Liu, Xudong; Zhang, Chenghui; Li, Ke; Zhang, Qi
2017-11-01
This paper addresses the current control of permanent magnet synchronous motor (PMSM) for electric drives with model uncertainties and disturbances. A generalized predictive current control method combined with sliding mode disturbance compensation is proposed to satisfy the requirement of fast response and strong robustness. Firstly, according to the generalized predictive control (GPC) theory based on the continuous time model, a predictive current control method is presented without considering the disturbance, which is convenient to be realized in the digital controller. In fact, it's difficult to derive the exact motor model and parameters in the practical system. Thus, a sliding mode disturbance compensation controller is studied to improve the adaptiveness and robustness of the control system. The designed controller attempts to combine the merits of both predictive control and sliding mode control, meanwhile, the controller parameters are easy to be adjusted. Lastly, the proposed controller is tested on an interior PMSM by simulation and experiment, and the results indicate that it has good performance in both current tracking and disturbance rejection. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Neural network based automatic limit prediction and avoidance system and method
NASA Technical Reports Server (NTRS)
Calise, Anthony J. (Inventor); Prasad, Jonnalagadda V. R. (Inventor); Horn, Joseph F. (Inventor)
2001-01-01
A method for performance envelope boundary cueing for a vehicle control system comprises the steps of formulating a prediction system for a neural network and training the neural network to predict values of limited parameters as a function of current control positions and current vehicle operating conditions. The method further comprises the steps of applying the neural network to the control system of the vehicle, where the vehicle has capability for measuring current control positions and current vehicle operating conditions. The neural network generates a map of current control positions and vehicle operating conditions versus the limited parameters in a pre-determined vehicle operating condition. The method estimates critical control deflections from the current control positions required to drive the vehicle to a performance envelope boundary. Finally, the method comprises the steps of communicating the critical control deflection to the vehicle control system; and driving the vehicle control system to provide a tactile cue to an operator of the vehicle as the control positions approach the critical control deflections.
Li, Bingchu; Ling, Xiao; Huang, Yixiang; Gong, Liang; Liu, Chengliang
2017-01-01
This paper presents a fixed-switching-frequency model predictive current controller using multiplexed current sensor for switched reluctance machine (SRM) drives. The converter was modified to distinguish currents from simultaneously excited phases during the sampling period. The only current sensor installed in the converter was time division multiplexing for phase current sampling. During the commutation stage, the control steps of adjacent phases were shifted so that sampling time was staggered. The maximum and minimum duty ratio of pulse width modulation (PWM) was limited to keep enough sampling time for analog-to-digital (A/D) conversion. Current sensor multiplexing was realized without complex adjustment of either driver circuit nor control algorithms, while it helps to reduce the cost and errors introduced in current sampling due to inconsistency between sensors. The proposed controller is validated by both simulation and experimental results with a 1.5 kW three-phase 12/8 SRM. Satisfied current sampling is received with little difference compared with independent phase current sensors for each phase. The proposed controller tracks the reference current profile as accurately as the model predictive current controller with independent phase current sensors, while having minor tracking errors compared with a hysteresis current controller. PMID:28513554
NASA Astrophysics Data System (ADS)
Jin, N.; Yang, F.; Shang, S. Y.; Tao, T.; Liu, J. S.
2016-08-01
According to the limitations of the LVRT technology of traditional photovoltaic inverter existed, this paper proposes a low voltage ride through (LVRT) control method based on model current predictive control (MCPC). This method can effectively improve the photovoltaic inverter output characteristics and response speed. The MCPC method of photovoltaic grid-connected inverter designed, the sum of the absolute value of the predictive current and the given current error is adopted as the cost function with the model predictive control method. According to the MCPC, the optimal space voltage vector is selected. Photovoltaic inverter has achieved automatically switches of priority active or reactive power control of two control modes according to the different operating states, which effectively improve the inverter capability of LVRT. The simulation and experimental results proves that the proposed method is correct and effective.
Model Predictive Control of the Current Profile and the Internal Energy of DIII-D Plasmas
NASA Astrophysics Data System (ADS)
Lauret, M.; Wehner, W.; Schuster, E.
2015-11-01
For efficient and stable operation of tokamak plasmas it is important that the current density profile and the internal energy are jointly controlled by using the available heating and current-drive (H&CD) sources. The proposed approach is a version of nonlinear model predictive control in which the input set is restricted in size by the possible combinations of the H&CD on/off states. The controller uses real-time predictions over a receding-time horizon of both the current density profile (nonlinear partial differential equation) and the internal energy (nonlinear ordinary differential equation) evolutions. At every time instant the effect of every possible combination of H&CD sources on the current profile and internal energy is evaluated over the chosen time horizon. The combination that leads to the best result, which is assessed by a user-defined cost function, is then applied up until the next time instant. Simulations results based on a control-oriented transport code illustrate the effectiveness of the proposed control method. Supported by the US DOE under DE-FC02-04ER54698 & DE-SC0010661.
An Optimal Current Observer for Predictive Current Controlled Buck DC-DC Converters
Min, Run; Chen, Chen; Zhang, Xiaodong; Zou, Xuecheng; Tong, Qiaoling; Zhang, Qiao
2014-01-01
In digital current mode controlled DC-DC converters, conventional current sensors might not provide isolation at a minimized price, power loss and size. Therefore, a current observer which can be realized based on the digital circuit itself, is a possible substitute. However, the observed current may diverge due to the parasitic resistors and the forward conduction voltage of the diode. Moreover, the divergence of the observed current will cause steady state errors in the output voltage. In this paper, an optimal current observer is proposed. It achieves the highest observation accuracy by compensating for all the known parasitic parameters. By employing the optimal current observer-based predictive current controller, a buck converter is implemented. The converter has a convergently and accurately observed inductor current, and shows preferable transient response than the conventional voltage mode controlled converter. Besides, costs, power loss and size are minimized since the strategy requires no additional hardware for current sensing. The effectiveness of the proposed optimal current observer is demonstrated experimentally. PMID:24854061
Enhanced pid vs model predictive control applied to bldc motor
NASA Astrophysics Data System (ADS)
Gaya, M. S.; Muhammad, Auwal; Aliyu Abdulkadir, Rabiu; Salim, S. N. S.; Madugu, I. S.; Tijjani, Aminu; Aminu Yusuf, Lukman; Dauda Umar, Ibrahim; Khairi, M. T. M.
2018-01-01
BrushLess Direct Current (BLDC) motor is a multivariable and highly complex nonlinear system. Variation of internal parameter values with environment or reference signal increases the difficulty in controlling the BLDC effectively. Advanced control strategies (like model predictive control) often have to be integrated to satisfy the control desires. Enhancing or proper tuning of a conventional algorithm results in achieving the desired performance. This paper presents a performance comparison of Enhanced PID and Model Predictive Control (MPC) applied to brushless direct current motor. The simulation results demonstrated that the PSO-PID is slightly better than the PID and MPC in tracking the trajectory of the reference signal. The proposed scheme could be useful algorithms for the system.
A digital prediction algorithm for a single-phase boost PFC
NASA Astrophysics Data System (ADS)
Qing, Wang; Ning, Chen; Weifeng, Sun; Shengli, Lu; Longxing, Shi
2012-12-01
A novel digital control algorithm for digital control power factor correction is presented, which is called the prediction algorithm and has a feature of a higher PF (power factor) with lower total harmonic distortion, and a faster dynamic response with the change of the input voltage or load current. For a certain system, based on the current system state parameters, the prediction algorithm can estimate the track of the output voltage and the inductor current at the next switching cycle and get a set of optimized control sequences to perfectly track the trajectory of input voltage. The proposed prediction algorithm is verified at different conditions, and computer simulation and experimental results under multi-situations confirm the effectiveness of the prediction algorithm. Under the circumstances that the input voltage is in the range of 90-265 V and the load current in the range of 20%-100%, the PF value is larger than 0.998. The startup and the recovery times respectively are about 0.1 s and 0.02 s without overshoot. The experimental results also verify the validity of the proposed method.
The Current Status of Unsteady CFD Approaches for Aerodynamic Flow Control
NASA Technical Reports Server (NTRS)
Carpenter, Mark H.; Singer, Bart A.; Yamaleev, Nail; Vatsa, Veer N.; Viken, Sally A.; Atkins, Harold L.
2002-01-01
An overview of the current status of time dependent algorithms is presented. Special attention is given to algorithms used to predict fluid actuator flows, as well as other active and passive flow control devices. Capabilities for the next decade are predicted, and principal impediments to the progress of time-dependent algorithms are identified.
Hybrid zero-voltage switching (ZVS) control for power inverters
Amirahmadi, Ahmadreza; Hu, Haibing; Batarseh, Issa
2016-11-01
A power inverter combination includes a half-bridge power inverter including first and second semiconductor power switches receiving input power having an intermediate node therebetween providing an inductor current through an inductor. A controller includes input comparison circuitry receiving the inductor current having outputs coupled to first inputs of pulse width modulation (PWM) generation circuitry, and a predictive control block having an output coupled to second inputs of the PWM generation circuitry. The predictive control block is coupled to receive a measure of Vin and an output voltage at a grid connection point. A memory stores a current control algorithm configured for resetting a PWM period for a switching signal applied to control nodes of the first and second power switch whenever the inductor current reaches a predetermined upper limit or a predetermined lower limit.
Maaoui-Ben Hassine, Ikram; Naouar, Mohamed Wissem; Mrabet-Bellaaj, Najiba
2016-05-01
In this paper, Model Predictive Control and Dead-beat predictive control strategies are proposed for the control of a PMSG based wind energy system. The proposed MPC considers the model of the converter-based system to forecast the possible future behavior of the controlled variables. It allows selecting the voltage vector to be applied that leads to a minimum error by minimizing a predefined cost function. The main features of the MPC are low current THD and robustness against parameters variations. The Dead-beat predictive control is based on the system model to compute the optimum voltage vector that ensures zero-steady state error. The optimum voltage vector is then applied through Space Vector Modulation (SVM) technique. The main advantages of the Dead-beat predictive control are low current THD and constant switching frequency. The proposed control techniques are presented and detailed for the control of back-to-back converter in a wind turbine system based on PMSG. Simulation results (under Matlab-Simulink software environment tool) and experimental results (under developed prototyping platform) are presented in order to show the performances of the considered control strategies. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, Jae-Chang; Moon, Sung-Ki; Kwak, Sangshin
2018-04-01
This paper presents a direct model-based predictive control scheme for voltage source inverters (VSIs) with reduced common-mode voltages (CMVs). The developed method directly finds optimal vectors without using repetitive calculation of a cost function. To adjust output currents with the CMVs in the range of -Vdc/6 to +Vdc/6, the developed method uses voltage vectors, as finite control resources, excluding zero voltage vectors which produce the CMVs in the VSI within ±Vdc/2. In a model-based predictive control (MPC), not using zero voltage vectors increases the output current ripples and the current errors. To alleviate these problems, the developed method uses two non-zero voltage vectors in one sampling step. In addition, the voltage vectors scheduled to be used are directly selected at every sampling step once the developed method calculates the future reference voltage vector, saving the efforts of repeatedly calculating the cost function. And the two non-zero voltage vectors are optimally allocated to make the output current approach the reference current as close as possible. Thus, low CMV, rapid current-following capability and sufficient output current ripple performance are attained by the developed method. The results of a simulation and an experiment verify the effectiveness of the developed method.
Control Strategy of Active Power Filter Based on Modular Multilevel Converter
NASA Astrophysics Data System (ADS)
Xie, Xifeng
2018-03-01
To improve the capacity, pressure resistance and the equivalent switching frequency of active power filter (APF), a control strategy of APF based on Modular Multilevel Converter (MMC) is presented. In this Control Strategy, the indirect current control method is used to achieve active current and reactive current decoupling control; Voltage Balance Control Strategy is to stabilize sub-module capacitor voltage, the predictive current control method is used to Track and control of harmonic currents. As a result, the harmonic current is restrained, and power quality is improved. Finally, the simulation model of active power filter controller based on MMC is established in Matlab/Simulink, the simulation proves that the proposed strategy is feasible and correct.
Prediction Accuracy: The Role of Feedback in 6th Graders' Recall Predictions
ERIC Educational Resources Information Center
Al-Harthy, Ibrahim S.
2016-01-01
The current study focused on the role of feedback on students' prediction accuracy (calibration). This phenomenon has been widely studied, but questions remain about how best to improve it. In the current investigation, fifty-seven students from sixth grade were randomly assigned to control and experimental groups. Thirty pictures were chosen from…
NASA Technical Reports Server (NTRS)
Bihrle, W., Jr.
1976-01-01
A correlation study was conducted to determine the ability of current analytical spin prediction techniques to predict the flight motions of a current fighter airplane configuration during the spin entry, the developed spin, and the spin recovery motions. The airplane math model used aerodynamics measured on an exact replica of the flight test model using conventional static and forced-oscillation wind-tunnel test techniques and a recently developed rotation-balance test apparatus capable of measuring aerodynamics under steady spinning conditions. An attempt was made to predict the flight motions measured during stall/spin flight testing of an unpowered, radio-controlled model designed to be a 1/10 scale, dynamically-scaled model of a current fighter configuration. Comparison of the predicted and measured flight motions show that while the post-stall and spin entry motions were not well-predicted, the developed spinning motion (a steady flat spin) and the initial phases of the spin recovery motion are reasonably well predicted.
Tong, Qiaoling; Chen, Chen; Zhang, Qiao; Zou, Xuecheng
2015-01-01
To realize accurate current control for a boost converter, a precise measurement of the inductor current is required to achieve high resolution current regulating. Current sensors are widely used to measure the inductor current. However, the current sensors and their processing circuits significantly contribute extra hardware cost, delay and noise to the system. They can also harm the system reliability. Therefore, current sensorless control techniques can bring cost effective and reliable solutions for various boost converter applications. According to the derived accurate model, which contains a number of parasitics, the boost converter is a nonlinear system. An Extended Kalman Filter (EKF) is proposed for inductor current estimation and output voltage filtering. With this approach, the system can have the same advantages as sensored current control mode. To implement EKF, the load value is necessary. However, the load may vary from time to time. This can lead to errors of current estimation and filtered output voltage. To solve this issue, a load variation elimination effect elimination (LVEE) module is added. In addition, a predictive average current controller is used to regulate the current. Compared with conventional voltage controlled system, the transient response is greatly improved since it only takes two switching cycles for the current to reach its reference. Finally, experimental results are presented to verify the stable operation and output tracking capability for large-signal transients of the proposed algorithm. PMID:25928061
NASA Astrophysics Data System (ADS)
Huang, Wentao; Hua, Wei; Yu, Feng
2017-05-01
Due to high airgap flux density generated by magnets and the special double salient structure, the cogging torque of the flux-switching permanent magnet (FSPM) machine is considerable, which limits the further applications. Based on the model predictive current control (MPCC) and the compensation control theory, a compensating-current MPCC (CC-MPCC) scheme is proposed and implemented to counteract the dominated components in cogging torque of an existing three-phase 12/10 FSPM prototyped machine, and thus to alleviate the influence of the cogging torque and improve the smoothness of electromagnetic torque as well as speed, where a comprehensive cost function is designed to evaluate the switching states. The simulated results indicate that the proposed CC-MPCC scheme can suppress the torque ripple significantly and offer satisfactory dynamic performances by comparisons with the conventional MPCC strategy. Finally, experimental results validate both the theoretical and simulated predictions.
Life Extending Control. [mechanical fatigue in reusable rocket engines
NASA Technical Reports Server (NTRS)
Lorenzo, Carl F.; Merrill, Walter C.
1991-01-01
The concept of Life Extending Control is defined. Life is defined in terms of mechanical fatigue life. A brief description is given of the current approach to life prediction using a local, cyclic, stress-strain approach for a critical system component. An alternative approach to life prediction based on a continuous functional relationship to component performance is proposed. Based on cyclic life prediction, an approach to life extending control, called the Life Management Approach, is proposed. A second approach, also based on cyclic life prediction, called the implicit approach, is presented. Assuming the existence of the alternative functional life prediction approach, two additional concepts for Life Extending Control are presented.
Life extending control: A concept paper
NASA Technical Reports Server (NTRS)
Lorenzo, Carl F.; Merrill, Walter C.
1991-01-01
The concept of Life Extending Control is defined. Life is defined in terms of mechanical fatigue life. A brief description is given of the current approach to life prediction using a local, cyclic, stress-strain approach for a critical system component. An alternative approach to life prediction based on a continuous functional relationship to component performance is proposed.Base on cyclic life prediction an approach to Life Extending Control, called the Life Management Approach is proposed. A second approach, also based on cyclic life prediction, called the Implicit Approach, is presented. Assuming the existence of the alternative functional life prediction approach, two additional concepts for Life Extending Control are presented.
NASA Astrophysics Data System (ADS)
Maljaars, E.; Felici, F.; Blanken, T. C.; Galperti, C.; Sauter, O.; de Baar, M. R.; Carpanese, F.; Goodman, T. P.; Kim, D.; Kim, S. H.; Kong, M.; Mavkov, B.; Merle, A.; Moret, J. M.; Nouailletas, R.; Scheffer, M.; Teplukhina, A. A.; Vu, N. M. T.; The EUROfusion MST1-team; The TCV-team
2017-12-01
The successful performance of a model predictive profile controller is demonstrated in simulations and experiments on the TCV tokamak, employing a profile controller test environment. Stable high-performance tokamak operation in hybrid and advanced plasma scenarios requires control over the safety factor profile (q-profile) and kinetic plasma parameters such as the plasma beta. This demands to establish reliable profile control routines in presently operational tokamaks. We present a model predictive profile controller that controls the q-profile and plasma beta using power requests to two clusters of gyrotrons and the plasma current request. The performance of the controller is analyzed in both simulation and TCV L-mode discharges where successful tracking of the estimated inverse q-profile as well as plasma beta is demonstrated under uncertain plasma conditions and the presence of disturbances. The controller exploits the knowledge of the time-varying actuator limits in the actuator input calculation itself such that fast transitions between targets are achieved without overshoot. A software environment is employed to prepare and test this and three other profile controllers in parallel in simulations and experiments on TCV. This set of tools includes the rapid plasma transport simulator RAPTOR and various algorithms to reconstruct the plasma equilibrium and plasma profiles by merging the available measurements with model-based predictions. In this work the estimated q-profile is merely based on RAPTOR model predictions due to the absence of internal current density measurements in TCV. These results encourage to further exploit model predictive profile control in experiments on TCV and other (future) tokamaks.
Andreotti, Charissa; Thigpen, Jennifer E; Dunn, Madeleine J; Watson, Kelly; Potts, Jennifer; Reising, Michelle M; Robinson, Kristen E; Rodriguez, Erin M; Roubinov, Danielle; Luecken, Linda; Compas, Bruce E
2013-01-01
The current study examined the relations of measures of cognitive reappraisal and secondary control coping with working memory abilities, positive and negative affect, and symptoms of anxiety and depression in young adults (N=124). Results indicate significant relations between working memory abilities and reports of secondary control coping and between reports of secondary control coping and cognitive reappraisal. Associations were also found between measures of secondary control coping and cognitive reappraisal and positive and negative affect and symptoms of depression and anxiety. Further, the findings suggest that reports of cognitive reappraisal may be more strongly predictive of positive affect whereas secondary control coping may be more strongly predictive of negative affect and symptoms of depression and anxiety. Overall, the results suggest that current measures of secondary control coping and cognitive reappraisal capture related but distinct constructs and suggest that the assessment of working memory may be more strongly related to secondary control coping in predicting individual differences in distress.
Life extending control for rocket engines
NASA Technical Reports Server (NTRS)
Lorenzo, C. F.; Saus, J. R.; Ray, A.; Carpino, M.; Wu, M.-K.
1992-01-01
The concept of life extending control is defined. A brief discussion of current fatigue life prediction methods is given and the need for an alternative life prediction model based on a continuous functional relationship is established. Two approaches to life extending control are considered: (1) the implicit approach which uses cyclic fatigue life prediction as a basis for control design; and (2) the continuous life prediction approach which requires a continuous damage law. Progress on an initial formulation of a continuous (in time) fatigue model is presented. Finally, nonlinear programming is used to develop initial results for life extension for a simplified rocket engine (model).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miltiadis Alamaniotis; Vivek Agarwal
This paper places itself in the realm of anticipatory systems and envisions monitoring and control methods being capable of making predictions over system critical parameters. Anticipatory systems allow intelligent control of complex systems by predicting their future state. In the current work, an intelligent model aimed at implementing anticipatory monitoring and control in energy industry is presented and tested. More particularly, a set of support vector regressors (SVRs) are trained using both historical and observed data. The trained SVRs are used to predict the future value of the system based on current operational system parameter. The predicted values are thenmore » inputted to a fuzzy logic based module where the values are fused to obtain a single value, i.e., final system output prediction. The methodology is tested on real turbine degradation datasets. The outcome of the approach presented in this paper highlights the superiority over single support vector regressors. In addition, it is shown that appropriate selection of fuzzy sets and fuzzy rules plays an important role in improving system performance.« less
Implicit but not explicit self-esteem predicts future depressive symptomatology.
Franck, Erik; De Raedt, Rudi; De Houwer, Jan
2007-10-01
To date, research on the predictive validity of implicit self-esteem for depressive relapse is very sparse. In the present study, we assessed implicit self-esteem using the Name Letter Preference Task and explicit self-esteem using the Rosenberg self-esteem scale in a group of currently depressed patients, formerly depressed individuals, and never depressed controls. In addition, we examined the predictive validity of explicit, implicit, and the interaction of explicit and implicit self-esteem in predicting future symptoms of depression in formerly depressed individuals and never depressed controls. The results showed that currently depressed individuals reported a lower explicit self-esteem as compared to formerly depressed individuals and never depressed controls. In line with previous research, all groups showed a positive implicit self-esteem not different from each other. Furthermore, after controlling for initial depressive symptomatology, implicit but not explicit self-esteem significantly predicted depressive symptoms at six months follow-up. Although implicit self-esteem assessed with the Name Letter Preference Test was not different between formerly depressed individuals and never depressed controls, the findings suggest it is an interesting variable in the study of vulnerability for depression relapse.
NASA Technical Reports Server (NTRS)
He, Yuning
2015-01-01
Safety of unmanned aerial systems (UAS) is paramount, but the large number of dynamically changing controller parameters makes it hard to determine if the system is currently stable, and the time before loss of control if not. We propose a hierarchical statistical model using Treed Gaussian Processes to predict (i) whether a flight will be stable (success) or become unstable (failure), (ii) the time-to-failure if unstable, and (iii) time series outputs for flight variables. We first classify the current flight input into success or failure types, and then use separate models for each class to predict the time-to-failure and time series outputs. As different inputs may cause failures at different times, we have to model variable length output curves. We use a basis representation for curves and learn the mappings from input to basis coefficients. We demonstrate the effectiveness of our prediction methods on a NASA neuro-adaptive flight control system.
Data-Based Predictive Control with Multirate Prediction Step
NASA Technical Reports Server (NTRS)
Barlow, Jonathan S.
2010-01-01
Data-based predictive control is an emerging control method that stems from Model Predictive Control (MPC). MPC computes current control action based on a prediction of the system output a number of time steps into the future and is generally derived from a known model of the system. Data-based predictive control has the advantage of deriving predictive models and controller gains from input-output data. Thus, a controller can be designed from the outputs of complex simulation code or a physical system where no explicit model exists. If the output data happens to be corrupted by periodic disturbances, the designed controller will also have the built-in ability to reject these disturbances without the need to know them. When data-based predictive control is implemented online, it becomes a version of adaptive control. One challenge of MPC is computational requirements increasing with prediction horizon length. This paper develops a closed-loop dynamic output feedback controller that minimizes a multi-step-ahead receding-horizon cost function with multirate prediction step. One result is a reduced influence of prediction horizon and the number of system outputs on the computational requirements of the controller. Another result is an emphasis on portions of the prediction window that are sampled more frequently. A third result is the ability to include more outputs in the feedback path than in the cost function.
Casagrande, Gina; LeJeune, Jeffery; Belury, Martha A; Medeiros, Lydia C
2011-04-01
The Theory of Planned Behavior was used to determine if dietitians personal characteristics and beliefs about fresh vegetable food safety predict whether they currently teach, intend to teach, or neither currently teach nor intend to teach food safety information to their clients. Dietitians who participated in direct client education responded to this web-based survey (n=327). The survey evaluated three independent belief variables: Subjective Norm, Attitudes, and Perceived Behavioral Control. Spearman rho correlations were completed to determine variables that correlated best with current teaching behavior. Multinomial logistical regression was conducted to determine if the belief variables significantly predicted dietitians teaching behavior. Binary logistic regression was used to determine which independent variable was the better predictor of whether dietitians currently taught. Controlling for age, income, education, and gender, the multinomial logistical regression was significant. Perceived behavioral control was the best predictor of whether a dietitian currently taught fresh vegetable food safety. Factors affecting whether dietitians currently taught were confidence in fresh vegetable food safety knowledge, being socially influenced, and a positive attitude toward the teaching behavior. These results validate the importance of teaching food safety effectively and may be used to create more informed food safety curriculum for dietitians. Copyright © 2011 Elsevier Ltd. All rights reserved.
Early strength prediction of concrete based on accelerated curing methods : final report.
DOT National Transportation Integrated Search
1995-12-01
Concrete mix designs and components may currently be changed during the course of a project. The possible negative effects of such changes on concrete strength, are not determined under the current plant control/project control process. Also, the cur...
Eurabia: Strategic Implications for the United States
2010-03-01
display a currently valid OMB control number. 1. REPORT DATE 30 MAR 2010 2. REPORT TYPE 3. DATES COVERED 4. TITLE AND SUBTITLE Eurabia: Strategic...projecting current trends into the future seldom holds true in the face of demographic realities, i.e. nature gets a vote so to speak. These social welfare...portion of the population. Nevertheless, current predictions have it rising dramatically over the coming decades. Most demographers predict that by
Automatic Train Operation Using Autonomic Prediction of Train Runs
NASA Astrophysics Data System (ADS)
Asuka, Masashi; Kataoka, Kenji; Komaya, Kiyotoshi; Nishida, Syogo
In this paper, we present an automatic train control method adaptable to disturbed train traffic conditions. The proposed method presumes transmission of detected time of a home track clearance to trains approaching to the station by employing equipment of Digital ATC (Automatic Train Control). Using the information, each train controls its acceleration by the method that consists of two approaches. First, by setting a designated restricted speed, the train controls its running time to arrive at the next station in accordance with predicted delay. Second, the train predicts the time at which it will reach the current braking pattern generated by Digital ATC, along with the time when the braking pattern transits ahead. By comparing them, the train correctly chooses the coasting drive mode in advance to avoid deceleration due to the current braking pattern. We evaluated the effectiveness of the proposed method regarding driving conditions, energy consumption and reduction of delays by simulation.
Isothermal life prediction of composite lamina using a damage mechanics approach
NASA Technical Reports Server (NTRS)
Abuelfoutouh, Nader M.; Verrilli, Michael J.; Halford, Gary R.
1989-01-01
A method for predicting isothermal plastic fatigue life of a composite lamina is presented in which both fibers and matrix are isotropic materials. In general, the fatigue resistances of the matrix, fibers, and interfacial material must be known in order to predict composite fatigue life. Composite fatigue life is predicted using only the matrix fatigue resistance due to inelasticity micromechanisms. The effect of the fiber orientation on loading direction is accounted for while predicting composite life. The application is currently limited to isothermal cases where the internal thermal stresses that might arise from thermal strain mismatch between fibers and matrix are negligible. The theory is formulated to predict the fatigue life of a composite lamina under either load or strain control. It is applied currently to predict the life of tungsten-copper composite lamina at 260 C under tension-tension load control. The calculated life of the lamina is in good agreement with available composite low cycle fatigue data.
Improved fuzzy PID controller design using predictive functional control structure.
Wang, Yuzhong; Jin, Qibing; Zhang, Ridong
2017-11-01
In conventional PID scheme, the ensemble control performance may be unsatisfactory due to limited degrees of freedom under various kinds of uncertainty. To overcome this disadvantage, a novel PID control method that inherits the advantages of fuzzy PID control and the predictive functional control (PFC) is presented and further verified on the temperature model of a coke furnace. Based on the framework of PFC, the prediction of the future process behavior is first obtained using the current process input signal. Then, the fuzzy PID control based on the multi-step prediction is introduced to acquire the optimal control law. Finally, the case study on a temperature model of a coke furnace shows the effectiveness of the fuzzy PID control scheme when compared with conventional PID control and fuzzy self-adaptive PID control. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Self-regulating the effortful "social dos".
Cortes, Kassandra; Kammrath, Lara K; Scholer, Abigail A; Peetz, Johanna
2014-03-01
In the current research, we explored differences in the self-regulation of the personal dos (i.e., engaging in active and effortful behaviors that benefit the self) and in the self-regulation of the social dos (engaging in those same effortful behaviors to benefit someone else). In 6 studies, we examined whether the same trait self-control abilities that predict task persistence on personal dos would also predict task persistence on social dos. That is, would the same behavior, such as persisting through a tedious and attentionally demanding task, show different associations with trait self-control when it is framed as benefitting the self versus someone else? In Studies 1-3, we directly compared the personal and social dos and found that trait self-control predicted self-reported and behavioral personal dos but not social dos, even when the behaviors were identical and when the incentives were matched. Instead, trait agreeableness--a trait linked to successful self-regulation within the social domain--predicted the social dos. Trait self-control did not predict the social dos even when task difficulty increased (Study 4), but it did predict the social don'ts, consistent with past research (Studies 5-6). The current studies provide support for the importance of distinguishing different domains of self-regulated behaviors and suggest that social dos can be successfully performed through routes other than traditional self-control abilities. (PsycINFO Database Record (c) 2014 APA, all rights reserved).
Chen, Qihong; Long, Rong; Quan, Shuhai
2014-01-01
This paper presents a neural network predictive control strategy to optimize power distribution for a fuel cell/ultracapacitor hybrid power system of a robot. We model the nonlinear power system by employing time variant auto-regressive moving average with exogenous (ARMAX), and using recurrent neural network to represent the complicated coefficients of the ARMAX model. Because the dynamic of the system is viewed as operating- state- dependent time varying local linear behavior in this frame, a linear constrained model predictive control algorithm is developed to optimize the power splitting between the fuel cell and ultracapacitor. The proposed algorithm significantly simplifies implementation of the controller and can handle multiple constraints, such as limiting substantial fluctuation of fuel cell current. Experiment and simulation results demonstrate that the control strategy can optimally split power between the fuel cell and ultracapacitor, limit the change rate of the fuel cell current, and so as to extend the lifetime of the fuel cell. PMID:24707206
Design and experiment of vehicular charger AC/DC system based on predictive control algorithm
NASA Astrophysics Data System (ADS)
He, Guangbi; Quan, Shuhai; Lu, Yuzhang
2018-06-01
For the car charging stage rectifier uncontrollable system, this paper proposes a predictive control algorithm of DC/DC converter based on the prediction model, established by the state space average method and its prediction model, obtained by the optimal mathematical description of mathematical calculation, to analysis prediction algorithm by Simulink simulation. The design of the structure of the car charging, at the request of the rated output power and output voltage adjustable control circuit, the first stage is the three-phase uncontrolled rectifier DC voltage Ud through the filter capacitor, after by using double-phase interleaved buck-boost circuit with wide range output voltage required value, analyzing its working principle and the the parameters for the design and selection of components. The analysis of current ripple shows that the double staggered parallel connection has the advantages of reducing the output current ripple and reducing the loss. The simulation experiment of the whole charging circuit is carried out by software, and the result is in line with the design requirements of the system. Finally combining the soft with hardware circuit to achieve charging of the system according to the requirements, experimental platform proved the feasibility and effectiveness of the proposed predictive control algorithm based on the car charging of the system, which is consistent with the simulation results.
Predictive control of hollow-fiber bioreactors for the production of monoclonal antibodies.
Dowd, J E; Weber, I; Rodriguez, B; Piret, J M; Kwok, K E
1999-05-20
The selection of medium feed rates for perfusion bioreactors represents a challenge for process optimization, particularly in bioreactors that are sampled infrequently. When the present and immediate future of a bioprocess can be adequately described, predictive control can minimize deviations from set points in a manner that can maximize process consistency. Predictive control of perfusion hollow-fiber bioreactors was investigated in a series of hybridoma cell cultures that compared operator control to computer estimation of feed rates. Adaptive software routines were developed to estimate the current and predict the future glucose uptake and lactate production of the bioprocess at each sampling interval. The current and future glucose uptake rates were used to select the perfusion feed rate in a designed response to deviations from the set point values. The routines presented a graphical user interface through which the operator was able to view the up-to-date culture performance and assess the model description of the immediate future culture performance. In addition, fewer samples were taken in the computer-estimated cultures, reducing labor and analytical expense. The use of these predictive controller routines and the graphical user interface decreased the glucose and lactate concentration variances up to sevenfold, and antibody yields increased by 10% to 43%. Copyright 1999 John Wiley & Sons, Inc.
A Discrete-Time Average Model Based Predictive Control for Quasi-Z-Source Inverter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yushan; Abu-Rub, Haitham; Xue, Yaosuo
A discrete-time average model-based predictive control (DTA-MPC) is proposed for a quasi-Z-source inverter (qZSI). As a single-stage inverter topology, the qZSI regulates the dc-link voltage and the ac output voltage through the shoot-through (ST) duty cycle and the modulation index. Several feedback strategies have been dedicated to produce these two control variables, among which the most popular are the proportional–integral (PI)-based control and the conventional model-predictive control (MPC). However, in the former, there are tradeoffs between fast response and stability; the latter is robust, but at the cost of high calculation burden and variable switching frequency. Moreover, they require anmore » elaborated design or fine tuning of controller parameters. The proposed DTA-MPC predicts future behaviors of the ST duty cycle and modulation signals, based on the established discrete-time average model of the quasi-Z-source (qZS) inductor current, the qZS capacitor voltage, and load currents. The prediction actions are applied to the qZSI modulator in the next sampling instant, without the need of other controller parameters’ design. A constant switching frequency and significantly reduced computations are achieved with high performance. Transient responses and steady-state accuracy of the qZSI system under the proposed DTA-MPC are investigated and compared with the PI-based control and the conventional MPC. Simulation and experimental results verify the effectiveness of the proposed approach for the qZSI.« less
A Discrete-Time Average Model Based Predictive Control for Quasi-Z-Source Inverter
Liu, Yushan; Abu-Rub, Haitham; Xue, Yaosuo; ...
2017-12-25
A discrete-time average model-based predictive control (DTA-MPC) is proposed for a quasi-Z-source inverter (qZSI). As a single-stage inverter topology, the qZSI regulates the dc-link voltage and the ac output voltage through the shoot-through (ST) duty cycle and the modulation index. Several feedback strategies have been dedicated to produce these two control variables, among which the most popular are the proportional–integral (PI)-based control and the conventional model-predictive control (MPC). However, in the former, there are tradeoffs between fast response and stability; the latter is robust, but at the cost of high calculation burden and variable switching frequency. Moreover, they require anmore » elaborated design or fine tuning of controller parameters. The proposed DTA-MPC predicts future behaviors of the ST duty cycle and modulation signals, based on the established discrete-time average model of the quasi-Z-source (qZS) inductor current, the qZS capacitor voltage, and load currents. The prediction actions are applied to the qZSI modulator in the next sampling instant, without the need of other controller parameters’ design. A constant switching frequency and significantly reduced computations are achieved with high performance. Transient responses and steady-state accuracy of the qZSI system under the proposed DTA-MPC are investigated and compared with the PI-based control and the conventional MPC. Simulation and experimental results verify the effectiveness of the proposed approach for the qZSI.« less
Assessing Probabilistic Risk Assessment Approaches for Insect Biological Control Introductions.
Kaufman, Leyla V; Wright, Mark G
2017-07-07
The introduction of biological control agents to new environments requires host specificity tests to estimate potential non-target impacts of a prospective agent. Currently, the approach is conservative, and is based on physiological host ranges determined under captive rearing conditions, without consideration for ecological factors that may influence realized host range. We use historical data and current field data from introduced parasitoids that attack an endemic Lepidoptera species in Hawaii to validate a probabilistic risk assessment (PRA) procedure for non-target impacts. We use data on known host range and habitat use in the place of origin of the parasitoids to determine whether contemporary levels of non-target parasitism could have been predicted using PRA. Our results show that reasonable predictions of potential non-target impacts may be made if comprehensive data are available from places of origin of biological control agents, but scant data produce poor predictions. Using apparent mortality data rather than marginal attack rate estimates in PRA resulted in over-estimates of predicted non-target impact. Incorporating ecological data into PRA models improved the predictive power of the risk assessments.
Assessing Probabilistic Risk Assessment Approaches for Insect Biological Control Introductions
Kaufman, Leyla V.; Wright, Mark G.
2017-01-01
The introduction of biological control agents to new environments requires host specificity tests to estimate potential non-target impacts of a prospective agent. Currently, the approach is conservative, and is based on physiological host ranges determined under captive rearing conditions, without consideration for ecological factors that may influence realized host range. We use historical data and current field data from introduced parasitoids that attack an endemic Lepidoptera species in Hawaii to validate a probabilistic risk assessment (PRA) procedure for non-target impacts. We use data on known host range and habitat use in the place of origin of the parasitoids to determine whether contemporary levels of non-target parasitism could have been predicted using PRA. Our results show that reasonable predictions of potential non-target impacts may be made if comprehensive data are available from places of origin of biological control agents, but scant data produce poor predictions. Using apparent mortality data rather than marginal attack rate estimates in PRA resulted in over-estimates of predicted non-target impact. Incorporating ecological data into PRA models improved the predictive power of the risk assessments. PMID:28686180
Porcerelli, John H; Hurrell, Kristen; Cogan, Rosemary; Jeffries, Keturah; Markova, Tsveti
2015-12-01
This study assessed the relationship between psychopathology with the Personality Assessment Screener (PAS) and childhood physical and sexual abuse and adult physical and sexual partner violence in a primary care sample of 98 urban-dwelling African American women. Patients completed the PAS, the Childhood Trauma Questionnaire, and the Conflict Tactics Scale. The PAS total score significantly correlated with all measures of childhood and adult abuse. Stepwise regression analyses revealed that PAS element scores of Suicidal Thinking and Hostile Control significantly predicted a history of childhood physical abuse; Suicidal Thinking, Hostile Control, and Acting Out significantly predicted a history of childhood sexual abuse; Suicidal Thinking, Negative Affect, and Alienation significantly predicted current adult partner physical violence; and Psychotic Features, Alcohol Problems, and Anger Control significantly predicted current adult sexual partner violence. The PAS appears to be a useful measure for fast-paced primary care settings for identifying patients who need a more thorough assessment for abuse. © The Author(s) 2015.
Puig, V; Cembrano, G; Romera, J; Quevedo, J; Aznar, B; Ramón, G; Cabot, J
2009-01-01
This paper deals with the global control of the Riera Blanca catchment in the Barcelona sewer network using a predictive optimal control approach. This catchment has been modelled using a conceptual modelling approach based on decomposing the catchments in subcatchments and representing them as virtual tanks. This conceptual modelling approach allows real-time model calibration and control of the sewer network. The global control problem of the Riera Blanca catchment is solved using a optimal/predictive control algorithm. To implement the predictive optimal control of the Riera Blanca catchment, a software tool named CORAL is used. The on-line control is simulated by interfacing CORAL with a high fidelity simulator of sewer networks (MOUSE). CORAL interchanges readings from the limnimeters and gate commands with MOUSE as if it was connected with the real SCADA system. Finally, the global control results obtained using the predictive optimal control are presented and compared against the results obtained using current local control system. The results obtained using the global control are very satisfactory compared to those obtained using the local control.
Extended active disturbance rejection controller
NASA Technical Reports Server (NTRS)
Tian, Gang (Inventor); Gao, Zhiqiang (Inventor)
2012-01-01
Multiple designs, systems, methods and processes for controlling a system or plant using an extended active disturbance rejection control (ADRC) based controller are presented. The extended ADRC controller accepts sensor information from the plant. The sensor information is used in conjunction with an extended state observer in combination with a predictor that estimates and predicts the current state of the plant and a co-joined estimate of the system disturbances and system dynamics. The extended state observer estimates and predictions are used in conjunction with a control law that generates an input to the system based in part on the extended state observer estimates and predictions as well as a desired trajectory for the plant to follow.
Extended Active Disturbance Rejection Controller
NASA Technical Reports Server (NTRS)
Gao, Zhiqiang (Inventor); Tian, Gang (Inventor)
2016-01-01
Multiple designs, systems, methods and processes for controlling a system or plant using an extended active disturbance rejection control (ADRC) based controller are presented. The extended ADRC controller accepts sensor information from the plant. The sensor information is used in conjunction with an extended state observer in combination with a predictor that estimates and predicts the current state of the plant and a co-joined estimate of the system disturbances and system dynamics. The extended state observer estimates and predictions are used in conjunction with a control law that generates an input to the system based in part on the extended state observer estimates and predictions as well as a desired trajectory for the plant to follow.
Extended Active Disturbance Rejection Controller
NASA Technical Reports Server (NTRS)
Tian, Gang (Inventor); Gao, Zhiqiang (Inventor)
2014-01-01
Multiple designs, systems, methods and processes for controlling a system or plant using an extended active disturbance rejection control (ADRC) based controller are presented. The extended ADRC controller accepts sensor information from the plant. The sensor information is used in conjunction with an extended state observer in combination with a predictor that estimates and predicts the current state of the plant and a co-joined estimate of the system disturbances and system dynamics. The extended state observer estimates and predictions are used in conjunction with a control law that generates an input to the system based in part on the extended state observer estimates and predictions as well as a desired trajectory for the plant to follow.
Model Predictive Control of LCL Three-level Photovoltaic Grid-connected Inverter
NASA Astrophysics Data System (ADS)
Liang, Cheng; Tian, Engang; Pang, Baobing; Li, Juan; Yang, Yang
2018-05-01
In this paper, neutral point clamped three-level inverter circuit is analyzed to establish a mathematical model of the three-level inverter in the αβ coordinate system. The causes and harms of the midpoint potential imbalance problem are described. The paper use the method of model predictive control to control the entire inverter circuit[1]. The simulation model of the inverter system is built in Matlab/Simulink software. It is convenient to control the grid-connected current, suppress the unbalance of the midpoint potential and reduce the switching frequency by changing the weight coefficient in the cost function. The superiority of the model predictive control in the control method of the inverter system is verified.
Prediction based active ramp metering control strategy with mobility and safety assessment
NASA Astrophysics Data System (ADS)
Fang, Jie; Tu, Lili
2018-04-01
Ramp metering is one of the most direct and efficient motorway traffic flow management measures so as to improve traffic conditions. However, owing to short of traffic conditions prediction, in earlier studies, the impact on traffic flow dynamics of the applied RM control was not quantitatively evaluated. In this study, a RM control algorithm adopting Model Predictive Control (MPC) framework to predict and assess future traffic conditions, which taking both the current traffic conditions and the RM-controlled future traffic states into consideration, was presented. The designed RM control algorithm targets at optimizing the network mobility and safety performance. The designed algorithm is evaluated in a field-data-based simulation. Through comparing the presented algorithm controlled scenario with the uncontrolled scenario, it was proved that the proposed RM control algorithm can effectively relieve the congestion of traffic network with no significant compromises in safety aspect.
Hunter Ball, B; Pitães, Margarida; Brewer, Gene A
2018-02-07
Output monitoring refers to memory for one's previously completed actions. In the context of prospective memory (PM) (e.g., remembering to take medication), failures of output monitoring can result in repetitions and omissions of planned actions (e.g., over- or under-medication). To be successful in output monitoring paradigms, participants must flexibly control attention to detect PM cues as well as engage controlled retrieval of previous actions whenever a particular cue is encountered. The current study examined individual differences in output monitoring abilities in a group of younger adults differing in attention control (AC) and episodic memory (EM) abilities. The results showed that AC ability uniquely predicted successful cue detection on the first presentation, whereas EM ability uniquely predicted successful output monitoring on the second presentation. The current study highlights the importance of examining external correlates of PM abilities and contributes to the growing body of research on individual differences in PM.
Predictive Management of Asian Carps in the Upper Mississippi River System
Vondracek, Bruce C.; Carlson, Andrew K.
2014-01-01
Prolific non-native organisms pose serious threats to ecosystems and economies worldwide. Nonnative bighead carp (Hypophthalmichthys nobilis) and silver carp (H. molitrix), collectively referred to as Asian carps, continue to colonize aquatic ecosystems throughout the central United States. These species are r-selected, exhibiting iteroparous spawning, rapid growth, broad environmental tolerance, high density, and long-distance movement. Hydrological, thermal, and physicochemical conditions are favorable for establishment beyond the current range, rendering containment and control imperative. Ecological approaches to confine Asian carp populations and prevent colonization characterize contemporary management in the United States. Foraging and reproduction of Asian carps govern habitat selection and movement, providing valuable insight for predictive control. Current management approaches are progressive and often anticipatory but deficient in human dimensions. We define predictive management of Asian carps as synthesis of ecology and human dimensions at regional and local scales to develop strategies for containment and control. We illustrate predictive management in the Upper Mississippi River System and suggest resource managers integrate predictive models, containment paradigms, and human dimensions to design effective, socially acceptable management strategies. Through continued research, university-agency collaboration, and public engagement, predictive management of Asian carps is an auspicious paradigm for preventing and alleviating consequences of colonization in the United States.
Adaptive Data-based Predictive Control for Short Take-off and Landing (STOL) Aircraft
NASA Technical Reports Server (NTRS)
Barlow, Jonathan Spencer; Acosta, Diana Michelle; Phan, Minh Q.
2010-01-01
Data-based Predictive Control is an emerging control method that stems from Model Predictive Control (MPC). MPC computes current control action based on a prediction of the system output a number of time steps into the future and is generally derived from a known model of the system. Data-based predictive control has the advantage of deriving predictive models and controller gains from input-output data. Thus, a controller can be designed from the outputs of complex simulation code or a physical system where no explicit model exists. If the output data happens to be corrupted by periodic disturbances, the designed controller will also have the built-in ability to reject these disturbances without the need to know them. When data-based predictive control is implemented online, it becomes a version of adaptive control. The characteristics of adaptive data-based predictive control are particularly appropriate for the control of nonlinear and time-varying systems, such as Short Take-off and Landing (STOL) aircraft. STOL is a capability of interest to NASA because conceptual Cruise Efficient Short Take-off and Landing (CESTOL) transport aircraft offer the ability to reduce congestion in the terminal area by utilizing existing shorter runways at airports, as well as to lower community noise by flying steep approach and climb-out patterns that reduce the noise footprint of the aircraft. In this study, adaptive data-based predictive control is implemented as an integrated flight-propulsion controller for the outer-loop control of a CESTOL-type aircraft. Results show that the controller successfully tracks velocity while attempting to maintain a constant flight path angle, using longitudinal command, thrust and flap setting as the control inputs.
Using VAPEPS for noise control on Space Station Freedom
NASA Technical Reports Server (NTRS)
Badilla, Gloria; Bergen, Thomas; Scharton, Terry
1991-01-01
Noise environmental control is an important design consideration for Space Station Freedom (SSF), both for crew safety and productivity. Acoustic noise requirements are established to eliminate fatigue and potential hearing loss by crew members from long-term exposure and to facilitate speech communication. VAPEPS (VibroAcoustic Payload Environment Prediction System) is currently being applied to SSF for prediction of the on-orbit noise and vibration environments induced in the 50 to 10,000 Hz frequency range. Various sources such as fans, pumps, centrifuges, exercise equipment, and other mechanical devices are used in the analysis. The predictions will be used in design tradeoff studies and to provide confidence that requirements will be met. Preliminary predictions show that the required levels will be exceeded unless substantial noise control measures are incorporated in the SSF design. Predicted levels for an SSF design without acoustic control treatments exceed requirements by 25 dB in some one-third octave frequency bands.
Novel biomarkers for cardiovascular risk assessment: current status and future directions.
MacNamara, James; Eapen, Danny J; Quyyumi, Arshed; Sperling, Laurence
2015-09-01
Cardiovascular disease (CVD) is the leading cause of mortality in the modern world. Traditional risk algorithms may miss up to 20% of CVD events. Therefore, there is a need for new cardiac biomarkers. Many fields of research are dedicated to improving cardiac risk prediction, including genomics, transcriptomics and proteomics. To date, even the most promising biomarkers have only demonstrated modest associations and predictive ability. Few have undergone randomized control trials. A number of biomarkers are targets to new therapies aimed to reduce cardiovascular risk. Currently, some of the most promising risk prediction has been demonstrated with panels of multiple biomarkers. This article reviews the current state and future of proteomic biomarkers and aggregate biomarker panels.
Two-Speed Gearbox Dynamic Simulation Predictions and Test Validation
NASA Technical Reports Server (NTRS)
Lewicki, David G.; DeSmidt, Hans; Smith, Edward C.; Bauman, Steven W.
2010-01-01
Dynamic simulations and experimental validation tests were performed on a two-stage, two-speed gearbox as part of the drive system research activities of the NASA Fundamental Aeronautics Subsonics Rotary Wing Project. The gearbox was driven by two electromagnetic motors and had two electromagnetic, multi-disk clutches to control output speed. A dynamic model of the system was created which included a direct current electric motor with proportional-integral-derivative (PID) speed control, a two-speed gearbox with dual electromagnetically actuated clutches, and an eddy current dynamometer. A six degree-of-freedom model of the gearbox accounted for the system torsional dynamics and included gear, clutch, shaft, and load inertias as well as shaft flexibilities and a dry clutch stick-slip friction model. Experimental validation tests were performed on the gearbox in the NASA Glenn gear noise test facility. Gearbox output speed and torque as well as drive motor speed and current were compared to those from the analytical predictions. The experiments correlate very well with the predictions, thus validating the dynamic simulation methodologies.
First-Principles-Driven Model-Based Optimal Control of the Current Profile in NSTX-U
NASA Astrophysics Data System (ADS)
Ilhan, Zeki; Barton, Justin; Wehner, William; Schuster, Eugenio; Gates, David; Gerhardt, Stefan; Kolemen, Egemen; Menard, Jonathan
2014-10-01
Regulation in time of the toroidal current profile is one of the main challenges toward the realization of the next-step operational goals for NSTX-U. A nonlinear, control-oriented, physics-based model describing the temporal evolution of the current profile is obtained by combining the magnetic diffusion equation with empirical correlations obtained at NSTX-U for the electron density, electron temperature, and non-inductive current drives. In this work, the proposed model is embedded into the control design process to synthesize a time-variant, linear-quadratic-integral, optimal controller capable of regulating the safety factor profile around a desired target profile while rejecting disturbances. Neutral beam injectors and the total plasma current are used as actuators to shape the current profile. The effectiveness of the proposed controller in regulating the safety factor profile in NSTX-U is demonstrated via closed-loop predictive simulations carried out in PTRANSP. Supported by PPPL.
Hammer, Eva M.; Kaufmann, Tobias; Kleih, Sonja C.; Blankertz, Benjamin; Kübler, Andrea
2014-01-01
Modulation of sensorimotor rhythms (SMR) was suggested as a control signal for brain-computer interfaces (BCI). Yet, there is a population of users estimated between 10 to 50% not able to achieve reliable control and only about 20% of users achieve high (80–100%) performance. Predicting performance prior to BCI use would facilitate selection of the most feasible system for an individual, thus constitute a practical benefit for the user, and increase our knowledge about the correlates of BCI control. In a recent study, we predicted SMR-BCI performance from psychological variables that were assessed prior to the BCI sessions and BCI control was supported with machine-learning techniques. We described two significant psychological predictors, namely the visuo-motor coordination ability and the ability to concentrate on the task. The purpose of the current study was to replicate these results thereby validating these predictors within a neurofeedback based SMR-BCI that involved no machine learning.Thirty-three healthy BCI novices participated in a calibration session and three further neurofeedback training sessions. Two variables were related with mean SMR-BCI performance: (1) a measure for the accuracy of fine motor skills, i.e., a trade for a person’s visuo-motor control ability; and (2) subject’s “attentional impulsivity”. In a linear regression they accounted for almost 20% in variance of SMR-BCI performance, but predictor (1) failed significance. Nevertheless, on the basis of our prior regression model for sensorimotor control ability we could predict current SMR-BCI performance with an average prediction error of M = 12.07%. In more than 50% of the participants, the prediction error was smaller than 10%. Hence, psychological variables played a moderate role in predicting SMR-BCI performance in a neurofeedback approach that involved no machine learning. Future studies are needed to further consolidate (or reject) the present predictors. PMID:25147518
Application of Machine Learning to Predict Dietary Lapses During Weight Loss.
Goldstein, Stephanie P; Zhang, Fengqing; Thomas, John G; Butryn, Meghan L; Herbert, James D; Forman, Evan M
2018-05-01
Individuals who adhere to dietary guidelines provided during weight loss interventions tend to be more successful with weight control. Any deviation from dietary guidelines can be referred to as a "lapse." There is a growing body of research showing that lapses are predictable using a variety of physiological, environmental, and psychological indicators. With recent technological advancements, it may be possible to assess these triggers and predict dietary lapses in real time. The current study sought to use machine learning techniques to predict lapses and evaluate the utility of combining both group- and individual-level data to enhance lapse prediction. The current study trained and tested a machine learning algorithm capable of predicting dietary lapses from a behavioral weight loss program among adults with overweight/obesity (n = 12). Participants were asked to follow a weight control diet for 6 weeks and complete ecological momentary assessment (EMA; repeated brief surveys delivered via smartphone) regarding dietary lapses and relevant triggers. WEKA decision trees were used to predict lapses with an accuracy of 0.72 for the group of participants. However, generalization of the group algorithm to each individual was poor, and as such, group- and individual-level data were combined to improve prediction. The findings suggest that 4 weeks of individual data collection is recommended to attain optimal model performance. The predictive algorithm could be utilized to provide in-the-moment interventions to prevent dietary lapses and therefore enhance weight losses. Furthermore, methods in the current study could be translated to other types of health behavior lapses.
NASA Astrophysics Data System (ADS)
Ilhan, Z.; Wehner, W. P.; Schuster, E.; Boyer, M. D.; Gates, D. A.; Gerhardt, S.; Menard, J.
2015-11-01
Active control of the toroidal current density profile is crucial to achieve and maintain high-performance, MHD-stable plasma operation in NSTX-U. A first-principles-driven, control-oriented model describing the temporal evolution of the current profile has been proposed earlier by combining the magnetic diffusion equation with empirical correlations obtained at NSTX-U for the electron density, electron temperature, and non-inductive current drives. A feedforward + feedback control scheme for the requlation of the current profile is constructed by embedding the proposed nonlinear, physics-based model into the control design process. Firstly, nonlinear optimization techniques are used to design feedforward actuator trajectories that steer the plasma to a desired operating state with the objective of supporting the traditional trial-and-error experimental process of advanced scenario planning. Secondly, a feedback control algorithm to track a desired current profile evolution is developed with the goal of adding robustness to the overall control scheme. The effectiveness of the combined feedforward + feedback control algorithm for current profile regulation is tested in predictive simulations carried out in TRANSP. Supported by PPPL.
Impulsive reactions to food-cues predict subsequent food craving.
Meule, Adrian; Lutz, Annika P C; Vögele, Claus; Kübler, Andrea
2014-01-01
Low inhibitory control has been associated with overeating and addictive behaviors. Inhibitory control can modulate cue-elicited craving in social or alcohol-dependent drinkers, and trait impulsivity may also play a role in food-cue reactivity. The current study investigated food-cue affected response inhibition and its relationship to food craving using a stop-signal task with pictures of food and neutral stimuli. Participants responded slower to food pictures as compared to neutral pictures. Reaction times in response to food pictures positively predicted scores on the Food Cravings Questionnaire - State (FCQ-S) after the task and particularly scores on its hunger subscale. Lower inhibitory performance in response to food pictures predicted higher FCQ-S scores and particularly those related to a desire for food and lack of control over consumption. Task performance was unrelated to current dieting or other measures of habitual eating behaviors. Results support models on interactive effects of top-down inhibitory control processes and bottom-up hedonic signals in the self-regulation of eating behavior, such that low inhibitory control specifically in response to appetitive stimuli is associated with increased craving, which may ultimately result in overeating. © 2013.
Crane, Cory A.; Testa, Maria; Derrick, Jaye L.; Leonard, Kenneth E.
2014-01-01
An emerging literature suggests that temporary deficits in the ability to inhibit impulsive urges may be proximally associated with intimate partner aggression. The current study examined the experience of alcohol use and the depletion of self-control in the prediction of relationship functioning. Daily diary data collected from 118 heterosexual couples were analyzed using parallel multi-level Actor Partner Interdependence Models to assess the effects of heavy episodic drinking and depletion of self-control across partners on outcomes of participant-reported daily arguing with and anger toward an intimate partner. Heavy episodic drinking among actors predicted greater arguing but failed to interact with either actor or partner depletion. We also found that greater arguing was reported on days of high congruent actor and partner depletion. Both actor and partner depletion, as well as their interaction, predicted greater partner-specific anger. Greater partner-specific anger was generally reported on days of congruent actor and partner depletion, particularly on days of high partner depletion. The current results highlight the importance of independently assessing partner effects (i.e., depletion of self-control), which interact dynamically with disinhibiting actor effects, in the prediction of daily adverse relationship functioning. Results offer further support for the development of prospective individualized and couples-based interventions for partner conflict. PMID:24700558
Chassin, Laurie; Presson, Clark C.; Sherman, Steven J.; Seo, Dong-Chul; Macy, Jon
2010-01-01
The current study tested implicit and explicit attitudes as prospective predictors of smoking cessation in a Midwestern community sample of smokers. Results showed that the effects of attitudes significantly varied with levels of experienced failure to control smoking and plans to quit. Explicit attitudes significantly predicted later cessation among those with low (but not high or average) levels of experienced failure to control smoking. Conversely, however, implicit attitudes significantly predicted later cessation among those with high levels of experienced failure to control smoking, but only if they had a plan to quit. Because smoking cessation involves both controlled and automatic processes, interventions may need to consider attitude change interventions that focus on both implicit and explicit attitudes. PMID:21198227
NASA Astrophysics Data System (ADS)
Rajapakse, G.; Jayasinghe, S. G.; Fleming, A.; Shahnia, F.
2017-07-01
Australia’s extended coastline asserts abundance of wave and tidal power. The predictability of these energy sources and their proximity to cities and towns make them more desirable. Several tidal current turbine and ocean wave energy conversion projects have already been planned in the coastline of southern Australia. Some of these projects use air turbine technology with air driven turbines to harvest the energy from an oscillating water column. This study focuses on the power take-off control of a single stage unidirectional oscillating water column air turbine generator system, and proposes a model predictive control-based speed controller for the generator-turbine assembly. The proposed method is verified with simulation results that show the efficacy of the controller in extracting power from the turbine while maintaining the speed at the desired level.
Engineering bacterial translation initiation - Do we have all the tools we need?
Vigar, Justin R J; Wieden, Hans-Joachim
2017-11-01
Reliable tools that allow precise and predictable control over gene expression are critical for the success of nearly all bioengineering applications. Translation initiation is the most regulated phase during protein biosynthesis, and is therefore a promising target for exerting control over gene expression. At the translational level, the copy number of a protein can be fine-tuned by altering the interaction between the translation initiation region of an mRNA and the ribosome. These interactions can be controlled by modulating the mRNA structure using numerous approaches, including small molecule ligands, RNAs, or RNA-binding proteins. A variety of naturally occurring regulatory elements have been repurposed, facilitating advances in synthetic gene regulation strategies. The pursuit of a comprehensive understanding of mechanisms governing translation initiation provides the framework for future engineering efforts. Here we outline state-of-the-art strategies used to predictably control translation initiation in bacteria. We also discuss current limitations in the field and future goals. Due to its function as the rate-determining step, initiation is the ideal point to exert effective translation regulation. Several engineering tools are currently available to rationally design the initiation characteristics of synthetic mRNAs. However, improvements are required to increase the predictability, effectiveness, and portability of these tools. Predictable and reliable control over translation initiation will allow greater predictability when designing, constructing, and testing genetic circuits. The ability to build more complex circuits predictably will advance synthetic biology and contribute to our fundamental understanding of the underlying principles of these processes. "This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2017 Elsevier B.V. All rights reserved.
Inferior olive mirrors joint dynamics to implement an inverse controller.
Alvarez-Icaza, Rodrigo; Boahen, Kwabena
2012-10-01
To produce smooth and coordinated motion, our nervous systems need to generate precisely timed muscle activation patterns that, due to axonal conduction delay, must be generated in a predictive and feedforward manner. Kawato proposed that the cerebellum accomplishes this by acting as an inverse controller that modulates descending motor commands to predictively drive the spinal cord such that the musculoskeletal dynamics are canceled out. This and other cerebellar theories do not, however, account for the rich biophysical properties expressed by the olivocerebellar complex's various cell types, making these theories difficult to verify experimentally. Here we propose that a multizonal microcomplex's (MZMC) inferior olivary neurons use their subthreshold oscillations to mirror a musculoskeletal joint's underdamped dynamics, thereby achieving inverse control. We used control theory to map a joint's inverse model onto an MZMC's biophysics, and we used biophysical modeling to confirm that inferior olivary neurons can express the dynamics required to mirror biomechanical joints. We then combined both techniques to predict how experimentally injecting current into the inferior olive would affect overall motor output performance. We found that this experimental manipulation unmasked a joint's natural dynamics, as observed by motor output ringing at the joint's natural frequency, with amplitude proportional to the amount of current. These results support the proposal that the cerebellum-in particular an MZMC-is an inverse controller; the results also provide a biophysical implementation for this controller and allow one to make an experimentally testable prediction.
Forcing and variability of nonstationary rip currents
Long, Joseph W.; H.T. Özkan-Haller,
2016-01-01
Surface wave transformation and the resulting nearshore circulation along a section of coast with strong alongshore bathymetric gradients outside the surf zone are modeled for a consecutive 4 week time period. The modeled hydrodynamics are compared to in situ measurements of waves and currents collected during the Nearshore Canyon Experiment and indicate that for the entire range of observed conditions, the model performance is similar to other studies along this stretch of coast. Strong alongshore wave height gradients generate rip currents that are observed by remote sensing data and predicted qualitatively well by the numerical model. Previous studies at this site have used idealized scenarios to link the rip current locations to undulations in the offshore bathymetry but do not explain the dichotomy between permanent offshore bathymetric features and intermittent rip current development. Model results from the month‐long simulation are used to track the formation and location of rip currents using hourly statistics, and results show that the direction of the incoming wave energy strongly controls whether rip currents form. In particular, most of the offshore wave spectra were bimodal and we find that the ratio of energy contained in each mode dictates rip current development, and the alongshore rip current position is controlled by the incident wave period. Additionally, model simulations performed with and without updating the nearshore morphology yield no significant change in the accuracy of the predicted surf zone hydrodyanmics indicating that the large‐scale offshore features (e.g., submarine canyon) predominately control the nearshore wave‐circulation system.
The Technology of Suppressing Harmonics with Complex Neural Network is Applied to Microgrid
NASA Astrophysics Data System (ADS)
Zhang, Jing; Li, Zhan-Ying; Wang, Yan-ping; Li, Yang; Zong, Ke-yong
2018-03-01
According to the traits of harmonics in microgrid, a new CANN controller which combines BP and RBF neural network is proposed to control APF to detect and suppress harmonics. This controller has the function of current prediction. By simulation in Matlab / Simulink, this design can shorten the delay time nearly 0.02s (a power supply current cycle) in comparison with the traditional controller based on ip-iq method. The new controller also has higher compensation accuracy and better dynamic tracking traits, it can greatly suppress the harmonics and improve the power quality.
Physics-based Control-oriented Modeling of the Current Profile Evolution in NSTX-Upgrade
NASA Astrophysics Data System (ADS)
Ilhan, Zeki; Barton, Justin; Shi, Wenyu; Schuster, Eugenio; Gates, David; Gerhardt, Stefan; Kolemen, Egemen; Menard, Jonathan
2013-10-01
The operational goals for the NSTX-Upgrade device include non-inductive sustainment of high- β plasmas, realization of the high performance equilibrium scenarios with neutral beam heating, and achievement of longer pulse durations. Active feedback control of the current profile is proposed to enable these goals. Motivated by the coupled, nonlinear, multivariable, distributed-parameter plasma dynamics, the first step towards feedback control design is the development of a physics-based, control-oriented model for the current profile evolution in response to non-inductive current drives and heating systems. For this purpose, the nonlinear magnetic-diffusion equation is coupled with empirical models for the electron density, electron temperature, and non-inductive current drives (neutral beams). The resulting first-principles-driven, control-oriented model is tailored for NSTX-U based on the PTRANSP predictions. Main objectives and possible challenges associated with the use of the developed model for control design are discussed. This work was supported by PPPL.
NASA Technical Reports Server (NTRS)
Maughmer, Mark D.; Ozoroski, L.; Ozoroski, T.; Straussfogel, D.
1990-01-01
Many types of hypersonic aircraft configurations are currently being studied for feasibility of future development. Since the control of the hypersonic configurations throughout the speed range has a major impact on acceptable designs, it must be considered in the conceptual design stage. The ability of the aerodynamic analysis methods contained in an industry standard conceptual design system, APAS II, to estimate the forces and moments generated through control surface deflections from low subsonic to high hypersonic speeds is considered. Predicted control forces and moments generated by various control effectors are compared with previously published wind tunnel and flight test data for three configurations: the North American X-15, the Space Shuttle Orbiter, and a hypersonic research airplane concept. Qualitative summaries of the results are given for each longitudinal force and moment and each control derivative in the various speed ranges. Results show that all predictions of longitudinal stability and control derivatives are acceptable for use at the conceptual design stage. Results for most lateral/directional control derivatives are acceptable for conceptual design purposes; however, predictions at supersonic Mach numbers for the change in yawing moment due to aileron deflection and the change in rolling moment due to rudder deflection are found to be unacceptable. Including shielding effects in the analysis is shown to have little effect on lift and pitching moment predictions while improving drag predictions.
Current Trends in Modeling Research for Turbulent Aerodynamic Flows
NASA Technical Reports Server (NTRS)
Gatski, Thomas B.; Rumsey, Christopher L.; Manceau, Remi
2007-01-01
The engineering tools of choice for the computation of practical engineering flows have begun to migrate from those based on the traditional Reynolds-averaged Navier-Stokes approach to methodologies capable, in theory if not in practice, of accurately predicting some instantaneous scales of motion in the flow. The migration has largely been driven by both the success of Reynolds-averaged methods over a wide variety of flows as well as the inherent limitations of the method itself. Practitioners, emboldened by their ability to predict a wide-variety of statistically steady, equilibrium turbulent flows, have now turned their attention to flow control and non-equilibrium flows, that is, separation control. This review gives some current priorities in traditional Reynolds-averaged modeling research as well as some methodologies being applied to a new class of turbulent flow control problems.
Chassin, Laurie; Presson, Clark C; Sherman, Steven J; Seo, Dong-Chul; Macy, Jonathan T
2010-12-01
The current study tested implicit and explicit attitudes as prospective predictors of smoking cessation in a Midwestern community sample of smokers. Results showed that the effects of attitudes significantly varied with levels of experienced failure to control smoking and plans to quit. Explicit attitudes significantly predicted later cessation among those with low (but not high or average) levels of experienced failure to control smoking. Conversely, however, implicit attitudes significantly predicted later cessation among those with high levels of experienced failure to control smoking, but only if they had a plan to quit. Because smoking cessation involves both controlled and automatic processes, interventions may need to consider attitude change interventions that focus on both implicit and explicit attitudes. (PsycINFO Database Record (c) 2010 APA, all rights reserved).
González, Antonio; Faílde Garrido, José María; Rodríguez Castro, Yolanda; Carrera Rodríguez, María Victoria
2015-09-14
The aim of this study was to assess the relationships between class-related anxiety with perceived control, teacher-reported behavioral engagement, behavioral disaffection, and academic performance. Participants were 355 compulsory secondary students (9th and 10th grades; Mean age = 15.2 years; SD = 1.8 years). Structural equation models revealed performance was predicted by perceived control, anxiety, disaffection, and engagement. Perceived control predicted anxiety, disaffection, and engagement. Anxiety predicted disaffection and engagement, and partially mediated the effects from control on disaffection (β = -.277, p < .005; CI = -.378, -.197) and engagement (β = .170, p < .002; CI = .103 .258). The negative association between anxiety and performance was mediated by engagement and disaffection (β = -.295, p < .002; CI = -.439, -.182). Anxiety, engagement, and disaffection mediated the effects of control on performance (β = .352, p < .003; CI = .279, .440). The implications of these results are discussed in the light of current theory and educational interventions.
NASA Astrophysics Data System (ADS)
Wang, Hexiang; Schuster, Eugenio; Rafiq, Tariq; Kritz, Arnold; Ding, Siye
2016-10-01
Extensive research has been conducted to find high-performance operating scenarios characterized by high fusion gain, good confinement, plasma stability and possible steady-state operation. A key plasma property that is related to both the stability and performance of these advanced plasma scenarios is the safety factor profile. A key component of the EAST research program is the exploration of non-inductively driven steady-state plasmas with the recently upgraded heating and current drive capabilities that include lower hybrid current drive and neutral beam injection. Anticipating the need for tight regulation of the safety factor profile in these plasma scenarios, a first-principles-driven (FPD)control-oriented model is proposed to describe the safety factor profile evolution in EAST in response to the different actuators. The TRANSP simulation code is employed to tailor the FPD model to the EAST tokamak geometry and to convert it into a form suitable for control design. The FPD control-oriented model's prediction capabilities are demonstrated by comparing predictions with experimental data from EAST. Supported by the US DOE under DE-SC0010537,DE-FG02-92ER54141 and DE-SC0013977.
Multi-objective optimization for model predictive control.
Wojsznis, Willy; Mehta, Ashish; Wojsznis, Peter; Thiele, Dirk; Blevins, Terry
2007-06-01
This paper presents a technique of multi-objective optimization for Model Predictive Control (MPC) where the optimization has three levels of the objective function, in order of priority: handling constraints, maximizing economics, and maintaining control. The greatest weights are assigned dynamically to control or constraint variables that are predicted to be out of their limits. The weights assigned for economics have to out-weigh those assigned for control objectives. Control variables (CV) can be controlled at fixed targets or within one- or two-sided ranges around the targets. Manipulated Variables (MV) can have assigned targets too, which may be predefined values or current actual values. This MV functionality is extremely useful when economic objectives are not defined for some or all the MVs. To achieve this complex operation, handle process outputs predicted to go out of limits, and have a guaranteed solution for any condition, the technique makes use of the priority structure, penalties on slack variables, and redefinition of the constraint and control model. An engineering implementation of this approach is shown in the MPC embedded in an industrial control system. The optimization and control of a distillation column, the standard Shell heavy oil fractionator (HOF) problem, is adequately achieved with this MPC.
NASA Technical Reports Server (NTRS)
Reding, J. P.; Ericsson, L. E.
1973-01-01
The unsteady aerodynamics of the 040A orbiter have been explored experimentally. The results substantiate earlier predictions of the unsteady flow boundaries for a 60 deg swept delta wing at zero yaw and with no controls deflected. The test revealed a previously unknown region of discontinuous yaw characteristics at transonic speeds. Oilflow results indicate that this is the result of a coupling between wing and fuselage flows via the separated region forward of the deflected elevon. In fact, the large leeward elevon deflections are shown to produce a multitude of nonlinear stability effects which sometimes involve hysteresis. Predictions of the unsteady flow boundaries are made for the current orbiter. They should carry a good degree of confidence due to the present substantiation of previous predictions for the 040A. It is proposed that the present experiments be extended to the current configuration to define control-induced effects. Every effort should be made to account for Reynolds number, roughness, and possible hot-wall effects on any future experiments.
Guelfi, Kym J; Wang, Chen; Dimmock, James A; Jackson, Ben; Newnham, John P; Yang, Huixia
2015-12-22
Despite the well-established benefits of exercise during pregnancy, many women remain inactive. This may be related, in part, to women's beliefs about exercise in pregnancy, which are likely influenced by cultural background. Accordingly, the aim of this study was to compare attitudes, subjective norms, and perceived behavioural control toward exercise, together with current levels of exercise participation between Chinese and Australian women during pregnancy. A second aim was to determine the extent to which these factors predict intention to exercise within a Theory of Planned Behaviour framework. Pregnant women (22 ± 2 weeks of gestation) living in China (n = 240) and Australia (n = 215) completed a questionnaire designed to assess a) maternal beliefs regarding the importance of exercise in relation to other health behaviours, b) attitudes, subjective norms, perceived behavioural control and intentions toward exercise, and c) current levels of physical activity. One-way analyses of variance were used to compare the demographics, maternal beliefs, attitudes, subjective norms, perceived behavioural control, intentions to exercise, and current physical activity levels between the Chinese and Australian samples. Structural equation modelling was used to determine which factors predicted intention to exercise in the two samples. Australian women reported higher levels of current exercise and intentions to exercise in the next four weeks of pregnancy compared with Chinese women. These observations were associated with higher instrumental attitudes, ratings of subjective norm, and perceived behavioural control toward exercise in the Australian women. Instrumental attitudes and perceived behavioural control predicted intention to exercise in the Australian women, while perceived behavioural control was the only predictor of intentions to exercise in the Chinese sample. Beliefs, attitudes, barriers and intentions towards exercise during pregnancy differ between cultures. Understanding these differences may assist in the design of exercise interventions to maximise exercise adherence and lifelong physical activity patterns.
Ouari, Kamel; Rekioua, Toufik; Ouhrouche, Mohand
2014-01-01
In order to make a wind power generation truly cost-effective and reliable, an advanced control techniques must be used. In this paper, we develop a new control strategy, using nonlinear generalized predictive control (NGPC) approach, for DFIG-based wind turbine. The proposed control law is based on two points: NGPC-based torque-current control loop generating the rotor reference voltage and NGPC-based speed control loop that provides the torque reference. In order to enhance the robustness of the controller, a disturbance observer is designed to estimate the aerodynamic torque which is considered as an unknown perturbation. Finally, a real-time simulation is carried out to illustrate the performance of the proposed controller. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Exhaled Breath Markers for Nonimaging and Noninvasive Measures for Detection of Multiple Sclerosis.
Broza, Yoav Y; Har-Shai, Lior; Jeries, Raneen; Cancilla, John C; Glass-Marmor, Lea; Lejbkowicz, Izabella; Torrecilla, José S; Yao, Xuelin; Feng, Xinliang; Narita, Akimitsu; Müllen, Klaus; Miller, Ariel; Haick, Hossam
2017-11-15
Multiple sclerosis (MS) is the most common chronic neurological disease affecting young adults. MS diagnosis is based on clinical characteristics and confirmed by examination of the cerebrospinal fluids (CSF) or by magnetic resonance imaging (MRI) of the brain or spinal cord or both. However, neither of the current diagnostic procedures are adequate as a routine tool to determine disease state. Thus, diagnostic biomarkers are needed. In the current study, a novel approach that could meet these expectations is presented. The approach is based on noninvasive analysis of volatile organic compounds (VOCs) in breath. Exhaled breath was collected from 204 participants, 146 MS and 58 healthy control individuals. Analysis was performed by gas-chromatography mass-spectrometry (GC-MS) and nanomaterial-based sensor array. Predictive models were derived from the sensors, using artificial neural networks (ANNs). GC-MS analysis revealed significant differences in VOC abundance between MS patients and controls. Sensor data analysis on training sets was able to discriminate in binary comparisons between MS patients and controls with accuracies up to 90%. Blinded sets showed 95% positive predictive value (PPV) between MS-remission and control, 100% sensitivity with 100% negative predictive value (NPV) between MS not-treated (NT) and control, and 86% NPV between relapse and control. Possible links between VOC biomarkers and the MS pathogenesis were established. Preliminary results suggest the applicability of a new nanotechnology-based method for MS diagnostics.
When do normative beliefs about aggression predict aggressive behavior? An application of I3 theory.
Li, Jian-Bin; Nie, Yan-Gang; Boardley, Ian D; Dou, Kai; Situ, Qiao-Min
2015-01-01
I(3) theory assumes that aggressive behavior is dependent on three orthogonal processes (i.e., Instigator, Impellance, and Inhibition). Previous studies showed that Impellance (trait aggressiveness, retaliation tendencies) better predicted aggression when Instigator was strong and Inhibition was weak. In the current study, we predicted that another Impellance (i.e., normative beliefs about aggression) might predict aggression when Instigator was absent and Inhibition was high (i.e., the perfect calm proposition). In two experiments, participants first completed the normative beliefs about aggression questionnaire. Two weeks later, participants' self-control resources were manipulated either using the Stroop task (study 1, N = 148) or through an "e-crossing" task (study 2, N = 180). Afterwards, with or without being provoked, participants played a game with an ostensible partner where they had a chance to aggress against them. Study 1 found that normative beliefs about aggression negatively and significantly predicted aggressive behavior only when provocation was absent and self-control resources were not depleted. In Study 2, normative beliefs about aggression negatively predicted aggressive behavior at marginal significance level only in the "no-provocation and no-depletion" condition. In conclusion, the current study provides partial support for the perfect calm proposition and I(3) theory. © 2015 Wiley Periodicals, Inc.
Prediction and Uncertainty in Human Pavlovian to Instrumental Transfer
ERIC Educational Resources Information Center
Trick, Leanne; Hogarth, Lee; Duka, Theodora
2011-01-01
Attentional capture and behavioral control by conditioned stimuli have been dissociated in animals. The current study assessed this dissociation in humans. Participants were trained on a Pavlovian schedule in which 3 visual stimuli, A, B, and C, predicted the occurrence of an aversive noise with 90%, 50%, or 10% probability, respectively.…
Why Does Working Memory Capacity Predict RAPM Performance? A Possible Role of Distraction
ERIC Educational Resources Information Center
Jarosz, Andrew F.; Wiley, Jennifer
2012-01-01
Current theories concerning individual differences in working memory capacity (WMC) suggest that WMC reflects the ability to control the focus of attention and resist interference and distraction. The current set of experiments tested whether susceptibility to distraction is partially responsible for the established relationship between…
Leung, Kit Sang; Ben Abdallah, Arbi; Cottler, Linda B.
2009-01-01
Risk perception, perceived behavioral control of obtaining ecstasy (PBC-obtaining), current ecstasy dependence, and recent depression have been associated with past ecstasy use, however, their utility in predicting ecstasy use has not been demonstrated. This study aimed to determine whether these four modifiable risk factors could predict ecstasy use after controlling for socio-demographic covariates and recent polydrug use. Data from 601 ecstasy users in the National Institute on Drug Abuse funded TriCity Study of Club Drug Use, Abuse and Dependence were analyzed using multivariate logistic regression. Participants were interviewed twice within a 2-week period using standardized instruments. Thirteen percent (n=80) of the participants reported using ecstasy between the two interviews. Low risk perception, high PBC-obtaining (an estimated ecstasy procurement time < 24 hours), and current ecstasy dependence were statistically associated with ecstasy use between the two interviews. Recent depression was not a significant predictor. Despite not being a target predictor, recent polydrug use was also statistically associated with ecstasy use. The present findings may inform the development of interventions targeting ecstasy users. PMID:19880258
DOT National Transportation Integrated Search
1961-12-01
Current (1961) job performance evaluations and medical history data were obtained for 149 of 197 men trained in air traffic control work in 1956. Evaluations of psychological test and biographical data collected at the time they went through training...
Werner, Lente L A A; der Graaff, Jolien Van; Meeus, Wim H J; Branje, Susan J T
2016-08-01
Building on self-determination theory (Deci and Ryan in Psychological Inquiry, 11, 227-268. doi: 10.1207/S15327965PLI1104_01 , 2000), the aim of the current study was to examine the role of maternal affective and cognitive empathy in predicting adolescents' depressive symptoms, through mothers' psychological control use. Less empathic mothers may be less sensitive to adolescents' need for psychological autonomy, and thus prone to violating this need using psychological control, which may in turn predict adolescents' depressive symptoms. Moreover, according to interpersonal theory of depression (Coyne in Journal of Abnormal Psychology, 85, 186-193. doi: 10.1037/0021-843x.85.2.186 , 1976), adolescents' depressive symptoms may elicit rejecting responses, such as mothers' psychological control. For six waves, 497 adolescents (57 % boys, M age T1 = 13.03) annually completed questionnaires on depressive symptoms and maternal psychological control, while mothers reported on their empathy. Cross-lagged path analyses showed that throughout adolescence, both mothers' affective and cognitive empathy indirectly predicted boys' and girls' depressive symptoms, through psychological control. Additionally, depressive symptoms predicted psychological control for boys, and early adolescent girls. These results highlight the importance of (1) mothers' affective and cognitive empathy in predicting adolescents' depressive symptoms, and (2) taking gender into account when examining adolescent-effects.
Robust shrinking ellipsoid model predictive control for linear parameter varying system
Yan, Yan
2017-01-01
In this paper, a new off-line model predictive control strategy is presented for a kind of linear parameter varying system with polytopic uncertainty. A nest of shrinking ellipsoids is constructed by solving linear matrix inequality. By splitting the objective function into two parts, the proposed strategy moves most computations off-line. The on-line computation is only calculating the current control to assure the system shrinking into the smaller ellipsoid. With the proposed formulation, the stability of the closed system is proved, followed with two numerical examples to demonstrate the proposed method’s effectiveness in the end. PMID:28575028
Heser, K; Tebarth, F; Wiese, B; Eisele, M; Bickel, H; Köhler, M; Mösch, E; Weyerer, S; Werle, J; König, H-H; Leicht, H; Pentzek, M; Fuchs, A; Riedel-Heller, S G; Luppa, M; Prokein, J; Scherer, M; Maier, W; Wagner, M
2013-08-01
Whether late-onset depression is a risk factor for or a prodrome of dementia remains unclear. We investigated the impact of depressive symptoms and early- v. late-onset depression on subsequent dementia in a cohort of elderly general-practitioner patients (n = 2663, mean age = 81.2 years). Risk for subsequent dementia was estimated over three follow-ups (each 18 months apart) depending on history of depression, particularly age of depression onset, and current depressive symptoms using proportional hazard models. We also examined the additive prediction of incident dementia by depression beyond cognitive impairment. An increase of dementia risk for higher age cut-offs of late-onset depression was found. In analyses controlling for age, sex, education, and apolipoprotein E4 genotype, we found that very late-onset depression (aged ≥ 70 years) and current depressive symptoms separately predicted all-cause dementia. Combined very late-onset depression with current depressive symptoms was specifically predictive for later Alzheimer's disease (AD; adjusted hazard ratio 5.48, 95% confidence interval 2.41-12.46, p < 0.001). This association was still significant after controlling for cognitive measures, but further analyses suggested that it was mediated by subjective memory impairment with worries. Depression might be a prodrome of AD but not of dementia of other aetiology as very late-onset depression in combination with current depressive symptoms, possibly emerging as a consequence of subjectively perceived worrisome cognitive deterioration, was most predictive. As depression parameters and subjective memory impairment predicted AD independently of objective cognition, clinicians should take this into account.
Leventhal, Adam M; Greenberg, Jodie B; Trujillo, Michael A; Ameringer, Katherine J; Lisha, Nadra E; Pang, Raina D; Monterosso, John
2013-03-01
Elucidating interrelations between prior affective experience, current affective state, and acute urge to smoke could inform affective models of addiction motivation and smoking cessation treatment development. This study tested the hypothesis that prior levels of positive (PA) and negative (NA) affect predict current smoking urge via a mediational pathway involving current state affect. We also explored if tobacco deprivation moderated affect-urge relations and compared the effects of PA and NA on smoking urge to one another. At a baseline session, smokers reported affect experienced over the preceding few weeks. At a subsequent experimental session, participants were randomly assigned to 12-hr tobacco deprived (n = 51) or nondeprived (n = 69) conditions and reported state affect and current urge. Results revealed a mediational pathway whereby prior NA reported at baseline predicted state NA at the experimental session, which in turn predicted current urge. This mediational pathway was found primarily for an urge subtype indicative of urgent need to smoke and desire to smoke for NA relief, was stronger in the deprived (vs. nondeprived) condition, and remained significant after controlling for PA. Prior PA and current state PA were inversely associated with current urge; however, these associations were eliminated after controlling for NA. These results cohere with negative reinforcement models of addiction and with prior research and suggest that: (a) NA plays a stronger role in smoking motivation than PA; (b) state affect is an important mechanism linking prior affective experience to current urge; and (c) affect management interventions may attenuate smoking urge in individuals with a history of affective disturbance. (PsycINFO Database Record (c) 2013 APA, all rights reserved).
SUBJECTIVE MEMORY IN OLDER AFRICAN AMERICANS
Sims, Regina C.; Whitfield, Keith E.; Ayotte, Brian J.; Gamaldo, Alyssa A.; Edwards, Christopher L.; Allaire, Jason C.
2013-01-01
The current analysis examined (a) if measures of psychological well-being predict subjective memory, and (b) if subjective memory is consistent with actual memory. Five hundred seventy-nine older African Americans from the Baltimore Study of Black Aging completed measures assessing subjective memory, depressive symptomatology, perceived stress, locus of control, and verbal and working memory. Higher levels of perceived stress and greater externalized locus of control predicted poorer subjective memory, but subjective memory did not predict objective verbal or working memory. Results suggest that subjective memory is influenced by aspects of psychological well-being but is unrelated to objective memory in older African Americans. PMID:21424958
Killeen, G F; McKenzie, F E; Foy, B D; Schieffelin, C; Billingsley, P F; Beier, J C
2000-05-01
We have used a relatively simple but accurate model for predicting the impact of integrated transmission control on the malaria entomologic inoculation rate (EIR) at four endemic sites from across sub-Saharan Africa and the southwest Pacific. The simulated campaign incorporated modestly effective vaccine coverage, bed net use, and larval control. The results indicate that such campaigns would reduce EIRs at all four sites by 30- to 50-fold. Even without the vaccine, 15- to 25-fold reductions of EIR were predicted, implying that integrated control with a few modestly effective tools can meaningfully reduce malaria transmission in a range of endemic settings. The model accurately predicts the effects of bed nets and indoor spraying and demonstrates that they are the most effective tools available for reducing EIR. However, the impact of domestic adult vector control is amplified by measures for reducing the rate of emergence of vectors or the level of infectiousness of the human reservoir. We conclude that available tools, including currently neglected methods for larval control, can reduce malaria transmission intensity enough to alleviate mortality. Integrated control programs should be implemented to the fullest extent possible, even in areas of intense transmission, using simple models as decision-making tools. However, we also conclude that to eliminate malaria in many areas of intense transmission is beyond the scope of methods which developing nations can currently afford. New, cost-effective, practical tools are needed if malaria is ever to be eliminated from highly endemic areas.
Schlauch, Robert C.; Christensen, Rita L.; Derrick, Jaye L.; Crane, Cory A.; Collins, R. Lorraine
2015-01-01
Background The current study sought to examine how exerting self-control to inhibit stereotype use affects alcohol consumption. In addition, we sought to expand previous findings via examination of how individual differences in motivations to approach or avoid alcohol consumption interact with self-control depletion to determine the regulation of ad-lib drinking behavior. Methods Sixty-one social drinkers (31 female) were recruited to participate in a socially relevant self-control depletion task in which they were randomly assigned to one of two creative writing conditions: 1) the self-control depletion condition with explicit instructions to refrain from using stereotypes, or 2) the non-depletion condition in which no instructions were given regarding the use of stereotypes. Participants then completed an ad-lib drinking task and self-report questionnaires pertaining to their motivation to consume alcohol. Results As predicted, results indicated a significant three-way interaction between depletion condition, approach inclinations, and avoidance inclinations. Specifically, self-control depletion predicted greater drinking disinhibition (i.e., mean sip size, total alcohol consumption) only among participants high in both approach and avoidance. Conclusions Taken together, results from the current study highlight the importance of both approach and avoidance inclinations in the failure to regulate alcohol consumption following a routine, socially relevant form of self-control depletion. Our results also suggest that the high approach / high avoidance motivational profile may predict the greatest risk among those actively trying to regulate their drinking. PMID:26756800
Executive function predicts artificial language learning
Kapa, Leah L.; Colombo, John
2017-01-01
Previous research suggests executive function (EF) advantages among bilinguals compared to monolingual peers, and these advantages are generally attributed to experience controlling two linguistic systems. However, the possibility that the relationship between bilingualism and EF might be bidirectional has not been widely considered; while experience with two languages might improve EF, better EF skills might also facilitate language learning. In the current studies, we tested whether adults’ and preschool children’s EF abilities predicted success in learning a novel artificial language. After controlling for working memory and English receptive vocabulary, adults’ artificial language performance was predicted by their inhibitory control ability (Study 1) and children’s performance was predicted by their attentional monitoring and shifting ability (Study 2). These findings provide preliminary evidence suggesting that EF processes may be employed during initial stages of language learning, particularly vocabulary acquisition, and support the possibility of a bidirectional relationship between EF and language acquisition. PMID:29129958
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-06
... input options commensurate with the Regulatory Modeling Guidance. Perform current and post control.... Table 2--Post-Control Modeling Results \\4\\ Sanders lead facility Max 3-mth Background Total Year maximum...\\ (Facility MET data). The post-control analysis resulted in a predicted impact of 0.15 [mu]g/m\\3\\ (NWS MET...
Aissa, Oualid; Moulahoum, Samir; Colak, Ilhami; Babes, Badreddine; Kabache, Nadir
2017-10-12
This paper discusses the use of the concept of classical and predictive direct power control for shunt active power filter function. These strategies are used to improve the active power filter performance by compensation of the reactive power and the elimination of the harmonic currents drawn by non-linear loads. A theoretical analysis followed by a simulation using MATLAB/Simulink software for the studied techniques has been established. Moreover, two test benches have been carried out using the dSPACE card 1104 for the classic and predictive DPC control to evaluate the studied methods in real time. Obtained results are presented and compared in this paper to confirm the superiority of the predictive technique. To overcome the pollution problems caused by the consumption of fossil fuels, renewable energies are the alternatives recommended to ensure green energy. In the same context, the tested predictive filter can easily be supplied by a renewable energy source that will give its impact to enhance the power quality.
Prognostics and Health Monitoring: Application to Electric Vehicles
NASA Technical Reports Server (NTRS)
Kulkarni, Chetan S.
2017-01-01
As more and more autonomous electric vehicles emerge in our daily operation progressively, a very critical challenge lies in accurate prediction of remaining useful life of the systemssubsystems, specifically the electrical powertrain. In case of electric aircrafts, computing remaining flying time is safety-critical, since an aircraft that runs out of power (battery charge) while in the air will eventually lose control leading to catastrophe. In order to tackle and solve the prediction problem, it is essential to have awareness of the current state and health of the system, especially since it is necessary to perform condition-based predictions. To be able to predict the future state of the system, it is also required to possess knowledge of the current and future operations of the vehicle.Our research approach is to develop a system level health monitoring safety indicator either to the pilotautopilot for the electric vehicles which runs estimation and prediction algorithms to estimate remaining useful life of the vehicle e.g. determine state-of-charge in batteries. Given models of the current and future system behavior, a general approach of model-based prognostics can be employed as a solution to the prediction problem and further for decision making.
Duckworth, Angela L.; Quinn, Patrick D.; Tsukayama, Eli
2013-01-01
The increasing prominence of standardized testing to assess student learning motivated the current investigation. We propose that standardized achievement test scores assess competencies determined more by intelligence than by self-control, whereas report card grades assess competencies determined more by self-control than by intelligence. In particular, we suggest that intelligence helps students learn and solve problems independent of formal instruction, whereas self-control helps students study, complete homework, and behave positively in the classroom. Two longitudinal, prospective studies of middle school students support predictions from this model. In both samples, IQ predicted changes in standardized achievement test scores over time better than did self-control, whereas self-control predicted changes in report card grades over time better than did IQ. As expected, the effect of self-control on changes in report card grades was mediated in Study 2 by teacher ratings of homework completion and classroom conduct. In a third study, ratings of middle school teachers about the content and purpose of standardized achievement tests and report card grades were consistent with the proposed model. Implications for pedagogy and public policy are discussed. PMID:24072936
NASA Technical Reports Server (NTRS)
Schuler, James J.; Felippa, Carlos A.
1991-01-01
Electromagnetic finite elements are extended based on a variational principle that uses the electromagnetic four potential as primary variable. The variational principle is extended to include the ability to predict a nonlinear current distribution within a conductor. The extension of this theory is first done on a normal conductor and tested on two different problems. In both problems, the geometry remains the same, but the material properties are different. The geometry is that of a 1-D infinite wire. The first problem is merely a linear control case used to validate the new theory. The second problem is made up of linear conductors with varying conductivities. Both problems perform well and predict current densities that are accurate to within a few ten thousandths of a percent of the exact values. The fourth potential is then removed, leaving only the magnetic vector potential, and the variational principle is further extended to predict magnetic potentials, magnetic fields, the number of charge carriers, and the current densities within a superconductor. The new element produces good results for the mean magnetic field, the vector potential, and the number of superconducting charge carriers despite a relatively high system condition number. The element did not perform well in predicting the current density. Numerical problems inherent to this formulation are explored and possible remedies to produce better current predicting finite elements are presented.
Hinton, Pamela S; Johnstone, Brick; Blaine, Edward; Bodling, Angela
2011-09-01
To determine the relative influence of current exercise and diet on the late-life cognitive health of former Division I collision-sport collegiate athletes (ie, football players) compared with noncollision-sport athletes and non-athletes. Graduates (n = 400) of a Midwestern university (average age, 64.09 years; standard deviation, 13.32) completed a self-report survey to assess current demographics/physical characteristics, exercise, diet, cognitive difficulties, and physical and mental health. Former football players reported more cognitive difficulties, as well as worse physical and mental health than controls. Among former football players, greater intake of total and saturated fat and cholesterol and lower overall diet quality were significantly correlated with cognitive difficulties; current dietary intake was not associated with cognitive health for the noncollision-sport athletes or nonathletes. Hierarchical regressions predicting cognitive difficulties indicated that income was positively associated with fewer cognitive difficulties and predicted 8% of the variance; status as a former football player predicted an additional 2% of the variance; and the interaction between being a football player and total dietary fat intake significantly predicted an additional 6% of the total variance (total model predicted 16% of variance). Greater intake of dietary fat was associated with increased cognitive difficulties, but only in the former football players, and not in the controls. Prior participation in football was associated with worse physical and mental health, while more frequent vigorous exercise was associated with higher physical and mental health ratings. Former football players reported more late-life cognitive difficulties and worse physical and mental health than former noncollision-sport athletes and nonathletes. A novel finding of the present study is that current dietary fat was associated with more cognitive difficulties, but only in the former football players. These results suggest the need for educational interventions to encourage healthy dietary habits to promote the long-term cognitive health of collision-sport athletes.
Modeling micro-droplet formation in near-field electrohydrodynamic jet printing
NASA Astrophysics Data System (ADS)
Popell, George Colin
Near-field electrohydrodynamic jet (E-jet) printing has recently gained significant interest within the manufacturing research community because of its ability to produce micro/sub-micron-scale droplets using a wide variety of inks and substrates. However, the process currently operates in open-loop and as a result suffers from unpredictable printing quality. The use of physics-based, control-oriented process models is expected to enable closed-loop control of this printing technique. The objective of this research is to perform a fundamental study of the substrate-side droplet shape-evolution in near-field E-jet printing and to develop a physics-based model of the same that links input parameters such as voltage magnitude and ink properties to the height and diameter of the printed droplet. In order to achieve this objective, a synchronized high-speed imaging and substrate-side current-detection system was used implemented to enable a correlation between the droplet shape parameters and the measured current signal. The experimental data reveals characteristic process signatures and droplet spreading regimes. The results of these studies are then used as the basis for a model that predicts the droplet diameter and height using the measured current signal as the input. A unique scaling factor based on the measured current signal is used in this model instead of relying on empirical scaling laws found in literature. For each of the three inks tested in this study, the average absolute error in the model predictions is under 4.6% for diameter predictions and under 10.6% for height predictions of the steady-state droplet. While printing under non-conducive ambient conditions of low humidity and high temperatures, the use of the environmental correction factor in the model is seen to result in average absolute errors of 10.35% and 12.5% for diameter and height predictions.
Thermal Transients Excite Neurons through Universal Intramembrane Mechanoelectrical Effects
NASA Astrophysics Data System (ADS)
Plaksin, Michael; Shapira, Einat; Kimmel, Eitan; Shoham, Shy
2018-01-01
Modern advances in neurotechnology rely on effectively harnessing physical tools and insights towards remote neural control, thereby creating major new scientific and therapeutic opportunities. Specifically, rapid temperature pulses were shown to increase membrane capacitance, causing capacitive currents that explain neural excitation, but the underlying biophysics is not well understood. Here, we show that an intramembrane thermal-mechanical effect wherein the phospholipid bilayer undergoes axial narrowing and lateral expansion accurately predicts a potentially universal thermal capacitance increase rate of ˜0.3 % /°C . This capacitance increase and concurrent changes in the surface charge related fields lead to predictable exciting ionic displacement currents. The new MechanoElectrical Thermal Activation theory's predictions provide an excellent agreement with multiple experimental results and indirect estimates of latent biophysical quantities. Our results further highlight the role of electro-mechanics in neural excitation; they may also help illuminate subthreshold and novel physical cellular effects, and could potentially lead to advanced new methods for neural control.
ERIC Educational Resources Information Center
Declerck, Mathieu; Koch, Iring; Philipp, Andrea M.
2015-01-01
The current study systematically examined the influence of sequential predictability of languages and concepts on language switching. To this end, 2 language switching paradigms were combined. To measure language switching with a random sequence of languages and/or concepts, we used a language switching paradigm that implements visual cues and…
Terminal - Tactical Separation Assured Flight Environment (T-TSafe)
NASA Technical Reports Server (NTRS)
Verma, Savita Arora; Tang, Huabin; Ballinger, Debbi
2011-01-01
The Tactical Separation Assured Flight Environment (TSAFE) has been previously tested as a conflict detection and resolution tool in the en-route phase of flight. Fast time simulations of a terminal version of this tool called Terminal TSAFE (T-TSAFE) have shown promise over the current conflict detection tools. It has shown to have fewer false alerts (as low as 2 per hour) and better prediction to conflict time than Conflict Alert. The tool will be tested in the simulated terminal area of Los Angeles International Airport, in a Human-in-the-loop experiment to identify controller procedures and information requirements. The simulation will include comparisons of T-TSAFE with NASA's version of Conflict Alert. Also, some other variables such as altitude entry by the controller, which improve T-TSAFE's predictions for conflict detection, will be tested. T-TSAFE integrates features of current conflict detection tools such as Automated Terminal Proximity Alert used to alleviate compression errors in the final approach phase. Based on fast-time simulation analysis, the anticipated benefits of T-TSAFE over Conflict Alert include reduced false/missed alerts and increased time to predicted loss of separation. Other metrics that will be used to evaluate the tool's impact on the controller include controller intervention, workload, and situation awareness.
Characterization of Tactical Departure Scheduling in the National Airspace System
NASA Technical Reports Server (NTRS)
Capps, Alan; Engelland, Shawn A.
2011-01-01
This paper discusses and analyzes current day utilization and performance of the tactical departure scheduling process in the National Airspace System (NAS) to understand the benefits in improving this process. The analysis used operational air traffic data from over 1,082,000 flights during the month of January, 2011. Specific metrics included the frequency of tactical departure scheduling, site specific variances in the technology's utilization, departure time prediction compliance used in the tactical scheduling process and the performance with which the current system can predict the airborne slot that aircraft are being scheduled into from the airport surface. Operational data analysis described in this paper indicates significant room for improvement exists in the current system primarily in the area of reduced departure time prediction uncertainty. Results indicate that a significant number of tactically scheduled aircraft did not meet their scheduled departure slot due to departure time uncertainty. In addition to missed slots, the operational data analysis identified increased controller workload associated with tactical departures which were subject to traffic management manual re-scheduling or controller swaps. An analysis of achievable levels of departure time prediction accuracy as obtained by a new integrated surface and tactical scheduling tool is provided to assess the benefit it may provide as a solution to the identified shortfalls. A list of NAS facilities which are likely to receive the greatest benefit from the integrated surface and tactical scheduling technology are provided.
To Switch or Not to Switch: Role of Cognitive Control in Working Memory Training in Older Adults.
Basak, Chandramallika; O'Connell, Margaret A
2016-01-01
It is currently not known what are the best working memory training strategies to offset the age-related declines in fluid cognitive abilities. In this randomized clinical double-blind trial, older adults were randomly assigned to one of two types of working memory training - one group was trained on a predictable memory updating task (PT) and another group was trained on a novel, unpredictable memory updating task (UT). Unpredictable memory updating, compared to predictable, requires greater demands on cognitive control (Basak and Verhaeghen, 2011a). Therefore, the current study allowed us to evaluate the role of cognitive control in working memory training. All participants were assessed on a set of near and far transfer tasks at three different testing sessions - before training, immediately after the training, and 1.5 months after completing the training. Additionally, individual learning rates for a comparison working memory task (performed by both groups) and the trained task were computed. Training on unpredictable memory updating, compared to predictable, significantly enhanced performance on a measure of episodic memory, immediately after the training. Moreover, individuals with faster learning rates showed greater gains in this episodic memory task and another new working memory task; this effect was specific to UT. We propose that the unpredictable memory updating training, compared to predictable memory updating training, may a better strategy to improve selective cognitive abilities in older adults, and future studies could further investigate the role of cognitive control in working memory training.
Gorlin, Eugenia I; Teachman, Bethany A
2015-07-01
The current study brings together two typically distinct lines of research. First, social anxiety is inconsistently associated with behavioral deficits in social performance, and the factors accounting for these deficits remain poorly understood. Second, research on selective processing of threat cues, termed cognitive biases, suggests these biases typically predict negative outcomes, but may sometimes be adaptive, depending on the context. Integrating these research areas, the current study examined whether conscious and/or unconscious threat interference biases (indexed by the unmasked and masked emotional Stroop) can explain unique variance, beyond self-reported anxiety measures, in behavioral avoidance and observer-rated anxious behavior during a public speaking task. Minute of speech and general inhibitory control (indexed by the color-word Stroop) were examined as within-subject and between-subject moderators, respectively. Highly socially anxious participants (N=135) completed the emotional and color-word Stroop blocks prior to completing a 4-minute videotaped speech task, which was later coded for anxious behaviors (e.g., speech dysfluency). Mixed-effects regression analyses revealed that general inhibitory control moderated the relationship between both conscious and unconscious threat interference bias and anxious behavior (though not avoidance), such that lower threat interference predicted higher levels of anxious behavior, but only among those with relatively weaker (versus stronger) inhibitory control. Minute of speech further moderated this relationship for unconscious (but not conscious) social-threat interference, such that lower social-threat interference predicted a steeper increase in anxious behaviors over the course of the speech (but only among those with weaker inhibitory control). Thus, both trait and state differences in inhibitory control resources may influence the behavioral impact of threat biases in social anxiety. Copyright © 2015. Published by Elsevier Ltd.
Ławryńczuk, Maciej
2017-03-01
This paper details development of a Model Predictive Control (MPC) algorithm for a boiler-turbine unit, which is a nonlinear multiple-input multiple-output process. The control objective is to follow set-point changes imposed on two state (output) variables and to satisfy constraints imposed on three inputs and one output. In order to obtain a computationally efficient control scheme, the state-space model is successively linearised on-line for the current operating point and used for prediction. In consequence, the future control policy is easily calculated from a quadratic optimisation problem. For state estimation the extended Kalman filter is used. It is demonstrated that the MPC strategy based on constant linear models does not work satisfactorily for the boiler-turbine unit whereas the discussed algorithm with on-line successive model linearisation gives practically the same trajectories as the truly nonlinear MPC controller with nonlinear optimisation repeated at each sampling instant. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Network control principles predict neuron function in the Caenorhabditis elegans connectome
Chew, Yee Lian; Walker, Denise S.; Schafer, William R.; Barabási, Albert-László
2017-01-01
Recent studies on the controllability of complex systems offer a powerful mathematical framework to systematically explore the structure-function relationship in biological, social and technological networks1–3. Despite theoretical advances, we lack direct experimental proof of the validity of these widely used control principles. Here we fill this gap by applying a control framework to the connectome of the nematode C. elegans4–6, allowing us to predict the involvement of each C. elegans neuron in locomotor behaviours. We predict that control of the muscles or motor neurons requires twelve neuronal classes, which include neuronal groups previously implicated in locomotion by laser ablation7–13, as well as one previously uncharacterised neuron, PDB. We validate this prediction experimentally, finding that the ablation of PDB leads to a significant loss of dorsoventral polarity in large body bends. Importantly, control principles also allow us to investigate the involvement of individual neurons within each neuronal class. For example, we predict that, within the class of DD motor neurons, only three (DD04, DD05, or DD06) should affect locomotion when ablated individually. This prediction is also confirmed, with single-cell ablations of DD04 or DD05, but not DD02 or DD03, specifically affecting posterior body movements. Our predictions are robust to deletions of weak connections, missing connections, and rewired connections in the current connectome, indicating the potential applicability of this analytical framework to larger and less well-characterised connectomes. PMID:29045391
Network control principles predict neuron function in the Caenorhabditis elegans connectome
NASA Astrophysics Data System (ADS)
Yan, Gang; Vértes, Petra E.; Towlson, Emma K.; Chew, Yee Lian; Walker, Denise S.; Schafer, William R.; Barabási, Albert-László
2017-10-01
Recent studies on the controllability of complex systems offer a powerful mathematical framework to systematically explore the structure-function relationship in biological, social, and technological networks. Despite theoretical advances, we lack direct experimental proof of the validity of these widely used control principles. Here we fill this gap by applying a control framework to the connectome of the nematode Caenorhabditis elegans, allowing us to predict the involvement of each C. elegans neuron in locomotor behaviours. We predict that control of the muscles or motor neurons requires 12 neuronal classes, which include neuronal groups previously implicated in locomotion by laser ablation, as well as one previously uncharacterized neuron, PDB. We validate this prediction experimentally, finding that the ablation of PDB leads to a significant loss of dorsoventral polarity in large body bends. Importantly, control principles also allow us to investigate the involvement of individual neurons within each neuronal class. For example, we predict that, within the class of DD motor neurons, only three (DD04, DD05, or DD06) should affect locomotion when ablated individually. This prediction is also confirmed; single cell ablations of DD04 or DD05 specifically affect posterior body movements, whereas ablations of DD02 or DD03 do not. Our predictions are robust to deletions of weak connections, missing connections, and rewired connections in the current connectome, indicating the potential applicability of this analytical framework to larger and less well-characterized connectomes.
Network control principles predict neuron function in the Caenorhabditis elegans connectome.
Yan, Gang; Vértes, Petra E; Towlson, Emma K; Chew, Yee Lian; Walker, Denise S; Schafer, William R; Barabási, Albert-László
2017-10-26
Recent studies on the controllability of complex systems offer a powerful mathematical framework to systematically explore the structure-function relationship in biological, social, and technological networks. Despite theoretical advances, we lack direct experimental proof of the validity of these widely used control principles. Here we fill this gap by applying a control framework to the connectome of the nematode Caenorhabditis elegans, allowing us to predict the involvement of each C. elegans neuron in locomotor behaviours. We predict that control of the muscles or motor neurons requires 12 neuronal classes, which include neuronal groups previously implicated in locomotion by laser ablation, as well as one previously uncharacterized neuron, PDB. We validate this prediction experimentally, finding that the ablation of PDB leads to a significant loss of dorsoventral polarity in large body bends. Importantly, control principles also allow us to investigate the involvement of individual neurons within each neuronal class. For example, we predict that, within the class of DD motor neurons, only three (DD04, DD05, or DD06) should affect locomotion when ablated individually. This prediction is also confirmed; single cell ablations of DD04 or DD05 specifically affect posterior body movements, whereas ablations of DD02 or DD03 do not. Our predictions are robust to deletions of weak connections, missing connections, and rewired connections in the current connectome, indicating the potential applicability of this analytical framework to larger and less well-characterized connectomes.
ERIC Educational Resources Information Center
Hardin, Michael G.; Schroth, Elizabeth; Pine, Daniel S.; Ernst, Monique
2007-01-01
Background: Developmental changes in cognitive and affective processes contribute to adolescent risk-taking behavior, emotional intensification, and psychopathology. The current study examined adolescent development of cognitive control processes and their modulation by incentive, in health and psychopathology. Predictions include 1) better…
Control and Interference in Task Switching--A Review
ERIC Educational Resources Information Center
Kiesel, Andrea; Steinhauser, Marco; Wendt, Mike; Falkenstein, Michael; Jost, Kerstin; Philipp, Andrea M.; Koch, Iring
2010-01-01
The task-switching paradigm offers enormous possibilities to study cognitive control as well as task interference. The current review provides an overview of recent research on both topics. First, we review different experimental approaches to task switching, such as comparing mixed-task blocks with single-task blocks, predictable task-switching…
Scullin, Matthew H; Bonner, Karri
2006-02-01
The current study examined the relations among 3- to 5-year-olds' theory of mind, inhibitory control, and three measures of suggestibility: yielding to suggestive questions (yield), shifting answers in response to negative feedback (shift), and accuracy in response to misleading questions during a pressured interview about a live event. Theory of mind aided in the prediction of suggestibility about the live event, and inhibitory control was a moderator variable affecting the consistency of children's sensitivity to social pressure across situations. The findings indicate that theory of mind and inhibitory control predict children's suggestibility about a live event above and beyond yield, shift, and age and that the construct validity of shift may improve as children's inhibitory control develops.
Predicted performance benefits of an adaptive digital engine control system of an F-15 airplane
NASA Technical Reports Server (NTRS)
Burcham, F. W., Jr.; Myers, L. P.; Ray, R. J.
1985-01-01
The highly integrated digital electronic control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrating engine-airframe control systems. Currently this is accomplished on the NASA Ames Research Center's F-15 airplane. The two control modes used to implement the systems are an integrated flightpath management mode and in integrated adaptive engine control system (ADECS) mode. The ADECS mode is a highly integrated mode in which the airplane flight conditions, the resulting inlet distortion, and the available engine stall margin are continually computed. The excess stall margin is traded for thrust. The predicted increase in engine performance due to the ADECS mode is presented in this report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimmel, Gregory; Sadovskyy, Ivan A.; Glatz, Andreas
For many technological applications of superconductors the performance of a material is determined by the highest current it can carry losslessly-the critical current. In turn, the critical current can be controlled by adding nonsuperconducting defects in the superconductor matrix. Here we report on systematic comparison of different local and global optimization strategies to predict optimal structures of pinning centers leading to the highest possible critical currents. We demonstrate performance of these methods for a superconductor with randomly placed spherical, elliptical, and columnar defects.
Kruse, Christian
2018-06-01
To review current practices and technologies within the scope of "Big Data" that can further our understanding of diabetes mellitus and osteoporosis from large volumes of data. "Big Data" techniques involving supervised machine learning, unsupervised machine learning, and deep learning image analysis are presented with examples of current literature. Supervised machine learning can allow us to better predict diabetes-induced osteoporosis and understand relative predictor importance of diabetes-affected bone tissue. Unsupervised machine learning can allow us to understand patterns in data between diabetic pathophysiology and altered bone metabolism. Image analysis using deep learning can allow us to be less dependent on surrogate predictors and use large volumes of images to classify diabetes-induced osteoporosis and predict future outcomes directly from images. "Big Data" techniques herald new possibilities to understand diabetes-induced osteoporosis and ascertain our current ability to classify, understand, and predict this condition.
Eustatic control of turbidites and winnowed turbidites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shanmugam, G.; Moiola, R.J.
1982-05-01
Global changes in sea level, primarily the results of tectonism and glaciation, control deep-sea sedimentation. During periods of low sea level the frequency of turbidity currents is greatly increased. Episodes of low sea level also cause vigorous contour currents, which winnow away the fines of turbidites. In the rock record, the occurrence of most turbidites and winnowed turbidities closely corresponds to global lowstands of paleo-sea level. This observation may be useful in predicting the occurrence of deep-sea reservoir facies in the geologic record.
NASA Astrophysics Data System (ADS)
Sotner, R.; Kartci, A.; Jerabek, J.; Herencsar, N.; Dostal, T.; Vrba, K.
2012-12-01
Several behavioral models of current active elements for experimental purposes are introduced in this paper. These models are based on commercially available devices. They are suitable for experimental tests of current- and mixed-mode filters, oscillators, and other circuits (employing current-mode active elements) frequently used in analog signal processing without necessity of onchip fabrication of proper active element. Several methods of electronic control of intrinsic resistance in the proposed behavioral models are discussed. All predictions and theoretical assumptions are supported by simulations and experiments. This contribution helps to find a cheaper and more effective way to preliminary laboratory tests without expensive on-chip fabrication of special active elements.
Predicting sun protection behaviors using protection motivation variables.
Ch'ng, Joanne W M; Glendon, A Ian
2014-04-01
Protection motivation theory components were used to predict sun protection behaviors (SPBs) using four outcome measures: typical reported behaviors, previous reported behaviors, current sunscreen use as determined by interview, and current observed behaviors (clothing worn) to control for common method bias. Sampled from two SE Queensland public beaches during summer, 199 participants aged 18-29 years completed a questionnaire measuring perceived severity, perceived vulnerability, response efficacy, response costs, and protection motivation (PM). Personal perceived risk (similar to threat appraisal) and response likelihood (similar to coping appraisal) were derived from their respective PM components. Protection motivation predicted all four SPB criterion variables. Personal perceived risk and response likelihood predicted protection motivation. Protection motivation completely mediated the effect of response likelihood on all four criterion variables. Alternative models are considered. Strengths and limitations of the study are outlined and suggestions made for future research.
Edwards, Ann L; Dawson, Michael R; Hebert, Jacqueline S; Sherstan, Craig; Sutton, Richard S; Chan, K Ming; Pilarski, Patrick M
2016-10-01
Myoelectric prostheses currently used by amputees can be difficult to control. Machine learning, and in particular learned predictions about user intent, could help to reduce the time and cognitive load required by amputees while operating their prosthetic device. The goal of this study was to compare two switching-based methods of controlling a myoelectric arm: non-adaptive (or conventional) control and adaptive control (involving real-time prediction learning). Case series study. We compared non-adaptive and adaptive control in two different experiments. In the first, one amputee and one non-amputee subject controlled a robotic arm to perform a simple task; in the second, three able-bodied subjects controlled a robotic arm to perform a more complex task. For both tasks, we calculated the mean time and total number of switches between robotic arm functions over three trials. Adaptive control significantly decreased the number of switches and total switching time for both tasks compared with the conventional control method. Real-time prediction learning was successfully used to improve the control interface of a myoelectric robotic arm during uninterrupted use by an amputee subject and able-bodied subjects. Adaptive control using real-time prediction learning has the potential to help decrease both the time and the cognitive load required by amputees in real-world functional situations when using myoelectric prostheses. © The International Society for Prosthetics and Orthotics 2015.
NASA Astrophysics Data System (ADS)
Milovančević, Miloš; Nikolić, Vlastimir; Anđelković, Boban
2017-01-01
Vibration-based structural health monitoring is widely recognized as an attractive strategy for early damage detection in civil structures. Vibration monitoring and prediction is important for any system since it can save many unpredictable behaviors of the system. If the vibration monitoring is properly managed, that can ensure economic and safe operations. Potentials for further improvement of vibration monitoring lie in the improvement of current control strategies. One of the options is the introduction of model predictive control. Multistep ahead predictive models of vibration are a starting point for creating a successful model predictive strategy. For the purpose of this article, predictive models of are created for vibration monitoring of planetary power transmissions in pellet mills. The models were developed using the novel method based on ANFIS (adaptive neuro fuzzy inference system). The aim of this study is to investigate the potential of ANFIS for selecting the most relevant variables for predictive models of vibration monitoring of pellet mills power transmission. The vibration data are collected by PIC (Programmable Interface Controller) microcontrollers. The goal of the predictive vibration monitoring of planetary power transmissions in pellet mills is to indicate deterioration in the vibration of the power transmissions before the actual failure occurs. The ANFIS process for variable selection was implemented in order to detect the predominant variables affecting the prediction of vibration monitoring. It was also used to select the minimal input subset of variables from the initial set of input variables - current and lagged variables (up to 11 steps) of vibration. The obtained results could be used for simplification of predictive methods so as to avoid multiple input variables. It was preferable to used models with less inputs because of overfitting between training and testing data. While the obtained results are promising, further work is required in order to get results that could be directly applied in practice.
Aalto, Juha; Harrison, Stephan; Luoto, Miska
2017-09-11
The periglacial realm is a major part of the cryosphere, covering a quarter of Earth's land surface. Cryogenic land surface processes (LSPs) control landscape development, ecosystem functioning and climate through biogeochemical feedbacks, but their response to contemporary climate change is unclear. Here, by statistically modelling the current and future distributions of four major LSPs unique to periglacial regions at fine scale, we show fundamental changes in the periglacial climate realm are inevitable with future climate change. Even with the most optimistic CO 2 emissions scenario (Representative Concentration Pathway (RCP) 2.6) we predict a 72% reduction in the current periglacial climate realm by 2050 in our climatically sensitive northern Europe study area. These impacts are projected to be especially severe in high-latitude continental interiors. We further predict that by the end of the twenty-first century active periglacial LSPs will exist only at high elevations. These results forecast a future tipping point in the operation of cold-region LSP, and predict fundamental landscape-level modifications in ground conditions and related atmospheric feedbacks.Cryogenic land surface processes characterise the periglacial realm and control landscape development and ecosystem functioning. Here, via statistical modelling, the authors predict a 72% reduction of the periglacial realm in Northern Europe by 2050, and almost complete disappearance by 2100.
ERIC Educational Resources Information Center
Duckworth, Angela L.; Quinn, Patrick D.; Tsukayama, Eli
2012-01-01
The increasing prominence of standardized testing to assess student learning motivated the current investigation. We propose that standardized achievement test scores assess competencies determined more by intelligence than by self-control, whereas report card grades assess competencies determined more by self-control than by intelligence. In…
DiMagno, Matthew J; Spaete, Joshua P; Ballard, Darren D; Wamsteker, Erik-Jan; Saini, Sameer D
2013-08-01
We investigated which variables independently associated with protection against or development of postendoscopic retrograde cholangiopancreatography (ERCP) pancreatitis (PEP) and severity of PEP. Subsequently, we derived predictive risk models for PEP. In a case-control design, 6505 patients had 8264 ERCPs, 211 patients had PEP, and 22 patients had severe PEP. We randomly selected 348 non-PEP controls. We examined 7 established- and 9 investigational variables. In univariate analysis, 7 variables predicted PEP: younger age, female sex, suspected sphincter of Oddi dysfunction (SOD), pancreatic sphincterotomy, moderate-difficult cannulation (MDC), pancreatic stent placement, and lower Charlson score. Protective variables were current smoking, former drinking, diabetes, and chronic liver disease (CLD, biliary/transplant complications). Multivariate analysis identified seven independent variables for PEP, three protective (current smoking, CLD-biliary, CLD-transplant/hepatectomy complications) and 4 predictive (younger age, suspected SOD, pancreatic sphincterotomy, MDC). Pre- and post-ERCP risk models of 7 variables have a C-statistic of 0.74. Removing age (seventh variable) did not significantly affect the predictive value (C-statistic of 0.73) and reduced model complexity. Severity of PEP did not associate with any variables by multivariate analysis. By using the newly identified protective variables with 3 predictive variables, we derived 2 risk models with a higher predictive value for PEP compared to prior studies.
Nonlinear Dynamic Analysis of Disordered Bladed-Disk Assemblies
NASA Technical Reports Server (NTRS)
McGee, Oliver G., III
1997-01-01
In a effort to address current needs for efficient, air propulsion systems, we have developed some new analytical predictive tools for understanding and alleviating aircraft engine instabilities which have led to accelerated high cycle fatigue and catastrophic failures of these machines during flight. A frequent cause of failure in Jets engines is excessive resonant vibrations and stall flutter instabilities. The likelihood of these phenomena is reduced when designers employ the analytical models we have developed. These prediction models will ultimately increase the nation's competitiveness in producing high performance Jets engines with enhanced operability, energy economy, and safety. The objectives of our current threads of research in the final year are directed along two lines. First, we want to improve the current state of blade stress and aeromechanical reduced-ordered modeling of high bypass engine fans, Specifically, a new reduced-order iterative redesign tool for passively controlling the mechanical authority of shroudless, wide chord, laminated composite transonic bypass engine fans has been developed. Second, we aim to advance current understanding of aeromechanical feedback control of dynamic flow instabilities in axial flow compressors. A systematic theoretical evaluation of several approaches to aeromechanical feedback control of rotating stall in axial compressors has been conducted. Attached are abstracts of two .papers under preparation for the 1998 ASME Turbo Expo in Stockholm, Sweden sponsored under Grant No. NAG3-1571. Our goals during the final year under Grant No. NAG3-1571 is to enhance NASA's capabilities of forced response of turbomachines (such as NASA FREPS). We with continue our development of the reduced-ordered, three-dimensional component synthesis models for aeromechanical evaluation of integrated bladeddisk assemblies (i.e., the disk, non-identical bladeing etc.). We will complete our development of component systems design optimization strategies for specified vibratory stresses and increased fatigue life prediction of assembly components, and for specified frequency margins on the Campbell diagrams of turbomachines. Finally, we will integrate the developed codes with NASA's turbomachinery aeromechanics prediction capability (such as NASA FREPS).
Particle-in-cell simulations of electron beam control using an inductive current divider
Swanekamp, S. B.; Angus, J. R.; Cooperstein, G.; ...
2015-11-18
Kinetic, time-dependent, electromagnetic, particle-in-cell simulations of the inductive current divider are presented. The inductive current divider is a passive method for controlling the trajectory of an intense, hollow electron beam using a vacuum structure that inductively splits the beam’s return current. The current divider concept was proposed and studied theoretically in a previous publication [Phys. Plasmas 22, 023107 (2015)] A central post carries a portion of the return current (I 1) while the outer conductor carries the remainder (I 2) with the injected beam current given by I b=I 1+I 2. The simulations are in agreement with the theory whichmore » predicts that the total force on the beam trajectory is proportional to (I 2-I 1) and the force on the beam envelope is proportional to I b. For a fixed central post, the beam trajectory is controlled by varying the outer conductor radius which changes the inductance in the return-current path. The simulations show that the beam emittance is approximately constant as the beam propagates through the current divider to the target. As a result, independent control over both the current density and the beam angle at the target is possible by choosing the appropriate return-current geometry.« less
The timing and intensity of column collapse during explosive volcanic eruptions
NASA Astrophysics Data System (ADS)
Carazzo, Guillaume; Kaminski, Edouard; Tait, Stephen
2015-02-01
Volcanic columns produced by explosive eruptions commonly reach, at some stage, a collapse regime with associated pyroclastic density currents propagating on the ground. The threshold conditions for the entrance into this regime are mainly controlled by the mass flux and exsolved gas content at the source. However, column collapse is often partial and the controls on the fraction of total mass flux that feeds the pyroclastic density currents, defined here as the intensity of collapse, are unknown. To better understand this regime, we use a new experimental apparatus reproducing at laboratory scale the convecting and collapsing behavior of hot particle-laden air jets. We validate the predictions of a 1D theoretical model for the entrance into the regime of partial collapse. Furthermore, we show that where a buoyant plume and a collapsing fountain coexist, the intensity of collapse can be predicted by a universal scaling relationship. We find that the intensity of collapse in the partial collapse regime is controlled by magma gas content and temperature, and always exceeds 40%, independent of peak mass flux and total erupted volume. The comparison between our theoretical predictions and a set of geological data on historic and pre-historic explosive eruptions shows that the model can be used to predict both the onset and intensity of column collapse, hence it can be used for rapid assessment of volcanic hazards notably ash dispersal during eruptive crises.
Devenyi, Ryan A; Ortega, Francis A; Groenendaal, Willemijn; Krogh-Madsen, Trine; Christini, David J; Sobie, Eric A
2017-04-01
Arrhythmias result from disruptions to cardiac electrical activity, although the factors that control cellular action potentials are incompletely understood. We combined mathematical modelling with experiments in heart cells from guinea pigs to determine how cellular electrical activity is regulated. A mismatch between modelling predictions and the experimental results allowed us to construct an improved, more predictive mathematical model. The balance between two particular potassium currents dictates how heart cells respond to perturbations and their susceptibility to arrhythmias. Imbalances of ionic currents can destabilize the cardiac action potential and potentially trigger lethal cardiac arrhythmias. In the present study, we combined mathematical modelling with information-rich dynamic clamp experiments to determine the regulation of action potential morphology in guinea pig ventricular myocytes. Parameter sensitivity analysis was used to predict how changes in ionic currents alter action potential duration, and these were tested experimentally using dynamic clamp, a technique that allows for multiple perturbations to be tested in each cell. Surprisingly, we found that a leading mathematical model, developed with traditional approaches, systematically underestimated experimental responses to dynamic clamp perturbations. We then re-parameterized the model using a genetic algorithm, which allowed us to estimate ionic current levels in each of the cells studied. This unbiased model adjustment consistently predicted an increase in the rapid delayed rectifier K + current and a drastic decrease in the slow delayed rectifier K + current, and this prediction was validated experimentally. Subsequent simulations with the adjusted model generated the clinically relevant prediction that the slow delayed rectifier is better able to stabilize the action potential and suppress pro-arrhythmic events than the rapid delayed rectifier. In summary, iterative coupling of simulations and experiments enabled novel insight into how the balance between cardiac K + currents influences ventricular arrhythmia susceptibility. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
KILLEEN, GERRY F.; McKENZIE, F. ELLIS; FOY, BRIAN D.; SCHIEFFELIN, CATHERINE; BILLINGSLEY, PETER F.; BEIER, JOHN C.
2008-01-01
We have used a relatively simple but accurate model for predicting the impact of integrated transmission control on the malaria entomologic inoculation rate (EIR) at four endemic sites from across sub-Saharan Africa and the southwest Pacific. The simulated campaign incorporated modestly effective vaccine coverage, bed net use, and larval control. The results indicate that such campaigns would reduce EIRs at all four sites by 30- to 50-fold. Even without the vaccine, 15- to 25-fold reductions of EIR were predicted, implying that integrated control with a few modestly effective tools can meaningfully reduce malaria transmission in a range of endemic settings. The model accurately predicts the effects of bed nets and indoor spraying and demonstrates that they are the most effective tools available for reducing EIR. However, the impact of domestic adult vector control is amplified by measures for reducing the rate of emergence of vectors or the level of infectiousness of the human reservoir. We conclude that available tools, including currently neglected methods for larval control, can reduce malaria transmission intensity enough to alleviate mortality. Integrated control programs should be implemented to the fullest extent possible, even in areas of intense transmission, using simple models as decision-making tools. However, we also conclude that to eliminate malaria in many areas of intense transmission is beyond the scope of methods which developing nations can currently afford. New, cost-effective, practical tools are needed if malaria is ever to be eliminated from highly endemic areas. PMID:11289662
Prediction of Patient-Controlled Analgesic Consumption: A Multimodel Regression Tree Approach.
Hu, Yuh-Jyh; Ku, Tien-Hsiung; Yang, Yu-Hung; Shen, Jia-Ying
2018-01-01
Several factors contribute to individual variability in postoperative pain, therefore, individuals consume postoperative analgesics at different rates. Although many statistical studies have analyzed postoperative pain and analgesic consumption, most have identified only the correlation and have not subjected the statistical model to further tests in order to evaluate its predictive accuracy. In this study involving 3052 patients, a multistrategy computational approach was developed for analgesic consumption prediction. This approach uses data on patient-controlled analgesia demand behavior over time and combines clustering, classification, and regression to mitigate the limitations of current statistical models. Cross-validation results indicated that the proposed approach significantly outperforms various existing regression methods. Moreover, a comparison between the predictions by anesthesiologists and medical specialists and those of the computational approach for an independent test data set of 60 patients further evidenced the superiority of the computational approach in predicting analgesic consumption because it produced markedly lower root mean squared errors.
Real-time sensing of fatigue crack damage for information-based decision and control
NASA Astrophysics Data System (ADS)
Keller, Eric Evans
Information-based decision and control for structures that are subject to failure by fatigue cracking is based on the following notion: Maintenance, usage scheduling, and control parameter tuning can be optimized through real time knowledge of the current state of fatigue crack damage. Additionally, if the material properties of a mechanical structure can be identified within a smaller range, then the remaining life prediction of that structure will be substantially more accurate. Information-based decision systems can rely one physical models, estimation of material properties, exact knowledge of usage history, and sensor data to synthesize an accurate snapshot of the current state of damage and the likely remaining life of a structure under given assumed loading. The work outlined in this thesis is structured to enhance the development of information-based decision and control systems. This is achieved by constructing a test facility for laboratory experiments on real-time damage sensing. This test facility makes use of a methodology that has been formulated for fatigue crack model parameter estimation and significantly improves the quality of predictions of remaining life. Specifically, the thesis focuses on development of an on-line fatigue crack damage sensing and life prediction system that is built upon the disciplines of Systems Sciences and Mechanics of Materials. A major part of the research effort has been expended to design and fabricate a test apparatus which allows: (i) measurement and recording of statistical data for fatigue crack growth in metallic materials via different sensing techniques; and (ii) identification of stochastic model parameters for prediction of fatigue crack damage. To this end, this thesis describes the test apparatus and the associated instrumentation based on four different sensing techniques, namely, traveling optical microscopy, ultrasonic flaw detection, Alternating Current Potential Drop (ACPD), and fiber-optic extensometry-based compliance, for crack length measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez, A.; Acero, J.; Alberdi, B.
High precision coil current control, stability and ripple content are very important aspects for a stellarator design. The TJ-II coils will be supplied by network commutated current converters and therefore the coil currents will contain harmonics which have to be kept to a very low level. An analytical investigation as well as numerous simulations with EMTP, SABER{reg_sign} and other softwares, have been done in order to predict the harmonic currents and to verify the completion with the specified maximum levels. The calculations and the results are presented.
Wang, Yan; Wang, Lei; Cui, Xianghua; Fang, Yuan; Chen, Qianqiu; Wang, Ya; Qiang, Yao
2015-12-01
Self-regulatory resources and trait self-control have been found to moderate the impulse-behavior relationship. The current study investigated whether the interaction of self-regulatory resources and trait self-control moderates the association between implicit attitudes and food consumption. One hundred twenty female participants were randomly assigned to either a depletion condition in which their self-regulatory resources were reduced or a no-depletion condition. Participants' implicit attitudes for chocolate were measured with the Single Category Implicit Association Test and self-report measures of trait self-control were collected. The dependent variable was chocolate consumption in an ostensible taste and rate task. Implicit attitudes predicted chocolate consumption in depleted participants but not in non-depleted participants. However, this predictive power of implicit attitudes on eating in depleted condition disappeared in participants with high trait self-control. Thus, trait self-control and self-regulatory resources interact to moderate the prediction of implicit attitude on eating behavior. Results suggest that high trait self-control buffers the effect of self-regulatory depletion on impulsive eating. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Iced Aerodynamics and Controls Current Research
NASA Technical Reports Server (NTRS)
Addy, Gene
2009-01-01
This slide presentation reviews the state of current research in the area of aerodynamics and aircraft control with ice conditions by the Aviation Safety Program, part of the Integrated Resilient Aircraft Controls Project (IRAC). Included in the presentation is a overview of the modeling efforts. The objective of the modeling is to develop experimental and computational methods to model and predict aircraft response during adverse flight conditions, including icing. The Aircraft icing modeling efforts includes the Ice-Contaminated Aerodynamics Modeling, which examines the effects of ice contamination on aircraft aerodynamics, and CFD modeling of ice-contaminated aircraft aerodynamics, and Advanced Ice Accretion Process Modeling which examines the physics of ice accretion, and works on computational modeling of ice accretions. The IRAC testbed, a Generic Transport Model (GTM) and its use in the investigation of the effects of icing on its aerodynamics is also reviewed. This has led to a more thorough understanding and models, both theoretical and empirical of icing physics and ice accretion for airframes, advanced 3D ice accretion prediction codes, CFD methods for iced aerodynamics and better understanding of aircraft iced aerodynamics and its effects on control surface effectiveness.
Finite element predictions of active buckling control of stiffened panels
NASA Astrophysics Data System (ADS)
Thompson, Danniella M.; Griffin, O. H., Jr.
1993-04-01
Materials systems and structures that can respond 'intelligently' to their environment are currently being proposed and investigated. A series of finite element analyses was performed to investigate the potential for active buckling control of two different stiffened panels by embedded shape memory alloy (SMA) rods. Changes in the predicted buckling load increased with the magnitude of the actuation level for a given structural concept. Increasing the number of actuators for a given concept yielded greater predicted increases in buckling load. Considerable control authority was generated with a small number of actuators, with greater authority demonstrated for those structural concepts where the activated SMA rods could develop greater forces and moments on the structure. Relatively simple and inexpensive analyses were performed with standard finite elements to determine such information, indicating the viability of these types of models for design purposes.
Fazzino, Tera L; Hunter, Rebecca Clausius; Sporn, Nora; Christifano, Danielle N; Befort, Christie A
2017-03-01
Obesity and weight gain after breast cancer treatment are common among survivors, yet the relationship between weight and body image has received little attention. The purpose of the current study was to examine the relationship between current body mass index, weight gain since diagnosis, and largest weight fluctuation in adulthood with six dimensions of body image among overweight/obese breast cancer survivors. The current study used data obtained from a weight control trial with 210 rural overweight/obese breast cancer survivors. Using data collected at baseline, multiple regression models were constructed to examine the relative association of the three weight variables with breast cancer-specific dimensions of body image while controlling for demographic characteristics and cancer treatment-related variables. Largest weight fluctuation in adulthood significantly predicted overall body image (p = 0.01) and was associated with the three socially oriented dimensions of body image: social activity restriction, embarrassment about appearance, and sexuality (all ps = 0.01). Weight gain since diagnosis approached statistical significance in predicting overall body image (p = 0.05) and was associated with embarrassment about appearance (p = 0.03). Current body mass index was not significantly associated with overall body image when controlling for the other weight variables (p = 0.07) and was negatively associated with social activity restriction (p = 0.01) and sexuality (p = 0.01). Obese breast cancer survivors with a history of a large weight fluctuation in adulthood may be prone to poorer breast cancer-specific body image several years after treatment. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Casper, T. A.; Meyer, W. H.; Jackson, G. L.; ...
2010-12-08
We are exploring characteristics of ITER startup scenarios in similarity experiments conducted on the DIII-D Tokamak. In these experiments, we have validated scenarios for the ITER current ramp up to full current and developed methods to control the plasma parameters to achieve stability. Predictive simulations of ITER startup using 2D free-boundary equilibrium and 1D transport codes rely on accurate estimates of the electron and ion temperature profiles that determine the electrical conductivity and pressure profiles during the current rise. Here we present results of validation studies that apply the transport model used by the ITER team to DIII-D discharge evolutionmore » and comparisons with data from our similarity experiments.« less
Low-income minority fathers' control strategies and children's regulatory skills
Malin, Jenessa L.; Cabrera, Natasha J.; Karberg, Elizabeth; Aldoney, Daniela; Rowe, Meredith
2015-01-01
The current study explored the bidirectional association of children's individual characteristics, fathers' control strategies at 24-months and children's regulatory skills at pre-kindergarten (pre-K). Using a sample of low-income minority families with 2-year-olds from the Early Head Start Evaluation Research Program (n = 71) we assessed the association between child gender and vocabulary skills, fathers' control strategies at 24-months (e.g., regulatory behavior and regulatory language), and children's sustained attention and emotion regulation at pre-kindergarten. There were three main findings. First, fathers' overwhelmingly use commands (e.g., do that) to promote compliance in their 24-month old children. Second, children's vocabulary skills predict fathers' regulatory behaviors during a father-child interaction, whereas children's gender predicts fathers' regulatory language during an interaction. Third, controlling for maternal supportiveness, fathers' regulatory behaviors at 24-months predict children's sustained attention at pre-kindergarten whereas fathers' regulatory language at 24-months predicts children's emotion regulation at pre-kindergarten. Our findings highlight the importance of examining paternal contributions to children's regulatory skills. PMID:25798496
Low-income, minority fathers' control strategies and their children's regulatory skills.
Malin, Jenessa L; Cabrera, Natasha J; Karberg, Elizabeth; Aldoney, Daniela; Rowe, Meredith L
2014-01-01
The current study explored the bidirectional association of children's individual characteristics, fathers' control strategies at 24 months, and children's regulatory skills at prekindergarten (pre-K). Using a sample of low-income, minority families with 2-year-olds from the Early Head Start Research and Evaluation Project (n = 71), we assessed the association between child gender and vocabulary skills, fathers' control strategies at 24 months (e.g., regulatory behavior and regulatory language), and children's sustained attention and emotion regulation at prekindergarten. There were three main findings. First, fathers overwhelmingly used commands (e.g., "Do that.") to promote compliance in their 24-month-old children. Second, children's vocabulary skills predicted fathers' regulatory behaviors during a father-child interaction whereas children's gender predicted fathers' regulatory language during an interaction. Third, controlling for maternal supportiveness, fathers' regulatory behaviors at 24 months predicted children's sustained attention at pre-K whereas fathers' regulatory language at 24 months predicted children's emotion regulation at pre-K. Our findings highlight the importance of examining paternal contributions to children's regulatory skills. © 2014 Michigan Association for Infant Mental Health.
Nonprincipal plane scattering of flat plates and pattern control of horn antennas
NASA Technical Reports Server (NTRS)
Balanis, Constantine A.; Polka, Lesley A.; Liu, Kefeng
1989-01-01
Using the geometrical theory of diffraction, the traditional method of high frequency scattering analysis, the prediction of the radar cross section of a perfectly conducting, flat, rectangular plate is limited to principal planes. Part A of this report predicts the radar cross section in nonprincipal planes using the method of equivalent currents. This technique is based on an asymptotic end-point reduction of the surface radiation integrals for an infinite wedge and enables nonprincipal plane prediction. The predicted radar cross sections for both horizontal and vertical polarizations are compared to moment method results and experimental data from Arizona State University's anechoic chamber. In part B, a variational calculus approach to the pattern control of the horn antenna is outlined. The approach starts with the optimization of the aperture field distribution so that the control of the radiation pattern in a range of directions can be realized. A control functional is thus formulated. Next, a spectral analysis method is introduced to solve for the eigenfunctions from the extremal condition of the formulated functional. Solutions to the optimized aperture field distribution are then obtained.
Altered neural encoding of prediction errors in assault-related posttraumatic stress disorder.
Ross, Marisa C; Lenow, Jennifer K; Kilts, Clinton D; Cisler, Josh M
2018-05-12
Posttraumatic stress disorder (PTSD) is widely associated with deficits in extinguishing learned fear responses, which relies on mechanisms of reinforcement learning (e.g., updating expectations based on prediction errors). However, the degree to which PTSD is associated with impairments in general reinforcement learning (i.e., outside of the context of fear stimuli) remains poorly understood. Here, we investigate brain and behavioral differences in general reinforcement learning between adult women with and without a current diagnosis of PTSD. 29 adult females (15 PTSD with exposure to assaultive violence, 14 controls) underwent a neutral reinforcement-learning task (i.e., two arm bandit task) during fMRI. We modeled participant behavior using different adaptations of the Rescorla-Wagner (RW) model and used Independent Component Analysis to identify timecourses for large-scale a priori brain networks. We found that an anticorrelated and risk sensitive RW model best fit participant behavior, with no differences in computational parameters between groups. Women in the PTSD group demonstrated significantly less neural encoding of prediction errors in both a ventral striatum/mPFC and anterior insula network compared to healthy controls. Weakened encoding of prediction errors in the ventral striatum/mPFC and anterior insula during a general reinforcement learning task, outside of the context of fear stimuli, suggests the possibility of a broader conceptualization of learning differences in PTSD than currently proposed in current neurocircuitry models of PTSD. Copyright © 2018 Elsevier Ltd. All rights reserved.
Prediction of forces and moments for flight vehicle control effectors: Workplan
NASA Technical Reports Server (NTRS)
Maughmer, Mark D.
1989-01-01
Two research activities directed at hypersonic vehicle configurations are currently underway. The first involves the validation of a number of classical local surface inclination methods commonly employed in preliminary design studies of hypersonic flight vehicles. Unlike studies aimed at validating such methods for predicting overall vehicle aerodynamics, this effort emphasizes validating the prediction of forces and moments for flight control studies. Specifically, several vehicle configurations for which experimental or flight-test data are available are being examined. By comparing the theoretical predictions with these data, the strengths and weaknesses of the local surface inclination methods can be ascertained and possible improvements suggested. The second research effort, of significance to control during take-off and landing of most proposed hypersonic vehicle configurations, is aimed at determining the change due to ground effect in control effectiveness of highly swept delta planforms. Central to this research is the development of a vortex-lattice computer program which incorporates an unforced trailing vortex sheet and an image ground plane. With this program, the change in pitching moment of the basic vehicle due to ground proximity, and whether or not there is sufficient control power available to trim, can be determined. In addition to the current work, two different research directions are suggested for future study. The first is aimed at developing an interactive computer program to assist the flight controls engineer in determining the forces and moments generated by different types of control effectors that might be used on hypersonic vehicles. The first phase of this work would deal in the subsonic portion of the flight envelope, while later efforts would explore the supersonic/hypersonic flight regimes. The second proposed research direction would explore methods for determining the aerodynamic trim drag of a generic hypersonic flight vehicle and ways in which it can be minimized through vehicle design and trajectory optimization.
Control of epileptic seizures in WAG/Rij rats by means of brain-computer interface
NASA Astrophysics Data System (ADS)
Makarov, Vladimir V.; Maksimenko, Vladimir A.; van Luijtelaar, Gilles; Lüttjohann, Annika; Hramov, Alexander E.
2018-02-01
The main issue of epileptology is the elimination of epileptic events. This can be achieved by a system that predicts the emergence of seizures in conjunction with a system that interferes with the process that leads to the onset of seizure. The prediction of seizures remains, for the present, unresolved in the absence epilepsy, due to the sudden onset of seizures. We developed an algorithm for predicting seizures in real time, evaluated it and implemented it into an online closed-loop brain stimulation system designed to prevent typical for the absence of epilepsy of spike waves (SWD) in the genetic rat model. The algorithm correctly predicts more than 85% of the seizures and the rest were successfully detected. Unlike the old beliefs that SWDs are unpredictable, current results show that they can be predicted and that the development of systems for predicting and preventing closed-loop capture is a feasible step on the way to intervention to achieve control and freedom from epileptic seizures.
Muscle Synergies Facilitate Computational Prediction of Subject-Specific Walking Motions
Meyer, Andrew J.; Eskinazi, Ilan; Jackson, Jennifer N.; Rao, Anil V.; Patten, Carolynn; Fregly, Benjamin J.
2016-01-01
Researchers have explored a variety of neurorehabilitation approaches to restore normal walking function following a stroke. However, there is currently no objective means for prescribing and implementing treatments that are likely to maximize recovery of walking function for any particular patient. As a first step toward optimizing neurorehabilitation effectiveness, this study develops and evaluates a patient-specific synergy-controlled neuromusculoskeletal simulation framework that can predict walking motions for an individual post-stroke. The main question we addressed was whether driving a subject-specific neuromusculoskeletal model with muscle synergy controls (5 per leg) facilitates generation of accurate walking predictions compared to a model driven by muscle activation controls (35 per leg) or joint torque controls (5 per leg). To explore this question, we developed a subject-specific neuromusculoskeletal model of a single high-functioning hemiparetic subject using instrumented treadmill walking data collected at the subject’s self-selected speed of 0.5 m/s. The model included subject-specific representations of lower-body kinematic structure, foot–ground contact behavior, electromyography-driven muscle force generation, and neural control limitations and remaining capabilities. Using direct collocation optimal control and the subject-specific model, we evaluated the ability of the three control approaches to predict the subject’s walking kinematics and kinetics at two speeds (0.5 and 0.8 m/s) for which experimental data were available from the subject. We also evaluated whether synergy controls could predict a physically realistic gait period at one speed (1.1 m/s) for which no experimental data were available. All three control approaches predicted the subject’s walking kinematics and kinetics (including ground reaction forces) well for the model calibration speed of 0.5 m/s. However, only activation and synergy controls could predict the subject’s walking kinematics and kinetics well for the faster non-calibration speed of 0.8 m/s, with synergy controls predicting the new gait period the most accurately. When used to predict how the subject would walk at 1.1 m/s, synergy controls predicted a gait period close to that estimated from the linear relationship between gait speed and stride length. These findings suggest that our neuromusculoskeletal simulation framework may be able to bridge the gap between patient-specific muscle synergy information and resulting functional capabilities and limitations. PMID:27790612
For Whom the Mind Wanders, and When, Varies Across Laboratory and Daily-Life Settings.
Kane, Michael J; Gross, Georgina M; Chun, Charlotte A; Smeekens, Bridget A; Meier, Matt E; Silvia, Paul J; Kwapil, Thomas R
2017-09-01
Undergraduates ( N = 274) participated in a weeklong daily-life experience-sampling study of mind wandering after being assessed in the lab for executive-control abilities (working memory capacity; attention-restraint ability; attention-constraint ability; and propensity for task-unrelated thoughts, or TUTs) and personality traits. Eight times a day, electronic devices prompted subjects to report on their current thoughts and context. Working memory capacity and attention abilities predicted subjects' TUT rates in the lab, but predicted the frequency of daily-life mind wandering only as a function of subjects' momentary attempts to concentrate. This pattern replicates prior daily-life findings but conflicts with laboratory findings. Results for personality factors also revealed different associations in the lab and daily life: Only neuroticism predicted TUT rate in the lab, but only openness predicted mind-wandering rate in daily life (both predicted the content of daily-life mind wandering). Cognitive and personality factors also predicted dimensions of everyday thought other than mind wandering, such as subjective judgments of controllability of thought. Mind wandering in people's daily environments and TUTs during controlled and artificial laboratory tasks have different correlates (and perhaps causes). Thus, mind-wandering theories based solely on lab phenomena may be incomplete.
Hudson, Amanda; Jacques, Sophie
2014-07-01
Children's developing capacity to regulate emotions may depend on individual characteristics and other abilities, including age, sex, inhibitory control, theory of mind, and emotion and display rule knowledge. In the current study, we examined the relations between these variables and children's (N=107) regulation of emotion in a disappointing gift paradigm as well as their relations with the amount of effort to control emotion children exhibited after receiving the disappointing gift. Regression analyses were also conducted to identify unique predictors. Children's understanding of others' emotions and emotion display rules, as well as their inhibitory control skills, emerged as significant correlates of emotion regulation and predicted children's responses to the disappointing gift even after controlling for other relevant variables. Age and inhibitory control significantly predicted the amount of overt effort that went into regulating emotions, as did emotion knowledge (albeit only marginally). Together, findings suggest that effectively regulating emotions requires (a) knowledge of context-appropriate emotions along with (b) inhibitory skills to implement that knowledge. Copyright © 2014 Elsevier Inc. All rights reserved.
BBU and Corkscrew Growth Predictions for the Darht Second Axis Accelerator
NASA Astrophysics Data System (ADS)
Chen, Y. J.; Fawley, W. M.
2001-06-01
This paper discusses the means by which we plan to control BBU and corkscrew growth in DARHT-II. In section 2 we present the current design for the solenoidal field tune; since the last PAC meeting in 1999, the design beam current has been lowered from 4 to 2 kA which has lowered the necessary field strengths. In Sec. 3 we discuss the present predictions for the expected BBU growth; these predictions were made having used recent experimental measurements for the impedance of the DARHT-II accelerator cells. Finally, in Sec. 4 we present our most recent calculations for the expected corkscrew growth and also the expected performance of the tuning-V algorithm, which can reduce this growth by more than an order of magnitude.
Design of a final approach spacing tool for TRACON air traffic control
NASA Technical Reports Server (NTRS)
Davis, Thomas J.; Erzberger, Heinz; Bergeron, Hugh
1989-01-01
This paper describes an automation tool that assists air traffic controllers in the Terminal Radar Approach Control (TRACON) Facilities in providing safe and efficient sequencing and spacing of arrival traffic. The automation tool, referred to as the Final Approach Spacing Tool (FAST), allows the controller to interactively choose various levels of automation and advisory information ranging from predicted time errors to speed and heading advisories for controlling time error. FAST also uses a timeline to display current scheduling and sequencing information for all aircraft in the TRACON airspace. FAST combines accurate predictive algorithms and state-of-the-art mouse and graphical interface technology to present advisory information to the controller. Furthermore, FAST exchanges various types of traffic information and communicates with automation tools being developed for the Air Route Traffic Control Center. Thus it is part of an integrated traffic management system for arrival traffic at major terminal areas.
ERIC Educational Resources Information Center
Schmidt, Laura I.; Sieverding, Monika; Scheiter, Fabian; Obergfell, Julia
2015-01-01
University students often report high stress levels, and studies even suggest a recent increase. However, there is a lack of theoretically based research on the structural conditions that influence students' perceived stress. The current study compared the effects of Karasek's demand-control dimensions with the influence of neuroticism to address…
Career Locus of Control and Career Success among Chinese Employees: A Multidimensional Approach
ERIC Educational Resources Information Center
Guan, Yanjun; Wang, Zhen; Dong, Zhilin; Liu, Yukun; Yue, Yumeng; Liu, Haiyang; Zhang, Yuqing; Zhou, Wenxia; Liu, Haihua
2013-01-01
The current research aimed to develop a multidimensional measure of career locus of control (LOC) and examine its predictive validity on objective and subjective career success among Chinese employees. Items of career LOC were generated based on literature review of the significant predictors of career success, as well as the open-ended responses…
ERIC Educational Resources Information Center
Hubert, Blandine; Guimard, Philippe; Florin, Agnès; Tracy, Alexis
2015-01-01
Research Findings: Several recent studies carried out in the United States and abroad (i.e., Asia and Europe) have demonstrated that the ability of young children to regulate their behavior (including inhibitory control, working memory, attentional control) significantly predicts their academic achievement. The current study examined the…
Conflict-free trajectory planning for air traffic control automation
NASA Technical Reports Server (NTRS)
Slattery, Rhonda; Green, Steve
1994-01-01
As the traffic demand continues to grow within the National Airspace System (NAS), the need for long-range planning (30 minutes plus) of arrival traffic increases greatly. Research into air traffic control (ATC) automation at ARC has led to the development of the Center-TRACON Automation System (CTAS). CTAS determines optimum landing schedules for arrival traffic and assists controllers in meeting those schedules safely and efficiently. One crucial element in the development of CTAS is the capability to perform long-range (20 minutes) and short-range (5 minutes) conflict prediction and resolution once landing schedules are determined. The determination of conflict-free trajectories within the Center airspace is particularly difficult because of large variations in speed and altitude. The paper describes the current design and implementation of the conflict prediction and resolution tools used to generate CTAS advisories in Center airspace. Conflict criteria (separation requirements) are defined and the process of separation prediction is described. The major portion of the paper will describe the current implementation of CTAS conflict resolution algorithms in terms of the degrees of freedom for resolutions as well as resolution search techniques. The tools described in this paper have been implemented in a research system designed to rapidly develop and evaluate prototype concepts and will form the basis for an operational ATC automation system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adigun, Babatunde John; Fensin, Michael Lorne; Galloway, Jack D.
Our burnup study examined the effect of a predicted critical control rod position on the nuclide predictability of several axial and radial locations within a 4×4 graphite moderated gas cooled reactor fuel cluster geometry. To achieve this, a control rod position estimator (CRPE) tool was developed within the framework of the linkage code Monteburns between the transport code MCNP and depletion code CINDER90, and four methodologies were proposed within the tool for maintaining criticality. Two of the proposed methods used an inverse multiplication approach - where the amount of fissile material in a set configuration is slowly altered until criticalitymore » is attained - in estimating the critical control rod position. Another method carried out several MCNP criticality calculations at different control rod positions, then used a linear fit to estimate the critical rod position. The final method used a second-order polynomial fit of several MCNP criticality calculations at different control rod positions to guess the critical rod position. The results showed that consistency in prediction of power densities as well as uranium and plutonium isotopics was mutual among methods within the CRPE tool that predicted critical position consistently well. Finall, while the CRPE tool is currently limited to manipulating a single control rod, future work could be geared toward implementing additional criticality search methodologies along with additional features.« less
Jarnevich, Catherine S.; Young, Nicholas E; Sheffels, Trevor R.; Carter, Jacoby; Systma, Mark D.; Talbert, Colin
2017-01-01
Invasive species provide a unique opportunity to evaluate factors controlling biogeographic distributions; we can consider introduction success as an experiment testing suitability of environmental conditions. Predicting potential distributions of spreading species is not easy, and forecasting potential distributions with changing climate is even more difficult. Using the globally invasive coypu (Myocastor coypus [Molina, 1782]), we evaluate and compare the utility of a simplistic ecophysiological based model and a correlative model to predict current and future distribution. The ecophysiological model was based on winter temperature relationships with nutria survival. We developed correlative statistical models using the Software for Assisted Habitat Modeling and biologically relevant climate data with a global extent. We applied the ecophysiological based model to several global circulation model (GCM) predictions for mid-century. We used global coypu introduction data to evaluate these models and to explore a hypothesized physiological limitation, finding general agreement with known coypu distribution locally and globally and support for an upper thermal tolerance threshold. Global circulation model based model results showed variability in coypu predicted distribution among GCMs, but had general agreement of increasing suitable area in the USA. Our methods highlighted the dynamic nature of the edges of the coypu distribution due to climate non-equilibrium, and uncertainty associated with forecasting future distributions. Areas deemed suitable habitat, especially those on the edge of the current known range, could be used for early detection of the spread of coypu populations for management purposes. Combining approaches can be beneficial to predicting potential distributions of invasive species now and in the future and in exploring hypotheses of factors controlling distributions.
Coherent Control of Nanoscale Ballistic Currents in Transition Metal Dichalcogenide ReS2.
Cui, Qiannan; Zhao, Hui
2015-04-28
Transition metal dichalcogenides are predicted to outperform traditional semiconductors in ballistic devices with nanoscale channel lengths. So far, experimental studies on charge transport in transition metal dichalcogenides are limited to the diffusive regime. Here we show, using ReS2 as an example, all-optical injection, detection, and coherent control of ballistic currents. By utilizing quantum interference between one-photon and two-photon interband transition pathways, ballistic currents are injected in ReS2 thin film samples by a pair of femtosecond laser pulses. We find that the current decays on an ultrafast time scale, resulting in an electron transport of only a fraction of one nanometer. Following the relaxation of the initially injected momentum, backward motion of the electrons for about 1 ps is observed, driven by the Coulomb force from the oppositely moved holes. We also show that the injected current can be controlled by the phase of the laser pulses. These results demonstrate a new platform to study ballistic transport of nonequilibrium carriers in transition metal dichalcogenides.
Two-dimensional analytical model for dual-material control-gate tunnel FETs
NASA Astrophysics Data System (ADS)
Xu, Hui Fang; Dai, Yue Hua; Gui Guan, Bang; Zhang, Yong Feng
2016-09-01
An analytical model for a dual-material control-gate (DMCG) tunnel field effect transistor (TFET) is presented for the first time in this paper, and the influence of the mobile charges on the potential profile is taken into account. On the basis of the potential profile, the lateral electric field is derived and the expression for the drain current is obtained by integrating the band-to-band tunneling (BTBT) generation rate applicable to low-bandgap and high-bandgap materials over the tunneling region. The model also predicts the impacts of the control-gate work function on the potential and drain current. The advantage of this work is that it not only offers physical insight into device physics but also provides the basic designing guideline for DMCG TFETs, enabling the designer to optimize the device in terms of the on-state current, the on-off current ratio, and suppressed ambipolar behavior. Very good agreements for both the potential and drain current are observed between the model calculations and the simulated results.
Drescher, Leonhard Hakon; Van den Bussche, Eva; Desender, Kobe
2018-01-01
Despite the abundance of recent publications about mind wandering (i.e., off-task thought), its interconnection with metacognition and cognitive control has not yet been examined. In the current study, we hypothesized that these three constructs would show clear interrelations. Metacognitive capacity was predicted to correlate positively with cognitive control ability, which in turn was predicted to be positively related to resistance to mind wandering during sustained attention. Moreover, it was expected that participants with good metacognitive capacity would be better at the subjective recognition of behaviorally present mind wandering. Three tasks were used: The Sustained Attention to Response Task (SART) to measure mind wandering, a perceptual decision task with confidence ratings to measure metacognitive efficiency, and a conflict task to measure cognitive control. Structural Equation Modelling was used to test the interrelations among the three constructs. As expected, metacognitive efficiency was positively related to cognitive control ability. Surprisingly, there was a negative relation between metacognitive efficiency and the degree to which subjective mind wandering reports tracked the behavioral index of mind wandering. No relation was found between cognitive control and behavioral mind wandering. The results of the current work are the first to shed light on the interrelations among these three constructs.
Van den Bussche, Eva; Desender, Kobe
2018-01-01
Despite the abundance of recent publications about mind wandering (i.e., off-task thought), its interconnection with metacognition and cognitive control has not yet been examined. In the current study, we hypothesized that these three constructs would show clear interrelations. Metacognitive capacity was predicted to correlate positively with cognitive control ability, which in turn was predicted to be positively related to resistance to mind wandering during sustained attention. Moreover, it was expected that participants with good metacognitive capacity would be better at the subjective recognition of behaviorally present mind wandering. Three tasks were used: The Sustained Attention to Response Task (SART) to measure mind wandering, a perceptual decision task with confidence ratings to measure metacognitive efficiency, and a conflict task to measure cognitive control. Structural Equation Modelling was used to test the interrelations among the three constructs. As expected, metacognitive efficiency was positively related to cognitive control ability. Surprisingly, there was a negative relation between metacognitive efficiency and the degree to which subjective mind wandering reports tracked the behavioral index of mind wandering. No relation was found between cognitive control and behavioral mind wandering. The results of the current work are the first to shed light on the interrelations among these three constructs. PMID:29425205
Marshall, Erin C.; Vujanovic, Anka A.; Kutz, Amanda; Gibson, Laura; Leyro, Teresa; Zvolensky, Michael J.
2009-01-01
The present investigation examined intrinsic and extrinsic reasons for quitting among daily cigarette smokers with posttraumatic stress disorder (PTSD) as compared to clinical daily smokers with other anxiety and mood disorders (AM) and daily smokers with no current axis I psychopathology (C) prior to a self-guided quit attempt. It was hypothesized that (1) the PTSD group would report greater intrinsic (i.e., self-control and health concerns) reasons for quitting smoking, and (2) among those with PTSD, anxiety sensitivity (fear of anxiety; AS) would predict greater intrinsic reasons for quitting smoking. Participants were 143 (58.7% female; Mage = 29.66 years, SD = 11.88) daily cigarette smokers. Partially consistent with prediction, the PTSD group reported significantly greater self-control intrinsic reasons for quitting, but not health concern intrinsic reasons, than the C group (p <.01). The PTSD group also reported greater immediate reinforcement extrinsic reasons for quitting than the C group (p <.05). The PTSD and AM groups did not significantly differ on any reasons for quitting. Also partially consistent with hypotheses, higher levels of anxiety sensitivity in daily smokers with axis I psychopathology (both PTSD and AM groups) significantly predicted greater self-control intrinsic reasons for quitting. AS did not significantly predict immediate reinforcement extrinsic reasons for quitting. The current findings suggest that individuals with PTSD and other psychopathology may have unique motivations for quitting smoking that could be usefully explored within smoking cessation treatment programs. PMID:19444735
Marshall, Erin C; Vujanovic, Anka A; Kutz, Amanda; Gibson, Laura; Leyro, Teresa; Zvolensky, Michael J
2009-01-01
The present investigation examined intrinsic and extrinsic reasons for quitting among daily cigarette smokers with posttraumatic stress disorder (PTSD) as compared to clinical daily smokers with other anxiety and mood disorders (AM) and daily smokers with no current Axis I psychopathology (C) prior to a self-guided quit attempt. It was hypothesized that (1) the PTSD group would report greater intrinsic (ie, self-control and health concerns) reasons for quitting smoking, and (2) among those with PTSD, anxiety sensitivity (fear of anxiety; AS) would predict greater intrinsic reasons for quitting smoking. Participants were 143 (58.7% female; M(age) = 29.66 years, SD = 11.88) daily cigarette smokers. Partially consistent with prediction, the PTSD group reported significantly greater self-control intrinsic reasons for quitting, but not health concern intrinsic reasons, than the C group (p < .01). The PTSD group also reported greater immediate reinforcement extrinsic reasons for quitting than the C group (p < .05). The PTSD and AM groups did not significantly differ on any reasons for quitting. Also partially consistent with hypotheses, higher levels of anxiety sensitivity in daily smokers with Axis I psychopathology (both PTSD and AM groups) significantly predicted greater self-control intrinsic reasons for quitting. AS did not significantly predict immediate reinforcement extrinsic reasons for quitting. The current findings suggest that individuals with PTSD and other psychopathology may have unique motivations for quitting smoking that could be usefully explored within smoking cessation treatment programs.
An Application of the Theory of Planned Behavior to Sorority Alcohol Consumption
Huchting, Karen; Lac, Andrew; LaBrie, Joseph W.
2008-01-01
Greek-affiliated college students have been found to drink more heavily and frequently than other students. With female student drinking on the rise over the past decade, sorority women may be at particular risk for heavy consumption patterns. The current study is the first to apply the Theory of Planned Behavior (TPB) to examine drinking patterns among a sorority-only sample. Two-hundred and forty-seven sorority members completed questionnaires measuring TPB variables of attitudes, norms, perceived behavioral control, and intentions, with drinking behaviors measured one month later. Latent structural equation modeling examined the pathways of the TPB model. Intentions to drink mediated the relationship between attitudes and norms on drinking behavior. Subjective norms predicted intentions to drink more than attitudes or perceived behavioral control. Perceived behavioral control did not predict intentions but did predict drinking behaviors. Interpretation and suggestions from these findings are discussed. PMID:18055130
New Predictive Filters for Compensating the Transport Delay on a Flight Simulator
NASA Technical Reports Server (NTRS)
Guo, Liwen; Cardullo, Frank M.; Houck, Jacob A.; Kelly, Lon C.; Wolters, Thomas E.
2004-01-01
The problems of transport delay in a flight simulator, such as its sources and effects, are reviewed. Then their effects on a pilot-in-the-loop control system are investigated with simulations. Three current prominent delay compensators the lead/lag filter, McFarland filter, and the Sobiski/Cardullo filter were analyzed and compared. This paper introduces two novel delay compensation techniques an adaptive predictor using the Kalman estimator and a state space predictive filter using a reference aerodynamic model. Applications of these two new compensators on recorded data from the NASA Langley Research Center Visual Motion Simulator show that they achieve better compensation over the current ones.
Current-Sensitive Path Planning for an Underactuated Free-Floating Ocean Sensorweb
NASA Technical Reports Server (NTRS)
Dahl, Kristen P.; Thompson, David R.; McLaren, David; Chao, Yi; Chien, Steve
2011-01-01
This work investigates multi-agent path planning in strong, dynamic currents using thousands of highly under-actuated vehicles. We address the specific task of path planning for a global network of ocean-observing floats. These submersibles are typified by the Argo global network consisting of over 3000 sensor platforms. They can control their buoyancy to float at depth for data collection or rise to the surface for satellite communications. Currently, floats drift at a constant depth regardless of the local currents. However, accurate current forecasts have become available which present the possibility of intentionally controlling floats' motion by dynamically commanding them to linger at different depths. This project explores the use of these current predictions to direct float networks to some desired final formation or position. It presents multiple algorithms for such path optimization and demonstrates their advantage over the standard approach of constant-depth drifting.
Toward superconducting critical current by design
Sadovskyy, Ivan A.; Jia, Ying; Leroux, Maxime; ...
2016-03-31
The interaction of vortex matter with defects in applied superconductors directly determines their current carrying capacity. Defects range from chemically grown nanostructures and crystalline imperfections to the layered structure of the material itself. The vortex-defect interactions are non-additive in general, leading to complex dynamic behavior that has proven difficult to capture in analytical models. With recent rapid progress in computational powers, a new paradigm has emerged that aims at simulation assisted design of defect structures with predictable ‘critical-current-by-design’: analogous to the materials genome concept of predicting stable materials structures of interest. We demonstrate the feasibility of this paradigm by combiningmore » large-scale time-dependent Ginzburg-Landau numerical simulations with experiments on commercial high temperature superconductor (HTS) containing well-controlled correlated defects.« less
Plasma effects on the passive external thermal control coating of Space Station Freedom
NASA Technical Reports Server (NTRS)
Carruth, Ralph, Jr.; Vaughn, Jason A.; Holt, James M.; Werp, Richard; Sudduth, Richard D.
1992-01-01
The current baseline chromic acid anodized thermal control coating on 6061-T6 aluminum meteoroid debris (M/D) shields for SSF has been evaluated. The degradation of the solar absorptance, alpha, and the thermal emittance, epsilon, of chromic acid anodized aluminum due to dielectric breakdown in plasma was measured to predict the on-orbit lifetime of the SSF M/D shields. The lifetime of the thermal control coating was based on the surface temperatures achieved with degradation of the thermal control properties, alpha and epsilon. The temperatures of each M/D shield from first element launch (FEL) through FEL+15 years were analyzed. It is shown that the baseline thermal control coating cannot withstand the -140 V potential between the conductive structure of the SSF and the current plasma environment.
NASA Technical Reports Server (NTRS)
Litt, Jonathan; Liu, Yuan; Sowers, T. Shane; Owen, A. Karl; Guo, Ten-Huei
2014-01-01
This paper describes a model-predictive automatic recovery system for aircraft on the verge of a loss-of-control situation. The system determines when it must intervene to prevent an imminent accident, resulting from a poor approach. It estimates the altitude loss that would result from a go-around maneuver at the current flight condition. If the loss is projected to violate a minimum altitude threshold, the maneuver is automatically triggered. The system deactivates to allow landing once several criteria are met. Piloted flight simulator evaluation showed the system to provide effective envelope protection during extremely unsafe landing attempts. The results demonstrate how flight and propulsion control can be integrated to recover control of the vehicle automatically and prevent a potential catastrophe.
Robust model predictive control for constrained continuous-time nonlinear systems
NASA Astrophysics Data System (ADS)
Sun, Tairen; Pan, Yongping; Zhang, Jun; Yu, Haoyong
2018-02-01
In this paper, a robust model predictive control (MPC) is designed for a class of constrained continuous-time nonlinear systems with bounded additive disturbances. The robust MPC consists of a nonlinear feedback control and a continuous-time model-based dual-mode MPC. The nonlinear feedback control guarantees the actual trajectory being contained in a tube centred at the nominal trajectory. The dual-mode MPC is designed to ensure asymptotic convergence of the nominal trajectory to zero. This paper extends current results on discrete-time model-based tube MPC and linear system model-based tube MPC to continuous-time nonlinear model-based tube MPC. The feasibility and robustness of the proposed robust MPC have been demonstrated by theoretical analysis and applications to a cart-damper springer system and a one-link robot manipulator.
Payload/orbiter contamination control requirement study
NASA Technical Reports Server (NTRS)
Bareiss, L. E.; Ress, E. B.
1975-01-01
The results of a contamination impact analysis upon the spacelab carrier and the spacelab carrier upon some of its potential payloads are presented. These results are based upon contamination computer modeling techniques developed to predict the induced environment for spacelab and to provide the basis for evaluation of the predicted environment against the current on orbit contamination control criteria as specified for payloads. Those spacelab carrier contamination sources evaluated against the stated contamination control criteria were outgassing/offgassing of the major nonmetallic thermal control coating of the spacelab carriers, spacelab core and experiment module and tunnel cabin atmosphere leakage, avionics bay vent, spacelab condensate vent, random particulate sloughing, and the return flux of the molecular content of these sources from the gas-gas interactions with the ambient orbital environment. It is indicated that the spacelab carrier can meet the intent of the contamination control criteria through incorporating known contamination control practices.
Effects of the truth FinishIt brand on tobacco outcomes.
Evans, W Douglas; Rath, Jessica M; Hair, Elizabeth C; Snider, Jeremy Williams; Pitzer, Lindsay; Greenberg, Marisa; Xiao, Haijun; Cantrell, Jennifer; Vallone, Donna
2018-03-01
Since 2000, the truth campaign has grown as a social marketing brand. Back then, truth employed branding to compete directly with the tobacco industry. In 2014, the launch of truth FinishIt reflected changes in the brand's strategy, the tobacco control environment, and youth/young adult behavior. Building on a previous validation study, the current study examined brand equity in truth FinishIt , as measured by validated multi-dimensional scales, and tobacco related attitudes, beliefs, and behavior based on two waves of the Truth Longitudinal Cohort data from 2015 and 2016. A fixed effects logistic regression was used to estimate the change in brand equity between panel survey waves 3 and 4 on past 30-day smoking among ever and current smokers. Additional models determined the effects of brand equity predicting tobacco attitudes/use at follow up among the full sample. All analyses controlled for demographic factors. A one-point increase in the brand equity scale between the two waves was associated with a 66% greater chance of not smoking among ever smokers (OR 1.66, CI 1.11-2.48, p < 0.05) and an 80% greater chance of not smoking among current smokers (OR 1.80, CI 1.05-3.10, p < 0.05). Higher overall truth brand equity at wave 3 predicted less smoking at wave 4 and more positive anti-tobacco attitudes. Being male, younger, and non-white predicted some of the tobacco related attitudes. Future research should examine long-term effects of brand equity on tobacco use and how tobacco control can optimize the use of branding in campaigns.
Labudda, Kirsten; Illies, Dominik; Herzig, Cornelia; Schröder, Katharina; Bien, Christian G; Neuner, Frank
2017-09-01
Childhood maltreatment has been shown to be a risk factor for the development of psychiatric disorders. Although the prevalence of psychiatric disorders is high in epilepsy patients, it is unknown if childhood maltreatment experiences are elevated compared to the normal population and if early maltreatment is a risk factor for current psychiatric comorbidities in epilepsy patients. This is the main purpose of this study. Structured interviews were used to assess current Axis I diagnoses in 120 epilepsy patients from a tertiary Epilepsy Center (34 TLE patients, 86 non-TLE patients). Childhood maltreatment in the family and peer victimization were assessed with validated questionnaires. Patients' maltreatment scores were compared with those of a representative matched control group. Logistic regression analysis was conducted to assess the potential impact of childhood maltreatment on current psychiatric comorbidity in epilepsy patients. Compared to a matched control group, epilepsy patients had higher emotional and sexual maltreatment scores. Patients with a current psychiatric diagnosis reported more family and peer maltreatment than patients without a psychiatric disorder. Family maltreatment scores predicted the likelihood of a current psychiatric disorder. TLE patients did not differ from non-TLE patients according to maltreatment experiences and rates of current psychiatric disorders. Our findings suggest that in epilepsy patients emotional and sexual childhood maltreatment is experienced more often than in the normal population and that early maltreatment is a general risk factor for psychiatric comorbidities in this group. Copyright © 2017 Elsevier B.V. All rights reserved.
Artificial neural network implementation of a near-ideal error prediction controller
NASA Technical Reports Server (NTRS)
Mcvey, Eugene S.; Taylor, Lynore Denise
1992-01-01
A theory has been developed at the University of Virginia which explains the effects of including an ideal predictor in the forward loop of a linear error-sampled system. It has been shown that the presence of this ideal predictor tends to stabilize the class of systems considered. A prediction controller is merely a system which anticipates a signal or part of a signal before it actually occurs. It is understood that an exact prediction controller is physically unrealizable. However, in systems where the input tends to be repetitive or limited, (i.e., not random) near ideal prediction is possible. In order for the controller to act as a stability compensator, the predictor must be designed in a way that allows it to learn the expected error response of the system. In this way, an unstable system will become stable by including the predicted error in the system transfer function. Previous and current prediction controller include pattern recognition developments and fast-time simulation which are applicable to the analysis of linear sampled data type systems. The use of pattern recognition techniques, along with a template matching scheme, has been proposed as one realizable type of near-ideal prediction. Since many, if not most, systems are repeatedly subjected to similar inputs, it was proposed that an adaptive mechanism be used to 'learn' the correct predicted error response. Once the system has learned the response of all the expected inputs, it is necessary only to recognize the type of input with a template matching mechanism and then to use the correct predicted error to drive the system. Suggested here is an alternate approach to the realization of a near-ideal error prediction controller, one designed using Neural Networks. Neural Networks are good at recognizing patterns such as system responses, and the back-propagation architecture makes use of a template matching scheme. In using this type of error prediction, it is assumed that the system error responses be known for a particular input and modeled plant. These responses are used in the error prediction controller. An analysis was done on the general dynamic behavior that results from including a digital error predictor in a control loop and these were compared to those including the near-ideal Neural Network error predictor. This analysis was done for a second and third order system.
Adigun, Babatunde John; Fensin, Michael Lorne; Galloway, Jack D.; ...
2016-10-01
Our burnup study examined the effect of a predicted critical control rod position on the nuclide predictability of several axial and radial locations within a 4×4 graphite moderated gas cooled reactor fuel cluster geometry. To achieve this, a control rod position estimator (CRPE) tool was developed within the framework of the linkage code Monteburns between the transport code MCNP and depletion code CINDER90, and four methodologies were proposed within the tool for maintaining criticality. Two of the proposed methods used an inverse multiplication approach - where the amount of fissile material in a set configuration is slowly altered until criticalitymore » is attained - in estimating the critical control rod position. Another method carried out several MCNP criticality calculations at different control rod positions, then used a linear fit to estimate the critical rod position. The final method used a second-order polynomial fit of several MCNP criticality calculations at different control rod positions to guess the critical rod position. The results showed that consistency in prediction of power densities as well as uranium and plutonium isotopics was mutual among methods within the CRPE tool that predicted critical position consistently well. Finall, while the CRPE tool is currently limited to manipulating a single control rod, future work could be geared toward implementing additional criticality search methodologies along with additional features.« less
Prediction of Traffic Complexity and Controller Workload in Mixed Equipage NextGen Environments
NASA Technical Reports Server (NTRS)
Lee, Paul U.; Prevot, Thomas
2012-01-01
Controller workload is a key factor in limiting en route air traffic capacity. Past efforts to quantify and predict workload have resulted in identifying objective metrics that correlate well with subjective workload ratings during current air traffic control operations. Although these metrics provide a reasonable statistical fit to existing data, they do not provide a good mechanism for estimating controller workload for future air traffic concepts and environments that make different assumptions about automation, enabling technologies, and controller tasks. One such future environment is characterized by en route airspace with a mixture of aircraft equipped with and without Data Communications (Data Comm). In this environment, aircraft with Data Comm will impact controller workload less than aircraft requiring voice communication, altering the close correlation between aircraft count and controller workload that exists in current air traffic operations. This paper outlines a new trajectory-based complexity (TBX) calculation that was presented to controllers during a human-in-the-loop simulation. The results showed that TBX accurately estimated the workload in a mixed Data Comm equipage environment and the resulting complexity values were understood and readily interpreted by the controllers. The complexity was represented as a "modified aircraft account" that weighted different complexity factors and summed them in such a way that the controllers could effectively treat them as aircraft count. The factors were also relatively easy to tune without an extensive data set. The results showed that the TBX approach is well suited for presenting traffic complexity in future air traffic environments.
Omachi, Theodore A; Gregorich, Steven E; Eisner, Mark D; Penaloza, Renee A; Tolstykh, Irina V; Yelin, Edward H; Iribarren, Carlos; Dudley, R Adams; Blanc, Paul D
2013-08-01
Adjustment for differing risks among patients is usually incorporated into newer payment approaches, and current risk models rely on age, sex, and diagnosis codes. It is unknown the extent to which controlling additionally for disease severity improves cost prediction. Failure to adjust for within-disease variation may create incentives to avoid sicker patients. We address this issue among patients with chronic obstructive pulmonary disease (COPD). Cost and clinical data were collected prospectively from 1202 COPD patients at Kaiser Permanente. Baseline analysis included age, sex, and diagnosis codes (using the Diagnostic Cost Group Relative Risk Score) in a general linear model predicting total medical costs in the following year. We determined whether adding COPD severity measures-forced expiratory volume in 1 second, 6-Minute Walk Test, dyspnea score, body mass index, and BODE Index (composite of the other 4 measures)-improved predictions. Separately, we examined household income as a cost predictor. Mean costs were $12,334/y. Controlling for Relative Risk Score, each ½ SD worsening in COPD severity factor was associated with $629 to $1135 in increased annual costs (all P<0.01). The lowest stratum of forced expiratory volume in 1 second (<30% normal) predicted $4098 (95% confidence interval, $576-$8773) additional costs. Household income predicted excess costs when added to the baseline model (P=0.038), but this became nonsignificant when also incorporating the BODE Index. Disease severity measures explain significant cost variations beyond current risk models, and adding them to such models appears important to fairly compensate organizations that accept responsibility for sicker COPD patients. Appropriately controlling for disease severity also accounts for costs otherwise associated with lower socioeconomic status.
High capacity reversible watermarking for audio by histogram shifting and predicted error expansion.
Wang, Fei; Xie, Zhaoxin; Chen, Zuo
2014-01-01
Being reversible, the watermarking information embedded in audio signals can be extracted while the original audio data can achieve lossless recovery. Currently, the few reversible audio watermarking algorithms are confronted with following problems: relatively low SNR (signal-to-noise) of embedded audio; a large amount of auxiliary embedded location information; and the absence of accurate capacity control capability. In this paper, we present a novel reversible audio watermarking scheme based on improved prediction error expansion and histogram shifting. First, we use differential evolution algorithm to optimize prediction coefficients and then apply prediction error expansion to output stego data. Second, in order to reduce location map bits length, we introduced histogram shifting scheme. Meanwhile, the prediction error modification threshold according to a given embedding capacity can be computed by our proposed scheme. Experiments show that this algorithm improves the SNR of embedded audio signals and embedding capacity, drastically reduces location map bits length, and enhances capacity control capability.
ERIC Educational Resources Information Center
Finigan-Carr, Nadine M.; Cheng, Tina L.; Gielen, Andrea; Haynie, Denise L.; Simons-Morton, Bruce
2015-01-01
Aggressive and weapons carrying behaviors are indicative of youth violence. The theory of planned behavior is used in the current analysis to improve our understanding of violence-related behaviors. We examine the influence of perceived behavioral control (self-control and decision making) as a part of the overall framework for understanding the…
Mitigating Future Avian Malaria Threats to Hawaiian Forest Birds from Climate Change.
Liao, Wei; Atkinson, Carter T; LaPointe, Dennis A; Samuel, Michael D
2017-01-01
Avian malaria, transmitted by Culex quinquefasciatus mosquitoes in the Hawaiian Islands, has been a primary contributor to population range limitations, declines, and extinctions for many endemic Hawaiian honeycreepers. Avian malaria is strongly influenced by climate; therefore, predicted future changes are expected to expand transmission into higher elevations and intensify and lengthen existing transmission periods at lower elevations, leading to further population declines and potential extinction of highly susceptible honeycreepers in mid- and high-elevation forests. Based on future climate changes and resulting malaria risk, we evaluated the viability of alternative conservation strategies to preserve endemic Hawaiian birds at mid and high elevations through the 21st century. We linked an epidemiological model with three alternative climatic projections from the Coupled Model Intercomparison Project to predict future malaria risk and bird population dynamics for the coming century. Based on climate change predictions, proposed strategies included mosquito population suppression using modified males, release of genetically modified refractory mosquitoes, competition from other introduced mosquitoes that are not competent vectors, evolved malaria-tolerance in native honeycreepers, feral pig control to reduce mosquito larval habitats, and predator control to improve bird demographics. Transmission rates of malaria are predicted to be higher than currently observed and are likely to have larger impacts in high-elevation forests where current low rates of transmission create a refuge for highly-susceptible birds. As a result, several current and proposed conservation strategies will be insufficient to maintain existing forest bird populations. We concluded that mitigating malaria transmission at high elevations should be a primary conservation goal. Conservation strategies that maintain highly susceptible species like Iiwi (Drepanis coccinea) will likely benefit other threatened and endangered Hawai'i species, especially in high-elevation forests. Our results showed that mosquito control strategies offer potential long-term benefits to high elevation Hawaiian honeycreepers. However, combined strategies will likely be needed to preserve endemic birds at mid elevations. Given the delay required to research, develop, evaluate, and improve several of these currently untested conservation strategies we suggest that planning should begin expeditiously.
Mitigating future avian malaria threats to Hawaiian forest birds from climate change
Liao, Wei; Atkinson, Carter T.; LaPointe, Dennis; Samuel, Michael D.
2017-01-01
Avian malaria, transmitted by Culex quinquefasciatus mosquitoes in the Hawaiian Islands, has been a primary contributor to population range limitations, declines, and extinctions for many endemic Hawaiian honeycreepers. Avian malaria is strongly influenced by climate; therefore, predicted future changes are expected to expand transmission into higher elevations and intensify and lengthen existing transmission periods at lower elevations, leading to further population declines and potential extinction of highly susceptible honeycreepers in mid- and high-elevation forests. Based on future climate changes and resulting malaria risk, we evaluated the viability of alternative conservation strategies to preserve endemic Hawaiian birds at mid and high elevations through the 21st century. We linked an epidemiological model with three alternative climatic projections from the Coupled Model Intercomparison Project to predict future malaria risk and bird population dynamics for the coming century. Based on climate change predictions, proposed strategies included mosquito population suppression using modified males, release of genetically modified refractory mosquitoes, competition from other introduced mosquitoes that are not competent vectors, evolved malaria-tolerance in native honeycreepers, feral pig control to reduce mosquito larval habitats, and predator control to improve bird demographics. Transmission rates of malaria are predicted to be higher than currently observed and are likely to have larger impacts in high-elevation forests where current low rates of transmission create a refuge for highly-susceptible birds. As a result, several current and proposed conservation strategies will be insufficient to maintain existing forest bird populations. We concluded that mitigating malaria transmission at high elevations should be a primary conservation goal. Conservation strategies that maintain highly susceptible species like Iiwi (Drepanis coccinea) will likely benefit other threatened and endangered Hawai’i species, especially in high-elevation forests. Our results showed that mosquito control strategies offer potential long-term benefits to high elevation Hawaiian honeycreepers. However, combined strategies will likely be needed to preserve endemic birds at mid elevations. Given the delay required to research, develop, evaluate, and improve several of these currently untested conservation strategies we suggest that planning should begin expeditiously.
Prospective versus predictive control in timing of hitting a falling ball.
Katsumata, Hiromu; Russell, Daniel M
2012-02-01
Debate exists as to whether humans use prospective or predictive control to intercept an object falling under gravity (Baurès et al. in Vis Res 47:2982-2991, 2007; Zago et al. in Vis Res 48:1532-1538, 2008). Prospective control involves using continuous information to regulate action. τ, the ratio of the size of the gap to the rate of gap closure, has been proposed as the information used in guiding interceptive actions prospectively (Lee in Ecol Psychol 10:221-250, 1998). This form of control is expected to generate movement modulation, where variability decreases over the course of an action based upon more accurate timing information. In contrast, predictive control assumes that a pre-programmed movement is triggered at an appropriate criterion timing variable. For a falling object it is commonly argued that an internal model of gravitational acceleration is used to predict the motion of the object and determine movement initiation. This form of control predicts fixed duration movements initiated at consistent time-to-contact (TTC), either across conditions (constant criterion operational timing) or within conditions (variable criterion operational timing). The current study sought to test predictive and prospective control hypotheses by disrupting continuous visual information of a falling ball and examining consistency in movement initiation and duration, and evidence for movement modulation. Participants (n = 12) batted a ball dropped from three different heights (1, 1.3 and 1.5 m), under both full-vision and partial occlusion conditions. In the occlusion condition, only the initial ball drop and the final 200 ms of ball flight to the interception point could be observed. The initiation of the swing did not occur at a consistent TTC, τ, or any other timing variable across drop heights, in contrast with previous research. However, movement onset was not impacted by occluding the ball flight for 280-380 ms. This finding indicates that humans did not need to be continuously coupled to vision of the ball to initiate the swing accurately, but instead could use predictive control based on acceleration timing information (TTC2). However, other results provide evidence for movement modulation, a characteristic of prospective control. Strong correlations between movement initiation and duration and reduced timing variability from swing onset to arrival at the interception point, both support compensatory variability. An analysis of modulation within the swing revealed that early in the swing, the movement acceleration was strongly correlated to the required mean velocity at swing onset and that later in the swing, the movement acceleration was again strongly correlated with the current required mean velocity. Rather than a consistent movement initiated at the same time, these findings show that the swing was variable but modulated for meeting the demands of each trial. A prospective model of coupling τ (bat-ball) with τ (ball-target) was found to provide a very strong linear fit for an average of 69% of the movement duration. These findings provide evidence for predictive control based on TTC2 information in initiating the swing and prospective control based on τ in guiding the bat to intercept the ball.
Shaffer, Anne; Obradović, Jelena
2017-03-01
Parenting is a cognitive, emotional, and behavioral endeavor, yet limited research investigates parents' executive functions and emotion regulation as predictors of how parents interact with their children. The current study is a multimethod investigation of parental self-regulation in relation to the quality of parenting behavior and parent-child interactions in a diverse sample of parents and kindergarten-age children. Using path analyses, we tested how parent executive functions (inhibitory control) and lack of emotion regulation strategies uniquely relate to both sensitive/responsive behaviors and positive/collaborative behaviors during observed interaction tasks. In our analyses, we accounted for parent education, financial stress, and social support as socioeconomic factors that likely relate to parent executive function and emotion regulation skills. In a diverse sample of primary caregivers (N = 102), we found that direct assessment of parent inhibitory control was positively associated with sensitive/responsive behaviors, whereas parent self-reported difficulties in using emotion regulation strategies were associated with lower levels of positive and collaborative dyadic behaviors. Parent education and financial stress predicted inhibitory control, and social support predicted emotion regulation difficulties; parent education was also a significant predictor of sensitive/responsive behaviors. Greater inhibitory control skills and fewer difficulties identifying effective emotion regulation strategies were not significantly related in our final path model. We discuss our findings in the context of current and emerging parenting interventions. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Piloted Simulation of a Model-Predictive Automated Recovery System
NASA Technical Reports Server (NTRS)
Liu, James (Yuan); Litt, Jonathan; Sowers, T. Shane; Owens, A. Karl; Guo, Ten-Huei
2014-01-01
This presentation describes a model-predictive automatic recovery system for aircraft on the verge of a loss-of-control situation. The system determines when it must intervene to prevent an imminent accident, resulting from a poor approach. It estimates the altitude loss that would result from a go-around maneuver at the current flight condition. If the loss is projected to violate a minimum altitude threshold, the maneuver is automatically triggered. The system deactivates to allow landing once several criteria are met. Piloted flight simulator evaluation showed the system to provide effective envelope protection during extremely unsafe landing attempts. The results demonstrate how flight and propulsion control can be integrated to recover control of the vehicle automatically and prevent a potential catastrophe.
A Simple Two Aircraft Conflict Resolution Algorithm
NASA Technical Reports Server (NTRS)
Chatterji, Gano B.
1999-01-01
Conflict detection and resolution methods are crucial for distributed air-ground traffic management in which the crew in the cockpit, dispatchers in operation control centers and air traffic controllers in the ground-based air traffic management facilities share information and participate in the traffic flow and traffic control imctions.This paper describes a conflict detection and a conflict resolution method. The conflict detection method predicts the minimum separation and the time-to-go to the closest point of approach by assuming that both the aircraft will continue to fly at their current speeds along their current headings. The conflict resolution method described here is motivated by the proportional navigation algorithm. It generates speed and heading commands to rotate the line-of-sight either clockwise or counter-clockwise for conflict resolution. Once the aircraft achieve a positive range-rate and no further conflict is predicted, the algorithm generates heading commands to turn back the aircraft to their nominal trajectories. The speed commands are set to the optimal pre-resolution speeds. Six numerical examples are presented to demonstrate the conflict detection and resolution method.
Spray combustion experiments and numerical predictions
NASA Technical Reports Server (NTRS)
Mularz, Edward J.; Bulzan, Daniel L.; Chen, Kuo-Huey
1993-01-01
The next generation of commercial aircraft will include turbofan engines with performance significantly better than those in the current fleet. Control of particulate and gaseous emissions will also be an integral part of the engine design criteria. These performance and emission requirements present a technical challenge for the combustor: control of the fuel and air mixing and control of the local stoichiometry will have to be maintained much more rigorously than with combustors in current production. A better understanding of the flow physics of liquid fuel spray combustion is necessary. This paper describes recent experiments on spray combustion where detailed measurements of the spray characteristics were made, including local drop-size distributions and velocities. Also, an advanced combustor CFD code has been under development and predictions from this code are compared with experimental results. Studies such as these will provide information to the advanced combustor designer on fuel spray quality and mixing effectiveness. Validation of new fast, robust, and efficient CFD codes will also enable the combustor designer to use them as additional design tools for optimization of combustor concepts for the next generation of aircraft engines.
Rummel, Jan; Boywitt, C Dennis
2014-10-01
Although engaging in task-unrelated thoughts can be enjoyable and functional under certain circumstances, allowing one's mind to wander off-task will come at a cost to performance in many situations. Given that task-unrelated thoughts need to be blocked out when the current task requires full attention, it has been argued that cognitive control is necessary to prevent mind-wandering from becoming maladaptive. Extending this idea, we exposed participants to tasks of different demands and assessed mind-wandering via thought probes. Employing a latent-change model, we found mind-wandering to be adjusted to current task demands. As hypothesized, the degree of adjustment was predicted by working memory capacity, indicating that participants with higher working memory capacity were more flexible in their coordination of on- and off-task thoughts. Notably, the better the adjustment, the smaller performance decrements due to increased task demands were. On the basis of these findings, we argue that cognitive control does not simply allow blocking out task-unrelated thoughts but, rather, allows one to flexibly adjust mind-wandering to situational demands.
Schnyer, David M; Clasen, Peter C; Gonzalez, Christopher; Beevers, Christopher G
2017-06-30
Using MRI to diagnose mental disorders has been a long-term goal. Despite this, the vast majority of prior neuroimaging work has been descriptive rather than predictive. The current study applies support vector machine (SVM) learning to MRI measures of brain white matter to classify adults with Major Depressive Disorder (MDD) and healthy controls. In a precisely matched group of individuals with MDD (n =25) and healthy controls (n =25), SVM learning accurately (74%) classified patients and controls across a brain map of white matter fractional anisotropy values (FA). The study revealed three main findings: 1) SVM applied to DTI derived FA maps can accurately classify MDD vs. healthy controls; 2) prediction is strongest when only right hemisphere white matter is examined; and 3) removing FA values from a region identified by univariate contrast as significantly different between MDD and healthy controls does not change the SVM accuracy. These results indicate that SVM learning applied to neuroimaging data can classify the presence versus absence of MDD and that predictive information is distributed across brain networks rather than being highly localized. Finally, MDD group differences revealed through typical univariate contrasts do not necessarily reveal patterns that provide accurate predictive information. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Brosowsky, Nicholaus P; Crump, Matthew J C
2016-08-01
Recent work suggests that environmental cues associated with previous attentional control settings can rapidly and involuntarily adjust attentional priorities. The current study tests predictions from adaptive-learning and memory-based theories of contextual control about the role of intentions for setting attentional priorities. To extend the empirical boundaries of contextual control phenomena, and to determine whether theoretical principles of contextual control are generalizable we used a novel bi-dimensional stimulus sampling task. Subjects viewed briefly presented arrays of letters and colors presented above or below fixation, and identified specific stimuli according to a dimensional (letter or color) and positional cue. Location was predictive of the cued dimension, but not the position or identity. In contrast to previous findings, contextual control failed to develop through automatic, adaptive-learning processes. Instead, previous experience with intentionally changing attentional sampling priorities between different contexts was required for contextual control to develop. Copyright © 2016 Elsevier Inc. All rights reserved.
2011-12-02
construction and validation of predictive computer models such as those used in Time-domain Analysis Simulation for Advanced Tracking (TASAT), a...characterization data, successful construction and validation of predictive computer models was accomplished. And an investigation in pose determination from...currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES
Baker, Joseph C.; Ostrander, Julie H.; Lem, Siya; Broadwater, Gloria; Bean, Gregory R.; D'Amato, Nicholas C.; Goldenberg, Vanessa K.; Rowell, Craig; Ibarra-Drendall, Catherine; Grant, Tracey; Pilie, Patrick G.; Vasilatos, Shauna N.; Troch, Michelle M.; Scott, Victoria; Wilke, Lee G.; Paisie, Carolyn; Rabiner, Sarah M.; Torres-Hernandez, Alejandro; Zalles, Carola M.; Seewaldt, Victoria L.
2009-01-01
Purpose Currently, we lack biomarkers to predict whether high-risk women with mammary atypia will respond to tamoxifen chemoprevention. Experimental Design Thirty-four women with cytologic mammary atypia from the Duke University High-Risk clinic were offered tamoxifen chemoprevention. We tested whether ESR1 promoter hypermethylation and/or estrogen receptor (ER) protein expression by immunohistochemistry predicted persistent atypia in 18 women who were treated with tamoxifen for 12 months and in 16 untreated controls. Results We observed a statistically significant decrease in the Masood score of women on tamoxifen chemoprevention for 12 months compared with control women. This was a significant interaction effect of time (0, 6, and 12 months) and treatment group (tamoxifen versus control) P = 0.0007. However, neither ESR1 promoter hypermethylation nor low ER expression predicted persistent atypia in Random Periareolar Fine Needle Aspiration after 12 months tamoxifen prevention. Conclusions Results from this single institution pilot study provide evidence that, unlike for invasive breast cancer, ESR1 promoter hypermethylation and/or low ER expression is not a reliable marker of tamoxifen-resistant atypia. PMID:18708376
Towards Current Profile Control in ITER: Potential Approaches and Research Needs
NASA Astrophysics Data System (ADS)
Schuster, E.; Barton, J. E.; Wehner, W. P.
2014-10-01
Many challenging plasma control problems still need to be addressed in order for the ITER Plasma Control System (PCS) to be able to successfully achieve the ITER project goals. For instance, setting up a suitable toroidal current density profile is key for one possible advanced scenario characterized by noninductive sustainment of the plasma current and steady-state operation. The nonlinearity and high dimensionality exhibited by the plasma demand a model-based current-profile control synthesis procedure that can accommodate this complexity through embedding the known physics within the design. The development of a model capturing the dynamics of the plasma relevant for control design enables not only the design of feedback controllers for regulation or tracking but also the design of optimal feedforward controllers for a systematic model-based approach to scenario planning, the design of state estimators for a reliable real-time reconstruction of the plasma internal profiles based on limited and noisy diagnostics, and the development of a fast predictive simulation code for closed-loop performance evaluation before implementation. Progress towards control-oriented modeling of the current profile evolution and associated control design has been reported following both data-driven and first-principles-driven approaches. An overview of these two approaches will be provided, as well as a discussion on research needs associated with each one of the model applications described above. Supported by the US Department of Energy under DE-SC0001334 and DE-SC0010661.
Rasmussen, Jon Jarløv; Schou, Morten; Selmer, Christian; Johansen, Marie Louise; Gustafsson, Finn; Frystyk, Jan; Dela, Flemming; Faber, Jens; Kistorp, Caroline
2017-09-01
Abuse of anabolic androgenic steroids (AAS) is prevalent among young men, but information regarding effects on insulin sensitivity and fat distribution is limited. The objective was to investigate insulin sensitivity in relation to fat distribution and adipocytokines among current and former AAS abusers compared with controls. Cross-sectional study among men involved in recreational strength training. Current and former AAS abusers (n=37 and n=33) and controls (n=30) volunteered from the community. We assessed insulin sensitivity by Matsuda index (oral glucose tolerance test). Using overnight fasting blood samples, adiponectin and leptin were measured. Body composition and fat distribution, including visceral adipose tissue (VAT), were assessed by dual energy X-ray absorptiometry. Current and former AAS abusers displayed lower Matsuda index than controls (%-difference (95%CI) from controls, -26% (-45; -1) and -39% (-55; -18)). Testosterone was markedly higher among current AAS abusers and subnormal among former AAS abusers compared with controls. Current AAS abusers displayed higher mean VAT than controls (388 (17) vs 293 (12) cm 3 , P<.001) whereas body fat %, adiponectin and leptin concentrations were lower. In contrast, former AAS abusers showed highest leptin concentrations and body fat %. Multivariate linear regressions identified VAT as independent predictor of lower Matsuda index among current AAS abusers compared with controls; while body fat % independently predicted lower Matsuda index among former AAS abusers. Both current and former AAS abusers displayed lower insulin sensitivity which could be mediated by higher VAT and total body fat %, respectively. © 2017 John Wiley & Sons Ltd.
Global elimination of leprosy by 2020: are we on track?
Blok, David J; De Vlas, Sake J; Richardus, Jan Hendrik
2015-10-22
Every year more than 200,000 new leprosy cases are registered globally. This number has been fairly stable over the past 8 years. WHO has set a target to interrupt the transmission of leprosy globally by 2020. The aim of this study is to investigate whether this target, interpreted as global elimination, is feasible given the current control strategy. We focus on the three most important endemic countries, India, Brazil and Indonesia, which together account for more than 80 % of all newly registered leprosy cases. We used the existing individual-based model SIMCOLEP to predict future trends of leprosy incidence given the current control strategy in each country. SIMCOLEP simulates the spread of M. leprae in a population that is structured in households. Current control consists of passive and active case detection, and multidrug therapy (MDT). Predictions of leprosy incidence were made for each country as well as for one high-endemic region within each country: Chhattisgarh (India), Pará State (Brazil) and Madura (Indonesia). Data for model quantification came from: National Leprosy Elimination Program (India), SINAN database (Brazil), and Netherlands Leprosy Relief (Indonesia). Our projections of future leprosy incidence all show a downward trend. In 2020, the country-level leprosy incidence has decreased to 6.2, 6.1 and 3.3 per 100,000 in India, Brazil and Indonesia, respectively, meeting the elimination target of less than 10 per 100,000. However, elimination may not be achieved in time for the high-endemic regions. The leprosy incidence in 2020 is predicted to be 16.2, 21.1 and 19.3 per 100,000 in Chhattisgarh, Pará and Madura, respectively, and the target may only be achieved in another 5 to 10 years. Our predictions show that although country-level elimination is reached by 2020, leprosy is likely to remain a problem in the high-endemic regions (i.e. states, districts and provinces with multimillion populations), which account for most of the cases in a country.
NASA Technical Reports Server (NTRS)
Maughmer, Mark D.; Ozoroski, L.; Ozoroski, T.; Straussfogel, D.
1990-01-01
Many types of hypersonic aircraft configurations are currently being studied for feasibility of future development. Since the control of the hypersonic configurations throughout the speed range has a major impact on acceptable designs, it must be considered in the conceptual design stage. Here, an investigation of the aerodynamic control effectiveness of highly swept delta planforms operating in ground effect is presented. A vortex-lattice computer program incorporating a free wake is developed as a tool to calculate aerodynamic stability and control derivatives. Data generated using this program are compared to experimental data and to data from other vortex-lattice programs. Results show that an elevon deflection produces greater increments in C sub L and C sub M in ground effect than the same deflection produces out of ground effect and that the free wake is indeed necessary for good predictions near the ground.
Kabore, Achille; Biritwum, Nana-Kwadwo; Downs, Philip W.; Soares Magalhaes, Ricardo J.; Zhang, Yaobi; Ottesen, Eric A.
2013-01-01
Background Mapping the distribution of schistosomiasis is essential to determine where control programs should operate, but because it is impractical to assess infection prevalence in every potentially endemic community, model-based geostatistics (MBG) is increasingly being used to predict prevalence and determine intervention strategies. Methodology/Principal Findings To assess the accuracy of MBG predictions for Schistosoma haematobium infection in Ghana, school surveys were evaluated at 79 sites to yield empiric prevalence values that could be compared with values derived from recently published MBG predictions. Based on these findings schools were categorized according to WHO guidelines so that practical implications of any differences could be determined. Using the mean predicted values alone, 21 of the 25 empirically determined ‘high-risk’ schools requiring yearly praziquantel would have been undertreated and almost 20% of the remaining schools would have been treated despite empirically-determined absence of infection – translating into 28% of the children in the 79 schools being undertreated and 12% receiving treatment in the absence of any demonstrated need. Conclusions/Significance Using the current predictive map for Ghana as a spatial decision support tool by aggregating prevalence estimates to the district level was clearly not adequate for guiding the national program, but the alternative of assessing each school in potentially endemic areas of Ghana or elsewhere is not at all feasible; modelling must be a tool complementary to empiric assessments. Thus for practical usefulness, predictive risk mapping should not be thought of as a one-time exercise but must, as in the current study, be an iterative process that incorporates empiric testing and model refining to create updated versions that meet the needs of disease control operational managers. PMID:23505584
Finite Control Set Model Predictive Control for Multiple Distributed Generators Microgrids
NASA Astrophysics Data System (ADS)
Babqi, Abdulrahman Jamal
This dissertation proposes two control strategies for AC microgrids that consist of multiple distributed generators (DGs). The control strategies are valid for both grid-connected and islanded modes of operation. In general, microgrid can operate as a stand-alone system (i.e., islanded mode) or while it is connected to the utility grid (i.e., grid connected mode). To enhance the performance of a micrgorid, a sophisticated control scheme should be employed. The control strategies of microgrids can be divided into primary and secondary controls. The primary control regulates the output active and reactive powers of each DG in grid-connected mode as well as the output voltage and frequency of each DG in islanded mode. The secondary control is responsible for regulating the microgrid voltage and frequency in the islanded mode. Moreover, it provides power sharing schemes among the DGs. In other words, the secondary control specifies the set points (i.e. reference values) for the primary controllers. In this dissertation, Finite Control Set Model Predictive Control (FCS-MPC) was proposed for controlling microgrids. FCS-MPC was used as the primary controller to regulate the output power of each DG (in the grid-connected mode) or the voltage of the point of DG coupling (in the islanded mode of operation). In the grid-connected mode, Direct Power Model Predictive Control (DPMPC) was implemented to manage the power flow between each DG and the utility grid. In the islanded mode, Voltage Model Predictive Control (VMPC), as the primary control, and droop control, as the secondary control, were employed to control the output voltage of each DG and system frequency. The controller was equipped with a supplementary current limiting technique in order to limit the output current of each DG in abnormal incidents. The control approach also enabled smooth transition between the two modes. The performance of the control strategy was investigated and verified using PSCAD/EMTDC software platform. This dissertation also proposes a control and power sharing strategy for small-scale microgrids in both grid-connected and islanded modes based on centralized FCS-MPC. In grid-connected mode, the controller was capable of managing the output power of each DG and enabling flexible power regulation between the microgrid and the utility grid. In islanded mode, the controller regulated the microgrid voltage and frequency, and provided a precise power sharing scheme among the DGs. In addition, the power sharing can be adjusted flexibly by changing the sharing ratio. The proposed control also enabled plug-and-play operation. Moreover, a smooth transition between the two modes of operation was achieved without any disturbance in the system. Case studies were carried out in order to validate the proposed control strategy with the PSCAD/EMTDA software package.
Rift Valley Fever Prediction and Risk Mapping: 2014-2015 Season
NASA Technical Reports Server (NTRS)
Anyamba, Assaf
2015-01-01
Extremes in either direction (+-) of precipitation temperature have significant implications for disease vectors and pathogen emergence and spread Magnitude of ENSO influence on precipitation temperature cannot be currently predicted rely on average history and patterns. Timing of event and emergence disease can be exploited (GAP) in to undertake vector control and preparedness measures. Currently - no risk for ecologically-coupled RVFV activity however we need to be vigilant during the coming fall season due the ongoing buildup of energy in the central Pacific Ocean. Potential for the dual-use of the RVF Monitor system for other VBDs Need to invest in early ground surveillance and the use of rapid field diagnostic capabilities for vector identification and virus isolation.
Zhao, Meng; Ding, Baocang
2015-03-01
This paper considers the distributed model predictive control (MPC) of nonlinear large-scale systems with dynamically decoupled subsystems. According to the coupled state in the overall cost function of centralized MPC, the neighbors are confirmed and fixed for each subsystem, and the overall objective function is disassembled into each local optimization. In order to guarantee the closed-loop stability of distributed MPC algorithm, the overall compatibility constraint for centralized MPC algorithm is decomposed into each local controller. The communication between each subsystem and its neighbors is relatively low, only the current states before optimization and the optimized input variables after optimization are being transferred. For each local controller, the quasi-infinite horizon MPC algorithm is adopted, and the global closed-loop system is proven to be exponentially stable. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mavkov, B.; Witrant, E.; Prieur, C.; Maljaars, E.; Felici, F.; Sauter, O.; the TCV-Team
2018-05-01
In this paper, model-based closed-loop algorithms are derived for distributed control of the inverse of the safety factor profile and the plasma pressure parameter β of the TCV tokamak. The simultaneous control of the two plasma quantities is performed by combining two different control methods. The control design of the plasma safety factor is based on an infinite-dimensional setting using Lyapunov analysis for partial differential equations, while the control of the plasma pressure parameter is designed using control techniques for single-input and single-output systems. The performance and robustness of the proposed controller is analyzed in simulations using the fast plasma transport simulator RAPTOR. The control is then implemented and tested in experiments in TCV L-mode discharges using the RAPTOR model predicted estimates for the q-profile. The distributed control in TCV is performed using one co-current and one counter-current electron cyclotron heating actuation.
A 3D-CFD code for accurate prediction of fluid flows and fluid forces in seals
NASA Technical Reports Server (NTRS)
Athavale, M. M.; Przekwas, A. J.; Hendricks, R. C.
1994-01-01
Current and future turbomachinery requires advanced seal configurations to control leakage, inhibit mixing of incompatible fluids and to control the rotodynamic response. In recognition of a deficiency in the existing predictive methodology for seals, a seven year effort was established in 1990 by NASA's Office of Aeronautics Exploration and Technology, under the Earth-to-Orbit Propulsion program, to develop validated Computational Fluid Dynamics (CFD) concepts, codes and analyses for seals. The effort will provide NASA and the U.S. Aerospace Industry with advanced CFD scientific codes and industrial codes for analyzing and designing turbomachinery seals. An advanced 3D CFD cylindrical seal code has been developed, incorporating state-of-the-art computational methodology for flow analysis in straight, tapered and stepped seals. Relevant computational features of the code include: stationary/rotating coordinates, cylindrical and general Body Fitted Coordinates (BFC) systems, high order differencing schemes, colocated variable arrangement, advanced turbulence models, incompressible/compressible flows, and moving grids. This paper presents the current status of code development, code demonstration for predicting rotordynamic coefficients, numerical parametric study of entrance loss coefficients for generic annular seals, and plans for code extensions to labyrinth, damping, and other seal configurations.
Predictive assimilation framework to support contaminated site understanding and remediation
NASA Astrophysics Data System (ADS)
Versteeg, R. J.; Bianchi, M.; Hubbard, S. S.
2014-12-01
Subsurface system behavior at contaminated sites is driven and controlled by the interplay of physical, chemical, and biological processes occurring at multiple temporal and spatial scales. Effective remediation and monitoring planning requires an understanding of this complexity that is current, predictive (with some level of confidence) and actionable. We present and demonstrate a predictive assimilation framework (PAF). This framework automatically ingests, quality controls and stores near real-time environmental data and processes these data using different inversion and modeling codes to provide information on the current state and evolution of the subsurface system. PAF is implemented as a cloud based software application which has five components: (1) data acquisition, (2) data management, (3) data assimilation and processing, (4) visualization and result deliver and (5) orchestration. Access to and interaction with PAF is done through a standard browser. PAF is designed to be modular so that it can ingest and process different data streams dependent on the site. We will present an implementation of PAF which uses data from a highly instrumented site (the DOE Rifle Subsurface Biogeochemistry Field Observatory in Rifle, Colorado) for which PAF automatically ingests hydrological data and forward models groundwater flow in the saturated zone.
Efficient Strategies for Predictive Cell-Level Control of Lithium-Ion Batteries
NASA Astrophysics Data System (ADS)
Xavier, Marcelo A.
This dissertation introduces a set of state-space based model predictive control (MPC) algorithms tailored to a non-zero feedthrough term to account for the ohmic resistance that is inherent to the battery dynamics. MPC is herein applied to the problem of regulating cell-level measures of performance for lithium-ion batteries; the control methodologies are used first to compute a fast charging profile that respects input, output, and state constraints, i.e., input current, terminal voltage, and state of charge for an equivalent circuit model of the battery cell, and extended later to a linearized physics-based reduced-order model. The novelty of this work can summarized as follows: (1) the MPC variants are employed to a physics based reduce-order model in order to make use of the available set of internal electrochemical variables and mitigate internal mechanisms of cell degradation. (e.g., lithium plating); (2) we developed a dual-mode MPC closed-loop paradigm that suits the battery control problem with the objective of reducing computational effort by solving simpler optimization routines and guaranteeing stability; and finally (3) we developed a completely new approach of the use of a predictive control strategy where MPC is employed as a "smart sensor" for power estimation. Results are presented that show the comparative performance of the MPC algorithms for both EMC and PBROM These results highlight that dual-mode MPC can deliver optimal input current profiles by using a shorter horizon while still guaranteeing stability. Additionally, rigorous mathematical developments are presented for the development of the MPC algorithms. The use of MPC as a "smart sensor" presents it self as an appealing method for power estimation, since MPC permits a fully dynamic input profile that is able to achieve performance right at the proper constraint boundaries. Therefore, MPC is expected to produce accurate power limits for each computed sample time when compared to the Bisection method [1] which assumes constant input values over the prediction interval.
Bayesian modeling of flexible cognitive control
Jiang, Jiefeng; Heller, Katherine; Egner, Tobias
2014-01-01
“Cognitive control” describes endogenous guidance of behavior in situations where routine stimulus-response associations are suboptimal for achieving a desired goal. The computational and neural mechanisms underlying this capacity remain poorly understood. We examine recent advances stemming from the application of a Bayesian learner perspective that provides optimal prediction for control processes. In reviewing the application of Bayesian models to cognitive control, we note that an important limitation in current models is a lack of a plausible mechanism for the flexible adjustment of control over conflict levels changing at varying temporal scales. We then show that flexible cognitive control can be achieved by a Bayesian model with a volatility-driven learning mechanism that modulates dynamically the relative dependence on recent and remote experiences in its prediction of future control demand. We conclude that the emergent Bayesian perspective on computational mechanisms of cognitive control holds considerable promise, especially if future studies can identify neural substrates of the variables encoded by these models, and determine the nature (Bayesian or otherwise) of their neural implementation. PMID:24929218
Real-Time Flight Envelope Monitoring System
NASA Technical Reports Server (NTRS)
Kerho, Michael; Bragg, Michael B.; Ansell, Phillip J.
2012-01-01
The objective of this effort was to show that real-time aircraft control-surface hinge-moment information could be used to provide a robust and reliable prediction of vehicle performance and control authority degradation. For a given airfoil section with a control surface -- be it a wing with an aileron, rudder, or elevator -- the control-surface hinge moment is sensitive to the aerodynamic characteristics of the section. As a result, changes in the aerodynamics of the section due to angle-of-attack or environmental effects such as icing, heavy rain, surface contaminants, bird strikes, or battle damage will affect the control surface hinge moment. These changes include both the magnitude of the hinge moment and its sign in a time-averaged sense, and the variation of the hinge moment with time. The current program attempts to take the real-time hinge moment information from the aircraft control surfaces and develop a system to predict aircraft envelope boundaries across a range of conditions, alerting the flight crew to reductions in aircraft controllability and flight boundaries.
IMPROVE AND APPLY CHEMICAL MECHANISMS FOR DEVELOPING OZONE CONTROL STRATEGIES
Air quality models that realistically describe the formation of ozone, air toxics, and other pollutants are needed by EPA and state agencies to predict current and future concentrations of these pollutants and develop ways to decrease their concentrations below harmful levels. ...
Dynamic adjustments of cognitive control: oscillatory correlates of the conflict adaptation effect.
Pastötter, Bernhard; Dreisbach, Gesine; Bäuml, Karl-Heinz T
2013-12-01
It is a prominent idea that cognitive control mediates conflict adaptation, in that response conflict in a previous trial triggers control adjustments that reduce conflict in a current trial. In the present EEG study, we investigated the dynamics of cognitive control in a response-priming task by examining the effects of previous trial conflict on intertrial and current trial oscillatory brain activities, both on the electrode and the source level. Behavioral results showed conflict adaptation effects for RTs and response accuracy. Physiological results showed sustained intertrial effects in left parietal theta power, originating in the left inferior parietal cortex, and midcentral beta power, originating in the left and right (pre)motor cortex. Moreover, physiological analysis revealed a current trial conflict adaptation effect in midfrontal theta power, originating in the ACC. Correlational analyses showed that intertrial effects predicted conflict-induced midfrontal theta power in currently incongruent trials. In addition, conflict adaptation effects in midfrontal theta power and RTs were positively related. Together, these findings point to a dynamic cognitive control system that, as a function of previous trial type, up- and down-regulates attention and preparatory motor activities in anticipation of the next trial.
A standardized model for predicting flap failure using indocyanine green dye
NASA Astrophysics Data System (ADS)
Zimmermann, Terence M.; Moore, Lindsay S.; Warram, Jason M.; Greene, Benjamin J.; Nakhmani, Arie; Korb, Melissa L.; Rosenthal, Eben L.
2016-03-01
Techniques that provide a non-invasive method for evaluation of intraoperative skin flap perfusion are currently available but underutilized. We hypothesize that intraoperative vascular imaging can be used to reliably assess skin flap perfusion and elucidate areas of future necrosis by means of a standardized critical perfusion threshold. Five animal groups (negative controls, n=4; positive controls, n=5; chemotherapy group, n=5; radiation group, n=5; chemoradiation group, n=5) underwent pre-flap treatments two weeks prior to undergoing random pattern dorsal fasciocutaneous flaps with a length to width ratio of 2:1 (3 x 1.5 cm). Flap perfusion was assessed via laser-assisted indocyanine green dye angiography and compared to standard clinical assessment for predictive accuracy of flap necrosis. For estimating flap-failure, clinical prediction achieved a sensitivity of 79.3% and a specificity of 90.5%. When average flap perfusion was more than three standard deviations below the average flap perfusion for the negative control group at the time of the flap procedure (144.3+/-17.05 absolute perfusion units), laser-assisted indocyanine green dye angiography achieved a sensitivity of 81.1% and a specificity of 97.3%. When absolute perfusion units were seven standard deviations below the average flap perfusion for the negative control group, specificity of necrosis prediction was 100%. Quantitative absolute perfusion units can improve specificity for intraoperative prediction of viable tissue. Using this strategy, a positive predictive threshold of flap failure can be standardized for clinical use.
A New Approach for Identifying Patients with Undiagnosed Chronic Obstructive Pulmonary Disease
Mannino, David; Leidy, Nancy Kline; Malley, Karen G.; Bacci, Elizabeth D.; Barr, R. Graham; Bowler, Russ P.; Han, MeiLan K.; Houfek, Julia F.; Make, Barry; Meldrum, Catherine A.; Rennard, Stephen; Thomashow, Byron; Walsh, John; Yawn, Barbara P.
2017-01-01
Rationale: Chronic obstructive pulmonary disease (COPD) is often unrecognized and untreated. Objectives: To develop a method for identifying undiagnosed COPD requiring treatment with currently available therapies (FEV1 <60% predicted and/or exacerbation risk). Methods: We conducted a multisite, cross-sectional, case-control study in U.S. pulmonary and primary care clinics that recruited subjects from primary care settings. Cases were patients with COPD and at least one exacerbation in the past year or FEV1 less than 60% of predicted without exacerbation in the past year. Control subjects were persons with no COPD or with mild COPD (FEV1 ≥60% predicted, no exacerbation in the past year). In random forests analyses, we identified the smallest set of questions plus peak expiratory flow (PEF) with optimal sensitivity (SN) and specificity (SP). Measurements and Main Results: PEF and spirometry were recorded in 186 cases and 160 control subjects. The mean (SD) age of the sample population was 62.7 (10.1) years; 55% were female; 86% were white; and 16% had never smoked. The mean FEV1 percent predicted for cases was 42.5% (14.2%); for control subjects, it was 82.5% (15.7%). A five-item questionnaire, CAPTURE (COPD Assessment in Primary Care to Identify Undiagnosed Respiratory Disease and Exacerbation Risk), was used to assess exposure, breathing problems, tiring easily, and acute respiratory illnesses. CAPTURE exhibited an SN of 95.7% and an SP of 44.4% for differentiating cases from all control subjects, and an SN of 95.7% and an SP of 67.8% for differentiating cases from no-COPD control subjects. The PEF (males, <350 L/min; females, <250 L/min) SN and SP were 88.0% and 77.5%, respectively, for differentiating cases from all control subjects, and they were 88.0% and 90.8%, respectively, for distinguishing cases from no-COPD control subjects. The CAPTURE plus PEF exhibited improved SN and SP for all cases versus all control subjects (89.7% and 78.1%, respectively) and for all cases versus no-COPD control subjects (89.7% and 93.1%, respectively). Conclusions: CAPTURE with PEF can identify patients with COPD who would benefit from currently available therapy and require further diagnostic evaluation. Clinical trial registered with clinicaltrials.gov (NCT01880177). PMID:27783539
Towards Bridging the Gaps in Holistic Transition Prediction via Numerical Simulations
NASA Technical Reports Server (NTRS)
Choudhari, Meelan M.; Li, Fei; Duan, Lian; Chang, Chau-Lyan; Carpenter, Mark H.; Streett, Craig L.; Malik, Mujeeb R.
2013-01-01
The economic and environmental benefits of laminar flow technology via reduced fuel burn of subsonic and supersonic aircraft cannot be realized without minimizing the uncertainty in drag prediction in general and transition prediction in particular. Transition research under NASA's Aeronautical Sciences Project seeks to develop a validated set of variable fidelity prediction tools with known strengths and limitations, so as to enable "sufficiently" accurate transition prediction and practical transition control for future vehicle concepts. This paper provides a summary of selected research activities targeting the current gaps in high-fidelity transition prediction, specifically those related to the receptivity and laminar breakdown phases of crossflow induced transition in a subsonic swept-wing boundary layer. The results of direct numerical simulations are used to obtain an enhanced understanding of the laminar breakdown region as well as to validate reduced order prediction methods.
Optimal Predictive Control for Path Following of a Full Drive-by-Wire Vehicle at Varying Speeds
NASA Astrophysics Data System (ADS)
SONG, Pan; GAO, Bolin; XIE, Shugang; FANG, Rui
2017-05-01
The current research of the global chassis control problem for the full drive-by-wire vehicle focuses on the control allocation (CA) of the four-wheel-distributed traction/braking/steering systems. However, the path following performance and the handling stability of the vehicle can be enhanced a step further by automatically adjusting the vehicle speed to the optimal value. The optimal solution for the combined longitudinal and lateral motion control (MC) problem is given. First, a new variable step-size spatial transformation method is proposed and utilized in the prediction model to derive the dynamics of the vehicle with respect to the road, such that the tracking errors can be explicitly obtained over the prediction horizon at varying speeds. Second, a nonlinear model predictive control (NMPC) algorithm is introduced to handle the nonlinear coupling between any two directions of the vehicular planar motion and computes the sequence of the optimal motion states for following the desired path. Third, a hierarchical control structure is proposed to separate the motion controller into a NMPC based path planner and a terminal sliding mode control (TSMC) based path follower. As revealed through off-line simulations, the hierarchical methodology brings nearly 1700% improvement in computational efficiency without loss of control performance. Finally, the control algorithm is verified through a hardware in-the-loop simulation system. Double-lane-change (DLC) test results show that by using the optimal predictive controller, the root-mean-square (RMS) values of the lateral deviations and the orientation errors can be reduced by 41% and 30%, respectively, comparing to those by the optimal preview acceleration (OPA) driver model with the non-preview speed-tracking method. Additionally, the average vehicle speed is increased by 0.26 km/h with the peak sideslip angle suppressed to 1.9°. This research proposes a novel motion controller, which provides the full drive-by-wire vehicle with better lane-keeping and collision-avoidance capabilities during autonomous driving.
NASA Astrophysics Data System (ADS)
Kourafalou, V.; Kang, H.; Perlin, N.; Le Henaff, M.; Lamkin, J. T.
2016-02-01
Connectivity around the South Florida coastal regions and between South Florida and Cuba are largely influenced by a) local coastal processes and b) circulation in the Florida Straits, which is controlled by the larger scale Florida Current variability. Prediction of the physical connectivity is a necessary component for several activities that require ocean forecasts, such as oil spills, fisheries research, search and rescue. This requires a predictive system that can accommodate the intense coastal to offshore interactions and the linkages to the complex regional circulation. The Florida Straits, South Florida and Florida Keys Hybrid Coordinate Ocean Model is such a regional ocean predictive system, covering a large area over the Florida Straits and the adjacent land areas, representing both coastal and oceanic processes. The real-time ocean forecast system is high resolution ( 900m), embedded in larger scale predictive models. It includes detailed coastal bathymetry, high resolution/high frequency atmospheric forcing and provides 7-day forecasts, updated daily (see: http://coastalmodeling.rsmas.miami.edu/). The unprecedented high resolution and coastal details of this system provide value added on global forecasts through downscaling and allow a variety of applications. Examples will be presented, focusing on the period of a 2015 fisheries cruise around the coastal areas of Cuba, where model predictions helped guide the measurements on biophysical connectivity, under intense variability of the mesoscale eddy field and subsequent Florida Current meandering.
Ahongshangbam, Shurmala; Chakrabarti, Amit
2013-06-01
Occurrence of chronic physical pain is increasingly identified among youth, and medically unsupervised analgesic use is a possible risk factor for opioid dependence and other mental diseases in later life. Therefore, the present study was carried out in young student population in Sikkim, India, to explore predictors (including current chronic pain and current analgesic use) of low QoL in youth to identify a subset of population vulnerable to substance use and mental diseases in later life. The study was conducted in a health university setting in Sikkim, North East India. In this cross-sectional study, 156 participants were enrolled with almost equal number of males and females. Generic instruments for demographics and current analgesic use and SF - 36, for assessment of quality of life (QoL), were used. QoL was measured in general, physical and emotional domains. Presence of chronic physical pain during past four weeks was captured using SF - 36. Almost two-third participants reported presence of current physical pain (69%, n=108); and (14%, n=22) reported current analgesic use for pain. In logistic regression model controlled for age, ethnicity, gender and residence, higher body mass index (BMI) (β=-0.16, P=0.02) and current analgesic use (β=1.6, P=0.006) predicted low QoL in emotional domain (less accomplishment due to emotional problem). Current analgesic use also predicted low QoL in another measure of emotional domain (depressed β=2.0, P=0.001). This study identified a subset of participants in their youth with low QoL in emotional domain predicted by current analgesic use and possible overweight problem. Low QoL in more than one emotional domain also identifies possibility of later psychiatric impairment. However, chronic pain did not emerge as a significant predictor of low QoL in emotional domain.
Hysteresis in Center of Mass Velocity Control during the Stance Phase of Treadmill Walking
Lee, Kyoung-Hyun; Chong, Raymond K.
2017-01-01
Achieving a soft landing during walking can be quantified by analyzing changes in the vertical velocity of the body center of mass (CoM) just prior to the landing of the swing limb. Previous research suggests that walking speed and step length may predictably influence the extent of this CoM control. Here we ask how stable this control is. We altered treadmill walking speed by systematically increasing or decreasing it at fixed intervals. We then reversed direction. We hypothesized that the control of the CoM vertical velocity during the late stance of the walking gait may serve as an order parameter which has an attribute of hysteresis. The presence of hysteresis implies that the CoM control is not based on simply knowing the current input conditions to predict the output response. Instead, there is also the influence of previous speed conditions on the ongoing responses. We found that the magnitudes of CoM control were different depending on whether the treadmill speed (as the control parameter) was ramped up or down. Changes in step length also influenced CoM control. A stronger effect was observed when the treadmill speed was speeded up compared to down. However, the effect of speed direction remained significant after controlling for step length. The hysteresis effect of CoM control as a function of speed history demonstrated in the current study suggests that the regulation of CoM vertical velocity during late stance is influenced by previous external conditions and constraints which combine to influence the desired behavioral outcome. PMID:28496403
CisMapper: predicting regulatory interactions from transcription factor ChIP-seq data
O'Connor, Timothy; Bodén, Mikael
2017-01-01
Abstract Identifying the genomic regions and regulatory factors that control the transcription of genes is an important, unsolved problem. The current method of choice predicts transcription factor (TF) binding sites using chromatin immunoprecipitation followed by sequencing (ChIP-seq), and then links the binding sites to putative target genes solely on the basis of the genomic distance between them. Evidence from chromatin conformation capture experiments shows that this approach is inadequate due to long-distance regulation via chromatin looping. We present CisMapper, which predicts the regulatory targets of a TF using the correlation between a histone mark at the TF's bound sites and the expression of each gene across a panel of tissues. Using both chromatin conformation capture and differential expression data, we show that CisMapper is more accurate at predicting the target genes of a TF than the distance-based approaches currently used, and is particularly advantageous for predicting the long-range regulatory interactions typical of tissue-specific gene expression. CisMapper also predicts which TF binding sites regulate a given gene more accurately than using genomic distance. Unlike distance-based methods, CisMapper can predict which transcription start site of a gene is regulated by a particular binding site of the TF. PMID:28204599
Sonntag, Diana; Gilbody, Simon; Winkler, Volker; Ali, Shehzad
2018-01-01
We compared predicted life-time health-care costs for current, never and ex-smokers in Germany under the current set of tobacco control polices. We compared these economic consequences of the current situation with an alternative in which Germany were to implement more comprehensive tobacco control policies consistent with the World Health Organization (WHO) Framework Convention for Tobacco Control (FCTC) guidelines. German EstSmoke, an adapted version of the UK EstSmoke simulation model, applies the Markov modelling approach. Transition probabilities for (re-)currence of smoking-related diseases were calculated from large German disease-specific registries and the German Health Update (GEDA 2010). Estimations of both health-care costs and effect sizes of smoking cessation policies were taken from recent German studies and discounted at 3.5%/year. Germany. German population of prevalent current, never and ex-smokers in 2009. Life-time cost and outcomes in current, never and ex-smokers. If tobacco control policies are not strengthened, the German smoking population will incur €41.56 billion life-time excess costs compared with never smokers. Implementing tobacco control policies consistent with WHO FCTC guidelines would reduce the difference of life-time costs between current smokers and ex-smokers by at least €1.7 billion. Modelling suggests that the life-time healthcare costs of people in Germany who smoke are substantially greater than those of people who have never smoked. However, more comprehensive tobacco control policies could reduce health-care expenditures for current smokers by at least 4%. © 2017 Society for the Study of Addiction.
Understanding and predicting the fate and transport of nano-materials in the environment requires a detailed characterization of the chemical and physical properties that control fate and transport. In the current study, we have evaluated the surface charge, aggregation potentia...
NASA Astrophysics Data System (ADS)
Wang, Xi-guang; Chotorlishvili, L.; Guo, Guang-hua; Berakdar, J.
2018-04-01
Conversion of thermal energy into magnonic spin currents and/or effective electric polarization promises new device functionalities. A versatile approach is presented here for generating and controlling open circuit magnonic spin currents and an effective multiferroicity at a uniform temperature with the aid of spatially inhomogeneous, external, static electric fields. This field applied to a ferromagnetic insulator with a Dzyaloshinskii-Moriya type coupling changes locally the magnon dispersion and modifies the density of thermally excited magnons in a region of the scale of the field inhomogeneity. The resulting gradient in the magnon density can be viewed as a gradient in the effective magnon temperature. This effective thermal gradient together with local magnon dispersion result in an open-circuit, electric field controlled magnonic spin current. In fact, for a moderate variation in the external electric field the predicted magnonic spin current is on the scale of the spin (Seebeck) current generated by a comparable external temperature gradient. Analytical methods supported by full-fledge numerics confirm that both, a finite temperature and an inhomogeneous electric field are necessary for this emergent non-equilibrium phenomena. The proposal can be integrated in magnonic and multiferroic circuits, for instance to convert heat into electrically controlled pure spin current using for example nanopatterning, without the need to generate large thermal gradients on the nanoscale.
NASA Technical Reports Server (NTRS)
Leiden, Ken; Green, Steven
2000-01-01
The development of a decision support tool (DST) for the en-route domain with accurate conflict prediction time horizons of 20 minutes has introduced an interesting problem. A 20 minute time horizon for conflict prediction often results in the predicted conflict occurring one or more sectors downstream from the sector controller who "owns" (i-e., is responsible for the safe separation of aircraft) one or both of the aircraft in the conflict pair. Based on current roles and responsibilities of today's en route controllers, the upstream controller would not resolve this conflict. In most cases, the downstream controller would wait until the conflicting aircraft entered higher sector before resolving the conflict. This results in a delay of several minutes from the time when the conflict was initially predicted. This delay is inefficient from both a controller workload and user's cost of operations perspective. Trajectory orientation, a new concept for facilitating an efficient, conflict-free flight path across several sectors while conforming to metering or miles-in-trail spacing, is proposed as an alternative to today's sector-oriented method. This concept necessitates a fundamental shift in thinking about inter-sector coordination. Instead of operating independently, with the main focus on protecting their internal airspace, controllers would work cooperatively, depending on each other for well-planned, conflict-free flow of aircraft. To support the trajectory orientation concept, a long time horizon (15 to 20 minutes) for conflict prediction and resolution would most likely be a primary requirement. In addition, new tools, such as controller-pilot data link will be identified to determine their necessity and applicability for trajectory orientation. Finally, with significant controller participation from selected Air Route Traffic Control Centers, potential shifts in R-side/D-side roles and responsibilities as well as the creation of a new controller position for multi-sector planning will be examined to determine the most viable solutions.
Christofides, Emily; Muise, Amy; Desmarais, Serge
2009-06-01
Facebook, the popular social network site, is changing the nature of privacy and the consequences of information disclosure. Despite recent media reports regarding the negative consequences of disclosing information on social network sites such as Facebook, students are generally thought to be unconcerned about the potential costs of this disclosure. The current study explored undergraduate students' information disclosure and information control on Facebook and the personality factors that influence levels of disclosure and control. Participants in this online survey were 343 undergraduate students who were current users of Facebook. Results indicated that participants perceived that they disclosed more information about themselves on Facebook than in general, but participants also reported that information control and privacy were important to them. Participants were very likely to have posted information such as their birthday and e-mail address, and almost all had joined an online network. They were also very likely to post pictures such as a profile picture, pictures with friends, and even pictures at parties and drinking with friends. Contrary to expectations, information disclosure and information control were not significantly negatively correlated, and multiple regression analyses revealed that while disclosure was significantly predicted by the need for popularity, levels of trust and self-esteem predicted information control. Therefore, disclosure and control on Facebook are not as closely related as expected but rather are different processes that are affected by different aspects of personality. Implications of these findings and suggestions for future research are discussed.
NASA Technical Reports Server (NTRS)
Willsky, A. S.
1976-01-01
A number of current research directions in the fields of digital signal processing and modern control and estimation theory were studied. Topics such as stability theory, linear prediction and parameter identification, system analysis and implementation, two-dimensional filtering, decentralized control and estimation, image processing, and nonlinear system theory were examined in order to uncover some of the basic similarities and differences in the goals, techniques, and philosophy of the two disciplines. An extensive bibliography is included.
COPD control: Can a consensus be found?
Guimarães, M; Bugalho, A; Oliveira, A S; Moita, J; Marques, A
2016-01-01
There are currently no reliable instruments for assessing the onset and progression of chronic obstructive pulmonary disease (COPD) or predicting its prognosis. Currently, a comprehensive assessment of COPD including several objective and subjective parameters is recommended. However, the lack of biomarkers precludes a correct assessment of COPD severity, which consequently hampers adequate therapeutic approaches and COPD control. In the absence of a definition of "well-controlled disease", a consensus regarding COPD control will be difficult to reach. However, COPD patient assessment should be multidimensional, and anchored in five points: control of symptoms, decline of pulmonary function, levels of physical activity, exacerbations, and Quality of Life. Several non-pharmacological and pharmacological measures are currently available to achieve disease control. Smoking cessation, vaccination, exercise training programs and pulmonary rehabilitation are recognized as important non-pharmacological measures but bronchodilators are the pivotal therapy in the control of COPD. This paper discusses several objective and subjective parameters that may bridge the gap between disease assessment and disease control. The authors conclude that, at present, it is not possible to reach a consensus regarding COPD control, essentially due to the lack of objective instruments to measure it. Some recommendations are set forth, but true COPD control awaits further objective assessments. Copyright © 2016. Published by Elsevier España, S.L.U.
Wijsbroek, Saskia A M; Hale, William W; Raaijmakers, Quinten A W; Meeus, Wim H J
2011-07-01
This study examined the direction of effects and age and sex differences between adolescents' perceptions of parental behavioral and psychological control and adolescents' self-reports of generalized anxiety disorder (GAD) and separation anxiety disorder (SAD) symptoms. The study focused on 1,313 Dutch adolescents (early-to-middle cohort n = 923, 70.3%; middle-to-late cohort n = 390, 29.7%) from the general population. A multi-group, structural equation model was employed to analyze the direction of the effects between behavioral control, psychological control and GAD and SAD symptoms for the adolescent cohorts. The current study demonstrated that a unidirectional child effect model of the adolescents' GAD and SAD symptoms predicting parental control best described the data. Additionally, adolescent GAD and SAD symptoms were stronger and more systematically related to psychological control than to behavioral control. With regard to age-sex differences, anxiety symptoms almost systematically predicted parental control over time for the early adolescent boys, whereas no significant differences were found between the late adolescent boys and girls.
Salehifar, Mehdi; Moreno-Equilaz, Manuel
2016-01-01
Due to its fault tolerance, a multiphase brushless direct current (BLDC) motor can meet high reliability demand for application in electric vehicles. The voltage-source inverter (VSI) supplying the motor is subjected to open circuit faults. Therefore, it is necessary to design a fault-tolerant (FT) control algorithm with an embedded fault diagnosis (FD) block. In this paper, finite control set-model predictive control (FCS-MPC) is developed to implement the fault-tolerant control algorithm of a five-phase BLDC motor. The developed control method is fast, simple, and flexible. A FD method based on available information from the control block is proposed; this method is simple, robust to common transients in motor and able to localize multiple open circuit faults. The proposed FD and FT control algorithm are embedded in a five-phase BLDC motor drive. In order to validate the theory presented, simulation and experimental results are conducted on a five-phase two-level VSI supplying a five-phase BLDC motor. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Bootstrapping agency: How control-relevant information affects motivation.
Karsh, Noam; Eitam, Baruch; Mark, Ilya; Higgins, E Tory
2016-10-01
How does information about one's control over the environment (e.g., having an own-action effect) influence motivation? The control-based response selection framework was proposed to predict and explain such findings. Its key tenant is that control relevant information modulates both the frequency and speed of responses by determining whether a perceptual event is an outcome of one's actions or not. To test this framework empirically, the current study examines whether and how temporal and spatial contiguity/predictability-previously established as being important for one's sense of agency-modulate motivation from control. In 5 experiments, participants responded to a cue, potentially triggering a perceptual effect. Temporal (Experiments 1a-c) and spatial (Experiments 2a and b) contiguity/predictability between actions and their potential effects were experimentally manipulated. The influence of these control-relevant factors was measured, both indirectly (through their effect on explicit judgments of agency) and directly on response time and response frequency. The pattern of results was highly consistent with the control-based response selection framework in suggesting that control relevant information reliably modulates the impact of "having an effect" on different levels of action selection. We discuss the implications of this study for the notion of motivation from control and for the empirical work on the sense of agency. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
NASA Technical Reports Server (NTRS)
Rutledge, Sharon K.
1999-01-01
Spacecraft in low Earth orbit (LEO) are subjected to many components of the environment, which can cause them to degrade much more rapidly than intended and greatly shorten their functional life. The atomic oxygen, ultraviolet radiation, and cross contamination present in LEO can affect sensitive surfaces such as thermal control paints, multilayer insulation, solar array surfaces, and optical surfaces. The LEO Spacecraft Materials Test (LEO-SMT) program is being conducted to assess the effects of simulated LEO exposure on current spacecraft materials to increase understanding of LEO degradation processes as well as to enable the prediction of in-space performance and durability. Using ground-based simulation facilities to test the durability of materials currently flying in LEO will allow researchers to compare the degradation evidenced in the ground-based facilities with that evidenced on orbit. This will allow refinement of ground laboratory test systems and the development of algorithms to predict the durability and performance of new materials in LEO from ground test results. Accurate predictions based on ground tests could reduce development costs and increase reliability. The wide variety of national and international materials being tested represent materials being functionally used on spacecraft in LEO. The more varied the types of materials tested, the greater the probability that researchers will develop and validate predictive models for spacecraft long-term performance and durability. Organizations that are currently participating in the program are ITT Research Institute (USA), Lockheed Martin (USA), MAP (France), SOREQ Nuclear Research Center (Israel), TNO Institute of Applied Physics (The Netherlands), and UBE Industries, Ltd. (Japan). These represent some of the major suppliers of thermal control and sensor materials currently flying in LEO. The participants provide materials that are exposed to selected levels of atomic oxygen, vacuum ultraviolet radiation, contamination, or synergistic combined environments at the NASA Lewis Research Center. Changes in characteristics that could affect mission performance or lifetime are then measured. These characteristics include changes in mass, solar absorptance, and thermal emittance. The durability of spacecraft materials from U.S. suppliers is then compared with those of materials from other participating countries. Lewis will develop and validate performance and durability prediction models using this ground data and available space data. NASA welcomes the opportunity to consider additional international participants in this program, which should greatly aid future spacecraft designers as they select materials for LEO missions.
Exuberant and inhibited children: Person-centered profiles and links to social adjustment.
Dollar, Jessica M; Stifter, Cynthia A; Buss, Kristin A
2017-07-01
The current study aimed to substantiate and extend our understanding regarding the existence and developmental pathways of 3 distinct temperament profiles-exuberant, inhibited, and average approach-in a sample of 3.5-year-old children (n = 121). The interactions between temperamental styles and specific types of effortful control, inhibitory control and attentional control, were also examined in predicting kindergarten peer acceptance. Latent profile analysis identified 3 temperamental styles: exuberant, inhibited, and average approach. Support was found for the adaptive role of inhibitory control for exuberant children and attentional control for inhibited children in promoting peer acceptance in kindergarten. These findings add to our current understanding of temperamental profiles by using sophisticated methodology in a slightly older, community sample, as well as the importance of examining specific types of self-regulation to identify which skills lower risk for children of different temperamental styles. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Predicting asthma exacerbations in children.
Forno, Erick; Celedón, Juan C
2012-01-01
This review critically assesses recently published literature on predicting asthma exacerbations in children, while also providing general recommendations for future research in this field. Current evidence suggests that every effort should be made to provide optimal treatment to achieve adequate asthma control, as this will significantly reduce the risk of severe disease exacerbations. Children who have had at least one asthma exacerbation in the previous year are at highest risk for subsequent exacerbations, regardless of disease severity and/or control. Although several tools and biomarkers to predict asthma exacerbations have been recently developed, these approaches need further validation and/or have only had partial success in identifying children at risk. Although considerable progress has been made, much remains to be done. Future studies should clearly differentiate severe asthma exacerbations due to inadequate asthma control from those occurring in children whose asthma is well controlled, utilize standardized definitions of asthma exacerbations, and use a systematic approach to identify the best predictors after accounting for the multiple dimensions of the problem. Our ability to correctly predict the development of severe asthma exacerbations in an individual child should improve in parallel with increased knowledge and/or understanding of the complex interactions among genetic, environmental (e.g. viral infections) and lifestyle (e.g. adherence to treatment) factors underlying these events.
Nandola, Naresh N.; Rivera, Daniel E.
2011-01-01
This paper presents a data-centric modeling and predictive control approach for nonlinear hybrid systems. System identification of hybrid systems represents a challenging problem because model parameters depend on the mode or operating point of the system. The proposed algorithm applies Model-on-Demand (MoD) estimation to generate a local linear approximation of the nonlinear hybrid system at each time step, using a small subset of data selected by an adaptive bandwidth selector. The appeal of the MoD approach lies in the fact that model parameters are estimated based on a current operating point; hence estimation of locations or modes governed by autonomous discrete events is achieved automatically. The local MoD model is then converted into a mixed logical dynamical (MLD) system representation which can be used directly in a model predictive control (MPC) law for hybrid systems using multiple-degree-of-freedom tuning. The effectiveness of the proposed MoD predictive control algorithm for nonlinear hybrid systems is demonstrated on a hypothetical adaptive behavioral intervention problem inspired by Fast Track, a real-life preventive intervention for improving parental function and reducing conduct disorder in at-risk children. Simulation results demonstrate that the proposed algorithm can be useful for adaptive intervention problems exhibiting both nonlinear and hybrid character. PMID:21874087
A Numerical Process Control Method for Circular-Tube Hydroforming Prediction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Kenneth I.; Nguyen, Ba Nghiep; Davies, Richard W.
2004-03-01
This paper describes the development of a solution control method that tracks the stresses, strains and mechanical behavior of a tube during hydroforming to estimate the proper axial feed (end-feed) and internal pressure loads through time. The analysis uses the deformation theory of plasticity and Hill?s criterion to describe the plastic flow. Before yielding, the pressure and end-feed increments are estimated based on the initial tube geometry, elastic properties and yield stress. After yielding, the pressure increment is calculated based on the tube geometry at the previous solution increment and the current hoop stress increment. The end-feed increment is computedmore » from the increment of the axial plastic strain. Limiting conditions such as column buckling (of long tubes), local axi-symmetric wrinkling of shorter tubes, and bursting due to localized wall thinning are considered. The process control method has been implemented in the Marc finite element code. Hydroforming simulations using this process control method were conducted to predict the load histories for controlled expansion of 6061-T4 aluminum tubes within a conical die shape and under free hydroforming conditions. The predicted loading paths were transferred to the hydroforming equipment to form the conical and free-formed tube shapes. The model predictions and experimental results are compared for deformed shape, strains and the extent of forming at rupture.« less
Spatial pattern formation facilitates eradication of infectious diseases
Eisinger, Dirk; Thulke, Hans-Hermann
2008-01-01
Control of animal-born diseases is a major challenge faced by applied ecologists and public health managers. To improve cost-effectiveness, the effort required to control such pathogens needs to be predicted as accurately as possible. In this context, we reviewed the anti-rabies vaccination schemes applied around the world during the past 25 years. We contrasted predictions from classic approaches based on theoretical population ecology (which governs rabies control to date) with a newly developed individual-based model. Our spatially explicit approach allowed for the reproduction of pattern formation emerging from a pathogen's spread through its host population. We suggest that a much lower management effort could eliminate the disease than that currently in operation. This is supported by empirical evidence from historic field data. Adapting control measures to the new prediction would save one-third of resources in future control programmes. The reason for the lower prediction is the spatial structure formed by spreading infections in spatially arranged host populations. It is not the result of technical differences between models. Synthesis and applications. For diseases predominantly transmitted by neighbourhood interaction, our findings suggest that the emergence of spatial structures facilitates eradication. This may have substantial implications for the cost-effectiveness of existing disease management schemes, and suggests that when planning management strategies consideration must be given to methods that reflect the spatial nature of the pathogen–host system. PMID:18784795
Robust PBPK/PD-Based Model Predictive Control of Blood Glucose.
Schaller, Stephan; Lippert, Jorg; Schaupp, Lukas; Pieber, Thomas R; Schuppert, Andreas; Eissing, Thomas
2016-07-01
Automated glucose control (AGC) has not yet reached the point where it can be applied clinically [3]. Challenges are accuracy of subcutaneous (SC) glucose sensors, physiological lag times, and both inter- and intraindividual variability. To address above issues, we developed a novel scheme for MPC that can be applied to AGC. An individualizable generic whole-body physiology-based pharmacokinetic and dynamics (PBPK/PD) model of the glucose, insulin, and glucagon metabolism has been used as the predictive kernel. The high level of mechanistic detail represented by the model takes full advantage of the potential of MPC and may make long-term prediction possible as it captures at least some relevant sources of variability [4]. Robustness against uncertainties was increased by a control cascade relying on proportional-integrative derivative-based offset control. The performance of this AGC scheme was evaluated in silico and retrospectively using data from clinical trials. This analysis revealed that our approach handles sensor noise with a MARD of 10%-14%, and model uncertainties and disturbances. The results suggest that PBPK/PD models are well suited for MPC in a glucose control setting, and that their predictive power in combination with the integrated database-driven (a priori individualizable) model framework will help overcome current challenges in the development of AGC systems. This study provides a new, generic, and robust mechanistic approach to AGC using a PBPK platform with extensive a priori (database) knowledge for individualization.
NASA Astrophysics Data System (ADS)
Williams, Bruce W.; Agnew, Sean R.; Klein, Robert W.; McKinley, Jonathan
Recent investigations suggest that it is possible to achieve dramatic modifications to both strength and ductility of magnesium alloys through a combination of alloying, grain refinement, and texture control. The current work explores the possibility of altering the texture in extruded thin-walled magnesium alloy tubes for improved ductility during axial crush in which energy is absorbed through progressive buckling. The texture evolution was predicted using the viscoplastic self-consistent (VPSC) crystal plasticity model, with strain path input from continuum-based finite element simulations of extrusion. A limited diversity of textures can be induced by altering the strain path through the extrusion die design. In some cases, such as for simple bar extrusion, the textures predicted can be connected with simple shape change. In other cases, a subtle influence of strain path involving shear-reverse-shear is predicted. The most promising textures predicted for a variety of strain paths are selected for subsequent experimental study.
Lac, Andrew; Alvaro, Eusebio M; Crano, William D; Siegel, Jason T
2009-03-01
Despite research indicating that effective parenting plays an important protective role in adolescent risk behaviors, few studies have applied theory to examine this link with marijuana use, especially with national data. In the current study (N = 2,141), we hypothesized that parental knowledge (of adolescent activities and whereabouts) and parental warmth are antecedents of adolescents' marijuana beliefs-attitudes, subjective norms, and perceived behavioral control-as posited by the Theory of Planned Behavior (TPB; Ajzen 1991). These three types of beliefs were hypothesized to predict marijuana intention, which in turn was hypothesized to predict marijuana consumption. Results of confirmatory factor analyses corroborated the psychometric properties of the two-factor parenting structure as well as the five-factor structure of the TPB. Further, the proposed integrative predictive framework, estimated with a latent structural equation model, was largely supported. Parental knowledge inversely predicted pro-marijuana attitudes, subjective norms, and perceived behavioral control; parental warmth inversely predicted pro-marijuana attitudes and subjective norms, ps < .001. Marijuana intention (p < .001), but not perceived behavioral control, predicted marijuana use 1 year later. In households with high parental knowledge, parental warmth also was perceived to be high (r = .54, p < .001). Owing to the analysis of nationally representative data, results are generalizable to the United States population of adolescents 12-18 years of age.
Korb, Alexander S.; Hunter, Aimee M.; Cook, Ian A.; Leuchter, Andrew F.
2011-01-01
In treatment trials for Major Depressive Disorder (MDD), early symptom improvement is predictive of eventual clinical response. Clinical response may also be predicted by elevated pretreatment theta (4-7 Hz) current density in the rostral anterior cingulate (rACC) and medial orbitofrontal cortex (mOFC). We investigated the relationship between pretreatment EEG and early improvement in predicting clinical outcome in 72 MDD subjects across three placebo-controlled treatment trials. Subjects were randomized to receive fluoxetine, venlafaxine, or placebo. Theta current density in the rACC and mOFC was computed with Low-Resolution Brain Electromagnetic Tomography (LORETA). An ANCOVA, examining week 8 Hamilton Depression Rating Scale (HamD) percent change, showed a significant effect of week-2-HamD-percent-change, and a significant three-way interaction of week-2-HamD-percent-change × Treatment × rACC. Medication subjects with robust early improvement showed almost no relationship between rACC theta current density and final clinical outcome. However, in subjects with little early improvement, rACC activity showed a strong relationship with clinical outcome. The model examining mOFC showed a trend in the three-way interaction. A combination of pretreatment rACC activity and early symptom improvement may be useful for predicting treatment response. PMID:21546222
NASA Astrophysics Data System (ADS)
Gu, W.; Heil, P. E.; Choi, H.; Kim, K.
2010-12-01
The I-V characteristics of flow-limited field-injection electrostatic spraying (FFESS) were investigated, exposing a new way to predict and control the specific spraying modes from single-jet to multi-jet. Monitoring the I-V characteristics revealed characteristic drops in the current upon formation of an additional jet in the multi-jet spraying mode. For fixed jet numbers, space-charge-limited current behaviour was measured which was attributed to space charge in the dielectric liquids between the needle electrode and the nozzle opening. The present work establishes that FFESS can, in particular, generate stable multiple jets and that their control is possible through monitoring the I-V characteristics. This can allow for automatic control of the FFESS process and expedite its future scientific and industrial applications.
Operational seasonal and interannual predictions of ocean conditions
NASA Technical Reports Server (NTRS)
Leetmaa, Ants
1992-01-01
Dr. Leetmaa described current work at the U.S. National Meteorological Center (NMC) on coupled systems leading to a seasonal prediction system. He described the way in which ocean thermal data is quality controlled and used in a four dimensional data assimilation system. This consists of a statistical interpolation scheme, a primitive equation ocean general circulation model, and the atmospheric fluxes that are required to force this. This whole process generated dynamically consist thermohaline and velocity fields for the ocean. Currently routine weekly analyses are performed for the Atlantic and Pacific oceans. These analyses are used for ocean climate diagnostics and as initial conditions for coupled forecast models. Specific examples of output products were shown both in the Pacific and the Atlantic Ocean.
Commissioning a passive-scattering proton therapy nozzle for accurate SOBP delivery.
Engelsman, M; Lu, H M; Herrup, D; Bussiere, M; Kooy, H M
2009-06-01
Proton radiotherapy centers that currently use passively scattered proton beams do field specific calibrations for a non-negligible fraction of treatment fields, which is time and resource consuming. Our improved understanding of the passive scattering mode of the IBA universal nozzle, especially of the current modulation function, allowed us to re-commission our treatment control system for accurate delivery of SOBPs of any range and modulation, and to predict the output for each of these fields. We moved away from individual field calibrations to a state where continued quality assurance of SOBP field delivery is ensured by limited system-wide measurements that only require one hour per week. This manuscript reports on a protocol for generation of desired SOBPs and prediction of dose output.
Particle-in-cell simulations of electron beam control using an inductive current divider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swanekamp, S. B.; Angus, J. R.; Cooperstein, G.
2015-11-15
Kinetic, time-dependent, electromagnetic, particle-in-cell simulations of the inductive current divider are presented. The inductive current divider is a passive method for controlling the trajectory of an intense, hollow electron beam using a vacuum structure that inductively splits the beam's return current. The current divider concept was proposed and studied theoretically in a previous publication [Swanekamp et al., Phys. Plasmas 22, 023107 (2015)]. A central post carries a portion of the return current (I{sub 1}), while the outer conductor carries the remainder (I{sub 2}) with the injected beam current given by I{sub b} = I{sub 1} + I{sub 2}. The simulations are in agreement withmore » the theory which predicts that the total force on the beam trajectory is proportional to (I{sub 2}−I{sub 1}) and the force on the beam envelope is proportional to I{sub b}. Independent control over both the current density and the beam angle at the target is possible by choosing the appropriate current-divider geometry. The root-mean-square (RMS) beam emittance (ε{sub RMS}) varies as the beam propagates through the current divider to the target. For applications where control of the beam trajectory is desired and the current density at the target is similar to the current density at the entrance foil, there is a modest 20% increase in ε{sub RMS} at the target. For other applications where the beam is pinched to a current density ∼5 times larger at the target, ε{sub RMS} is 2–3 times larger at the target.« less
NASA Earned Value Management (EVM) Update
NASA Technical Reports Server (NTRS)
Kerby, Jerald
2013-01-01
Earned Value Management (EVM) is an integrated management control system for assessing, understanding and qualifying what a project is achieving with the resoures. EVM integrates technical cost and schedules with risk management. It allows objective assessment and quantification of current project performance, and helps predict future performance-based trents.
Examining the Relationship between Math Scores and English Language Proficiency
ERIC Educational Resources Information Center
Henry, Denfield L.; Nistor, Nicolae; Baltes, Beate
2016-01-01
Multiple studies propose that English proficiency dictates English language learners' (ELLs) performances on mathematics assessments. The current study investigates the predictive power of English proficiency on mathematics scores, while controlling for gender, socioeconomic status (SES), and grade level among ELLs at a south Florida elementary…
Does Spirituality Predict Weight Loss In A Behavioral Weight Loss Program?
2009-01-01
SPIRITUALfl 1 A ~~D WEIGHT LOSS APPROVAL SHEET Title of Thesis: "Does Spirituality Predict Weight Loss in a Behavioral Weight Loss Program 7" Name...notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does...not display a currently valid OMB control number. 1. REPORT DATE 2009 2. REPORT TYPE 3. DATES COVERED 00-00-2009 to 00-00-2009 4. TITLE AND
Dissecting innate immune responses with the tools of systems biology.
Smith, Kelly D; Bolouri, Hamid
2005-02-01
Systems biology strives to derive accurate predictive descriptions of complex systems such as innate immunity. The innate immune system is essential for host defense, yet the resulting inflammatory response must be tightly regulated. Current understanding indicates that this system is controlled by complex regulatory networks, which maintain homoeostasis while accurately distinguishing pathogenic infections from harmless exposures. Recent studies have used high throughput technologies and computational techniques that presage predictive models and will be the foundation of a systems level understanding of innate immunity.
2015-06-16
are associated with poor outcomes, including death and the need for renal replacement therapy. Methods : We conducted a prospective, observational study...penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 16 JUN 2015...2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE The Potential Utility of Urinary Biomarkers for Risk Prediction in Combat
Learning temporal statistics for sensory predictions in mild cognitive impairment.
Di Bernardi Luft, Caroline; Baker, Rosalind; Bentham, Peter; Kourtzi, Zoe
2015-08-01
Training is known to improve performance in a variety of perceptual and cognitive skills. However, there is accumulating evidence that mere exposure (i.e. without supervised training) to regularities (i.e. patterns that co-occur in the environment) facilitates our ability to learn contingencies that allow us to interpret the current scene and make predictions about future events. Recent neuroimaging studies have implicated fronto-striatal and medial temporal lobe brain regions in the learning of spatial and temporal statistics. Here, we ask whether patients with mild cognitive impairment due to Alzheimer's disease (MCI-AD) that are characterized by hippocampal dysfunction are able to learn temporal regularities and predict upcoming events. We tested the ability of MCI-AD patients and age-matched controls to predict the orientation of a test stimulus following exposure to sequences of leftwards or rightwards orientated gratings. Our results demonstrate that exposure to temporal sequences without feedback facilitates the ability to predict an upcoming stimulus in both MCI-AD patients and controls. However, our fMRI results demonstrate that MCI-AD patients recruit an alternate circuit to hippocampus to succeed in learning of predictive structures. In particular, we observed stronger learning-dependent activations for structured sequences in frontal, subcortical and cerebellar regions for patients compared to age-matched controls. Thus, our findings suggest a cortico-striatal-cerebellar network that may mediate the ability for predictive learning despite hippocampal dysfunction in MCI-AD. Copyright © 2015 Elsevier Ltd. All rights reserved.
A Simple Two Aircraft Conflict Resolution Algorithm
NASA Technical Reports Server (NTRS)
Chatterji, Gano B.
2006-01-01
Conflict detection and resolution methods are crucial for distributed air-ground traffic management in which the crew in, the cockpit, dispatchers in operation control centers sad and traffic controllers in the ground-based air traffic management facilities share information and participate in the traffic flow and traffic control functions. This paper describes a conflict detection, and a conflict resolution method. The conflict detection method predicts the minimum separation and the time-to-go to the closest point of approach by assuming that both the aircraft will continue to fly at their current speeds along their current headings. The conflict resolution method described here is motivated by the proportional navigation algorithm, which is often used for missile guidance during the terminal phase. It generates speed and heading commands to rotate the line-of-sight either clockwise or counter-clockwise for conflict resolution. Once the aircraft achieve a positive range-rate and no further conflict is predicted, the algorithm generates heading commands to turn back the aircraft to their nominal trajectories. The speed commands are set to the optimal pre-resolution speeds. Six numerical examples are presented to demonstrate the conflict detection, and the conflict resolution methods.
Penson, Brittany N; Ruchensky, Jared R; Morey, Leslie C; Edens, John F
2016-11-01
A substantial amount of research has examined the developmental trajectory of antisocial behavior and, in particular, the relationship between antisocial behavior and maladaptive personality traits. However, research typically has not controlled for previous behavior (e.g., past violence) when examining the utility of personality measures, such as self-report scales of antisocial and borderline traits, in predicting future behavior (e.g., subsequent violence). Examination of the potential interactive effects of measures of both antisocial and borderline traits also is relatively rare in longitudinal research predicting adverse outcomes. The current study utilizes a large sample of youthful offenders ( N = 1,354) from the Pathways to Desistance project to examine the separate effects of the Personality Assessment Inventory Antisocial Features (ANT) and Borderline Features (BOR) scales in predicting future offending behavior as well as trends in other negative outcomes (e.g., substance abuse, violence, employment difficulties) over a 1-year follow-up period. In addition, an ANT × BOR interaction term was created to explore the predictive effects of secondary psychopathy. ANT and BOR both explained unique variance in the prediction of various negative outcomes even after controlling for past indicators of those same behaviors during the preceding year.
Control of Thermo-Acoustics Instabilities: The Multi-Scale Extended Kalman Approach
NASA Technical Reports Server (NTRS)
Le, Dzu K.; DeLaat, John C.; Chang, Clarence T.
2003-01-01
"Multi-Scale Extended Kalman" (MSEK) is a novel model-based control approach recently found to be effective for suppressing combustion instabilities in gas turbines. A control law formulated in this approach for fuel modulation demonstrated steady suppression of a high-frequency combustion instability (less than 500Hz) in a liquid-fuel combustion test rig under engine-realistic conditions. To make-up for severe transport-delays on control effect, the MSEK controller combines a wavelet -like Multi-Scale analysis and an Extended Kalman Observer to predict the thermo-acoustic states of combustion pressure perturbations. The commanded fuel modulation is composed of a damper action based on the predicted states, and a tones suppression action based on the Multi-Scale estimation of thermal excitations and other transient disturbances. The controller performs automatic adjustments of the gain and phase of these actions to minimize the Time-Scale Averaged Variances of the pressures inside the combustion zone and upstream of the injector. The successful demonstration of Active Combustion Control with this MSEK controller completed an important NASA milestone for the current research in advanced combustion technologies.
Do the same risk and protective factors influence aggression toward partners and same-sex others?
Bates, Elizabeth A; Archer, John; Graham-Kevan, Nicola
2017-04-01
The current studies examined whether several risk and protective factors operate similarly for intimate partner violence (IPV) and same-sex aggression (SSA) in the same sample, and to assess whether they show similar associations for men and women. Study 1 (N = 345) tested perceived benefits and costs, and instrumental and expressive beliefs about aggression: perceived costs predicted IPV and SSA for both men and women. Expressive beliefs predicted IPV (more strongly for women), and instrumental beliefs predicted SSA. Study 2 (N = 395) investigated self-control, anxiety and empathy, finding that self-control strongly predicted both types of aggression in both sexes. Study 3 (N = 364) found that primary psychopathy (involving lack of anxiety) was associated with IPV for men and SSA in both sexes, whereas secondary psychopathy (involving lack of self-control) was associated with IPV and SSA in both sexes. Overall there were both similarities and differences in the risk factors associated with IPV and SSA, and for men and women. The implications of the findings for theoretical debates about the study of IPV are discussed. Aggr. Behav. 43:163-175, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Helicity-Driven Ratchet Effect Enhanced by Plasmons
NASA Astrophysics Data System (ADS)
Rozhansky, I. V.; Kachorovskii, V. Yu.; Shur, M. S.
2015-06-01
We demonstrate that the ratchet effect—a radiation-induced direct current in periodically modulated structures with built-in asymmetry—is dramatically enhanced in the vicinity of the plasmonic resonances and has a nontrivial polarization dependence. For a circular polarization, the current component, perpendicular to the modulation direction, changes sign with the inversion of the radiation helicity. In the high-mobility structures, this component might increase by several orders of magnitude due to the plasmonic effects and exceed the current component in the modulation direction. Our theory also predicts that in the dirty systems, where the plasma resonances are suppressed, the ratchet current is controlled by the Maxwell relaxation.
Analysis of reliable sub-ns spin-torque switching under transverse bias magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Aquino, M., E-mail: daquino@uniparthenope.it; Perna, S.; Serpico, C.
2015-05-07
The switching process of a magnetic spin-valve nanosystem subject to spin-polarized current pulses is considered. The dependence of the switching probability on the current pulse duration is investigated. The further application of a transverse field along the intermediate anisotropy axis of the particle is used to control the quasi-random relaxation of magnetization to the reversed magnetization state. The critical current amplitudes to realize the switching are determined by studying the phase portrait of the Landau-Lifshtz-Slonczewski dynamics. Macrospin numerical simulations are in good agreement with the theoretical prediction and demonstrate reliable switching even for very short (below 100 ps) current pulses.
Naidoo, Rajen N; Robins, Thomas G; Seixas, Noah; Lalloo, Umesh G; Becklake, Margaret
2005-05-01
Dust-related dose-response decrements in lung function among coal miners have been reported in several studies, with varying magnitudes across populations. Few studies have compared differences between current and former coal miners. No studies on dose response relationships with lung function have been conducted in South African coal mines, one of the top three producers of coal internationally. The objectives of this study were (1) to describe the relationship between respirable dust exposure and lung function among current and former South African coal miners and to determine whether differential dust related effects were present between these employment categories; (2) to examine dust related dose response relationships, controlling for potential confounding by smoking and a history of tuberculosis (TB). Six hundred and eighty-four current and 188 ex-miners from three bituminous coal mines in Mpumalanga Province were studied. Interviews assessing work histories, smoking profiles and other risk factors were conducted. Work histories were also obtained from company records. Standardised spirometry was performed by trained technicians. Cumulative respirable dust exposure (CDE) estimates were constructed from company-collected sampling and measurements conducted by the researchers. Regression models examined the associations of CDE with per cent predicted FEV(1) and FVC, controlling for smoking, past history of TB and employment status. A statistically significant decline in FEV(1) of 1.1 and 2.2 ml/mg-year/m(3) was found in representative 40-year-old, 1.7-m tall current and former miners, respectively. Significant differences were found between the highest and medium exposure categories. Ex-miners had a lower mean per cent predicted lung function than current miners for each cumulative exposure category, suggesting a "healthy worker" effect. Past history of TB contributed to 21 and 14% declines in per cent predicted FEV(1) and FVC, respectively. Thus, in this cohort, a dose-related decline in lung function was associated with respirable dust exposure, with a magnitude of effect similar to that seen in other studies and important differences between current and former employees. A "healthy worker" effect may have attenuated the magnitude of this relationship. TB was a significant contributor to lung function loss.
Constant potential pulse polarography
Christie, J.H.; Jackson, L.L.; Osteryoung, R.A.
1976-01-01
The new technique of constant potential pulse polarography, In which all pulses are to be the same potential, is presented theoretically and evaluated experimentally. The response obtained is in the form of a faradaic current wave superimposed on a constant capacitative component. Results obtained with a computer-controlled system exhibit a capillary response current similar to that observed In normal pulse polarography. Calibration curves for Pb obtained using a modified commercial pulse polarographic instrument are in good accord with theoretical predictions.
Irrelevant learned reward associations disrupt voluntary spatial attention.
MacLean, Mary H; Diaz, Gisella K; Giesbrecht, Barry
2016-10-01
Attention can be guided involuntarily by physical salience and by non-salient, previously learned reward associations that are currently task-irrelevant. Attention can be guided voluntarily by current goals and expectations. The current study examined, in two experiments, whether irrelevant reward associations could disrupt current, goal-driven, voluntary attention. In a letter-search task, attention was directed voluntarily (i.e., cued) on half the trials by a cue stimulus indicating the hemifield in which the target letter would appear with 100 % accuracy. On the other half of the trials, a cue stimulus was presented, but it did not provide information about the target hemifield (i.e., uncued). On both cued and uncued trials, attention could be involuntarily captured by the presence of a task-irrelevant, and physically non-salient, color, either within the cued or the uncued hemifield. Importantly, one week prior to the letter search task, the irrelevant color had served as a target feature that was predictive of reward in a separate training task. Target identification accuracy was better on cued compared to uncued trials. However, this effect was reduced when the irrelevant, and physically non-salient, reward-associated feature was present in the uncued hemifield. This effect was not observed in a second, control experiment in which the irrelevant color was not predictive of reward during training. Our results indicate that involuntary, value-driven capture can disrupt the voluntary control of spatial attention.
Valley Hall effect and Nernst effect in strain engineered graphene
NASA Astrophysics Data System (ADS)
Niu, Zhi Ping; Yao, Jian-ming
2018-04-01
We theoretically predict the existence of tunneling valley Hall effect and Nernst effect in the normal/strain/normal graphene junctions, where a strained graphene is sandwiched by two normal graphene electrodes. By applying an electric bias a pure transverse valley Hall current with longitudinal charge current is generated. If the system is driven by a temperature bias, a valley Nernst effect is observed, where a pure transverse valley current without charge current propagates. Furthermore, the transverse valley current can be modulated by the Fermi energy and crystallographic orientation. When the magnetic field is further considered, we obtain a fully valley-polarized current. It is expected these features may be helpful in the design of the controllable valleytronic devices.
LDR vs. HDR brachytherapy for localized prostate cancer: the view from radiobiological models.
King, Christopher R
2002-01-01
Permanent LDR brachytherapy and temporary HDR brachytherapy are competitive techniques for clinically localized prostate radiotherapy. Although a randomized trial will likely never be conducted comparing these two forms of brachytherapy, a comparative radiobiological modeling analysis proves useful in understanding some of their intrinsic differences, several of which could be exploited to improve outcomes. Radiobiological models based upon the linear quadratic equations are presented for fractionated external beam, fractionated (192)Ir HDR brachytherapy, and (125)I and (103)Pd LDR brachytherapy. These models incorporate the dose heterogeneities present in brachytherapy based upon patient-derived dose volume histograms (DVH) as well as tumor doubling times and repair kinetics. Radiobiological parameters are normalized to correspond to three accepted clinical risk factors based upon T-stage, PSA, and Gleason score to compare models with clinical series. Tumor control probabilities (TCP) for LDR and HDR brachytherapy (as monotherapy or combined with external beam) are compared with clinical bNED survival rates. Predictions are made for dose escalation with HDR brachytherapy regimens. Model predictions for dose escalation with external beam agree with clinical data and validate the models and their underlying assumptions. Both LDR and HDR brachytherapy achieve superior tumor control when compared with external beam at conventional doses (<70 Gy), but similar to results from dose escalation series. LDR brachytherapy as boost achieves superior tumor control than when used as monotherapy. Stage for stage, both LDR and current HDR regimens achieve similar tumor control rates, in agreement with current clinical data. HDR monotherapy with large-dose fraction sizes might achieve superior tumor control compared with LDR, especially if prostate cancer possesses a high sensitivity to dose fractionation (i.e., if the alpha/beta ratio is low). Radiobiological models support the current clinical evidence for equivalent outcomes in localized prostate cancer with either LDR or HDR brachytherapy using current dose regimens. However, HDR brachytherapy dose escalation regimens might be able to achieve higher biologically effective doses of irradiation in comparison to LDR, and hence improved outcomes. This advantage over LDR would be amplified should prostate cancer possess a high sensitivity to dose fractionation (i.e., a low alpha/beta ratio) as the current evidence suggests.
Design and test of 1/5th scale horizontal axis tidal current turbine
NASA Astrophysics Data System (ADS)
Liu, Hong-wei; Zhou, Hong-bin; Lin, Yong-gang; Li, Wei; Gu, Hai-gang
2016-06-01
Tidal current energy is prominent and renewable. Great progress has been made in the exploitation technology of tidal current energy all over the world in recent years, and the large scale device has become the trend of tidal current turbine (TCT) for its economies. Instead of the similarity to the wind turbine, the tidal turbine has the characteristics of high hydrodynamic efficiency, big thrust, reliable sealing system, tight power transmission structure, etc. In this paper, a 1/5th scale horizontal axis tidal current turbine has been designed, manufactured and tested before the full scale device design. Firstly, the three-blade horizontal axis rotor was designed based on traditional blade element momentum theory and its hydrodynamic performance was predicted in numerical model. Then the power train system and stand-alone electrical control unit of tidal current turbine, whose performances were accessed through the bench test carried out in workshop, were designed and presented. Finally, offshore tests were carried out and the power performance of the rotor was obtained and compared with the published literatures, and the results showed that the power coefficient was satisfactory, which agrees with the theoretical predictions.
Baseline Brain Activity Predicts Response to Neuromodulatory Pain Treatment
Jensen, Mark P.; Sherlin, Leslie H.; Fregni, Felipe; Gianas, Ann; Howe, Jon D.; Hakimian, Shahin
2015-01-01
Objectives The objective of this study was to examine the associations between baseline electroencephalogram (EEG)-assessed brain oscillations and subsequent response to four neuromodulatory treatments. Based on available research, we hypothesized that baseline theta oscillations would prospectively predict response to hypnotic analgesia. Analyses involving other oscillations and the other treatments (meditation, neurofeedback, and both active and sham transcranial direct current stimulation) were viewed as exploratory, given the lack of previous research examining brain oscillations as predictors of response to these other treatments. Design Randomized controlled study of single sessions of four neuromodulatory pain treatments and a control procedure. Methods Thirty individuals with spinal cord injury and chronic pain had their EEG recorded before each session of four active treatments (hypnosis, meditation, EEG biofeedback, transcranial direct current stimulation) and a control procedure (sham transcranial direct stimulation). Results As hypothesized, more presession theta power was associated with greater response to hypnotic analgesia. In exploratory analyses, we found that less baseline alpha power predicted pain reduction with meditation. Conclusions The findings support the idea that different patients respond to different pain treatments and that between-person treatment response differences are related to brain states as measured by EEG. The results have implications for the possibility of enhancing pain treatment response by either 1) better patient/treatment matching or 2) influencing brain activity before treatment is initiated in order to prepare patients to respond. Research is needed to replicate and confirm the findings in additional samples of individuals with chronic pain. PMID:25287554
NASA Technical Reports Server (NTRS)
Nyangweso, Emmanuel; Bole, Brian
2014-01-01
Successful prediction and management of battery life using prognostic algorithms through ground and flight tests is important for performance evaluation of electrical systems. This paper details the design of test beds suitable for replicating loading profiles that would be encountered in deployed electrical systems. The test bed data will be used to develop and validate prognostic algorithms for predicting battery discharge time and battery failure time. Online battery prognostic algorithms will enable health management strategies. The platform used for algorithm demonstration is the EDGE 540T electric unmanned aerial vehicle (UAV). The fully designed test beds developed and detailed in this paper can be used to conduct battery life tests by controlling current and recording voltage and temperature to develop a model that makes a prediction of end-of-charge and end-of-life of the system based on rapid state of health (SOH) assessment.
Flyback CCM inverter for AC module applications: iterative learning control and convergence analysis
NASA Astrophysics Data System (ADS)
Lee, Sung-Ho; Kim, Minsung
2017-12-01
This paper presents an iterative learning controller (ILC) for an interleaved flyback inverter operating in continuous conduction mode (CCM). The flyback CCM inverter features small output ripple current, high efficiency, and low cost, and hence it is well suited for photovoltaic power applications. However, it exhibits the non-minimum phase behaviour, because its transfer function from control duty to output current has the right-half-plane (RHP) zero. Moreover, the flyback CCM inverter suffers from the time-varying grid voltage disturbance. Thus, conventional control scheme results in inaccurate output tracking. To overcome these problems, the ILC is first developed and applied to the flyback inverter operating in CCM. The ILC makes use of both predictive and current learning terms which help the system output to converge to the reference trajectory. We take into account the nonlinear averaged model and use it to construct the proposed controller. It is proven that the system output globally converges to the reference trajectory in the absence of state disturbances, output noises, or initial state errors. Numerical simulations are performed to validate the proposed control scheme, and experiments using 400-W AC module prototype are carried out to demonstrate its practical feasibility.
ERIC Educational Resources Information Center
Cooper, Ann
2011-01-01
The obesity level and related health problems in American children have risen to the point where the Centers for Disease Control predicts the current generation may be the first to die at younger ages than their parents. Ann Cooper, a chef and long-time advocate for healthier food choices and health education for children, argues that child…
Benefits of Expressive Writing in Lowering Rumination and Depressive Symptoms
ERIC Educational Resources Information Center
Gortner, Eva-Marie; Rude, Stephanie S.; Pennebaker, James W.
2006-01-01
Depression-vulnerable college students (with both elevated prior depressive symptoms and low current depressive symptoms) wrote on 3 consecutive days in either an expressive writing or a control condition. As predicted, participants scoring above the median on the suppression scale of the Emotion Regulation Questionnaire (Gross & John, 2003)…
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; Wahls, Richard A.
2008-01-01
Several recent workshops and studies are used to make an assessment of the current status of CFD for subsonic fixed wing aerodynamics. Uncertainty quantification plays a significant role in the assessment, so terms associated with verification and validation are given and some methodology and research areas are highlighted. For high-subsonic-speed cruise through buffet onset, the series of drag prediction workshops and NASA/Boeing buffet onset studies are described. For low-speed flow control for high lift, a circulation control workshop and a synthetic jet flow control workshop are described. Along with a few specific recommendations, gaps and needs identified through the workshops and studies are used to develop a list of broad recommendations to improve CFD capabilities and processes for this discipline in the future.
Predictive risk models for proximal aortic surgery
Díaz, Rocío; Pascual, Isaac; Álvarez, Rubén; Alperi, Alberto; Rozado, Jose; Morales, Carlos; Silva, Jacobo; Morís, César
2017-01-01
Predictive risk models help improve decision making, information to our patients and quality control comparing results between surgeons and between institutions. The use of these models promotes competitiveness and led to increasingly better results. All these virtues are of utmost importance when the surgical operation entails high-risk. Although proximal aortic surgery is less frequent than other cardiac surgery operations, this procedure itself is more challenging and technically demanding than other common cardiac surgery techniques. The aim of this study is to review the current status of predictive risk models for patients who undergo proximal aortic surgery, which means aortic root replacement, supracoronary ascending aortic replacement or aortic arch surgery. PMID:28616348
Theory of mind and switching predict prospective memory performance in adolescents.
Altgassen, Mareike; Vetter, Nora C; Phillips, Louise H; Akgün, Canan; Kliegel, Matthias
2014-11-01
Research indicates ongoing development of prospective memory as well as theory of mind and executive functions across late childhood and adolescence. However, so far the interplay of these processes has not been investigated. Therefore, the purpose of the current study was to investigate whether theory of mind and executive control processes (specifically updating, switching, and inhibition) predict prospective memory development across adolescence. In total, 42 adolescents and 41 young adults participated in this study. Young adults outperformed adolescents on tasks of prospective memory, theory of mind, and executive functions. Switching and theory of mind predicted prospective memory performance in adolescents. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Li, Fei; Choudhari, Meelan M.; Chang, Chau-Lyan; Streett, Craig L.; Carpenter, Mark H.
2011-01-01
A combination of parabolized stability equations and secondary instability theory has been applied to a low-speed swept airfoil model with a chord Reynolds number of 7.15 million, with the goals of (i) evaluating this methodology in the context of transition prediction for a known configuration for which roughness based crossflow transition control has been demonstrated under flight conditions and (ii) of analyzing the mechanism of transition delay via the introduction of discrete roughness elements (DRE). Roughness based transition control involves controlled seeding of suitable, subdominant crossflow modes, so as to weaken the growth of naturally occurring, linearly more unstable crossflow modes. Therefore, a synthesis of receptivity, linear and nonlinear growth of stationary crossflow disturbances, and the ensuing development of high frequency secondary instabilities is desirable to understand the experimentally observed transition behavior. With further validation, such higher fidelity prediction methodology could be utilized to assess the potential for crossflow transition control at even higher Reynolds numbers, where experimental data is currently unavailable.
Roughness Based Crossflow Transition Control: A Computational Assessment
NASA Technical Reports Server (NTRS)
Li, Fei; Choudhari, Meelan M.; Chang, Chau-Lyan; Streett, Craig L.; Carpenter, Mark H.
2009-01-01
A combination of parabolized stability equations and secondary instability theory has been applied to a low-speed swept airfoil model with a chord Reynolds number of 7.15 million, with the goals of (i) evaluating this methodology in the context of transition prediction for a known configuration for which roughness based crossflow transition control has been demonstrated under flight conditions and (ii) of analyzing the mechanism of transition delay via the introduction of discrete roughness elements (DRE). Roughness based transition control involves controlled seeding of suitable, subdominant crossflow modes, so as to weaken the growth of naturally occurring, linearly more unstable crossflow modes. Therefore, a synthesis of receptivity, linear and nonlinear growth of stationary crossflow disturbances, and the ensuing development of high frequency secondary instabilities is desirable to understand the experimentally observed transition behavior. With further validation, such higher fidelity prediction methodology could be utilized to assess the potential for crossflow transition control at even higher Reynolds numbers, where experimental data is currently unavailable.
Anwar, Mohammad Y; Lewnard, Joseph A; Parikh, Sunil; Pitzer, Virginia E
2016-11-22
Malaria remains endemic in Afghanistan. National control and prevention strategies would be greatly enhanced through a better ability to forecast future trends in disease incidence. It is, therefore, of interest to develop a predictive tool for malaria patterns based on the current passive and affordable surveillance system in this resource-limited region. This study employs data from Ministry of Public Health monthly reports from January 2005 to September 2015. Malaria incidence in Afghanistan was forecasted using autoregressive integrated moving average (ARIMA) models in order to build a predictive tool for malaria surveillance. Environmental and climate data were incorporated to assess whether they improve predictive power of models. Two models were identified, each appropriate for different time horizons. For near-term forecasts, malaria incidence can be predicted based on the number of cases in the four previous months and 12 months prior (Model 1); for longer-term prediction, malaria incidence can be predicted using the rates 1 and 12 months prior (Model 2). Next, climate and environmental variables were incorporated to assess whether the predictive power of proposed models could be improved. Enhanced vegetation index was found to have increased the predictive accuracy of longer-term forecasts. Results indicate ARIMA models can be applied to forecast malaria patterns in Afghanistan, complementing current surveillance systems. The models provide a means to better understand malaria dynamics in a resource-limited context with minimal data input, yielding forecasts that can be used for public health planning at the national level.
Evaluation of the impacts of climate change on disease vectors through ecological niche modelling.
Carvalho, B M; Rangel, E F; Vale, M M
2017-08-01
Vector-borne diseases are exceptionally sensitive to climate change. Predicting vector occurrence in specific regions is a challenge that disease control programs must meet in order to plan and execute control interventions and climate change adaptation measures. Recently, an increasing number of scientific articles have applied ecological niche modelling (ENM) to study medically important insects and ticks. With a myriad of available methods, it is challenging to interpret their results. Here we review the future projections of disease vectors produced by ENM, and assess their trends and limitations. Tropical regions are currently occupied by many vector species; but future projections indicate poleward expansions of suitable climates for their occurrence and, therefore, entomological surveillance must be continuously done in areas projected to become suitable. The most commonly applied methods were the maximum entropy algorithm, generalized linear models, the genetic algorithm for rule set prediction, and discriminant analysis. Lack of consideration of the full-known current distribution of the target species on models with future projections has led to questionable predictions. We conclude that there is no ideal 'gold standard' method to model vector distributions; researchers are encouraged to test different methods for the same data. Such practice is becoming common in the field of ENM, but still lags behind in studies of disease vectors.
A Model for Dissolution of Lime in Steelmaking Slags
NASA Astrophysics Data System (ADS)
Sarkar, Rahul; Roy, Ushasi; Ghosh, Dinabandhu
2016-08-01
In a previous study by Sarkar et al. (Metall. Mater. Trans. B 46B:961 2015), a dynamic model of the LD steelmaking was developed. The prediction of the previous model (Sarkar et al. in Metall. Mater. Trans. B 46B:961 2015) for the bath (metal) composition matched well with the plant data (Cicutti et al. in Proceedings of 6th International Conference on Molten Slags, Fluxes and Salts, Stockholm City, 2000). However, with respect to the slag composition, the prediction was not satisfactory. The current study aims to improve upon the previous model Sarkar et al. (Metall. Mater. Trans. B 46B:961 2015) by incorporating a lime dissolution submodel into the earlier one. From the industrial point of view, the understanding of the lime dissolution kinetics is important to meet the ever-increasing demand of producing low-P steel at a low basicity. In the current study, three-step kinetics for the lime dissolution is hypothesized on the assumption that a solid layer of 2CaO·SiO2 should form around the unreacted core of the lime. From the available experimental data, it seems improbable that the observed kinetics should be controlled singly by any one kinetic step. Accordingly, a general, mixed control model has been proposed to calculate the dissolution rate of the lime under varying slag compositions and temperatures. First, the rate equation for each of the three rate-controlling steps has been derived, for three different lime geometries. Next, the rate equation for the mixed control kinetics has been derived and solved to find the dissolution rate. The model predictions have been validated by means of the experimental data available in the literature. In addition, the effects of the process conditions on the dissolution rate have been studied, and compared with the experimental results wherever possible. Incorporation of this submodel into the earlier global model (Sarkar et al. in Metall. Mater. Trans. B 46B:961 2015) enables the prediction of the lime dissolution rate in the dynamic system of LD steelmaking. In addition, with the inclusion of this submodel, significant improvement in the prediction of the slag composition during the main blow period has been observed.
Strategic modulation of cognitive control.
Lungu, Ovidiu V; Liu, Tao; Waechter, Tobias; Willingham, Daniel T; Ashe, James
2007-08-01
The neural substrate of cognitive control is thought to comprise an evaluative component located in the anterior cingulate cortex (ACC) and an executive component in the prefrontal cortex (PFC). The control mechanism itself is mainly local, triggered by response conflict (monitored by the ACC) and involving the allocation of executive resources (recruited by the PFC) in a trial-to-trial fashion. However, another way to achieve control would be to use a strategic mechanism based on long-term prediction of upcoming events and on a chronic response strategy that ignores local features of the task. In the current study, we showed that such a strategic control mechanism was based on a functional dissociation or complementary relationship between the ACC and the PFC. When information in the environment was available to make predictions about upcoming stimuli, local task features (e.g., response conflict) were no longer used as a control signal. We suggest that having separate control mechanisms based on local or global task features allows humans to be persistent in pursuing their goals, yet flexible enough to adapt to changes in the environment.
Wheel slip control with torque blending using linear and nonlinear model predictive control
NASA Astrophysics Data System (ADS)
Basrah, M. Sofian; Siampis, Efstathios; Velenis, Efstathios; Cao, Dongpu; Longo, Stefano
2017-11-01
Modern hybrid electric vehicles employ electric braking to recuperate energy during deceleration. However, currently anti-lock braking system (ABS) functionality is delivered solely by friction brakes. Hence regenerative braking is typically deactivated at a low deceleration threshold in case high slip develops at the wheels and ABS activation is required. If blending of friction and electric braking can be achieved during ABS events, there would be no need to impose conservative thresholds for deactivation of regenerative braking and the recuperation capacity of the vehicle would increase significantly. In addition, electric actuators are typically significantly faster responding and would deliver better control of wheel slip than friction brakes. In this work we present a control strategy for ABS on a fully electric vehicle with each wheel independently driven by an electric machine and friction brake independently applied at each wheel. In particular we develop linear and nonlinear model predictive control strategies for optimal performance and enforcement of critical control and state constraints. The capability for real-time implementation of these controllers is assessed and their performance is validated in high fidelity simulation.
Steady-State Modeling of Modular Multilevel Converter Under Unbalanced Grid Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Xiaojie M.; Wang, Zhiqiang; Liu, Bo
This paper presents a steady-state model of MMC for the second-order phase voltage ripple prediction under unbalanced conditions, taking the impact of negative-sequence current control into account. From the steady-state model, a circular relationship is found among current and voltage quantities, which can be used to evaluate the magnitudes and initial phase angles of different circulating current components. Moreover, in order to calculate the circulating current in a point-to-point MMC-based HVdc system under unbalanced grid conditions, the derivation of equivalent dc impedance of an MMC is discussed as well. According to the dc impedance model, an MMC inverter can bemore » represented as a series connected R-L-C branch, with its equivalent resistance and capacitance directly related to the circulating current control parameters. Experimental results from a scaled-down three-phase MMC system under an emulated single-line-to-ground fault are provided to support the theoretical analysis and derived model. In conclusion, this new models provides an insight into the impact of different control schemes on the fault characteristics and improves the understanding of the operation of MMC under unbalanced conditions.« less
Steady-State Modeling of Modular Multilevel Converter Under Unbalanced Grid Conditions
Shi, Xiaojie M.; Wang, Zhiqiang; Liu, Bo; ...
2016-11-16
This paper presents a steady-state model of MMC for the second-order phase voltage ripple prediction under unbalanced conditions, taking the impact of negative-sequence current control into account. From the steady-state model, a circular relationship is found among current and voltage quantities, which can be used to evaluate the magnitudes and initial phase angles of different circulating current components. Moreover, in order to calculate the circulating current in a point-to-point MMC-based HVdc system under unbalanced grid conditions, the derivation of equivalent dc impedance of an MMC is discussed as well. According to the dc impedance model, an MMC inverter can bemore » represented as a series connected R-L-C branch, with its equivalent resistance and capacitance directly related to the circulating current control parameters. Experimental results from a scaled-down three-phase MMC system under an emulated single-line-to-ground fault are provided to support the theoretical analysis and derived model. In conclusion, this new models provides an insight into the impact of different control schemes on the fault characteristics and improves the understanding of the operation of MMC under unbalanced conditions.« less
The Slow Controls System of the New Muon g-2 Experiment at Fermilab
NASA Astrophysics Data System (ADS)
Eads, Michael; New Muon g-2 Collaboration
2015-04-01
The goal of the new muon g-2 experiment (E-989), currently under construction at Fermi National Accelerator Laboratory, is to measure the anomalous gyromagnetic ratio of the muon with unprecedented precision. The uncertainty goal of the experiment, 0.14ppm, represents a four-fold improvement over the current best measurement of this value and has the potential to increase the current three standard deviation disagreement with the predicted standard model value to five standard deviations. Measuring the operating conditions of the experiment will be essential to achieving these uncertainty goals. This talk will describe the design and the current status of E-989's slow controls system. This system, based on the MIDAS Slow Control Bus, will be used to measure and record currents, voltages, temperatures, humidities, pressures, flows, and other data which is collected asynchronously with the injection of the muon beam. The system consists of a variety of sensors and front-end electronics which interface to back-end data acquisition, data storage, and data monitoring systems. Parts of the system are all already operational and the full system will be completed before beam commissioning begins in 2017.
Flight Deck Weather Avoidance Decision Support: Implementation and Evaluation
NASA Technical Reports Server (NTRS)
Wu, Shu-Chieh; Luna, Rocio; Johnson, Walter W.
2013-01-01
Weather related disruptions account for seventy percent of the delays in the National Airspace System (NAS). A key component in the weather plan of the Next Generation of Air Transportation System (NextGen) is to assimilate observed weather information and probabilistic forecasts into the decision process of flight crews and air traffic controllers. In this research we explore supporting flight crew weather decision making through the development of a flight deck predicted weather display system that utilizes weather predictions generated by ground-based radar. This system integrates and presents this weather information, together with in-flight trajectory modification tools, within a cockpit display of traffic information (CDTI) prototype. that the CDTI features 2D and perspective 3D visualization models of weather. The weather forecast products that we implemented were the Corridor Integrated Weather System (CIWS) and the Convective Weather Avoidance Model (CWAM), both developed by MIT Lincoln Lab. We evaluated the use of CIWS and CWAM for flight deck weather avoidance in two part-task experiments. Experiment 1 compared pilots' en route weather avoidance performance in four weather information conditions that differed in the type and amount of predicted forecast (CIWS current weather only, CIWS current and historical weather, CIWS current and forecast weather, CIWS current and forecast weather and CWAM predictions). Experiment 2 compared the use of perspective 3D and 21/2D presentations of weather for flight deck weather avoidance. Results showed that pilots could take advantage of longer range predicted weather forecasts in performing en route weather avoidance but more research will be needed to determine what combinations of information are optimal and how best to present them.
Evoked EMG-based torque prediction under muscle fatigue in implanted neural stimulation
NASA Astrophysics Data System (ADS)
Hayashibe, Mitsuhiro; Zhang, Qin; Guiraud, David; Fattal, Charles
2011-10-01
In patients with complete spinal cord injury, fatigue occurs rapidly and there is no proprioceptive feedback regarding the current muscle condition. Therefore, it is essential to monitor the muscle state and assess the expected muscle response to improve the current FES system toward adaptive force/torque control in the presence of muscle fatigue. Our team implanted neural and epimysial electrodes in a complete paraplegic patient in 1999. We carried out a case study, in the specific case of implanted stimulation, in order to verify the corresponding torque prediction based on stimulus evoked EMG (eEMG) when muscle fatigue is occurring during electrical stimulation. Indeed, in implanted stimulation, the relationship between stimulation parameters and output torques is more stable than external stimulation in which the electrode location strongly affects the quality of the recruitment. Thus, the assumption that changes in the stimulation-torque relationship would be mainly due to muscle fatigue can be made reasonably. The eEMG was proved to be correlated to the generated torque during the continuous stimulation while the frequency of eEMG also decreased during fatigue. The median frequency showed a similar variation trend to the mean absolute value of eEMG. Torque prediction during fatigue-inducing tests was performed based on eEMG in model cross-validation where the model was identified using recruitment test data. The torque prediction, apart from the potentiation period, showed acceptable tracking performances that would enable us to perform adaptive closed-loop control through implanted neural stimulation in the future.
Evaluation of scenario-specific modeling approaches to predict plane of array solar irradiation
Moslehi, Salim; Reddy, T. Agami; Katipamula, Srinivas
2017-12-20
Predicting thermal or electric power output from solar collectors requires knowledge of solar irradiance incident on the collector, known as plane of array irradiance. In the absence of such a measurement, plane of array irradiation can be predicted using relevant transposition models which essentially requires diffuse (or beam) radiation to be to be known along with total horizontal irradiation. The two main objectives of the current study are (1) to evaluate the extent to which the prediction of plane of array irradiance is improved when diffuse radiation is predicted using location-specific regression models developed from on-site measured data as againstmore » using generalized models; and (2) to estimate the expected uncertainties associated with plane of array irradiance predictions under different data collection scenarios likely to be encountered in practical situations. These issues have been investigated using monitored data for several U.S. locations in conjunction with the Typical Meteorological Year, version 3 database. An interesting behavior in the Typical Meteorological Year, version 3 data was also observed in correlation patterns between diffuse and total radiation taken from different years which seems to attest to a measurement problem. Furthermore, the current study was accomplished under a broader research agenda aimed at providing energy managers the necessary tools for predicting, scheduling, and controlling various sub-systems of an integrated energy system.« less
Evaluation of scenario-specific modeling approaches to predict plane of array solar irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moslehi, Salim; Reddy, T. Agami; Katipamula, Srinivas
Predicting thermal or electric power output from solar collectors requires knowledge of solar irradiance incident on the collector, known as plane of array irradiance. In the absence of such a measurement, plane of array irradiation can be predicted using relevant transposition models which essentially requires diffuse (or beam) radiation to be to be known along with total horizontal irradiation. The two main objectives of the current study are (1) to evaluate the extent to which the prediction of plane of array irradiance is improved when diffuse radiation is predicted using location-specific regression models developed from on-site measured data as againstmore » using generalized models; and (2) to estimate the expected uncertainties associated with plane of array irradiance predictions under different data collection scenarios likely to be encountered in practical situations. These issues have been investigated using monitored data for several U.S. locations in conjunction with the Typical Meteorological Year, version 3 database. An interesting behavior in the Typical Meteorological Year, version 3 data was also observed in correlation patterns between diffuse and total radiation taken from different years which seems to attest to a measurement problem. Furthermore, the current study was accomplished under a broader research agenda aimed at providing energy managers the necessary tools for predicting, scheduling, and controlling various sub-systems of an integrated energy system.« less
NASA Technical Reports Server (NTRS)
Kvaternik, Raymond G.; Juang, Jer-Nan; Bennett, Richard L.
2000-01-01
The Aeroelasticity Branch at NASA Langley Research Center has a long and substantive history of tiltrotor aeroelastic research. That research has included a broad range of experimental investigations in the Langley Transonic Dynamics Tunnel (TDT) using a variety of scale models and the development of essential analyses. Since 1994, the tiltrotor research program has been using a 1/5-scale, semispan aeroelastic model of the V-22 designed and built by Bell Helicopter Textron Inc. (BHTI) in 1981. That model has been refurbished to form a tiltrotor research testbed called the Wing and Rotor Aeroelastic Test System (WRATS) for use in the TDT. In collaboration with BHTI, studies under the current tiltrotor research program are focused on aeroelastic technology areas having the potential for enhancing the commercial and military viability of tiltrotor aircraft. Among the areas being addressed, considerable emphasis is being directed to the evaluation of modern adaptive multi-input multi- output (MIMO) control techniques for active stability augmentation and vibration control of tiltrotor aircraft. As part of this investigation, a predictive control technique known as Generalized Predictive Control (GPC) is being studied to assess its potential for actively controlling the swashplate of tiltrotor aircraft to enhance aeroelastic stability in both helicopter and airplane modes of flight. This paper summarizes the exploratory numerical and experimental studies that were conducted as part of that investigation.
Pilot Preferences for Information Provided and Its Format for Status, Alerts, and Controls
NASA Technical Reports Server (NTRS)
Trujillo, Anna C.
2004-01-01
With the increased use of cathode ray tubes (CRTs) in flight decks and the computing power available, it is possible to combine status screens, alerts/procedures screens, and control screens onto a single display. This report presents the results of a survey designed to assess the perceived helpfulness and need of various pieces of information that could be included on status and control screens. The results from the survey indicate that operators want parameter ranges that change depending on the current aircraft configuration shown on bow-tie or dial displays. These displays should show the current value, normal range, alert type and range, and predictive information. Respondents wanted to see system relationships to one another for both component control and menu selection. When bringing up these various displays, this information should come up with a single button push. Finally, checklists should sense when a component has changed to the desired state.
Non-inductive current drive and transport in high βN plasmas in JET
NASA Astrophysics Data System (ADS)
Voitsekhovitch, I.; Alper, B.; Brix, M.; Budny, R. V.; Buratti, P.; Challis, C. D.; Ferron, J.; Giroud, C.; Joffrin, E.; Laborde, L.; Luce, T. C.; McCune, D.; Menard, J.; Murakami, M.; Park, J. M.; JET-EFDA contributors
2009-05-01
A route to stationary MHD stable operation at high βN has been explored at the Joint European Torus (JET) by optimizing the current ramp-up, heating start time and the waveform of neutral beam injection (NBI) power. In these scenarios the current ramp-up has been accompanied by plasma pre-heat (or the NBI has been started before the current flat-top) and NBI power up to 22 MW has been applied during the current flat-top. In the discharges considered transient total βN ≈ 3.3 and stationary (during high power phase) βN ≈ 3 have been achieved by applying the feedback control of βN with the NBI power in configurations with monotonic or flat core safety factor profile and without an internal transport barrier (ITB). The transport and current drive in this scenario is analysed here by using the TRANSP and ASTRA codes. The interpretative analysis performed with TRANSP shows that 50-70% of current is driven non-inductively; half of this current is due to the bootstrap current which has a broad profile since an ITB was deliberately avoided. The GLF23 transport model predicts the temperature profiles within a ±22% discrepancy with the measurements over the explored parameter space. Predictive simulations with this model show that the E × B rotational shear plays an important role for thermal ion transport in this scenario, producing up to a 40% increase of the ion temperature. By applying transport and current drive models validated in self-consistent simulations of given reference scenarios in a wider parameter space, the requirements for fully non-inductive stationary operation at JET are estimated. It is shown that the strong stiffness of the temperature profiles predicted by the GLF23 model restricts the bootstrap current at larger heating power. In this situation full non-inductive operation without an ITB can be rather expensive strongly relying on the external non-inductive current drive sources.
Fuzzy Behavior-Based Navigation for Planetary
NASA Technical Reports Server (NTRS)
Tunstel, Edward; Danny, Harrison; Lippincott, Tanya; Jamshidi, Mo
1997-01-01
Adaptive behavioral capabilities are necessary for robust rover navigation in unstructured and partially-mapped environments. A control approach is described which exploits the approximate reasoning capability of fuzzy logic to produce adaptive motion behavior. In particular, a behavior-based architecture for hierarchical fuzzy control of microrovers is presented. Its structure is described, as well as mechanisms of control decision-making which give rise to adaptive behavior. Control decisions for local navigation result from a consensus of recommendations offered only by behaviors that are applicable to current situations. Simulation predicts the navigation performance on a microrover in simplified Mars-analog terrain.
Agarwal, Shivani; Jawad, Abbas F; Miller, Victoria A
2016-11-01
The current study examined how a comprehensive set of variables from multiple domains, including at the adolescent and family level, were predictive of glycemic control in adolescents with type 1 diabetes (T1D). Participants included 100 adolescents with T1D ages 10-16 yrs and their parents. Participants were enrolled in a longitudinal study about youth decision-making involvement in chronic illness management of which the baseline data were available for analysis. Bivariate associations with glycemic control (HbA1C) were tested. Hierarchical linear regression was implemented to inform the predictive model. In bivariate analyses, race, family structure, household income, insulin regimen, adolescent-reported adherence to diabetes self-management, cognitive development, adolescent responsibility for T1D management, and parent behavior during the illness management discussion were associated with HbA1c. In the multivariate model, the only significant predictors of HbA1c were race and insulin regimen, accounting for 17% of the variance. Caucasians had better glycemic control than other racial groups. Participants using pre-mixed insulin therapy and basal-bolus insulin had worse glycemic control than those on insulin pumps. This study shows that despite associations of adolescent and family-level variables with glycemic control at the bivariate level, only race and insulin regimen are predictive of glycemic control in hierarchical multivariate analyses. This model offers an alternative way to examine the relationship of demographic and psychosocial factors on glycemic control in adolescents with T1D. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Understanding Predictability of the Ocean
2011-09-30
information if it does not display a currently valid OMB control number. 1. REPORT DATE 30 SEP 2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00...source of barotropic-to-baroclinic tidal energy conversion. In the region around the islands, the internal tidal energy is as much as 50% of the...PacIOOS currently employs four nested ROMS models: 4km island-chain, 1km Oahu, 100m Oahu South-Shore, and 80m Oahu West-Coast. Each grid is nested in
Commissioning a passive-scattering proton therapy nozzle for accurate SOBP delivery
Engelsman, M.; Lu, H.-M.; Herrup, D.; Bussiere, M.; Kooy, H. M.
2009-01-01
Proton radiotherapy centers that currently use passively scattered proton beams do field specific calibrations for a non-negligible fraction of treatment fields, which is time and resource consuming. Our improved understanding of the passive scattering mode of the IBA universal nozzle, especially of the current modulation function, allowed us to re-commission our treatment control system for accurate delivery of SOBPs of any range and modulation, and to predict the output for each of these fields. We moved away from individual field calibrations to a state where continued quality assurance of SOBP field delivery is ensured by limited system-wide measurements that only require one hour per week. This manuscript reports on a protocol for generation of desired SOBPs and prediction of dose output. PMID:19610306
NASA Technical Reports Server (NTRS)
Noll, Thomas E.
1990-01-01
The paper describes recent accomplishments and current research projects along four main thrusts in aeroservoelasticity at NASA Langley. One activity focuses on enhancing the modeling and analysis procedures to accurately predict aeroservoelastic interactions. Improvements to the minimum-state method of approximating unsteady aerodynamics are shown to provide precise low-order models for design and simulation tasks. Recent extensions in aerodynamic correction-factor methodology are also described. With respect to analysis procedures, the paper reviews novel enhancements to matched filter theory and random process theory for predicting the critical gust profile and the associated time-correlated gust loads for structural design considerations. Two research projects leading towards improved design capability are also summarized: (1) an integrated structure/control design capability and (2) procedures for obtaining low-order robust digital control laws for aeroelastic applications.
Carretta, Thomas R; King, Raymond E
2008-01-01
Over the past decade, the U.S. military has conducted several studies to evaluate determinants of enlisted air traffic controller (ATC) performance. Research has focused on validation of the Armed Services Vocational Aptitude Battery (ASVAB) and has shown it to be a good predictor of training performance. Despite this, enlisted ATC training and post-training attrition is higher than desirable, prompting interest in alternate selection methods to augment current procedures. The current study examined the utility of the FAA Air Traffic Selection and Training (AT-SAT) battery for incrementing the predictiveness of the ASVAB versus several enlisted ATC training criteria. Subjects were 448 USAF enlisted ATC students who were administered the ASVAB and FAA AT-SAT subtests and subsequently graduated or were eliminated from apprentice-level training. Training criteria were a dichotomous graduation/elimination training score, average ATC fundamentals course score, and FAA certified tower operator test score. Results confirmed the predictive validity of the ASVAB and showed that one of the AT-SAT subtests resembling a low-fidelity ATC work sample significantly improved prediction of training performance beyond the ASVAB alone. Results suggested training attrition could be reduced by raising the current ASVAB minimum qualifying score. However, this approach may make it difficult to identify sufficient numbers of trainees and lead to adverse impact. Although the AT-SAT ATC work sample subtest showed incremental validity to the ASVAB, its length (95 min) may be problematic in operational testing. Recommendations are made for additional studies to address issues affecting operational implementation.
Dimensions of emotional intelligence related to physical and mental health and to health behaviors
Fernández-Abascal, Enrique G.; Martín-Díaz, María Dolores
2015-01-01
In this paper the relationship between emotional intelligence (EI) and health is examined. The current work investigated the dimensions of EI are sufficient to explain various components of physical and mental health, and various categories of health-related behaviors. A sample of 855 participants completed two measures of EI, the Trait Meta-Mood Scale and trait emotional intelligence questionnaire, a measure of health, the Health Survey SF-36 Questionnaire (SF-36); and a measure of health-related behaviors, the health behavior checklist. The results show that the EI dimensions analyzed are better predictors of mental health than of physical health. The EI dimensions that positively explain the Mental Health Component are Well-Being, Self-Control and Sociability, and negatively, Attention. Well-Being, Self-Control and Sociability positively explain the Physical Health Component. EI dimensions predict a lower percentage of health-related behaviors than they do health components. Emotionality and Repair predict the Preventive Health Behavior category, and only one dimension, Self-Control, predicts the Risk Taking Behavior category. Older people carry out more preventive behaviors for health. PMID:25859229
One-year course and predictors of outcome of adolescent depression: a case-control study in Finland.
Karlsson, Linnea; Kiviruusu, Olli; Miettunen, Jouko; Heilä, Hannele; Holi, Matti; Ruuttu, Titta; Tuisku, Virpi; Pelkonen, Mirjami; Marttunen, Mauri
2008-05-01
Clinical studies on the outcome of adolescent depression beyond treatment trials are scarce. To investigate the impact of characteristics of the depressive episode and current comorbidity on the 1-year outcome of depression. A sample of 174 consecutive adolescent psychiatric outpatients (aged 13 through 19 years) and 17 school-derived matched controls, all with unipolar depressive disorders at baseline, were reinterviewed for DSM-IV Axis I and Axis II disorders at 12 months. The study was conducted between January 1998 and May 2002. The outpatients had equal recovery rate and episode duration but shorter time to recurrence than the controls. Among the outpatients, Axis II comorbidity predicted shorter time to recurrence (p = .02). Longer time to recovery was predicted by earlier lifetime age at onset for depression (p = .02), poor psychosocial functioning (p = .003), depressive disorder diagnosis (p
Crundall, David; Kroll, Victoria
2018-05-18
Can hazard perception testing be useful for the emergency services? Previous research has found emergency response drivers' (ERDs) to perform better than controls, however these studies used clips of normal driving. In contrast, the current study filmed footage from a fire-appliance on blue-light training runs through Nottinghamshire, and endeavoured to discriminate between different groups of EDRs based on experience and collision risk. Thirty clips were selected to create two variants of the hazard perception test: a traditional push-button test requiring speeded-responses to hazards, and a prediction test that occludes at hazard onset and provides four possible outcomes for participants to choose between. Three groups of fire-appliance drivers (novices, low-risk experienced and high-risk experienced), and age-matched controls undertook both tests. The hazard perception test only discriminated between controls and all FA drivers, whereas the hazard prediction test was more sensitive, discriminating between high and low-risk experienced fire appliance drivers. Eye movement analyses suggest that the low-risk drivers were better at prioritising the hazardous precursors, leading to better predictive accuracy. These results pave the way for future assessment and training tools to supplement emergency response driver training, while supporting the growing literature that identifies hazard prediction as a more robust measure of driver safety than traditional hazard perception tests. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wowra, Berndt; Muacevic, Alexander; Fürweger, Christoph; Schichor, Christian; Tonn, Jörg-Christian
2012-01-01
Radiosurgery has become an accepted treatment option for vestibular schwannomas. Nevertheless, predictors of tumor control and treatment toxicity in current radiosurgery of vestibular schwannomas are not well understood. To generate new information on predictors of tumor control and cranial nerve toxicity of single-fraction radiosurgery of vestibular schwannomas, we conducted a single-institution long-term observational study of radiosurgery for sporadic vestibular schwannomas. Minimum follow-up was 3 years. Investigated as potential predictors of tumor control and cranial nerve toxicity were treatment technology; tumor resection preceding radiosurgery; tumor size; gender; patient age; history of cancer, vascular disease, or metabolic disease; tumor volume; radiosurgical prescription dose; and isodose line. Three hundred eighty-six patients met inclusion criteria. Treatment failure was observed in 27 patients. History of unrelated cancer (strongest predictor) and prescription dose significantly predicted tumor control. The cumulative incidence of treatment failure was 30% after 6.5 years in patients with unrelated malignancy and 10% after ≥15 years in patients without such cancer (P < .02). Tumor volume was the only predictor of trigeminal neuropathy (observed in 6 patients). No predictor of facial nerve toxicity was found. On the House and Brackmann scale, 1 patient had a permanent one-level drop and 7 a transient drop of 1 to 3 levels. Serviceable hearing was preserved in 75.1%. Tumor hearing before radiosurgery, recurrence, and prescription isodose predicted ototoxicity. Unrelated malignancy is a strong predictor of tumor control. Tumor recurrence predominantly predicts ototoxicity. These findings potentially will aid future clinical decision making in ambiguous cases. PMID:22561798
Personalized medicine in diabetes mellitus: current opportunities and future prospects.
Kleinberger, Jeffrey W; Pollin, Toni I
2015-06-01
Diabetes mellitus affects approximately 382 million individuals worldwide and is a leading cause of morbidity and mortality. Over 40 and nearly 80 genetic loci influencing susceptibility to type 1 and type 2 diabetes, respectively, have been identified. In addition, there is emerging evidence that some genetic variants help to predict response to treatment. Other variants confer apparent protection from diabetes or its complications and may lead to development of novel treatment approaches. Currently, there is clear clinical utility to genetic testing to find the at least 1% of diabetic individuals who have monogenic diabetes (e.g., maturity-onset diabetes of the young and KATP channel neonatal diabetes). Diagnosing many of these currently underdiagnosed types of diabetes enables personalized treatment, resulting in improved and less invasive glucose control, better prediction of prognosis, and enhanced familial risk assessment. Efforts to enhance the rate of detection, diagnosis, and personalized treatment of individuals with monogenic diabetes should set the stage for effective clinical translation of current genetic, pharmacogenetic, and pharmacogenomic research of more complex forms of diabetes. © 2015 New York Academy of Sciences.
Personalized medicine in diabetes mellitus: current opportunities and future prospects
Kleinberger, Jeffrey W.; Pollin, Toni I.
2015-01-01
Diabetes mellitus affects approximately 382 million individuals worldwide and is a leading cause of morbidity and mortality. Over 40 and nearly 80 genetic loci influencing susceptibility to type 1 and type 2 diabetes, respectively, have been identified. Additionally, there is emerging evidence that some genetic variants help to predict response to treatment. Other variants confer apparent protection from diabetes or its complications and may lead to development of novel treatment approaches. Currently, there is clear clinical utility to genetic testing to find the at least 1% of diabetic individuals who have monogenic diabetes (e.g., maturity onset diabetes of the young and KATP channel neonatal diabetes). Diagnosing many of these currently underdiagnosed types of diabetes enables personalized treatment, resulting in improved and less invasive glucose control, better prediction of prognosis, and enhanced familial risk assessment. Efforts to enhance the rate of detection, diagnosis, and personalized treatment of individuals with monogenic diabetes should set the stage for effective clinical translation of current genetic, pharmacogenetic, and pharmacogenomic research of more complex forms of diabetes. PMID:25907167
Using Historical Data to Automatically Identify Air-Traffic Control Behavior
NASA Technical Reports Server (NTRS)
Lauderdale, Todd A.; Wu, Yuefeng; Tretto, Celeste
2014-01-01
This project seeks to develop statistical-based machine learning models to characterize the types of errors present when using current systems to predict future aircraft states. These models will be data-driven - based on large quantities of historical data. Once these models are developed, they will be used to infer situations in the historical data where an air-traffic controller intervened on an aircraft's route, even when there is no direct recording of this action.
Transrectal Near-Infrared Optical Tomography for Prostate Imaging
2011-03-01
when the experimental measurements are grouped with the FEM and the MC for examining the analytic predictions. Section 5 examines the analytic...as well as other experimental limitations, but the error was controlled to be within 0:9mm for the case-azi and 0:5mm for the case- longi...be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number
Cruise, Denise R; Chagdes, James R; Liddy, Joshua J; Rietdyk, Shirley; Haddad, Jeffrey M; Zelaznik, Howard N; Raman, Arvind
2017-07-26
Increased time-delay in the neuromuscular system caused by neurological disorders, concussions, or advancing age is an important factor contributing to balance loss (Chagdes et al., 2013, 2016a,b). We present the design and fabrication of an active balance board system that allows for a systematic study of stiffness and time-delay induced instabilities in standing posture. Although current commercial balance boards allow for variable stiffness, they do not allow for manipulation of time-delay. Having two controllable parameters can more accurately determine the cause of balance deficiencies, and allows us to induce instabilities even in healthy populations. An inverted pendulum model of human posture on such an active balance board predicts that reduced board rotational stiffness destabilizes upright posture through board tipping, and limit cycle oscillations about the upright position emerge as feedback time-delay is increased. We validate these two mechanisms of instability on the designed balance board, showing that rotational stiffness and board time-delay induced the predicted postural instabilities in healthy, young adults. Although current commercial balance boards utilize control of rotational stiffness, real-time control of both stiffness and time-delay on an active balance board is a novel and innovative manipulation to reveal balance deficiencies and potentially improve individualized balance training by targeting multiple dimensions contributing to standing balance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Regional-scale air quality models are being used to demonstrate attainment of the ozone air quality standard. In current regulatory applications, a regional-scale air quality model is applied for a base year and a future year with reduced emissions using the same meteorological ...
Predicting Teacher Likelihood to Use School Gardens: A Case Study
ERIC Educational Resources Information Center
Kincy, Natalie; Fuhrman, Nicholas E.; Navarro, Maria; Knauft, David
2016-01-01
A quantitative survey, built around the theory of planned behavior, was used to investigate elementary teachers' attitudes, school norms, perceived behavioral control, and intent in both current and ideal teaching situations toward using gardens in their curriculum. With positive school norms and teachers who garden in their personal time, 77% of…
ERIC Educational Resources Information Center
Hargrove, Byron K.; Inman, Arpana G.; Crane, Randy L.
2005-01-01
The purpose of the current study was to examine how perceptions of family interaction patterns as defined along three dimensions of family environment (quality of family relationships, family goal-orientations, and degree of organization and control within the family system) predict vocational identity and career planning attitudes among male and…
Predicting Participation in Dual Language Immersion Using Theory of Planned Behavior
ERIC Educational Resources Information Center
Call, Andrea; Domenech Rodríguez, Melanie M.; Vázquez, Alejandro L.; Corralejo, Samantha M.
2018-01-01
Dual language immersion programs are increasing in popularity. Yet little is known about what motivates parents to enroll their children in dual language immersion. The theory of planned behavior posits that behavior is based on attitudes, subjective norms, and perceived behavioral control. The current study was an exploratory evaluation of the…
Wang, Liqiang; Li, Pengfei; Yu, Shaocai; Mehmood, Khalid; Li, Zhen; Chang, Shucheng; Liu, Weiping; Rosenfeld, Daniel; Flagan, Richard C; Seinfeld, John H
2018-01-17
Widespread economic growth in China has led to increasing episodes of severe air pollution, especially in major urban areas. Thermal power plants represent a particularly important class of emissions. Here we present an evaluation of the predicted effectiveness of a series of recently proposed thermal power plant emission controls in the Beijing-Tianjin-Hebei (BTH) region on air quality over Beijing using the Community Multiscale Air Quality(CMAQ) atmospheric chemical transport model to predict CO, SO 2 , NO 2 , PM 2.5 , and PM 10 levels. A baseline simulation of the hypothetical removal of all thermal power plants in the BTH region is predicted to lead to 38%, 23%, 23%, 24%, and 24% reductions in current annual mean levels of CO, SO 2 , NO 2 , PM 2.5 , and PM 10 in Beijing, respectively. Similar percentage reductions are predicted in the major cities in the BTH region. Simulations of the air quality impact of six proposed thermal power plant emission reduction strategies over the BTH region provide an estimate of the potential improvement in air quality in the Beijing metropolitan area, as a function of the time of year.
Contextual predictability enhances reading performance in patients with schizophrenia.
Fernández, Gerardo; Guinjoan, Salvador; Sapognikoff, Marcelo; Orozco, David; Agamennoni, Osvaldo
2016-07-30
In the present work we analyzed fixation duration in 40 healthy individuals and 18 patients with chronic, stable SZ during reading of regular sentences and proverbs. While they read, their eye movements were recorded. We used lineal mixed models to analyze fixation durations. The predictability of words N-1, N, and N+1 exerted a strong influence on controls and SZ patients. The influence of the predictabilities of preceding, current, and upcoming words on SZ was clearly reduced for proverbs in comparison to regular sentences. Both controls and SZ readers were able to use highly predictable fixated words for an easier reading. Our results suggest that SZ readers might compensate attentional and working memory deficiencies by using stored information of familiar texts for enhancing their reading performance. The predictabilities of words in proverbs serve as task-appropriate cues that are used by SZ readers. To the best of our knowledge, this is the first study using eyetracking for measuring how patients with SZ process well-defined words embedded in regular sentences and proverbs. Evaluation of the resulting changes in fixation durations might provide a useful tool for understanding how SZ patients could enhance their reading performance. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Predicting active school travel: the role of planned behavior and habit strength.
Murtagh, Shemane; Rowe, David A; Elliott, Mark A; McMinn, David; Nelson, Norah M
2012-05-30
Despite strong support for predictive validity of the theory of planned behavior (TPB) substantial variance in both intention and behavior is unaccounted for by the model's predictors. The present study tested the extent to which habit strength augments the predictive validity of the TPB in relation to a currently under-researched behavior that has important health implications, namely children's active school travel. Participants (N = 126 children aged 8-9 years; 59 % males) were sampled from five elementary schools in the west of Scotland and completed questionnaire measures of all TPB constructs in relation to walking to school and both walking and car/bus use habit. Over the subsequent week, commuting steps on school journeys were measured objectively using an accelerometer. Hierarchical multiple regressions were used to test the predictive utility of the TPB and habit strength in relation to both intention and subsequent behavior. The TPB accounted for 41 % and 10 % of the variance in intention and objectively measured behavior, respectively. Together, walking habit and car/bus habit significantly increased the proportion of explained variance in both intention and behavior by 6 %. Perceived behavioral control and both walking and car/bus habit independently predicted intention. Intention and car/bus habit independently predicted behavior. The TPB significantly predicts children's active school travel. However, habit strength augments the predictive validity of the model. The results indicate that school travel is controlled by both intentional and habitual processes. In practice, interventions could usefully decrease the habitual use of motorized transport for travel to school and increase children's intention to walk (via increases in perceived behavioral control and walking habit, and decreases in car/bus habit). Further research is needed to identify effective strategies for changing these antecedents of children's active school travel.
Comparison of Predictive Modeling Methods of Aircraft Landing Speed
NASA Technical Reports Server (NTRS)
Diallo, Ousmane H.
2012-01-01
Expected increases in air traffic demand have stimulated the development of air traffic control tools intended to assist the air traffic controller in accurately and precisely spacing aircraft landing at congested airports. Such tools will require an accurate landing-speed prediction to increase throughput while decreasing necessary controller interventions for avoiding separation violations. There are many practical challenges to developing an accurate landing-speed model that has acceptable prediction errors. This paper discusses the development of a near-term implementation, using readily available information, to estimate/model final approach speed from the top of the descent phase of flight to the landing runway. As a first approach, all variables found to contribute directly to the landing-speed prediction model are used to build a multi-regression technique of the response surface equation (RSE). Data obtained from operations of a major airlines for a passenger transport aircraft type to the Dallas/Fort Worth International Airport are used to predict the landing speed. The approach was promising because it decreased the standard deviation of the landing-speed error prediction by at least 18% from the standard deviation of the baseline error, depending on the gust condition at the airport. However, when the number of variables is reduced to the most likely obtainable at other major airports, the RSE model shows little improvement over the existing methods. Consequently, a neural network that relies on a nonlinear regression technique is utilized as an alternative modeling approach. For the reduced number of variables cases, the standard deviation of the neural network models errors represent over 5% reduction compared to the RSE model errors, and at least 10% reduction over the baseline predicted landing-speed error standard deviation. Overall, the constructed models predict the landing-speed more accurately and precisely than the current state-of-the-art.
Madigan, Daniel J; Stoeber, Joachim; Passfield, Louis
2016-08-01
Perfectionism in sports has been shown to predict longitudinal changes in athlete burnout. What mediates these changes over time, however, is still unclear. Adopting a self-determination theory perspective and using a three-wave longitudinal design, the current study examined perfectionistic strivings, perfectionistic concerns, autonomous motivation, controlled motivation, and athlete burnout in 141 junior athletes (mean age = 17.3 years) over 6 months of active training. When multilevel structural equation modeling was employed to test a mediational model, a differential pattern of between- and within-person relationships emerged. Whereas autonomous motivation mediated the negative relationship that perfectionistic strivings had with burnout at the between- and within-person level, controlled motivation mediated the positive relationship that perfectionistic concerns had with burnout at the between-persons level only. The present findings suggest that differences in autonomous and controlled motivation explain why perfectionism predicts changes in athlete burnout over time.
Suicide Ideation and Deliberate Self-Harm among Ex-Prisoners of War.
Levi-Belz, Yossi; Zerach, Gadi; Solomon, Zahava
2015-01-01
The current study aims to assess the relations among war captivity, PTSD, suicidal ideation (SI), and deliberate self-harm (DSH) among former prisoners of war (ex-POWs). Israeli ex-POWs (N = 176) and a matched control group of combat veterans (controls; N = 118) were assessed using self-report measures. Ex-POWs with PTSD reported higher levels of both SI and DSH compared to ex-POWs and comparable veterans without PTSD. Furthermore, captivity-related variables as well as PTSD symptom clusters were positively related to both SI and DSH. However, only loss of emotional control in captivity and posttraumatic intrusion and emotional numbing symptoms, predicted SI. Ex-POWs with PTSD endorse high levels of SI and DSH. Among ex-POWs, both SI and DSH share similar captivity-related and posttraumatic symptoms correlates but only posttraumatic intrusion and emotional numbing symptoms predict SI.
Sarapas, Casey; Shankman, Stewart A; Harrow, Martin; Goldberg, Joseph F
2012-11-01
Cognitive dysfunction in mood disorders falls along a continuum, such that more severe current depression is associated with greater cognitive impairment. It is not clear whether this association reflects transient state effects of current symptoms on cognitive performance, or persistent, trait-like differences in cognition that are related to overall disorder severity. We addressed this question in 42 unipolar and 47 bipolar participants drawn from a 26-year longitudinal study of psychopathology, using measures of attention/psychomotor processing speed, cognitive flexibility, verbal fluency, and verbal memory. We assessed (a) the extent to which current symptom severity and past average disorder severity predicted unique variance in cognitive performance; (b) whether cognitive performance covaried with within-individual changes in symptom severity; and (c) the stability of neurocognitive measures over six years. We also tested for differences among unipolar and bipolar groups and published norms. Past average depression severity predicted performance on attention/psychomotor processing speed in both groups, and in cognitive flexibility among unipolar participants, even after controlling for current symptom severity, which did not independently predict cognition. Within-participant state changes in depressive symptoms did not predict change in any cognitive domain. All domains were stable over the course of six years. Both groups showed generalized impairment relative to published norms, and bipolar participants performed more poorly than unipolar participants on attention/psychomotor processing speed. The results suggest a stable relationship between mood disorder severity and cognitive deficits. (PsycINFO Database Record (c) 2012 APA, all rights reserved).
Ge, Xuezhen; He, Shanyong; Wang, Tao; Yan, Wei; Zong, Shixiang
2015-01-01
As the primary pest of palm trees, Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) has caused serious harm to palms since it first invaded China. The present study used CLIMEX 1.1 to predict the potential distribution of R. ferrugineus in China according to both current climate data (1981-2010) and future climate warming estimates based on simulated climate data for the 2020s (2011-2040) provided by the Tyndall Center for Climate Change Research (TYN SC 2.0). Additionally, the Ecoclimatic Index (EI) values calculated for different climatic conditions (current and future, as simulated by the B2 scenario) were compared. Areas with a suitable climate for R. ferrugineus distribution were located primarily in central China according to the current climate data, with the northern boundary of the distribution reaching to 40.1°N and including Tibet, north Sichuan, central Shaanxi, south Shanxi, and east Hebei. There was little difference in the potential distribution predicted by the four emission scenarios according to future climate warming estimates. The primary prediction under future climate warming models was that, compared with the current climate model, the number of highly favorable habitats would increase significantly and expand into northern China, whereas the number of both favorable and marginally favorable habitats would decrease. Contrast analysis of EI values suggested that climate change and the density of site distribution were the main effectors of the changes in EI values. These results will help to improve control measures, prevent the spread of this pest, and revise the targeted quarantine areas.
Ge, Xuezhen; He, Shanyong; Wang, Tao; Yan, Wei; Zong, Shixiang
2015-01-01
As the primary pest of palm trees, Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) has caused serious harm to palms since it first invaded China. The present study used CLIMEX 1.1 to predict the potential distribution of R. ferrugineus in China according to both current climate data (1981–2010) and future climate warming estimates based on simulated climate data for the 2020s (2011–2040) provided by the Tyndall Center for Climate Change Research (TYN SC 2.0). Additionally, the Ecoclimatic Index (EI) values calculated for different climatic conditions (current and future, as simulated by the B2 scenario) were compared. Areas with a suitable climate for R. ferrugineus distribution were located primarily in central China according to the current climate data, with the northern boundary of the distribution reaching to 40.1°N and including Tibet, north Sichuan, central Shaanxi, south Shanxi, and east Hebei. There was little difference in the potential distribution predicted by the four emission scenarios according to future climate warming estimates. The primary prediction under future climate warming models was that, compared with the current climate model, the number of highly favorable habitats would increase significantly and expand into northern China, whereas the number of both favorable and marginally favorable habitats would decrease. Contrast analysis of EI values suggested that climate change and the density of site distribution were the main effectors of the changes in EI values. These results will help to improve control measures, prevent the spread of this pest, and revise the targeted quarantine areas. PMID:26496438
How do people respond to health news? The role of personality traits.
Weston, Sara J; Jackson, Joshua J
2016-06-01
When a patient receives a health diagnosis, their response (e.g. changes in behaviour, seeking support) can have significant consequences for long-term health and well-being. Characteristics of health news are known to influence these responses, but personality traits have been omitted from this line of research. The current study examines the role of personality traits in predicting response to health news. Participants (N = 298) read scenarios in which they received health news that was manipulated to vary in severity, controllability and likelihood of outcomes. Participants then rated how likely they were to engage in a number of response behaviours. We examined the main effects and interaction of situational manipulations and personality traits on ratings of these behaviours. Both situations and personality traits influenced behavioural responses to health events. In particular, conscientiousness predicted taking action and seeking social support. Neuroticism predicted both maladaptive and adaptive behavioural responses, providing support for the 'healthy neurotic' hypothesis. Moreover, personality traits predicted best in weak (unlikely, controllable) situations. Both personality traits and situational characteristics contribute to behavioural responses to health news.
Ayres, Karen; Conner, Mark T; Prestwich, Andrew; Smith, Paul
2012-06-01
Various studies have demonstrated an association between implicit measures of attitudes and dietary-related behaviours. However, no study has tested whether implicit measures of attitudes predict dietary behaviour after controlling for explicit measures of palatability. In a prospective design, two studies assessed the validity of measures of implicit attitude (Implicit Association Test, IAT) and explicit measures of palatability and health-related attitudes on self-reported (Studies 1 and 2) and objective food (fruit vs. chocolate) choice (Study 2). Following regression analyses, in both studies, implicit measures of attitudes were correlated with food choice but failed to significantly predict food choice when controlling specifically for explicit measures of palatability. These consistent relationships emerged despite using different category labels within the IAT in the two studies. The current research suggests implicit measures of attitudes may not predict dietary behaviours after taking into account the palatability of food. This is important in order to establish determinants that explain unique variance in dietary behaviours and to inform dietary change interventions. Copyright © 2012 Elsevier Ltd. All rights reserved.
Magnetic Control of Locked Modes in Present Devices and ITER
NASA Astrophysics Data System (ADS)
Volpe, F. A.; Sabbagh, S.; Sweeney, R.; Hender, T.; Kirk, A.; La Haye, R. J.; Strait, E. J.; Ding, Y. H.; Rao, B.; Fietz, S.; Maraschek, M.; Frassinetti, L.; in, Y.; Jeon, Y.; Sakakihara, S.
2014-10-01
The toroidal phase of non-rotating (``locked'') neoclassical tearing modes was controlled in several devices by means of applied magnetic perturbations. Evidence is presented from various tokamaks (ASDEX Upgrade, DIII-D, JET, J-TEXT, KSTAR), spherical tori (MAST, NSTX) and a reversed field pinch (EXTRAP-T2R). Furthermore, the phase of interchange modes was controlled in the LHD helical device. These results share a common interpretation in terms of torques acting on the mode. Based on this interpretation, it is predicted that control-coil currents will be sufficient to control the phase of locking in ITER. This will be possible both with the internal coils and with the external error-field-correction coils, and might have promising consequences for disruption avoidance (by aiding the electron cyclotron current drive stabilization of locked modes), as well as for spatially distributing heat loads during disruptions. This work was supported in part by the US Department of Energy under DE-SC0008520, DE-FC-02-04ER54698 and DE-AC02-09CH11466.
Are we drunk yet? Motor versus cognitive cues of subjective intoxication.
Celio, Mark A; Usala, Julie M; Lisman, Stephen A; Johansen, Gerard E; Vetter-O'Hagen, Courtney S; Spear, Linda P
2014-02-01
Perception of alcohol intoxication presumably plays an important role in guiding behavior during a current drinking episode. Yet, there has been surprisingly little investigation of what aspects associated with intoxication are used by individuals to attribute their level of intoxication. Building on recent laboratory-based findings, this study employed a complex field-based design to explore the relative contributions of motor performance versus cognitive performance-specifically executive control-on self-attributions of intoxication. Individuals recruited outside of bars (N = 280; mean age = 22; range: 18 to 32) completed a structured interview, self-report questionnaire, and neuropsychological testing battery, and provided a breath alcohol concentration (BrAC) sample. Results of a multiple linear regression analysis demonstrated that current level of subjective intoxication was associated with current alcohol-related stimulant effects, current sedative effects, and current BrAC. After controlling for the unique variance accounted for by these factors, subjective intoxication was better predicted by simple motor speed, as indexed by performance on the Finger Tapping Test, than by executive control, as indexed by performance on the Trail Making Test. These results-generated from data collected in a naturally occurring setting-support previous findings from a more traditional laboratory-based investigation, thus illustrating the iterative process of linking field methodology and controlled laboratory experimentation. Copyright © 2013 by the Research Society on Alcoholism.
Jacobson, Nicholas C.; Lord, Kayla A.; Newman, Michelle G.
2017-01-01
Background Prior research has shown that anxiety symptoms predict later depression symptoms following bereavement. Nevertheless, no research has investigated mechanisms of the temporal relationship between anxiety and later depressive symptoms or examined the impact of depressive symptoms on later anxiety symptoms following bereavement. Methods The current study examined perceived emotional social support as a possible mediator between anxiety and depressive symptoms in a bereaved sample of older adults (N = 250). Anxiety and depressive symptoms were measured at Wave 1 (immediately after bereavement), social support was measured at Wave 2 (18 months after bereavement), and anxiety and depressive symptoms were also measured at Wave 3 (48 months after bereavement). Results Using Bayesian structural equation models, when controlling for baseline depression, anxiety symptoms significantly positively predicted depressive symptoms 48 months later, Further, perceived emotional social support significantly mediated the relationship between anxiety symptoms and later depressive symptoms, such that anxiety symptoms significantly negatively predicted later emotional social support, and emotional social support significantly negatively predicted later depressive symptoms. Also, when controlling for baseline anxiety, depressive symptoms positively predicted anxiety symptoms 48 months later. However, low emotional social support failed to mediate this relationship. Conclusions Low perceived emotional social support may be a mechanism by which anxiety symptoms predict depressive symptoms 48 months later for bereaved individuals. PMID:28103522
Model-based Optimization and Feedback Control of the Current Density Profile Evolution in NSTX-U
NASA Astrophysics Data System (ADS)
Ilhan, Zeki Okan
Nuclear fusion research is a highly challenging, multidisciplinary field seeking contributions from both plasma physics and multiple engineering areas. As an application of plasma control engineering, this dissertation mainly explores methods to control the current density profile evolution within the National Spherical Torus eXperiment-Upgrade (NSTX-U), which is a substantial upgrade based on the NSTX device, which is located in Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ. Active control of the toroidal current density profile is among those plasma control milestones that the NSTX-U program must achieve to realize its next-step operational goals, which are characterized by high-performance, long-pulse, MHD-stable plasma operation with neutral beam heating. Therefore, the aim of this work is to develop model-based, feedforward and feedback controllers that can enable time regulation of the current density profile in NSTX-U by actuating the total plasma current, electron density, and the powers of the individual neutral beam injectors. Motivated by the coupled, nonlinear, multivariable, distributed-parameter plasma dynamics, the first step towards control design is the development of a physics-based, control-oriented model for the current profile evolution in NSTX-U in response to non-inductive current drives and heating systems. Numerical simulations of the proposed control-oriented model show qualitative agreement with the high-fidelity physics code TRANSP. The next step is to utilize the proposed control-oriented model to design an open-loop actuator trajectory optimizer. Given a desired operating state, the optimizer produces the actuator trajectories that can steer the plasma to such state. The objective of the feedforward control design is to provide a more systematic approach to advanced scenario planning in NSTX-U since the development of such scenarios is conventionally carried out experimentally by modifying the tokamak's actuator trajectories and analyzing the resulting plasma evolution. Finally, the proposed control-oriented model is embedded in feedback control schemes based on optimal control and Model Predictive Control (MPC) approaches. Integrators are added to the standard Linear Quadratic Gaussian (LQG) and MPC formulations to provide robustness against various modeling uncertainties and external disturbances. The effectiveness of the proposed feedback controllers in regulating the current density profile in NSTX-U is demonstrated in closed-loop nonlinear simulations. Moreover, the optimal feedback control algorithm has been implemented successfully in closed-loop control simulations within TRANSP through the recently developed Expert routine. (Abstract shortened by ProQuest.).
Toward a Model-Based Predictive Controller Design in Brain–Computer Interfaces
Kamrunnahar, M.; Dias, N. S.; Schiff, S. J.
2013-01-01
A first step in designing a robust and optimal model-based predictive controller (MPC) for brain–computer interface (BCI) applications is presented in this article. An MPC has the potential to achieve improved BCI performance compared to the performance achieved by current ad hoc, nonmodel-based filter applications. The parameters in designing the controller were extracted as model-based features from motor imagery task-related human scalp electroencephalography. Although the parameters can be generated from any model-linear or non-linear, we here adopted a simple autoregressive model that has well-established applications in BCI task discriminations. It was shown that the parameters generated for the controller design can as well be used for motor imagery task discriminations with performance (with 8–23% task discrimination errors) comparable to the discrimination performance of the commonly used features such as frequency specific band powers and the AR model parameters directly used. An optimal MPC has significant implications for high performance BCI applications. PMID:21267657
Toward a model-based predictive controller design in brain-computer interfaces.
Kamrunnahar, M; Dias, N S; Schiff, S J
2011-05-01
A first step in designing a robust and optimal model-based predictive controller (MPC) for brain-computer interface (BCI) applications is presented in this article. An MPC has the potential to achieve improved BCI performance compared to the performance achieved by current ad hoc, nonmodel-based filter applications. The parameters in designing the controller were extracted as model-based features from motor imagery task-related human scalp electroencephalography. Although the parameters can be generated from any model-linear or non-linear, we here adopted a simple autoregressive model that has well-established applications in BCI task discriminations. It was shown that the parameters generated for the controller design can as well be used for motor imagery task discriminations with performance (with 8-23% task discrimination errors) comparable to the discrimination performance of the commonly used features such as frequency specific band powers and the AR model parameters directly used. An optimal MPC has significant implications for high performance BCI applications.
Braun, Alexandra C; Ilko, David; Merget, Benjamin; Gieseler, Henning; Germershaus, Oliver; Holzgrabe, Ulrike; Meinel, Lorenz
2015-08-01
This manuscript addresses the capability of compendial methods in controlling polysorbate 80 (PS80) functionality. Based on the analysis of sixteen batches, functionality related characteristics (FRC) including critical micelle concentration (CMC), cloud point, hydrophilic-lipophilic balance (HLB) value and micelle molecular weight were correlated to chemical composition including fatty acids before and after hydrolysis, content of non-esterified polyethylene glycols and sorbitan polyethoxylates, sorbitan- and isosorbide polyethoxylate fatty acid mono- and diesters, polyoxyethylene diesters, and peroxide values. Batches from some suppliers had a high variability in functionality related characteristic (FRC), questioning the ability of the current monograph in controlling these. Interestingly, the combined use of the input parameters oleic acid content and peroxide value - both of which being monographed methods - resulted in a model adequately predicting CMC. Confining the batches to those complying with specifications for peroxide value proved oleic acid content alone as being predictive for CMC. Similarly, a four parameter model based on chemical analyses alone was instrumental in predicting the molecular weight of PS80 micelles. Improved models based on analytical outcome from fingerprint analyses are also presented. A road map controlling PS80 batches with respect to FRC and based on chemical analyses alone is provided for the formulator. Copyright © 2014 Elsevier B.V. All rights reserved.
Bonaiuto, James J; de Berker, Archy; Bestmann, Sven
2016-01-01
Animals and humans have a tendency to repeat recent choices, a phenomenon known as choice hysteresis. The mechanism for this choice bias remains unclear. Using an established, biophysically informed model of a competitive attractor network for decision making, we found that decaying tail activity from the previous trial caused choice hysteresis, especially during difficult trials, and accurately predicted human perceptual choices. In the model, choice variability could be directionally altered through amplification or dampening of post-trial activity decay through simulated depolarizing or hyperpolarizing network stimulation. An analogous intervention using transcranial direct current stimulation (tDCS) over left dorsolateral prefrontal cortex (dlPFC) yielded a close match between model predictions and experimental results: net soma depolarizing currents increased choice hysteresis, while hyperpolarizing currents suppressed it. Residual activity in competitive attractor networks within dlPFC may thus give rise to biases in perceptual choices, which can be directionally controlled through non-invasive brain stimulation. DOI: http://dx.doi.org/10.7554/eLife.20047.001 PMID:28005007
Kuniya, Toshikazu; Sano, Hideki
2016-05-10
In mathematical epidemiology, age-structured epidemic models have usually been formulated as the boundary-value problems of the partial differential equations. On the other hand, in engineering, the backstepping method has recently been developed and widely studied by many authors. Using the backstepping method, we obtained a boundary feedback control which plays the role of the threshold criteria for the prediction of increase or decrease of newly infected population. Under an assumption that the period of infectiousness is same for all infected individuals (that is, the recovery rate is given by the Dirac delta function multiplied by a sufficiently large positive constant), the prediction method is simplified to the comparison of the numbers of reported cases at the current and previous time steps. Our prediction method was applied to the reported cases per sentinel of influenza in Japan from 2006 to 2015 and its accuracy was 0.81 (404 correct predictions to the total 500 predictions). It was higher than that of the ARIMA models with different orders of the autoregressive part, differencing and moving-average process. In addition, a proposed method for the estimation of the number of reported cases, which is consistent with our prediction method, was better than that of the best-fitted ARIMA model ARIMA(1,1,0) in the sense of mean square error. Our prediction method based on the backstepping method can be simplified to the comparison of the numbers of reported cases of the current and previous time steps. In spite of its simplicity, it can provide a good prediction for the spread of influenza in Japan.
Flexible Control of Safety Margins for Action Based on Environmental Variability.
Hadjiosif, Alkis M; Smith, Maurice A
2015-06-17
To reduce the risk of slip, grip force (GF) control includes a safety margin above the force level ordinarily sufficient for the expected load force (LF) dynamics. The current view is that this safety margin is based on the expected LF dynamics, amounting to a static safety factor like that often used in engineering design. More efficient control could be achieved, however, if the motor system reduces the safety margin when LF variability is low and increases it when this variability is high. Here we show that this is indeed the case by demonstrating that the human motor system sizes the GF safety margin in proportion to an internal estimate of LF variability to maintain a fixed statistical confidence against slip. In contrast to current models of GF control that neglect the variability of LF dynamics, we demonstrate that GF is threefold more sensitive to the SD than the expected value of LF dynamics, in line with the maintenance of a 3-sigma confidence level. We then show that a computational model of GF control that includes a variability-driven safety margin predicts highly asymmetric GF adaptation between increases versus decreases in load. We find clear experimental evidence for this asymmetry and show that it explains previously reported differences in how rapidly GFs and manipulatory forces adapt. This model further predicts bizarre nonmonotonic shapes for GF learning curves, which are faithfully borne out in our experimental data. Our findings establish a new role for environmental variability in the control of action. Copyright © 2015 the authors 0270-6474/15/359106-16$15.00/0.
Development of design principles for automated systems in transport control.
Balfe, Nora; Wilson, John R; Sharples, Sarah; Clarke, Theresa
2012-01-01
This article reports the results of a qualitative study investigating attitudes towards and opinions of an advanced automation system currently used in UK rail signalling. In-depth interviews were held with 10 users, key issues associated with automation were identified and the automation's impact on the signalling task investigated. The interview data highlighted the importance of the signallers' understanding of the automation and their (in)ability to predict its outputs. The interviews also covered the methods used by signallers to interact with and control the automation, and the perceived effects on their workload. The results indicate that despite a generally low level of understanding and ability to predict the actions of the automation system, signallers have developed largely successful coping mechanisms that enable them to use the technology effectively. These findings, along with parallel work identifying desirable attributes of automation from the literature in the area, were used to develop 12 principles of automation which can be used to help design new systems which better facilitate cooperative working. The work reported in this article was completed with the active involvement of operational rail staff who regularly use automated systems in rail signalling. The outcomes are currently being used to inform decisions on the extent and type of automation and user interfaces in future generations of rail control systems.
Bewick, Bridgette M; West, Robert M; Barkham, Michael; Mulhern, Brendan; Marlow, Robert; Traviss, Gemma; Hill, Andrew J
2013-07-24
Alcohol consumption in the student population continues to be cause for concern. Building on the established evidence base for traditional brief interventions, interventions using the Internet as a mode of delivery are being developed. Published evidence of replication of initial findings and ongoing development and modification of Web-based personalized feedback interventions for student alcohol use is relatively rare. The current paper reports on the replication of the initial Unitcheck feasibility trial. To evaluate the effectiveness of Unitcheck, a Web-based intervention that provides instant personalized feedback on alcohol consumption. It was hypothesized that use of Unitcheck would be associated with a reduction in alcohol consumption. A randomized control trial with two arms (control=assessment only; intervention=fully automated personalized feedback delivered using a Web-based intervention). The intervention was available week 1 through to week 15. Students at a UK university who were completing a university-wide annual student union electronic survey were invited to participate in the current study. Participants (n=1618) were stratified by sex, age group, year of study, self-reported alcohol consumption, then randomly assigned to one of the two arms, and invited to participate in the current trial. Participants were not blind to allocation. In total, n=1478 (n=723 intervention, n=755 control) participants accepted the invitation. Of these, 70% were female, the age ranged from 17-50 years old, and 88% were white/white British. Data were collected electronically via two websites: one for each treatment arm. Participants completed assessments at weeks 1, 16, and 34. Assessment included CAGE, a 7-day retrospective drinking diary, and drinks consumed per drinking occasion. The regression model predicted a monitoring effect, with participants who completed assessments reducing alcohol consumption over the final week. Further reductions were predicted for those allocated to receive the intervention, and additional reductions were predicted as the number of visits to the intervention website increased. Unitcheck can reduce the amount of alcohol consumed, and the reduction can be sustained in the medium term (ie, 19 weeks after intervention was withdrawn). The findings suggest self-monitoring is an active ingredient to Web-based personalized feedback.
Prediction of circulation control performance characteristics for Super STOL and STOL applications
NASA Astrophysics Data System (ADS)
Naqvi, Messam Abbas
The rapid air travel growth during the last three decades, has resulted in runway congestion at major airports. The current airports infrastructure will not be able to support the rapid growth trends expected in the next decade. Changes or upgrades in infrastructure alone would not be able to satisfy the growth requirements, and new airplane concepts such as the NASA proposed Super Short Takeoff and Landing and Extremely Short Takeoff & Landing (ESTOL) are being vigorously pursued. Aircraft noise pollution during Takeoff & Landing is another serious concern and efforts are aimed to reduce the airframe noise produced by Conventional High Lift Devices during Takeoff & Landing. Circulation control technology has the prospect of being a good alternative to resolve both the aforesaid issues. Circulation control airfoils are not only capable of producing very high values of lift (Cl values in excess of 8.0) at zero degree angle of attack, but also eliminate the noise generated by the conventional high lift devices and their associated weight penalty as well as their complex operation and storage. This will ensure not only satisfying the small takeoff and landing distances, but minimal acoustic signature in accordance with FAA requirements. The Circulation Control relies on the tendency of an emanating wall jet to independently control the circulation and lift on an airfoil. Unlike, conventional airfoil where rear stagnation point is located at the sharp trailing edge, circulation control airfoils possess a round trailing edge, therefore the rear stagnation point is free to move. The location of rear stagnation point is controlled by the blown jet momentum. This provides a secondary control in the form of jet momentum with which the lift generated can be controlled rather the only available control of incidence (angle of attack) in case of conventional airfoils. The use of Circulation control despite its promising potential has been limited only to research applications due to the lack of a simple prediction capability. This research effort was focused on the creation of a rapid prediction capability of Circulation Control Aerodynamic Characteristics which could help designers with rapid performance estimates for design space exploration. A morphological matrix was created with the available set of options which could be chosen to create this prediction capability starting with purely analytical physics based modeling to high fidelity CFD codes. Based on the available constraints, and desired accuracy meta-models have been created around the two dimensional circulation control performance results computed using Navier Stokes Equations (Computational Fluid Dynamics). DSS2, a two dimensional RANS code written by Professor Lakshmi Sankar was utilized for circulation control airfoil characteristics. The CFD code was first applied to the NCCR 1510-7607N airfoil to validate the model with available experimental results. It was then applied to compute the results of a fractional factorial design of experiments array. Metamodels were formulated using the neural networks to the results obtained from the Design of Experiments. Additional validation runs were performed to validate the model predictions. Metamodels are not only capable of rapid performance prediction, but also help generate the relation trends of response matrices with control variables and capture the complex interactions between control variables. Quantitative as well as qualitative assessments of results were performed by computation of aerodynamic forces & moments and flow field visualizations. Wing characteristics in three dimensions were obtained by integration over the whole wing using Prandtl's Wing Theory. The baseline Super STOL configuration [3] was then analyzed with the application of circulation control technology. The desired values of lift and drag to achieve the target values of Takeoff & Landing performance were compared with the optimal configurations obtained by the model. The same optimal configurations were then subjected to Super STOL cruise conditions to perform a trade off analysis between Takeoff and Cruise Performance. Supercritical airfoils modified for circulation control were also thoroughly analyzed for Takeoff and Cruise performance and may constitute a viable option for Super STOL & STOL Designs. The prediction capability produced by this research effort can be integrated with the current conceptual aircraft modeling & simulation framework. The prediction tool is applicable within the selected ranges of each variable, but methodology and formulation scheme adopted can be applied to any other design space exploration.
Helicopter Rotor Noise Prediction: Background, Current Status, and Future Direction
NASA Technical Reports Server (NTRS)
Brentner, Kenneth S.
1997-01-01
Helicopter noise prediction is increasingly important. The purpose of this viewgraph presentation is to: 1) Put into perspective the recent progress; 2) Outline current prediction capabilities; 3) Forecast direction of future prediction research; 4) Identify rotorcraft noise prediction needs. The presentation includes an historical perspective, a description of governing equations, and the current status of source noise prediction.
How reliable are ligand-centric methods for Target Fishing?
NASA Astrophysics Data System (ADS)
Peon, Antonio; Dang, Cuong; Ballester, Pedro
2016-04-01
Computational methods for Target Fishing (TF), also known as Target Prediction or Polypharmacology Prediction, can be used to discover new targets for small-molecule drugs. This may result in repositioning the drug in a new indication or improving our current understanding of its efficacy and side effects. While there is a substantial body of research on TF methods, there is still a need to improve their validation, which is often limited to a small part of the available targets and not easily interpretable by the user. Here we discuss how target-centric TF methods are inherently limited by the number of targets that can possibly predict (this number is by construction much larger in ligand-centric techniques). We also propose a new benchmark to validate TF methods, which is particularly suited to analyse how predictive performance varies with the query molecule. On average over approved drugs, we estimate that only five predicted targets will have to be tested to find two true targets with submicromolar potency (a strong variability in performance is however observed). In addition, we find that an approved drug has currently an average of eight known targets, which reinforces the notion that polypharmacology is a common and strong event. Furthermore, with the assistance of a control group of randomly-selected molecules, we show that the targets of approved drugs are generally harder to predict.
McCambridge, Sarah A; Consedine, Nathan S
2014-04-01
This study was designed to experimentally determine whether disgust and embarrassment predict anticipated delay and avoidance in sexual healthcare decision-making and for whom. In the study, 90 participants, aged 18-30, completed web-based questionnaires assessing demographics, current health, and past health behaviors before being gender block randomized to conditions in which disgust, embarrassment, or control (no emotion) were induced. Participants completed health decision-making vignettes covering the disgusting and embarrassing aspects of sexual healthcare. Factorial ANOVAs showed that although there were some complexities in the manipulation, disgust and embarrassment predicted greater anticipated delay and avoidance of elicitors, but only among specific groups. Embarrassment predicted anticipated help-seeking delays for embarrassment elicitors (i.e. sexual history assessment and physical examination), while disgust predicted anticipated help-seeking delays involving disgust elicitors (i.e. collecting genital discharge). However, these effects were moderated, with embarrassment only predicting anticipated delays among individuals reporting multiple sexual partners and disgust predicting anticipated delays and avoidance among persons reporting poorer subjective health. In sum, the current report provides among the first empirical demonstrations that emotions such as embarrassment and disgust may be causally implicated in anticipated delays and avoidance in sexual healthcare. Emotion frameworks may be usefully incorporated into clinical and public health efforts to reduce sexual healthcare delays and avoidance.
Korb, Alexander S.; Hunter, Aimee M.; Cook, Ian A.; Leuchter, Andrew F.
2009-01-01
Objective To assess whether pretreatment theta current density in the rostral anterior cingulate (rACC) and medial orbitofrontal cortex (mOFC) differentiates responders from non-responders to antidepressant medication or placebo in a double-blinded study. Methods Pretreatment EEGs were collected from 72 subjects with Major Depressive Disorder (MDD) who participated in one of three placebo-controlled trials. Subjects were randomized to receive treatment with fluoxetine, venlafaxine, or placebo. Low-resolution brain electromagnetic tomography (LORETA) was used to assess theta current density in the rACC and mOFC. Results Medication responders showed elevated rACC and mOFC theta current density compared to medication non-responders (rACC: p=0.042; mOFC: p=0.039). There was no significant difference in either brain region between placebo responders and placebo non-responders. Conclusions Theta current density in the rACC and mOFC may be useful as a biomarker for prediction of response to antidepressant medication. Significance This is the first double-blinded treatment study to examine pretreatment rACC and mOFC theta current density in relation to antidepressant response and placebo response. Results support the potential clinical utility of this approach for predicting clinical outcome to antidepressant treatments in MDD. PMID:19539524
Piezoelectric-hydraulic pump based band brake actuation system for automotive transmission control
NASA Astrophysics Data System (ADS)
Kim, Gi-Woo; Wang, K. W.
2007-04-01
The actuation system of friction elements (such as band brakes) is essential for high quality operations in modern automotive automatic transmissions (in short, ATs). The current band brake actuation system consists of several hydraulic components, including the oil pump, the regulating valve and the control valves. In general, it has been recognized that the current AT band brake actuation system has many limitations. For example, the oil pump and valve body are relatively heavy and complex. Also, the oil pumps induce inherently large drag torque, which affects fuel economy. This research is to overcome these problems of the current system by exploring the utilization of a hybrid type piezo-hydraulic pump device for AT band brake control. This new actuating system integrates a piezo-hydraulic pump to the input of the band brake. Compared with the current systems, this new actuator features much simpler structure, smaller size, and lower weight. This paper describes the development, design and fabrication of the new stand-alone prototype actuator for AT band brake control. An analytical model is developed and validated using experimental data. Performance tests on the hardware and system simulations utilizing the validated model are performed to characterize the new prototype actuator. It is predicted that with increasing of accumulator pressure and driving frequency, the proposed prototype actuating system will satisfy the band brake requirement for AT shift control.
Fernández, Gerardo; Sapognikoff, Marcelo; Guinjoan, Salvador; Orozco, David; Agamennoni, Osvaldo
2016-07-01
The current study analyze the effect of word properties (i.e., word length, word frequency and word predictability) on the eye movement behavior of patients with schizophrenia (SZ) compared to age-matched controls. 18 SZ patients and 40 age matched controls participated in the study. Eye movements were recorded during reading regular sentences by using the eyetracking technique. Eye movement analyses were performed using linear mixed models. Analysis of eye movements revealed that patients with SZ decreased the amount of single fixations, increased their total number of second pass fixations compared with healthy individuals (Controls). In addition, SZ patients showed an increase in gaze duration, compared to Controls. Interestingly, the effects of current word frequency and current word length processing were similar in Controls and SZ patients. The high rate of second pass fixations and its low rate in single fixation might reveal impairments in working memory when integrating neighbor words. In contrast, word frequency and length processing might require less complex mechanisms, which were functioning in SZ patients. To the best of our knowledge, this is the first study measuring how patients with SZ process dynamically well-defined words embedded in regular sentences. The findings suggest that evaluation of the resulting changes in eye movement behavior may supplement current symptom-based diagnosis. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Subashini, L.; Vasudevan, M.
2012-02-01
Type 316 LN stainless steel is the major structural material used in the construction of nuclear reactors. Activated flux tungsten inert gas (A-TIG) welding has been developed to increase the depth of penetration because the depth of penetration achievable in single-pass TIG welding is limited. Real-time monitoring and control of weld processes is gaining importance because of the requirement of remoter welding process technologies. Hence, it is essential to develop computational methodologies based on an adaptive neuro fuzzy inference system (ANFIS) or artificial neural network (ANN) for predicting and controlling the depth of penetration and weld bead width during A-TIG welding of type 316 LN stainless steel. In the current work, A-TIG welding experiments have been carried out on 6-mm-thick plates of 316 LN stainless steel by varying the welding current. During welding, infrared (IR) thermal images of the weld pool have been acquired in real time, and the features have been extracted from the IR thermal images of the weld pool. The welding current values, along with the extracted features such as length, width of the hot spot, thermal area determined from the Gaussian fit, and thermal bead width computed from the first derivative curve were used as inputs, whereas the measured depth of penetration and weld bead width were used as output of the respective models. Accurate ANFIS models have been developed for predicting the depth of penetration and the weld bead width during TIG welding of 6-mm-thick 316 LN stainless steel plates. A good correlation between the measured and predicted values of weld bead width and depth of penetration were observed in the developed models. The performance of the ANFIS models are compared with that of the ANN models.
First Results From the Alcator C-Mod Lower Hybrid Experiment
NASA Astrophysics Data System (ADS)
Parker, Ronald; Bernabei, Stefano; Grimes, Montgomery; Hosea, Joel; Johnson, David; Wilson, Randy
2005-10-01
A lower hybrid system operating at 4.6 GHz and capable of 3 MW source power has been installed on Alcator C-Mod. The grill facing the plasma consists of 4 rows of 24 waveguides. Electronic control of the amplitude and phase of the 12 klystrons supplying the RF power enables the launcher's n|| spectrum to be dynamically controlled over a wide range with a time response of 1 ms. Since the deposition of current depends on n|| as well as the temperature profile, the spatial distribution of the driven current can be varied with the same time response. Detection of fast electron Bremsstrahlung is the primary means of monitoring the driven current profile. Initial measurements at the 100 kW power level show that reflection coefficients as low as 7% are obtained at optimal phasing and density at the grill mouth. Comparison of these results with modeling predictions will be presented in a companion paper.
Achieving Transformational Materials Performance in a New Era of Science
Sarrao, John
2017-12-22
The inability of current materials to meet performance requirements is a key stumbling block for addressing grand challenges in energy and national security. Fortunately, materials research is on the brink of a new era - a transition from observation and validation of materials properties to prediction and control of materials performance. In this talk, I describe the nature of the current challenge, the prospects for success, and a specific facility concept, MaRIE, that will provide the needed capabilities to meet these challenges, especially for materials in extreme environments. MaRIE, for Matter-Radiation Interactions in Extremes, is Los Alamos' concept to realize this vision of 21st century materials research. This vision will be realized through enhancements to the current LANSCE accelerator, development of a fourth-generation x-ray light source co-located with the proton accelerator, and a comprehensive synthesis and characterization facility focused on controlling complex materials and the defect/structure link to materials performance.
Predicting the magnetospheric plasma of weather
NASA Technical Reports Server (NTRS)
Dawson, John M.
1986-01-01
The prediction of the plasma environment in time, the plasma weather, is discussed. It is important to be able to predict when large magnetic storms will produce auroras, which will affect the space station operating in low orbit, and what precautions to take both for personnel and sensitive control (computer) equipment onboard. It is also important to start to establish a set of plasma weather records and a record of the ability to predict this weather. A successful forecasting system requires a set of satellite weather stations to provide data from which predictions can be made and a set of plasma weather codes capable of accurately forecasting the status of the Earth's magnetosphere. A numerical magnetohydrodynamic fluid model which is used to model the flow in the magnetosphere, the currents flowing into and out of the auroral regions, the magnetopause, the bow shock location and the magnetotail of the Earth is discussed.
Predicting Regional Drought on Sub-Seasonal to Decadal Time Scales
NASA Technical Reports Server (NTRS)
Schubert, Siegfried; Wang, Hailan; Suarez, Max; Koster, Randal
2011-01-01
Drought occurs on a wide range of time scales, and within a variety of different types of regional climates. It is driven foremost by an extended period of reduced precipitation, but it is the impacts on such quantities as soil moisture, streamflow and crop yields that are often most important from a users perspective. While recognizing that different users have different needs for drought information, it is nevertheless important to understand that progress in predicting drought and satisfying such user needs, largely hinges on our ability to improve predictions of precipitation. This talk reviews our current understanding of the physical mechanisms that drive precipitation variations on subseasonal to decadal time scales, and the implications for predictability and prediction skill. Examples are given highlighting the phenomena and mechanisms controlling precipitation on monthly (e.g., stationary Rossby waves, soil moisture), seasonal (ENSO) and decadal time scales (PD and AMO).
Do Different Facets of Impulsivity Predict Different Types of Aggression?
Derefinko, Karen; DeWall, C. Nathan; Metze, Amanda V.; Walsh, Erin C.; Lynam, Donald R.
2011-01-01
The current study examined the relations between impulsivity-related traits (as assessed by the UPPS-P Impulsive Behavior Scale) and aggressive behaviors. Results indicated that UPPS-P Lack of Premeditation and Sensation Seeking were important in predicting general violence. In contrast, UPPS-P Urgency was most useful in predicting intimate partner violence. To further explore relations between intimate partner violence and Urgency, a measure of autonomic response to pleasant and aversive stimuli and facets of Neuroticism from the NEO PI-R were used as control variables. Autonomic responsivity was correlated with intimate partner violence at the zero-order level, and predicted significant variance in intimate partner violence in regression equations. However, UPPS-P Urgency was able to account for unique variance in intimate partner violence above and beyond measures of Neuroticism and arousal. Implications regarding the use of a multifaceted conceptualization of impulsivity in the prediction of different types of violent behavior are discussed. PMID:21259270
Hahn, Sowon; Buttaccio, Daniel R; Hahn, Jungwon; Lee, Taehun
2015-01-01
The present study demonstrates that levels of extraversion and neuroticism can predict attentional performance during a change detection task. After completing a change detection task built on the flicker paradigm, participants were assessed for personality traits using the Revised Eysenck Personality Questionnaire (EPQ-R). Multiple regression analyses revealed that higher levels of extraversion predict increased change detection accuracies, while higher levels of neuroticism predict decreased change detection accuracies. In addition, neurotic individuals exhibited decreased sensitivity A' and increased fixation dwell times. Hierarchical regression analyses further revealed that eye movement measures mediate the relationship between neuroticism and change detection accuracies. Based on the current results, we propose that neuroticism is associated with decreased attentional control over the visual field, presumably due to decreased attentional disengagement. Extraversion can predict increased attentional performance, but the effect is smaller than the relationship between neuroticism and attention.
Del Rio-Chanona, Ehecatl A; Liu, Jiao; Wagner, Jonathan L; Zhang, Dongda; Meng, Yingying; Xue, Song; Shah, Nilay
2018-02-01
Biodiesel produced from microalgae has been extensively studied due to its potentially outstanding advantages over traditional transportation fuels. In order to facilitate its industrialization and improve the process profitability, it is vital to construct highly accurate models capable of predicting the complex behavior of the investigated biosystem for process optimization and control, which forms the current research goal. Three original contributions are described in this paper. Firstly, a dynamic model is constructed to simulate the complicated effect of light intensity, nutrient supply and light attenuation on both biomass growth and biolipid production. Secondly, chlorophyll fluorescence, an instantly measurable variable and indicator of photosynthetic activity, is embedded into the model to monitor and update model accuracy especially for the purpose of future process optimal control, and its correlation between intracellular nitrogen content is quantified, which to the best of our knowledge has never been addressed so far. Thirdly, a thorough experimental verification is conducted under different scenarios including both continuous illumination and light/dark cycle conditions to testify the model predictive capability particularly for long-term operation, and it is concluded that the current model is characterized by a high level of predictive capability. Based on the model, the optimal light intensity for algal biomass growth and lipid synthesis is estimated. This work, therefore, paves the way to forward future process design and real-time optimization. © 2017 Wiley Periodicals, Inc.
Development of a dual-field heteropoplar power converter
NASA Technical Reports Server (NTRS)
Eisenhaure, D. B.; Johnson, B.; Bliamptis, T.; St. George, E.
1981-01-01
The design and testing of a 400 watt, dual phase, dual rotor, field modulated inductor alternator is described. The system is designed for use as a flywheel to ac utility line or flywheel to dc bus (electric vehicle) power converter. The machine is unique in that it uses dual rotors and separately controlled fields to produce output current and voltage which are in phase with each other. Having the voltage and current in phase allows the power electronics to be made of simple low cost components. Based on analytical predictions and experimental results, development of a complete 22 kilowatt (30 Hp) power conversion system is recommended. This system would include power electronics and controls and would replace the inductor alternator with an improved electromagnetic conversion system.
False belief and language comprehension in Cantonese-speaking children.
Cheung, Him
2006-10-01
The current research compared two accounts of the relation between language and false belief in children, namely that (a) language is generally related to false belief because both require secondary representation in a social-interactional context and that (b) specific language structures that explicitly code metarepresentation contribute uniquely to the language-false belief relation. In three studies, attempts were made to correlate Cantonese-speaking children's false belief with their general language comprehension and understanding of certain structures that explicitly express metarepresentational knowledge. Results showed that these structures failed to predict false belief after age, nonverbal intelligence, and general language comprehension were considered. In contrast, general language remained predictive of false belief after controlling for age, nonverbal intelligence, and language structures. The current findings are more consistent with a general language account than a language structure account.
NASA Astrophysics Data System (ADS)
Salas-García, I.; Fanjul-Vélez, F.; Ortega-Quijano, N.; Arce-Diego, J. L.
2013-06-01
Photodynamic Therapy offers multiple advantages to treat nonmelanoma skin cancer compared to conventional treatment techniques such as surgery, radiotherapy or chemotherapy. Among these advantages are particularly relevant its noninvasive nature, the use of non ionizing radiation and its high selectivity. However the therapeutic efficiency of the current clinical protocol is not complete in all the patients and depends on the type of pathology. Emerging strategies to overcome its current shortcomings include the use of nanostructures that can act as carriers for conventional photosensitizers and improve the treatment selectivity and provide a controlled release of the photoactive agent. In this work, a model for photodynamic therapy combined with gold nanocarriers for a photosensitizer commonly used in dermatology is presented and applied to a basal cell carcinoma in order to predict the cytotoxic agent spatial and temporal evolution.
NASA Astrophysics Data System (ADS)
Isayama, A.; Suzuki, T.; Hayashi, N.; Ide, S.; Hamamatsu, K.; Fujita, T.; Hosoyama, H.; Kamada, Y.; Nagasaki, K.; Oyama, N.; Ozeki, T.; Sakata, S.; Seki, M.; Sueoka, M.; Takechi, M.; Urano, H.
2007-09-01
Recent results of control of current profile and instability using radiofrequency wave in JT-60U and prediction analysis in JT-60SA are descried. In JT-60U, control of current profile in high-beta regime was demonstrated by using a real-time system, where the motional Stark effect diagnostic and lower hybrid wave were used as a detector and actuator, respectively. The minimum value of the safety factor was raised from 1.3 to 1.7 so as to follow the commanded value. Complete stabilization of a neoclassical tearing mode (NTM) with the poloidal mode number m = 2 and the toroidal mode number n = 1 was demonstrated using electron cyclotron (EC) current drive. By scanning the location of EC current drive in detail, strong stabilization effect was found for misalignment less than about half of the full island width. In addition, destabilization of the 2/1 NTM was observed for misalignment comparable to the full island width. Simulation of NTM stabilization in JT-60SA was performed by using the TOPICS code combined with the modified Rutherford equation. The TOPICS simulation showed that complete stabilization can be achieved more effectively by optimizing the EC wave injection angle and modulating the EC wave.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isayama, A.; Suzuki, T.; Hayashi, N.
2007-09-28
Recent results of control of current profile and instability using radiofrequency wave in JT-60U and prediction analysis in JT-60SA are descried. In JT-60U, control of current profile in high-beta regime was demonstrated by using a real-time system, where the motional Stark effect diagnostic and lower hybrid wave were used as a detector and actuator, respectively. The minimum value of the safety factor was raised from 1.3 to 1.7 so as to follow the commanded value. Complete stabilization of a neoclassical tearing mode (NTM) with the poloidal mode number m = 2 and the toroidal mode number n = 1 wasmore » demonstrated using electron cyclotron (EC) current drive. By scanning the location of EC current drive in detail, strong stabilization effect was found for misalignment less than about half of the full island width. In addition, destabilization of the 2/1 NTM was observed for misalignment comparable to the full island width. Simulation of NTM stabilization in JT-60SA was performed by using the TOPICS code combined with the modified Rutherford equation. The TOPICS simulation showed that complete stabilization can be achieved more effectively by optimizing the EC wave injection angle and modulating the EC wave.« less
Remmers, John E; Topor, Zbigniew; Grosse, Joshua; Vranjes, Nikola; Mosca, Erin V; Brant, Rollin; Bruehlmann, Sabina; Charkhandeh, Shouresh; Zareian Jahromi, Seyed Abdolali
2017-07-15
Mandibular protruding oral appliances represent a potentially important therapy for obstructive sleep apnea (OSA). However, their clinical utility is limited by a less-than-ideal efficacy rate and uncertainty regarding an efficacious mandibular position, pointing to the need for a tool to assist in delivery of the therapy. The current study assesses the ability to prospectively identify therapeutic responders and determine an efficacious mandibular position. Individuals (n = 202) with OSA participated in a blinded, 2-part investigation. A system for identifying therapeutic responders was developed in part 1 (n = 149); the predictive accuracy of this system was prospectively evaluated on a new population in part 2 (n = 53). Each participant underwent a 2-night, in-home feedback-controlled mandibular positioner (FCMP) test, followed by treatment with a custom oral appliance and an outcome study with the oral appliance in place. A machine learning classification system was trained to predict therapeutic outcome on data obtained from FCMP studies on part 1 participants. The accuracy of this trained system was then evaluated on part 2 participants by examining the agreement between prospectively predicted outcome and observed outcome. A predicted efficacious mandibular position was derived from each FCMP study. Predictive accuracy was as follows: sensitivity 85%; specificity 93%; positive predictive value 97%; and negative predictive value 72%. Of participants correctly predicted to respond to therapy, the predicted mandibular protrusive position proved efficacious in 86% of cases. An unattended, in-home FCMP test prospectively identifies individuals with OSA who will respond to oral appliance therapy and provides an efficacious mandibular position. The trial that this study reports on is registered on www.clinicaltrials.gov, ID NCT03011762, study name: Feasibility and Predictive Accuracy of an In-Home Computer Controlled Mandibular Positioner in Identifying Favourable Candidates for Oral Appliance Therapy. © 2017 American Academy of Sleep Medicine
Appelhans, Bradley M.; Woolf, Kathleen; Pagoto, Sherry L.; Schneider, Kristin L.; Whited, Matthew C.; Liebman, Rebecca
2012-01-01
Overeating is believed to result when the appetitive motivation to consume palatable food exceeds an individual’s capacity for inhibitory control of eating. This hypothesis was supported in recent studies involving predominantly normal weight women, but has not been tested in obese populations. The current study tested the interaction between food reward sensitivity and inhibitory control in predicting palatable food intake among energy-replete overweight and obese women (N=62). Sensitivity to palatable food reward was measured with the Power of Food Scale. Inhibitory control was assessed with a computerized choice task that captures the tendency to discount large delayed rewards relative to smaller immediate rewards. Participants completed an eating in the absence of hunger protocol in which homeostatic energy needs were eliminated with a bland preload of plain oatmeal, followed by a bogus laboratory taste test of palatable and bland snacks. The interaction between food reward sensitivity and inhibitory control was a significant predictor of palatable food intake in regression analyses controlling for body mass index and the amount of preload consumed. Probing this interaction indicated that higher food reward sensitivity predicted greater palatable food intake at low levels of inhibitory control, but was not associated with intake at high levels of inhibitory control. As expected, no associations were found in a similar regression analysis predicting intake of bland foods. Findings support a neurobehavioral model of eating behavior in which sensitivity to palatable food reward drives overeating only when accompanied by insufficient inhibitory control. Strengthening inhibitory control could enhance weight management programs. PMID:21475139
Controller evaluations of the descent advisor automation aid
NASA Technical Reports Server (NTRS)
Tobias, Leonard; Volckers, Uwe; Erzberger, Heinz
1989-01-01
An automation aid to assist air traffic controllers in efficiently spacing traffic and meeting arrival times at a fix has been developed at NASA Ames Research Center. The automation aid, referred to as the descent advisor (DA), is based on accurate models of aircraft performance and weather conditions. The DA generates suggested clearances, including both top-of-descent point and speed profile data, for one or more aircraft in order to achieve specific time or distance separation objectives. The DA algorithm is interfaced with a mouse-based, menu-driven controller display that allows the air traffic controller to interactively use its accurate predictive capability to resolve conflicts and issue advisories to arrival aircraft. This paper focuses on operational issues concerning the utilization of the DA, specifically, how the DA can be used for prediction, intrail spacing, and metering. In order to evaluate the DA, a real time simulation was conducted using both current and retired controller subjects. Controllers operated in teams of two, as they do in the present environment; issues of training and team interaction will be discussed. Evaluations by controllers indicated considerable enthusiasm for the DA aid, and provided specific recommendations for using the tool effectively.
Representing northern peatland microtopography and hydrology within the Community Land Model
X. Shi; P.E. Thornton; D.M. Ricciuto; P J. Hanson; J. Mao; Stephen Sebestyen; N.A. Griffiths; G. Bisht
2015-01-01
Predictive understanding of northern peatland hydrology is a necessary precursor to understanding the fate of massive carbon stores in these systems under the influence of present and future climate change. Current models have begun to address microtopographic controls on peatland hydrology, but none have included a prognostic calculation of peatland water table depth...
ERIC Educational Resources Information Center
Blair, Bethany L.; Gangel, Meghan J.; Perry, Nicole B.; O'Brien, Marion; Calkins, Susan D.; Keane, Susan P.; Shanahan, Lilly
2016-01-01
A growing body of literature indicates that childhood emotion regulation predicts later success with peers, yet little is known about the processes through which this association occurs. The current study examined mechanisms through which emotion regulation was associated with later peer acceptance and peer rejection, controlling for earlier…
Predicting the Likelihood of Going to Graduate School: The Importance of Locus of Control
ERIC Educational Resources Information Center
Nordstrom, Cynthia R.; Segrist, Dan J.
2009-01-01
Although many undergraduates apply to graduate school, only a fraction will be admitted. A question arises as to what factors relate to the likelihood of pursuing graduate studies. The current research examined this question by surveying students in a Careers in Psychology course. We hypothesized that GPA, a more internal locus of control…
Predictions of the Electronic Structure and Related Properties of Cubic Calcium Hexaboride (CaB6)
2010-06-01
not display a currently valid OMB control number. 1. REPORT DATE JUN 2010 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE...TERAKURA, AND T. MIYAKE . 2002. Abnormal Quasiparticle shifts in CaB6. Phys. Rev. B. 66: 121103-1-121103-4. LEE, BYOUNGHAK, AND LIN-WANG WANG. 2005
ERIC Educational Resources Information Center
Józsa, Krisztián; Barrett, Karen Caplovitz; Morgan, George A.
2017-01-01
Introduction: School readiness predicts both school and life success, so measuring it effectively is extremely important. Current school readiness tests focus on pre-academic skills; however, mastery motivation (MM: persistent, focus on trying to do a task) and executive functions (EF: planful self-control) are also crucial. Method: The purpose of…
NASA Technical Reports Server (NTRS)
Bobbitt, P. J.; Manro, M. E.; Kulfan, R. M.
1980-01-01
Wind tunnel tests of an arrow wing body configuration consisting of flat, twisted, and cambered twisted wings were conducted at Mach numbers from 0.40 to 2.50 to provide an experimental data base for comparison with theoretical methods. A variety of leading and trailing edge control surface deflections were included in these tests, and in addition, the cambered twisted wing was tested with an outboard vertical fin to determine its effect on wing and control surface loads. Theory experiment comparisons show that current state of the art linear and nonlinear attached flow methods were adequate at small angles of attack typical of cruise conditions. The incremental effects of outboard fin, wing twist, and wing camber are most accurately predicted by the advanced panel method PANAIR. Results of the advanced panel separated flow method, obtained with an early version of the program, show promise that accurate detailed pressure predictions may soon be possible for an aeroelasticity deformed wing at high angles of attack.
Hankin, Benjamin L.
2009-01-01
This study takes a developmental psychopathological approach to examine mechanisms through which baseline levels of positive emotionality (PE) and negative emotionality (NE) prospectively predict increases in anhedonic depressive symptoms in a community sample of 350 adolescents (6th–10th graders). Dependent stressors mediated the relationship between baseline levels of NE and anhedonic depressive symptoms after controlling for initial symptoms. Supportive relationships mediated the relationship between baseline levels of PE and anhedonic depressive symptoms, after controlling for baseline symptoms. In addition, NE × PE interacted to predict later anhedonic depressive symptoms, such that adolescents with low levels of PE and high levels of NE experienced the greatest increase in anhedonic depressive symptoms. Last, supportive relationships interacted with baseline PE to predict prospective changes in anhedonic depressive symptoms, such that adolescents with low PE and low supportive relationships experienced the greatest increase in anhedonic depressive symptoms. Results are discussed in terms of current theoretical models of the link between temperament and depression. PMID:19184402
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, Yaosuo
The matrix converter solid state transformer (MC-SST), formed from the back-to-back connection of two three-to-single-phase matrix converters, is studied for use in the interconnection of two ac grids. The matrix converter topology provides a light weight and low volume single-stage bidirectional ac-ac power conversion without the need for a dc link. Thus, the lifetime limitations of dc-bus storage capacitors are avoided. However, space vector modulation of this type of MC-SST requires to compute vectors for each of the two MCs, which must be carefully coordinated to avoid commutation failure. An additional controller is also required to control power exchange betweenmore » the two ac grids. In this paper, model predictive control (MPC) is proposed for an MC-SST connecting two different ac power grids. The proposed MPC predicts the circuit variables based on the discrete model of MC-SST system and the cost function is formulated so that the optimal switch vector for the next sample period is selected, thereby generating the required grid currents for the SST. Simulation and experimental studies are carried out to demonstrate the effectiveness and simplicity of the proposed MPC for such MC-SST-based grid interfacing systems.« less
Ferreira, Tiago; Cadima, Joana; Matias, Marisa; Vieira, Joana Marina; Leal, Teresa; Verschueren, Karine; Matos, Paula Mena
2018-04-01
Parental engagement in positive activities with the child may show significant variation across time, assuming a crucial influence on child development. In dual-earner families, work-family conflict can interfere with parental engagement, with negative consequences for children's behavior. The current study examined the change trajectories of mothers' and fathers' engagement in early childhood, analyzing whether these trajectories are influenced by parents' work-family conflict and whether they predict child behavioral self-control. Data from 156 four-year-old children (67 girls) from dual-earner families were collected annually for 3 consecutive years, through mothers', fathers', and teachers' reports. Results from latent growth curve analysis revealed mothers' engagement remained stable across time while fathers' engagement had a significant increase over time. The negative association between work-family conflict and parental engagement was constant over time both for mothers and fathers. For mothers, initial levels of engagement positively predicted child behavioral self-control. As for fathers, both the initial level and positive change in engagement positively predicted child self-control. These findings emphasize the role of parental engagement in fostering child behavioral adjustment, underlining the need for considering work-family dynamics to understand changes in parental engagement. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Smith, Rebecca L.; Schukken, Ynte H.; Lu, Zhao; Mitchell, Rebecca M.; Grohn, Yrjo T.
2013-01-01
Objective To develop a mathematical model to simulate infection dynamics of Mycobacterium bovis in cattle herds in the United States and predict efficacy of the current national control strategy for tuberculosis in cattle. Design Stochastic simulation model. Sample Theoretical cattle herds in the United States. Procedures A model of within-herd M bovis transmission dynamics following introduction of 1 latently infected cow was developed. Frequency- and density-dependent transmission modes and 3 tuberculin-test based culling strategies (no test-based culling, constant (annual) testing with test-based culling, and the current strategy of slaughterhouse detection-based testing and culling) were investigated. Results were evaluated for 3 herd sizes over a 10-year period and validated via simulation of known outbreaks of M bovis infection. Results On the basis of 1,000 simulations (1000 herds each) at replacement rates typical for dairy cattle (0.33/y), median time to detection of M bovis infection in medium-sized herds (276 adult cattle) via slaughterhouse surveillance was 27 months after introduction, and 58% of these herds would spontaneously clear the infection prior to that time. Sixty-two percent of medium-sized herds without intervention and 99% of those managed with constant test-based culling were predicted to clear infection < 10 years after introduction. The model predicted observed outbreaks best for frequency-dependent transmission, and probability of clearance was most sensitive to replacement rate. Conclusions and Clinical Relevance Although modeling indicated the current national control strategy was sufficient for elimination of M bovis infection from dairy herds after detection, slaughterhouse surveillance was not sufficient to detect M bovis infection in all herds and resulted in subjectively delayed detection, compared with the constant testing method. Further research is required to economically optimize this strategy. PMID:23865885
Analysis and Control of Pulse-Width Modulated AC to DC Voltage Source Converters.
NASA Astrophysics Data System (ADS)
Wu, Rusong
The pulse width modulated AC to DC voltage source converter is comprehensively analyzed in the thesis. A general mathematical model of the converter is first established, which is discontinuous, time-variant and non-linear. The following three techniques are used to obtain closed form solutions: Fourier analysis, transformation of reference frame and small signal linearization. Three models, namely, a steady-state DC model, a low frequency small signal AC model and a high frequency model, are consequently developed. Finally, three solution sets, namely, the steady-state solution, various dynamic transfer functions and the high frequency harmonic components, are obtained from the three models. Two control strategies, the Phase and Amplitude Control (PAC) and a new proposed strategy, Predicted Current Control with a Fixed Switching Frequency (PCFF), are investigated. Based on the transfer functions derived from the above mentioned analysis, regulators for a closed-loop control are designed. A prototype circuit is built to experimentally verify the theoretical predictions. The analysis and experimental results show that both strategies produce nearly sinusoidal line current with unity power factor on the utility side in both rectifying and regenerating operations and concurrently provide a regulated DC output voltage on the load side. However the proposed PCFF control has a faster and improved dynamic response over the PAC control. Moreover it is also easier to be implemented. Therefore, the PCFF control is preferable to the PAC control. As an example of application, a configuration of variable DC supply under PCFF control is proposed. The quasi-optimal dynamic response obtained shows that the PWM AC to DC converter lays the foundation for building a four-quadrant, fast-dynamic system, and the PCFF control is an effective strategy for improving dynamic performances not only as applied to the AC to DC converter, but also as applied to the DC to DC chopper or other circuits.
Armario, Antonio; Daviu, Núria; Muñoz-Abellán, Cristina; Rabasa, Cristina; Fuentes, Silvia; Belda, Xavier; Gagliano, Humberto; Nadal, Roser
2012-07-01
Exposure to stress induces profound physiological and behavioral changes in the organisms and some of these changes may be important regarding stress-induced pathologies and animal models of psychiatric diseases. Consequences of stress are dependent on the duration of exposure to stressors (acute, chronic), but also of certain characteristics such as intensity, controllability, and predictability. If some biological variables were able to reflect these characteristics, they could be used to predict negative consequences of stress. Among the myriad of physiological changes caused by stress, only a restricted number of variables appears to reflect the intensity of the situation, mainly plasma levels of ACTH and adrenaline. Peripheral hypothalamic-pituitary-adrenal (HPA) hormones (ACTH and corticosterone) are also able to reflect fear conditioning. In contrast, the activation of the HPA axis is not consistently related to anxiety as evaluated by classical tests such as the elevated plus-maze. Similarly, there is no consistent evidence about the sensitivity of the HPA axis to psychological variables such as controllability and predictability, despite the fact that: (a) lack of control over aversive stimuli can induce behavioral alterations not seen in animals which exert control, and (b) animals showed clear preference for predictable versus unpredictable stressful situations. New studies are needed to re-evaluate the relationship between the HPA axis and psychological stress characteristics using ACTH instead of corticosterone and taking advantages of our current knowledge about the regulation of this important stress system.
Stroop proactive control and task conflict are modulated by concurrent working memory load.
Kalanthroff, Eyal; Avnit, Amir; Henik, Avishai; Davelaar, Eddy J; Usher, Marius
2015-06-01
Performance on the Stroop task reflects two types of conflict-informational (between the incongruent word and font color) and task (between the contextually relevant color-naming task and the irrelevant, but automatic, word-reading task). According to the dual mechanisms of control theory (DMC; Braver, 2012), variability in Stroop performance can result from variability in the deployment of a proactive task-demand control mechanism. Previous research has shown that when proactive control (PC) is diminished, both increased Stroop interference and a reversed Stroop facilitation (RF) are observed. Although the current DMC model accounts for the former effect, it does not predict the observed RF, which is considered to be behavioral evidence for task conflict in the Stroop task. Here we expanded the DMC model to account for Stroop RF. Assuming that a concurrent working memory (WM) task reduces PC, we predicted both increased interference and an RF. Nineteen participants performed a standard Stroop task combined with a concurrent n-back task, which was aimed at reducing available WM resources, and thus overloading PC. Although the results indicated common Stroop interference and facilitation in the low-load condition (zero-back), in the high-load condition (two-back), both increased Stroop interference and RF were observed, consistent with the model's prediction. These findings indicate that PC is modulated by concurrent WM load and serves as a common control mechanism for both informational and task Stroop conflicts.
Predicting clinical diagnosis in Huntington's disease: An imaging polymarker
Daws, Richard E.; Soreq, Eyal; Johnson, Eileanoir B.; Scahill, Rachael I.; Tabrizi, Sarah J.; Barker, Roger A.; Hampshire, Adam
2018-01-01
Objective Huntington's disease (HD) gene carriers can be identified before clinical diagnosis; however, statistical models for predicting when overt motor symptoms will manifest are too imprecise to be useful at the level of the individual. Perfecting this prediction is integral to the search for disease modifying therapies. This study aimed to identify an imaging marker capable of reliably predicting real‐life clinical diagnosis in HD. Method A multivariate machine learning approach was applied to resting‐state and structural magnetic resonance imaging scans from 19 premanifest HD gene carriers (preHD, 8 of whom developed clinical disease in the 5 years postscanning) and 21 healthy controls. A classification model was developed using cross‐group comparisons between preHD and controls, and within the preHD group in relation to “estimated” and “actual” proximity to disease onset. Imaging measures were modeled individually, and combined, and permutation modeling robustly tested classification accuracy. Results Classification performance for preHDs versus controls was greatest when all measures were combined. The resulting polymarker predicted converters with high accuracy, including those who were not expected to manifest in that time scale based on the currently adopted statistical models. Interpretation We propose that a holistic multivariate machine learning treatment of brain abnormalities in the premanifest phase can be used to accurately identify those patients within 5 years of developing motor features of HD, with implications for prognostication and preclinical trials. Ann Neurol 2018;83:532–543 PMID:29405351
Halloran, Jason P; Ackermann, Marko; Erdemir, Ahmet; van den Bogert, Antonie J
2010-10-19
Current computational methods for simulating locomotion have primarily used muscle-driven multibody dynamics, in which neuromuscular control is optimized. Such simulations generally represent joints and soft tissue as simple kinematic or elastic elements for computational efficiency. These assumptions limit application in studies such as ligament injury or osteoarthritis, where local tissue loading must be predicted. Conversely, tissue can be simulated using the finite element method with assumed or measured boundary conditions, but this does not represent the effects of whole body dynamics and neuromuscular control. Coupling the two domains would overcome these limitations and allow prediction of movement strategies guided by tissue stresses. Here we demonstrate this concept in a gait simulation where a musculoskeletal model is coupled to a finite element representation of the foot. Predictive simulations incorporated peak plantar tissue deformation into the objective of the movement optimization, as well as terms to track normative gait data and minimize fatigue. Two optimizations were performed, first without the strain minimization term and second with the term. Convergence to realistic gait patterns was achieved with the second optimization realizing a 44% reduction in peak tissue strain energy density. The study demonstrated that it is possible to alter computationally predicted neuromuscular control to minimize tissue strain while including desired kinematic and muscular behavior. Future work should include experimental validation before application of the methodology to patient care. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Bartolone, Anthony; Trujillo, Anna
2002-01-01
NASA Langley Research Center has been researching ways to improve flight crew decision aiding for systems management. Our current investigation is how to display a wide variety of aircraft parameters in ways that will improve the flight crew's situation awareness. To accomplish this, new means are being explored that will monitor the overall health of a flight and report the current status of the aircraft and forecast impending problems to the pilots. The initial step in this research was to conduct a survey addressing how current glass-cockpit commercial pilots would value a prediction of the status of critical aircraft systems. We also addressed how this new type of data ought to be conveyed and utilized. Therefore, two other items associated with predictive information were also included in the survey. The first addressed the need for system status, alerts and procedures, and system controls to be more logically grouped together, or collocated, on the flight deck. The second idea called for the survey respondents opinions on the functionality of mission status graphics; a display methodology that groups a variety of parameters onto a single display that can instantaneously convey a complete overview of both an aircraft's system and mission health.
Geometrical control of ionic current rectification in a configurable nanofluidic diode.
Alibakhshi, Mohammad Amin; Liu, Binqi; Xu, Zhiping; Duan, Chuanhua
2016-09-01
Control of ionic current in a nanofluidic system and development of the elements analogous to electrical circuits have been the subject of theoretical and experimental investigations over the past decade. Here, we theoretically and experimentally explore a new technique for rectification of ionic current using asymmetric 2D nanochannels. These nanochannels have a rectangular cross section and a stepped structure consisting of a shallow and a deep side. Control of height and length of each side enables us to obtain optimum rectification at each ionic strength. A 1D model based on the Poisson-Nernst-Planck equation is derived and validated against the full 2D numerical solution, and a nondimensional concentration is presented as a function of nanochannel dimensions, surface charge, and the electrolyte concentration that summarizes the rectification behavior of such geometries. The rectification factor reaches a maximum at certain electrolyte concentration predicted by this nondimensional number and decays away from it. This method of fabrication and control of a nanofluidic diode does not require modification of the surface charge and facilitates the integration with lab-on-a-chip fluidic circuits. Experimental results obtained from the stepped nanochannels are in good agreement with the 1D theoretical model.
EXPERIMENTAL MEASUREMENT AND INTERPRETATION OF VOLT-AMPERE CURVES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gingrich, J.E.; Warner, C.; Weeks, C.C.
1962-07-01
Cylindrical and parallel-plane cesium vapor thermionic converters were used for obtaining volt-ampere curves for systematic variations of emitter, collector, and cesium reservoir temperatures, with electrode spacings ranging from a few to many mean free paths, and with space charge conditions varying from electron-rich to ion-rich. The resulting curves exhibit much variety. The saturation currents agree well with the data of Houston and Aamodt for the space charge neutralized, few-mean-free-path cases. Apparent'' saturation currents for space charge limited cases were observed and were always less than the currents predicted by Houston and Aamodt. Several discontinuities in slope were observed in themore » reverse current portion of the curves and these have tentatively been identified with volume ionization of atoms in both the ground and excited states. Similar processes may be important for obtaining the ignited mode. The methods used to measure static and dynamic volt-ampere curves are described. The use of a controlled-current load has yielded a negative resistance'' region in the curves which show the ignited mode. The curves obtained with poor current control do not show this phenomenon. Extinction is considered from the standpoint of Kaufmann' s criterion for stability. (auth)« less
A multisensor evaluation of the asymmetric convective model, version 2, in southeast Texas.
Kolling, Jenna S; Pleim, Jonathan E; Jeffries, Harvey E; Vizuete, William
2013-01-01
There currently exist a number of planetary boundary layer (PBL) schemes that can represent the effects of turbulence in daytime convective conditions, although these schemes remain a large source of uncertainty in meteorology and air quality model simulations. This study evaluates a recently developed combined local and nonlocal closure PBL scheme, the Asymmetric Convective Model, version 2 (ACM2), against PBL observations taken from radar wind profilers, a ground-based lidar, and multiple daytime radiosonde balloon launches. These observations were compared against predictions of PBLs from the Weather Research and Forecasting (WRF) model version 3.1 with the ACM2 PBL scheme option, and the Fifth-Generation Meteorological Model (MM5) version 3.7.3 with the Eta PBL scheme option that is currently being used to develop ozone control strategies in southeast Texas. MM5 and WRF predictions during the regulatory modeling episode were evaluated on their ability to predict the rise and fall of the PBL during daytime convective conditions across southeastern Texas. The MM5 predicted PBLs consistently underpredicted observations, and were also less than the WRF PBL predictions. The analysis reveals that the MM5 predicted a slower rising and shallower PBL not representative of the daytime urban boundary layer. Alternatively, the WRF model predicted a more accurate PBL evolution improving the root mean square error (RMSE), both temporally and spatially. The WRF model also more accurately predicted vertical profiles of temperature and moisture in the lowest 3 km of the atmosphere. Inspection of median surface temperature and moisture time-series plots revealed higher predicted surface temperatures in WRF and more surface moisture in MM5. These could not be attributed to surface heat fluxes, and thus the differences in performance of the WRF and MM5 models are likely due to the PBL schemes. An accurate depiction of the diurnal evolution of the planetary boundary layer (PBL) is necessary for realistic air quality simulations, and for formulating effective policy. The meteorological model used to support the southeast Texas 03 attainment demonstration made predictions of the PBL that were consistently less than those found in observations. The use of the Asymmetric Convective Model, version 2 (ACM2), predicted taller PBL heights and improved model predictions. A lower predicted PBL height in an air quality model would increase precursor concentrations and change the chemical production of O3 and possibly the response to control strategies.
Carter, Jane V.; Roberts, Henry L.; Pan, Jianmin; Rice, Jonathan D.; Burton, James F.; Galbraith, Norman J.; Eichenberger, M. Robert; Jorden, Jeffery; Deveaux, Peter; Farmer, Russell; Williford, Anna; Kanaan, Ziad; Rai, Shesh N.; Galandiuk, Susan
2016-01-01
OBJECTIVE(S) Develop a plasma-based microRNA (miRNA) diagnostic assay specific for colorectal neoplasms, building upon our prior work. BACKGROUND Colorectal neoplasms (colorectal cancer [CRC] and colorectal advanced adenoma [CAA]) frequently develop in individuals at ages when other common cancers also occur. Current screening methods lack sensitivity, specificity, and have poor patient compliance. METHODS Plasma was screened for 380 miRNAs using microfluidic array technology from a “Training” cohort of 60 patients, (10 each) control, CRC, CAA, breast (BC), pancreatic (PC) and lung (LC) cancer. We identified uniquely dysregulated miRNAs specific for colorectal neoplasia (p<0.05, false discovery rate: 5%, adjusted α=0.0038). These miRNAs were evaluated using single assays in a “Test” cohort of 120 patients. A mathematical model was developed to predict blinded sample identity in a 150 patient “Validation” cohort using repeat-sub-sampling validation of the testing dataset with 1000 iterations each to assess model detection accuracy. RESULTS Seven miRNAs (miR-21, miR-29c, miR-122, miR-192, miR-346, miR-372, miR-374a) were selected based upon p-value, area-under-the-curve (AUC), fold-change, and biological plausibility. AUC (±95% CI) for “Test” cohort comparisons were 0.91 (0.85-0.96), 0.79 (0.70-0.88) and 0.98 (0.96-1.0), respectively. Our mathematical model predicted blinded sample identity with 69-77% accuracy between all neoplasia and controls, 67-76% accuracy between colorectal neoplasia and other cancers, and 86-90% accuracy between colorectal cancer and colorectal adenoma. CONCLUSIONS Our plasma miRNA assay and prediction model differentiates colorectal neoplasia from patients with other neoplasms and from controls with higher sensitivity and specificity compared to current clinical standards. PMID:27471839
Cognitive biases to healthy and unhealthy food words predict change in BMI.
Calitri, Raff; Pothos, Emmanuel M; Tapper, Katy; Brunstrom, Jeffrey M; Rogers, Peter J
2010-12-01
The current study explored the predictive value of cognitive biases to food cues (assessed by emotional Stroop and dot probe tasks) on weight change over a 1-year period. This was a longitudinal study with undergraduate students (N = 102) living in shared student accommodation. After controlling for the effects of variables associated with weight (e.g., physical activity, stress, restrained eating, external eating, and emotional eating), no effects of cognitive bias were found with the dot probe. However, for the emotional Stroop, cognitive bias to unhealthy foods predicted an increase in BMI whereas cognitive bias to healthy foods was associated with a decrease in BMI. Results parallel findings in substance abuse research; cognitive biases appear to predict behavior change. Accordingly, future research should consider strategies for attentional retraining, encouraging individuals to reorient attention away from unhealthy eating cues.
Helicopter noise prediction - The current status and future direction
NASA Technical Reports Server (NTRS)
Brentner, Kenneth S.; Farassat, F.
1992-01-01
The paper takes stock of the progress, assesses the current prediction capabilities, and forecasts the direction of future helicopter noise prediction research. The acoustic analogy approach, specifically, theories based on the Ffowcs Williams-Hawkings equations, are the most widely used for deterministic noise sources. Thickness and loading noise can be routinely predicted given good plane motion and blade loading inputs. Blade-vortex interaction noise can also be predicted well with measured input data, but prediction of airloads with the high spatial and temporal resolution required for BVI is still difficult. Current semiempirical broadband noise predictions are useful and reasonably accurate. New prediction methods based on a Kirchhoff formula and direct computation appear to be very promising, but are currently very demanding computationally.
An Engineered Membrane to Measure Electroporation: Effect of Tethers and Bioelectronic Interface
Hoiles, William; Krishnamurthy, Vikram; Cranfield, Charles G.; Cornell, Bruce
2014-01-01
This article reports on the construction and predictive models for a platform comprised of an engineered tethered membrane. The platform provides a controllable and physiologically relevant environment for the study of the electroporation process. The mixed self-assembled membrane is formed via a rapid solvent exchange technique. The membrane is tethered to the gold electrode and includes an ionic reservoir separating the membrane and gold surface. Above the membrane, there is an electrolyte solution, and a gold counterelectrode. A voltage is applied between the gold electrodes and the current measured. The current is dependent on the energy required to form aqueous pores and the conductance of each pore. A two-level predictive model, consisting of a macroscopic and a continuum model, is developed to relate the pore dynamics to the measured current. The macroscopic model consists of an equivalent circuit model of the tethered membrane, and asymptotic approximations to the Smoluchowski-Einstein equation of electroporation that is dependent on the pore conductance and the energy required to form aqueous pores. The continuum model is a generalized Poisson-Nernst-Planck (GPNP) system where an activity coefficient to account for steric effects of ions is added to the standard PNP system. The GPNP is used to evaluate the conductance of aqueous pores, and the electrical energy required to form the pores. As an outcome of the setup of the device and the two-level model, biologically important variables can be estimated from experimental measurements. To validate the accuracy of the two-level model, the predicted current is compared with experimentally measured current for different tethering densities. PMID:25229142
ATLAS trigger operations: Upgrades to ``Xmon'' rate prediction system
NASA Astrophysics Data System (ADS)
Myers, Ava; Aukerman, Andrew; Hong, Tae Min; Atlas Collaboration
2017-01-01
We present ``Xmon,'' a tool to monitor trigger rates in the Control Room of the ATLAS Experiment. We discuss Xmon's recent (1) updates, (2) upgrades, and (3) operations. (1) Xmon was updated to modify the tool written for the three-level trigger architecture in Run-1 (2009-2012) to adapt to the new two-level system for Run-2 (2015-current). The tool takes as input the beam luminosity to make a rate prediction, which is compared with incoming rates to detect anomalies that occur both globally throughout a run and locally within a run. Global offsets are more commonly caught by the predictions based upon past runs, where offline processing allows for function adjustments and fit quality through outlier rejection. (2) Xmon was upgraded to detect local offsets using on-the-fly predictions, which uses a sliding window of in-run rates to make predictions. (3) Xmon operations examples are given. Future work involves further automation of the steps to provide the predictive functions and for alerting shifters.
NASA Astrophysics Data System (ADS)
Keilis-Borok, V. I.; Soloviev, A.; Gabrielov, A.
2011-12-01
We describe a uniform approach to predicting different extreme events, also known as critical phenomena, disasters, or crises. The following types of such events are considered: strong earthquakes; economic recessions (their onset and termination); surges of unemployment; surges of crime; and electoral changes of the governing party. A uniform approach is possible due to the common feature of these events: each of them is generated by a certain hierarchical dissipative complex system. After a coarse-graining, such systems exhibit regular behavior patterns; we look among them for "premonitory patterns" that signal the approach of an extreme event. We introduce methodology, based on the optimal control theory, assisting disaster management in choosing optimal set of disaster preparedness measures undertaken in response to a prediction. Predictions with their currently realistic (limited) accuracy do allow preventing a considerable part of the damage by a hierarchy of preparedness measures. Accuracy of prediction should be known, but not necessarily high.
Access to edge scenarios for testing a scraper element in early operation phases of Wendelstein 7-X
Holbe, H.; Pedersen, T. Sunn; Geiger, J.; ...
2016-01-29
The edge topology of magnetic fusion devices is decisive for the control of the plasma exhaust. In Wendelstein 7-X, the island divertor concept will be used, for which the edge topology can change significantly as the internal currents in a plasma discharge evolve towards steady-state. Consequently, the device has been optimized to minimize such internal currents, in particular the bootstrap current [1]. Nonetheless, there are predicted pulse scenarios where effects of the remaining internal currents could potentially lead to overload of plasma-facing components. These internal currents are predicted to evolve on long time scales (tens of seconds) so their effectsmore » on the edge topology and the divertor heat loads may not be experimentally accessible in the first years of W7-X operation, where only relatively short pulses are possible. However, we show here that for at least one important long-pulse divertor operation issue, relevant physics experiments can be performed already in short-pulse operation, through judicious adjustment of the edge topology by the use of the existing coil sets. The specific issue studied here is a potential overload of the divertor element edges. This overload might be mitigated by the installation of an extra set of plasma-facing components, so-called scraper elements, as suggested in earlier publications. It is shown here that by a targeted control of edge topology, the effectiveness of such scraper elements can be tested already with uncooled test-scraper elements in short-pulse operation. Furthermore, this will allow an early and well-informed decision on whether long-pulse-capable (actively cooled) scraper elements should be built and installed.« less
Robustness and cognition in stabilization problem of dynamical systems based on asymptotic methods
NASA Astrophysics Data System (ADS)
Dubovik, S. A.; Kabanov, A. A.
2017-01-01
The problem of synthesis of stabilizing systems based on principles of cognitive (logical-dynamic) control for mobile objects used under uncertain conditions is considered. This direction in control theory is based on the principles of guaranteeing robust synthesis focused on worst-case scenarios of the controlled process. The guaranteeing approach is able to provide functioning of the system with the required quality and reliability only at sufficiently low disturbances and in the absence of large deviations from some regular features of the controlled process. The main tool for the analysis of large deviations and prediction of critical states here is the action functional. After the forecast is built, the choice of anti-crisis control is the supervisory control problem that optimizes the control system in a normal mode and prevents escape of the controlled process in critical states. An essential aspect of the approach presented here is the presence of a two-level (logical-dynamic) control: the input data are used not only for generating of synthesized feedback (local robust synthesis) in advance (off-line), but also to make decisions about the current (on-line) quality of stabilization in the global sense. An example of using the presented approach for the problem of development of the ship tilting prediction system is considered.
Zong, Shengwei; Wu, Zhengfang; Xu, Jiawei; Li, Ming; Gao, Xiaofeng; He, Hongshi; Du, Haibo; Wang, Lei
2014-01-01
Tree line ecotone in the Changbai Mountains has undergone large changes in the past decades. Tree locations show variations on the four sides of the mountains, especially on the northern and western sides, which has not been fully explained. Previous studies attributed such variations to the variations in temperature. However, in this study, we hypothesized that topographic controls were responsible for causing the variations in the tree locations in tree line ecotone of the Changbai Mountains. To test the hypothesis, we used IKONOS images and WorldView-1 image to identify the tree locations and developed a logistic regression model using topographical variables to identify the dominant controls of the tree locations. The results showed that aspect, wetness, and slope were dominant controls for tree locations on western side of the mountains, whereas altitude, SPI, and aspect were the dominant factors on northern side. The upmost altitude a tree can currently reach was 2140 m asl on the northern side and 2060 m asl on western side. The model predicted results showed that habitats above the current tree line on the both sides were available for trees. Tree recruitments under the current tree line may take advantage of the available habitats at higher elevations based on the current tree location. Our research confirmed the controlling effects of topography on the tree locations in the tree line ecotone of Changbai Mountains and suggested that it was essential to assess the tree response to topography in the research of tree line ecotone. PMID:25170918
Zong, Shengwei; Wu, Zhengfang; Xu, Jiawei; Li, Ming; Gao, Xiaofeng; He, Hongshi; Du, Haibo; Wang, Lei
2014-01-01
Tree line ecotone in the Changbai Mountains has undergone large changes in the past decades. Tree locations show variations on the four sides of the mountains, especially on the northern and western sides, which has not been fully explained. Previous studies attributed such variations to the variations in temperature. However, in this study, we hypothesized that topographic controls were responsible for causing the variations in the tree locations in tree line ecotone of the Changbai Mountains. To test the hypothesis, we used IKONOS images and WorldView-1 image to identify the tree locations and developed a logistic regression model using topographical variables to identify the dominant controls of the tree locations. The results showed that aspect, wetness, and slope were dominant controls for tree locations on western side of the mountains, whereas altitude, SPI, and aspect were the dominant factors on northern side. The upmost altitude a tree can currently reach was 2140 m asl on the northern side and 2060 m asl on western side. The model predicted results showed that habitats above the current tree line on the both sides were available for trees. Tree recruitments under the current tree line may take advantage of the available habitats at higher elevations based on the current tree location. Our research confirmed the controlling effects of topography on the tree locations in the tree line ecotone of Changbai Mountains and suggested that it was essential to assess the tree response to topography in the research of tree line ecotone.
Simulating the Current Water Cycle with the NASA Ames Mars Global Climate Model
NASA Astrophysics Data System (ADS)
Kahre, M. A.; Haberle, R. M.; Hollingsworth, J. L.; Brecht, A. S.; Urata, R. A.; Montmessin, F.
2017-12-01
The water cycle is a critical component of the current Mars climate system, and it is now widely recognized that water ice clouds significantly affect the nature of the simulated water cycle. Two processes are key to implementing clouds in a Mars global climate model (GCM): the microphysical processes of formation and dissipation, and their radiative effects on atmospheric heating/cooling rates. Together, these processes alter the thermal structure, change the atmospheric dynamics, and regulate inter-hemispheric transport. We have made considerable progress using the NASA Ames Mars GCM to simulate the current-day water cycle with radiatively active clouds. Cloud fields from our baseline simulation are in generally good agreement with observations. The predicted seasonal extent and peak IR optical depths are consistent MGS/TES observations. Additionally, the thermal response to the clouds in the aphelion cloud belt (ACB) is generally consistent with observations and other climate model predictions. Notably, there is a distinct gap in the predicted clouds over the North Residual Cap (NRC) during local summer, but the clouds reappear in this simulation over the NRC earlier than the observations indicate. Polar clouds are predicted near the seasonal CO2 ice caps, but the column thicknesses of these clouds are generally too thick compared to observations. Our baseline simulation is dry compared to MGS/TES-observed water vapor abundances, particularly in the tropics and subtropics. These areas of disagreement appear to be a consistent with other current water cycle GCMs. Future avenues of investigation will target improving our understanding of what controls the vertical extent of clouds and the apparent seasonal evolution of cloud particle sizes within the ACB.
NASA Astrophysics Data System (ADS)
Shauly, Eitan; Rotstein, Israel; Peltinov, Ram; Latinski, Sergei; Adan, Ofer; Levi, Shimon; Menadeva, Ovadya
2009-03-01
The continues transistors scaling efforts, for smaller devices, similar (or larger) drive current/um and faster devices, increase the challenge to predict and to control the transistor off-state current. Typically, electrical simulators like SPICE, are using the design intent (as-drawn GDS data). At more sophisticated cases, the simulators are fed with the pattern after lithography and etch process simulations. As the importance of electrical simulation accuracy is increasing and leakage is becoming more dominant, there is a need to feed these simulators, with more accurate information extracted from physical on-silicon transistors. Our methodology to predict changes in device performances due to systematic lithography and etch effects was used in this paper. In general, the methodology consists on using the OPCCmaxTM for systematic Edge-Contour-Extraction (ECE) from transistors, taking along the manufacturing and includes any image distortions like line-end shortening, corner rounding and line-edge roughness. These measurements are used for SPICE modeling. Possible application of this new metrology is to provide a-head of time, physical and electrical statistical data improving time to market. In this work, we applied our methodology to analyze a small and large array's of 2.14um2 6T-SRAM, manufactured using Tower Standard Logic for General Purposes Platform. 4 out of the 6 transistors used "U-Shape AA", known to have higher variability. The predicted electrical performances of the transistors drive current and leakage current, in terms of nominal values and variability are presented. We also used the methodology to analyze an entire SRAM Block array. Study of an isolation leakage and variability are presented.
Progress in Aluminum Electrolysis Control and Future Direction for Smart Aluminum Electrolysis Plant
NASA Astrophysics Data System (ADS)
Zhang, Hongliang; Li, Tianshuang; Li, Jie; Yang, Shuai; Zou, Zhong
2017-02-01
The industrial aluminum reduction cell is an electrochemistry reactor that operates under high temperatures and highly corrosive conditions. However, these conditions have restricted the measurement of key control parameters, making the control of aluminum reduction cells a difficult problem in the industry. Because aluminum electrolysis control systems have a significant economic influence, substantial research has been conducted on control algorithms, control systems and information systems for aluminum reduction cells. This article first summarizes the development of control systems and then focuses on the progress made since 2000, including alumina concentration control, temperature control and electrolyte molecular ratio control, fault diagnosis, cell condition prediction and control system expansion. Based on these studies, the concept of a smart aluminum electrolysis plant is proposed. The frame construction, key problems and current progress are introduced. Finally, several future directions are discussed.
NASA Technical Reports Server (NTRS)
Sarathy, Sriprakash
2005-01-01
Solar Sailcraft, the stuff of dreams of the H.G. Wells generation, is now a rapidly maturing reality. The promise of unlimited propulsive power by harnessing stellar radiation is close to realization. Currently, efforts are underway to build, prototype and test two configurations. These sails are designed to meet a 20m sail requirement, under guidance of the In-Space Propulsion (ISP) technology program office at MSFC. While these sails will not fly , they are the first steps in improving our understanding of the processes and phenomena at work. As part of the New Millennium Program (NMP) the ST9 technology validation mission hopes to launch and fly a solar sail by 2010 or sooner. Though the Solar Sail community has been studying and validating various concepts over two decades, it was not until recent breakthroughs in structural and material technology, has made possible to build sails that could be launched. With real sails that can be tested (albeit under earth conditions), the real task of engineering a viable spacecraft has finally commenced. Since it is not possible to accurately or practically recreate the actual operating conditions of the sailcraft (zero-G, vacuum and extremely low temperatures), much of the work has focused on developing accurate models that can be used to predict behavior in space, and for sails that are 6-10 times the size of currently existing sails. Since these models can be validated only with real test data under "earth" conditions, the process of modeling and the identification of uncertainty due to model assumptions and scope need to be closely considered. Sailcraft models that exist currently, are primarily focused on detailed physical representations at the component level, these are intended to support prototyping efforts. System level models that cut across different sail configurations and control concepts while maintaining a consistent approach are non-existent. Much effort has been focused on the areas of thrust performance, solar radiation prediction, and sail membrane behavior vis-a-vis their reflective geometry, such as wrinkling/folding/furling as it pertains to thrust prediction. A parallel effort has been conducted on developing usable models for developing attitude control systems (ACS), for different sail configurations in different regimes. There has been very little by way of a system wide exploration of the impact of the various control schemes, thrust prediction models for different sail configurations being considered.
Initial experience with a microprocessor controlled current based defibrillator.
Dalzell, G W; Cunningham, S R; Anderson, J; Adgey, A A
1989-01-01
Intramyocardial current flow is a critical factor in successful ventricular defibrillation. The main determinants of intramyocardial current flow during transthoracic countershock are the selected energy and the transthoracic impedance of the patient. To optimise the success of the first shock and to titrate energy dosage according to each patient's transthoracic impedance, a microprocessor controlled current based defibrillator was developed. It was compared with a conventional energy based protocol of 200 J (delivered energy), 200 J, then 360 J if required in 42 consecutive episodes of ventricular fibrillation in 33 men and seven women. The mean (SD) predicted transthoracic impedance was 69.9 (14.0) omega. First shock success with the standard protocol was 80.9%, and first or second shock success was 95.2%. The microprocessor controlled current based defibrillator automatically measured transthoracic impedance and calculated the energy required to develop a selected current in each patient. A current protocol of 30 A, 30 A, then 40 A, if required, was used in 29 men and 12 women with 41 episodes of ventricular fibrillation. Transthoracic impedance (mean 65.1 (15.9) omega) was similar to that in the energy protocol group and success rates for first shock (82.9%) and first or second shocks (97.5%) were also similar. The mean delivered energy per shock with the current based defibrillator for first or second shock success was significantly less (144.8 J) with the energy protocol (200 J). The mean peak current of successful shocks was also significantly reduced (29.0 v 31.9 A). A current based defibrillator titrates energy according to transthoracic impedance; it has a success rate comparable to conventional defibrillators but it delivers significantly less energy and current per shock. Images Fig 1 PMID:2757862
The effect of the timing of the cessation of contact lens use on the results of biometry.
Goudie, Colin; Tatham, Andrew; Davies, Rhys; Sifton, Alison; Wright, Mark
2018-06-01
Current guidelines vary regarding when to remove contact lenses prior to performing biometry, and there is no clear evidence behind these guidelines. This study aimed to determine the effect of soft contact lens wear on biometric measurements by examining the change in predicted lens power for emmetropia at several time points following removal of soft contact lenses. A prospective, controlled study of healthy soft contact lens wearers. Biometry was performed immediately after removing contact lenses and then after 2, 4 and 7 days of no contact lens use. Healthy non-contact lens wearers were used as controls. All measurements were taken with the Zeiss IOLMaster. In all, 14 subjects and 13 controls were recruited. There was no significant difference in age or gender between groups. Eight of the fourteen subjects wore daily disposable CLs, two wore 2-weekly and four wore monthly soft CLs. Measurements from controls and contact lens-wearing subjects showed similar degrees of variation over time. The within-subject SD in predicted intraocular lens (IOL) power for emmetropia for contact lens wearers was 0.20 D (95% CI 0.16-0.25 D) compared to 0.18 D (95% CI 0.12-0.26 D) for controls. There is a significant variation in UK practice regarding advice on the timing of cessation of contact lens wear prior to having biometry performed. Our study suggests that it is likely that soft contact lens wearers are currently being advised to remove their contact lenses for an unnecessarily long period of time prior to having biometry performed.
Orbiter CCTV video signal noise analysis
NASA Technical Reports Server (NTRS)
Lawton, R. M.; Blanke, L. R.; Pannett, R. F.
1977-01-01
The amount of steady state and transient noise which will couple to orbiter CCTV video signal wiring is predicted. The primary emphasis is on the interim system, however, some predictions are made concerning the operational system wiring in the cabin area. Noise sources considered are RF fields from on board transmitters, precipitation static, induced lightning currents, and induced noise from adjacent wiring. The most significant source is noise coupled to video circuits from associated circuits in common connectors. Video signal crosstalk is the primary cause of steady state interference, and mechanically switched control functions cause the largest induced transients.
Teenage smoking, attempts to quit, and school performance.
Hu, T W; Lin, Z; Keeler, T E
1998-01-01
OBJECTIVES: This study examined the relationship between school performance, smoking, and quitting attempts among teenagers. METHODS: A logistic regression model was used to predict the probability of being a current smoker or a former smoker. Data were derived from the 1990 California Youth Tobacco Survey. RESULTS: Students' school performance was a key factor in predicting smoking and quitting attempts when other sociodemographic and family income factors were controlled. CONCLUSIONS: Developing academic or remedial classes designed to improve students' school performance may lead to a reduction in smoking rates among teenagers while simultaneously providing a human capital investment in their futures. PMID:9618625
Lattice Boltzmann for Airframe Noise Predictions
NASA Technical Reports Server (NTRS)
Barad, Michael; Kocheemoolayil, Joseph; Kiris, Cetin
2017-01-01
Increase predictive use of High-Fidelity Computational Aero- Acoustics (CAA) capabilities for NASA's next generation aviation concepts. CFD has been utilized substantially in analysis and design for steady-state problems (RANS). Computational resources are extremely challenged for high-fidelity unsteady problems (e.g. unsteady loads, buffet boundary, jet and installation noise, fan noise, active flow control, airframe noise, etc) ü Need novel techniques for reducing the computational resources consumed by current high-fidelity CAA Need routine acoustic analysis of aircraft components at full-scale Reynolds number from first principles Need an order of magnitude reduction in wall time to solution!
Pizzolato, Claudio; Lloyd, David G.; Sartori, Massimo; Ceseracciu, Elena; Besier, Thor F.; Fregly, Benjamin J.; Reggiani, Monica
2015-01-01
Personalized neuromusculoskeletal (NMS) models can represent the neurological, physiological, and anatomical characteristics of an individual and can be used to estimate the forces generated inside the human body. Currently, publicly available software to calculate muscle forces are restricted to static and dynamic optimisation methods, or limited to isometric tasks only. We have created and made freely available for the research community the Calibrated EMG-Informed NMS Modelling Toolbox (CEINMS), an OpenSim plug-in that enables investigators to predict different neural control solutions for the same musculoskeletal geometry and measured movements. CEINMS comprises EMG-driven and EMG-informed algorithms that have been previously published and tested. It operates on dynamic skeletal models possessing any number of degrees of freedom and musculotendon units and can be calibrated to the individual to predict measured joint moments and EMG patterns. In this paper we describe the components of CEINMS and its integration with OpenSim. We then analyse how EMG-driven, EMG-assisted, and static optimisation neural control solutions affect the estimated joint moments, muscle forces, and muscle excitations, including muscle co-contraction. PMID:26522621
Cost analysis of impacts of climate change on regional air quality.
Liao, Kuo-Jen; Tagaris, Efthimios; Russell, Armistead G; Amar, Praveen; He, Shan; Manomaiphiboon, Kasemsan; Woo, Jung-Hun
2010-02-01
Climate change has been predicted to adversely impact regional air quality with resulting health effects. Here a regional air quality model and a technology analysis tool are used to assess the additional emission reductions required and associated costs to offset impacts of climate change on air quality. Analysis is done for six regions and five major cities in the continental United States. Future climate is taken from a global climate model simulation for 2049-2051 using the Intergovernmental Panel on Climate Change (IPCC) A1B emission scenario, and emission inventories are the same as current ones to assess impacts of climate change alone on air quality and control expenses. On the basis of the IPCC A1B emission scenario and current control technologies, least-cost sets of emission reductions for simultaneously offsetting impacts of climate change on regionally averaged 4th highest daily maximum 8-hr average ozone and yearly averaged PM2.5 (particulate matter [PM] with an aerodynamic diameter less than 2.5 microm) for the six regions examined are predicted to range from $36 million (1999$) yr(-1) in the Southeast to $5.5 billion yr(-1) in the Northeast. However, control costs to offset climate-related pollutant increases in urban areas can be greater than the regional costs because of the locally exacerbated ozone levels. An annual cost of $4.1 billion is required for offsetting climate-induced air quality impairment in 2049-2051 in the five cities alone. Overall, an annual cost of $9.3 billion is estimated for offsetting climate change impacts on air quality for the six regions and five cities examined. Much of the additional expense is to reduce increased levels of ozone. Additional control costs for offsetting the impacts everywhere in the United States could be larger than the estimates in this study. This study shows that additional emission controls and associated costs for offsetting climate impacts could significantly increase currently estimated control requirements and should be considered in developing control strategies for achieving air quality targets in the future.
Resonant current in coupled inertial Brownian particles with delayed-feedback control
NASA Astrophysics Data System (ADS)
Gao, Tian-Fu; Zheng, Zhi-Gang; Chen, Jin-Can
2017-12-01
The transport of a walker in rocking feedback-controlled ratchets is investigated. The walker consists of two coupled "feet" that allow the interchange of the order of particles while the walker moves. In the underdamped case, the deterministic dynamics of the walker in a tilted asymmetric ratchet with an external periodic force is considered. It is found that delayed feedback ratchets with a switching-onand-off dependence of the states of the system can lead to absolute negative mobility. In such a novel phenomenon, the particles move against the bias. Moreover, the walker can acquire a series of resonant steps for different values of the current. It is interesting to find that the resonant currents of the walker are induced by the phase locked motion that corresponds to the synchronization of the motion with the change in the frequency of the external driving. These resonant steps can be well predicted in terms of time-space symmetry analysis, which is in good agreement with dynamics simulations. The transport performances can be optimized and controlled by suitably adjusting the parameters of the delayed-feedback ratchets.
Scott, J E; Mathias, J L; Kneebone, A C; Krishnan, J
2017-06-01
Whether total joint replacement (TJR) patients are susceptible to postoperative cognitive dysfunction (POCD) remains unclear due to inconsistencies in research methodologies. Moreover, cognitive reserve may moderate the development of POCD after TJR, but has not been investigated in this context. The current study investigated POCD after TJR, and its relationship with cognitive reserve, using a more rigorous methodology than has previously been utilized. Fifty-three older adults (aged 50+) scheduled for TJR were assessed pre and post surgery (6 months). Forty-five healthy controls matched for age, gender, and premorbid IQ were re-assessed after an equivalent interval. Cognition, cognitive reserve, and physical and mental health were all measured. Standardized regression-based methods were used to assess cognitive changes, while controlling for the confounding effect of repeated cognitive testing. TJR patients only demonstrated a significant decline in Trail Making Test Part B (TMT B) performance, compared to controls. Cognitive reserve only predicted change in TMT B scores among a subset of TJR patients. Specifically, patients who showed the most improvement pre to post surgery had significantly higher reserve than those who showed the greatest decline. The current study provides limited evidence of POCD after TJR when examined using a rigorous methodology, which controlled for practice effects. Cognitive reserve only predicted performance within a subset of the TJR sample. However, the role of reserve in more cognitively compromised patients remains to be determined.
Ryan, J E; Warrier, S K; Lynch, A C; Ramsay, R G; Phillips, W A; Heriot, A G
2016-03-01
Approximately 20% of patients treated with neoadjuvant chemoradiotherapy (nCRT) for locally advanced rectal cancer achieve a pathological complete response (pCR) while the remainder derive the benefit of improved local control and downstaging and a small proportion show a minimal response. The ability to predict which patients will benefit would allow for improved patient stratification directing therapy to those who are likely to achieve a good response, thereby avoiding ineffective treatment in those unlikely to benefit. A systematic review of the English language literature was conducted to identify pathological factors, imaging modalities and molecular factors that predict pCR following chemoradiotherapy. PubMed, MEDLINE and Cochrane Database searches were conducted with the following keywords and MeSH search terms: 'rectal neoplasm', 'response', 'neoadjuvant', 'preoperative chemoradiation', 'tumor response'. After review of title and abstracts, 85 articles addressing the prediction of pCR were selected. Clear methods to predict pCR before chemoradiotherapy have not been defined. Clinical and radiological features of the primary cancer have limited ability to predict response. Molecular profiling holds the greatest potential to predict pCR but adoption of this technology will require greater concordance between cohorts for the biomarkers currently under investigation. At present no robust markers of the prediction of pCR have been identified and the topic remains an area for future research. This review critically evaluates existing literature providing an overview of the methods currently available to predict pCR to nCRT for locally advanced rectal cancer. The review also provides a comprehensive comparison of the accuracy of each modality. Colorectal Disease © 2015 The Association of Coloproctology of Great Britain and Ireland.
Elskens, Marc; Vloeberghs, Daniel; Van Elsen, Liesbeth; Baeyens, Willy; Goeyens, Leo
2012-09-15
For reasons of food safety, packaging and food contact materials must be submitted to migration tests. Testing of silicone moulds is often very laborious, since three replicate tests are required to decide about their compliancy. This paper presents a general modelling framework to predict the sample's compliance or non-compliance using results of the first two migration tests. It compares the outcomes of models with multiple continuous predictors with a class of models involving latent and dummy variables. The model's prediction ability was tested using cross and external validations, i.e. model revalidation each time a new measurement set became available. At the overall migration limit of 10 mg dm(-2), the relative uncertainty on a prediction was estimated to be ~10%. Taking the default values for α and β equal to 0.05, the maximum value that can be predicted for sample compliance was therefore 7 mg dm(-2). Beyond this limit the risk for false compliant results increases significantly, and a third migration test should be performed. The result of this latter test defines the sample's compliance or non-compliance. Propositions for compliancy control inspired by the current dioxin control strategy are discussed. Copyright © 2012 Elsevier B.V. All rights reserved.
Cuenca-Navalon, Elena; Laumen, Marco; Finocchiaro, Thomas; Steinseifer, Ulrich
2016-07-01
A physiological control algorithm is being developed to ensure an optimal physiological interaction between the ReinHeart total artificial heart (TAH) and the circulatory system. A key factor for that is the long-term, accurate determination of the hemodynamic state of the cardiovascular system. This study presents a method to determine estimation models for predicting hemodynamic parameters (pump chamber filling and afterload) from both left and right cardiovascular circulations. The estimation models are based on linear regression models that correlate filling and afterload values with pump intrinsic parameters derived from measured values of motor current and piston position. Predictions for filling lie in average within 5% from actual values, predictions for systemic afterload (AoPmean , AoPsys ) and mean pulmonary afterload (PAPmean ) lie in average within 9% from actual values. Predictions for systolic pulmonary afterload (PAPsys ) present an average deviation of 14%. The estimation models show satisfactory prediction and confidence intervals and are thus suitable to estimate hemodynamic parameters. This method and derived estimation models are a valuable alternative to implanted sensors and are an essential step for the development of a physiological control algorithm for a fully implantable TAH. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Hemphill, Sheryl A.; Heerde, Jessica A.; Scholes-Balog, Kirsty E.; Smith, Rachel; Herrenkohl, Todd I.; Toumbourou, John W.; Catalano, Richard F.
2013-01-01
The effect of early adolescent alcohol use on antisocial behavior was examined at one- and two-year follow-up in Washington, United States and Victoria, Australia. Each state used the same methods to survey statewide representative samples of students (N = 1,858, 52% female) in 2002 (Grade 7 [G7]), 2003 (Grade 8 [G8]), and 2004 (Grade 9 [G9]). Rates of lifetime, current, frequent, and heavy episodic alcohol use were higher in Victoria than Washington State, whereas rates of five antisocial behaviors were generally comparable across states. After controlling for established risk factors, few associations between alcohol use and antisocial behavior remained, except that G7 current use predicted G8 police arrests and stealing and G9 carrying a weapon and stealing; G7 heavy episodic use predicted G8 and G9 police arrests; and G7 lifetime use predicted G9 carrying a weapon. Hence, risk factors other than alcohol were stronger predictors of antisocial behaviors. PMID:25132702
Handling qualities effects of display latency
NASA Technical Reports Server (NTRS)
King, David W.
1993-01-01
Display latency is the time delay between aircraft response and the corresponding response of the cockpit displays. Currently, there is no explicit specification for allowable display lags to ensure acceptable aircraft handling qualities in instrument flight conditions. This paper examines the handling qualities effects of display latency between 70 and 400 milliseconds for precision instrument flight tasks of the V-22 Tiltrotor aircraft. Display delay effects on the pilot control loop are analytically predicted through a second order pilot crossover model of the V-22 lateral axis, and handling qualities trends are evaluated through a series of fixed-base piloted simulation tests. The results show that the effects of display latency for flight path tracking tasks are driven by the stability characteristics of the attitude control loop. The data indicate that the loss of control damping due to latency can be simply predicted from knowledge of the aircraft's stability margins, control system lags, and required control bandwidths. Based on the relationship between attitude control damping and handling qualities ratings, latency design guidelines are presented. In addition, this paper presents a design philosophy, supported by simulation data, for using flight director display augmentation to suppress the effects of display latency for delays up to 300 milliseconds.
Phenotypic and genetic heterogeneity among subjects with mild airflow obstruction in COPDGene.
Lee, Jin Hwa; Cho, Michael H; McDonald, Merry-Lynn N; Hersh, Craig P; Castaldi, Peter J; Crapo, James D; Wan, Emily S; Dy, Jennifer G; Chang, Yale; Regan, Elizabeth A; Hardin, Megan; DeMeo, Dawn L; Silverman, Edwin K
2014-10-01
Chronic obstructive pulmonary disease (COPD) is characterized by marked phenotypic heterogeneity. Most previous studies have focused on COPD subjects with FEV1 < 80% predicted. We investigated the clinical and genetic heterogeneity in subjects with mild airflow limitation in spirometry grade 1 defined by the Global Initiative for chronic Obstructive Lung Disease (GOLD 1). Data from current and former smokers participating in the COPDGene Study (NCT00608764) were analyzed. K-means clustering was performed to explore subtypes within 794 GOLD 1 subjects. For all subjects with GOLD 1 and with each cluster, a genome-wide association study and candidate gene testing were performed using smokers with normal lung function as a control group. Combinations of COPD genome-wide significant single nucleotide polymorphisms (SNPs) were tested for association with FEV1 (% predicted) in GOLD 1 and in a combined group of GOLD 1 and smoking control subjects. K-means clustering of GOLD 1 subjects identified putative "near-normal", "airway-predominant", "emphysema-predominant" and "lowest FEV1% predicted" subtypes. In non-Hispanic whites, the only SNP nominally associated with GOLD 1 status relative to smoking controls was rs7671167 (FAM13A) in logistic regression models with adjustment for age, sex, pack-years of smoking, and genetic ancestry. The emphysema-predominant GOLD 1 cluster was nominally associated with rs7671167 (FAM13A) and rs161976 (BICD1). The lowest FEV1% predicted cluster was nominally associated with rs1980057 (HHIP) and rs1051730 (CHRNA3). Combinations of COPD genome-wide significant SNPs were associated with FEV1 (% predicted) in a combined group of GOLD 1 and smoking control subjects. Our results indicate that GOLD 1 subjects show substantial clinical heterogeneity, which is at least partially related to genetic heterogeneity. Copyright © 2014 Elsevier Ltd. All rights reserved.
A practical method of predicting the loudness of complex electrical stimuli
NASA Astrophysics Data System (ADS)
McKay, Colette M.; Henshall, Katherine R.; Farrell, Rebecca J.; McDermott, Hugh J.
2003-04-01
The output of speech processors for multiple-electrode cochlear implants consists of current waveforms with complex temporal and spatial patterns. The majority of existing processors output sequential biphasic current pulses. This paper describes a practical method of calculating loudness estimates for such stimuli, in addition to the relative loudness contributions from different cochlear regions. The method can be used either to manipulate the loudness or levels in existing processing strategies, or to control intensity cues in novel sound processing strategies. The method is based on a loudness model described by McKay et al. [J. Acoust. Soc. Am. 110, 1514-1524 (2001)] with the addition of the simplifying approximation that current pulses falling within a temporal integration window of several milliseconds' duration contribute independently to the overall loudness of the stimulus. Three experiments were carried out with six implantees who use the CI24M device manufactured by Cochlear Ltd. The first experiment validated the simplifying assumption, and allowed loudness growth functions to be calculated for use in the loudness prediction method. The following experiments confirmed the accuracy of the method using multiple-electrode stimuli with various patterns of electrode locations and current levels.
Jacobson, Nicholas C; Lord, Kayla A; Newman, Michelle G
2017-03-15
Prior research has shown that anxiety symptoms predict later depression symptoms following bereavement. Nevertheless, no research has investigated mechanisms of the temporal relationship between anxiety and later depressive symptoms or examined the impact of depressive symptoms on later anxiety symptoms following bereavement. The current study examined perceived emotional social support as a possible mediator between anxiety and depressive symptoms in a bereaved sample of older adults (N =250). Anxiety and depressive symptoms were measured at Wave 1 (immediately after bereavement), social support was measured at Wave 2 (18 months after bereavement), and anxiety and depressive symptoms were also measured at Wave 3 (48 months after bereavement). Using Bayesian structural equation models, when controlling for baseline depression, anxiety symptoms significantly positively predicted depressive symptoms 48 months later, Further, perceived emotional social support significantly mediated the relationship between anxiety symptoms and later depressive symptoms, such that anxiety symptoms significantly negatively predicted later emotional social support, and emotional social support significantly negatively predicted later depressive symptoms. Also, when controlling for baseline anxiety, depressive symptoms positively predicted anxiety symptoms 48 months later. However, low emotional social support failed to mediate this relationship. Low perceived emotional social support may be a mechanism by which anxiety symptoms predict depressive symptoms 48 months later for bereaved individuals. Copyright © 2017 Elsevier B.V. All rights reserved.
Yang, Guo-Jing; Vounatsou, Penelope; Zhou, Xiao-Nong; Utzinger, Jürg; Tanner, Marcel
2005-01-01
Geographic information system (GIS) and remote sensing (RS) technologies offer new opportunities for rapid assessment of endemic areas, provision of reliable estimates of populations at risk, prediction of disease distributions in areas that lack baseline data and are difficult to access, and guidance of intervention strategies, so that scarce resources can be allocated in a cost-effective manner. Here, we focus on the epidemiology and control of schistosomiasis in China and review GIS and RS applications to date. These include mapping prevalence and intensity data of Schistosoma japonicum at a large scale, and identifying and predicting suitable habitats for Oncomelania hupensis, the intermediate host snail of S. japonicum, at a small scale. Other prominent applications have been the prediction of infection risk due to ecological transformations, particularly those induced by floods and water resource developments, and the potential impact of climate change. We also discuss the limitations of the previous work, and outline potential new applications of GIS and RS techniques, namely quantitative GIS, WebGIS, and utilization of emerging satellite information, as they hold promise to further enhance infection risk mapping and disease prediction. Finally, we stress current research needs to overcome some of the remaining challenges of GIS and RS applications for schistosomiasis, so that further and sustained progress can be made to control this disease in China and elsewhere.
On the neutralization of acid rock drainage by carbonate and silicate minerals
NASA Astrophysics Data System (ADS)
Sherlock, E. J.; Lawrence, R. W.; Poulin, R.
1995-02-01
The net result of acid-generating and-neutralizing reactions within mining wastes is termed acid rock drainage (ARD). The oxidation of sulfide minerals is the major contributor to acid generation. Dissolution and alteration of various minerals can contribute to the neutralization of acid. Definitions of alkalinity, acidity, and buffer capacity are reviewed, and a detailed discussion of the dissolution and neutralizing capacity of carbonate and silicate minerals related to equilibium conditions, dissolution mechanism, and kinetics is provided. Factors that determine neutralization rate by carbonate and silicate minerals include: pH, PCO 2, equilibrium conditions, temperature, mineral composition and structure, redox conditions, and the presence of “foreign” ions. Similar factors affect sulfide oxidation. Comparison of rates shows sulfides react fastest, followed by carbonates and silicates. The differences in the reaction mechanisms and kinetics of neutralization have important implications in the prediction, control, and regulation of ARD. Current static and kinetic prediction methods upon which mine permitting, ARD control, and mine closure plans are based do not consider sample mineralogy or the kinetics of the acid-generating and-neutralizing reactions. Erroneous test interpretations and predictions can result. The importance of considering mineralogy for site-specific interpretation is highlighted. Uncertainty in prediction leads to difficulties for the mine operator in developing satisfactory and cost-effective control and remediation measures. Thus, the application of regulations and guidelines for waste management planning need to beflexible.
Improved sulfide mitigation in sewers through on-line control of ferrous salt dosing.
Ganigué, Ramon; Jiang, Guangming; Liu, Yiqi; Sharma, Keshab; Wang, Yue-Cong; Gonzalez, José; Nguyen, Tung; Yuan, Zhiguo
2018-05-15
Water utilities worldwide spend annually billions of dollars to control sulfide-induced corrosion in sewers. Iron salts chemically oxidize and/or precipitate dissolved sulfide in sewage and are especially used in medium- and large-size sewers. Iron salt dosing rates are defined ad hoc, ignoring variation in sewage flows and sulfide levels. This often results in iron overdosing or poor sulfide control. Online dosing control can adjust the chemical dosing rates to current (and future) state of the sewer system, allowing high-precision, stable and cost-effective sulfide control. In this paper, we report a novel and robust online control strategy for the dosing of ferrous salt in sewers. The control considers the fluctuation of sewage flow, pH, sulfide levels and also the perturbation from rainfall. Sulfide production in the pipe is predicted using auto-regressive models (AR) based on current flow measurements, which in turn can be used to determine the dose of ferrous salt required for cost-effective sulfide control. Following comprehensive model-based assesment, the control was successfully validated and its effectiveness demonstrated in a 3-week field trial. The online control algorithm controlled sulfide below the target level (0.5 mg S/L) while reducing chemical dosing up to 30%. Copyright © 2018 Elsevier Ltd. All rights reserved.
Development of Advanced Life Prediction Tools for Elastic-Plastic Fatigue Crack Growth
NASA Technical Reports Server (NTRS)
Gregg, Wayne; McGill, Preston; Swanson, Greg; Wells, Doug; Throckmorton, D. A. (Technical Monitor)
2001-01-01
The objective of this viewgraph presentation is to develop a systematic approach to improving the fracture control process, including analytical tools, standards, guidelines, and awareness. Analytical tools specifically for elastic-plastic fracture analysis is a regime that is currently empirical for the Space Shuttle External Tank (ET) and is handled by simulated service testing of pre-cracked panels.
Closed-loop analysis and control of a non-inverting buck-boost converter
NASA Astrophysics Data System (ADS)
Chen, Zengshi; Hu, Jiangang; Gao, Wenzhong
2010-11-01
In this article, a cascade controller is designed and analysed for a non-inverting buck-boost converter. The fast inner current loop uses sliding mode control. The slow outer voltage loop uses the proportional-integral (PI) control. Stability analysis and selection of PI gains are based on the nonlinear closed-loop error dynamics incorporating both the inner and outer loop controllers. The closed-loop system is proven to have a nonminimum phase structure. The voltage transient due to step changes of input voltage or resistance is predictable. The operating range of the reference voltage is discussed. The controller is validated by a simulation circuit. The simulation results show that the reference output voltage is well-tracked under system uncertainties or disturbances, confirming the validity of the proposed controller.
Briere, John; Agee, Elisha; Dietrich, Anne
2016-07-01
This research was undertaken to examine the role between cumulative exposure to different types of traumatic events and posttraumatic stress disorder (PTSD) status in general population and prison samples. Two archival datasets were examined: the standardization sample for the Detailed Assessment of Posttraumatic States (DAPS; Briere, 2001), and data from a study on trauma and posttraumatic sequelae among inmates and others. PTSD was found in 4% of the general population sample and 48% of the prison sample. Trauma exposure was very common among prisoners, including a 70% rate of childhood sexual abuse for women and a 50% rate for men. Lifetime number of different types of trauma was associated with PTSD in both the general population and prison samples, even when controlling for the effects of sexual trauma. Cumulative interpersonal trauma predicted PTSD, whereas cumulative noninterpersonal trauma did not. In the general population sample, participants who had only 1 type of trauma exposure had a 0% likelihood of current PTSD, whereas those with 6 or more other trauma types had a 12% likelihood. In the prison sample, those with only 1 type of trauma exposure had a 17% percent likelihood of current PTSD, whereas those exposed to 6 or more other trauma types had a 64% chance of PTSD. Cumulative trauma predicts current PTSD in both general population and prison samples, even after controlling for sexual trauma. PTSD appears to develop generally as a function of exposure to multiple types of interpersonal trauma, as opposed to a single traumatic event. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
The behavioral economics of will in recovery from addiction.
Monterosso, John; Ainslie, George
2007-09-01
Behavioral economic studies demonstrate that rewards are discounted proportionally with their delay (hyperbolic discounting). Hyperbolic discounting implies temporary preference for smaller rewards when they are imminent, and this concept has been widely considered by researchers interested in the causes of addictive behavior. Far less consideration has been given to the fact that systematic preference reversal also predicts various self-control phenomena, which may also be analyzed from a behavioral economic perspective. Here we summarize self-control phenomena predicted by hyperbolic discounting, particularly with application to the field of addiction. Of greatest interest is the phenomenon of choice bundling, an increase in motivation to wait for delayed rewards that can be expected to result from making choices in whole categories. Specifically, when a person's expectations about her own future behavior are conditional upon her current behavior, the value of these expectations is added to the contingencies for the current behavior, resulting in reduced impulsivity. Hyperbolic discounting provides a bottom-up basis for the intuitive learning of choice bundling, the properties of which match common descriptions of willpower. We suggest that the bundling effect can also be discerned in the advice of 12-step programs.
Early Detection for Dengue Using Local Indicator of Spatial Association (LISA) Analysis.
Parra-Amaya, Mayra Elizabeth; Puerta-Yepes, María Eugenia; Lizarralde-Bejarano, Diana Paola; Arboleda-Sánchez, Sair
2016-03-29
Dengue is a viral disease caused by a flavivirus that is transmitted by mosquitoes of the genus Aedes . There is currently no specific treatment or commercial vaccine for its control and prevention; therefore, mosquito population control is the only alternative for preventing the occurrence of dengue. For this reason, entomological surveillance is recommended by World Health Organization (WHO) to measure dengue risk in endemic areas; however, several works have shown that the current methodology (aedic indices) is not sufficient for predicting dengue. In this work, we modified indices proposed for epidemic periods. The raw value of the epidemiological wave could be useful for detecting risk in epidemic periods; however, risk can only be detected if analyses incorporate the maximum epidemiological wave. Risk classification was performed according to Local Indicators of Spatial Association (LISA) methodology. The modified indices were analyzed using several hypothetical scenarios to evaluate their sensitivity. We found that modified indices could detect spatial and differential risks in epidemic and endemic years, which makes them a useful tool for the early detection of a dengue outbreak. In conclusion, the modified indices could predict risk at the spatio-temporal level in endemic years and could be incorporated in surveillance activities in endemic places.
The behavioral economics of will in recovery from addiction
Monterosso, John; Ainslie, George
2007-01-01
Behavioral economic studies demonstrate that rewards are discounted proportionally with their delay (hyperbolic discounting). Hyperbolic discounting implies temporary preference for smaller rewards when they are imminent, and this concept has been widely considered by researchers interested in the causes of addictive behavior. Far less consideration has been given to the fact that systematic preference reversal also predicts various self-control phenomena, which may also be analyzed from a behavioral economic perspective. Here we summarize self-control phenomena predicted by hyperbolic discounting, particularly with application to the field of addiction. Of greatest interest is the phenomenon of choice bundling, an increase in motivation to wait for delayed rewards that can be expected to result from making choices in whole categories. Specifically, when a person’s expectations about her own future behavior are conditional upon her current behavior, the value of these expectations is added to the contingencies for the current behavior, resulting in reduced impulsivity. Hyperbolic discounting provides a bottom-up basis for the intuitive learning of choice bundling, the properties of which match common descriptions of willpower. We suggest that the bundling effect can also be discerned in the advice of 12-step programs. PMID:17034958
A View of Obesity as a Learning and Memory Disorder
Davidson, Terry L.; Tracy, Andrea L; Schier, Lindsey A.; Swithers, Susan E.
2014-01-01
This review describes how a cascade of associative relationships involving the sensory properties of foods, the nutritional consequences of their consumption and perceived internal states may play an important role in the learned control of energy intake and body weight regulation. In addition, we describe ways in which dietary factors in the current environment can promote excess energy intake and body weight gain by degrading these relationships or by interfering with the neural substrates that underlie the ability of animals to use them to predict the nutritive or energetic consequences of intake. We propose that an expanded appreciation of the diversity of orosensory, gastrointestinal, and energy state signals about which animals learn, combined with a greater understanding of predictive relationships in which these cues are embedded, will help generate new information and novel approaches to addressing the current global problems of obesity and metabolic disease. PMID:25453037
Jia, Xiuqin; Liang, Peipeng; Shi, Lin; Wang, Defeng; Li, Kuncheng
2015-01-01
In neuroimaging studies, increased task complexity can lead to increased activation in task-specific regions or to activation of additional regions. How the brain adapts to increased rule complexity during inductive reasoning remains unclear. In the current study, three types of problems were created: simple rule induction (i.e., SI, with rule complexity of 1), complex rule induction (i.e., CI, with rule complexity of 2), and perceptual control. Our findings revealed that increased activations accompany increased rule complexity in the right dorsal lateral prefrontal cortex (DLPFC) and medial posterior parietal cortex (precuneus). A cognitive model predicted both the behavioral and brain imaging results. The current findings suggest that neural activity in frontal and parietal regions is modulated by rule complexity, which may shed light on the neural mechanisms of inductive reasoning. Copyright © 2014. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Trabucchi, Stefano; Casella, Francesco; Maioli, Tommaso; Elsido, Cristina; Franzini, Davide; Ramond, Mathieu
2017-06-01
Concentrated Solar Power plants (CSP) coupled with thermal storage have the potential to guarantee both flexible and continuous energy production, thus being competitive with conventional fossil fuel and hydro power plants, in terms of dispatchability and provision of ancillary services. Hence, the plant equipment and control design have to be focused on flexible operation on one hand, and on plant safety concerning the molten salt freezing on the other hand. The PreFlexMS European project aims to introduce a molten salt Once-Through Steam Generator (OTSG) within a Rankine cycle based power unit, a technology that has greater flexibility potential if compared to steam drum boilers, currently used in CSP plants. The dynamic modelling and simulation from the early design stages is, thus, of paramount importance, to assess the plant dynamic behavior and controllability, and to predict the achievable closed-loop dynamic performance, potentially saving money and time during the detailed design, construction and commissioning phases. The present paper reports the main results of the analysis carried out during the first part of the project, regarding the system analysis and control design. In particular, two different control systems have been studied and tested with the plant dynamic model: a decentralized control strategy based on PI controllers and a Linear Model Predictive Control (LMPC).
Corbit, Laura H; Balleine, Bernard W
2016-01-01
Pavlovian stimuli exert a range of effects on behavior from simple conditioned reflexes, such as salivation, to altering the vigor and direction of instrumental actions. It is currently accepted that these distinct behavioral effects stem from two sources (i) the various associative connections between predictive stimuli and the component features of the events that these stimuli predict and (ii) the distinct motivational and cognitive functions served by cues, particularly their arousing and informational effects on the selection and performance of specific actions. Here, we describe studies that have assessed these latter phenomena using a paradigm that has come to be called Pavlovian-instrumental transfer. We focus first on behavioral experiments that have described distinct sources of stimulus control derived from the general affective and outcome-specific predictions of conditioned stimuli, referred to as general transfer and specific transfer, respectively. Subsequently, we describe research efforts attempting to establish the neural bases of these transfer effects, largely in the afferent and efferent connections of the nucleus accumbens (NAc) core and shell. Finally, we examine the role of predictive cues in examples of aberrant stimulus control associated with psychiatric disorders and addiction.
Savage, Robert; Cornish, Kim; Manly, Tom; Hollis, Chris
2006-08-01
Children experiencing attention difficulties have documented cognitive deficits in working memory (WM), response inhibition and dual tasks. Recent evidence suggests however that these same cognitive processes are also closely associated with reading acquisition. This paper therefore explores whether these variables predicted attention difficulties or reading among 123 children with and without significant attention problems sampled from the school population. Children were screened using current WM and attention task measures. Three factors explained variance in WM and attention tasks. Response inhibition tasks loaded mainly with central executive measures, but a dual processing task loaded with the visual-spatial WM measures. Phonological loop measures loaded independently of attention measures. After controls for age, IQ and attention-group membership, phonological loop and 'central processing' measures both predicted reading ability. A 'visual memory/dual-task' factor predicted attention group membership after controls for age, IQ and reading ability. Results thus suggest that some of the processes previously assumed to be predictive of attention problems may reflect processes involved in reading acquisition. Visual memory and dual-task functioning are, however, purer indices of cognitive difficulty in children experiencing attention problems.
Design of Accelerator Online Simulator Server Using Structured Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Guobao; /Brookhaven; Chu, Chungming
2012-07-06
Model based control plays an important role for a modern accelerator during beam commissioning, beam study, and even daily operation. With a realistic model, beam behaviour can be predicted and therefore effectively controlled. The approach used by most current high level application environments is to use a built-in simulation engine and feed a realistic model into that simulation engine. Instead of this traditional monolithic structure, a new approach using a client-server architecture is under development. An on-line simulator server is accessed via network accessible structured data. With this approach, a user can easily access multiple simulation codes. This paper describesmore » the design, implementation, and current status of PVData, which defines the structured data, and PVAccess, which provides network access to the structured data.« less
Electrokinetic Control of Viscous Fingering
NASA Astrophysics Data System (ADS)
Mirzadeh, Mohammad; Bazant, Martin Z.
2017-10-01
We present a theory of the interfacial stability of two immiscible electrolytes under the coupled action of pressure gradients and electric fields in a Hele-Shaw cell or porous medium. Mathematically, our theory describes a phenomenon of "vector Laplacian growth," in which the interface moves in response to the gradient of a vector-valued potential function through a generalized mobility tensor. Physically, we extend the classical Saffman-Taylor problem to electrolytes by incorporating electrokinetic (EK) phenomena. A surprising prediction is that viscous fingering can be controlled by varying the injection ratio of electric current to flow rate. Beyond a critical injection ratio, stability depends only upon the relative direction of flow and current, regardless of the viscosity ratio. Possible applications include porous materials processing, electrically enhanced oil recovery, and EK remediation of contaminated soils.
Ramage, Amy E; Lin, Ai-Ling; Olvera, Rene L; Fox, Peter T; Williamson, Douglas E
2015-04-01
Adolescence is a period of developmental flux when brain systems are vulnerable to influences of early substance use, which in turn relays increased risk for substance use disorders. Our study intent was to assess adolescent regional cerebral blood flow (rCBF) as it relates to current and future alcohol use. The aim was to identify brain-based predictors for initiation of alcohol use and onset of future substance use disorders. Quantitative rCBF was assessed in 100 adolescents (age 12-15). Prospective behavioral assessments were conducted annually over a three-year follow-up period to characterize onset of alcohol initiation, future drinking patterns and use disorders. Comparisons amongst use groups (i.e., current-, future-, and non-alcohol using adolescents) identified rCBF associated with initiation of alcohol use. Regression by future drinking patterns identified rCBF predictive of heavier drinking. Survival analysis determined whether or not baseline rCBF predicted later development of use disorders. Baseline rCBF was decreased to the parietal cortex and increased to mesolimbic regions in adolescents currently using alcohol as well as those who would use alcohol in the future. Higher baseline rCBF to the left fusiform gyrus and lower rCBF to the right inferior parietal cortex and left cerebellum was associated with future drinking patterns as well as predicted the onset of alcohol and substance use disorders in this cohort. Variations in resting rCBF to regions within reward and default mode or control networks appear to represent trait markers of alcohol use initiation and are predictive of future development of use disorders. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Automated Bone Screw Tightening to Adaptive Levels of Stripping Torque.
Reynolds, Karen J; Mohtar, Aaron A; Cleek, Tammy M; Ryan, Melissa K; Hearn, Trevor C
2017-06-01
To use relationships between tightening parameters, related to bone quality, to develop an automated system that determines and controls the level of screw tightening. An algorithm relating current at head contact (IHC) to current at construct failure (Imax) was developed. The algorithm was used to trigger cessation of screw insertion at a predefined tightening level, in real time, between head contact and maximum current. The ability of the device to stop at the predefined level was assessed. The mean (±SD) current at which screw insertion ceased was calculated to be [51.47 ± 9.75% × (Imax - IHC)] + IHC, with no premature bone failures. A smart screwdriver was developed that uses the current from the motor driving the screw to predict the current at which the screw will strip the bone threads. The device was implemented and was able to achieve motor shut-off and cease tightening at a predefined threshold, with no premature bone failures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tom, Nathan; Lawson, Michael; Yu, Yi-Hsiang
The aim of this paper is to present a novel wave energy converter device concept that is being developed at the National Renewable Energy Laboratory. The proposed concept combines an oscillating surge wave energy converter with active control surfaces. These active control surfaces allow for the device geometry to be altered, which leads to changes in the hydrodynamic properties. The device geometry will be controlled on a sea state time scale and combined with wave-to-wave power-take-off control to maximize power capture, increase capacity factor, and reduce design loads. The paper begins with a traditional linear frequency domain analysis of themore » device performance. Performance sensitivity to foil pitch angle, the number of activated foils, and foil cross section geometry is presented to illustrate the current design decisions; however, it is understood from previous studies that modeling of current oscillating wave energy converter designs requires the consideration of nonlinear hydrodynamics and viscous drag forces. In response, a nonlinear model is presented that highlights the shortcomings of the linear frequency domain analysis and increases the precision in predicted performance.« less
Child Perceived Parenting Behavior: Childhood Anxiety and Related Symptoms
Wei, Chiaying; Kendall, Philip C.
2014-01-01
The current study examined the relationship between child-reported parenting behaviors and children’s anxiety, depressive, and externalizing symptoms. Youth ages 7 – 14 (N = 175; 52.6% male) and their parents seeking treatment for child anxiety were evaluated. The parenting behaviors that were measured separately included father’s and mother’s acceptance, psychological control, and firm/behavioral control. Children’s symptoms were assessed using diagnostic interviews, self-reports, parent-reports, and teacher-reports. Independent t-tests revealed that children diagnosed with a primary anxiety disorder perceived higher parental control than children without an anxiety disorder. Results from regression analyses indicated that child-reported maternal acceptance was associated with lower symptoms of child anxiety, depression, and externalizing behavior, whereas psychological control predicted higher symptoms. Further, child-reported depressive symptoms moderated the relationship between maternal psychological control and children’s anxiety, such that the relationship was weaker for anxious children with more depressive symptoms. The current findings support that children’s perception of parenting behavior is associated with anxiety, and children’s depressive symptoms moderate this relationship. PMID:25061257
Validation of Accelerometer Prediction Equations in Children with Chronic Disease.
Stephens, Samantha; Takken, Tim; Esliger, Dale W; Pullenayegum, Eleanor; Beyene, Joseph; Tremblay, Mark; Schneiderman, Jane; Biggar, Doug; Longmuir, Pat; McCrindle, Brian; Abad, Audrey; Ignas, Dan; Van Der Net, Janjaap; Feldman, Brian
2016-02-01
The purpose of this study was to assess the criterion validity of existing accelerometer-based energy expenditure (EE) prediction equations among children with chronic conditions, and to develop new prediction equations. Children with congenital heart disease (CHD), cystic fibrosis (CF), dermatomyositis (JDM), juvenile arthritis (JA), inherited muscle disease (IMD), and hemophilia (HE) completed 7 tasks while EE was measured using indirect calorimetry with counts determined by accelerometer. Agreement between predicted EE and measured EE was assessed. Disease-specific equations and cut points were developed and cross-validated. In total, 196 subjects participated. One participant dropped out before testing due to time constraints, while 15 CHD, 32 CF, 31 JDM, 31 JA, 30 IMD, 28 HE, and 29 healthy controls completed the study. Agreement between predicted and measured EE varied across disease group and ranged from (ICC) .13-.46. Disease-specific prediction equations exhibited a range of results (ICC .62-.88) (SE 0.45-0.78). In conclusion, poor agreement was demonstrated using current prediction equations in children with chronic conditions. Disease-specific equations and cut points were developed.
Dynamic performance analysis of permanent magnet contactor with a flux-weakening control strategy
NASA Astrophysics Data System (ADS)
Wang, Xianbing; Lin, Heyun; Fang, Shuhua; Jin, Ping; Wang, Junhua; Ho, S. L.
2011-04-01
A new flux-weakening control strategy for permanent magnet contactors is proposed. By matching the dynamic attraction force and the antiforce, the terminal velocity and collision energy of the movable iron in the closing process are significantly reduced. The movable iron displacement is estimated by detecting the closing voltage and current with the proposed control. A dynamic mathematical model is also established under four kinds of excitation scenarios. The attraction force and flux linkage are predicted by finite element method and the dynamics of the closing process is simulated using the 4th-order Runge-Kutta algorithm. Experiments are carried out on a 250A prototype with an intelligent control unit to verify the proposed control strategy.
Dynamic Modeling, Controls, and Testing for Electrified Aircraft
NASA Technical Reports Server (NTRS)
Connolly, Joseph; Stalcup, Erik
2017-01-01
Electrified aircraft have the potential to provide significant benefits for efficiency and emissions reductions. To assess these potential benefits, modeling tools are needed to provide rapid evaluation of diverse concepts and to ensure safe operability and peak performance over the mission. The modeling challenge for these vehicles is the ability to show significant benefits over the current highly refined aircraft systems. The STARC-ABL (single-aisle turbo-electric aircraft with an aft boundary layer propulsor) is a new test proposal that builds upon previous N3-X team hybrid designs. This presentation describes the STARC-ABL concept, the NASA Electric Aircraft Testbed (NEAT) which will allow testing of the STARC-ABL powertrain, and the related modeling and simulation efforts to date. Modeling and simulation includes a turbofan simulation, Numeric Propulsion System Simulation (NPSS), which has been integrated with NEAT; and a power systems and control model for predicting testbed performance and evaluating control schemes. Model predictions provide good comparisons with testbed data for an NPSS-integrated test of the single-string configuration of NEAT.
Characteristics That Predict Physician Participation in a Web-Based CME Activity: The MI-Plus Study
Schoen, Michael J.; Tipton, Edmond F.; Houston, Thomas K.; Funkhouser, Ellen; Levine, Deborah A.; Estrada, Carlos A.; Allison, Jeroan J.; Williams, O. Dale; Kiefe, Catarina I.
2011-01-01
Introduction Physician use of the Internet for practice improvement has increased dramatically over the last decade, but research shows that many physicians choose not to participate. The current study investigated the association of specific physician characteristics with enrollment rates and intensity of participation in a specific Internet-delivered educational intervention to improve care to post–myocardial infarction (MI) patients. Methods Primary-care physicians were recruited for participation in a randomized controlled trial designed to compare effectiveness of an intervention Web site versus a control Web site in the management of adult chronic disease. Physicians were informed that the intervention focused on ambulatory post–myocardial infarction patients. Physician characteristics were obtained from a commercial vendor with data merged from the American Medical Association and Alabama State Licensing Board. Enrollment and Web use were tracked electronically. Results Out of a sample of 1337 eligible physicians, 177 (13.2%) enrolled in the study. Enrollment was higher for physicians with more post-MI patients (≥20 vs < 20 patients, 15.3% vs 9.3%, P = .002) and for those practicing in rural compared to urban areas (16.3% vs 12.1%, P = .046). Intensity of use of the Internet courses after initial enrollment was not predicted by physician characteristics in the current sample. Discussion Physicians with more post-MI patients and rural practice location were found to predict enrollment in an Internet-delivered continuing medical education (CME) intervention designed to improve care for post-MI patients. These factors predicted program interest but not program use. More research is needed to replicate these findings to investigate variables that determine physician engagement in Internet CME. PMID:19998447
Bodell, Lindsay P; Racine, Sarah E; Wildes, Jennifer E
2016-08-01
Research in individuals with bulimia nervosa has highlighted the clinical significance of weight suppression (WS), defined as the difference between one's highest and current weight. More recently, studies have suggested that WS also may play a role in symptom maintenance and weight gain during treatment in anorexia nervosa (AN) and that the influence of WS on AN outcomes may depend on an individual's body mass index (BMI). However, no study has investigated whether WS or the interaction between WS and BMI is associated with the longer-term course of eating pathology following treatment discharge in patients with AN. The current study examined a sample of females with AN (N = 180) who completed interviews and self-report questionnaires at discharge from intensive treatment and at 3, 6, and 12-months after discharge. Latent growth curve models tested whether WS, BMI, or the WS by BMI interaction significantly predicted the trajectory of eating disorder symptoms (i.e., Eating Disorder Examination global score, BMI, frequency of loss of control eating, frequency of purging) over the year following discharge. WS at discharge predicted change in BMI, and the interaction between WS and BMI predicted growth in eating disorder severity and purging frequency over time. Neither WS nor its interaction with BMI predicted growth in loss of control eating frequency. Results provide further support for the clinical significance of WS in AN symptom maintenance, but suggest that the influence of WS likely depends on an individual's BMI as well as the outcome being measured. © 2016 Wiley Periodicals, Inc.(Int J Eat Disord 2016; 49:753-763). © 2016 Wiley Periodicals, Inc.
Hodson, Gordon; Earle, Megan
2018-01-01
Lapses from vegetarian and vegan (i.e., veg*n) food choices to meat consumption are very common, suggesting that sustaining veg*nism is challenging. But little is known about why people return to eating animals after initially deciding to avoid meat consumption. Several potential explanatory factors include personal inconvenience, meat cravings, awkwardness in social settings, or health/nutrition concerns. Here we test the degree to which political ideology predicts lapsing to meat consumption. Past research demonstrates that political ideology predicts present levels of meat consumption, whereby those higher in right-wing ideologies eat more animals, even after controlling for their hedonistic liking of meat (e.g., Dhont & Hodson, 2014). To what extent might political ideology predict whether one has lapsed from veg*n foods back to meat consumption? In a largely representative US community sample (N = 1313) of current and former veg*ns, those higher (vs. lower) in conservatism exhibited significantly greater odds of being a former than current veg*n, even after controlling for age, education, and gender. This ideology-lapsing relation was mediated (i.e., explained) by those higher (vs. lower) in conservatism: (a) adopting a veg*n diet for reasons less centered in justice concerns (animal rights, environment, feeding the poor); and (b) feeling socially unsupported in their endeavor. In contrast, factors such as differential meat craving or lifestyle inconvenience played little mediational role. These findings demonstrate that ideology and justice concerns are particularly relevant to understanding resilience in maintaining veg*n food choices. Implications for understanding why people eat meat, and how to develop intervention strategies, are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Understanding the link between exposure to violence and aggression in justice-involved adolescents.
Wall Myers, Tina D; Salcedo, Abigail; Frick, Paul J; Ray, James V; Thornton, Laura C; Steinberg, Laurence; Cauffman, Elizabeth
2018-05-01
The current study advanced research on the link between community violence exposure and aggression by comparing the effects of violence exposure on different functions of aggression and by testing four potential (i.e., callous-unemotional traits, consideration of others, impulse control, and anxiety) mediators of this relationship. Analyses were conducted in an ethnically/racially diverse sample of 1,216 male first-time juvenile offenders (M = 15.30 years, SD = 1.29). Our results indicated that violence exposure had direct effects on both proactive and reactive aggression 18 months later. The predictive link of violence exposure to proactive aggression was no longer significant after controlling for proactive aggression at baseline and the overlap with reactive aggression. In contrast, violence exposure predicted later reactive aggression even after controlling for baseline reactive aggression and the overlap with proactive aggression. Mediation analyses of the association between violence exposure and reactive aggression indicated indirect effects through all potential mediators, but the strongest indirect effect was through impulse control. The findings help to advance knowledge on the consequences of community violence exposure on justice-involved youth.
Viaene, Ann-Sofie; Van Daele, Tom; Bleys, Dries; Faust, Kelly; Massa, Guy G
2017-03-01
This study sets out to extend current knowledge of parenting stress and fear of hypoglycemia (FoH) in parents of children with type 1 diabetes mellitus (T1DM). We examined if the relationship between parental and children's FoH and metabolic control, as reflected by HbA1c, is mediated by parenting stress. A total of 63 parents and children with T1DM were recruited during their routine physician's appointment. Parents completed questionnaires on parenting stress and FoH. Children eight years and older also completed a questionnaire on FoH. HbA1c values were obtained from all children. Mediation analysis revealed an indirect association between parental FoH and HbA1c values through parenting stress (Sobel's z = 2.42, p = .02), but no indirect association between children's FoH and HbA1c. We concluded that parental FOH has an indirect association with the child's metabolic control that is mediated by parenting stress. More simply, fear of hypoglycemia predicts parent stress, which in turn, predicts metabolic control.
The role of multidimensional attentional abilities in academic skills of children with ADHD.
Preston, Andrew S; Heaton, Shelley C; McCann, Sarah J; Watson, William D; Selke, Gregg
2009-01-01
Despite reports of academic difficulties in children with attention-deficit/hyperactivity disorder (ADHD), little is known about the relationship between performance on tests of academic achievement and measures of attention. The current study assessed intellectual ability, parent-reported inattention, academic achievement, and attention in 45 children (ages 7-15) diagnosed with ADHD. Hierarchical regressions were performed with selective, sustained, and attentional control/switching domains of the Test of Everyday Attention for Children as predictor variables and with performance on the Wechsler Individual Achievement Test-Second Edition as dependent variables. It was hypothesized that sustained attention and attentional control/switching would predict performance on achievement tests. Results demonstrate that attentional control/ switching accounted for a significant amount of variance in all academic areas (reading, math, and spelling), even after accounting for verbal IQ and parent-reported inattention. Sustained attention predicted variance only in math, whereas selective attention did not account for variance in any achievement domain. Therefore, attentional control/switching, which involves components of executive functions, plays an important role in academic performance.
Social Stress at Work and Change in Women’s Body Weight
KOTTWITZ, Maria U.; GREBNER, Simone; SEMMER, Norbert K.; TSCHAN, Franziska; ELFERING, Achim
2014-01-01
Social stressors at work (such as conflict or animosities) imply disrespect or a lack of appreciation and thus a threat to self. Stress induced by this offence to self might result, over time, in a change in body weight. The current study investigated the impact of changing working conditions —specifically social stressors, demands, and control at work— on women’s change in weighted Body-Mass-Index over the course of a year. Fifty-seven women in their first year of occupational life participated at baseline and thirty-eight at follow-up. Working conditions were assessed by self-reports and observer-ratings. Body-Mass-Index at baseline and change in Body-Mass-Index one year later were regressed on self-reported social stressors as well as observed work stressors, observed job control, and their interaction. Seen individually, social stressors at work predicted Body-Mass-Index. Moreover, increase in social stressors and decrease of job control during the first year of occupational life predicted increase in Body-Mass-Index. Work redesign that reduces social stressors at work and increases job control could help to prevent obesity epidemic. PMID:24429516
Modeling, simulation and control of pulsed DE-GMA welding process for joining of aluminum to steel
NASA Astrophysics Data System (ADS)
Zhang, Gang; Shi, Yu; Li, Jie; Huang, Jiankang; Fan, Ding
2014-09-01
Joining of aluminum to steel has attracted significant attention from the welding research community, automotive and rail transportation industries. Many current welding methods have been developed and applied, however, they can not precisely control the heat input to work-piece, they are high costs, low efficiency and consist lots of complex welding devices, and the generated intermetallic compound layer in weld bead interface is thicker. A novel pulsed double electrode gas metal arc welding(Pulsed DE-GMAW) method is developed. To achieve a stable welding process for joining of aluminum to steel, a mathematical model of coupled arc is established, and a new control scheme that uses the average feedback arc voltage of main loop to adjust the wire feed speed to control coupled arc length is proposed and developed. Then, the impulse control simulation of coupled arc length, wire feed speed and wire extension is conducted to demonstrate the mathematical model and predict the stability of welding process by changing the distance of contact tip to work-piece(CTWD). To prove the proposed PSO based PID control scheme's feasibility, the rapid prototyping experimental system is setup and the bead-on-plate control experiments are conducted to join aluminum to steel. The impulse control simulation shows that the established model can accurately represent the variation of coupled arc length, wire feed speed and the average main arc voltage when the welding process is disturbed, and the developed controller has a faster response and adjustment, only runs about 0.1 s. The captured electric signals show the main arc voltage gradually closes to the supposed arc voltage by adjusting the wire feed speed in 0.8 s. The obtained typical current waveform demonstrates that the main current can be reduced by controlling the bypass current under maintaining a relative large total current. The control experiment proves the accuracy of proposed model and feasibility of new control scheme further. The beautiful and smooth weld beads are also obtained by this method. Pulsed DE-GMAW can thus be considered as an alternative method for low cost, high efficiency joining of aluminum to steel.
Inconsistent self-report of delinquency by adolescents and young adults with ADHD.
Sibley, Margaret H; Pelham, William E; Molina, Brooke S G; Waschbusch, Daniel A; Gnagy, Elizabeth M; Babinski, Dara E; Biswas, Aparajita
2010-07-01
The purpose of the current study was to test the ability of adolescents and young adults with childhood ADHD to reliably self-report delinquency history. Data were examined from the Pittsburgh ADHD Longitudinal Study (PALS), a follow-up study of children diagnosed with ADHD between 1987 and 1996. Self-report of lifetime delinquency history was compared to concurrent parent-report and to self-report 1 year later. Participants included 313 male probands and 209 demographically similar comparison individuals without ADHD. Results indicated that adolescents and young adults with childhood ADHD were more likely than comparison participants to fail to report delinquent acts reported by a parent and to recant acts they endorsed 1 year earlier. This trend was most apparent for acts of mild to moderate severity. After controlling for several covariates, current ADHD symptom severity and parent-report of the participant's tendency to lie predicted reporting fewer delinquent acts than one's parent. Current ADHD symptom severity also predicted more recanting of previously endorsed acts. Based on these findings, several recommendations are made for the assessment of delinquency history in adolescents and young adults with childhood ADHD.
Lin, Haiqun; Williams, Kyle A.; Katsovich, Liliya; Findley, Diane B.; Grantz, Heidi; Lombroso, Paul J.; King, Robert A.; Bessen, Debra E.; Johnson, Dwight; Kaplan, Edward L.; Landeros-Weisenberger, Angeli; Zhang, Heping; Leckman, James F.
2009-01-01
Background: One goal of this prospective longitudinal study was to identify new group A beta hemolytic streptococcal (GABHS) infections in children and adolescents with Tourette syndrome (TS) and/or obsessive-compulsive disorder (OCD) compared to healthy control subjects. We then examined the power of GABHS infections and measures of psychosocial stress to predict future tic, obsessive-compulsive (OC), and depressive symptom severity. Methods: Consecutive ratings of tic, OC and depressive symptom severity were obtained for 45 cases and 41 matched control subjects over a two-year period. Clinical raters were blinded to the results of laboratory tests. Laboratory personnel were blinded to case or control status and clinical ratings. Structural equation modeling for unbalanced repeated measures was used to assess the sequence of new GABHS infections and psychosocial stress and their impact on future symptom severity. Results: Increases in tic and OC symptom severity did not occur after every new GABHS infection. However, the structural equation model found that these newly diagnosed infections were predictive of modest increases in future tic and OC symptom severity, but did not predict future depressive symptom severity. In addition, the inclusion of new infections in the model greatly enhanced, by a factor of three, the power of psychosocial stress in predicting future tic and OC symptom severity. Conclusions: Our data suggest that a minority of children with TS and early-onset OCD were sensitive to antecedent GABHS infections. These infections also enhanced the predictive power of current psychosocial stress on future tic and OC symptom severity. PMID:19833320
2011-01-01
Background In predicted severe acute pancreatitis, infections have a negative effect on clinical outcome. A start of enteral nutrition (EN) within 24 hours of onset may reduce the number of infections as compared to the current practice of starting an oral diet and EN if necessary at 3-4 days after admission. Methods/Design The PYTHON trial is a randomised controlled, parallel-group, superiority multicenter trial. Patients with predicted severe acute pancreatitis (Imrie-score ≥ 3 or APACHE-II score ≥ 8 or CRP > 150 mg/L) will be randomised to EN within 24 hours or an oral diet and EN if necessary, after 72 hours after hospital admission. During a 3-year period, 208 patients will be enrolled from 20 hospitals of the Dutch Pancreatitis Study Group. The primary endpoint is a composite of mortality or infections (bacteraemia, infected pancreatic or peripancreatic necrosis, pneumonia) during hospital stay or within 6 months following randomisation. Secondary endpoints include other major morbidity (e.g. new onset organ failure, need for intervention), intolerance of enteral feeding and total costs from a societal perspective. Discussion The PYTHON trial is designed to show that a very early (< 24 h) start of EN reduces the combined endpoint of mortality or infections as compared to the current practice of an oral diet and EN if necessary at around 72 hours after admission for predicted severe acute pancreatitis. Trial Registration ISRCTN: ISRCTN18170985 PMID:21392395
Sodium and potassium conductance changes during a membrane action potential.
Bezanilla, F; Rojas, E; Taylor, R E
1970-12-01
1. A method for turning a membrane potential control system on and off in less than 10 musec is described. This method was used to record membrane currents in perfused giant axons from Dosidicus gigas and Loligo forbesi after turning on the voltage clamp system at various times during the course of a membrane action potential.2. The membrane current measured just after the capacity charging transient was found to have an almost linear relation to the controlled membrane potential.3. The total membrane conductance taken from these current-voltage curves was found to have a time course during the action potential similar to that found by Cole & Curtis (1939).4. The instantaneous current voltage curves were linear enough to make it possible to obtain a good estimate of the individual sodium and potassium channel conductances, either algebraically or by clamping to the sodium, or potassium, reversal potentials. Good general agreement was obtained with the predictions of the Hodgkin-Huxley equations.5. We consider these results to constitute the first direct experimental demonstration of the conductance changes to sodium and potassium during the course of an action potential.
Actinide Solubility and Speciation in the WIPP [PowerPoint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, Donald T.
2015-11-02
The presentation begins with the role and need for nuclear repositories (overall concept, international updates (Sweden, Finland, France, China), US approach and current status), then moves on to the WIPP TRU repository concept (design, current status--safety incidents of February 5 and 14, 2014, path forward), and finally considers the WIPP safety case: dissolved actinide concentrations (overall approach, oxidation state distribution and redox control, solubility of actinides, colloidal contribution and microbial effects). The following conclusions are set forth: (1) International programs are moving forward, but at a very slow and somewhat sporadic pace. (2) In the United States, the Salt repositorymore » concept, from the perspective of the long-term safety case, remains a viable option for nuclear waste management despite the current operational issues/concerns. (3) Current model/PA prediction (WIPP example) are built on redundant conservatisms. These conservatisms are being addressed in the ongoing and future research to fill existing data gaps--redox control of plutonium by Fe(0, II), thorium (analog) solubility studies in simulated brine, contribution of intrinsic and biocolloids to the mobile concentration, and clarification of microbial ecology and effects.« less
Visscher, H; Ross, C J D; Rassekh, S R; Sandor, G S S; Caron, H N; van Dalen, E C; Kremer, L C; van der Pal, H J; Rogers, P C; Rieder, M J; Carleton, B C; Hayden, M R
2013-08-01
The use of anthracyclines as effective antineoplastic drugs is limited by the occurrence of cardiotoxicity. Multiple genetic variants predictive of anthracycline-induced cardiotoxicity (ACT) in children were recently identified. The current study was aimed to assess replication of these findings in an independent cohort of children. . Twenty-three variants were tested for association with ACT in an independent cohort of 218 patients. Predictive models including genetic and clinical risk factors were constructed in the original cohort and assessed in the current replication cohort. . We confirmed the association of rs17863783 in UGT1A6 and ACT in the replication cohort (P = 0.0062, odds ratio (OR) 7.98). Additional evidence for association of rs7853758 (P = 0.058, OR 0.46) and rs885004 (P = 0.058, OR 0.42) in SLC28A3 was found (combined P = 1.6 × 10(-5) and P = 3.0 × 10(-5), respectively). A previously constructed prediction model did not significantly improve risk prediction in the replication cohort over clinical factors alone. However, an improved prediction model constructed using replicated genetic variants as well as clinical factors discriminated significantly better between cases and controls than clinical factors alone in both original (AUC 0.77 vs. 0.68, P = 0.0031) and replication cohort (AUC 0.77 vs. 0.69, P = 0.060). . We validated genetic variants in two genes predictive of ACT in an independent cohort. A prediction model combining replicated genetic variants as well as clinical risk factors might be able to identify high- and low-risk patients who could benefit from alternative treatment options. Copyright © 2013 Wiley Periodicals, Inc.
Effort, success, and nonuse determine arm choice
Xiao, Yupeng; Kim, Sujin; Yoshioka, Toshinori; Gordon, James; Osu, Rieko
2015-01-01
How do humans choose one arm or the other to reach single targets in front of the body? Current theories of reward-driven decisionmaking predict that choice results from a comparison of “action values,” which are the expected rewards for possible actions in a given state. In addition, current theories of motor control predict that in planning arm movements, humans minimize an expected motor cost that balances motor effort and endpoint accuracy. Here, we test the hypotheses that arm choice is determined by comparison of action values comprising expected effort and expected task success for each arm, as well as a handedness bias. Right-handed subjects, in either a large or small target condition, were first instructed to use each hand in turn to shoot through an array of targets and then to choose either hand to shoot through the same targets. Effort was estimated via inverse kinematics and dynamics. A mixed-effects logistic-regression analysis showed that, as predicted, both expected effort and expected success predicted choice, as did arm use in the preceding trial. Finally, individual parameter estimation showed that the handedness bias correlated with mean difference between right- and left-arm success, leading to overall lower use of the left arm. We discuss our results in light of arm nonuse in individuals' poststroke. PMID:25948869
Predicting active school travel: The role of planned behavior and habit strength
2012-01-01
Background Despite strong support for predictive validity of the theory of planned behavior (TPB) substantial variance in both intention and behavior is unaccounted for by the model’s predictors. The present study tested the extent to which habit strength augments the predictive validity of the TPB in relation to a currently under-researched behavior that has important health implications, namely children’s active school travel. Method Participants (N = 126 children aged 8–9 years; 59 % males) were sampled from five elementary schools in the west of Scotland and completed questionnaire measures of all TPB constructs in relation to walking to school and both walking and car/bus use habit. Over the subsequent week, commuting steps on school journeys were measured objectively using an accelerometer. Hierarchical multiple regressions were used to test the predictive utility of the TPB and habit strength in relation to both intention and subsequent behavior. Results The TPB accounted for 41 % and 10 % of the variance in intention and objectively measured behavior, respectively. Together, walking habit and car/bus habit significantly increased the proportion of explained variance in both intention and behavior by 6 %. Perceived behavioral control and both walking and car/bus habit independently predicted intention. Intention and car/bus habit independently predicted behavior. Conclusions The TPB significantly predicts children’s active school travel. However, habit strength augments the predictive validity of the model. The results indicate that school travel is controlled by both intentional and habitual processes. In practice, interventions could usefully decrease the habitual use of motorized transport for travel to school and increase children’s intention to walk (via increases in perceived behavioral control and walking habit, and decreases in car/bus habit). Further research is needed to identify effective strategies for changing these antecedents of children’s active school travel. PMID:22647194
Revalidation of the Huygens Descent Control Sub-System
NASA Technical Reports Server (NTRS)
2005-01-01
The Huygens probe, part of the Cassini mission to Saturn, is designed to investigate the atmosphere of Titan, Saturn's largest moon. The passage of the probe through the atmosphere is controlled by the Descent Control Sub-System (DCSS), which consists of three parachutes and associated mechanisms. The Cassini / Huygens mission was launched in October 1997 and was designed during the early 1990's. During the time since the design and launch, analysis capabilities have improved significantly, knowledge of the Titan environment has improved and the baseline mission has been modified. Consequently, a study was performed to revalidate the DCSS design against the current predictions.
Computational Methods for Stability and Control (COMSAC): The Time Has Come
NASA Technical Reports Server (NTRS)
Hall, Robert M.; Biedron, Robert T.; Ball, Douglas N.; Bogue, David R.; Chung, James; Green, Bradford E.; Grismer, Matthew J.; Brooks, Gregory P.; Chambers, Joseph R.
2005-01-01
Powerful computational fluid dynamics (CFD) tools have emerged that appear to offer significant benefits as an adjunct to the experimental methods used by the stability and control community to predict aerodynamic parameters. The decreasing costs for and increasing availability of computing hours are making these applications increasingly viable as time goes on and the cost of computing continues to drop. This paper summarizes the efforts of four organizations to utilize high-end computational fluid dynamics (CFD) tools to address the challenges of the stability and control arena. General motivation and the backdrop for these efforts will be summarized as well as examples of current applications.
Predicting game-attending behavior in amateur athletes: the moderating role of intention stability.
Lu, Wan Chen; Cheng, Chih-Fu; Chen, Lung Hung
2013-10-01
The theory of planned behavior is a well-established theory in predicting human behavior. However, there is evidence of an inconsistent relationship between intention and behavior. Therefore, the purpose of the current study is to further investigate the gap between intention and behavior. The study proposes intention stability as the moderator. Participants (N = 154, M age = 23 yr., SD = 6.7) were recruited from Internet volleyball forums and local volleyball courts in Taiwan. Multiple hierarchical regression was used to analyze the data. The results indicated that perceived behavioral control significantly predicted game-attending behavior through intention. However, attitude and subjective norms did not significantly predict behavioral intention. In addition, intention stability moderated the relationship between intention and behavior and indicated the relationship between intention and behavior was strong when intention stability was high. On the contrary, when intention stability was low, the relationship between intention and behavior was weak. Implications and applications are discussed.
Computation of dark frames in digital imagers
NASA Astrophysics Data System (ADS)
Widenhorn, Ralf; Rest, Armin; Blouke, Morley M.; Berry, Richard L.; Bodegom, Erik
2007-02-01
Dark current is caused by electrons that are thermally exited into the conduction band. These electrons are collected by the well of the CCD and add a false signal to the chip. We will present an algorithm that automatically corrects for dark current. It uses a calibration protocol to characterize the image sensor for different temperatures. For a given exposure time, the dark current of every pixel is characteristic of a specific temperature. The dark current of every pixel can therefore be used as an indicator of the temperature. Hot pixels have the highest signal-to-noise ratio and are the best temperature sensors. We use the dark current of a several hundred hot pixels to sense the chip temperature and predict the dark current of all pixels on the chip. Dark current computation is not a new concept, but our approach is unique. Some advantages of our method include applicability for poorly temperature-controlled camera systems and the possibility of ex post facto dark current correction.
Choi, In-Young; Lee, Phil; Peng, Huiling; Kaufman, Christina L.; Frey, Scott H.
2017-01-01
Deafferentation is accompanied by large-scale functional reorganization of maps in the primary sensory and motor areas of the hemisphere contralateral to injury. Animal models of deafferentation suggest a variety of cellular-level changes including depression of neuronal metabolism and even neuronal death. Whether similar neuronal changes contribute to patterns of reorganization within the contralateral sensorimotor cortex of chronic human amputees is uncertain. We used functional MRI-guided proton magnetic resonance spectroscopy to test the hypothesis that unilateral deafferentation is associated with lower levels of N-acetylaspartate (NAA, a putative marker of neuronal integrity) in the sensorimotor hand territory located contralateral to the missing hand in chronic amputees (n = 19) compared with the analogous hand territory of age- and sex-matched healthy controls (n = 28). We also tested whether former amputees [i.e., recipients of replanted (n = 3) or transplanted (n = 2) hands] exhibit NAA levels that are indistinguishable from controls, possible evidence for reversal of the effects of deafferentation. As predicted, relative to controls, current amputees exhibited lower levels of NAA that were negatively and significantly correlated with the time after amputation. Contrary to our prediction, NAA levels in both replanted and transplanted patients fell within the range of the current amputees. We suggest that lower levels of NAA in current amputees reflects altered neuronal integrity consequent to chronic deafferentation. Thus local changes in NAA levels may provide a means of assessing neuroplastic changes in deafferented cortex. Results from former amputees suggest that these changes may not be readily reversible through reafferentation. NEW & NOTEWORTHY This study is the first to use functional magnetic resonance-guided magnetic resonance spectroscopy to examine neurochemical mechanisms underlying functional reorganization in the primary somatosensory and motor cortices consequent to upper extremity amputation and its potential reversal through hand replantation or transplantation. We provide evidence for selective alteration of cortical neuronal integrity associated with amputation-related deafferentation that may not be reversible. PMID:28179478
A new controller for battery-powered electric vehicles
NASA Technical Reports Server (NTRS)
Belsterling, C. A.; Stone, J.
1980-01-01
This paper describes the development, under a NASA/DOE contract, of a new concept for efficient and reliable control of battery-powered vehicles. It avoids the detrimental effects of pulsed-power controllers like the SCR 'chopper' by using rotating machines to meter continuous currents to the traction motor. The concept is validated in a proof-of-principle demonstration system and a complete vehicle is simulated on an analog computer. Test results show exceptional promise for a full-scale system. Optimum control strategies to minimize controller weight are developed by means of the simulated vehicle. The design for an Engineering Model is then prepared in the form of a practical, compact two-bearing package with forced air cooling. Predicted performance is outstanding, with controller efficiency of over 90% at high speed.
A temporary deficiency in self-control: Can heightened motivation overcome this effect?
Kelly, Claire L; Crawford, Trevor J; Gowen, Emma; Richardson, Kelly; Sünram-Lea, Sandra I
2017-05-01
Self-control is important for everyday life and involves behavioral regulation. Self-control requires effort, and when completing two successive self-control tasks, there is typically a temporary drop in performance in the second task. High self-reported motivation and being made self-aware somewhat counteract this effect-with the result that performance in the second task is enhanced. The current study explored the relationship between self-awareness and motivation on sequential self-control task performance. Before employing self-control in an antisaccade task, participants initially applied self-control in an incongruent Stroop task or completed a control task. After the Stroop task, participants unscrambled sentences that primed self-awareness (each started with the word "I") or unscrambled neutral sentences. Motivation was measured after the antisaccade task. Findings revealed that, after exerting self-control in the incongruent Stroop task, motivation predicted erroneous responses in the antisaccade task for those that unscrambled neutral sentences, and high motivation led to fewer errors. Those primed with self-awareness were somewhat more motivated overall, but motivation did not significantly predict antisaccade performance. Supporting the resource allocation account, if one was motivated-intrinsically or via the manipulation of self-awareness-resources were allocated to both tasks leading to the successful completion of two sequential self-control tasks. © 2017 The Authors. Psychophysiology published by Wiley Periodicals, Inc. on behalf of Society for Psychophysiological Research.
Palma, Jesse; Grossberg, Stephen; Versace, Massimiliano
2012-01-01
Many cortical networks contain recurrent architectures that transform input patterns before storing them in short-term memory (STM). Theorems in the 1970's showed how feedback signal functions in rate-based recurrent on-center off-surround networks control this process. A sigmoid signal function induces a quenching threshold below which inputs are suppressed as noise and above which they are contrast-enhanced before pattern storage. This article describes how changes in feedback signaling, neuromodulation, and recurrent connectivity may alter pattern processing in recurrent on-center off-surround networks of spiking neurons. In spiking neurons, fast, medium, and slow after-hyperpolarization (AHP) currents control sigmoid signal threshold and slope. Modulation of AHP currents by acetylcholine (ACh) can change sigmoid shape and, with it, network dynamics. For example, decreasing signal function threshold and increasing slope can lengthen the persistence of a partially contrast-enhanced pattern, increase the number of active cells stored in STM, or, if connectivity is distance-dependent, cause cell activities to cluster. These results clarify how cholinergic modulation by the basal forebrain may alter the vigilance of category learning circuits, and thus their sensitivity to predictive mismatches, thereby controlling whether learned categories code concrete or abstract features, as predicted by Adaptive Resonance Theory. The analysis includes global, distance-dependent, and interneuron-mediated circuits. With an appropriate degree of recurrent excitation and inhibition, spiking networks maintain a partially contrast-enhanced pattern for 800 ms or longer after stimuli offset, then resolve to no stored pattern, or to winner-take-all (WTA) stored patterns with one or multiple winners. Strengthening inhibition prolongs a partially contrast-enhanced pattern by slowing the transition to stability, while strengthening excitation causes more winners when the network stabilizes. PMID:22754524
Sasaki, Joni Y; Kim, Heejung S
2011-08-01
Religion helps people maintain a sense of control, particularly secondary control-acceptance of and adjustment to difficult situations--and contributes to strengthening social relationships in a religious community. However, little is known about how culture may influence these effects. The current research examined the interaction of culture and religion on secondary control and social affiliation, comparing people from individualistic cultures (e.g., European Americans), who tend to be more motivated toward personal agency, and people from collectivistic cultures (e.g., East Asians), who tend to be more motivated to maintain social relationships. In Study 1, an analysis of online church mission statements showed that U.S. websites contained more themes of secondary control than did Korean websites, whereas Korean websites contained more themes of social affiliation than did U.S. websites. Study 2 showed that experimental priming of religion led to acts of secondary control for European Americans but not Asian Americans. Using daily diary methodology, Study 3 showed that religious coping predicted more secondary control for European Americans but not Koreans, and religious coping predicted more social affiliation for Koreans and European Americans. These findings suggest the importance of understanding sociocultural moderators for the effects of religion.
Chemical vapor deposition modeling: An assessment of current status
NASA Technical Reports Server (NTRS)
Gokoglu, Suleyman A.
1991-01-01
The shortcomings of earlier approaches that assumed thermochemical equilibrium and used chemical vapor deposition (CVD) phase diagrams are pointed out. Significant advancements in predictive capabilities due to recent computational developments, especially those for deposition rates controlled by gas phase mass transport, are demonstrated. The importance of using the proper boundary conditions is stressed, and the availability and reliability of gas phase and surface chemical kinetic information are emphasized as the most limiting factors. Future directions for CVD are proposed on the basis of current needs for efficient and effective progress in CVD process design and optimization.
Oliveira, Leticia; Ladouceur, Cecile D; Phillips, Mary L; Brammer, Michael; Mourao-Miranda, Janaina
2013-01-01
A considerable number of previous studies have shown abnormalities in the processing of emotional faces in major depression. Fewer studies, however, have focused specifically on abnormal processing of neutral faces despite evidence that depressed patients are slow and less accurate at recognizing neutral expressions in comparison with healthy controls. The current study aimed to investigate whether this misclassification described behaviourally for neutral faces also occurred when classifying patterns of brain activation to neutral faces for these patients. TWO INDEPENDENT DEPRESSED SAMPLES: (1) Nineteen medication-free patients with depression and 19 healthy volunteers and (2) Eighteen depressed individuals and 18 age and gender-ratio-matched healthy volunteers viewed emotional faces (sad/neutral; happy/neutral) during an fMRI experiment. We used a new pattern recognition framework: first, we trained the classifier to discriminate between two brain states (e.g. viewing happy faces vs. viewing neutral faces) using data only from healthy controls (HC). Second, we tested the classifier using patterns of brain activation of a patient and a healthy control for the same stimuli. Finally, we tested if the classifier's predictions (predictive probabilities) for emotional and neutral face classification were different for healthy controls and depressed patients. Predictive probabilities to patterns of brain activation to neutral faces in both groups of patients were significantly lower in comparison to the healthy controls. This difference was specific to neutral faces. There were no significant differences in predictive probabilities to patterns of brain activation to sad faces (sample 1) and happy faces (samples 2) between depressed patients and healthy controls. Our results suggest that the pattern of brain activation to neutral faces in depressed patients is not consistent with the pattern observed in healthy controls subject to the same stimuli. This difference in brain activation might underlie the behavioural misinterpretation of the neutral faces content by the depressed patients.
Social-cognitive antecedents of hand washing: Action control bridges the planning-behaviour gap.
Reyes Fernández, Benjamín; Knoll, Nina; Hamilton, Kyra; Schwarzer, Ralf
2016-08-01
To examine motivational and volitional factors for hand washing in young adults, using the Health Action Process Approach (HAPA) as a theoretical framework. In a longitudinal design with two measurement points, six weeks apart, university students (N = 440) completed paper-based questionnaires. Prior hand washing frequency, self-efficacy, outcome expectancies, intention and action planning were measured at baseline, and coping planning, action control and hand washing frequency were measured at follow-up. A theory-based structural equation model was specified. In line with the HAPA, the motivational factors of self-efficacy and outcome expectancies predicted intention, whereas the volitional factors of planning and action control mediated between intention and changes in hand washing frequency. Action control was confirmed as the most proximal factor on hand washing behaviour, thus representing a bridge of the planning-behaviour gap. Both motivational and volitional processes are important to consider in the improvement of hand hygiene practices. Moreover, the statistically significant effects for planning and action control illustrate the importance of these key self-regulatory factors in the prediction of hand hygiene. The current study highlights the importance of adopting models that account for motivational and volitional factors to better understand hand washing behaviour.
Evidence for a Heritable Brain Basis to Deviance-Promoting Deficits in Self-Control.
Yancey, James R; Venables, Noah C; Hicks, Brian M; Patrick, Christopher J
2013-01-01
Classic criminological theories emphasize the role of impaired self-control in behavioral deviancy. Reduced amplitude of the P300 brain response is reliably observed in individuals with antisocial and substance-related problems, suggesting it may serve as a neurophysiological indicator of deficiencies in self-control that confer liability to deviancy. The current study evaluated the role of self-control capacity - operationalized by scores on a scale measure of trait disinhibition - in mediating the relationship between P300 brain response and behavioral deviancy in a sample of adult twins ( N =419) assessed for symptoms of antisocial/addictive disorders and P300 brain response. As predicted, greater disorder symptoms and higher trait disinhibition scores each predicted smaller P300 amplitude, and trait disinhibition mediated observed relations between antisocial/addictive disorders and P300 response. Further, twin modeling analyses revealed that trait disinhibition scores and disorder symptoms reflected a common genetic liability, and this genetic liability largely accounted for the observed phenotypic relationship between antisocial-addictive problems and P300 brain response. These results provide further evidence that heritable weaknesses in self-control capacity confer liability to antisocial/addictive outcomes and that P300 brain response indexes this dispositional liability.
Walby, Fredrik A; Odegaard, Erik; Mehlum, Lars
2006-06-01
To investigate the differential impact of DSM-IV axis-I and axis-II disorders on completed suicide and to study if psychiatric comorbidity increases the risk of suicide in currently and previously hospitalized psychiatric patients. A nested case-control design based on case notes from 136 suicides and 166 matched controls. All cases and controls were rediagnosed using the SCID-CV for axis-I and the DSM-IV criteria for axis-II disorders and the inter-rater reliability was satisfactory. Raters were blind to the case and control status and the original hospital diagnoses. Depressive disorders and bipolar disorders were associated with an increased risk of suicide. No such effect was found for comorbidity between axis-I disorders and for comorbidity between axis-I and axis-II disorders. Psychiatric diagnoses, although made using a structured and criteria-based approach, was based on information recorded in case notes. Axis-II comorbidity could only be investigated at an aggregated level. Psychiatric comorbidity did not predict suicide in this sample. Mood disorders did, however, increase the risk significantly independent of history of previous suicide attempts. Both findings can inform identification and treatment of patients at high risk for completed suicide.
Rock, Kat S; Torr, Steve J; Lumbala, Crispin; Keeling, Matt J
2017-01-01
Two goals have been set for Gambian human African trypanosomiasis (HAT), the first is to achieve elimination as a public health problem in 90% of foci by 2020, and the second is to achieve zero transmission globally by 2030. It remains unclear if certain HAT hotspots could achieve elimination as a public health problem by 2020 and, of greater concern, it appears that current interventions to control HAT in these areas may not be sufficient to achieve zero transmission by 2030. A mathematical model of disease dynamics was used to assess the potential impact of changing the intervention strategy in two high-endemicity health zones of Kwilu province, Democratic Republic of Congo. Six key strategies and twelve variations were considered which covered a range of recruitment strategies for screening and vector control. It was found that effectiveness of HAT screening could be improved by increasing effort to recruit high-risk groups for screening. Furthermore, seven proposed strategies which included vector control were predicted to be sufficient to achieve an incidence of less than 1 reported case per 10,000 people by 2020 in the study region. All vector control strategies simulated reduced transmission enough to meet the 2030 goal, even if vector control was only moderately effective (60% tsetse population reduction). At this level of control the full elimination threshold was expected to be met within six years following the start of the change in strategy and over 6000 additional cases would be averted between 2017 and 2030 compared to current screening alone. It is recommended that a two-pronged strategy including both enhanced active screening and tsetse control is implemented in this region and in other persistent HAT foci to ensure the success of the control programme and meet the 2030 elimination goal for HAT.
Torr, Steve J.; Lumbala, Crispin; Keeling, Matt J.
2017-01-01
Two goals have been set for Gambian human African trypanosomiasis (HAT), the first is to achieve elimination as a public health problem in 90% of foci by 2020, and the second is to achieve zero transmission globally by 2030. It remains unclear if certain HAT hotspots could achieve elimination as a public health problem by 2020 and, of greater concern, it appears that current interventions to control HAT in these areas may not be sufficient to achieve zero transmission by 2030. A mathematical model of disease dynamics was used to assess the potential impact of changing the intervention strategy in two high-endemicity health zones of Kwilu province, Democratic Republic of Congo. Six key strategies and twelve variations were considered which covered a range of recruitment strategies for screening and vector control. It was found that effectiveness of HAT screening could be improved by increasing effort to recruit high-risk groups for screening. Furthermore, seven proposed strategies which included vector control were predicted to be sufficient to achieve an incidence of less than 1 reported case per 10,000 people by 2020 in the study region. All vector control strategies simulated reduced transmission enough to meet the 2030 goal, even if vector control was only moderately effective (60% tsetse population reduction). At this level of control the full elimination threshold was expected to be met within six years following the start of the change in strategy and over 6000 additional cases would be averted between 2017 and 2030 compared to current screening alone. It is recommended that a two-pronged strategy including both enhanced active screening and tsetse control is implemented in this region and in other persistent HAT foci to ensure the success of the control programme and meet the 2030 elimination goal for HAT. PMID:28056016
Anticipatory Pleasure Predicts Motivation for Reward in Major Depression
Sherdell, Lindsey; Waugh, Christian E.; Gotlib, Ian H.
2012-01-01
Anhedonia, the lack of interest or pleasure in response to hedonic stimuli or experiences, is a cardinal symptom of depression. This deficit in hedonic processing has been posited to influence depressed individuals’ motivation to engage in potentially rewarding experiences. Accumulating evidence indicates that hedonic processing is not a unitary construct but rather consists of an anticipatory and a consummatory phase. We examined how these components of hedonic processing influence motivation to obtain reward in participants diagnosed with major depression and in never-disordered controls. Thirty-eight currently depressed and 30 never-disordered control participants rated their liking of humorous and nonhumorous cartoons and then made a series of choices between viewing a cartoon from either group. Each choice was associated with a specified amount of effort participants would have to exert before viewing the chosen cartoon. Although depressed and control participants did not differ in their consummatory liking of the rewards, levels of reward liking predicted motivation to expend effort for the rewards only in the control participants; in the depressed participants, liking and motivation were dissociated. In the depressed group, levels of anticipatory anhedonia predicted motivation to exert effort for the rewards. These findings support the formulation that anhedonia is not a unitary construct and suggest that, for depressed individuals, deficits in motivation for reward are driven primarily by low anticipatory pleasure and not by decreased consummatory liking. PMID:21842963
Sibling composition, executive function, and children's thinking about mental diversity.
Kennedy, Katie; Lagattuta, Kristin Hansen; Sayfan, Liat
2015-04-01
Prior investigations of relations between sibling composition and theory of mind have focused almost exclusively on false belief understanding in children 6 years of age and younger. The current work expands previous research by examining whether sibling composition predicts 4- to 11-year-olds' (N=192) more advanced mental state reasoning on interpretive theory of mind tasks. Even when controlling for age and executive function, children with a greater number of older siblings or with more same-sex siblings demonstrated stronger knowledge in both their predictions and explanations that people with different past experiences can have diverse interpretations of ambiguous stimuli. These data provide some of the first documentation of sibling constellations that predict individual differences in theory of mind during middle childhood. Copyright © 2014 Elsevier Inc. All rights reserved.
Lemons, Christopher J.; Key, Alexandra P.F.; Fuchs, Douglas; Yoder, Paul J.; Fuchs, Lynn S.; Compton, Donald L.; Williams, Susan M.; Bouton, Bobette
2009-01-01
The purpose of this study was to determine if event-related potential (ERP) data collected during three reading-related tasks (Letter Sound Matching, Nonword Rhyming, and Nonword Reading) could be used to predict short-term reading growth on a curriculum-based measure of word identification fluency over 19 weeks in a sample of 29 first-grade children. Results indicate that ERP responses to the Letter Sound Matching task were predictive of reading change and remained so after controlling for two previously validated behavioral predictors of reading, Rapid Letter Naming and Segmenting. ERP data for the other tasks were not correlated with reading change. The potential for cognitive neuroscience to enhance current methods of indexing responsiveness in a response-to-intervention (RTI) model is discussed. PMID:20514353
Scaling impacts on environmental controls and spatial heterogeneity of soil organic carbon stocks
NASA Astrophysics Data System (ADS)
Mishra, U.; Riley, W. J.
2015-01-01
The spatial heterogeneity of land surfaces affects energy, moisture, and greenhouse gas exchanges with the atmosphere. However, representing heterogeneity of terrestrial hydrological and biogeochemical processes in earth system models (ESMs) remains a critical scientific challenge. We report the impact of spatial scaling on environmental controls, spatial structure, and statistical properties of soil organic carbon (SOC) stocks across the US state of Alaska. We used soil profile observations and environmental factors such as topography, climate, land cover types, and surficial geology to predict the SOC stocks at a 50 m spatial scale. These spatially heterogeneous estimates provide a dataset with reasonable fidelity to the observations at a sufficiently high resolution to examine the environmental controls on the spatial structure of SOC stocks. We upscaled both the predicted SOC stocks and environmental variables from finer to coarser spatial scales (s = 100, 200, 500 m, 1, 2, 5, 10 km) and generated various statistical properties of SOC stock estimates. We found different environmental factors to be statistically significant predictors at different spatial scales. Only elevation, temperature, potential evapotranspiration, and scrub land cover types were significant predictors at all scales. The strengths of control (the median value of geographically weighted regression coefficients) of these four environmental variables on SOC stocks decreased with increasing scale and were accurately represented using mathematical functions (R2 = 0.83-0.97). The spatial structure of SOC stocks across Alaska changed with spatial scale. Although the variance (sill) and unstructured variability (nugget) of the calculated variograms of SOC stocks decreased exponentially with scale, the correlation length (range) remained relatively constant across scale. The variance of predicted SOC stocks decreased with spatial scale over the range of 50 to ~ 500 m, and remained constant beyond this scale. The fitted exponential function accounted for 98% of variability in the variance of SOC stocks. We found moderately-accurate linear relationships between mean and higher-order moments of predicted SOC stocks (R2 ~ 0.55-0.63). Current ESMs operate at coarse spatial scales (50-100 km), and are therefore unable to represent environmental controllers and spatial heterogeneity of high-latitude SOC stocks consistent with observations. We conclude that improved understanding of the scaling behavior of environmental controls and statistical properties of SOC stocks can improve ESM land model benchmarking and perhaps allow representation of spatial heterogeneity of biogeochemistry at scales finer than those currently resolved by ESMs.
Scaling impacts on environmental controls and spatial heterogeneity of soil organic carbon stocks
NASA Astrophysics Data System (ADS)
Mishra, U.; Riley, W. J.
2015-07-01
The spatial heterogeneity of land surfaces affects energy, moisture, and greenhouse gas exchanges with the atmosphere. However, representing the heterogeneity of terrestrial hydrological and biogeochemical processes in Earth system models (ESMs) remains a critical scientific challenge. We report the impact of spatial scaling on environmental controls, spatial structure, and statistical properties of soil organic carbon (SOC) stocks across the US state of Alaska. We used soil profile observations and environmental factors such as topography, climate, land cover types, and surficial geology to predict the SOC stocks at a 50 m spatial scale. These spatially heterogeneous estimates provide a data set with reasonable fidelity to the observations at a sufficiently high resolution to examine the environmental controls on the spatial structure of SOC stocks. We upscaled both the predicted SOC stocks and environmental variables from finer to coarser spatial scales (s = 100, 200, and 500 m and 1, 2, 5, and 10 km) and generated various statistical properties of SOC stock estimates. We found different environmental factors to be statistically significant predictors at different spatial scales. Only elevation, temperature, potential evapotranspiration, and scrub land cover types were significant predictors at all scales. The strengths of control (the median value of geographically weighted regression coefficients) of these four environmental variables on SOC stocks decreased with increasing scale and were accurately represented using mathematical functions (R2 = 0.83-0.97). The spatial structure of SOC stocks across Alaska changed with spatial scale. Although the variance (sill) and unstructured variability (nugget) of the calculated variograms of SOC stocks decreased exponentially with scale, the correlation length (range) remained relatively constant across scale. The variance of predicted SOC stocks decreased with spatial scale over the range of 50 m to ~ 500 m, and remained constant beyond this scale. The fitted exponential function accounted for 98 % of variability in the variance of SOC stocks. We found moderately accurate linear relationships between mean and higher-order moments of predicted SOC stocks (R2 ∼ 0.55-0.63). Current ESMs operate at coarse spatial scales (50-100 km), and are therefore unable to represent environmental controllers and spatial heterogeneity of high-latitude SOC stocks consistent with observations. We conclude that improved understanding of the scaling behavior of environmental controls and statistical properties of SOC stocks could improve ESM land model benchmarking and perhaps allow representation of spatial heterogeneity of biogeochemistry at scales finer than those currently resolved by ESMs.
Scaling impacts on environmental controls and spatial heterogeneity of soil organic carbon stocks
Mishra, U.; Riley, W. J.
2015-07-02
The spatial heterogeneity of land surfaces affects energy, moisture, and greenhouse gas exchanges with the atmosphere. However, representing the heterogeneity of terrestrial hydrological and biogeochemical processes in Earth system models (ESMs) remains a critical scientific challenge. We report the impact of spatial scaling on environmental controls, spatial structure, and statistical properties of soil organic carbon (SOC) stocks across the US state of Alaska. We used soil profile observations and environmental factors such as topography, climate, land cover types, and surficial geology to predict the SOC stocks at a 50 m spatial scale. These spatially heterogeneous estimates provide a data setmore » with reasonable fidelity to the observations at a sufficiently high resolution to examine the environmental controls on the spatial structure of SOC stocks. We upscaled both the predicted SOC stocks and environmental variables from finer to coarser spatial scales ( s = 100, 200, and 500 m and 1, 2, 5, and 10 km) and generated various statistical properties of SOC stock estimates. We found different environmental factors to be statistically significant predictors at different spatial scales. Only elevation, temperature, potential evapotranspiration, and scrub land cover types were significant predictors at all scales. The strengths of control (the median value of geographically weighted regression coefficients) of these four environmental variables on SOC stocks decreased with increasing scale and were accurately represented using mathematical functions ( R 2 = 0.83–0.97). The spatial structure of SOC stocks across Alaska changed with spatial scale. Although the variance (sill) and unstructured variability (nugget) of the calculated variograms of SOC stocks decreased exponentially with scale, the correlation length (range) remained relatively constant across scale. The variance of predicted SOC stocks decreased with spatial scale over the range of 50 m to ~ 500 m, and remained constant beyond this scale. The fitted exponential function accounted for 98 % of variability in the variance of SOC stocks. We found moderately accurate linear relationships between mean and higher-order moments of predicted SOC stocks ( R 2 ∼ 0.55–0.63). Current ESMs operate at coarse spatial scales (50–100 km), and are therefore unable to represent environmental controllers and spatial heterogeneity of high-latitude SOC stocks consistent with observations. We conclude that improved understanding of the scaling behavior of environmental controls and statistical properties of SOC stocks could improve ESM land model benchmarking and perhaps allow representation of spatial heterogeneity of biogeochemistry at scales finer than those currently resolved by ESMs.« less
Scaling impacts on environmental controls and spatial heterogeneity of soil organic carbon stocks
Mishra, U.; Riley, W. J.
2015-01-01
The spatial heterogeneity of land surfaces affects energy, moisture, and greenhouse gas exchanges with the atmosphere. However, representing heterogeneity of terrestrial hydrological and biogeochemical processes in earth system models (ESMs) remains a critical scientific challenge. We report the impact of spatial scaling on environmental controls, spatial structure, and statistical properties of soil organic carbon (SOC) stocks across the US state of Alaska. We used soil profile observations and environmental factors such as topography, climate, land cover types, and surficial geology to predict the SOC stocks at a 50 m spatial scale. These spatially heterogeneous estimates provide a dataset with reasonablemore » fidelity to the observations at a sufficiently high resolution to examine the environmental controls on the spatial structure of SOC stocks. We upscaled both the predicted SOC stocks and environmental variables from finer to coarser spatial scales ( s = 100, 200, 500 m, 1, 2, 5, 10 km) and generated various statistical properties of SOC stock estimates. We found different environmental factors to be statistically significant predictors at different spatial scales. Only elevation, temperature, potential evapotranspiration, and scrub land cover types were significant predictors at all scales. The strengths of control (the median value of geographically weighted regression coefficients) of these four environmental variables on SOC stocks decreased with increasing scale and were accurately represented using mathematical functions ( R 2 = 0.83–0.97). The spatial structure of SOC stocks across Alaska changed with spatial scale. Although the variance (sill) and unstructured variability (nugget) of the calculated variograms of SOC stocks decreased exponentially with scale, the correlation length (range) remained relatively constant across scale. The variance of predicted SOC stocks decreased with spatial scale over the range of 50 to ~ 500 m, and remained constant beyond this scale. The fitted exponential function accounted for 98% of variability in the variance of SOC stocks. We found moderately-accurate linear relationships between mean and higher-order moments of predicted SOC stocks ( R 2 ~ 0.55–0.63). Current ESMs operate at coarse spatial scales (50–100 km), and are therefore unable to represent environmental controllers and spatial heterogeneity of high-latitude SOC stocks consistent with observations. We conclude that improved understanding of the scaling behavior of environmental controls and statistical properties of SOC stocks can improve ESM land model benchmarking and perhaps allow representation of spatial heterogeneity of biogeochemistry at scales finer than those currently resolved by ESMs.« less
2015-01-01
This paper proposes a new adaptive filter for wind generators that combines instantaneous reactive power compensation technology and current prediction controller, and therefore this system is characterized by low harmonic distortion, high power factor, and small DC-link voltage variations during load disturbances. The performance of the system was first simulated using MATLAB/Simulink, and the possibility of an adaptive digital low-pass filter eliminating current harmonics was confirmed in steady and transient states. Subsequently, a digital signal processor was used to implement an active power filter. The experimental results indicate, that for the rated operation of 2 kVA, the system has a total harmonic distortion of current less than 5.0% and a power factor of 1.0 on the utility side. Thus, the transient performance of the adaptive filter is superior to the traditional digital low-pass filter and is more economical because of its short computation time compared with other types of adaptive filters. PMID:26451391
Chen, Ming-Hung
2015-01-01
This paper proposes a new adaptive filter for wind generators that combines instantaneous reactive power compensation technology and current prediction controller, and therefore this system is characterized by low harmonic distortion, high power factor, and small DC-link voltage variations during load disturbances. The performance of the system was first simulated using MATLAB/Simulink, and the possibility of an adaptive digital low-pass filter eliminating current harmonics was confirmed in steady and transient states. Subsequently, a digital signal processor was used to implement an active power filter. The experimental results indicate, that for the rated operation of 2 kVA, the system has a total harmonic distortion of current less than 5.0% and a power factor of 1.0 on the utility side. Thus, the transient performance of the adaptive filter is superior to the traditional digital low-pass filter and is more economical because of its short computation time compared with other types of adaptive filters.
Passini, Elisa; Britton, Oliver J; Lu, Hua Rong; Rohrbacher, Jutta; Hermans, An N; Gallacher, David J; Greig, Robert J H; Bueno-Orovio, Alfonso; Rodriguez, Blanca
2017-01-01
Early prediction of cardiotoxicity is critical for drug development. Current animal models raise ethical and translational questions, and have limited accuracy in clinical risk prediction. Human-based computer models constitute a fast, cheap and potentially effective alternative to experimental assays, also facilitating translation to human. Key challenges include consideration of inter-cellular variability in drug responses and integration of computational and experimental methods in safety pharmacology. Our aim is to evaluate the ability of in silico drug trials in populations of human action potential (AP) models to predict clinical risk of drug-induced arrhythmias based on ion channel information, and to compare simulation results against experimental assays commonly used for drug testing. A control population of 1,213 human ventricular AP models in agreement with experimental recordings was constructed. In silico drug trials were performed for 62 reference compounds at multiple concentrations, using pore-block drug models (IC 50 /Hill coefficient). Drug-induced changes in AP biomarkers were quantified, together with occurrence of repolarization/depolarization abnormalities. Simulation results were used to predict clinical risk based on reports of Torsade de Pointes arrhythmias, and further evaluated in a subset of compounds through comparison with electrocardiograms from rabbit wedge preparations and Ca 2+ -transient recordings in human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs). Drug-induced changes in silico vary in magnitude depending on the specific ionic profile of each model in the population, thus allowing to identify cell sub-populations at higher risk of developing abnormal AP phenotypes. Models with low repolarization reserve (increased Ca 2+ /late Na + currents and Na + /Ca 2+ -exchanger, reduced Na + /K + -pump) are highly vulnerable to drug-induced repolarization abnormalities, while those with reduced inward current density (fast/late Na + and Ca 2+ currents) exhibit high susceptibility to depolarization abnormalities. Repolarization abnormalities in silico predict clinical risk for all compounds with 89% accuracy. Drug-induced changes in biomarkers are in overall agreement across different assays: in silico AP duration changes reflect the ones observed in rabbit QT interval and hiPS-CMs Ca 2+ -transient, and simulated upstroke velocity captures variations in rabbit QRS complex. Our results demonstrate that human in silico drug trials constitute a powerful methodology for prediction of clinical pro-arrhythmic cardiotoxicity, ready for integration in the existing drug safety assessment pipelines.
ERIC Educational Resources Information Center
Mauricio, Anne M.; Little, Michelle; Chassin, Laurie; Knight, George P.; Piquero, Alex R.; Losoya, Sandra H.; Vargas-Chanes, Delfino
2009-01-01
The current study modeled trajectories of substance use from ages 15 to 20 among 1,095 male serious juvenile offenders (M age = 16.54; 42% African-American, 34% Latino, 20% European-American, and 4% other ethnic/racial backgrounds) and prospectively predicted trajectories from risk and protective factors before and after controlling for time spent…
W. E. Dietrich; J. McKean; D. Bellugi; T. Perron
2007-01-01
Shallow landslides on steep slopes often mobilize as debris flows. The size of the landslide controls the initial size of the debris flows, defines the sediment discharge to the channel network, affects rates and scales of landform development, and influences the relative hazard potential. Currently the common practice in digital terrain-based models is to set the...
Electrical Spin-Injection into Silicon and Spin FET
2010-02-18
differential conductance ( NDC ), which saw the limelight with the realization of the Esaki tunneling diode, had been predicted and observed to occur in a...collector current of a tunneling emitter bipolar transistor, i.e., negative differential transconductance NDTC. Gate controlled NDC had been observed in...measurement and simulation results are relevant as well for other NDC geometries such as FET style tunnel transistors since they offer crucial
The predictive value of selected serum microRNAs for acute GVHD by TaqMan MicroRNA arrays.
Zhang, Chunyan; Bai, Nan; Huang, Wenrong; Zhang, Pengjun; Luo, Yuan; Men, Shasha; Wen, Ting; Tong, Hongli; Wang, Shuhong; Tian, Ya-Ping
2016-10-01
Currently, the diagnosis of acute graft-versus-host disease (aGVHD) is mainly based on clinical symptoms and biopsy results. This study was designed to further explore new no noninvasive biomarkers for aGVHD prediction/diagnosis. We profiled miRNAs in serum pools from patients with aGVHD (grades II-IV) (n = 9) and non-aGVHD controls (n = 9) by real-time qPCR-based TaqMan MicroRNA arrays. Then, predictive models were established using related miRNAs (n = 38) and verified by a double-blind trial (n = 54). We found that miR-411 was significantly down regulated when aGVHD developed and recovered when aGVHD was controlled, which demonstrated that miR-411 has potential as an indicator for aGVHD monitoring. We developed and validated a predictive model and a diagnostic model for aGVHD. The predictive model included two miRNAs (miR-26b and miR-374a), which could predict an increased risk for aGVHD 1 or 2 weeks in advance, with an AUC, Positive Predictive Value (PPV), and Negative Predictive Value (NPV) of 0.722, 76.19 %, and 69.70 %, respectively. The diagnostic model included three miRNAs (miR-28-5p, miR-489, and miR-671-3p) with an AUC, PPV, and NPV of 0.841, 85.71 % and 83.33 %, respectively. Our results show that circulating miRNAs (miR-26b and miR-374a, miR-28-5p, miR-489 and miR-671-3p) may serve as biomarkers for the prediction and diagnosis of grades II-IV aGVHD.
The bidirectional associations between state anger and rumination and the role of trait mindfulness.
Borders, Ashley; Lu, Shou-En
2017-07-01
Rumination is associated with exacerbated angry mood. Angry moods may also trigger rumination. However, research has not empirically tested the bidirectional associations of state rumination and anger, as experience sampling methodology can do. We predicted that state anger and rumination would be bi-directionally associated, both concurrently and over time, even controlling for trait anger and rumination. In addition, because mindfulness is associated with rumination and anger at the bivariate level, we examined the effect of trait mindfulness on the bidirectional association between state rumination and anger. We examined two hypotheses: (i) state rumination mediates the effect of trait mindfulness on state anger; and (ii) trait mindfulness weakens, or moderates, the bidirectional associations between state rumination and anger. In an experience-sampling study, 200 college students reported their current ruminative thinking and angry mood several times a day for 7 days. Mixed model analyses indicated that state anger and rumination predicted each other concurrently. In cross-lagged analyses, previous anger did not uniquely predict current rumination; previous rumination predicted current anger, although the effect was small. In support of our hypothesis, state rumination mediated the association between trait mindfulness and state anger. Additionally, trait mindfulness moderated the concurrent and cross-lagged associations between state rumination and anger, although the results were complex. This study contributes new information about the complex interplay of rumination and anger. Findings also add support to the theory that mindfulness decreases emotional reactivity. Aggr. Behav. 43:342-351, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Recalled peer relationship experiences and current levels of self-criticism and self-reassurance.
Kopala-Sibley, Daniel C; Zuroff, David C; Leybman, Michelle J; Hope, Nora
2013-03-01
Numerous studies have shown that personality factors may increase or decrease individuals' vulnerability to depression, but little research has examined the role of peer relationships in the development of these factors. Accordingly, this study examined the role of recalled parenting and peer experiences in the development of self-criticism and self-reassurance. It was hypothesized that, controlling for recalled parenting behaviours, specific recalled experiences of peer relationships would be related to current levels of specific forms of self-criticism and self-reassurance. Hypotheses were tested using a retrospective design in which participants were asked to recall experiences of parenting and peer relationships during early adolescence. This age was chosen as early adolescence has been shown to be a critical time for the development of vulnerability to depression. A total of 103 female and 97 male young adults completed measures of recalled parenting, overt and relational victimization and prosocial behaviour by peers, and current levels of self-criticism and self-reassurance. Hierarchical regression analyses showed that parents and peers independently contributed to the development of self-criticism and self-reassurance. Specifically, controlling for parental care and control, overt victimization predicted self-hating self-criticism, relational victimization predicted inadequacy self-criticism, and prosocial behaviour predicted self-reassurance. As well, prosocial behaviour buffered the effect of overt victimization on self-reassurance. Findings highlight the importance of peers in the development of personality risk and resiliency factors for depression, and suggest avenues for interventions to prevent the development of depressive vulnerabilities in youth. The nature of a patient's personality vulnerability to depression may be better understood through a consideration of the patient's relationships with their peers as well as with parents during adolescence. An understanding of adult patients' past peer relationships may further the therapist's understanding of the client's core schemas and dysfunctional attitudes, as well as potential transference reactions during therapy. Identifying and helping youth to better cope with peer victimization may help prevent the development of a vulnerable personality style in adulthood. Fostering positive peer relationships in adolescence may buffer the effects of other more negative relationships with peers. © 2011 The British Psychological Society.
Wang, Yi; Lee, Sui Mae; Dykes, Gary
2015-01-01
Bacterial attachment to abiotic surfaces can be explained as a physicochemical process. Mechanisms of the process have been widely studied but are not yet well understood due to their complexity. Physicochemical processes can be influenced by various interactions and factors in attachment systems, including, but not limited to, hydrophobic interactions, electrostatic interactions and substratum surface roughness. Mechanistic models and control strategies for bacterial attachment to abiotic surfaces have been established based on the current understanding of the attachment process and the interactions involved. Due to a lack of process control and standardization in the methodologies used to study the mechanisms of bacterial attachment, however, various challenges are apparent in the development of models and control strategies. In this review, the physicochemical mechanisms, interactions and factors affecting the process of bacterial attachment to abiotic surfaces are described. Mechanistic models established based on these parameters are discussed in terms of their limitations. Currently employed methods to study these parameters and bacterial attachment are critically compared. The roles of these parameters in the development of control strategies for bacterial attachment are reviewed, and the challenges that arise in developing mechanistic models and control strategies are assessed.
Ren, Zhaohui; Jahanmir, Said; Heshmat, Hooshang; Hunsberger, Andrew Z; Walton, James F
2009-01-01
A hybrid magnetic bearing system was designed for a rotary centrifugal blood pump being developed to provide long-term circulatory support for heart failure patients. This design consists of two compact bearings to suspend the rotor in five degrees-of-freedom with single axis active control. Permanent magnets are used to provide passive radial support and electromagnets to maintain axial stability of the rotor. Characteristics of the passive radial and active thrust magnetic bearing system were evaluated by the electromagnetic finite element analysis. A proportional-integral-derivative controller with force balance algorithm was implemented for closed loop control of the magnetic thrust bearing. The control position is continuously adjusted based on the electrical energy in the bearing coils, and thus passive magnetic forces carry static thrust loads to minimize the bearing current. Performance of the magnetic bearing system with associated control algorithm was evaluated at different operating conditions. The bearing current was significantly reduced with the force balance control method and the power consumption was below 0.5 W under various thrust loads. The bearing parameters predicted by the analysis were validated by the experimental data.
NASA Astrophysics Data System (ADS)
Egawa, K.; Furukawa, T.; Saeki, T.; Suzuki, K.; Narita, H.
2011-12-01
Natural gas hydrate-related sequences commonly provide unclear seismic images due to bottom simulating reflector, a seismic indicator of the theoretical base of gas hydrate stability zone, which usually causes problems for fully analyzing the detailed sedimentary structures and seismic facies. Here we propose an alternative technique to predict the distributional pattern of gas hydrate-related deep-sea turbidites with special reference to a Pleistocene forearc minibasin in the northeastern Nankai Trough area, off central Japan, from the integrated 3D structural and sedimentologic modeling. Structural unfolding and stratigraphic backstripping successively modeled a simple horseshoe-shaped paleobathymetry of the targeted turbidite sequence. Based on best-fit matching of net-to-gross ratio (or sand fraction) between the model and wells, subsequent turbidity current modeling on the restored paleobathymetric surface during a single flow event demonstrated excellent prediction results showing the morphologically controlled turbidity current evolution and selective turbidite sand distribution within the modeled minibasin. Also, multiple turbidity current modeling indicated the stacking sheet turbidites with regression and proximal/distal onlaps in the minibasin due to reflections off an opposing slope, whose sedimentary features are coincident with the seismic interpretation. Such modeling works can help us better understand the depositional pattern of gas hydrate-related, unconsolidated turbidites and also can improve gas hydrate reservoir characterization. This study was financially supported by MH21 Research Consortium.
Crittenden, Courtney A; Wright, Emily M
2013-04-01
In much feminist literature, patriarchy has often been studied as a predictive variable for attitudes toward or acts of violence against women. However, rarely has patriarchy been examined as an outcome across studies. The current study works toward filling this gap by examining several individual-and neighborhood-level factors that might influence patriarchy. Specifically, this research seeks to determine if neighborhood-level attributes related to socioeconomic status, family composition, and demographic information affect patriarchal views after individual-level correlates of patriarchy were controlled. Findings suggest that factors at both the individual- and neighborhood levels, particularly familial characteristics and dynamics, do influence the endorsement of patriarchal views.
Mechanisms resulting in accreted ice roughness
NASA Technical Reports Server (NTRS)
Bilanin, Alan J.; Chua, Kiat
1992-01-01
Icing tests conducted on rotating cylinders in the BF Goodrich's Icing Research Facility indicate that a regular, deterministic, icing roughness pattern is typical. The roughness pattern is similar to kernels of corn on a cob for cylinders of diameter typical of a cob. An analysis is undertaken to determine the mechanisms which result in this roughness to ascertain surface scale and amplitude of roughness. Since roughness and the resulting augmentation of the convected heat transfer coefficient has been determined to most strongly control the accreted ice in ice prediction codes, the ability to predict a priori, location, amplitude and surface scale of roughness would greatly augment the capabilities of current ice accretion models.
Progress Towards a Microgravity CFD Validation Study Using the ISS SPHERES-SLOSH Experiment
NASA Technical Reports Server (NTRS)
Storey, Jedediah M.; Kirk, Daniel; Marsell, Brandon (Editor); Schallhorn, Paul (Editor)
2017-01-01
Understanding, predicting, and controlling fluid slosh dynamics is critical to safety and improving performance of space missions when a significant percentage of the spacecrafts mass is a liquid. Computational fluid dynamics simulations can be used to predict the dynamics of slosh, but these programs require extensive validation. Many CFD programs have been validated by slosh experiments using various fluids in earth gravity, but prior to the ISS SPHERES-Slosh experiment1, little experimental data for long-duration, zero-gravity slosh existed. This paper presents the current status of an ongoing CFD validation study using the ISS SPHERES-Slosh experimental data.
Progress Towards a Microgravity CFD Validation Study Using the ISS SPHERES-SLOSH Experiment
NASA Technical Reports Server (NTRS)
Storey, Jed; Kirk, Daniel (Editor); Marsell, Brandon (Editor); Schallhorn, Paul (Editor)
2017-01-01
Understanding, predicting, and controlling fluid slosh dynamics is critical to safety and improving performance of space missions when a significant percentage of the spacecrafts mass is a liquid. Computational fluid dynamics simulations can be used to predict the dynamics of slosh, but these programs require extensive validation. Many CFD programs have been validated by slosh experiments using various fluids in earth gravity, but prior to the ISS SPHERES-Slosh experiment, little experimental data for long-duration, zero-gravity slosh existed. This paper presents the current status of an ongoing CFD validation study using the ISS SPHERES-Slosh experimental data.
Zhang, Jie; Lester, David; Zhao, Sibo; Zhou, Chengchao
2013-01-01
The present study explored the validity of Joiner's interpersonal theory of suicide in a sample of 439 Chinese university students 17 to 24 years of age. The results indicated that the three elements of the theory (thwarted belongingness, perceived burdensomeness, and acquired capability for self-harm) were associated with current suicidal ideation in the total sample of students. For men, only thwarted belongingness and perceived burdensomeness predicted suicidal ideation, whereas all three elements of the theory predicted suicidal ideation for women. Multiple regression analyses, controlling for other variables, supported the role of burdensomeness and acquired capability for suicide, but not thwarted belongingness.
Painter, Janelle M.; Kring, Ann M.
2016-01-01
Anticipatory pleasure deficits have been observed in people with schizophrenia. Less is known about the extent to which interrelated processes that comprise anticipatory pleasure, including memory, prospection and emotion experience are disrupted. We asked people with (n=32) and without (n=29) schizophrenia or schizoaffective disorder to provide memory and prospection narratives in response to specific cues. Half of the prospections followed a memory task, and half followed a control task. People with schizophrenia generated memories similar in content and experience as controls even as they described them less clearly. However, people with schizophrenia were less likely to explicitly reference the past in their prospections, and their prospections were less detailed and richly experienced than controls, regardless of the task completed before prospection. People with schizophrenia reported similar levels of positive emotion (current and predicted) in positive prospections that followed the memory task, but less positive emotion than controls in positive prospections that followed the control task. Taken together, these results suggest that people with schizophrenia experience difficulties drawing from past experiences and generating detailed prospections. However, asking people with schizophrenia to recall and describe memories prior to prospection may increase the likelihood of drawing from the past in prospections and may help boost current and predicted pleasure. General Scientific Summary People with schizophrenia experience difficulty anticipating future pleasure. This study supports the notion that the “feeling” part of anticipatory pleasure is intact when people with schizophrenia are first asked to generate memories. Thus, recalling and describing positive memories before thinking about the future may help people with schizophrenia to experience greater anticipatory pleasure. PMID:26950753
Meltzer, Andrea L; McNulty, James K
2010-04-01
How does women's body image shape their interpersonal relationships? Based on recent theories of risk regulation and empirical evidence that sex is an emotionally risky behavior, we predicted that women's body image would predict increased sexual frequency and thus increased sexual and marital satisfaction for both members of established relationships. The current study of 53 recently married couples provided results consistent with this prediction. Specifically, wives' perceptions of their sexual attractiveness were positively associated with both wives' and husbands' marital satisfaction, controlling for wives' body mass index (BMI) wives' global self-esteem, wives' neuroticism, and reports of whether or not the couple was trying to get pregnant, and both of these associations were mediated by increased sexual frequency and higher sexual satisfaction. Notably, wives' perceptions of their sexual attractiveness accounted for 6% of the variance in husbands' marital satisfaction and 19% of the variance in wives' marital satisfaction that was unique from BMI and the other controls. Accordingly, marital interventions may greatly benefit by addressing women's body esteem. 2010 APA, all rights reserved
Handling Qualities Prediction of an F-16XL-Based Reduced Sonic Boom Aircraft
NASA Technical Reports Server (NTRS)
Cogan, Bruce; Yoo, Seung
2010-01-01
A major goal of the Supersonics Project under NASA s Fundamental Aeronautics program is sonic boom reduction of supersonic aircraft. An important part of this effort is development and validation of sonic boom prediction tools used in aircraft design. NASA Dryden s F- 16XL was selected as a potential testbed aircraft to provide flight validation. Part of this task was predicting the handling qualities of the modified aircraft. Due to the high cost of modifying the existing F-16XL control laws, it was desirable to find modifications that reduced the aircraft sonic boom but did not degrade baseline aircraft handling qualities allowing for the potential of flight test without changing the current control laws. This was not a requirement for the initial modification design work, but an important consideration for proceeding to the flight test option. The primary objective of this work was to determine an aerodynamic and mass properties envelope of the F-16XL aircraft. The designers could use this envelope to determine the effect of proposed modifications on aircraft handling qualities.
Carré, Justin M; McCormick, Cheryl M
2008-08-01
The current study investigated relationships among aggressive behavior, change in salivary testosterone concentrations, and willingness to engage in a competitive task. Thirty-eight male participants provided saliva samples before and after performing the Point Subtraction Aggression Paradigm (a laboratory measure that provides opportunity for aggressive and defensive behavior while working for reward; all three involve pressing specific response keys). Baseline testosterone concentrations were not associated with aggressive responding. However, aggressive responding (but not point reward or point protection responding) predicted the pre- to post-PSAP change in testosterone: Those with the highest aggressive responding had the largest percent increase in testosterone concentrations. Together, aggressive responding and change in testosterone predicted willingness to compete following the PSAP. Controlling for aggression, men who showed a rise in testosterone were more likely to choose to compete again (p=0.03) and controlling for testosterone change, men who showed the highest level of aggressive responding were more likely to choose the non-competitive task (p=0.02). These results indicate that situation-specific aggressive behavior and testosterone responsiveness are functionally relevant predictors of future social behavior.
Brinkman, Britney G; Khan, Aliya; Edner, Benjamin; Rosén, Lee A
2014-01-01
Recent research has suggested that vegetarians may be at an increased risk for developing disordered eating or body image issues when compared to non-vegetarians. However, the results of such studies are mixed, and no research has explored potential connections between vegetarianism and self-objectification. In the current study, the authors examine factors that predicted body surveillance, body shame, and appearance control beliefs; three aspects of self-objectification. Surveys were completed by 386 women from the United States who were categorized as vegetarian, semi-vegetarian, or non-vegetarian. The three groups differed regarding dietary motivations, levels of feminist activism, and body shame, but did not differ on their conformity to feminine norms. While conformity to feminine norms predicted body surveillance and body shame levels among all three groups of women, feminist activism predicted appearance control beliefs among non-vegetarians only. These findings suggest that it is important for researchers and clinicians to distinguish among these three groups when examining the relationship between vegetarianism and self-objectification. Copyright © 2013 Elsevier Ltd. All rights reserved.
Dimensionality of coping and its relation to depression.
Rohde, P; Lewinsohn, P M; Tilson, M; Seeley, J R
1990-03-01
The dimensionality of coping, as measured by 65 items from 3 commonly used instruments, and the relation of coping and stress to concurrent and future depression were studied in a community sample of 742 older (greater than or equal to 50 years old) adults. Measures of coping, stress, and depression were obtained at 2 time points over a 2-year period. Depression was assessed by symptom checklist and by diagnostic interview. Three coping factors--Cognitive Self-Control, Ineffective Escapism, and Solace Seeking--that had adequate psychometric properties and accounted for 25% of the total item variance were identified. Ineffective Escapism was associated with current depression and had a direct and interactive effect on future depression, exacerbating the negative impact of stress rather than acting as a buffer. Although Cognitive Self-Control was unrelated to either concurrent or future depression, Solace Seeking significantly buffered the effect of stress in predicting a future diagnosis of depression. Stress and initial depression level predicted both measures of future depression. Gender (being female) predicted the future diagnosis of depression but not the increase of depressive symptoms.
Poly (lactic-co-glycolic acid) controlled release systems: experimental and modeling insights
Hines, Daniel J.; Kaplan, David L.
2013-01-01
Poly-lactic-co-glycolic acid (PLGA) has been the most successful polymeric biomaterial for use in controlled drug delivery systems. There are several different chemical and physical properties of PLGA that impact the release behavior of drugs from PLGA delivery devices. These properties must be considered and optimized in drug release device formulation. Mathematical modeling is a useful tool for identifying, characterizing, and predicting the mechanisms of controlled release. The advantages and limitations of poly (lactic-co-glycolic acid) for controlled release are reviewed, followed by a review of current approaches in controlled release technology that utilize PLGA. Mathematical modeling applied towards controlled release rates from PLGA-based devices will also be discussed to provide a complete picture of state of the art understanding of the control achievable with this polymeric system, as well as the limitations. PMID:23614648
Nouretdinov, Ilia; Costafreda, Sergi G; Gammerman, Alexander; Chervonenkis, Alexey; Vovk, Vladimir; Vapnik, Vladimir; Fu, Cynthia H Y
2011-05-15
There is rapidly accumulating evidence that the application of machine learning classification to neuroimaging measurements may be valuable for the development of diagnostic and prognostic prediction tools in psychiatry. However, current methods do not produce a measure of the reliability of the predictions. Knowing the risk of the error associated with a given prediction is essential for the development of neuroimaging-based clinical tools. We propose a general probabilistic classification method to produce measures of confidence for magnetic resonance imaging (MRI) data. We describe the application of transductive conformal predictor (TCP) to MRI images. TCP generates the most likely prediction and a valid measure of confidence, as well as the set of all possible predictions for a given confidence level. We present the theoretical motivation for TCP, and we have applied TCP to structural and functional MRI data in patients and healthy controls to investigate diagnostic and prognostic prediction in depression. We verify that TCP predictions are as accurate as those obtained with more standard machine learning methods, such as support vector machine, while providing the additional benefit of a valid measure of confidence for each prediction. Copyright © 2010 Elsevier Inc. All rights reserved.
Weintraub Austin, Erica; Chen, Yin Ju
2003-01-01
Although alcohol consumption is a problem on the college campus, beliefs and behaviors predictive of alcohol use are in development in children as young as third grade. Because they develop partially in response to interpretations of media messages, for which parents can have an influence, this study examined how college students' (N=300) recollections of parental reinforcement of media messages associated with alcohol-related beliefs and behaviors. Structural equation modeling showed that recalled positive mediation negatively predicted skepticism, and positively predicted desirability and expectancies. Desirability of media messages predicted more positive norms perceptions, and a lack of skepticism predicted more positive expectancies. With age of first experimentation controlled, expectancies predicted heavier current drinking behavior. Norms did not predict behavior, and positive mediation did not predict norms. The study concludes that to the extent parental communication leads adolescents to interpret media messages less skeptically, they encourage adolescents to find alcohol portrayals appealing. This in turn appears to lead toward more risky behaviors. The results suggest that college-based anti-alcohol campaigns can benefit by acknowledging the appeal of competing messages and by including parents as a campaign target.
Mental disorders in current and former heavy ecstasy (MDMA) users.
Thomasius, R; Petersen, K U; Zapletalova, P; Wartberg, L; Zeichner, D; Schmoldt, A
2005-09-01
Ecstasy use has often been found to be associated with psychopathology, yet this research has so far been based largely on subjective symptom ratings. To investigate whether ecstasy users suffered from long-term psychopathological consequences. We compared the prevalence of Diagnostic and Statistical Manual version IV (DSM-IV) mental disorders in 30 current and 29 former ecstasy users, 29 polydrug and 30 drug-naive controls. Groups were approximately matched by age, gender and level of education. The current ecstasy users reported a life-time dose of an average of 821 and the former ecstasy users of 768 ecstasy tablets. Ecstasy users did not significantly differ from controls in the prevalence of mental disorders, except those related to substance use. Substance-induced affective, anxiety and cognitive disorders occurred more frequently among ecstasy users than polydrug controls. The life-time prevalence of ecstasy dependence amounted to 73% in the ecstasy user groups. More than half of the former ecstasy users and nearly half of the current ecstasy users met the criteria of substance-induced cognitive disorders at the time of testing. Logistic regression analyses showed the estimated life-time doses of ecstasy to be predictive of cognitive disorders, both current and life-time. The motivation for ecstasy use is not likely to be self-medication of pre-existing depressive or anxiety disorders as these did not occur more frequently in the ecstasy users than in control groups or in the general population. Cognitive disorders still present after over 5 months of ecstasy abstinence may well be functional consequences of serotonergic neurotoxicity of 3,4-methylenedioxymethamphetamine (MDMA).
From Wake Steering to Flow Control
Fleming, Paul A.; Annoni, Jennifer; Churchfield, Matthew J.; ...
2017-11-22
In this article, we investigate the role of flow structures generated in wind farm control through yaw misalignment. A pair of counter-rotating vortices are shown to be important in deforming the shape of the wake and in explaining the asymmetry of wake steering in oppositely signed yaw angles. We motivate the development of new physics for control-oriented engineering models of wind farm control, which include the effects of these large-scale flow structures. Such a new model would improve the predictability of control-oriented models. Results presented in this paper indicate that wind farm control strategies, based on new control-oriented models withmore » new physics, that target total flow control over wake redirection may be different, and perhaps more effective, than current approaches. We propose that wind farm control and wake steering should be thought of as the generation of large-scale flow structures, which will aid in the improved performance of wind farms.« less
Predictive Toxicology: Current Status and Future Outlook (EBI ...
Slide presentation at the EBI-EMBL Industry Programme Workshop on Predictive Toxicology and the currently status of Computational Toxicology activities at the US EPA. Slide presentation at the EBI-EMBL Industry Programme Workshop on Predictive Toxicology and the currently status of Computational Toxicology activities at the US EPA.
Prediction of Tidal Elevations and Barotropic Currents in the Gulf of Bone
NASA Astrophysics Data System (ADS)
Purnamasari, Rika; Ribal, Agustinus; Kusuma, Jeffry
2018-03-01
Tidal elevation and barotropic current predictions in the gulf of Bone have been carried out in this work based on a two-dimensional, depth-integrated Advanced Circulation (ADCIRC-2DDI) model for 2017. Eight tidal constituents which were obtained from FES2012 have been imposed along the open boundary conditions. However, even using these very high-resolution tidal constituents, the discrepancy between the model and the data from tide gauge is still very high. In order to overcome such issues, Green’s function approach has been applied which reduced the root-mean-square error (RMSE) significantly. Two different starting times are used for predictions, namely from 2015 and 2016. After improving the open boundary conditions, RMSE between observation and model decreased significantly. In fact, RMSEs for 2015 and 2016 decreased 75.30% and 88.65%, respectively. Furthermore, the prediction for tidal elevations as well as tidal current, which is barotropic current, is carried out. This prediction was compared with the prediction conducted by Geospatial Information Agency (GIA) of Indonesia and we found that our prediction is much better than one carried out by GIA. Finally, since there is no tidal current observation available in this area, we assume that, when tidal elevations have been fixed, then the tidal current will approach the actual current velocity.
Aging and mind wandering during text comprehension.
Krawietz, Sabine A; Tamplin, Andrea K; Radvansky, Gabriel A
2012-12-01
Mind wandering occurs when a person's stream of thought moves from the primary task to task-unrelated matters. Some theories of mind wandering suggest that it is caused by decreased attentional control associated with lower working memory (WM) capacity. Others suggest that it is caused by attention being directed toward internally generated thoughts and that it is associated with higher WM capacity. These ideas were assessed testing older adults because they have been argued to have reduced attentional control and lower WM capacity. The first account predicts that mind wandering should increase in older adults, while the second account predicts the opposite. Two experiments show that older adults exhibited a lower rate of mind wandering than younger adults. However, when using text interest as a covariate, the age difference in mind wandering disappeared. These results are further addressed in light of participants' current concerns and preserved situation model processing in cognitive aging. 2013 APA, all rights reserved
A Framework for Modeling Emerging Diseases to Inform Management
Katz, Rachel A.; Richgels, Katherine L.D.; Walsh, Daniel P.; Grant, Evan H.C.
2017-01-01
The rapid emergence and reemergence of zoonotic diseases requires the ability to rapidly evaluate and implement optimal management decisions. Actions to control or mitigate the effects of emerging pathogens are commonly delayed because of uncertainty in the estimates and the predicted outcomes of the control tactics. The development of models that describe the best-known information regarding the disease system at the early stages of disease emergence is an essential step for optimal decision-making. Models can predict the potential effects of the pathogen, provide guidance for assessing the likelihood of success of different proposed management actions, quantify the uncertainty surrounding the choice of the optimal decision, and highlight critical areas for immediate research. We demonstrate how to develop models that can be used as a part of a decision-making framework to determine the likelihood of success of different management actions given current knowledge. PMID:27983501
NASA Technical Reports Server (NTRS)
Engelland, Shawn A.; Capps, Alan
2011-01-01
Current aircraft departure release times are based on manual estimates of aircraft takeoff times. Uncertainty in takeoff time estimates may result in missed opportunities to merge into constrained en route streams and lead to lost throughput. However, technology exists to improve takeoff time estimates by using the aircraft surface trajectory predictions that enable air traffic control tower (ATCT) decision support tools. NASA s Precision Departure Release Capability (PDRC) is designed to use automated surface trajectory-based takeoff time estimates to improve en route tactical departure scheduling. This is accomplished by integrating an ATCT decision support tool with an en route tactical departure scheduling decision support tool. The PDRC concept and prototype software have been developed, and an initial test was completed at air traffic control facilities in Dallas/Fort Worth. This paper describes the PDRC operational concept, system design, and initial observations.
Memory self-efficacy predicts responsiveness to inductive reasoning training in older adults.
Payne, Brennan R; Jackson, Joshua J; Hill, Patrick L; Gao, Xuefei; Roberts, Brent W; Stine-Morrow, Elizabeth A L
2012-01-01
In the current study, we assessed the relationship between memory self-efficacy at pretest and responsiveness to inductive reasoning training in a sample of older adults. Participants completed a measure of self-efficacy assessing beliefs about memory capacity. Participants were then randomly assigned to a waitlist control group or an inductive reasoning training intervention. Latent change score models were used to examine the moderators of change in inductive reasoning. Inductive reasoning showed clear improvements in the training group compared with the control. Within the training group, initial memory capacity beliefs significantly predicted change in inductive reasoning such that those with higher levels of capacity beliefs showed greater responsiveness to the intervention. Further analyses revealed that self-efficacy had effects on how trainees allocated time to the training materials over the course of the intervention. Results indicate that self-referential beliefs about cognitive potential may be an important factor contributing to plasticity in adulthood.
Rudebeck, Peter H; Murray, Elisabeth A
2014-12-17
The orbitofrontal cortex (OFC) has long been associated with the flexible control of behavior and concepts such as behavioral inhibition, self-control, and emotional regulation. These ideas emphasize the suppression of behaviors and emotions, but OFC's affirmative functions have remained enigmatic. Here we review recent work that has advanced our understanding of this prefrontal area and how its functions are shaped through interaction with subcortical structures such as the amygdala. Recent findings have overturned theories emphasizing behavioral inhibition as OFC's fundamental function. Instead, new findings indicate that OFC provides predictions about specific outcomes associated with stimuli, choices, and actions, especially their moment-to-moment value based on current internal states. OFC function thereby encompasses a broad representation or model of an individual's sensory milieu and potential actions, along with their relationship to likely behavioral outcomes. Copyright © 2014 Elsevier Inc. All rights reserved.
Romantic Partner Selection and Socialization during Early Adolescence
Simon, Valerie A.; Aikins, Julie Wargo; Prinstein, Mitchell J.
2012-01-01
This prospective study examined romantic partner selection and socialization among a sample of 78 young adolescents (6th–8th graders). Independent assessments of adolescent and romantic partner adjustment were collected before and after relationships initiated via peer nomination and self-report. Prior to their relationship, adolescents and partners were significantly alike on popularity, physical attraction, and depressive symptoms. Controlling for initial similarity, partners' popularity, depressive symptoms, relational aggression and relational victimization significantly predicted changes in adolescents' functioning in these areas over time. However, the magnitude and direction of change varied according to adolescents' and partners' pre-relationship functioning. In general, adolescents who dated high-functioning partners changed more than those who dated low-functioning partners, and partner characteristics predicted greater change among low versus high-functioning adolescents. Results were consistent even when controlling for best friend characteristics. The current findings are among the first to demonstrate unique contributions of romantic partner characteristics to adolescents' psychosocial functioning. PMID:19037942
A Framework for Modeling Emerging Diseases to Inform Management.
Russell, Robin E; Katz, Rachel A; Richgels, Katherine L D; Walsh, Daniel P; Grant, Evan H C
2017-01-01
The rapid emergence and reemergence of zoonotic diseases requires the ability to rapidly evaluate and implement optimal management decisions. Actions to control or mitigate the effects of emerging pathogens are commonly delayed because of uncertainty in the estimates and the predicted outcomes of the control tactics. The development of models that describe the best-known information regarding the disease system at the early stages of disease emergence is an essential step for optimal decision-making. Models can predict the potential effects of the pathogen, provide guidance for assessing the likelihood of success of different proposed management actions, quantify the uncertainty surrounding the choice of the optimal decision, and highlight critical areas for immediate research. We demonstrate how to develop models that can be used as a part of a decision-making framework to determine the likelihood of success of different management actions given current knowledge.
Applications of artificial neural networks (ANNs) in food science.
Huang, Yiqun; Kangas, Lars J; Rasco, Barbara A
2007-01-01
Artificial neural networks (ANNs) have been applied in almost every aspect of food science over the past two decades, although most applications are in the development stage. ANNs are useful tools for food safety and quality analyses, which include modeling of microbial growth and from this predicting food safety, interpreting spectroscopic data, and predicting physical, chemical, functional and sensory properties of various food products during processing and distribution. ANNs hold a great deal of promise for modeling complex tasks in process control and simulation and in applications of machine perception including machine vision and electronic nose for food safety and quality control. This review discusses the basic theory of the ANN technology and its applications in food science, providing food scientists and the research community an overview of the current research and future trend of the applications of ANN technology in the field.
A framework for modeling emerging diseases to inform management
Russell, Robin E.; Katz, Rachel A.; Richgels, Katherine L. D.; Walsh, Daniel P.; Grant, Evan H. Campbell
2017-01-01
The rapid emergence and reemergence of zoonotic diseases requires the ability to rapidly evaluate and implement optimal management decisions. Actions to control or mitigate the effects of emerging pathogens are commonly delayed because of uncertainty in the estimates and the predicted outcomes of the control tactics. The development of models that describe the best-known information regarding the disease system at the early stages of disease emergence is an essential step for optimal decision-making. Models can predict the potential effects of the pathogen, provide guidance for assessing the likelihood of success of different proposed management actions, quantify the uncertainty surrounding the choice of the optimal decision, and highlight critical areas for immediate research. We demonstrate how to develop models that can be used as a part of a decision-making framework to determine the likelihood of success of different management actions given current knowledge.
Dodd, Alyson L; Mansell, Warren; Sadhnani, Vaneeta; Morrison, Anthony P; Tai, Sara
2010-01-01
An integrative cognitive model proposed that ascribing extreme personal appraisals to changes in internal state is key to the development of the symptoms of bipolar disorder. The Hypomanic Attitudes and Positive Predictions Inventory (HAPPI) was developed to measure these appraisals. The aim of the current study was to validate an expanded 61-item version of the HAPPI. In a largely female student sample (N = 134), principal components analysis (PCA) was performed on the HAPPI. Associations between the HAPPI and analogue bipolar symptoms after 3 months were examined. PCA of the HAPPI revealed six categories of belief: Self Activation, Self-and-Other Critical, Catastrophic, Extreme Appraisals of Social Approval, Appraisals of Extreme Agitation, and Loss of Control. The HAPPI predicted all analogue measures of hypomanic symptoms after 3 months when controlling for baseline symptoms. In a more stringent test incorporating other psychological measures, the HAPPI was independently associated only with activation (e.g. thoughts racing) at 3 months. Dependent dysfunctional attitudes predicted greater conflict (e.g. irritability), depression and reduced well-being, hypomanic personality predicted self-reported diagnostic bipolar symptoms, and behavioural dysregulation predicted depression. Extreme beliefs about internal states show a modest independent association with prospective analogue bipolar symptoms, alongside other psychological factors. Further work will be required to improve the factor structure of the HAPPI and study its validity in clinical samples.
van der Fels-Klerx, H J; Booij, C J H
2010-06-01
This article provides an overview of available systems for management of Fusarium mycotoxins in the cereal grain supply chain, with an emphasis on the use of predictive mathematical modeling. From the state of the art, it proposes future developments in modeling and management and their challenges. Mycotoxin contamination in cereal grain-based feed and food products is currently managed and controlled by good agricultural practices, good manufacturing practices, hazard analysis critical control points, and by checking and more recently by notification systems and predictive mathematical models. Most of the predictive models for Fusarium mycotoxins in cereal grains focus on deoxynivalenol in wheat and aim to help growers make decisions about the application of fungicides during cultivation. Future developments in managing Fusarium mycotoxins should include the linkage between predictive mathematical models and geographical information systems, resulting into region-specific predictions for mycotoxin occurrence. The envisioned geographically oriented decision support system may incorporate various underlying models for specific users' demands and regions and various related databases to feed the particular models with (geographically oriented) input data. Depending on the user requirements, the system selects the best fitting model and available input information. Future research areas include organizing data management in the cereal grain supply chain, developing predictive models for other stakeholders (taking into account the period up to harvest), other Fusarium mycotoxins, and cereal grain types, and understanding the underlying effects of the regional component in the models.
Pizzolato, Claudio; Lloyd, David G; Sartori, Massimo; Ceseracciu, Elena; Besier, Thor F; Fregly, Benjamin J; Reggiani, Monica
2015-11-05
Personalized neuromusculoskeletal (NMS) models can represent the neurological, physiological, and anatomical characteristics of an individual and can be used to estimate the forces generated inside the human body. Currently, publicly available software to calculate muscle forces are restricted to static and dynamic optimisation methods, or limited to isometric tasks only. We have created and made freely available for the research community the Calibrated EMG-Informed NMS Modelling Toolbox (CEINMS), an OpenSim plug-in that enables investigators to predict different neural control solutions for the same musculoskeletal geometry and measured movements. CEINMS comprises EMG-driven and EMG-informed algorithms that have been previously published and tested. It operates on dynamic skeletal models possessing any number of degrees of freedom and musculotendon units and can be calibrated to the individual to predict measured joint moments and EMG patterns. In this paper we describe the components of CEINMS and its integration with OpenSim. We then analyse how EMG-driven, EMG-assisted, and static optimisation neural control solutions affect the estimated joint moments, muscle forces, and muscle excitations, including muscle co-contraction. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
The role of self-identity in predicting fruit and vegetable intake.
Carfora, V; Caso, D; Conner, M
2016-11-01
This research investigated whether the Theory of Planned Behavior (TPB) with the addition of self-identity could predict fruit and vegetable intake when controlling for past behavior. Previous research had demonstrated the efficacy of TPB to predict intention and behavior in relation to food choice and the additional power of self-identity, but had failed assess the effects of self-identity while controlling for past behavior. At baseline (N = 210) TPB components and past behavior in relation to fruit and vegetable consumption plus self-identity as a healthy eater were measured by questionnaire in a sample of university students. At time 1, 4 weeks later, self-reported fruit and vegetable consumption was measured. Structural Equation Modelling (SEM) indicated attitude, PBC and self-identity to be significant predictors of intention (subjective norm and past behavior were not significant). Intention, self-identity and past behavior were direct predictors of behavior. The current findings support the independent effect of self-identity as a healthy eater on both intentions and future behaviour when controlling for TPB variables and also past behavior. The discussion considers the importance of self-identity in changing intentions and behavior for behaviors such as fruit and vegetable consumption. Copyright © 2015 Elsevier Ltd. All rights reserved.
Decreased C-reactive protein levels in Alzheimer disease.
O'Bryant, Sid E; Waring, Stephen C; Hobson, Valerie; Hall, James R; Moore, Carol B; Bottiglieri, Teodoro; Massman, Paul; Diaz-Arrastia, Ramon
2010-03-01
C-reactive protein (CRP) is an acute-phase reactant that has been found to be associated with Alzheimer disease (AD) in histopathological and longitudinal studies; however, little data exist regarding serum CRP levels in patients with established AD. The current study evaluated CRP levels in 192 patients diagnosed with probable AD (mean age = 75.8 +/- 8.2 years; 50% female) as compared to 174 nondemented controls (mean age = 70.6 +/- 8.2 years; 63% female). Mean CRP levels were found to be significantly decreased in AD (2.9 microg/mL) versus controls (4.9 microg/mL; P = .003). In adjusted models, elevated CRP significantly predicted poorer (elevated) Clinical Dementia Rating Scale sum of boxes (CDR SB) scores in patients with AD. In controls, CRP was negatively associated with Mini-Mental State Examination (MMSE) scores and positively associated with CDR SB scores. These findings, together with previously published results, are consistent with the hypothesis that midlife elevations in CRP are associated with increased risk of AD development though elevated CRP levels are not useful for prediction in the immediate prodrome years before AD becomes clinically manifest. However, for a subgroup of patients with AD, elevated CRP continues to predict increased dementia severity suggestive of a possible proinflammatory endophenotype in AD.
Decreased C-Reactive Protein Levels in Alzheimer Disease
O’Bryant, Sid E.; Waring, Stephen C.; Hobson, Valerie; Hall, James R.; Moore, Carol B.; Bottiglieri, Teodoro; Massman, Paul; Diaz-Arrastia, Ramon
2011-01-01
C-reactive protein (CRP) is an acute-phase reactant that has been found to be associated with Alzheimer disease (AD) in histo-pathological and longitudinal studies; however, little data exist regarding serum CRP levels in patients with established AD. The current study evaluated CRP levels in 192 patients diagnosed with probable AD (mean age = 75.8 ± 8.2 years; 50% female) as compared to 174 nondemented controls (mean age = 70.6 ± 8.2 years; 63% female). Mean CRP levels were found to be significantly decreased in AD (2.9 µg/mL) versus controls (4.9 µg/mL; P = .003). In adjusted models, elevated CRP significantly predicted poorer (elevated) Clinical Dementia Rating Scale sum of boxes (CDR SB) scores in patients with AD. In controls, CRP was negatively associated with Mini-Mental State Examination (MMSE) scores and positively associated with CDR SB scores. These findings, together with previously published results, are consistent with the hypothesis that midlife elevations in CRP are associated with increased risk of AD development though elevated CRP levels are not useful for prediction in the immediate prodrome years before AD becomes clinically manifest. However, for a subgroup of patients with AD, elevated CRP continues to predict increased dementia severity suggestive of a possible proinflammatory endophenotype in AD. PMID:19933496
Shen, Tian; Gu, Delin; Zhu, Yihua; Shi, Junwei; Xu, Dongsheng; Cao, Xingjian
2016-08-01
The morphological changes in activated neutrophils associated with antituberculosis drugs can be measured by volume, conductivity, and scatter (VCS) technology on the Coulter LH750 hematology analyzer. We conducted the current study to further validate the clinical usefulness of the neutrophil VCS parameters in predicting drug-induced neutropenia. Peripheral blood samples were collected from 52 patients with drug-induced neutropenia, 309 patients without any abnormal CBC, and 237 healthy controls. The mean neutrophil volume (MNV) with its distribution width (NDW) and the mean neutrophil scatter (MNS) were studied. We observed a significant increase in the MNV and NDW as well as a significant decrease in the MNS in neutropenia patients approximately one week prior to development of neutropenia compared to healthy controls as well as to case controls. In addition, the delta MNV and delta MNS were respectively correlated well with delta absolute neutrophil counts when neutropenia occurred. The ROC curve analyses showed that the MNV、NDW and MNS had larger areas under curves compared to conventional parameters. With a cutoff of 150.15 for the MNV, a sensitivity of 84.4% and specificity of 75.7% were achieved prior to neutropenia. The neutrophil VCS parameters may be clinically useful as potential hematological indicators for predicting antituberculosis drug-induced neutropenia. Copyright © 2016 Elsevier B.V. All rights reserved.
The Problem of “Just for Fun”: Patterns of Use Situations among Active Club Drug Users
Starks, Tyrel J.; Golub, Sarit; Kelly, Brian C.; Parsons, Jeffrey T.
2010-01-01
Existing research has demonstrated the significance of situational antecedents to substance use. The current study used a cluster analytic approach to identify groups of club drug users who report using substances in similar situations (assessed by the Inventory of Drug Taking Situations) with longitudinal data from 400 active drug users. A three-cluster solution emerged in baseline data and was replicated in 12-month follow-up data. Groups were identified as Situationally Restricted, Pleasure Driven, and Situationally Broad users. Group differences were observed on measures of mental health, attitudes towards substance use, amount of substance use, and rates of substance dependence. Cluster membership predicted substance dependence after controlling for past dependence, current use, and current depression/anxiety. PMID:20696530
Wong, Aaron L; Shelhamer, Mark
2014-05-01
Adaptive processes are crucial in maintaining the accuracy of body movements and rely on error storage and processing mechanisms. Although classically studied with adaptation paradigms, evidence of these ongoing error-correction mechanisms should also be detectable in other movements. Despite this connection, current adaptation models are challenged when forecasting adaptation ability with measures of baseline behavior. On the other hand, we have previously identified an error-correction process present in a particular form of baseline behavior, the generation of predictive saccades. This process exhibits long-term intertrial correlations that decay gradually (as a power law) and are best characterized with the tools of fractal time series analysis. Since this baseline task and adaptation both involve error storage and processing, we sought to find a link between the intertrial correlations of the error-correction process in predictive saccades and the ability of subjects to alter their saccade amplitudes during an adaptation task. Here we find just such a relationship: the stronger the intertrial correlations during prediction, the more rapid the acquisition of adaptation. This reinforces the links found previously between prediction and adaptation in motor control and suggests that current adaptation models are inadequate to capture the complete dynamics of these error-correction processes. A better understanding of the similarities in error processing between prediction and adaptation might provide the means to forecast adaptation ability with a baseline task. This would have many potential uses in physical therapy and the general design of paradigms of motor adaptation. Copyright © 2014 the American Physiological Society.