Maria; Cocchioni, Francesco; Pepe, Crescenzo
2018-02-01
In this paper, Advanced Process Control strategies aimed at energy efficiency achievement and improvement in cement and steel industry are proposed. A flexible and smart control structure constituted by several functional modules and blocks has been developed. The designed control strategy is based on Model Predictive Control techniques, formulated on linear models. Two industrial control solutions have been developed, oriented to energy efficiency and process control improvement in cement industry clinker rotary kilns (clinker production phase) and in steel industry billets reheating furnaces. Tailored customization procedures for the design of ad hoc control systems have been executed, based on the specific needs and specifications of the analysed processes. The installation of the developed controllers on cement and steel plants produced significant benefits in terms of process control which resulted in working closer to the imposed operating limits. With respect to the previous control systems, based on local controllers and/or operators manual conduction, more profitable configurations of the crucial process variables have been provided.
EMG-Torque correction on Human Upper extremity using Evolutionary Computation
NASA Astrophysics Data System (ADS)
JL, Veronica; Parasuraman, S.; Khan, M. K. A. Ahamed; Jeba DSingh, Kingsly
2016-09-01
There have been many studies indicating that control system of rehabilitative robot plays an important role in determining the outcome of the therapy process. Existing works have done the prediction of feedback signal in the controller based on the kinematics parameters and EMG readings of upper limb's skeletal system. Kinematics and kinetics based control signal system is developed by reading the output of the sensors such as position sensor, orientation sensor and F/T (Force/Torque) sensor and there readings are to be compared with the preceding measurement to decide on the amount of assistive force. There are also other works that incorporated the kinematics parameters to calculate the kinetics parameters via formulation and pre-defined assumptions. Nevertheless, these types of control signals analyze the movement of the upper limb only based on the movement of the upper joints. They do not anticipate the possibility of muscle plasticity. The focus of the paper is to make use of the kinematics parameters and EMG readings of skeletal system to predict the individual torque of upper extremity's joints. The surface EMG signals are fed into different mathematical models so that these data can be trained through Genetic Algorithm (GA) to find the best correlation between EMG signals and torques acting on the upper limb's joints. The estimated torque attained from the mathematical models is called simulated output. The simulated output will then be compared with the actual individual joint which is calculated based on the real time kinematics parameters of the upper movement of the skeleton when the muscle cells are activated. The findings from this contribution are extended into the development of the active control signal based controller for rehabilitation robot.
Uddin, Jamal; Zwisler, Ann-Dorthe; Lewinter, Christian; Moniruzzaman, Mohammad; Lund, Ken; Tang, Lars H; Taylor, Rod S
2016-05-01
The aim of this study was to undertake a comprehensive assessment of the patient, intervention and trial-level factors that may predict exercise capacity following exercise-based rehabilitation in patients with coronary heart disease and heart failure. Meta-analysis and meta-regression analysis. Randomized controlled trials of exercise-based rehabilitation were identified from three published systematic reviews. Exercise capacity was pooled across trials using random effects meta-analysis, and meta-regression used to examine the association between exercise capacity and a range of patient (e.g. age), intervention (e.g. exercise frequency) and trial (e.g. risk of bias) factors. 55 trials (61 exercise-control comparisons, 7553 patients) were included. Following exercise-based rehabilitation compared to control, overall exercise capacity was on average 0.95 (95% CI: 0.76-1.41) standard deviation units higher, and in trials reporting maximum oxygen uptake (VO2max) was 3.3 ml/kg.min(-1) (95% CI: 2.6-4.0) higher. There was evidence of a high level of statistical heterogeneity across trials (I(2) statistic > 50%). In multivariable meta-regression analysis, only exercise intervention intensity was found to be significantly associated with VO2max (P = 0.04); those trials with the highest average exercise intensity had the largest mean post-rehabilitation VO2max compared to control. We found considerable heterogeneity across randomized controlled trials in the magnitude of improvement in exercise capacity following exercise-based rehabilitation compared to control among patients with coronary heart disease or heart failure. Whilst higher exercise intensities were associated with a greater level of post-rehabilitation exercise capacity, there was no strong evidence to support other intervention, patient or trial factors to be predictive. © The European Society of Cardiology 2015.
Magnetophoresis of flexible DNA-based dumbbell structures
NASA Astrophysics Data System (ADS)
Babić, B.; Ghai, R.; Dimitrov, K.
2008-02-01
Controlled movement and manipulation of magnetic micro- and nanostructures using magnetic forces can give rise to important applications in biomedecine, diagnostics, and immunology. We report controlled magnetophoresis and stretching, in aqueous solution, of a DNA-based dumbbell structure containing magnetic and diamagnetic microspheres. The velocity and stretching of the dumbbell were experimentally measured and correlated with a theoretical model based on the forces acting on individual magnetic beads or the entire dumbbell structures. The results show that precise and predictable manipulation of dumbbell structures is achievable and can potentially be applied to immunomagnetic cell separators.
Spiegelhalter, D J; Freedman, L S
1986-01-01
The 'textbook' approach to determining sample size in a clinical trial has some fundamental weaknesses which we discuss. We describe a new predictive method which takes account of prior clinical opinion about the treatment difference. The method adopts the point of clinical equivalence (determined by interviewing the clinical participants) as the null hypothesis. Decision rules at the end of the study are based on whether the interval estimate of the treatment difference (classical or Bayesian) includes the null hypothesis. The prior distribution is used to predict the probabilities of making the decisions to use one or other treatment or to reserve final judgement. It is recommended that sample size be chosen to control the predicted probability of the last of these decisions. An example is given from a multi-centre trial of superficial bladder cancer.
AAA gunnermodel based on observer theory. [predicting a gunner's tracking response
NASA Technical Reports Server (NTRS)
Kou, R. S.; Glass, B. C.; Day, C. N.; Vikmanis, M. M.
1978-01-01
The Luenberger observer theory is used to develop a predictive model of a gunner's tracking response in antiaircraft artillery systems. This model is composed of an observer, a feedback controller and a remnant element. An important feature of the model is that the structure is simple, hence a computer simulation requires only a short execution time. A parameter identification program based on the least squares curve fitting method and the Gauss Newton gradient algorithm is developed to determine the parameter values of the gunner model. Thus, a systematic procedure exists for identifying model parameters for a given antiaircraft tracking task. Model predictions of tracking errors are compared with human tracking data obtained from manned simulation experiments. Model predictions are in excellent agreement with the empirical data for several flyby and maneuvering target trajectories.
[Prediction of schistosomiasis infection rates of population based on ARIMA-NARNN model].
Ke-Wei, Wang; Yu, Wu; Jin-Ping, Li; Yu-Yu, Jiang
2016-07-12
To explore the effect of the autoregressive integrated moving average model-nonlinear auto-regressive neural network (ARIMA-NARNN) model on predicting schistosomiasis infection rates of population. The ARIMA model, NARNN model and ARIMA-NARNN model were established based on monthly schistosomiasis infection rates from January 2005 to February 2015 in Jiangsu Province, China. The fitting and prediction performances of the three models were compared. Compared to the ARIMA model and NARNN model, the mean square error (MSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) of the ARIMA-NARNN model were the least with the values of 0.011 1, 0.090 0 and 0.282 4, respectively. The ARIMA-NARNN model could effectively fit and predict schistosomiasis infection rates of population, which might have a great application value for the prevention and control of schistosomiasis.
Brosowsky, Nicholaus P; Crump, Matthew J C
2016-08-01
Recent work suggests that environmental cues associated with previous attentional control settings can rapidly and involuntarily adjust attentional priorities. The current study tests predictions from adaptive-learning and memory-based theories of contextual control about the role of intentions for setting attentional priorities. To extend the empirical boundaries of contextual control phenomena, and to determine whether theoretical principles of contextual control are generalizable we used a novel bi-dimensional stimulus sampling task. Subjects viewed briefly presented arrays of letters and colors presented above or below fixation, and identified specific stimuli according to a dimensional (letter or color) and positional cue. Location was predictive of the cued dimension, but not the position or identity. In contrast to previous findings, contextual control failed to develop through automatic, adaptive-learning processes. Instead, previous experience with intentionally changing attentional sampling priorities between different contexts was required for contextual control to develop. Copyright © 2016 Elsevier Inc. All rights reserved.
Kulinkina, Alexandra V; Walz, Yvonne; Koch, Magaly; Biritwum, Nana-Kwadwo; Utzinger, Jürg; Naumova, Elena N
2018-06-04
Schistosomiasis is a water-related neglected tropical disease. In many endemic low- and middle-income countries, insufficient surveillance and reporting lead to poor characterization of the demographic and geographic distribution of schistosomiasis cases. Hence, modeling is relied upon to predict areas of high transmission and to inform control strategies. We hypothesized that utilizing remotely sensed (RS) environmental data in combination with water, sanitation, and hygiene (WASH) variables could improve on the current predictive modeling approaches. Schistosoma haematobium prevalence data, collected from 73 rural Ghanaian schools, were used in a random forest model to investigate the predictive capacity of 15 environmental variables derived from RS data (Landsat 8, Sentinel-2, and Global Digital Elevation Model) with fine spatial resolution (10-30 m). Five methods of variable extraction were tested to determine the spatial linkage between school-based prevalence and the environmental conditions of potential transmission sites, including applying the models to known human water contact locations. Lastly, measures of local water access and groundwater quality were incorporated into RS-based models to assess the relative importance of environmental and WASH variables. Predictive models based on environmental characterization of specific locations where people contact surface water bodies offered some improvement as compared to the traditional approach based on environmental characterization of locations where prevalence is measured. A water index (MNDWI) and topographic variables (elevation and slope) were important environmental risk factors, while overall, groundwater iron concentration predominated in the combined model that included WASH variables. The study helps to understand localized drivers of schistosomiasis transmission. Specifically, unsatisfactory water quality in boreholes perpetuates reliance of surface water bodies, indirectly increasing schistosomiasis risk and resulting in rapid reinfection (up to 40% prevalence six months following preventive chemotherapy). Considering WASH-related risk factors in schistosomiasis prediction can help shift the focus of control strategies from treating symptoms to reducing exposure.
Stressed Oxidation Life Prediction for C/SiC Composites
NASA Technical Reports Server (NTRS)
Levine, Stanley R.
2004-01-01
The residual strength and life of C/SiC is dominated by carbon interface and fiber oxidation if seal coat and matrix cracks are open to allow oxygen ingress. Crack opening is determined by the combination of thermal, mechanical and thermal expansion mismatch induced stresses. When cracks are open, life can be predicted by simple oxidation based models with reaction controlled kinetics at low temperature, and by gas phase diffusion controlled kinetics at high temperatures. Key life governing variables in these models include temperature, stress, initial strength, oxygen partial pressure, and total pressure. These models are described in this paper.
A Theoretical and Experimental Analysis of the Outside World Perception Process
NASA Technical Reports Server (NTRS)
Wewerinke, P. H.
1978-01-01
The outside scene is often an important source of information for manual control tasks. Important examples of these are car driving and aircraft control. This paper deals with modelling this visual scene perception process on the basis of linear perspective geometry and the relative motion cues. Model predictions utilizing psychophysical threshold data from base-line experiments and literature of a variety of visual approach tasks are compared with experimental data. Both the performance and workload results illustrate that the model provides a meaningful description of the outside world perception process, with a useful predictive capability.
Dinucleotide controlled null models for comparative RNA gene prediction.
Gesell, Tanja; Washietl, Stefan
2008-05-27
Comparative prediction of RNA structures can be used to identify functional noncoding RNAs in genomic screens. It was shown recently by Babak et al. [BMC Bioinformatics. 8:33] that RNA gene prediction programs can be biased by the genomic dinucleotide content, in particular those programs using a thermodynamic folding model including stacking energies. As a consequence, there is need for dinucleotide-preserving control strategies to assess the significance of such predictions. While there have been randomization algorithms for single sequences for many years, the problem has remained challenging for multiple alignments and there is currently no algorithm available. We present a program called SISSIz that simulates multiple alignments of a given average dinucleotide content. Meeting additional requirements of an accurate null model, the randomized alignments are on average of the same sequence diversity and preserve local conservation and gap patterns. We make use of a phylogenetic substitution model that includes overlapping dependencies and site-specific rates. Using fast heuristics and a distance based approach, a tree is estimated under this model which is used to guide the simulations. The new algorithm is tested on vertebrate genomic alignments and the effect on RNA structure predictions is studied. In addition, we directly combined the new null model with the RNAalifold consensus folding algorithm giving a new variant of a thermodynamic structure based RNA gene finding program that is not biased by the dinucleotide content. SISSIz implements an efficient algorithm to randomize multiple alignments preserving dinucleotide content. It can be used to get more accurate estimates of false positive rates of existing programs, to produce negative controls for the training of machine learning based programs, or as standalone RNA gene finding program. Other applications in comparative genomics that require randomization of multiple alignments can be considered. SISSIz is available as open source C code that can be compiled for every major platform and downloaded here: http://sourceforge.net/projects/sissiz.
NASA Technical Reports Server (NTRS)
Witt, Kenneth J.; Stanley, Jason; Shendock, Robert; Mandl, Daniel
2005-01-01
Space Technology 5 (ST-5) is a three-satellite constellation, technology validation mission under the New Millennium Program at NASA to be launched in March 2006. One of the key technologies to be validated is a lights-out, model-based operations approach to be used for one week to control the ST-5 constellation with no manual intervention. The ground architecture features the GSFC Mission Services Evolution Center (GMSEC) middleware, which allows easy plugging in of software components and a standardized messaging protocol over a software bus. A predictive modeling tool built on MatLab's Simulink software package makes use of the GMSEC standard messaging protocol to interface to the Advanced Mission Planning System (AMPS) Scenario Scheduler which controls all activities, resource allocation and real-time re-profiling of constellation resources when non-nominal events occur. The key features of this system, which we refer to as the ST-5 Simulink system, are as follows: Original daily plan is checked to make sure that predicted resources needed are available by comparing the plan against the model. As the plan is run in real-time, the system re-profiles future activities in real-time if planned activities do not occur in the predicted timeframe or fashion. Alert messages are sent out on the GMSEC bus by the system if future predicted problems are detected. This will allow the Scenario Scheduler to correct the situation before the problem happens. The predictive model is evolved automatically over time via telemetry updates thus reducing the cost of implementing and maintaining the models by an order of magnitude from previous efforts at GSFC such as the model-based system built for MAP in the mid-1990's. This paper will describe the key features, lessons learned and implications for future missions once this system is successfully validated on-orbit in 2006.
Catching What We Can't See: Manual Interception of Occluded Fly-Ball Trajectories
Bosco, Gianfranco; Delle Monache, Sergio; Lacquaniti, Francesco
2012-01-01
Control of interceptive actions may involve fine interplay between feedback-based and predictive mechanisms. These processes rely heavily on target motion information available when the target is visible. However, short-term visual memory signals as well as implicit knowledge about the environment may also contribute to elaborate a predictive representation of the target trajectory, especially when visual feedback is partially unavailable because other objects occlude the visual target. To determine how different processes and information sources are integrated in the control of the interceptive action, we manipulated a computer-generated visual environment representing a baseball game. Twenty-four subjects intercepted fly-ball trajectories by moving a mouse cursor and by indicating the interception with a button press. In two separate sessions, fly-ball trajectories were either fully visible or occluded for 750, 1000 or 1250 ms before ball landing. Natural ball motion was perturbed during the descending trajectory with effects of either weightlessness (0 g) or increased gravity (2 g) at times such that, for occluded trajectories, 500 ms of perturbed motion were visible before ball disappearance. To examine the contribution of previous visual experience with the perturbed trajectories to the interception of invisible targets, the order of visible and occluded sessions was permuted among subjects. Under these experimental conditions, we showed that, with fully visible targets, subjects combined servo-control and predictive strategies. Instead, when intercepting occluded targets, subjects relied mostly on predictive mechanisms based, however, on different type of information depending on previous visual experience. In fact, subjects without prior experience of the perturbed trajectories showed interceptive errors consistent with predictive estimates of the ball trajectory based on a-priori knowledge of gravity. Conversely, the interceptive responses of subjects previously exposed to fully visible trajectories were compatible with the fact that implicit knowledge of the perturbed motion was also taken into account for the extrapolation of occluded trajectories. PMID:23166653
Catching what we can't see: manual interception of occluded fly-ball trajectories.
Bosco, Gianfranco; Delle Monache, Sergio; Lacquaniti, Francesco
2012-01-01
Control of interceptive actions may involve fine interplay between feedback-based and predictive mechanisms. These processes rely heavily on target motion information available when the target is visible. However, short-term visual memory signals as well as implicit knowledge about the environment may also contribute to elaborate a predictive representation of the target trajectory, especially when visual feedback is partially unavailable because other objects occlude the visual target. To determine how different processes and information sources are integrated in the control of the interceptive action, we manipulated a computer-generated visual environment representing a baseball game. Twenty-four subjects intercepted fly-ball trajectories by moving a mouse cursor and by indicating the interception with a button press. In two separate sessions, fly-ball trajectories were either fully visible or occluded for 750, 1000 or 1250 ms before ball landing. Natural ball motion was perturbed during the descending trajectory with effects of either weightlessness (0 g) or increased gravity (2 g) at times such that, for occluded trajectories, 500 ms of perturbed motion were visible before ball disappearance. To examine the contribution of previous visual experience with the perturbed trajectories to the interception of invisible targets, the order of visible and occluded sessions was permuted among subjects. Under these experimental conditions, we showed that, with fully visible targets, subjects combined servo-control and predictive strategies. Instead, when intercepting occluded targets, subjects relied mostly on predictive mechanisms based, however, on different type of information depending on previous visual experience. In fact, subjects without prior experience of the perturbed trajectories showed interceptive errors consistent with predictive estimates of the ball trajectory based on a-priori knowledge of gravity. Conversely, the interceptive responses of subjects previously exposed to fully visible trajectories were compatible with the fact that implicit knowledge of the perturbed motion was also taken into account for the extrapolation of occluded trajectories.
2012-01-01
Background There is a lack of population-based long-term longitudinal research on mental health status and functional physical/somatic symptoms. Little is known about the long-term mental health outcomes associated with somatic symptoms or the temporal relationship between depression and such symptoms. This 15-year study followed up adolescents with depression and matched controls, screened from a population-based sample, who reported different numbers of somatic symptoms. Methods The total population of 16–17-year-olds in Uppsala, Sweden, was screened for depression in 1991–1993. Adolescents who screened positive and an equal number of healthy controls took part in a semi-structured diagnostic interview. In addition, 21 different self-rated somatic symptoms were assessed. Sixty-four percent of those adolescents participated in a follow-up structured interview 15 years later. Results Somatic symptoms in adolescence predicted depression and other adult mental disorders regardless of the presence of adolescent depression. In adolescents with depression, the number of functional somatic symptoms predicted, in a dose response relationship, suicidal behavior, bipolar episodes, and psychotic episodes as well as chronic and recurrent depression. Contrary to expectations, the somatic symptoms of abdominal pain and perspiration without exertion better predicted depression than all DSM-IV depressive symptoms. Abdominal pain persisted as an independent strong predictor of depression and anxiety, even after controlling for other important confounders. Conclusions Somatic symptoms in adolescence can predict severe adult mental health disorders. The number of somatic symptoms concurrent with adolescent depression is, in a stepwise manner, linked to suicidal attempts, bipolar disorders, psychotic disorders, and recurrent and chronic depression. These findings can be useful in developing treatment guidelines for patients with somatic symptoms. PMID:22839681
Spitznagel, M B; Jacobson, D M; Cox, M D; Carlson, M D
2018-06-01
Caregiver burden, found in many clients with a chronically or terminally ill companion animal, has been linked to poorer psychosocial function in the client and greater utilization of non-billable veterinary services. To reduce client caregiver burden, its determinants must first be identified. This study examined if companion animal clinical signs and problem behaviors predict veterinary client burden within broader client- and patient-based risk factor models. Data were collected in two phases. Phase 1 included 238 companion animal owners, including those with a sick companion animal (n=119) and matched healthy controls (n=119) recruited online. Phase 2 was comprised of 602 small animal general veterinary hospital clients (n=95 with a sick dog or cat). Participants completed cross-sectional online assessments of caregiver burden, psychosocial resources (social support, active coping, self-mastery), and an item pool of companion animal clinical signs and problem behaviors. Several signs/behaviors correlated with burden, most prominently: weakness, appearing sad/depressed or anxious, appearing to have pain/discomfort, change in personality, frequent urination, and excessive sleeping/lethargy. Within patient-based risk factors, caregiver burden was predicted by frequency of the companion animal's signs/behaviors (P<.01). Within client-based factors, potentially modifiable factors of client reaction to the animal's signs/behaviors (P=.01), and client sense of control (P<.04) predicted burden. Understanding burden may enhance veterinarian-client communication, and is important due to potential downstream effects of client burden, such as higher workload for the veterinarian. Supporting the client's sense of control may help alleviate burden when amelioration of the companion animal's presentation is not feasible. Copyright © 2018 Elsevier Ltd. All rights reserved.
Effect of window length on performance of the elbow-joint angle prediction based on electromyography
NASA Astrophysics Data System (ADS)
Triwiyanto; Wahyunggoro, Oyas; Adi Nugroho, Hanung; Herianto
2017-05-01
The high performance of the elbow joint angle prediction is essential on the development of the devices based on electromyography (EMG) control. The performance of the prediction depends on the feature of extraction parameters such as window length. In this paper, we evaluated the effect of the window length on the performance of the elbow-joint angle prediction. The prediction algorithm consists of zero-crossing feature extraction and second order of Butterworth low pass filter. The feature was used to extract the EMG signal by varying window length. The EMG signal was collected from the biceps muscle while the elbow was moved in the flexion and extension motion. The subject performed the elbow motion by holding a 1-kg load and moved the elbow in different periods (12 seconds, 8 seconds and 6 seconds). The results indicated that the window length affected the performance of the prediction. The 250 window lengths yielded the best performance of the prediction algorithm of (mean±SD) root mean square error = 5.68%±1.53% and Person’s correlation = 0.99±0.0059.
NASA Astrophysics Data System (ADS)
Yilmaz, Diba; Tekkaya, Ceren; Sungur, Semra
2011-03-01
The present study examined the comparative effects of a prediction/discussion-based learning cycle, conceptual change text (CCT), and traditional instructions on students' understanding of genetics concepts. A quasi-experimental research design of the pre-test-post-test non-equivalent control group was adopted. The three intact classes, taught by the same science teacher, were randomly assigned as prediction/discussion-based learning cycle class (N = 30), CCT class (N = 25), and traditional class (N = 26). Participants completed the genetics concept test as pre-test, post-test, and delayed post-test to examine the effects of instructional strategies on their genetics understanding and retention. While the dependent variable of this study was students' understanding of genetics, the independent variables were time (Time 1, Time 2, and Time 3) and mode of instruction. The mixed between-within subjects analysis of variance revealed that students in both prediction/discussion-based learning cycle and CCT groups understood the genetics concepts and retained their knowledge significantly better than students in the traditional instruction group.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomar, Vikas
2017-03-06
DoE-NETL partnered with Purdue University to predict the creep and associated microstructure evolution of tungsten-based refractory alloys. Researchers use grain boundary (GB) diagrams, a new concept, to establish time-dependent creep resistance and associated microstructure evolution of grain boundaries/intergranular films GB/IGF controlled creep as a function of load, environment, and temperature. The goal was to conduct a systematic study that includes the development of a theoretical framework, multiscale modeling, and experimental validation using W-based body-centered-cubic alloys, doped/alloyed with one or two of the following elements: nickel, palladium, cobalt, iron, and copper—typical refractory alloys. Prior work has already established and validated amore » basic theory for W-based binary and ternary alloys; the study conducted under this project extended this proven work. Based on interface diagrams phase field models were developed to predict long term microstructural evolution. In order to validate the models nanoindentation creep data was used to elucidate the role played by the interface properties in predicting long term creep strength and microstructure evolution.« less
Hybrid neural intelligent system to predict business failure in small-to-medium-size enterprises.
Borrajo, M Lourdes; Baruque, Bruno; Corchado, Emilio; Bajo, Javier; Corchado, Juan M
2011-08-01
During the last years there has been a growing need of developing innovative tools that can help small to medium sized enterprises to predict business failure as well as financial crisis. In this study we present a novel hybrid intelligent system aimed at monitoring the modus operandi of the companies and predicting possible failures. This system is implemented by means of a neural-based multi-agent system that models the different actors of the companies as agents. The core of the multi-agent system is a type of agent that incorporates a case-based reasoning system and automates the business control process and failure prediction. The stages of the case-based reasoning system are implemented by means of web services: the retrieval stage uses an innovative weighted voting summarization of self-organizing maps ensembles-based method and the reuse stage is implemented by means of a radial basis function neural network. An initial prototype was developed and the results obtained related to small and medium enterprises in a real scenario are presented.
Neural control of fast nonlinear systems--application to a turbocharged SI engine with VCT.
Colin, Guillaume; Chamaillard, Yann; Bloch, Gérard; Corde, Gilles
2007-07-01
Today, (engine) downsizing using turbocharging appears as a major way in reducing fuel consumption and pollutant emissions of spark ignition (SI) engines. In this context, an efficient control of the air actuators [throttle, turbo wastegate, and variable camshaft timing (VCT)] is needed for engine torque control. This paper proposes a nonlinear model-based control scheme which combines separate, but coordinated, control modules. Theses modules are based on different control strategies: internal model control (IMC), model predictive control (MPC), and optimal control. It is shown how neural models can be used at different levels and included in the control modules to replace physical models, which are too complex to be online embedded, or to estimate nonmeasured variables. The results obtained from two different test benches show the real-time applicability and good control performance of the proposed methods.
ERIC Educational Resources Information Center
Street, Nathan Lee
2017-01-01
Teacher value-added measures (VAM) are designed to provide information regarding teachers' causal impact on the academic growth of students while controlling for exogenous variables. While some researchers contend VAMs successfully and authentically measure teacher causality on learning, others suggest VAMs cannot adequately control for exogenous…
The Timing and Magnitude of Stroop Interference and Facilitation in Monolinguals and Bilinguals
ERIC Educational Resources Information Center
Coderre, Emily L.; Van Heuven, Walter J. B.; Conklin, Kathy
2013-01-01
Executive control abilities and lexical access speed in Stroop performance were investigated in English monolinguals and two groups of bilinguals (English-Chinese and Chinese-English) in their first (L1) and second (L2) languages. Predictions were based on a bilingual cognitive advantage hypothesis, implicating cognitive control ability as the…
An alternative approach based on artificial neural networks to study controlled drug release.
Reis, Marcus A A; Sinisterra, Rubén D; Belchior, Jadson C
2004-02-01
An alternative methodology based on artificial neural networks is proposed to be a complementary tool to other conventional methods to study controlled drug release. Two systems are used to test the approach; namely, hydrocortisone in a biodegradable matrix and rhodium (II) butyrate complexes in a bioceramic matrix. Two well-established mathematical models are used to simulate different release profiles as a function of fundamental properties; namely, diffusion coefficient (D), saturation solubility (C(s)), drug loading (A), and the height of the device (h). The models were tested, and the results show that these fundamental properties can be predicted after learning the experimental or model data for controlled drug release systems. The neural network results obtained after the learning stage can be considered to quantitatively predict ideal experimental conditions. Overall, the proposed methodology was shown to be efficient for ideal experiments, with a relative average error of <1% in both tests. This approach can be useful for the experimental analysis to simulate and design efficient controlled drug-release systems. Copyright 2004 Wiley-Liss, Inc. and the American Pharmacists Association
Feedforward hysteresis compensation in trajectory control of piezoelectrically-driven nanostagers
NASA Astrophysics Data System (ADS)
Bashash, Saeid; Jalili, Nader
2006-03-01
Complex structural nonlinearities of piezoelectric materials drastically degrade their performance in variety of micro- and nano-positioning applications. From the precision positioning and control perspective, the multi-path time-history dependent hysteresis phenomenon is the most concerned nonlinearity in piezoelectric actuators to be analyzed. To realize the underlying physics of this phenomenon and to develop an efficient compensation strategy, the intelligent properties of hysteresis with the effects of non-local memories are discussed. Through performing a set of experiments on a piezoelectrically-driven nanostager with high resolution capacitive position sensor, it is shown that for the precise prediction of hysteresis path, certain memory units are required to store the previous hysteresis trajectory data. Based on the experimental observations, a constitutive memory-based mathematical modeling framework is developed and trained for the precise prediction of hysteresis path for arbitrarily assigned input profiles. Using the inverse hysteresis model, a feedforward control strategy is then developed and implemented on the nanostager to compensate for the system everpresent nonlinearity. Experimental results demonstrate that the controller remarkably eliminates the nonlinear effect if memory units are sufficiently chosen for the inverse model.
Performance Trends During Sleep Deprivation on a Tilt-Based Control Task.
Bolkhovsky, Jeffrey B; Ritter, Frank E; Chon, Ki H; Qin, Michael
2018-07-01
Understanding human behavior under the effects of sleep deprivation allows for the mitigation of risk due to reduced performance. To further this goal, this study investigated the effects of short-term sleep deprivation using a tilt-based control device and examined whether existing user models accurately predict targeting performance. A task in which the user tilts a surface to roll a ball into a target was developed to examine motor performance. A model was built to predict human performance for this task under various levels of sleep deprivation. Every 2 h, 10 subjects completed the task until they reached 24 h of wakefulness. Performance measurements of this task, which were based on Fitts' law, included movement time, task throughput, and time intercept. The model predicted significant performance decrements over the 24-h period with an increase in movement time (R2 = 0.61), a decrease in throughput (R2 = 0.57), and an increase in time intercept (R2 = 0.60). However, it was found that in experimental trials there was no significant change in movement time (R2 = 0.11), throughput (R2 = 0.15), or time intercept (R2 = 0.27). The results found were unexpected as performance decrement is frequently reported during sleep deprivation. These findings suggest a reexamination of the initial thought of sleep loss leading to a decrement in all aspects of performance.Bolkovsky JB, Ritter FE, Chon KH, Qin M. Performance trends during sleep deprivation on a tilt-based control task. Aerosp Med Hum Perform. 2018; 89(7):626-633.
Rohsenow, Damaris J; Tidey, Jennifer W; Kahler, Christopher W; Martin, Rosemarie A; Colby, Suzanne M; Sirota, Alan D
2015-04-01
Identifying predictors of abstinence with voucher-based treatment is important for improving its efficacy. Smokers with substance use disorders have very low smoking cessation rates so identifying predictors of smoking treatment response is particularly important for these difficult-to-treat smokers. Intolerance for Smoking Abstinence Discomfort (IDQ-S), motivation to quit smoking, nicotine dependence severity (FTND), and cigarettes per day were examined as predictors of smoking abstinence during and after voucher-based smoking treatment with motivational counseling. We also investigated the relationship between IDQ-S and motivation to quit smoking. Smokers in residential substance treatment (n=184) were provided 14days of vouchers for complete smoking abstinence (CV) after a 5-day smoking reduction lead-in period or vouchers not contingent on abstinence. Carbon monoxide readings indicated about 25% of days abstinent during the 14days of vouchers for abstinence in the CV group; only 3-4% of all participants were abstinent at follow-ups. The IDQ-S Withdrawal Intolerance scale and FTND each significantly predicted fewer abstinent days during voucher treatment; FTND was nonsignificant when controlling for variance shared with withdrawal intolerance. The one significant predictor of 1-month abstinence was pretreatment motivation to quit smoking, becoming marginal (p<.06) when controlling for FTND. Lower withdrawal intolerance significantly predicted 3month abstinence when controlling for FTND. Higher withdrawal intolerance pretreatment correlated with less motivation to quit smoking. Implications for voucher-based treatment include the importance of focusing on reducing these expectancies of anticipated smoking withdrawal discomfort, increasing tolerance for abstinence discomfort, and increasing motivation. Published by Elsevier Ltd.
Barbu, Corentin; Dumonteil, Eric; Gourbière, Sébastien
2009-01-01
Background Chagas disease is the most important vector-borne disease in Latin America. Regional initiatives based on residual insecticide spraying have successfully controlled domiciliated vectors in many regions. Non-domiciliated vectors remain responsible for a significant transmission risk, and their control is now a key challenge for disease control. Methodology/Principal Findings A mathematical model was developed to predict the temporal variations in abundance of non-domiciliated vectors inside houses. Demographic parameters were estimated by fitting the model to two years of field data from the Yucatan peninsula, Mexico. The predictive value of the model was tested on an independent data set before simulations examined the efficacy of control strategies based on residual insecticide spraying, insect screens, and bednets. The model accurately fitted and predicted field data in the absence and presence of insecticide spraying. Pyrethroid spraying was found effective when 50 mg/m2 were applied yearly within a two-month period matching the immigration season. The >80% reduction in bug abundance was not improved by larger doses or more frequent interventions, and it decreased drastically for different timing and lower frequencies of intervention. Alternatively, the use of insect screens consistently reduced bug abundance proportionally to the reduction of the vector immigration rate. Conclusion/Significance Control of non-domiciliated vectors can hardly be achieved by insecticide spraying, because it would require yearly application and an accurate understanding of the temporal pattern of immigration. Insect screens appear to offer an effective and sustainable alternative, which may be part of multi-disease interventions for the integrated control of neglected vector-borne diseases. PMID:19365542
Using Historical Data to Automatically Identify Air-Traffic Control Behavior
NASA Technical Reports Server (NTRS)
Lauderdale, Todd A.; Wu, Yuefeng; Tretto, Celeste
2014-01-01
This project seeks to develop statistical-based machine learning models to characterize the types of errors present when using current systems to predict future aircraft states. These models will be data-driven - based on large quantities of historical data. Once these models are developed, they will be used to infer situations in the historical data where an air-traffic controller intervened on an aircraft's route, even when there is no direct recording of this action.
Prediction of L70 lumen maintenance and chromaticity for LEDs using extended Kalman filter models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lall, Pradeep; Wei, Junchao; Davis, Lynn
2013-09-30
Solid-state lighting (SSL) luminaires containing light emitting diodes (LEDs) have the potential of seeing excessive temperatures when being transported across country or being stored in non-climate controlled warehouses. They are also being used in outdoor applications in desert environments that see little or no humidity but will experience extremely high temperatures during the day. This makes it important to increase our understanding of what effects high temperature exposure for a prolonged period of time will have on the usability and survivability of these devices. Traditional light sources “burn out” at end-of-life. For an incandescent bulb, the lamp life is definedmore » by B50 life. However, the LEDs have no filament to “burn”. The LEDs continually degrade and the light output decreases eventually below useful levels causing failure. Presently, the TM-21 test standard is used to predict the L70 life of LEDs from LM-80 test data. Several failure mechanisms may be active in a LED at a single time causing lumen depreciation. The underlying TM-21 Model may not capture the failure physics in presence of multiple failure mechanisms. Correlation of lumen maintenance with underlying physics of degradation at system-level is needed. In this paper, Kalman Filter (KF) and Extended Kalman Filters (EKF) have been used to develop a 70-percent Lumen Maintenance Life Prediction Model for LEDs used in SSL luminaires. Ten-thousand hour LM-80 test data for various LEDs have been used for model development. System state at each future time has been computed based on the state space at preceding time step, system dynamics matrix, control vector, control matrix, measurement matrix, measured vector, process noise and measurement noise. The future state of the lumen depreciation has been estimated based on a second order Kalman Filter model and a Bayesian Framework. The measured state variable has been related to the underlying damage using physics-based models. Life prediction of L70 life for the LEDs used in SSL luminaires from KF and EKF based models have been compared with the TM-21 model predictions and experimental data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lall, Pradeep; Wei, Junchao; Davis, J Lynn
2014-06-24
Abstract— Solid-state lighting (SSL) luminaires containing light emitting diodes (LEDs) have the potential of seeing excessive temperatures when being transported across country or being stored in non-climate controlled warehouses. They are also being used in outdoor applications in desert environments that see little or no humidity but will experience extremely high temperatures during the day. This makes it important to increase our understanding of what effects high temperature exposure for a prolonged period of time will have on the usability and survivability of these devices. Traditional light sources “burn out” at end-of-life. For an incandescent bulb, the lamp life ismore » defined by B50 life. However, the LEDs have no filament to “burn”. The LEDs continually degrade and the light output decreases eventually below useful levels causing failure. Presently, the TM-21 test standard is used to predict the L70 life of LEDs from LM-80 test data. Several failure mechanisms may be active in a LED at a single time causing lumen depreciation. The underlying TM-21 Model may not capture the failure physics in presence of multiple failure mechanisms. Correlation of lumen maintenance with underlying physics of degradation at system-level is needed. In this paper, Kalman Filter (KF) and Extended Kalman Filters (EKF) have been used to develop a 70-percent Lumen Maintenance Life Prediction Model for LEDs used in SSL luminaires. Ten-thousand hour LM-80 test data for various LEDs have been used for model development. System state at each future time has been computed based on the state space at preceding time step, system dynamics matrix, control vector, control matrix, measurement matrix, measured vector, process noise and measurement noise. The future state of the lumen depreciation has been estimated based on a second order Kalman Filter model and a Bayesian Framework. Life prediction of L70 life for the LEDs used in SSL luminaires from KF and EKF based models have been compared with the TM-21 model predictions and experimental data.« less
NASA Technical Reports Server (NTRS)
Yam, Y.; Lang, J. H.; Johnson, T. L.; Shih, S.; Staelin, D. H.
1983-01-01
A model reduction procedure based on aggregation with respect to sensor and actuator influences rather than modes is presented for large systems of coupled second-order differential equations. Perturbation expressions which can predict the effects of spillover on both the aggregated and residual states are derived. These expressions lead to the development of control system design constraints which are sufficient to guarantee, to within the validity of the perturbations, that the residual states are not destabilized by control systems designed from the reduced model. A numerical example is provided to illustrate the application of the aggregation and control system design method.
Motl, Robert W; Fernhall, Bo
2012-03-01
To examine the accuracy of predicting peak oxygen consumption (VO(2peak)) primarily from peak work rate (WR(peak)) recorded during a maximal, incremental exercise test on a cycle ergometer among persons with relapsing-remitting multiple sclerosis (RRMS) who had minimal disability. Cross-sectional study. Clinical research laboratory. Women with RRMS (n=32) and sex-, age-, height-, and weight-matched healthy controls (n=16) completed an incremental exercise test on a cycle ergometer to volitional termination. Not applicable. Measured and predicted VO(2peak) and WR(peak). There were strong, statistically significant associations between measured and predicted VO(2peak) in the overall sample (R(2)=.89, standard error of the estimate=127.4 mL/min) and subsamples with (R(2)=.89, standard error of the estimate=131.3 mL/min) and without (R(2)=.85, standard error of the estimate=126.8 mL/min) multiple sclerosis (MS) based on the linear regression analyses. Based on the 95% confidence limits for worst-case errors, the equation predicted VO(2peak) within 10% of its true value in 95 of every 100 subjects with MS. Peak VO(2) can be accurately predicted in persons with RRMS who have minimal disability as it is in controls by using established equations and WR(peak) recorded from a maximal, incremental exercise test on a cycle ergometer. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Mavkov, B.; Witrant, E.; Prieur, C.; Maljaars, E.; Felici, F.; Sauter, O.; the TCV-Team
2018-05-01
In this paper, model-based closed-loop algorithms are derived for distributed control of the inverse of the safety factor profile and the plasma pressure parameter β of the TCV tokamak. The simultaneous control of the two plasma quantities is performed by combining two different control methods. The control design of the plasma safety factor is based on an infinite-dimensional setting using Lyapunov analysis for partial differential equations, while the control of the plasma pressure parameter is designed using control techniques for single-input and single-output systems. The performance and robustness of the proposed controller is analyzed in simulations using the fast plasma transport simulator RAPTOR. The control is then implemented and tested in experiments in TCV L-mode discharges using the RAPTOR model predicted estimates for the q-profile. The distributed control in TCV is performed using one co-current and one counter-current electron cyclotron heating actuation.
Social-cognitive antecedents of hand washing: Action control bridges the planning-behaviour gap.
Reyes Fernández, Benjamín; Knoll, Nina; Hamilton, Kyra; Schwarzer, Ralf
2016-08-01
To examine motivational and volitional factors for hand washing in young adults, using the Health Action Process Approach (HAPA) as a theoretical framework. In a longitudinal design with two measurement points, six weeks apart, university students (N = 440) completed paper-based questionnaires. Prior hand washing frequency, self-efficacy, outcome expectancies, intention and action planning were measured at baseline, and coping planning, action control and hand washing frequency were measured at follow-up. A theory-based structural equation model was specified. In line with the HAPA, the motivational factors of self-efficacy and outcome expectancies predicted intention, whereas the volitional factors of planning and action control mediated between intention and changes in hand washing frequency. Action control was confirmed as the most proximal factor on hand washing behaviour, thus representing a bridge of the planning-behaviour gap. Both motivational and volitional processes are important to consider in the improvement of hand hygiene practices. Moreover, the statistically significant effects for planning and action control illustrate the importance of these key self-regulatory factors in the prediction of hand hygiene. The current study highlights the importance of adopting models that account for motivational and volitional factors to better understand hand washing behaviour.
Coelho, Antonio Augusto Rodrigues
2016-01-01
This paper introduces the Fuzzy Logic Hypercube Interpolator (FLHI) and demonstrates applications in control of multiple-input single-output (MISO) and multiple-input multiple-output (MIMO) processes with Hammerstein nonlinearities. FLHI consists of a Takagi-Sugeno fuzzy inference system where membership functions act as kernel functions of an interpolator. Conjunction of membership functions in an unitary hypercube space enables multivariable interpolation of N-dimensions. Membership functions act as interpolation kernels, such that choice of membership functions determines interpolation characteristics, allowing FLHI to behave as a nearest-neighbor, linear, cubic, spline or Lanczos interpolator, to name a few. The proposed interpolator is presented as a solution to the modeling problem of static nonlinearities since it is capable of modeling both a function and its inverse function. Three study cases from literature are presented, a single-input single-output (SISO) system, a MISO and a MIMO system. Good results are obtained regarding performance metrics such as set-point tracking, control variation and robustness. Results demonstrate applicability of the proposed method in modeling Hammerstein nonlinearities and their inverse functions for implementation of an output compensator with Model Based Predictive Control (MBPC), in particular Dynamic Matrix Control (DMC). PMID:27657723
Matthew P. Perkowski; John R. Brooks; Kurt W. Gottschalk
2008-01-01
Predictions based on the Gypsy Moth Event Monitor were compared to remeasurement plot data from stands receiving gypsy moth defoliation. These stands were part of a silvicultural treatment study located in northern West Virginia that included a sanitation thinning, a presalvage thinning and paired no-treatment controls. In all cases the event monitor under predicted...
Predictive Analytics for Coordinated Optimization in Distribution Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Rui
This talk will present NREL's work on developing predictive analytics that enables the optimal coordination of all the available resources in distribution systems to achieve the control objectives of system operators. Two projects will be presented. One focuses on developing short-term state forecasting-based optimal voltage regulation in distribution systems; and the other one focuses on actively engaging electricity consumers to benefit distribution system operations.
NASA Technical Reports Server (NTRS)
Oneil, W. J.; Rudd, R. P.; Farless, D. L.; Hildebrand, C. E.; Mitchell, R. T.; Rourke, K. H.; Euler, E. A.
1979-01-01
A comprehensive description of the navigation of the Viking spacecraft throughout their flight from Earth launch to Mars landing is given. The flight path design, actual inflight control, and postflight reconstruction are discussed in detail. The preflight analyses upon which the operational strategies and performance predictions were based are discussed. The inflight results are then discussed and compared with the preflight predictions and, finally, the results of any postflight analyses are presented.
NASA Astrophysics Data System (ADS)
Liu, Sijun; Chen, Jiaping; Wang, Jianming; Wu, Zhuchao; Wu, Weihua; Xu, Zhiwei; Hu, Wenbiao; Xu, Fei; Tong, Shilu; Shen, Hongbing
2017-10-01
Hand, foot, and mouth disease (HFMD) is a significant public health issue in China and an accurate prediction of epidemic can improve the effectiveness of HFMD control. This study aims to develop a weather-based forecasting model for HFMD using the information on climatic variables and HFMD surveillance in Nanjing, China. Daily data on HFMD cases and meteorological variables between 2010 and 2015 were acquired from the Nanjing Center for Disease Control and Prevention, and China Meteorological Data Sharing Service System, respectively. A multivariate seasonal autoregressive integrated moving average (SARIMA) model was developed and validated by dividing HFMD infection data into two datasets: the data from 2010 to 2013 were used to construct a model and those from 2014 to 2015 were used to validate it. Moreover, we used weekly prediction for the data between 1 January 2014 and 31 December 2015 and leave-1-week-out prediction was used to validate the performance of model prediction. SARIMA (2,0,0)52 associated with the average temperature at lag of 1 week appeared to be the best model (R 2 = 0.936, BIC = 8.465), which also showed non-significant autocorrelations in the residuals of the model. In the validation of the constructed model, the predicted values matched the observed values reasonably well between 2014 and 2015. There was a high agreement rate between the predicted values and the observed values (sensitivity 80%, specificity 96.63%). This study suggests that the SARIMA model with average temperature could be used as an important tool for early detection and prediction of HFMD outbreaks in Nanjing, China.
Tan, Alexander; Delgaty, Lauren; Steward, Kayla; Bunner, Melissa
2018-04-16
Deficits in real-world executive functioning (EF) are a frequent characteristic of attention-deficit/hyperactivity disorder (ADHD). However, the predictive value of using performance-based and behavioral rating measures of EF when diagnosing ADHD remains unclear. The current study investigates the use of performance-based EF measures and a parent-report questionnaire with established ecological validity and clinical utility when diagnosing ADHD. Participants included 21 healthy controls, 21 ADHD-primary inattentive, and 21 ADHD-combined type subjects aged 6-15 years. A brief neuropsychological battery was administered to each subject including common EF assessment measures. Significant differences were not found between groups on most performance-based EF measures, whereas significant differences (p < 0.05) were found on most parent-report behavioral rating scales. Furthermore, performance-based measures did not predict group membership above chance levels. Results further support differences in predictive value of EF performance-based measures compared to parent-report questionnaires when diagnosing ADHD. Further research must investigate the relationship between performance-based and behavioral rating measures when assessing EF in ADHD.
Bingi, Jayachandra; Murukeshan, Vadakke Matham
2015-01-01
Laser speckle pattern is a granular structure formed due to random coherent wavelet interference and generally considered as noise in optical systems including photolithography. Contrary to this, in this paper, we use the speckle pattern to generate predictable and controlled Gaussian random structures and quasi-random structures photo-lithographically. The random structures made using this proposed speckle lithography technique are quantified based on speckle statistics, radial distribution function (RDF) and fast Fourier transform (FFT). The control over the speckle size, density and speckle clustering facilitates the successful fabrication of black silicon with different surface structures. The controllability and tunability of randomness makes this technique a robust method for fabricating predictable 2D Gaussian random structures and black silicon structures. These structures can enhance the light trapping significantly in solar cells and hence enable improved energy harvesting. Further, this technique can enable efficient fabrication of disordered photonic structures and random media based devices. PMID:26679513
Hinge Moment Coefficient Prediction Tool and Control Force Analysis of Extra-300 Aerobatic Aircraft
NASA Astrophysics Data System (ADS)
Nurohman, Chandra; Arifianto, Ony; Barecasco, Agra
2018-04-01
This paper presents the development of tool that is applicable to predict hinge moment coefficients of subsonic aircraft based on Roskam’s method, including the validation and its application to predict hinge moment coefficient of an Extra-300. The hinge moment coefficients are used to predict the stick forces of the aircraft during several aerobatic maneuver i.e. inside loop, half cuban 8, split-s, and aileron roll. The maximum longitudinal stick force is 566.97 N occurs in inside loop while the maximum lateral stick force is 340.82 N occurs in aileron roll. Furthermore, validation hinge moment prediction method is performed using Cessna 172 data.
NASA Astrophysics Data System (ADS)
van Heeringen, Klaas-Jan; Gooijer, Jan; Knot, Floris; Talsma, Jan
2015-04-01
In the Netherlands, flood protection has always been a key issue to protect settlements against storm surges and riverine floods. Whereas flood protection traditionally focused on structural measures, nowadays the availability of meteorological and hydrological forecasts enable the application of more advanced real-time control techniques for operating the existing hydraulic infrastructure in an anticipatory and more efficient way. Model Predictive Control (MPC) is a powerful technique to derive optimal control variables with the help of model based predictions evaluated against a control objective. In a project for the regional water authority Noorderzijlvest in the north of the Netherlands, it has been shown that MPC can increase the safety level of the system during flood events by an anticipatory pre-release of water. Furthermore, energy costs of pumps can be reduced by making tactical use of the water storage and shifting pump activities during normal operating conditions to off-peak hours. In this way cheap energy is used in combination of gravity flow through gates during low tide periods. MPC has now been implemented for daily operational use of the whole water system of the water authority Noorderzijlvest. The system developed to a real time decision support system which not only supports the daily operation but is able to directly implement the optimal control settings at the structures. We explain how we set-up and calibrated a prediction model (RTC-Tools) that is accurate and fast enough for optimization purposes, and how we integrated it in the operational flood early warning system (Delft-FEWS). Beside the prediction model, the weights and the factors of the objective function are an important element of MPC, since they shape the control objective. We developed special features in Delft-FEWS to allow the operators to adjust the objective function in order to meet changing requirements and to evaluate different control strategies.
NASA Astrophysics Data System (ADS)
Rylander, Marissa N.; Feng, Yusheng; Diller, Kenneth; Bass, J.
2005-04-01
Heat shock proteins (HSP) are critical components of a complex defense mechanism essential for preserving cell survival under adverse environmental conditions. It is inevitable that hyperthermia will enhance tumor tissue viability, due to HSP expression in regions where temperatures are insufficient to coagulate proteins, and would likely increase the probability of cancer recurrence. Although hyperthermia therapy is commonly used in conjunction with radiotherapy, chemotherapy, and gene therapy to increase therapeutic effectiveness, the efficacy of these therapies can be substantially hindered due to HSP expression when hyperthermia is applied prior to these procedures. Therefore, in planning hyperthermia protocols, prediction of the HSP response of the tumor must be incorporated into the treatment plan to optimize the thermal dose delivery and permit prediction of overall tissue response. In this paper, we present a highly accurate, adaptive, finite element tumor model capable of predicting the HSP expression distribution and tissue damage region based on measured cellular data when hyperthermia protocols are specified. Cubic spline representations of HSP27 and HSP70, and Arrhenius damage models were integrated into the finite element model to enable prediction of the HSP expression and damage distribution in the tissue following laser heating. Application of the model can enable optimized treatment planning by controlling of the tissue response to therapy based on accurate prediction of the HSP expression and cell damage distribution.
Gu, Xiaosi; Kirk, Ulrich; Lohrenz, Terry M; Montague, P Read
2014-08-01
Computational models of reward processing suggest that foregone or fictive outcomes serve as important information sources for learning and augment those generated by experienced rewards (e.g. reward prediction errors). An outstanding question is how these learning signals interact with top-down cognitive influences, such as cognitive reappraisal strategies. Using a sequential investment task and functional magnetic resonance imaging, we show that the reappraisal strategy selectively attenuates the influence of fictive, but not reward prediction error signals on investment behavior; such behavioral effect is accompanied by changes in neural activity and connectivity in the anterior insular cortex, a brain region thought to integrate subjective feelings with high-order cognition. Furthermore, individuals differ in the extent to which their behaviors are driven by fictive errors versus reward prediction errors, and the reappraisal strategy interacts with such individual differences; a finding also accompanied by distinct underlying neural mechanisms. These findings suggest that the variable interaction of cognitive strategies with two important classes of computational learning signals (fictive, reward prediction error) represent one contributing substrate for the variable capacity of individuals to control their behavior based on foregone rewards. These findings also expose important possibilities for understanding the lack of control in addiction based on possibly foregone rewarding outcomes. Copyright © 2013 The Authors. Human Brain Mapping Published by Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Faramarzi, Farhad; Mansouri, Hamid; Farsangi, Mohammad Ali Ebrahimi
2014-07-01
The environmental effects of blasting must be controlled in order to comply with regulatory limits. Because of safety concerns and risk of damage to infrastructures, equipment, and property, and also having a good fragmentation, flyrock control is crucial in blasting operations. If measures to decrease flyrock are taken, then the flyrock distance would be limited, and, in return, the risk of damage can be reduced or eliminated. This paper deals with modeling the level of risk associated with flyrock and, also, flyrock distance prediction based on the rock engineering systems (RES) methodology. In the proposed models, 13 effective parameters on flyrock due to blasting are considered as inputs, and the flyrock distance and associated level of risks as outputs. In selecting input data, the simplicity of measuring input data was taken into account as well. The data for 47 blasts, carried out at the Sungun copper mine, western Iran, were used to predict the level of risk and flyrock distance corresponding to each blast. The obtained results showed that, for the 47 blasts carried out at the Sungun copper mine, the level of estimated risks are mostly in accordance with the measured flyrock distances. Furthermore, a comparison was made between the results of the flyrock distance predictive RES-based model, the multivariate regression analysis model (MVRM), and, also, the dimensional analysis model. For the RES-based model, R 2 and root mean square error (RMSE) are equal to 0.86 and 10.01, respectively, whereas for the MVRM and dimensional analysis, R 2 and RMSE are equal to (0.84 and 12.20) and (0.76 and 13.75), respectively. These achievements confirm the better performance of the RES-based model over the other proposed models.
Nemeth, Banne; van Adrichem, Raymond A.; van Hylckama Vlieg, Astrid; Bucciarelli, Paolo; Martinelli, Ida; Baglin, Trevor; Rosendaal, Frits R.; le Cessie, Saskia; Cannegieter, Suzanne C.
2015-01-01
Background Guidelines and clinical practice vary considerably with respect to thrombosis prophylaxis during plaster cast immobilization of the lower extremity. Identifying patients at high risk for the development of venous thromboembolism (VTE) would provide a basis for considering individual thromboprophylaxis use and planning treatment studies. The aims of this study were (1) to investigate the predictive value of genetic and environmental risk factors, levels of coagulation factors, and other biomarkers for the occurrence of VTE after cast immobilization of the lower extremity and (2) to develop a clinical prediction tool for the prediction of VTE in plaster cast patients. Methods and Findings We used data from a large population-based case–control study (MEGA study, 4,446 cases with VTE, 6,118 controls without) designed to identify risk factors for a first VTE. Cases were recruited from six anticoagulation clinics in the Netherlands between 1999 and 2004; controls were their partners or individuals identified via random digit dialing. Identification of predictor variables to be included in the model was based on reported associations in the literature or on a relative risk (odds ratio) > 1.2 and p ≤ 0.25 in the univariate analysis of all participants. Using multivariate logistic regression, a full prediction model was created. In addition to the full model (all variables), a restricted model (minimum number of predictors with a maximum predictive value) and a clinical model (environmental risk factors only, no blood draw or assays required) were created. To determine the discriminatory power in patients with cast immobilization (n = 230), the area under the curve (AUC) was calculated by means of a receiver operating characteristic. Validation was performed in two other case–control studies of the etiology of VTE: (1) the THE-VTE study, a two-center, population-based case–control study (conducted in Leiden, the Netherlands, and Cambridge, United Kingdom) with 784 cases and 523 controls included between March 2003 and December 2008 and (2) the Milan study, a population-based case–control study with 2,117 cases and 2,088 controls selected between December 1993 and December 2010 at the Thrombosis Center, Fondazione IRCCS Ca’ Granda–Ospedale Maggiore Policlinico, Milan, Italy. The full model consisted of 32 predictors, including three genetic factors and six biomarkers. For this model, an AUC of 0.85 (95% CI 0.77–0.92) was found in individuals with plaster cast immobilization of the lower extremity. The AUC for the restricted model (containing 11 predictors, including two genetic factors and one biomarker) was 0.84 (95% CI 0.77–0.92). The clinical model (consisting of 14 environmental predictors) resulted in an AUC of 0.77 (95% CI 0.66–0.87). The clinical model was converted into a risk score, the L-TRiP(cast) score (Leiden–Thrombosis Risk Prediction for patients with cast immobilization score), which showed an AUC of 0.76 (95% CI 0.66–0.86). Validation in the THE-VTE study data resulted in an AUC of 0.77 (95% CI 0.58–0.96) for the L-TRiP(cast) score. Validation in the Milan study resulted in an AUC of 0.93 (95% CI 0.86–1.00) for the full model, an AUC of 0.92 (95% CI 0.76–0.87) for the restricted model, and an AUC of 0.96 (95% CI 0.92–0.99) for the clinical model. The L-TRiP(cast) score resulted in an AUC of 0.95 (95% CI 0.91–0.99). Major limitations of this study were that information on thromboprophylaxis was not available for patients who had plaster cast immobilization of the lower extremity and that blood was drawn 3 mo after the thrombotic event. Conclusions These results show that information on environmental risk factors, coagulation factors, and genetic determinants in patients with plaster casts leads to high accuracy in the prediction of VTE risk. In daily practice, the clinical model may be the preferred model as its factors are most easy to determine, while the model still has good predictive performance. These results may provide guidance for thromboprophylaxis and form the basis for a management study. PMID:26554832